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Directory-based protocols have been proposed as an efficient means of implementing
cache coherence in large-scale shared-memory multiprocessors. This thesis explores
the trade-offs in the design of cache coherence directories by examining the
organization of the directory information, the options in the design of the coherency
protocol, and the implementation of the directory and protocol.

The traditional directory organization that maintains a full valid bit vector per directory
entry is unsuitable for large-scale machines due to high storage overhead. This thesis
proposes several alternate organizations. Limited pointers directories replace the bit
vector with several pointers that indicate those caches containing the data. Although
this scheme performs well across a wide range of workloads, its performance does not
improve as the read/write ratio becomes very large. To address this drawback, a
dynamic pointer allocarion directory is proposed. This directory allocates pointers from
a pool to particular memory blocks as they are needed. Since the pointers may be
allocated to any block on the memory module, the probability of running short of
pointers is very small. Among the set of possible organizations, dynamic pointer
allocation lies at an attractive cost/performance point.

Measuring the performance impact of three coherency protocol features makes the
virtues of simplicity clear. Adding a clean/exclusive state to reduce the time required to
write a clean block results in only modest performance improvement. Using request
forwarding to transfer a dirty block directly to another cache that has requested it yields
similar results. For small cache block sizes, write hits to clean blocks can be simply
treated as write misses without incurring significant extra network traffic. Protocol
features designed to improve performance must be examined carefully, for they often
complicate the protocol without offering substantial benefit.

Implementing directory-based coherency presents several challenges. Methods are
described for preventing deadlock, maintaining a mode1 of parallel execution, handling
subtle situations caused by temporary inconsistencies between cache and directory
state, and tolerating out-of-order message delivery. Using these techniques, cache
coherence can be added to large-scale multiprocessors in an inexpensive yet effective
manner.
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Chapter 1

Introduction

Parallel processing has long been regarded as a promising architectural means of boost-

ing computer performance; however, in practice this benefit has often proven elusive.

In particular, the cost/performance of machines built with a modest degree of paral-

lelism is often nearly outstripped at their introduction by easier-to-build uniprocessors

that are brought to market with more advanced technology. Nevertheless, technology

improvements continue to shrink the volume of space occupied by a single processing

node, making it possible to build large-scale multiprocessors incorporating hundreds or

thousands of processors, with the attendant potential for speeding program execution by

several orders of magnitude. A continuing obstacle to realizing this potential is the diffi-

culty of programming such machines. To combat this problem, a great deal of interest has

developed in building large-scale multiprocessors in which the hardware provides a sim-

ple shared memory programming model. This model allows processors to communicate

by reading and writing a single address space shared by all of them.

One of the primary challenges facing designers of these machines is building an ef-

ficient memory system. The speed of CPUs continues to improve faster than the speed

of high-density memory chips, making it increasingly difficult to supply processors with

sufficient memory bandwidth. Sharing data further exacerbates this memory bandwidth

problem, since multiple processors may be referencing the same memory modules. Fur-

thermore, it is impossible to physically locate all memory nearby all of the processors,
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so some references must incur long access latencies due to interconnect delays. Aver-

age memory latency can be reduced somewhat by distributing the global shared memory

across the processing nodes. Even so, if a processor is actively sharing data, then it will

reference some data that is not locally resident.

One approach to improving the characteristics of the memory system is to follow the

lead of uniprocessor designers by pairing each processor with a cache. Caches improve

latency and bandwidth by using small, fast memories that are tightly coupled with the

CPU. In a multiprocessor, they aIso reduce the bandwidth strain due to data sharing by

allowing each processor to cache its own copy of a shared data value. Unfortunately,

allowing multiple processors to simultaneously cache a given datum leads to the cache

consistency problem, also known as the cache coherence problem. If one processor writes

a shared data value in its cache, the other cached copies of the data become stale. A

processor that reads a stale copy of the data does not receive the most recently written

value, violating the shared memory model we would like to provide.

The simplest solution to the cache coherence problem is to disallow the caching of

shared data. The performance effects stemming from the longer latencies that result from

caching only private data are demonstrated by Figure 1.1. i The vertical axis shows the

fraction of uniprocessor utilization that is achieved by each processor. The horizontal axis

shows the fraction of data references that are to shared data. The solid curve indicates the

results if ail data sharing occurs between neighboring processors, while the other curves

represent sharing between randomly selected processors in different sized systems. Even

for the best case of nearest-neighbor sharing, only 15% shared data references are required

to drop the per-processor utilization to half that seen on a uniprocessor. Yet shared data

percentages of 30% or higher are not uncommon in shared memory applications [45].

Clearly, if shared memory machines are to give reasonable performance in the presence

of significant data sharing, the latency problem must be addressed.

We can reduce the latency of accesses to shared data by allowing that data to be

cached, and including a mechanism to maintain consistency across the caches. The

consistency mechanism comes into play when a processor writes a piece of data that

resides in multiple caches. Each of the caches that now contain a stale copy of the data

‘Full details of the performance model used to generate this data are given in Appendix A.
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Figure 1.1: Per-processor performance without caching shared data.

is notified. In an invalidation protocol, those caches invalidate their stale copy. If a

processor later accesses the data again, the reference will miss in the cache and an up-

to-date copy is retrieved from main memory. In an update protocol, the newly-written

value is distributed to the caches containing the data so that they may bring their stale

copies up-to-date.

Figure 1.2 shows the performance of a machine that uses an invalidation-based scheme

to allow shared data to be cached. As in Figure 1.1, the vertical axis indicates the per-

processor utilization, as a fraction of uniprocessor utilization. However, the horizontal

axis does not show the fraction of data references that are to shared data (as it did in

Figure l.l), since many shared references hit in the caches and therefore do not require

main memory to be accessed. Instead, the horizontal axis shows the miss ratio due to

invalidations for all data references. As before, the curves show both nearest-neighbor

sharing and random sharing in different sized systems. Each case is now represented by

two curves, to show a range of results depending on the fraction of data references that

are to shared data. The upper curve sets this fraction to 0.2, while the lower curve uses a

fraction of 0.8. Since the curves diverge primarily at low miss ratios where the fraction
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Figure 1.2: Per-processor performance with cached shared data.
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of shared data references is likely to be smaller, most workloads will tend to fall closer

to the upper curve than the lower.

The data in the graph indicates that caching shared data allows the processors to

operate at reasonably high utilization for a wide range of program sharing characteristics.

Recall from Figure 1.1 that without caching shared data, the per-processor utilization with

nearest-neighbor sharing fell to 50% of uniprocessor utilization when the percentage of

shared data references reached only 15%. If shared data is cached, Figure 1.2 shows that

utilization does not fall this low until a relatively high 5% miss rate due to invalidations

is reached (regardless of the fraction of shared references). Clearly, caching shared data

is key to achieving good multiprocessor performance.

1.1 Cache Coherence Directories

As we mentioned, caching shared data requires a cache coherency mechanism to maintain

the shared memory model. In small-scale multiprocessors where all of the processing
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nodes sit on a single bus, the coherency problem is usually solved with a snoopy (or

snooping) cache protocol [23, 39, 301 in which all writes to shared data are broadcast

on the bus. The caches in the system snoop on the bus, checking to see if they have a

cached copy of the written data. If a cache does have a copy, it either updates its copy

with the new value (in an update protocol) or invalidates its now-stale copy of the data

(in an invalidation protocol). When a miss to a block of data is transmitted on the bus,

the caches also snoop to see if they have a modified copy of the data that should be

supplied to the requesting processor.

Though some have been proposed [55, 241, systems with large numbers of proces-

sors that rely on snoopy cache strategies to maintain cache consistency have severe

interconnect design constraints due to their reliance on broadcast messages. From the

standpoint of interconnect design, a more versatile class of protocols is directory pro-

tocols [27, 50, 12, 7, 31. In these schemes a separate directory memory is maintained

that identifies the caches containing each cache-line-sized block of memory. When data

is written, the directory information is used to direct invalidation or update messages

(depending on the type of protocol) to only those caches that must receive them. Since

messages are directed at particular processing nodes, these protocols are well suited to

general point-to-point interconnection networks, and are therefore an attractive option for

large-scale multiprocessors.

An example of a straightforward directory scheme is an invalidation protocol de-

scribed by Censier and Feautrier [12]. The directory information for each block of

memory data resides with that data at main memory in some additional directory bits that

are added to every memory block. Each of these directory entries contains (1) a dirty bit

that is set if the block is modified in one of the caches, and (2) an n-bit vector of valid

bits (where n is the number of caches in the system) identifying those caches with a copy

of the data (see Figure 1.3). When a cache reads the block from memory, its valid bit

in the bit vector is set. When a cache writes a shared block, it sends a message to main

memory, which in turn uses the information stored in the corresponding directory entry

to send invalidation messages to the other caches with copies of the data. If a cache miss

results in a request for a block that is dirty in another cache, the directory information is

used to retrieve the block from that cache.
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dirty valid bit
bit 1 vector

main
memory

.

.

. w... directory

Figure 1.3: Conventional directory scheme.

1.2 Coherency Trade-offs

This thesis explores the trade-offs in the design of cache coherence directories. There are

several steps involved in this design. At the highest level, the organization of the directory

information must be chosen. In a large-scale machine, Censier and Feautrier’s traditional

organization with a valid bit per cache in each entry is not feasible due to the large

amount of memory that the directory would occupy. Chapter 2 proposes and evaluates

two alternate directory organizations that improve storage efficiency while maintaining

high performance. Both schemes replace the costly valid bit vector with pointers, which

are bit fields that encode the identity of a cache, but differ in how these pointers are

assigned to main memory blocks.

After selecting a directory organization, the designer must then choose the features to

be included in the coherency protocol. For any given feature, the performance advantages

must be weighed against the additional complexity required to understand and implement

the protocol. In Chapter 3 we measure the effects of several protocol options on reference

latency and network traffic.

Once the directory organization and coherency protocol decisions have been made,

the designer must consider implementation issues, which we address in Chapter 4. We

begin by pursuing a basic design for a processing node, emphasizing the directory and

other parts of the node relevant to the directory. We then use this design to demonstrate

the functionality that must be supported by any implementation, such as preventing dead-

lock, maintaining a model of parallel execution, and handling subtle situations caused

by temporary inconsistencies between cache state and directory state. In addition, we

show how the protocol can be modified to tolerate messages between nodes arriving in
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node 0 node 1

0 0 0

node N-l

Interconnection Network

Figure 1.4: The basic system assumed by this thesis. Each node consists of a processor
(P), cache (C), main memory (MM), and interconnect controller (IC).

a different order than they were sent, an additional functionality that may be needed in

some designs.

1.3 System Assumptions

Throughout this thesis we make some assumptions about the machines we are considering.

In general, the machine is organized as shown in Figure 1.4. The system is a shared

memory multiprocessor that uses a large number N of high-performance CPUs. Each

processor is paired with its own cache that may contain shared data2 The globally shared

main memory is distributed across the nodes of the system, along with the corresponding

directory entries.

Messages may be sent from any node to any other through an interconnection network.

This network has only point-to-point capability, that is, there is no hardware mechanism

2While this thesis consistently refers to a processor’s cache using the singular inflectional form for
brevity, we are implicitly referring to all levels of caching on a node if a system with multi-level caching
is under consideration. In this case we assume that a mechanism is implemented within a node to keep the
multiple levels of caching consistent. Examples of such a mechanism include snooping on an intra-node
bus and incorporating inclusion bits with cache tags to maintain the multi-level inclusion property [91.
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to implement broadcasts efficiently. The interface at each node to the network is called

the interconnect controller, which provides its node with reliable communication to and

from the other nodes in the system. In general, we assume that messages sent from one

node to another are delivered in the same order they were sent, though Section 4.5.4
demonstrates how this constraint may be relaxed



Chapter 2

Directory Organizations  for Scalability

A primary step in designing a directory-based coherence mechanism is selecting a di-

rectory organization. The directory organization defines the storage structures that make

up the directory and the nature of the information stored within. In this chapter, we in-

troduce limited pointers and dynamic pointer allocation directories. These organizations

potentially provide good performance while incurring modest memory overhead, even

in large-scale machines. We examine the characteristics of both strategies, and compare

them with different directory-based approaches that others have proposed.

2.1 Motivation

While directory-based schemes are attractive for maintaining cache consistency in large-

scale machines (see Section 1. l), naively organizing the directory data results in unaccept-

ably high memory overhead. For instance, consider the Censier/Feautrier organization

[12]. This traditional scheme maintains a vector of valid bits, one bit per processor, for

each data block at main memory. Figure 2.1 shows the resulting memory overhead. The

graph shows that this organization does not support more than about 100 CPUs; beyond

this point, the memory overhead due to the directory storage becomes prohibitive. Fur-

thermore, even if the memory overhead was reasonable in a large-scale machine, the

large size of the valid bit vector would cause implementation difficulties. In particular,

9
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Figure 2.1:

1 4 16 6 4 256 1K 4 K
Number of Processors

Storage overhead for the Censier/Feautrier directory organization.

the encoder/decoder unit used to translate between bit positions in the vector and the cor-

responding processor numbers would be difficult to build, and the wide directory memory

is costly from an interconnection standpoint.

Since traditional directory organizations incur excessive memory overhead, other op-

tions must be explored. A general approach for reducing memory overhead is to develop

schemes that either reduce the directory’s length, that is, the number of directory entries,

or the directory’s width, that is, the number of bits per entry. While reducing the direc-

tory length can be worthwhile in some situations (Appendix E describes a length-reducing

method), in this chapter we focus on reducing the width of the directory, since this is

advantageous from an implementation standpoint in any case.

2.2 Limited Pointers Directories

The first directory organization we propose is the hnitedpointers  scheme [3]. Simulations

of small-scale multiprocessors have shown that usually no more than a few caches contain

a given block of data when a write occurs [3, 19, 531. Because the data is invalidated

in all but one cache on a write, the valid bit vector in traditional directories rarely has

more than a few of its bits set. It is therefore more efficient to replace the vector with

several pointers, which are log, r?-bit fields that encode the unique identities of those
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Figure 2.2: Storage overhead for limited pointers directories.

caches containing the data block. The resulting storage overhead is shown in Figure 2.2.

This overhead is calculated by dividing the number of bits in a directory entry by the

number of data bits represented by that entry, as follows:

% overhead = Pl%2n+P+1e1(Jo
8b (24

where n is the number of processors, b is the number of bytes in a cache block, and p is
the number of pointers in a directory entry. The graph shows that we can provide each

directory entry with at least three pointers for most large-scale systems, while keeping

the memory overhead under 36%.

Of course, with only a small number of pointers in each entry, it is possible to

run short in a given entry. This occurs when a request due to a read miss arrives at

memory and the directory discovers no free pointers remaining in that entry to record

the requesting cache. There are two basic strategies for handling this situation. In a

broadcast scheme (denoted Dir; B [3]l), a broadcast bit in the directory entry is set,

indicating that the directory is no longer keeping track of the caches containing that data.

When a processor eventually writes the data, the directory must resort to broadcasting

an invalidation request to all caches. In a no-broadcast scheme (denoted Dir; NB), no

more than i cached copies of a block of data may exist at any given time, where i is

‘The subscript i refers to the number of pointers in each entry.
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the number of pointers in each directory entry. When a free pointer is needed and none

are available, a pointer is randomly selected and freed by invalidating the data from the

cache the pointer identifies.

We have seen that limited pointers directories incur reasonable storage overhead, and
we will see in Chapter 4 that its implementation is straightforward Up to this point, how-

ever, the performance potential of limited pointers directories in large-scale machines has

been speculative at best. Simulation results [3, 53, 131  have come from small-scale work-

loads (4 to 64 processors), and the observation that only a few caches normally contain a

datum has been only qualitatively explained. In the upcoming sections we introduce an

analytic model that predicts these results from measurable workload characteristics. The

model not only explains the behavior seen in the small-scale simulations, but also allows

us to extrapolate forward to evaluate the efficiency of limited pointers directories under

large-scale workloads.

2.2.1 Modeling the Number of Pointers Required

Our initial objective is to model the number of pointers required to maintain full caching

information for a single block of data q. To do this, we assume the processors issue a

sequence of references between writes to (I as shown in Figure 2.3. Assume there are m

processors that may access the block q, A processor is selected at random to make the

next reference. If the processor has not previously accessed q in the reference sequence, it

is known as a new processor; otherwise, it is an old processor. Regardless, the processor

may access q, or may reference some other data block. Another pointer is required any

time a new processor is selected that reads q. The sequence ends when any CPU writes

the data block q, since it will be invalidated from all but one of the caches at that point.

For all 1 < i < nz we can now calculate the probability that exactly i processors

access q during a sequence, thereby occupying i pointers in the corresponding directory

entry. While Appendix B contains the details of this calculation, we now excerpt the

information from the appendix necessary to interpret the results in the upcoming sections.

Given our model of reference behavior shown in Figure 2.3, the calculation requires the

following parameters: m, the number of processors accessing the block q; r,, and rO, the
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Figure 2.3: Sequence of references modeled.

read probabilities for new and old processors accessing q; and gn; and gOi, the probability

with which new and old selected processors access q if i processors have already accessed

it. The values of gn; and gOi can be derived by using a model of reference behavior

exhibited by the m processors with regard to the data block. It would be simplest to

assume that all processors, when selected, access q with equal probability. However,

this assumption results in a poor approximation of the number of pointers used in actual

multiprocess address traces.

A more realistic reference behavior assumes that one of the processors accesses the

data more frequently than any of the other processors. We use a single ratio to describe

this relationship: a, the probability with which the primary  processor accesses q when
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selected divided by the probability with which each of the secondary processors accesses

q when one is selected.

The model for the probability distribution of the number of pointers used is now

complete. It takes four parameters as inputs, each with respect to the single block of data

being modeled: the number of processors m accessing the data, the read probabilities

r, and rO, and the ratio of the primary and secondary processor access probabilities a.

In the upcoming sections we will verify this model against multiprocessor address traces

and examine the model results using a variety of parameter values.

2.2.2 Verifying the Model

We verified our model against several multiprocessor address traces generated by schedul-

ing multiple processes on a uniprocessor VAX in a round-robin fashion [22, 531. These

traces include references from 16 processors executing a single parallel application, and

contain about 0.5 million references per CPU. No operating system references are included

in the traces. The applications, all written in C, are P-Thor [47], a parallel logic simulator;

LocusRoute [41], a global router for VLSI standard cells; Maxflow [ 111, an algorithm to

find the maximum flow in a directed graph; and MP3D [36], a three-dimensional particle

simulator for rarified flow. The applications allocate shared memory and synchronize

parallel processes through calls to the Argonne National Laboratory macro package [35].

A detailed description of the algorithms used by each application appears elsewhere [53].

Our verification methodology is to compare the distribution of the number of pointers

used as measured from an address trace with that predicted by the model. To measure the

distribution from the trace, a cache event simulator steps through the references, assuming

infinite-sized processor caches. When a write occurs, a histogram bin corresponding to

the number of pointers used by that 16-byte block is incremented. Note that the more

frequently a block is written, the greater overall impact of that block on the histogram

results. We have omitted “uninteresting” data blocks, those for which the pointer count

never exceeds one.

Keep in mind that our model is designed to accurately represent the references to

a single block of data. Since the traces include references to many blocks, each with
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different characteristics, we must apply the model to each block individually in order

to represent the program’s reference behavior accurately. We ta? the following steps

to generate a number-of-pointers distribution from the model that is directly comparable

with that measured from the traces. First, we run another cache event simulator on the

address trace to extract the model input parameters for each of the blocks referenced

(again, ignoring “uninteresting” data blocks and assuming infinite-sized caches). Second,

we use the model with those input values to calculate the predicted distribution for each

block. Finally, we take the weighted sum of the per-block distributions to generate a

single aggregate distribution. Each per-block distribution is weighted by the fraction of

writes to that block in the trace, i.e., the number of writes to that block divided by the

total number of writes in the trace. In this way, the aggregate distribution for the model

is weighted in the same manner as for the trace (see previous paragraph).

We extract the model parameters for a given data block as follows. The values for T,

and r, are simply calculated by dividing the number of new and old reads (respectively)

to the block by the total number of references to that block. To determine m and a, we

first split the trace of references to that block into sequences of references that end in a

write. In this way, we split the trace into the same units assumed by our model (recall

Figure 2.3). We set m to be the maximum number of CPUs that reference a block during

any of its sequences. Calculating a is more involved. To compute this value for a block,

we first average across all sequences the fraction of references by the CPU accessing the

block most frequently (within that sequence), second most frequently, etc. We then set a

to be the ratio of the fraction of references by the most frequent CPU to the average of

the fraction of references by the other CPUs.

Recall that we began with a model that assumes all processors, when selected, access

the data block with the same probability (see Section 2.2.1). In this case, g,, = gOi,

and the dependence of the number of pointers used on gn; and g,; is removed (see

Appendix B). Figure 2.4 shows our attempt to verify this model against the traces

using the methodology described above. Each graph represents a different application

program. The solid lines show the distribution of the number of pointers used in the

directory entry at the instant writes occurred, as measured from the address traces. The

dashed lines show the same distribution as predicted by the model. The accuracy of this
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model is poor in several important respects. The “peak” of the distribution curves is not

predicted correctly for any of the four benchmarks, and the number of pointers at which

the curves “tail-off” to zero is severely over-estimated for Maxflow and MP3D. We are

primarily concerned with this latter effect, since an important application of the model

is predicting the number of pointers needed to avoid running short. At least the model

is consistently pessimistic in this respect, but a model that yields a tighter upper bound

would be preferable.

We therefore proceed to the model that incorporates the more complex notion of

reference behavior in which a data block is accessed by a single primary processor with .

greater probability than by any of several secondary processors. The results using this

model are shown in Figure 2.5. The solid lines show the same distributions measured

from the address traces as in Figure 2.4. The dashed lines show the distributions as

predicted by the model. In general, the model does a good job of predicting the directory

behavior of the applications. The only exception is for MP3D; an examination of the

reference stream reveals a single, repetitive reference pattern throughout the trace as

the cause of the model’s failure. Since the model operates probabilistically, relying on

average reference behavior, a single, repetitive sequence of reads and writes can easily

yield results that do not match a distribution that takes into account all reference patterns

producing the same model input parameters.

2.2.3 Model Results Under Large-Scale Workloads

In the previous section, we verified our model against simulation results showing the

typical number of caches containing a datum at a write to be small. The model is

useful as an explanation of those results, because they can now be related to familiar

workload parameters such as read/write ratios. But more exciting is the prospect of using

the model as a tool to predict the feasibility of limited pointers directories in shared-

memory machines with hundreds or thousands of processors. In this section we first

use our multiprocessor address traces to help select a range of input parameters to drive

our model. We then examine the number of pointers used if an unlimited number are

available, and evaluate the increase in network traffic and cache misses when pointers



18 Ch?4FTER  2. DIRECTORY ORGANIZATIONS FOR SCALABILITY

Application I-,, r0
P-Thor 0.84 0.75 138.;

LocusRoute 0.96 0.76 120.0
Maxflow 0.98 0.73 15.2
MP3D 0.99 0.64 11.3

Table 2.1: Average parameter values for each application.

are limited. Lastly, we assess two potential worst-case scenarios, increasing the number

of processors accessing the data and increasing the read/write ratio.

Choosing Input Parameters

The results of our model, as with any model, depend on the values of the input parameters.

Of course, different programs exhibit different referencing behaviors, and even within a

single program, the properties of the data blocks may differ significantly. Accordingly,
it is important to identify a reasonable range of parameter values that make sense, and

evaluate the model across that range. Although we measure parameters directly from

the application programs discussed in Section 2.2.2, we will evaluate the model across

a much broader range of parameter values in order to extend the scope of the results to

include a wide variety of parallel workloads.

Table 2.1 shows average model parameters for each of the applications, weighted

across the blocks by the fraction of writes to each block. First consider the read ratio

parameters: T,, the probability that a new processor accessing the data issues a read, and

rO, the analogous probability for an old processor. Interestingly, the values for r-, are

significantly higher than for r,. Since we have no reason to believe these values will

differ in programs for large-scale multiprocessors, we will model blocks using T, values

ranging from 0.9 to 1.0 and T, values from 0.75 to 1.0. Table 2.1 also shows measured

values for a, the ratio of frequencies with which the primary and secondary processors

access the block. The a ratios in our small-scale benchmarks range from 1 (typically

seen in blocks for which m=2) to over 300,000. We will use our model with a values

spanning from 10 to 500, since most blocks fall into that range.
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The only remaining model parameter is m, the number of processors actively access-

ing a given data block. It is likely that temporal locality and the nature of scalable parallel

algorithms will serve to keep m relatively small (in the ones or tens) in a large-scale

machine. We therefore primarily consider smaller values of m, and often use m=64 to be

conservative. Since this hypothesis is still open to question, however, we also consider

values of m that approach the size of large-scale machines, up to 4096 processors.

A caveat regarding the scope of our results is in order. In choosing model parameters,

we consider only shared, writable  blocks since, in general, read-only code and data remain

consistent across caches without the need for coherency mechanisms such as directories.

Read-only data may be marked as such (in the directory or TLB entries, for instance),

thereby preventing coherency transactions. While this marking may have implications

on the operating system and/or the programmer (or compiler), these considerations are

beyond the scope of this thesis.

Number of Pointers Used

With reasonable values of the input parameters in hand, we can now look at some

modeling results. We begin by examining the number of pointers used in a directory
entry if an unlimited number of pointers are available. Figure 2.6 shows the distribution

of the number of pointers used when a write occurs, assuming a relatively small number

of processors accessing the data (m=16), and typical read/write ratios as indicated by our

benchmarks (rn=.9, rO= .75). Each curve on the graph represents a different value of a,

the ratio of the primary and secondary processor access probabilities. The most striking

aspect of the distributions is the decrease in the number of pointers used as a increases.

This dichotomy of reference frequency between the primary and secondary processors,

along with the fact that many blocks exhibit very small values of m, explains the high

peaks we see at a small number of pointers in the benchmark distributions.

Another important conclusion we can draw from Figure 2.6 is that there are plausible

workloads for which it is not unusual to run short of pointers in a machine with two or

three pointers per entry. While exhausting the available pointers is not frequent, neither

is it very rare. This implies that designers must consider the performance of the directory

in this situation, considering both the impact on system issues such as network traffic
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Figure 2.6: Number of pointers used with rn=.9,  r,=.75, and m=16.

and cache miss rate as well as the latency through the directory itself.

The primary characteristics of the distribution curves for some other workloads are

shown in Table 2.2.2 Notice that for a given number of CPUs m accessing the data,

the number of pointers used is relatively insensitive to the read parameters r, and T,. It

takes a substantial increase in the fraction of reads (boosting T, to 1.0 and T, to .9) and a

low value of a (10) before significantly more pointers are used. Furthermore, increasing

the number of processors accessing the data nz causes more pointers to be used, but the

growth is much slower than linear. Even with n?=4096, writes are frequent enough that

significantly fewer than m CPUs access the data before it is written. And while the

number of pointers used is still high, the next section shows that the impact on system

performance of using fewer pointers is fairly small.

Impact of Fewer Pointers

The model results we have presented can be used to determine the number of pointers

required to maintain full caching information most of the time. But we are also interested

in the impact of using fewer pointers per entry, since it may be possible to achieve nearly

the same performance at lower cost. To evaluate this impact, we can adjust our model to

%e  distribution curves themselves are not shown due to space constraints. However, all of the graphs
are similar to Figure 2.6 in shape.
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F

-

a:
percentile:

m rn To
16 .9 .75
16 1 . 0  .75
64 .9 .75
64 1.0 .75
64 .9 .9
64 1.0 .9

4096 .9 .75
4096 1.0 .75

10 50 100 500
50 95 50 95 50 95 50 95

4 9 2 5
5 11 2 5

2
#2 4

6 18 4 11 3 8
14 28 6 15 3 10
6 22 5 16 4 12

21 41 10 26 6 18
7 29 7 29 7 28

148 304 128 275 101 238
number of pc inters used

1 2
1 2
1 3
2 4
2 5
2 6
7 24
31 98

Table 2.2: Median (50th percentile) and 95th percentile of the distribution of the number
of pointers used.

predict the number of “extra” invalidations that occur when the number of pointers per

entry is limited. By “extra” invalidations we mean those that would not have occurred

if the directory had a full valid bit vector per entry.

Of course, the number of extra invalidations depends on the mechanism used by

the directory when it needs a free pointer but none remain. Let us first consider the

broadcast strategy Dir; B with a broadcast bit in each directory entry. If this bit is set

when a write occurs, then an invalidation must be sent to every cache in the system. In a

directory with full caching information, invalidations would have been sent only to those

caches containing the data. Under Dir; B, the extra invalidations are those sent to the

other caches. These invalidations increase the amount of traffic that the interconnection

network must bear. Notice that the number of extra invalidations depends not only on

the number of processors actively accessing the data, but also on the number of caches

in the entire system.

It is a straightforward matter to compute the number of extra invalidations under

various workloads from the data presented in the previous section. By then calculating

to first order the base number of misses and hits in a given reference sequence, we can
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Figure 2.7:
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derive the percentage increase in network traffic due to the broadcast ~trategy.~ This

increase is shown in Figure 2.7 for a workload with 64 processors accessing the block.

This data assumes the entire system is comprised of those 64 CPUs. We see that the

increase in traffic can be very large; for instance, with three pointers per entry the traffic

for this workload grows by at least a factor of 4 due to broadcasts. This poor behavior is

not surprising, since all caches must receive an invalidation for each reference sequence

in which the available pointers are exhausted. More distressing is the fact that the

number of extra invalidations can be significant even if the directory entry runs short of

pointers infrequently. For instance, with r,=.9, r.=.75, and a=lOO, Table 2.2 indicates

that roughly eight pointers per entry are sufficient to handle most sequences of references.

Yet Figure 2.7 shows that under these conditions the traffic is still increased by over 50%.

This negative characteristic of Diri B schemes is exacerbated by adding more pro-

cessors to the system. Consider the workload used in Figure 2.7, but in a larger system,

say with 4096 CPUs. The number of extra invalidations is now roughly two orders

of magnitude higher than those seen in Figure 2.7. Continuing the example from the

previous paragraph, a machine with eight pointers per entry must send about 200 extra

invalidations each time the data is written if a=lOO. Even though the directory does not

3To simplify the analysis, we assume the base level of traffic consists only of cache misses and
invalidations.
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run out of pointers very often, it incurs a very high cost when it does run short, especially

in a large-scale system such as this. The conclusion we can draw about Dir; B schemes is

that running short of pointers has disastrous consequences on their performance. If they

are to be successful, enough pointers must be provided to ensure that they are exhausted

in only very exceptional cases. Since this is a difficult condition to satisfy, we believe

broadcast limited pointers directories are not a viable option for large-scale systems.

We now turn our attention to nobroadcast (Dir; NB) directory schemes, in which no

more than i caches may have copies of a block of data, where i is the number of pointers

per directory entry. If i caches contain a datum and another cache then makes a request,

the datum must be invalidated from one of the caches so the request can be satisfied.

The advantage of this mechanism is that it is never necessary to broadcast an invalidation

message to all caches in the system. The disadvantage is that read misses may cause

an invalidation that would not have been necessary had full caching information been

available in the directory. Not only does the invalidation boost interconnection network

traffic, but the processor whose cache receives the invalidation may read the data again

before it is next written. Had the invalidation not occurred that read would have probably

hit in the cache; as it is, a miss will be incurred. Therefore, no-broadcast schemes have a

negative impact on both network traffic and miss rate. We can use our model to evaluate

the magnitude of that impact.

Under no-broadcast schemes, the extra invalidations are those sent to caches whose

corresponding processors read the data again before the data is next written. That is, extra

invalidations include only those that cause a cache miss that would not have occurred

with a full valid bit vector per directory entry. Of course, other invalidations may be

sent before the write occurs, but these are not extra since they would have been sent

anyway when the data was eventually written. The number of extra invalidations may

be calculated by extending the model (see Appendix B).

Figures 2.8 through 2.11 show the impact of using a no-broadcast limited pointers

scheme, assuming 64 CPUs are actively accessing the data. The horizontal axes indicate

the number of pointers per entry, while the vertical axes denote the percentage increase
in the number of misses.4 This miss rate increase is relative to the inherent miss rate that

4Norice this is not the number of percentage points by which the miss rate is increased.
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would occur if the number of pointers were unlimited; this value is indicated in the key

of each graph. The inherent miss rates are interesting in themselves, since we see that

invalidation-based consistency protocols result in miss rates for actively shared blocks

that are generally high compared to uniprocessor miss rates.

Another interesting observation is that the impact on the number of misses is often

much lower than we might conclude from the distribution of the number of pointers

used if an infinite number are available. For instance, with m=64, rn=ro=.9,  and a=50,

Table 2.2 indicates that about sixteen pointers are sufficient to handle most reference

sequences. Yet we see in Figure 2.10 that only six pointers per entry are required to limit

the increase in the number of misses to 10% or so. This effect is explained by the only

moderate probability that an invalidated cache loads the data again before the sequence

of references ends with a write. There are many workloads with m=64 for which only

three to five pointers per entry are sufficient to limit the increase in the number of misses

to less than 15%.

As we mentioned, the no-broadcast limited pointers scheme has an impact on the

network traffic as well. Not surprisingly, the expression for the increase in the number

of network messages is very similar to that for the increase in the number of misses. In

practice, the difference is negligible; therefore, the graphs of Figures 2.8 through 2.11

represent not only the increase in the number of cache misses, but also the increase in

the amount of network traffic.

Increasing the Number of Processors

Since limited pointers schemes were introduced [3], one of the concerns has been that

they lack scalability. While we believe the number of processors actively accessing a

datum will remain low even in large-scale machines, our model makes it easy to predict

the results if m does in fact grow large. Figure 2.12 shows the results for one set of

parameters, assuming the directory entry has four pointers. The horizontal axis shows m,
the number of processors actively accessing the block of data. As before, the vertical axis

shows the percentage increase in the number of misses using the no-broadcast strategy.

The impact on the miss rate peaks and then begins to fall as m is increased. This is

because more processors accessing the data decreases the probability that a processor
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Figure 2.12: Percentage increase in cache misses with 4 pointers per entry, rn=.9, and
r,=.75.

whose cached copy has been invalidated will read the data again before it is written. In

other words, there is usually no negative impact of invalidating the block from one of the

caches since it is unlikely the corresponding processor will read the data again before it is

written. Another way to look at it is that data exhibiting high values of nz is rarely read

more than once by the same processor before the data is written; the inherent miss rate

for such blocks is therefore extremely high, and limiting the number of pointers cannot

make the number of misses much higher.

The bottom line is that blocks that are actively accessed by large numbers of CPUs

at a given time will exhibit very high miss rates. While limited pointers directories
obviously do nothing to solve this problem, neither do they make the problem much

worse. If blocks like this do occur in large-scale programs, then the no-broadcast limited

pointers strategy performs almost as well as a full bit vector of valid bits.

Increasing the Read/Write Ratio

It turns out that the relative performance of no-broadcast limited pointers schemes suffers

more from a high fraction of reads than from a large number of processors. To clearly

demonstrate the cause of this effect, Figure 2.13 shows absolute miss ratios rather than

the increase in miss ratio (the metric used in previous graphs). We have set r,=l.O; the
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Figure 2.13: Cache miss ratio with r,--1 .O, a=lOO, and m=64. The curve labels indicate
number of pointers per entry.

horizontal axis represents r,, and the vertical axis shows the resulting miss ratios. Inter-

estingly, the miss ratio for the limited pointers schemes does not increase as r, approaches

1.0. This is because the additional misses caused by invalidations to clean blocks are

offset by a reduction in invalidation misses due to writes. Hence, the performance of a

limited pointers directory for a given block exhibiting a high read/write ratio is similar

to an unlimited pointers directory for a block with a more moderate read/write ratio.

As the read/write ratio increases, the performance gap between limited and unlimited

pointers widens due to a faster decrease in the miss ratio for the latter. Furthermore,

while high read/write ratios are considered unusual in uniprocessor programs, they do

occur with some frequency in some of our small-scale multiprocessor benchmarks. For

instance, 12% of the references to shared data in LocusRoute  are made to blocks ex-

hibiting r,=l.O and r,>O.95.  On the other hand, practically none of the references in

Maxflow and MP3D fall into this category. We can judge the overall effect of each

program’s behavior on the performance of limited pointers using trace-driven simulation.

A limited pointers directory with three pointers per entry incurs 28%, 29%, and 22%

more cache misses than a directory with unlimited pointers for LocusRoute, Maxflow,

and MP3D, respectively. The cache miss overhead due to limited pointers is more sub-

stantial for P-Thor: 249% with three pointers per entry. Most of this overhead is due
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to only two blocks. In general, we find in our limited set of programs that some have

a few variables, often synchronization variables, that am read widely but rarely writ-

ten. This is similar to the findings of Chaiken et al [13]. Although it may be possible

to specially handle those few blocks that cause performance degradation due to limited
pointers, these blocks can be difficult to identify a priori. Another option is to develop

a more robust directory organization. Towards this end we have developed the dynamic

pointer allocation directory, which we describe next.

2.3 Dynamic Pointer Allocation Directories

The second directory organization we propose is the dynamic pointer allocation scheme

[43], which takes advantage of the fact that most data blocks are shared at any given

time by only a few caches, while a few blocks may be widely shared. Like the limited

pointers directories described in Section 2.2, this directory scheme uses pointers that

contain the unique identities of those caches containing the data. However, the number

of pointers available in an entry is not fixed, but is rather allocated on-the-fly from a pool

of available pointers. When a pointer is no longer needed, it is returned to the pool.

2.3.1 Directory Organization

The organization of the dynamic pointer allocation directory is shown in Figure 2.14.

The primary structure is a memory containing a number of pointers, each paired with a

lhk5 These pairs form the basic data structure that allows us to construct linked lists of

cache pointers. In addition, each block of main memory has an associated dirty bit, a

link to a list of pointers allocated to the block, and an empty bit that indicates whether

or not the block’s list of pointers is empty. When the list is not empty, the last pointer

links back to the main memory block, forming a circular list. At system start-up, a single

linked list consisting of all the pointers is built. A special register known as the free

list link is set to contain the address of the first pointer/link pair; this register is a link

to the head of the free fist. On a cache miss, a pointer is removed from the free list

SAlthough the links operate as pointers to other luc.ations in the memory, we will be careful to always
refer to them as “links,” to avoid confusing them with the cache pointers.
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Figure 2.14: Basic dynamic pointer allocation scheme.

and added to the head of the list for the desired memory block. When permission to

write a block is requested by a cache, the directory steps through the block’s pointer list,

sending invalidations to each cache on the list and returning the pointers to the head of

the free list. The end of the list is reached when the end-of-list bit associated with each

pointer/link pair is found to be set.

The dynamic pointer allocation directory adds less storage to each data block than a

standard limited pointers directory with several pointers per entry. Table 2.3 shows the

percentage memory overhead that must be added to main memory to store the dirty bits,

empty bits, and head links. Since caches are growing larger with each new generation of

systems, the length of the pointer/link store must grow as well. Therefore, the directory
overhead will rise over time, due to increases in the width of the pointer list head link

field. Nonetheless, Table 2.3 shows that even increasing the size of the pointer/link store

by a factor of 16 results in only a modest overhead increase for a given cache line size.

The dynamic pointer allocation scheme therefore results in good storage efficiency even
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Table 2.3: Dynamic pointer allocation main memory storage overhead.

in the presence of large caches.

We expect the pointer/link store to scale gracefully over time as well. As we men-

tioned, the number of pointers required on a node will depend on the size of the caches.

We will see that a large number of pointers can be easily built using the same sized

parts from which caches are typically constructed. The number of pointers that can be

provided will therefore scale at the same rate as the size of cache memories.

2.3.2 Directory Protocol

The protocol for the dynamic pointer allocation directory is very similar to that of a

straightforward Dir; NB scheme (see Chapter 4). For instance, as in a limited pointers

directory, it is possible to run short of free pointers. This occurs if a pointer is to be

allocated from the free list but the free list is found to be empty. The correct action

to take in this situation is to use some means to select a pointer (or multiple pointers)

and then free it by sending an invalidation to the cache identified by the pointer. It is

probably reasonable to select the pointer on a pseudo-random basis using a free-cycling

hardware register. Because the address of the block is needed to send an invalidation,

the list beginning at the pointer indicated by the cycling register must be traversed until

the last pointer on the list is found. At this point, because the list is circular, the link

contains the address of the data block. This address and the pointer can be used to send

an invalidation, thereby freeing the pointer/link pair.

An interesting effect occurs if caches are allowed to replace clean blocks without

notifying the directory. Stale pointers indicating caches that no longer contain the data

may accumulate in the pointer/link store. If they are not returned to the free list, these
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stale pointers could potentially occupy most of the pointers that would otherwise be free,

perhaps causing the directory to run short of free pointers frequently. This is undesirable

since processing a read miss (the most frequent directory operation) is considerably slower

at the directory if no free pointers remain. Therefore, while not required for correctness,

we recommend enhancing the protocol by having caches send replacement notifications
to the appropriate directory when a clean block is replacecL6

Of course, replacement notifications consume network bandwidth, and removing stale

pointers consumes directory bandwidth. We first estimate the increase in traffic due to

replacement notifications. Consider a workload with an amount of sharing such that the

network can bear no additional traffic without substantially reducing processor through-

put. This is a worst-case workload for our purposes, since there is no excess network

bandwidth available to carry replacement notifications. To estimate the increase in traffic,

we must calculate both the base level of traffic and the additional traffic due to replace-

ment notifications. The base level of traffic is primarily due to invalidation misses (i.e.,

misses due to invalidations) and uniprocessor misses [20] (i.e., misses due to cache in-

terference). Though the rate of invalidation misses for our worst-case workload will vary

across machines, aggressive implementations will likely support an invalidation miss at

least every 50 data references. We assign each of these misses a cost of 4 messages

(an invalidation/acknowledge pair and a subsequent miss request/reply). We assume the

uniprocessor miss rate for data references is below 2%, which is typical for direct-mapped

caches of at least 64KB [40]. Each of these misses costs 2 messages (a request and re-

ply). The additional replacement notification traffic is incurred on those uniprocessor

misses that cause clean data to be replaced. Smith [46] finds that roughly half of the data

misses in his uniprocessor address traces cause a clean line to be replaced. Each of these

misses costs 1 message to send the replacement notification. To compute the maximum

percentage increase in traffic due to replacement notifications, we weight the invalidation

and uniprocessor miss rates by the corresponding cost per miss:

0 02 uni. misses 0 5 notifications
incr (* >(reference * . >urn. miss (1 msg.)

mar =
(
1 inv. misses . 100 = 8.3%
50 reference ) (4 msgs.) + (0.02 ‘~fe$~~~) (2 msgs.)

%eparate  notifications are not requirexl when dirty blocks are replaced, since they must be written back
to memory anyway.
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This means that a network that could otherwise support an invalidation miss every

50 data references must be improved to handle a modest 8.3% more traffic if it is to

deliver identical performance once replacement notifications are added to the protocol.

Furthermore, our calculation of the traffic increase is conservative for several reasons.

First, we have not counted invalidation messages that do not result in an invalidation missj

nor have we counted messages required to retrieve a dirty block from a cache in order

to service a miss. Second, we assumed all replacement notifications require a separate

message, when in fact some may be “piggybacked” on the cache miss request replacing

the clean block. Third, we have not considered the effect that replacement notifications

sometimes actually reduce traffic: without notifications, the directory will send needless

invalidations to caches that have already replaced the block. These invalidations cost 2

messages (the acknowledgement and the reply), while the replacement notification that

obviates them costs only one message. Finally, we have not accounted for the differences

in message size; since replacement notifications contain no data, they consume less

bandwidth than other messages such as cache miss replies.

We can also estimate the effect of consuming additional directory bandwidth to remove

stale pointers. Let us assume the cache miss rate is 2%. We also assume 30% of the

instructions issue a data reference, and the processors are 70% utilized. Finally, assume

it takes 20 processor cycles on average at the directory to remove a stale pointer when

a replacement notification arrives. We can now calculate the fraction of the directory

bandwidth consumed by processing replacement notifications as follows:

0.7 instructions per cycle

x 0.3 data references per instruction

x 0.02 data reference misses per data reference

x 0.5 replacement notifications per data reference miss

x 20 cycles per replacement notification

0.042

While 4.2% is not insignificant, neither is it enough additional directory utilization to

dramatically degrade machine performance. For this reason, and because the network

traffic is not substantially increased, we believe replacement notifications to free stale

pointers are a useful addition to the dynamic pointer allocation protocol.
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One final concern about the dynamic pointer allocation scheme is the speed of the

directory operations. After all, unlike limited pointers organizations, the pointers cannot

be accessed concurrently; instead, the linked list must be serially traversed to reach all

the pointers. By examining each of the commonly occurring cases at the directory, we

see that there is no inherent slowdown due to list traversal. Read misses (the most

frequent directory operation) require accessing only the first pointer on the list. Write

misses and write hits to clean blocks require traversing the list to send invalidation

messages, but these messages would have to be queued for delivery serially anyway, so

no time is lost. Write-backs imply that the block is dirty, i.e., the list contains only one

pointer. Replacement notifications require the list to be searched to reclaim the pointer,

but unlike many operations, the processor that sent the message is not stalled, so memory

latency is not directly affected. Furthermore, most lists are short, resulting in low search

times. We therefore conclude that there is no inherent speed limitation in the dynamic

pointer allocation protocol caused by accessing multiple pointer/link pairs in a directory

operation.

2.3.3 Implementation Issues

Perhaps the simplest approach for implementing the dynamic pointer allocation scheme is

shown in Figure 2.15. The resources associated with the directory are placed on a single

bus; a simple state machine (not shown) synchronously arranges the bus accesses required

to perform a desired directory operation. The resources are as follows: the memory

storing the head links associated with each data block, the store of pointer/link pairs and

its address register, the register containing the free list link, and two temporary registers.

These temporary registers are needed to traverse a list while sending invalidations and
to move a single pointer/link pair from the middle of a list to the free list. One of them

is also sometimes used to address the head links storage if the directory runs short of

pointers. The detailed steps that must be performed for most common directory operations

and their associated delays are given in Appendix D. We find that directory operations

that access a single pointer may be performed quite rapidly. For instance, consider a

read miss in a cache. The time required to add the cache to the block’s list of pointers
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Figure 2.15: Dynamic pointer allocation implementation.

is dominated by memory access time: a read-modify-write on the head links storage and

a write to the pointer/link store. If the pointer/link store is built with static RAM, then

the entire directory operation takes only slightly longer than the dynamic RAM access

required to supply the cache line data. If this data DRAM is not as wide as a cache

line (i.e., multiple accesses are required to supply the cache line data), then the directory

operation will likely be as fast as the data access. More complex directory operations

involving multiple pointers take longer to complete, but as we explained in Section 2.3.2,

this delay would be incurred in any case to queue outgoing messages.

There are various options for implementing the directory resources and bus shown

in Figure 2.15 and the associated controller. Obviously, a board-level implementation is

possible, using discrete integrated circuits or a register file part for the registers and a pro-

grammable logic array to build the controller. More compact options include conventional

gate array or programmable gate array parts. A single part could easily accommodate

the registers, the portion of the bus running between them, and the controller to generate

the bus read/write signals for each resource. The I/O of the part would consist of the
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internal bus and the address bits for the pointer/link memory, as well as control signals

for interfacing the directory with the rest of the processing node. The storage for the

head links would of course be implemented using the same technology as main memory

(dynamic RAM in most designs), while the pointer/link store would probably be built

using conventional static RAM for speed

Let us consider the pointer/link store in the context of the amount of memory and the

parts count requited to implement a given number of pointers. Although our goal is to

provide cache coherency in large-scale machines of the future, we will consider typical

cache sixes and RAM parts of today. As previously mentioned, we expect the ratio of .

the number of pointers to the cache size achievable with a certain number of parts to

remain constant as circuit density increases, since caches and pointers are both built from

the same storage technology. We will use the common 32K-by-g-bit static RAM chip

as our basic building block, and then calculate the ratio of the number of pointers to the

number of blocks in the cache. We will assume we want to use the same number of

building block parts in the pointer/link store as in the cache. Since the memory for a

cache typically occupies little board space, this is not an unreasonable &sign option.

The width of each link field depends on the number of addressable memory blocks

on a node, since the field must contain the return links at the end of the lists. Assuming

each node has 64MB of main memory and the cache line size is 16 bytes, the link field

must be 22 bits wide. In addition, let us assume a very large-scale machine, say with

4096 processors. Each pointer field is therefore 12 bits. This results in a total pointer/link

width of 34 bits, so the minimum number of eight-bit-wide parts we can use to implement

the pointer/link store is five parts. For this cost we get 32,768 pointers. The same number

of parts yields a 128KB cache, moderately large by today’s standards. Since each cache

is therefore comprised of 8 192 lines, the ratio of pointers to cache lines is 4: 1. Of course,

with perfectly distributed node addresses for the data cached in the system, a 1:l ratio

would be sufficient. So using the same number of parts to implement the pointer/link

store and the cache yields an “uneven distribution margin ratio” of 4. We should also

note that the 4: 1 ratio becomes an 8: 1 ratio in a machine with a 32-byte line size.

Our results indicate that a 4:l ratio of pointers to cache blocks results in little or no

degradation of overall system performance. To demonstrate this, we examine two extreme
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cases. If a large number of processors are accessing data from a given memory module,

then each processor must be generating very little traffic to the module; otherwise, the

module will be overloaded and the effect of the directory is unimportant. With each

CPU sending so few requests to the module, the directory cannot have much impact on

the performance of the processors. Now consider the other extreme, a small number of

processors accessing data from the module. Here the ratio of pointers to cache blocks

can be significant: obviously, if this number of CPUs is less than or equal to this ratio,

then it is impossible to run short of pointers. Even if there are a few more processors,

the directory is still unlikely to run short of pointers, since data from that module would

have to occupy a substantial fraction of each processor’s cache. Furthermore, programs

will become less likely to exhibit this type of behavior as more sophisticated memory

allocation techniques become commonplace. However, if the directory does run short

of pointers, we can compute the expected worst-case increase in the number of cache

misses (see Appendix C for complete details). Our results confirm that running short of

pointers in a module has minimal impact if a large number of processors are accessing

data from that module. If only a small number of processors are accessing the data, and

processors emit references to their caches at five times the rate the directory can handle

requests, then we find a 4:l ratio of pointers to cache blocks causes no more than about

3 percentage points to be added to the cache miss rate when the directory runs short of

pointers. An 8:l ratio reduces this miss rate increase to 1.7 percentage points.

2.4 Trade-offs Between Directory Schemes

We have seen that dynamic pointer allocation is more robust than the basic no-broadcast

limited pointers directory, in that it can handle blocks that are shared by many processors

without performance degradation. Others have proposed alternative directory mechanisms

with the same goal in mind. In this section we describe some of these schemes and

compare them with the basic limited pointers and dynamic pointer allocation directories.

There are several variations on the basic limited pointers strategy. Gupta et al. have

suggested a coarse vector technique that combines a broadcast strategy with a bit vector

used to limit the scope of the broadcast [26]. When a directory entry runs short of
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pointers, the bits of the entry, which were formerly organized as pointers, are reorganized

as a bit vector. In this mode, each bit is turned on if at least one of the corresponding

n/b caches contains the data, where n is the number of caches in the system and b is the

number of bits in each directory entry.7

Another proposed limited pointers scheme is the LimitLESS  directory under devel-

opment at MIT [14]. When a free pointer is needed in an entry and none remain, the

local processor takes an interrupt. The trap handling software then performs the appro-

priate actions. The advantage of this scheme is that the software control provides great

flexibility in handling infrequent situations while eliminating the need for extra hardware

to take care of them.

We can qualitatively compare these schemes based on the results from Section 2.2.3.

The data blocks fall roughly into three categories. First, there are blocks for which the

available pointers are rarely exhausted. All of the limited pointers schemes (with the

possible exception of broadcast schemes) perform well for these blocks. Second, there

are blocks with only moderately high read/write ratios that use all of their pointers with

some frequency. Finally, there are blocks with very high read/write ratios. We saw

in Section 2.2.3 that standard no-broadcast schemes have only a minor negative impact

for blocks with moderately high read/write ratios, but do not exploit the opportunity

to significantly reduce miss rates for blocks with high read/write ratios. On the other

hand, the coarse vector and LimitLESS  schemes will perform well for blocks with high

read/write ratios since writes are infrequent and miss rates are low. However, their

performance suffers for blocks with moderately high read/write ratios. For these blocks,

the coarse vector strategy will cause substantial traffic due to extra invalidations unless the

number of caches represented by each bit (n/b) can be kept small. The LimitLESS scheme

incurs considerable overhead for these blocks since misses occur relatively frequently and

a significant fraction of them will require software traps.

As we see, none of these schemes are ideal for all types of data. Since in each case

the directory has limited resources, there will always be a sequence of references that

causes the directory to perform poorly. The goal is to design a directory in such a way

71n [26],  the scheme is presented in the context of the DASH architecture. Using this architecture, each
bit corresponds to n/(4b)  caches, since 4-cache  clusters are kept self-consistent using a standard snoopy
cache mechanism.
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that this sequence lies outside the range of referencing behavior patterns exhibited by

most programs. All of the limited pointers schemes incur some performance penalty on

any block for which the pointers are exhausted. By sharing all of the pointers available

to a memory module across all of the blocks in that module, dynamic pointer allocation

drastically reduces the probability of running short of pointers. This feature ultimately

makes dynamic pointer allocation more robust to different types of reference behavior,

allowing it to perform equally well for each of the three categories of data blocks described

above.

All of the schemes we have discussed maintain all information pertaining to a given

data block in a directory at main memory. Another option is to decentralize this infor-
mation. One such organization maintains a distributed linked list of pointers indicating

the caches with copies of a given memory block [28, 51, 541. The pointers on the list

are stored with the data at the caches, while a field indicating the first node on the list

is kept in a standard directory structure at main memory. The advantage of this organi-

zation is that sufficient pointers are always available for all cached data in the system.

However, because the directory is decentralized, operations on lists of pointers are not

atomic, resulting in substantial additional protocol complexity. Furthermore, these op-

erations require more network messages and incur greater latency than their centralized

directory counterparts. In short, decentralized directories avoid the inftequent situations

that may not be handled well by centralized schemes, but in doing so incur traffic and/or

latency penalties on most directory operations.

2.5 Summary and Conclusion

We have introduced the limited pointers directory as a means of achieving acceptable

storage overhead for cache coherence directories in large-scale multiprocessors. This

directory associates each data block with several pointers that can identify a small number

of caches containing the data. By using an analytic model verified by trace-driven

simulation, we have demonstrated that the performance degradation relative to a full-

size directory is small across a wide range of workload characteristics, including a large

number of processors actively accessing the data. The exception is blocks for which
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the read/write ratio is very high. As the read/write ratio increases, the performance of a

full valid bit vector improves greatly while the performance of limited pointers remains

roughly constant. Therefore, limited pointers directories do not take advantage of blocks

with high read/write ratios.
While limited pointers directories may be enhanced through hybrid mechanisms that

handle high read/write ratio situations in a special manner, a more robust solution is the

dynamic pointer allocation directory. Rather than supplying a fixed number of pointers

for every block in the system, pointers are dynamically allocated to blocks as they are

needed. This scheme places no upper limit on the number of pointers that can be used

by a given block. Since the pool of available pointers is shared by all blocks on a

memory module, the probability of running short of pointers is greatly reduced compared

to the limited pointers strategies. Furthermore, the directory can be made to process

most individual operations as fast as the limited pointers directory. The dynamic pointer

allocation strategy is therefore an attractive means of organizing the information in cache

coherence directories.
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Chapter 3

Coherency Protocol Design Options

In the previous chapter, we removed an obstacle to building large-scale, cache-coherent

machines by introducing several directory organizations that provide storage efficiency

without sacrificing performance. Another primary ingredient in the recipe for these

machines is the cache coherence protocol. This protocol specifies the actions taken

by the caches and directories in response to incoming requests.

Designing a coherence protocol amounts to a classic trade-off between performance

and implementation complexity. Given the cost and performance goals for the machine,

the decision to include or omit a feature in the protocol is straightforward if the “pros

and cons,” that is, the additional performance and complexity, are known quantities.

In this chapter, we take a simple coherency protocol and evaluate the performance

improvement gained by adding each of three features. The first is the addition of a

clean/exclusive state in both the caches and the directory. This allows many write hits to

clean blocks to be satisfied immediately by the local cache, assuming the block resides in

no other caches. The second feature we study is treating write hits to clean blocks as if

they were write misses, which simplifies the protocol at the expense of higher memory-

to-cache bandwidth utilization. The final enhancement we evaluate is forwarding dirty
blocks directly from one cache to another cache whose processor has accessed the data.

This optimization saves an extra message through the directory.

There is a substantial body of previous work evaluating cache coherency protocols.

We will review these results in more detail in later sections when we consider each

41
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protocol feature. In general, the most important difference between our work and pre-

vious research is that we use cost metrics such as message counts that are appropriate

for directory-based coherency in a large-scale system. Many previous protocol studies

assumed small-scale, single-bus architectures. Because these protocols often take advan-

tage of the inexpensive broadcast mechanism inherent in the bus (e.g., snooping cache

protocols), the degree of performance improvement gained by protocol enhancements

will be different than the equivalent enhancement in large-scale architectures.

The next section describes the base coherency protocol to which the enhancements

are added. Section 3.2 then presents the simulation methodology we have used, followed

by three sections detailing each of the proposed protocol features and their accompanying

simulation results.

3.1 Base Protocol

We use the Censier/Feautrier  protocol as a base [ 121. This protocol makes the assumption

that the memory module state (i.e., the directory information) includes the location of

each cached copy of each memory block, as well as an indication of whether each block

is dirty (see Section 1.1). Briefly, the protocol operates by executing one of the following

sequences for each reference, depending on the type of reference and cache state:

l Write hit to a dirty block or read hit. These references are satisfied immediately

by the processor cache, requiring no further action in the memory system.

l Read miss. In this situation, the cache sends a read miss request to the appropriate

memory module. If the block is not dirty in a cache, the directory sends the data

in a reply message. If the block is dirty, the directory sends a request to that cache

to return the data and mark it clean. When the data arrives, the directory sends it

to the cache that made the original request.

l Write hit to a clean block. In this case, the cache sends a message to the appropriate

memory module to get permission to proceed with the write. The directory sends

invalidation requests to the other caches containing the block. Each of these caches
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invalidates its copy and returns an acknowledgement reply to the memory module.

If the programming model is to be sequentially consistent [31], then the directory

must not return write permission until the directory has received all of these ac-

knowledgements. If a weaker model of execution is allowed (e.g., weak ordering

[42] or release consistency [21]), then the directory can return write permission

immediately, before sending invalidations. Later, the directory sends another reply

indicating that all invalidations have completed.

l Write miss. In this situation, the cache sends a write miss request to the appropriate

memory module. If the block is not dirty in any cache, then the directory proceeds

as in the case of a write hit to a clean block, except that the data block is returned

along with write permission. If the block is dirty in a cache, then the protocol

proceeds as in the case of a read miss to a dirty block, except that the cache

supplying the block must invalidate it locally rather than mark it clean.

In addition to the actions described above, cache misses may result in block replace-

ments. If the replaced block is dirty, then it is written back to main memory in a separate

message.

We chose the Censier/Feautrier protocol as the base protocol for several reasons.

First, it is well-known. Second, others have frequently used it as a base protocol [56,

18, 5, 38, 371. Third, it is a simple protocol, yet not naive. It assumes only basic

directory information (i.e., the caches containing the data and whether the data is dirty)

is available, and does not include any enhancements that are obviously optional. The

Censier/Feautrier protocol is therefore well-suited for our purpose of evaluating protocol

enhancements.

3.2 Evaluation Methodology

We evaluate each of the protocol features using trace-driven simulation. The address

traces are the 16-processor traces described in Section 2.2.2. The simulator maintains the

state of the caches and the directory, modifying the state appropriately as each reference

in the input trace is processed. All coherency actions related to a given reference are
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performed before the simulator proceeds to the next reference. Since we are interested

in a class of machines rather than a particular machine, we avoid system-dependent

performance metrics such as bandwidth and cycle counts. Instead, we count the number

of messages that must be sent between caches and main memory. To measure memory

latency, the simulator records the number of network messages required to satisfy each

reference. To measure network traffic, the simulator counts the total number of messages

sent.

To properly interpret our results, it is important to bear in mind the relationship

between memory latency and overall performance. A given percentage reduction in

latency does not translate to an equivalent reduction in execution time, since not all

processor cycles are spent waiting on main memory to respond. For example, if we

assume a processor is 50% utilized, then lowering memory latency by 10% results in

only a 5% reduction in execution time.’

Of course, the simulation results are affected by the model of multiprocessor exe-

cution assumed by the simulation model. Each of the simulations is run once under

assumptions of sequential consistency, and again assuming weak ordering. In our sim-

ulator, the only difference between these two models is whether or not the latency of

invalidations is hidden. Under weak ordering, on a write to a clean block, we assume

the memory module returns write permission before the invalidations are sent, thereby

hiding the entire latency of those invalidations. With sequential consistency, the write

permission is returned after the invalidations have been sent and acknowledgement has

been received. In this case we make the simplifying assumption that multiple invalida-

tions are sent (and acknowledgements are collected) in parallel; therefore, a latency of

one invalidation/acknowledgement round trip (two network messages) is incurred. While

this does not take into account the serialization of messages through the network port, we

believe little error is introduced since the serialization time is probably small compared to

the message transit time. In addition, the majority of these references in our applications

cause no more than one invalidation anyway.

Note also that the assumptions made by our simulator with respect to weak ordering

cannot accurately reflect the full set of weakly-ordered machines that could be built.

‘This makes this s’ p ’ y’ gIrn hf m assumption that all procekor idle time is due to memory latency.
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Our simulator assumes that only invalidation latency is hidden; however, weak ordering

allows many other latency-hiding techniques to be used. For instance, write buffers help

hide the latency of writes. In the upcoming sections, we will comment on how the

results for weakly-ordered systems may be a$fected by latency-hiding schemes we have

not simulated.

3.3 Clean/Exclusive State

The first protocol enhancement we evaluate is adding a clean/exclusive state to each

cache and directory block. On a read miss, if the requested block resides in no caches,

then the cache line is left in the clean/exclusive state after the miss is satisfied. In this

way, if the block is eventually written, the write can proceed immediately in the cache

without first obtaining write permission from the directory. While this potentially reduces

both latency and traffic, there is a source of increased latency and traffic as well. If a

miss now occurs in a different cache on the same block, then the directory shows the

block clean/exclusive in the original cache, and must query that cache since the block

may actually be dirty. Our goal in this section is to determine the degree by which the

benefits of the clean/exclusive state outweigh the drawbacks, if indeed they do.

3.3.1 Background

The clean/exclusive state for directory-based cache coherency was first proposed by Yen

and Fu [56]. Their paper briefly develops a simple analytic performance model, conclud-

ing that the clean/exclusive state “typically” reduces the average memory access latency

by 5% to 15%, compared to the Censier/Feautrier protocol. However, it is not stated what

range of model input parameters are considered “typical.” Furthermore, the analysis is

flawed: it ignores the increased miss latency described above due to having to check

cached clean/exclusive blocks before supplying them to other caches.

In his thesis, Archibald points out these problems and performs a simulation study

of the clean/exclusive state based on a synthetic workload [7]. Unfortunately, only small

levels of sharing are considered, with no more than 5% of the data references to shared



46 CHAPTER 3. COHERENCY PROTOCOL DESIGN OPTfONS

blocks (our address traces show 10% to 42%). The results are significant nonetheless.

With almost no sharing, Archibald finds the clean/exclusive protocol outperforms the

Censier/Feautrier protocol, but never by more than about 5%. In addition, this advantage

decreases as the degree of sharing rises, since shared data may incur the cost of check-

ing cached clean/exclusive blocks that other caches need to load. For these synthetic

workloads, it would appear that the clean/exclusive state is not worth the cost. However,

Archibald does not evaluate an aggressive variant of the clean/exclusive protocol that can

be used in a system with a weaker coherency model. We will describe and evaluate this

variant in Sections 3.3.2 and 3.3.3.

The Illinois protocol was the first bus-based, snooping cache protocol to incorporate

the clean/exclusive state [39]. While that paper and others (e.g., [6]) present performance

results from analytic models or synthetic workloads, the results are not relevant for large-

scale machines. This is because the bus snooping mechanism affects the cost of a miss

to a block that is clean/exclusive in another cache. This type of miss incurs significant

additional latency and traffic in a large-scale machine to contact the cache containing

the block, while a machine with snooping caches can check the cache during its usual

snooping cycle at no additional cost.

3.3.2 Modifications to Base Protocol

This section describes how we modify the base Censier/Feautrier protocol to include the

clean/exclusive feature. A bit is added in each cache tag and each directory entry to

allow representation of the clean/exclusive state. Note, however, that a processor has

permission to write a block that is clean/exclusive in its cache at any time. Therefore, if

the directory shows a block to be clean/exclusive, it may be clean/exclusive (since it was

supplied to the cache as such by the directory) or it may be dirty (because the processor

may have since written the block).

To support the clean/exclusive state, we modify the actions defined by the Cen-

sier/Feautrier protocol (described in Section 3.1) as follows:

l Read miss. In this situation, the cache sends a read miss request to the appropriate

memory module. If the directory shows the block is not clean/exclusive, then
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the actions described in Section 3.1 apply. If the directory indicates the block is

clean/exclusive, then the actions depend on whether the protocol is non-aggressive
or aggressive. We will present results for both variants in Section 3.3.3. In the non-

aggressive protocol, the directory sends a special message to the cache containing

the block. On receipt, the cache marks its copy of the block clean, and returns

either an acknowledgement if the block was clean/exclusive in the cache, or the

contents of the block if it was dirty. Since memory now has an up-to-date copy of

the data, the original request is satisfied forthwith. However, the read miss incurs

a latency of two full round trips in the network. The aggressive scheme eliminates

one of these round trips from the latency by immediately returning the data in

main memory to satisfy the original request. Afterwards, the message is sent to the

cache with the block, just as in the non-aggressive case. If the reply indicates the

cache’s copy was dirty, then the directory must send an invalidation to the cache

that issued the original request. This invalidation serves to remove the stale data

that was initially returned to the cache.

l Write hit to a clean block. In this case, if the cache tag indicates the block is not

clean/exclusive, then the protocol proceeds as described in Section 3.1. If the block

is clean/exclusive, then the write is allowed to proceed in the cache immediately.

In the aggressive protocol, the cache must also send a message to the directory

indicating that the data is now dirty. The directory modifies its state accordingly,

and returns an acknowledgement. These messages are required to enforce the
memory consistency model (e.g., weak ordering).

l Write miss. In this case, the cache sends a write miss request to the appropriate

memory module. If the block is not marked clean/exclusive in the directory, then

the actions described in Section 3.1 take place. If the directory instead shows

the block clean/exclusive, then the protocol proceeds just as in the non-aggressive

read miss case described above, except that the cache already containing the block

invalidates it rather than leaving it in a clean state.

Note that the aggressive protocol cannot be used if sequential consistency is to be

maintained. We therefore evaluate three systems: a sequentially consistent system with a
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non-aggressive protocol, and weakly ordered systems with non-aggressive and aggressive

protocols.

3.3.3 Results

The first step in evaluating the clean/exclusive state is measuring the frequency of each

event, that is, each type of reference, in the address traces. For example, using the simu-
lator described in Section 3.2, we determine the frequency of read misses to unmodified

blocks that are not marked clean/exclusive at the directory. The next step is to assign

costs to each type of event, for each protocol variant we are evaluating. Since we are

using the number of network messages as the metric for both latency and traffic, the

unit of cost is the number of network messages incurred. For instance, read misses to

unmodified blocks not marked clean/exclusive cost two messages (one round trip to the

directory) in both latency and traffic. For most events, the reference is not satisfied until

all associated network messages are complete; for these events, the latency cost is the

same as the traffic cost. However, for some types of events the reference can be satisfied

before all of the associated traffic is necessarily completed (e.g., under weak ordering

the data can be supplied to satisfy a write miss to a clean block before the invalidations

have completed). In these cases, the latency cost is lower than the traffic cost. The event

frequencies for each of the applications and the latency and traffic costs we have assigned

to each event are given in Appendix F.

We can now multiply the event frequencies by their associated latency and traffic

costs to obtain the aggregate latency and traffic for each protocol. The results are shown

in Figures 3.1 and 3.2. Each graph in the figures represents a different application.

The horizontal axes indicate the size of each processor cache, assuming a direct-mapped

organization. The vertical axes show the total number of messages averaged over all data

references in the address trace.

Let us consider the latency graphs of Figure 3.1. The most striking result is that the

clean/exclusive state buys very little performance if a non-aggressive protocol is used.

Under both sequential consistency and weak ordering, adding the clean/exclusive state

never reduces the latency by more than 10.0% for any of the applications. And the
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greatest improvement is seen in small caches; for all of the applications, the percentage

latency reduction peaks at caches of 16KB or less. With small caches, blocks are replaced

more often, increasing the number of writes to clean/exclusive blocks, resulting in greater

latency reduction than for larger caches.

Let us now turn our attention to larger caches. In the limit, that is, for infinite-sized

caches, the clean/exclusive state reduces the latency by only 4.4% or less, and actually

increases the latency slightly for Maxflow and MP3D. This increase is an extreme demon-

stration of the effect that causes the latency improvement to be small in general. Although

the clean/exclusive state removes some messages that would otherwise be needed to gain

write permission, it also increases the number of messages required to process misses to

blocks marked clean/exclusive at the directory. Unfortunately, the increased latency of

the latter effect cancels most of the latency reduction gained by the former, resulting in

small improvements at best and slight degradation at worst.

The aggressive protocol performs somewhat better than the non-aggressive protocol,

because a read miss to a block marked clean/exclusive in the directory need not wait

for the round trip message to the cache already containing the block. Compared to the

base Censier/Peautrier protocol under weak ordering, the aggressive protocol with the

clean/exclusive state reduces latency by up to 18.5%. Even so, the latency reduction varies

significantly across workloads. No improvement is seen in Maxflow, which exhibits very

few write hits to clean/exclusive blocks. Even though these events are more frequent

in MP3D, the improvement is only 1.0% for infinite-sized caches, because the event

frequency is still small relative to other events incurring latency.

We should note that private (i.e., non-shared) data accounts for some of the latency

improvement using the clean/exclusive state. Our simulations subject private data as well

as shared data to the cache coherence protocol. If private data can be cached incoherently,

perhaps by setting a special bit to this effect in the corresponding directory entries, then

the latency and traffic of the base Censier/Feautrier protocol will be reduced. This is

because write hits to clean, private data blocks can proceed immediately in the cache.

However, for our benchmarks, we find private data to have only a small effect on the

results. Caching private data incoherently never reduces the latency of the base protocol
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by more than 2%. This makes sense, because as long as a private data block is not

replaced, only the first write to the block accrues any savings in latency, since the block

would already be dirty on subsequent writes.

Let us now consider the network traffic, as displayed in Figure 3.2. The basic result is

that adding the clean/exclusive state does not significantly lower the level of traffic. For

all of the applications, the traf8c is never reduced by more than 7.5%. And again, for large

caches, the decreases are smaller. For infinite-sized caches, the reduction in traffic is never
greater than 3.8%. Because of the messages sent on write hits to clean/exclusive blocks,

the aggressive protocol increases the network traffic, by up to 12.7%. This additional

traffic may offset the latency improvement of the aggressive protocol somewhat due to

increased network contention.

We also considered a potential modification called 2-to-l notify to improve protocol

performance beyond the levels shown in Figures 3.1 and 3.2. In the basic protocol

with clean/exclusive support, we assume that a cache obtains a block in clean/exclusive

state only when the block is not cached elsewhere. In other words, a block becomes

clean/exclusive on the transition from zero caches containing the block to one cache

containing the block. With 2-to-1 notify, the directory sends a message to the cache with

the sole remaining copy on a transition from two caches to one cache containing the

block (due to replacement in a cache). When the cache receives this message it modifies

the state of the block to clean/exclusive. Our simulations show virtually no difference

in latency and traffic between protocols with and without 2-to-1 notify. This holds true

across all but one of our applications, at all cache sizes from 256 bytes up to infinite-sized,

and for both the aggressive and non-aggressive protocols. Latency and traffic actually

increases for the other application (LocusRoute),  though never by more than 5%. This is

because cache interference between two blocks in the working set makes it likely that a

block replaced from a cache will be re-loaded in the near future. 2-to-1 notify is usually

a detriment to performance in this case because the block resides in one cache for only

a short duration. Because of this effect, and because we find the 2-to-1 transition simply

does not happen very often, we do not recommend 2-to-1 notify.

While it is tempting to also use the graphs of Figure 3.1 to compare the performance
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of sequential consistency and weak ordering, we must keep in mind the limitations im-

posed by our assumptions on the scope of our results. In particular, care is required to

properly interpret the results for weak ordering. From a performance perspective, that

a system is weakly ordered merely says that it is permissible to hide latency by allow-

ing processors to have multiple outstanding references. Nothing is implied about which

latency-hiding mechanisms (e.g., write buffers, prefetching, multiple-context processors

[25]) are actually used The only latency that is hidden using the base protocol under
weak ordering in Figure 3.1 is the invalidation message latency. Hiding this latency is

easily accomplished in the directory hardware. Weak ordering offers the flexibility to

incorporate other latency-hiding techniques; their potential advantage is not reflected in

the latency graphs.

At this point, we can draw several conclusions about the clean/exclusive state. In

a strongly ordered system, it is probably not worth the additional complexity, since the

reduction in latency is very small (never more than 8.4%, or 4.1% for infinite caches),

and is sometimes negative. In a weakly ordered system, only the aggressive protocol

fares significantly better. However, the potential improvement is still modest: none of

our benchmarks showed more than a 20% reduction in latency. Furthermore, most of this

latency that is reduced can be hidden with other, more general techniques such as write

buffering. Since most high-performance systems already include write buffers, adding

the clean/exclusive state will not be worthwhile. We conclude that the clean/exclusive

state is an “optimization” that is better left out of most designs in favor of simplicity.

3.4 Removing Write Hit Requests

The second protocol enhancement we examine is actually a protocol simplification: treat-

ing write hits to clean blocks as if they were write misses. That is, when a write hit

to a clean block occurs, the cache sends a write miss request to main memory, and re-

ceives a reply granting permission to write the block and containing the block’s data.

The drawback of this policy is that while the processor needed the permission to write

the block, the accompanying data did not have to be sent from main memory since the
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block was already valid in the cache. The advantage of this scheme is a simpler protocol

that correctly handles a tricky scenario in the base protocol: if two caches issue a write

hit request to the directory at about the same time, the block will be invalidated from the

second cache to reach the directory with its request before receiving its reply.* Remov-

ing write hit requests obviates detecting and handling this special case separately in the

protocol.

3.4.1 Methodology

As before, we use the Censier/Feautrier  protocol described in Section 3.1 as the base

protocol. To remove the ‘write hit request, we modify the base protocol by simply

performing the actions of a write miss whenever a write hit to a clean block occurs.

We assume that the base and enhanced protocols both use two message sizes, one for

messages that do not contain a block of data (short messages), and another for those that

do (long  messages). The effect of removing the write hit request from the protocol is

that the short message reply from main memory on a write hit to a clean block becomes

a long message reply.

To determine the overall increase in network traffic, we count the number of short

and long messages required to service all of the data references in an address trace. We

do this by multiplying the frequency of a type of event by the number of short (and then

long) messages required by each event of that typ. Summing across all event types

yields the total number of short and long messages. After following this procedure for

both the ‘base and enhanced protocols, we are in a position to evaluate the increase in

traffic.

Of course, removing write hit requests does not change the number of messages, but

rather only their size. The increase in traffic will therefore depend on the relative size

of short and long messages. Because this hinges on a number of factors, such as the

cache block size, the number of bits in an address, and the width of the interconnection

network, we present the traffic increase as a function of the ratio of the long message

size to the short message size.

2We will examine this situation in greater derail in Section 4.5.2.
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Figure 3.3: Increase in traffic due to removing write hit requests. Message length ratio
is the length of long messages (i.e., messages containing a data block) divided by the
length of short messages (i.e., messages not containing a data block).

3.4.2 Results

Figure 3.3 shows the increase in traffic due to removing write hit requests, as a function

of the ratio between the size of long messages and short messages. Separate graphs are

required for each block size, since varying the block size affects the stream of memory

requests generated by each cache. For brevity, only the results for infinite-sized caches

are shown; for all of our traces, these results reflect the worst-case increase in traffic

across all cache sizes.

By using the results in Figure 3.3, we can determine the increase in network traffic

caused by removing write hit requests for different systems. For instance, consider a

machine with 32-bit addresses and 32-bit words. Assume the cache block size is 16

bytes, i.e., four words. If short messages are two words long (a header word and an

address) and long messages are six words long (a header word, an address, and a block
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of data), then the ratio of message lengths is 3. We can see from Figure 3.3 that the

resulting increase in consumed bandwidth is between 10% and 15%, depending on the

application and cache size. Of course, this may or may not be acceptable, depending on

other factors such as the cost and performance of the network relative to other parts of

the system. Keep in mind that the block size and the message length ratio are strongly

correlated, since for most systems, the length of long messages will be equal to the length

of short messages plus the block size. In the example above, if the cache block size were

64 bytes instead of 16 bytes, then the resulting message length ratio is 9. Figure 3.3

indicates that removing write hit requests in this system would increase traffic by 18% to

31%. Again, this increase may be acceptable depending on the circumstances. However,

with the increase in traffic approaching one-third for this configuration, many designers

would probably include the additional complexity of handling write hit requests.

We conclude that designers should consider removing write hit requests from their

coherency protocol. In many cases, and especially for modest cache block sizes (16

bytes and smaller), the resulting increase in traffic is less than 15% for many system

configurations. However, removing the write hit requests incurs a higher penalty for

machines with large block sizes (64 bytes and larger). For these systems, designers should

carefully examine the resulting loss in performance (or increase in cost to maintain equal

performance) before purging write hit requests from the protocol.

3.5 Request Forwarding

The final protocol enhancement we evaluate is request forwarding. This optimization

reduces the latency of a cache miss to a block dirty in another cache. it does this

by having the cache containing the data forward it directly to the cache requesting the

data, rather than first sending it to the directory. The drawback of request forwarding is

the additional hardware complexity required. In this section we determine the latency

improvement for our benchmarks, allowing us to comment on the usefulness of request

forwarding vis-a-vis its hardware cost.
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3.51 Background

Request forwarding has been included in many snooping cache coherency protocols for

single-bus multiprocessors, and is generally considered to be a good idea for these ma-

chines. This is because the number of bus cycles is cut in half for misses to blocks dirty

in a cache, and the additional implementation cost is low if the bus and cache controller

already supports cache-to-cache data transfers. In a large-scale multiprocessor, the po-

tential performance gain of forwarding is smaller and the implementation complexity is

larger than for a single-bus machine, making the design decision more difficult.

Request forwarding for large-scale machines was proposed by Lenoski et al. [32]

and implemented in the DASH multiprocessor. In his thesis, Lenoski also reports the

improvement in reference latency due to forwarding for the DASH architecture, as mea-

sured from the prototype by a hardware monitor [34]. In Section 3.5.3 we will compare

these measured values to our simulation results.

3.5.2 Modifications to Base Protocol

We again use the Censier/Feautrier protocol (see Section 3.1) as a base. To modify the

base protocol for request forwarding, we alter the actions that are taken for read and write

misses, if the directory discovers the block is dirty in a cache. Recall that under the base

protocol, the directory sends a message to the cache containing the data, instructing the

cache to return the data to the directory. When the data arrives, the directory sends it to

the cache that requested it. With request forwarding, however, the cache containing the

data sends it to the cache that requested it rather than the directory. In the case of a read

miss, the data is also sent to the directory so it can be written back to main memory; this

message is called a sharing writeback. For a write miss, an acknowledgement is sent to

the directory.

Possible implementations of request forwarding vary widely in their protocol com-

plexity. In a directory that delays satisfying requests for blocks with outstanding trans-

actions, there are two basic options. First, the sharing writeback (for a read miss) or

acknowledgement (for a write miss) can be sent to the directory by the cache receiving

the data. This is very simple from a protocol perspective, since the directory may not
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process new requests for the block until the dirty data is no longer in transit. Second,

the sharing writeback or acknowledgement may be sent by the cache supplying the data.

The directory is unblocked sooner, but it may later send requests for the data to a cache

that has not yet received it.

Now consider a directory such as the one used in DASH that does not maintain state

indicating whether a block has outstanding transactions. Here, we find the forwarding

protocol is more complex. Lenoski et al. relate a subtle situation that demonstrates this

complexity. On a write miss the directory does not update its contents until it receives

the acknowledgement message from the cache forwarding the data. This message must

be received before the block is forwarded again (perhaps by an old message that has

been delayed in the network); otherwise, a race may occur between multiple acknowl-

edgement messages headed towards the directory. If the wrong message wins the race,

the directory will be updated incorrectly. To solve this problem, the directory sends its

own acknowledgement to a cache receiving forwarded data; the cache is not allowed to

give up this data until this message is received.

Another subtle situation may occur in a machine with write hit requests, issued when

a write hit to a clean block occurs.3 If a read miss occurs on a block dirty in another

cache, that cache forwards the data and sends a sharing writeback to the directory. Once

the data has arrived at the cache, satisfying the read miss, the processor could later write

the block. This would cause a write hit request to be sent to the directory. If the request

is serviced before the sharing writeback, then there will be two dirty copies of the block

in the system: one in the sharing writeback message, and one in the cache that issued the

write hit request If the cache now decides to write back the dirty data, the protocol must

ensure that this ;lata is lrnt e~;entuallc destroyed in main rjlemory when the. nU.+stale data*
in the sharing writeback message arrives.

3.5.3 Results

To determine the improvement in latency due to request forwarding, we assign a latency

cost to each type of event, just as we did for evaluating the clean/exclusive state in
-.--~-

3Lenoski et al. do not cover this situation because the DASH machine does not include write hit requests.
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Section 3.3.3. The costs for request forwarding are identical to the Censier/Feautrier

costs except for read and write misses to dirty blocks, which incur a latency of three

network messages instead of four.

The average latencies for both the base protocol and the request forwarding protocol

are shown in Figure 3.4. In the limit, if every reference causing traffic was a miss to a dirty

block, request forwarding would decrease the average latency from four network messages

to three, for a 25% improvement in latency. Figure 3.4 shows that for our applications,

request forwarding achieves far less than that maximum theoretical improvement, with

latency reductions ranging from 5.7% to 14.3% under weak ordering and 5.2% to 12.1%

under sequential consistency. As before when we looked at the clean/exclusive state (see

Section 3.3.3), our results for weak ordering assume that only the latency of invalidations

and their replies are hid&n. If the latency for some events other than misses to dirty

blocks were hidden, then the percentage reduction in latency due to request forwarding

would increase, perhaps making the scheme somewhat more attractive. For instance, if

all write latency is hidden under weak ordering, we find the latency reduction due to

forwarding ranges from 6.5% to 20.5%. The latter reduction is seen in MP3D, which

incurs a very high invalidation miss rate (about 25%) and therefore sees larger relative

benefits of forwarding. In his thesis, Lenoski measures the improvement in read miss

latency to be from 0.2% to 11.0% for five programs running on the DASH prototype.

We conclude that adding request forwarding to the coherency protocol results in only

modest performance gains. The latency due to communication is reduced by roughly 5%

to 15% depending on the application; the improvement in execution time will of course

be less. Request forwarding will be a useful addition to a protocol only if it can be easily

implemented, otherwise, it is probably not worth the effort

3.6 Summary and Conclusion

In order to choose a coherency protocol, designers must weigh the value of protocol

features against their implementation costs. In this chapter we have employed trace-

driven simulation to quantify the performance effects of three protocol enhancements.

We have used the number of network messages as an architecturally independent metric
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of reference latency and network traffic.

Our performance results for the three protocol features make the virtues of sim-

plicity clear. The additional complexity associated with two of our enhancements, the

clean/exclusive state and request forwarding, seems to buy very little performance for

our trouble. Even removing write hit requests, a staple of most published consistency

protocols, proves to have only a slight negative impact on the network traffic for systems

with small cache blocks, making the simplification worthwhile. Of course, simplification

can always be taken too far: with large cache blocks, removing write hit requests can

substantially increase network traffic.
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Chapter 4

Directory and Protocol Implementation

In previous chapters we examined some of the interesting high-level directory and proto-

col design issues. We will now shift our focus to the trade-offs that arise at the implemen-

tation level, focusing on fundamental issues that must confront anyone designing directory

hardware. We begin by briefly describing a very straightforward processing node. The

remainder of the chapter then uses this design to demonstrate the relevant correctness

and performance issues. In particular, we will show how to implement multiple-threaded

directories, avoid deadlock, and handle subtle cases in the coherency protocol.

4.1 A Basic Node Design

As mentioned in Section 1.3, we assume that each processing node contains a processor

and a cache, as well as an interconnect controller and a portion of main memory with

accompanying directory information. Directory-based cache coherency protocols operate

by passing messages between caches and directories in the system, using the interconnec-

tion network as necessary. So within a node, we are primarily interested in the controllers

for the cache, directory, and interconnect. The directory controller (LX) maintains the

contents of the directory bits. The cache controller (CC) maintains the internal cache

directory (comprised of tags, valid bits, dirty bits, etc.) and satisfies memory requests

from the processor. The interconnect conrroller (1C) implements the interface between

the node and the interconnection network. For our purposes we can view the interconnect

63



64 Ch?APKI?R 4. DIRECTORY AND PROTOCOL IMPLEMENTATION
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Figure 4.1: Interconnecting the directory, cache, and interconnect controllers.

controller abstractly as a mechanism that reliably sends and receives messages.

We define the following types of messages used by the protocol. A cache issues

a request to memory using a cache-to-main-memory (abbreviated C-+MM) command,

to which the directory issues a reply. Before issuing the reply, the directory may need
to issue one or more main-memory-to-cache (abbreviated MM-C) commands, to which

caches reply. This implies that each controller within a node must be able to communicate

with the other two controllers. For instance, the cache controller sends messages to either

the local directory or to a remote directory via the interconnect controller. Similarly,

,messages from the directory controller may go to the local cache or to remote caches.

Finally, messages arriving at the node through the interconnect controller may go to

the cache or the directory. Figure 4.1 shows a basic means of interconnecting the three

controllers using a bus. The interconnect controller feeds incoming messages into a queue

so that arriving messages can be accepted from the network immediately, i.e., without

waiting for a shared resource on the node to become available. Otherwise, a global

resource (the network) may block due to local contention on the intra-node bus.

To form a basis for the correctness and performance issues we address in this chapter,

we must flesh out the design further. To do this, we next examine the hardware inside

the directory controller. We then describe how this hardware is used to achieve cache
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Figure 4.2: The directory datapath.

consistency by defining the necessary commands and replies, and developing a state

machine to drive the directory hardware.

4.1.1 Directory Datapath

The basic internal datapath of the directory controller is shown in Figure 4.2. In general, a

directory accepts a stream of messages from an in port and produces a stream of messages

on an out port.’ All data transfer to and from the directory controller occurs on these

ports. Main memory is shown abstractly as a “black box” with address and data ports.

The datapath assumes a no-broadcast limited pointers directory with three pointers per

entry. There is one valid bit per pointer to indicate if the pointer is in use, and a single

dirty bit per entry to indicate if the block is currently dirty in a cache. The datapath

‘A single bidirectional port may be used instead, as in Figure 4.1.
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controller can be implemented as a state machine. Figure 4.2 shows only a subset of the

signals the state machine reads and writes; later we will present state transition tables

that define the state machine more precisely.

When a message arrives, the datapath controller latches the address field from the

in port into an address register that drives the memories. If the message is a C-+MM

command, then the identifier of the cache that originated the message is stored into a

register, since the directory will need to reply to that cache. A comparator is included

to compare this register against the contents of the pointers. On a write hit to a clean

block, ,this comparison is used to prevent the directory from sending an invalidation to

the cache that issued the write request.

The path between the ‘originating node register and the pointer bits of the directory

is needed to write a new cache identifier into a directory pointer. The transceiver is

used to isolate the original node register from the pointers when the comparator is being

used. Outgoing messages can be sent to either the cache indicated by a pointer or to the

cache contained in the originating node register, corresponding to MM-C commands

and replies to C--+MM commands, respectively.

4.1.2 Command and Reply Messages

Having defined the basic structure of the node hardware, we can now define the specific

commands and replies that are required to implement our basic coherency protocol. We

need four different C-+MM commands:

l readlnon-exclusive (readlnon-ex). The cache issues this command on a read miss

in order ~3 get a copy J the block from main memory.

l read/exclusive (readlex). In the case of a w-rite miss, the cache uses this command

to get an exclusive copy of the block from main memory.

l exclusive (ex). When the cache encounters a write hit on a clean block, it must

ask the directory for exclusive access to this block; it will then be the single cache

with r-he dirhv copy of the block.



4.1. A BASIC NODE DESIGN 67

l writeback. This command is used by the cache to write back a dirty block to main

memory if, for example, it is replacing the block with another one.

As we mentioned, a directory may need to have other caches take action when one of

these C+,MM commands is received. To do this, the directory sends MM-42 commands.

We define three MM-4 commands as follows:

l copyback. This command tells the target cache to copyback the indicated block

to main memory. The block need not be invalidated, however. This command is

required when there is a read miss in a cache on a block that is dirty in another

cache.

F flush. A cache receiving this command should copy the specified block back to

main memory and invalidate the block. This command is necessary when a cache

has a dirty copy of the block and there is a write miss on the block in another

cache.

l invalidate. This command should cause the receiving cache to invalidate the indi-

cated block. It is issued when another cache requests exclusive access to a block,

either through a read/exclusive or exclusive C+MM command.

Note that some of these commands require a reply. We define the following two

replies:

l return data (retdata). This reply is issued in response to a C-+MM readlexclusive
or read/non-exclusive command, and is used to return the requested block of data

to the cache.

l copyback data (cbdata). This reply is the response to a MM-4 copyback orflush
command, and carries the requested data from the cache back to main memory.

4.13 State Machine

Using the messages we have just defined, we can now write the state transition table

describing the state machine that controls the directory datapath. We use a very simple
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coherency protocol. Any requests for blocks dirty in another cache are first retrieved

from that cache and then supplied to the requesting cache. Requests for clean blocks

are supplied immediately; if an exclusive copy is requested, invalidations are sent to the

appropriate caches as indicated by the pointers.

We also make the simplifying assumption that the directory is single-threaded, that

is, it may have transactions pending for no more than one C--+MM command at a time.

For instance, if a single-threaded directory is processing a read/non-exclusive command,

C-+MM commands for other addresses cannot be processed until the directory sends the

retumdata reply, even if the directory must first issue a copyback or flush command to

retrieve the data from a cache. This results in a directory that sits in one of two states

between messages, idle or blocked. If the directory is idle, new C-+MM commands may

be processed when they arrive. If the directory is blocked, the directory can process only

replies it is awaiting.

Table 4.1 shows the resulting state transition table. While the table makes no al-

lowances for timing considerations, such as the number of cycles necessary to access the

directory bits, all of the necessary flow of data is indicated. Some incoming commands

result in multiple outgoing commands; these are denoted with multiple lines in the output

side of the table.

The table shows four inputs to the state machine. The first two are the current state of

the block and the incoming request type. The next input, used only for replies to MM-C

commands, indicates whether the directory must now reply to a read/non-exclusive or

read/exclusive command. The next input is the dirty/valid (DV) state bits for the block.

In this column, the condition fp stands for free pointer. This condition is true if there is

at least one unused po;;!ter, thi?t 'S, i f  WtLb Of"k?e  VSlid bits iS 0.

The first output in the table is the outgoing request type for commands and replies sent

by the directory controller. The next column shows the processor number to which the

message should be sent. The abbreviations in the processor number column are defined

as follows:

l orig. This indicates the node that originated this sequence of messages with a

C+MM command.
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iIlpUtS: outputs: *

incaning  previous outgoing DV free next other actions,
Stllte message message DV bits message P# bits ptr state urnditions

1 idle writeback x
I

X zr o  l idle memory + data
2 idle readhcnex x iisyhfp retdata otig (add) orig  idle supply data
3 idle redhonex  x GA5 retdata orig supply data
4 invalidate rptr + orig  idle
5 idle readhmex  x dirty copyback dptr * * blocked-
6 idle read/ex  x dirty retdata orig supply data
7 invalidate ptro send if ptr0 valid
8 invalidate ptrl send if ptrl  valid
9 invalidate ptr2 dirty orig  idle send if pr2 valid
0 idle read/ex  x dirry flush dptr  l l blocked

II idle ex X X invalidate ptr0 send if pr0 valid & # orig
2 invalidate ptrl send if ptrl  valid & # orig
3 invalidate ptr2 idle send if ptr2 valid & # orig
4 blocked &data readhonex  x retdata orig  (add) orig  idle memory + data, supply data
5 blocked &data readlex X retdata orig  dirty orig idle supply data

Table 4.1: Basic state transition table for the datapath controller. An “x” indicates a
“don’t care” condition, and a “*” means the field should remain unchanged from its
previous value. Other abbreviations are described in the text.

l rptr. This stands for replacement pointer. The processor number saved in the

pointer that is about to be replaced is to be used. The determination of which of

the three pointers this refers to depends on the pointer replacement policy.

l dptr. This is an abbreviation for dirty pointer. The processor number saved in the

single pointer that is valid when the block is dirty is to be used.

l ptr0, ptrl, ptr2. These refer to the processor number saved in one of the three

pointers, labeled pointer0,  pointerl, and pointer2.

The next output column shows the changes that should be made to the dirty/valid

bits in the directory entry. The notation (adii) means the valid bit corresponding to the

pointer that is becoming valid should be set, thereby “adding” the pointer to the existing

state. Also, (add) implies that the dirty bit should be cleared if it is set. The notation

zero indicates that all of the valid bits should be cleared. The next output, free ptr, shows

when the processor number in the originating node register should be saved in a pointer

that is free or has been made free by some action taken by the datapath controller. The

next state column indicates the new state of the directory. The final column shows other
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actions that must be taken, or any additional conditions that must be satisfied to send the

outgoing message.

4.1.4 Correctness and Performance

We have described a simple node design, including the intra-node interconnect, the direc-

tory datapath, the types of messages that must be supported by the coherency protocol,

and the state machine to implement the protocol at the directory. Throughout the re-

mainder of this chapter we will use this basic design to demonstrate the fundamental

correctness and performance issues with which directory designers must be concerned.

In the next three sections we show how to easily make the directory multiple-threaded,

and how the node design can be modified to prevent deadlock troubles. Section 4.5 then

demonstrates several subtle problems in our coherency protocol and suggests appropriate

solutions. Having addressed these correctness and performance issues, in Section 4.6

we return to the basic node design we have discussed and incorporate our suggested

improvements, thereby producing a better design for a node.

4.2 Multiple Threads

As we said in Section 4.1.3, the basic node design we have described is single-threaded. A

single-threaded directory only supports a single outstanding transaction at a time, leaving

the memory blocked while the directory waits for a reply to a MM-C command it has

sent. This restriction is not placed on multiple-threaded controllers. While waiting for

caches to respond to MM+C commandc;,  a directory with multiple thread: can proceed

with C-+MM requests for other blocks For thrs reason, multiple-threaded directories

have a performance advantage over single-threaded directories.

To implement multiple threads, we must save state for each C-+MM command that

cannot be satisfied immediately by the directory because one or more MM-C commands

must be sent (e.g.9 to retrieve a dirty block from a cache). When replies to the MM-C

commands are later received, this state allows the directory to reply to the original request.

To identify the state that must be saved, we need to determine the information needed by
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the directory to send this reply. For instance, to send a return data reply after retrieving

a dirty block from a cache, the directory needs the processor number and address from

the original request for the block. While bits could be added to each directory entry to

save this state, there is a better solution that requires no additional storage. The state can

be easily maintained by encapsulating it in the MM-C commands that are sent, with the

understanding that the receiving caches will simply echo the state back in their replies.

Of course, the address must be sent anyway, so the only extra data in the message is the

processor number. An extra bit must be added to the directory entry as well to indicate

that a transaction is pending so that unrelated CdMM messages for that address will not

be processed until the pending transaction is complete. This extra bit encodes the idle and

blocked states indicated in the state transition table we presented (see Table 4.1). In the

basic single-threaded design, idle and blocked indicated the state of the entire directory;

in a multiple-threaded directory, this state is maintained on a per-block basis.

4.3 Avoiding Reply Deadlock

The basic node design of Section 4.1 does not consider the possibility of deadlock.

Unfortunately, the design can deadlock quite easily. When the directory sends a MM-C

command to retrieve a dirty block, the directory does not process further commands for

that address (or any further commands if it is single-threaded) until the reply to that

command is received. If any further commands are received by the node, they must wait

in the input queue (recall Figure 4.1). Unfortunately, they will wait forever, since the

reply will become stuck behind them in the same queue. As designers, we would like

to know in general whether deadlock may result from prohibiting a given message type

from acquiring a resource while that resource awaits a reply to a message it has sent. In

this section, we develop sufficient conditions for avoiding this type of deadlock, which

we call reply deadlock.
To determine these conditions, we first examine the different sequences of message

types that can occur for a given request. We can arrange these sequences in a tree

structure, as in Figure 4.3. In all cases, a request begins with a C+MM command,

shown at the root of the tree. In the case of a request to a clean block, the left branch is
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Figure 4.3: Possible sequences of messages for a given request.

followed: the directory sends the reply to the request. If the request is for a dirty block,

however, then the right branch is followed: the directory must send a MM--& command

and receive a reply before it can send a reply to the original C-+MM command. The tree

shows four types of messages, that is, two types of commands and two types of replies.

Given this tree, we can state a sufficient condition for avoiding reply deadlock:

Condition 1 If a message type B exists in any subtree for which message type A is a
root, then messages of type B cannot be postponed by a unit because it is waiting for a
reply to a message of type A.

In other words, if a hardware unit expects a reply to a message it has sent, it should

not block message types that may be needed for the reply to arrive. If it does, the unit

may deadlock with another unit zying to dc: the sarnc. The proof that the above conditiorF

is sufficient is as follows:

Theorem 1 If Condition I hola!~, then no request fails to complete due to a unit blocking
messages while awaiting a reply.

Proof Define a request to be a sequence of messages beginning at the root of the tree

in Figure 4.3 and completing at a leaf. We denote the set of active requests at a given

time as {r;}. Within an active request r;, the active message is at height hi in the tree,
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where the height of a node is the “length of the longest path from the node to a leaf”

[4]. The proof proceeds by induction: we will first show that all requests {r-i 1 h; = 0)
must complete. We will then show that if all requests {r; 1 h; 5 j} must complete, then

all requests {r-i 1 hi = j + 1) must complete.

Basis Consider the requests {r; 1 h; = 0). Figure 4.3 indicates the current message

for these requests must be a reply to a C--+MM command. Since all possible subtrees

contain a reply to a C+MM command, Condition 1 ensures that no unit may block these

messages due to pending replies. Therefore, all requests {r; 1 h; = 0} must complete.

Induction Assume all requests {ri I hi 5 j} must complete, and consider the requests

{ Ti 1 hi = j + 1). Condition 1 implies that the latter requests may only be postponed
by pending replies for message types with height less than or equal to j. However, it is

given that requests of this height must complete. All requests r; for which hi = j + 1

must therefore eventually change state to hi = j. From this point they must complete

due to the inductive hypothesis. 0

We now have a general framework in place for deciding when resources may block

messages without risking reply deadlock. We can avoid this deadlock at each of the

system resources by ensuring that each satisfies Condition 1. In the next several sections

we look at some of the ramifications on each of the major resources, that is, the cache,

directory, and interconnection network.

4.3.1 Cache Reply Deadlock

The only case in which a cache awaits a reply is when it sends a C+MM command.

Since this command is at the root of the tree in Figure 4.3, Condition 1 implies that

the cache controller must not block any message types that may arrive simply because

it awaits a reply. To illustrate the consequences of ignoring this rule, assume the cache

controllers were designed to block incoming MM-C commands while awaiting a reply
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to a C+MM command. Now imagine two processors each issue a read/non-exclusive to
a block held dirty in the other’s cache. The directories for the blocks will issue copyback
commands to the caches to retrieve the dirty blocks. But if these caches must postpone

the copyback until they receive the reply to the readlnon-exclusive commands they sent,

then they will wait forever, because neither reply can be returned by the directories until

the copyback commands have been completed.

4.3.2 Directory Reply Deadlock

The directory awaits a reply whenever it sends certain MM-C commands, such as

copyback. According to Condition 1, this wait must not cause the directory to block any

message of the types found in the subtree in Figure 4.3 for MM-C commands. This

may have several ramifications in a typical design. For instance, it is obvious that if
the directory were to block replies to MM+C commands, it would never see the reply

for which it waits. Unfortunately, this is sometimes the case for our basic node design

of Section 4.1. In the basic single-threaded design, all C+MM commands block at

the directory when a reply is forthcoming; in the multithreaded design, those C--+MM

commands for addresses with outstanding transactions block (see Section 4.2). While

Condition 1 permits the directory to block these commands, the result is that replies may

also be blocked. This is because our design provided only a single queue for messages

arriving at the node (see Figure 4.1); replies may get stuck behind blocked C+MM

commands in this queue, resulting in deadlock. We will describe one solution to this

problem in the next section.

4.3.3 Network Reply Deadlock

Condition 1 affects the network design in several ways, where the network in this case

includes both the channels of the interconnection network between nodes and the intra-

node communication paths. In the inter-node network, no link used to transfer a C-+MM

command may be held for the eventual reply if that might block MM-K commands,

since MM-C commands are in the subtree of C+MM commands in Figure 4.3. For

most networks, this requires a split-transaction strategy (i.e., separate network transactions
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are required for a command and its reply).

Within a processing node, care must be taken to ensure that one controller does not
block certain messages destined for another controller simply because the first awaits a

reply. For instance, having sent a MM-C command, a directory awaiting a reply must

not prevent a different MM-C command arriving at the node from being delivered to

the local cache. This is because MM-C commands reside in the subtree for MM-C

commands in Figure 4.3 (since the root of a subtree is also a member of the subtree). To

demonstrate this, consider a machine with directories designed to block a MM-X com-

mand arriving at the node whenever they await a reply to their own MM-C command.

Deadlock may occur if each directory on two nodes sends a MM-C command to the

other node, for the commands may be blocked from the destination cache by the local

directory. This can happen in our basic node design, since the MM-C command can

become stuck behind a blocked C-MM command in the node’s single input queue.

To solve this problem in our basic node design (as well as the similar problem

described in Section 4.3.2), we can add an additional queue that only holds C-+MM

commands arriving at the node, as shown in Figure 4.4. In this scheme, all arriving

C+MM commands enter this additional queue, while all other messages enter the other

queue. This strategy is effective since C-+MM commands, the only messages that may

block while a controller awaits a reply, now cannot prevent other types of messages from

reaching their destinations. An alternative would be to negative acknowledge (NAK)

any C+MM commands that block at the directory, but this policy may have a negative

impact on performance. In any case, the additional queue may also be used to reduce

the incidence of store-and-forward deadlock, which we examine next.

4.4 Avoiding Store-and-Forward Deadlock

In general, the directory controller and cache controller may have to block when trying

to send an intra-node message to another unit if that unit is not ready to accept another

message. This creates the potential for store-and-forward deadlock [49], which occurs

if the directory and cache controllers each need to send a message to the other, but

neither can accept more messages until their own message has been sent. Unless an
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Figure 4.4: Adding an additional queue to pmvent reply deadlock.

entire message can be transferred between units on a single clock edge, this deadlock

can be prevented only by adding buffer storage between the output of one unit and the

input of the other.* We can modify the solution we used to prevent reply deadlock in

Section 4.3.3 to help solve this problem as well. To do this, we move the additional

queue we added for CtMM commands to the input of the directory controller, as shown

in Figure 4.5, This configuration allows C+MM commands from the cache controller to

the local directory controller to be queued, greatly reducing the probability of deadlock.

Of course, deadlock could occur due to replies from the cache controller as well; for this

reason, we have also added a queue for replies to the input of the directory controller.

Of course, by adding the queues between the cache and directory controllers, we have

teduced the probab!lity of deadlock substantially., hut the probability is still non-zero. This

is because the cache and directory controllers do not constitute a closed system; either

can accept messages arriving from the network through the interconnect controller. In

addition, the cache may itself introduce messages due to cache misses. It is possible for

these externally generated messages to fill up the buffer storage, leaving the system in

essentially the same state as without the buffer.

There are several approaches to dealing with this problem. By adding sufficient

*An analogous problem in computer programming is swapping the values of two variables z and y.
An intermediate storage variable 1 must be introduced: 2 - I; z c y; y - 2.



4.4. AVOIDING STORE-AND-FORWARD DEADLOCK

bus

77

Figure 4.5: Moving queues to the input of the directory controller to help prevent store-
and-forward deadlock.

queueing depth, systems in which the directory and cache can each process commands at

the maximum rate they can arrive through the network can avoid the deadlock problem.

However, directories that serially generate multiple invalidation messages in response to

a single write will have trouble meeting this requirement. An alternative is to provide

queueing depth equal to the maximum number of messages that can ever be introduced

into a node at one time. While tighter bounds will exist for many systems, an upper limit

on the number of messages is the product of the maximum number of outstanding memory

requests per processor and the number of CPUs. The final avenue we propose is to detect

when deadlock mighr occur in the near future; when this condition is detected, the node

would not accept any additional messages from the local cache or network. The detection

is accomplished by monitoring the directory input queues. When a queue becomes nearly

full, the cache is inhibited from making further requests and arriving network messages

destined for the queue are NAKed until free space in the queue becomes more plentiful.

While this obviously may reduce the performance of the machine by causing message

retries and possibly stalling the local processor, this situation should only occur rarely.

We have focused on the interaction between the cache and directory controllers as a

source of store-and-forward deadlock. Interaction with the interconnect controller may

or may not contribute to this problem, depending on how the interconnect controller is
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integrated into the inter-node network. In order to prevent deadlock, the network archi-

tecture may guarantee that the interconnect controller can always place a new message

on this network in finite time without first being required to accept an arriving message

from the network. In this case, store-and-forward deadlock cannot occur within the node

due to the interconnect controller, because its ability to consume a message from one

of the other two controllers does not depend on its ability to send a message to one of

them. Although the cache or directory controller may have to block while waiting for

the interconnect controller to accept a message, the wait will eventually end since the

interconnect controller will ultimately place all other pending messages on the network.

4.5 Protocol Im&ementation Details

The cache coherency protocol used in our basic design is defined by the state transition

table for the directory controller (see Table 4.1). However, there are a number of problems

not addressed by that protocol that must be resolved to ensure proper operation. These

problems are due to transit delays between caches and directories and the distributed

nature of the coherency state in the system. One consequence of the delays is that data

values written by a processor are not instantly available to other processors; this ideal

model of parallel execution must therefore be replaced with a policy that defines the

correct operation of the machine for both architect and programmer. Another difficulty is

that the actual cache state may become temporarily inconsistent with the state indicated

by the directory, which can result in incorrect operation if care is not taken. In this section

we describe how each of these issues impacts the coherency protocol. Afterwards, we

will return to th,: basic design and update the state transition table to reflect the additions

to the protocol.

4.5.1 Model of Parallel Execution

In any multiprocessor with cacheable shared data, an effort must be made to provide

the programmer with a reasonable model of parallel execution and cache consistency.

Such a model allows the programmer to know when a value written by one processor is
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guaranteed to be available to other processors accessing the same address. For instance,

some models specify that a processor may issue no further references until its writes have

been seen by all of the other CPUs. Others make guarantees only at synchronization

points. The basic protocol described in Section 4.1 guarantees only that all written

values are eventually accessible by all processors, making it difficult to program many

algorithms. In this section, we describe the protocol support necessary to provide a more

usable model.

Several possible execution models have been proposed [42, 211, such as strong or-

dering, weak ordering, release consistency, etc. Though a full treatment of this topic

is beyond the scope of this thesis, the semantic distinctions between the models cause

hardware differences at the processors, not in the memory system. For all models, the

memory system must (1) ensure that no processor may access a newly-written value (ex-

cept the writer) until all processors may access it, and (2) provide each processor with

the information necessary to determine at any given time whether all of the invaZidute
commands sent due to the previous writes by the processor have completed in the target

caches. This allows the processor to implement a fence operation, which is performed by

the processor at various times, depending on the model of execution. A fence operation

prevents the CPU from issuing new references until its associated invalidations are known

to have completed. After describing the mechanism for informing processors that their

invalidations have completed, we will show how it may be used to implement the fence

operation for several sample models of execution.

In our approach, the caches notify the directory as they complete invalidate commands

they have received; once the directory receives all notifications for a given write, it

informs the processor that performed the write. To do this, we add two new message

types to those we described in Section 4.1.2. To indicate that an invalidate command has

completed, we require caches to reply with an invalidate acknowledge to the directory.

Once all the invalidate acknowledge replies have been received, the directory sends

an invalidates done command to the cache that issued the corresponding exclusive or

reudlexclusive command. This separate invalidates done command is useful because

some models of execution allow the directory to send a reply such as return data before

the invalidations have completed, yielding higher performance. Other incoming requests
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for the data must block at the directory until all invalidate acknowledge replies have been

received; this guarantees that no processor may access the block until all the stale cached

data has been purged.

Although we could send an invalidates done command back to a cache for every

read/exclusive or exclusive command it issues, we can improve performance by recog-

nizing that invalidates done commands are not needed in several common situations. If a

cache issues a read/exclusive command and the block in question is dirty in another cache,

then the reply cannot be sent until the block has been written back anyway. At other

times, the block may not exist in any other caches, requiring no invalidations. For these

situations, we do not want to send invalidates done commands that tie up the network

and the target caches needlessly. However, a cache cannot know a priori whether or not

its command will cause invalidations to occur. To solve this problem we can include

an extra bit in the encoding of every reply to a C+MM command. This bit indicates

one of two situations: waif, in which an invalidates done command will be forthcoming

from the directory, or nowait, in which no invafidares done command will be sent. The

bit is then used at the processor to keep track of whether there are still invalidations

outstanding.
An example of an execution model that can be implemented using these commands is

sequential consistency [3 11. Under this model, a fence operation must occur prior to issu-

ing each memory reference. Since exactly one reference occurs between fence operations,

the processor actions needed for implementing this restriction are very straightforward.

Whenever a cache receives a reply indicating the wait condition, then no more references

from the processor on that node can be issued until an invalidates done command is

received.

Fences can also be used to implement weak ordering [42]. In this case, a fence is

not required before each reference, but rather immediately before and after each access

to a synchronization variable [21]. Before any references can be issued after a fence,

it must be known that no more invalidates done commands are expected from directory

controllers. A simple way to ascertain this condition is to use a hardware counter at each

cache whose value at any time is the number of expected invalidates done commands not

yet received. This counter is incremented each time the cache receives a reply indicating



4.5. PROTOCOL IMPLEMENTATION DETAILS 81(

the wait condition, and decremented each time the cache receives an invalidates done
command. To implement a fence, the processor halts further references until the value

of the counter is zero.

There is an alternative to first collecting invalidate acknowledge replies at the directory

and then sending an invalidates done command to the cache. Instead, we could have

caches forward their invalidate acknowledge replies directly to the cache. In this case, the

directory sends to the cache the number of invalidations sent, and the cache is responsible

for counting the invalidate acknowledge replies. From a performance standpoint, this
scheme has the advantage that the cache will (in most cases) receive earlier notification

that the invalidations have completed than if the acknowledgements are first sent to the

directory. However, this scheme may complicate the hardware considerably. For instance,

to reasonably implement weak ordering, a counter is needed for each block in a cache.

This is because a request may arrive at a cache for a dirty block before all invalidations

associated with its write have completed. If the block is supplied to another cache,

that cache also becomes responsible for keeping track of the outstanding inva.lidations

to maintain proper ordering. 3 Another option is to include only a single counter per

cache; however, in practice this prevents caches from servicing external requests for

dirty blocks until all outstanding invalidate acknowledge replies associated with all of

the cache blocks have been received. By first sending invalidate acknowledge requests

to the directory, we avoid these problems since other requests for the block stall at the

directory until all invalidations have completed in their target caches.

Collecting invalidate acknowledge replies also impacts our strategy for implementing

multiple threads. Recall from Section 4.2 that rather than save state at the directory, we

send the required state along with the MM-K commands and have the caches echo the

state back in their replies. Unfortunately, in order to send the invalidates done command

at the appropriate time, the directory needs to maintain additional state indicating the

number of invalidate acknowledge replies it has received for each block. This count

can be kept only at the directory since the invalidate acknowledge replies  axe collected

there. The count could be maintained by adding bits to each directory entry, or by

keeping a “counter cache,” a memory containing the counter value for each address in a

3Gharachorloo  et al. [21]  explain this problem in much greater detail.
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corresponding tag store. In both cases, the counter value would be incremented when an

invalidate command is sent, and decremented when an invalidate acknowledge reply is

received.

An alternative to using storage dedicated to keeping this count is to simply maintain

the count in some fashion using the directory entries themselves. This is possible since

the entry is in the blocked state while the directory awaits invalidate acknowledge replies.

For most pointer-based directory organizations, a feasible strategy is to represent the count

of outstanding invalidate acknowledge replies by the number of pointers “in use” in the

directory entry. 4 When an invalidate acknowledge reply arrives, the directory marks a

previously “in use” pointer “not in use.” For instance, in a limited pointers directory, a
pointer’s previously set valid bit is cleared. For a dynamic pointer allocation directory,

the first pointer from the block’s list is returned to the free list. When no “in use”

pointers remain in the entry, the directory can send the invalidates alone command. An

example that demonstrates how this technique may be implemented in a dynamic pointer

allocation directory is given in Appendix D.

45.2 Invalidate Before Exclusive Acknowledge

A situation caused by transit delay that we must take care to handle correctly occurs

when a block sits clean in several processors’ caches, and two of the processors need

to write the block at about the same time. Archibald [7] covers this case in detail for a

directory organization with a full valid bit vector per entry; we now tailor his approach

to better match organizations based on pointers, such as limited pointers and dynamic

pointer allocation. Roth caches proceed by issuing an exclusive command to the directory

in charge of the block. It is clear that only one of the writes should proceed without

intervention, that is, the write corresponding to the first exclusive command to reach the

directory. However, the basic design we described in Section 4.1 allows both writes to

proceed immediately. This action is incorrect, because if the two writes are to different

words in the block, the value written to one of the blocks will be lost when the blocks

4Sometimes invalidufe commands are sent to all but one of the caches indicated by the directory entry
(e.g., in response Lo an exclusive command). In these cases, one pointer is immediately marked “not in
use” to properly initialize the count of outstanding invalidare  acknowledge replies for the entry.
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are written back to main memory. To prevent this, we introduce another new type of

reply to the message types described in Section 4.1.2. When a directory receives an

exclusive command, it now returns an exclusive acknowledge reply; a write to a clean

block must not proceed in a cache until its exclusive command has been acknowledged

by the directory.

With these acknowledgements in place, how does the protocol operate when two

processors both need to write a block? The first cache to reach the directory with its

exclusive command receives an exclusive acknowledge reply, and proceeds with its write.

Sending an exclusive acknowledge reply to the second cache is not useful, however,

since the cache will have already received an invalidate command for the block due to

the first exclusive command. The problem is to cheaply (in terms of both time and hard-

ware) discover this condition when the directory processes the second cache’s exclusive
command.

One straightforward approach is to first check the dirty bit at the directory. If the dirty

bit is set, then it must be the case that the block now resides dirty in a cache other than

the one that issued the exclusive command. The directory can get the block back (with a

flush command) and return the data to the requesting cache with a return data reply, as if

the cache had issued a read/exclusive instead of an exclusive command. Unfortunately, if

the cache containing the dirty block writes it back to main memory before the directory

processes the exclusive command, then the dirty bit will not be set. If the dirty bit is not

set, then the simplest option is to process the exclusive command as usual by sending an

exclusive acknowledge reply and the appropriate invalidate commands. If the cache finds

it no longer contains the data when it receives the exclusive acknowledge reply, it then

issues a read/exclusive command. A better alternative is to use the directory information

to determine whether the block has been invalidated from a cache that issued an exclusive
command This requires checking the directory data that indicates which caches contain

the block. In a directory organization based on pointers, each pointer must be checked

against the identity of the cache issuing the exclusive command. In a limited pointers

directory, this would mean either including a separate comparator for each pointer field or

using a single comparator to check the pointers serially. In a dynamic pointer allocation

directory, the pointers must be checked serially.
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The key to performing these comparisons without significant extra hardware or delay

is noticing that the directory must send invalidate commands serially to each cache con-

tained in the pointers anyway. Furthermore, these pointers already have to be compared

against the cache issuing the exclusive command, since an invalidate command must not

be sent to that cache. So by comparing each pointer with the cache identifier as the

directory sends the invalidate commands, the directory can determine whether the cache

that issued this exclusive command still has a valid copy of the block.
This technique spawns two obvious strategies for handling exclusive commands at the

directory if the dirty bit is not set. The first is to send all necessary invalidate commands,

checking the pointers along the way. Once these commands have been sent, the directory

sends either an exclusive bckrwwfedge  or return data reply, depending on the outcome

of the pointer comparisons. While this solution is straightforward, it delays the reply

to the exclusive command, to the detriment of the common case in which an exclusive
acknowledge reply is returned. A better alternative is to have the directory return an

exclusive acknowledge immediately, on the assumption the cache probably still contains

the data block. If after sending invalidate commands the directory determines the cache in

fact no longer contains the block, the directory then sends a return data reply, supplying

the block from main memory. If a cache receives an exclusive acknowledge reply for

a block marked invalid in the cache tags, it simply discards the reply and waits for the

return data reply to arrive.
There is a similar situation that may occur in a no-broadcast limited pointers (Diri NB)

or dynamic pointer allocation directory. In these directories, processing a read/exclusive
command may require a pointer to be freed by sending an invalidate command. However,

the cache that receives the invalidate command may have already sent an exclusive
command for that address to the directory. Once again, the block is invalidated before

the cache receives an exclusive acknowledge reply. This case can be handled as before.

The directory sends an exclusive acknowledge immediately, which will be discarded by

the cache. When the directory finds while sending invalidate commands that the cache

no longer contains the data, the directory sends a return data reply.

An important point to recognize Is that our scheme relies on the invalidate command

arriving at the cache before the exclusive acknowledge reply to that cache’s exclusive
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request. This condition will be true for systems with interconnection networks that always

deliver messages from a given node to another in the same order they were sent, since the

invalidate is always sent before the exclusive acknowledge. The same condition will also

be true for systems that collect invalidation acknowledgment replies at the directory, since

the directory will not process the exclusive command until all invalidate commands have

been completed. The problem is more difficult for systems that both forward invalidation
acknowledgement replies directly to caches and may deliver messages out of order. If

the caches maintain per-block invalidation counters, then the directory can keep the

block locked until receiving notice from the cache that all invalidations have completed.

Otherwise, for each exclusive command the directory must compare all directory pointers

against the identity of the sender before sending a reply.

Notice also that the situation described in this section can be avoided altogether by

eliminating exclusive commands from the protocol. This is done by requiring caches to

issue a read/exclusive command if a clean block must be written. This also removes

the need to compare pointers against the cache identity at the directory, since invalidate
commands are always sent to every cache indicated by the pointers. The primary draw-

back is the increase in network traffic due to the fact that a cache block must always be

returned. We measured the magnitude of this increase for different system configurations

in Section 3.4.

4.53 Writeback Before  Copyback or Flush

Transit delays can also result in the directory trying to retrieve a dirty block from a cache

that has already replaced the block. Say a cache issues a read command (read/exclusive
or read/non-exclusive) on a block that is dirty in another cache. At roughly the same

time the cache containing the dirty block replaces the block and sends the data back to

memory via a writeback command. Assume the read command reaches the directory first.

The directory, which still shows the block dirty in a cache, sends a flush or a copyback
command to that cache. Of course, the cache no longer contains the data.

There are several possible approaches for solving this problem. One option is to adopt

the policy that when a cache initiates a writeback command, it must not invalidate that
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line in its cache until it has received an acknowledgement from the directory. By doing

this, the cache is capable of supplying the data as necessary until the writeback command

has been processed at the directory. Unfortunately, this scheme has several drawbacks.

First, network traffic is increased for the case when a cache initiates a writeback, since an
acknowledgement is required. Second, the cache issuing a writeback cannot proceed with

its replacement operation until it has received the acknowledgement from the directory.

Since these negative effects impact all writebacks, we advise against this scheme.

Archibald suggests a strategy in which the directory considers the writeback command
to be the reply to the copyback orflush command. To prevent deadlock in a system with a

command queue that blocks on commands for addresses with pending replies, this solution

must encode writeback commands as reply messages so that they bypass the blocked

command queue (see Section 4.3.2). However, this strategy makes a multiple-threaded

directory difficult to implement. This is because the writeback reply (tree command)

does not contain the state needed by the directory to respond to the read command.

The directory would therefore need to save that state in the directory entry, requiring

additional directory storage.

We recommend a scheme that is similar to Archibald’s in operation, but easier to

incorporate in a multiple-threaded directory. When a cache receives afIush or copyback
command for a block it has already written back, the cache responds with a new type of

reply known as copyback without data. In addition, all writeback commands are encoded

as replies, allowing the writeback to complete in the directory before the copyback without
data reply arrives. 5 Then, when the copyback without data reply arrives, the original read

request can be satisfied from main memory.

4.5.4  Supporting  Out-of-Order  Message  Delivery

Up to now, we have been assuming in-order message delivery on the interconnection

network. That is, for any two processing nodes i and j, messages sent from i to j

arrive at j in the same order they were sent from ;. While this property is true of many

%e writeback  is guaranteA to arrive before the copyback  without data reply in networks that deliver
messages between two nodes In the ;ame order thy were sent. We will examine this scenario again for
networks with out-of-order delivery in Section 4.5.4.
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networks, it is often not guaranteed by networks with adaptive routing. In this section, we

present the changes and additions to the protocol that are necessary to maintain coherency

across a network with out-of-order message delivery. Since all transactions for a block

are still serialized through the directory, there are only a few additional cases to handle.

In some of these cases, requests for data arrive in advance of the data itself. Although

these requests could be buffered, we will recommend NAK/retry solutions for simplicity,

since messages will frequently arrive in order.

Let us consider the following sequence of transactions. A directory sends a reply

to a cache in response to a readlexcfusive, read/non-exclusive, or exclusive command.

For brevity, let us call this message pair the greedy command and reply. Then, another

request for the block arrives at the directory, causing the directory to send a copyback,
flush, or invalidate command to the first cache. We call this the spoiler command. With

out-of-order message delivery, the spoiler command may arrive at the cache in advance

of the greedy reply. At the very least, we would like the reference that caused the greedy

command to be able to complete before the spoiler command must be carried out, to

ensure the processors continue to make forward progress. This means that the spoiler

command cannot complete in the cache until the greedy reply has been received and

one reference has been satisfied. The easiest course of action for the cache is to NAK

the spoiler command, causing the directory to send it again later. A more complicated

alternative is to buffer the information necessary to execute and reply to the spoiler

command, and not do so until after the greedy reply has been received. This buffering

would probably take the form of either a small buffer cache or additional bits on each

cache tag. If it is found that spoiler commands do not often arrive before greedy replies,

then NAKing all spoiler commands that arrive too early is probably a reasonable approach.

Let us now return to the circumstances we described in Section 4.5.3, in which a

read request causes a directory to send a copyback or flush command to a cache that no

longer has the data due to a writeback that is still in transit. Recall that the cache sends

a copyback without data reply, and that writebacks are encoded as replies so that they

complete before the copyback without data reply arrives. Out-of-order message delivery

adds another wrinkle to this situation: the copyback without data reply may arrive at the

directory prior to the writeback. In this case, the requested data cannot be supplied when
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the copyback without data reply arrives, because the data is still in transit. The copyback
without data reply contains the state necessary to respond to the original read request; we

do not want to add storage or complexity to buffer this state until the writeback arrives.
However, these circumstances will occur infrequently, so a sensible strategy is to NAK

the original read request. Once the writeback has completed, a re-sent read request will

succeed at the directory.

We must also take care in handling the case in which a cache receives an invalidate
command on a block for which it is awaiting an exclusive acknowledge reply (see Sec-

tion 4.5.2). Recall our suggestion for handling exclusive commands at the directory: if

the dirty bit is not set, then an exclusive acknowledge reply is sent immediately. If the

directory later determines the cache no longer contains the block, the directory supplies

the data in a return data reply. With out-of-order message delivery, this return data reply
could arrive prior to the exclusive acknowledge. Since the exclusive acknowledge may

be delayed for an indefinite period of time, it could conceivably falsely acknowledge a

future exclusive command from the cache. A straightforward way to prevent this false

acknowledgement is to not satisfy the processor reference that caused an exchuive re-

quest until the cache receives the exclusive acknowledge reply, even if a return data reply

arrives sooner. Of course, if the block is dirty in another cache, then the directory will

retrieve it and send a return data reply; this reply must be encoded differently to indicate

to the cache that a separate exclusive acknowledge reply will not be sent. We rename

this reply m exclusive acknowledge with data reply.

The final situation we must consider involves keeping track of outstanding invahda-

tions in order to enforce a model of parallel execution (see Section 4.51). In a typical

sequence of eveilts, a cache sends a :ead/eAclmibe  CY exclusive  zomnii~ni”  to the direc

tory, which sends its reply, either a return data or exclusive acknowledge. Later, when

all invalidations have been completed, the directory sends an invalidates done command

to the cache. This command may actually arrive before the reply to the original request.

If the cache is keeping track of outstanding invalidates done commands with a counter,

as in the weak ordering example of Section 4.5.1, then the counter will be decremented

before being incremented, due to the eariy arrival of the invalidates done command. This

is dangerous, since the counter may be decremented to zero even though there are still



4.6. A BETTER NODE DESIGN 89

outstanding acknowledgements for a different block. To correct for this, we must modify

the operation of the counter as follows. The counter should be incremented whenever

the cache sends a read/exclusive or exclusive command. The counter should be decre-

mented whenever the cache receives a return data or exclusive acknowledge reply with

the nowait condition, indicating that no invalidates done command is forthcoming. As

before, the counter should also be decremented when the cache receives an invalidates
done command. With this policy, the increment always occurs before the decrement, even

if the invalidates done command arrives prior to the return data or exclusive acknowledge

reply.
By reducing congestion, networks with adaptive routing may improve the average

latency and throughput over their non-adaptive counterparts. However, this performance

advantage is not cost-free, due to the fact that these networks may deliver messages

between two nodes out of or&r. As we have seen, out-of-order message delivery some-

times causes requests for data to arrive at a cache or main memory before the data

itself has arrived. This leads to either increased hardware cost to buffer these requests

or greater protocol inefficiency due to NAKs and retries. Since messages will usually

arrive in order in spite of adaptive routing, NAK/retry strategies are probably best from

a cost/performance standpoint.

4.6 A Better Node Design

We have spent the lion’s share of this chapter suggesting a number of specific improve-

ments to the basic node design from Section 4.1. The purpose of this section is to step

back and bring those enhancements together to yield a better design for the node. To do

this, we will first briefly summarize the changes we have suggested for multiple threads

and the queueing within a node. We then review the additional types of command and

reply messages we have added to the basic set described in Section 4.1.2. With these

message types in place we can specify the data fields that make up the format of each

message, and examine implementation constraints on the order of those fields in the for-

mat. Finally, we incorporate the protocol modifications we have suggested into the state

transition table we presented in Section 4.1.3.
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The multiple-threaded directory we propose blocks commands for addresses with

outstanding requests from the directory, but commands for other addresses may proceed.

The state required per block to accomplish this is the identity of the node that sent

the pending C+MM request, the address of the block, and a count of any invalidate
commands not yet acknowledged. We avoid storing this state in the directory by sending

the node identifier and address with MM-K commands, to be echoed by the caches in

their replies (see Section 4.2), and by using the pointers themselves in the directory entry

to count invalidations (see Section 45.1).

In order to prevent deadlock, we added two queues to the input of the directory

controller (recall Figure 4.5). One queue accepts C--+MM commands; the directory

simply stops processing commands from the queue if the first item is a command for a

block with outstanding requests. The other queue accepts replies to MM-C commands.

This queue allows replies to bypass blocked commands so the command queue may

eventually become unblocked. Furthermore, since all paths from the local cache to the

directory go through a queue, the probability of store-and-forward deadlock between the

cache and directory controllers is reduced. To then eliminate store-and-forward deadlock,

we prevent new commands from entering the node when either queue becomes nearly

full.

To remedy correctness problems in the protocol of the basic node design, we added

several message types. We introduced several types of replies:

l invalidate acknowledge (invack). This reply is sent by a cache to acknowledge

it has performed a MM-C invalidate command requested by the directory (see

Section 4.5.1).

l exclusive acknowledge (exack). This reply is sent to acknowledge a C-+MM ex-

clusive command. On receipt, the processor may proceed with its write (see Sec-

tion 4.5.2).

l copyback without data (cbnodata). This reply is issued in response to a MM-C

copyback or flush command if the cache no longer contains the requested data due

to replacement (see Section 4.5.3).
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l exclusive acknowledge with data (exackdata). This reply, used only if out-of-

order message delivery must be supported, is issued in response to a C-MM

read/exclusive or exclusive command. The message contains the contents of the

data block; on receipt, the processor may proceed with its write (see Section 4.5.4).

We also introduced one new MM-C command:

l invalidates done (invsdone). This command is sent to a cache to indicate that

all invalidate commands caused by a write in that cache have completed (see

Section 4.5.1).

In addition to the new commands and replies, we have included an extra bit in all

replies to C--+MM commands (see Section 4.5.1). This bit indicates a wait and nowait
situation. If the bit indicates wait, then invalidations were necessary and a invalidates
done command will therefore be forthcoming from the directory.

4.6.1 Message  Format

Having defined all of the message types, we can now determine the data fields that make

up a message and examine the constraints for arranging these fields into a message format.

The fields are as follows:

l Source node. This field indicates the processing node sending the message. The

source node information allows the message to be NAKed if necessary.

l Destination node. This field indicates the processing node to which the message

is to be delivered.

l Address. This field contains the address of the block to which the message applies.

l Request type. This field indicates the type of command or reply that is being

sent. A useful request type encoding would probably use separate bits to indicate

whether the message is intended for the cache or directory, whether the message

is a command or a reply, and for replies to C-MM commands, whether or not

there is a forthcoming invalidates done command (the wait or nowait condition

described in Section 4.5.1).
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l Originating node. This field indicates the processing node where the cache miss

(or write hit to a clean block) occurred that caused the C-+MM command to be

sent. In some cases, this field is used only to hold this information for later use by

the directory (see Section 4.2).

l Data. This field contains the data words accompanying the message. Since some

message types do not transfer data, this field is not always necessary.

For both inter-node and intra-node transmission of messages, these fields will probably

be packed into words that are sized according to the width of the interconnection network

paths and the width of the queues. Choosing a message format simply entails packing the

fields as efficiently as possible into the words so that a message occupies the minimum

possible number of words. However, this packing must be done under certain constraints.

For instance, the design of the interconnection network constrains the position of the

destination node field. For most networks, it will be necessary to include the destination

node in the first word of each message, so the network can route the message appropriately

without having to add additional buffering stages. To facilitate intra-node routing, the

two bits from the request type indicating a command or reply message intended for the

cache or directory should also be included in the first word if possible. These two bits

allow the node to determine whether the message must be NAKed to ensure deadlock

does not occur (see Section 4.4). The source node field should probably fall next in the

message format, since it would be the first field of the return message if the arriving

message must indeed be NAKed.

If the node accepts the arriving message, it is desirable to discard the destination

node and source node Gelds before the message is delivered to the cache controller or
one of the directory controller input queues. This allows the address field, which should

be placed next in the message format, to reside in the first word of the message reaching

the directory. Since C-+MM commands may stall in a queue if the directory already has

an operation pending on the same memory block, placing the address in the first word

allows the directory to determine if the command must stall before removing any words

of the message from the queue
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Another advantage to placing the address in the first word of messages reaching the

directory is that the memory read cycle for the directory state and pointer bits can begin

as soon as possible. A memory cycle can also begin at the same time on main memory

data if the implementation allows the read/write specification to occur later, and if the

cycle can be aborted later if it is found that no memory access is necessary. This may be

possible since DRAMS first require the row address to be latched (with the RAS signal)

before the data read or write cycle occurs; the ease of implementation will partially

depend on the interface with the DRAM controller.

4.6.2  State Machine

We can now take the original state transition table for our basic node design (see Table 4.1)

and incorporate the improvements we suggested in Section 4.5. The resulting state

transition table, which assumes the network delivers messages from one node to another

in the same order they were sent, is shown in Table 4.2. We assume the directory is

multiple-threaded, so the idle and blocked states are maintained for each block. We have

written a simulator with network delays that uses this table to describe the actions of the

directory. Using the address traces described in Chapter 2 as stimulus, no protocol errors

were discovered.

The same conventions we used in Table 4.1 apply here as well; however, there are

several additions. In the dirty/valid (DV) bits input column, we define the conditions zero,
one, and many, which are true if no pointers, one pointer, and more than one pointer,

respectively, are in use in the block’s directory entry. We also add another input column

that indicates whether the count of outstanding invalidations for the block is equal to one.

If the count equals one when an invalidate acknowledge reply is received, then there are

no more outstanding invalidations.

On the output side of the table, the outgoing request type for commands and replies

now includes a w or nw designator that specifies the wait or nowait condition (see

Section 4.5.1). Besides the abbreviations used in Table 4.1, the column indicating the

processor number to which the message should be sent also uses the abbreviation vptr,
which stands for validpointer. This applies only when the block is using a single pointer,
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Table 4.2: Improved state transition table for the datapath controller. An “x” indicates
a “don’t care” condition, and a “*” means the field should remain unchanged from its
previous value. Other abbreviations are described in the text.

and represents the processor number saved in that pointer.

Transition Table Highlights

There are several points of interest in the transition table, including the special cases we

discussed in Section 4.5. To correctly support a model of parallel execution (see Sec-

tion 4.5-l), we return the wait or rwwait condition with each reply to a C--+MM command.

In addition, the directory collects invalidate acknowledge replies (lines 22-24) and sends

an invalidates done command when there are no more outstanding acknowledgements.

Now conside:-  the invalidate before exclusive acknowledge case we examined in Sec-

tion 4.5.2. Line 21 shows the response to an exclusive command for a block that has
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already become dirty in another cache: a flush command is sent to retrieve the dirty

block. If the dirty block has already been written back, then lines 13-20 apply. An

exclusive acknowledge reply is sent immediately, and is later followed by a return data
reply if necessary. Note here that we distinguish between the case in which one pointer

is valid and more than one pointer is valid. This allows us to set the wait or nowait
condition appropriately to match the most common circumstances. If only one pointer is

valid, then there will usually be no invalidations, and the nowait condition is returned.

The opposite is true if more than one pointer is valid.

To correctly handle the writeback before copyback orflmh situation we described in

Section 4.5.3, we encode writeback commands as replies and therefore allow them to

complete even if the state is blocked (see line 2). We also must handle copyback without
data replies, shown in lines 27-28. By the time a copyback  without data reply arrives, the

writeback will have completed, and the data is supplied from main memory in a return
data reply.

Note that the directory’s actions when a reply to a MM-C command arrives depend

on whether or not the outstanding C--+MM command was a read/non-exclusive (see
lines 23-28). This is because the directory must set the dirty/valid bits and the pointers

according to whether the cache requested an exclusive copy of the block. An alternative to

checking the outstanding C+MM command is to set the dirty/valid bits and the pointers

appropriately earlier when the MM-C command is sent. However, this precludes using

the valid bits in the directory entry to count invalidate acknowledge replies as described

in Section 4.5.1, since these acknowledgements arrive after the MM-C command is sent.

The information indicating whether the outstanding C+MM command was a readlnon-
exclusive command can be easily encoded in each MM+C command as an extra bit that

is echoed in each reply.

Out-of-Order Message Delivery

To include support in the datapath controller for a network with out-of-order message

delivery, we must address each of the cases we discussed in Section 4.5.4. First consider

the writeback before copyback or jrurh scenario: recall that with out-of-order message
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Table 4.3: Modifications to the state transition table to support out-of-order message
delivery.

delivery, the copyback without data reply may arrive at the directory before the write-
back. We detect this situation at the directory by checking the dirty bit; if it is set, the

writeback has not arrived and we must NAK the original read request. The corresponding

modifications to the state transition table are shown in Table 4.3.

Now consider the invalidate before exclusive acknowledge situation. Depending on

the circumstances, the directory may reply to an exclusive command with an exclusive
acknowledge reply, a return data reply, or an exclusive acknowledge followed by a return
data reply. As we described in Section 4.5.4, if both replies are sent then the return data
may arrive at the cache first. We must therefore alter the encoding of some return data
replies so that the cache can determine whether or not an exclusive acknowledge reply is

forthcoming. We do this by introducing the exclusive acknowledge with data reply. We

can now think of replies to all read requests as containing permission to write the data

(exclusive acknowledge), the data itself (return data), or both (exclusive acknowledge
with data). This adds no new entries to the state transition table of Table 4.2; we simply

change the return data message encoding to exclusive acknowledge with data in lines 7,

d, 15, 26, and 28.

Finally, we must account for the possibility that a spoiler command may arrive at

a cache before a greedy reply, as discussed in Section 4.5.4. To handle this case, the

only requirement is that the sending node be able to m-send spoiler commands NAKed

by a cache. The node must be able to r-e-send NAKed messages anyway to prevent

store-and-forward deadlock (see Section 4.4), so this requires no additional hardware.
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4.7 Dynamic Pointer Allocation Implementation

The proposed node design we have pursued uses a no-broadcast limited pointers directory.

Interestingly, the implementation considerations that are the focus of this chapter are

fairly orthogonal to the organization of the directory. To demonstrate this, let us examine

the modifications to our design that would be required to implement a dynamic pointer

allocation directory.

Recall the diagram of the directory datapath shown in Figure 4.2. The unit labeled

directory memory accepts an address and allows the corresponding pointers to be read or

written. Although we assumed a limited pointers directory, this structure fits the dynamic

pointer allocation directory as well. The implementation of dynamic pointer allocation

we described in Chapter 2 also accepts an address and allows the corresponding pointers

to be accessed (see Figure 2.15). We can therefore simply use that implementation as

the realization of the unit labeled directory memory in Figure 4.2. Furthermore, the state

transition table we presented in Section 4.6.2 need not be changed for a dynamic pointer

allocation directory.‘j  This is aided by the fact that both the no-broadcast limited pointers

and dynamic pointer allocation directories handle the situation in which no free pointers

remain similarly. For both directories, the state transition table indicates the appropriate

action: the data is returned to the requesting cache, a pointer is replaced by sending

an invalidation, and that pointer is set to identify the new cache. In general, dynamic

pointer allocation makes basic operations (e.g., storing the originating node field into a

pointer associated with the block) slightly more complicated, but the necessary steps are

performed at a lower level. These steps are described using pseudo-code in Appendix D.

4.8 Summary and Conclusion

In this chapter we have examined the principal problems involved in the implementation

of directory-based cache coherency and presented solutions to these problems. To provide

‘%ie semantics of the empty and dirty bits associated with each block would be changed to encode the
four states indicated by the DV bits in Table 4.2: zero, one, many, and dirty. Also, with dynamic pointer
allocation we modified the coherency protocol to include replacement notifications (see Section 2.3.2);
handling this new type of message will require another entry in the table.



98 CHAPTER 4. DIRECTORY AND PROTOCOL IMPLEMENTATION

a framework for demonstrating and discussing these problems, we began by laying out

a basic design for a processing node by describing the interconnect within the node, the

datapath for the directory, the types of messages required to maintain coherency, and the

state machine used by the directory to respond to those messages.
We found that multiple threads can be easily added to the directory by encapsulating

the necessary per-block state into the messages sent by the directory and the subsequent

replies from the caches. We also identified a sufficient condition for preventing deadlock.

To satisfy this condition, our experience is that the protocol must be designed in concert

with the message delivery mechanisms. In particular, the strategy for queueing and

transferring messages within a processing node must be carefully planned.
We then looked at protocol implementation details, refining previously proposed

schemes for handling subtle situations in order to make the schemes more amenable

to a directory based on pointers. We also described the protocol support needed to im-

plement a consistent model of parallel execution, and to tolerate out-of-order message

delivery by the interconnection network. Each of these protocol improvements manifests

itself in our state transition table for the directory controller.

The overall results of our efforts are encouraging. Although devising a protocol that

correctly handles all uncommon as well as common situations is not a simple task, it is

certainly tractable. And just as importantly, the final protocol specification is straightfor-

ward to implement. Only a few message types are needed, resulting in a simple datapath

for the directory that requires only a few registers, drivers, and a comparator in addition

to the directory storage itself. Furthermore, the state machine controlling the flow of data

is fairly small. Our conclusion is that careful protocol design allows cache coherency

to be efficiently im;rlemented at a h;irdwitrrt  cost ,hat is dominated P: the cost of the

directory storage itself and the pointer management mechanism (which can be significant

for some organizations, such as dynamic pointer allocation).



Chapter 5

Conclusion

We have presented and evaluated many of the trade-offs that must be made in the design

of a directory-based cache coherence mechanism for a large-scale, shared memory mul-

tiprocessor. In general, the primary challenge is achieving simplicity without sacrificing

performance or correctness. This chapter summarizes our findings about meeting this goal

in organizing the directory information, choosing a coherency protocol, and implementing

the directory and protocol. We also consider several areas of future research.

5.1 Directory Organization

We began at the highest level of the design by considering the organization of the infor-

mation in the directory. The traditional approach that maintains a full valid bit vector per

directory entry is unsuitable for large-scale machines due to high storage overhead. We

have proposed several alternate organizations. First, limited pointers directories replace

the full valid bit vector with several pointers indicating those caches containing the data.

Analytic modeling demonstrates that this scheme performs well across a wide range of

workloads. However, unlike the full valid bit vector, its performance does not improve as

the read/write ratio becomes very large. In some programs, this performance gap can be

significant, often due to a few memory blocks that are read frequently but rarely written.

To address this drawback, we have proposed a dynamic pointer allocation directory as

an alternative. This directory allocates pointers from a pool to particular memory blocks

99
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as they are needed. This scheme is limited only by the number of pointers on a memory

module; since the pointers may be allocated to any block on the module, the probability

of running short is much smaller than for the limited pointers directory.

Others have also proposed alternative directory organizations that perform better than

the limited pointers strategy for blocks with high read/write ratios. While each of these

schemes has its own set of merits and drawbacks, it is apparent from both our work

and others’ that directories can be built that provide nearly the performance of a full

valid bit vector scheme without its prohibitive storage cost. Among this set of direc-

tory alternatives, the dynamic pointer allocation directory lies at a particularly attractive

cost/performance point. The circumstances under which its performance degrades should

rarely occur, the maximum performance degradation is modest, and its implementation

is straightforward and inexpensive. Dynamic pointer allocation is therefore an appealing

solution to the directory organization problem.

5.2 Coherency Protocol Design Options

Following our examination of directory organization, we evaluated the performance im-

pact of several coherency protocol features. In general, protocol enhancements often

improve performance only marginally. This was true for adding a clean/exclusive state

for reducing the time required to write a clean block, and also for using request forward-

ing to transfer a dirty block directly to another cache that has requested it. Furthermore,

for small cache block sizes, write hits to clean blocks can be simply treated as write

misses without incurring significant extra network traffic. Our conclusion is that protocol

features designed to improve performance must be examined carefully, for they often

complicate the protocol significantly without offering substantial benefit.

5.3 Directory and Protocol Implementation

We finished by demonstrating the issues that must be addressed in building a directory-

based coherency mechanism. To do this, we first presented a basic design for a processing

node, including the necessary hardware elements of the directory datapath. This design,
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which was incorrect, served to illustrate implementation problems that must be solved.

For instance, deadlock may occur due to blocking while awaiting a reply message. To

address this problem, we identified a sufficient condition for avoiding this type of deadlock

in the design of the caches, directories, and network. In addition, we suggested several

methods for preventing deadlock caused by each of two controllers within a processing

node running short of storage to buffer a message from the other.

In addition to deadlock, there are a number of correctness issues that arise when

implementing the coherency protocol. These difficulties are fundamentally caused by

the fact that directory state may be temporarily inconsistent with cache state because

of transit delays between caches and directories. This complexity is compounded if the

interconnection network does not guarantee that messages from one node to another are

delivered in the same order they were sent. We solved each of the resulting correctness

problems by modifying the coherency protocol appropriately. Although the problem

cases are typically subtle and hard to discover, the required protocol alterations are

straightforward and only slightly increase the hardware cost of the directory controller.

Since blocking the directory could degrade performance, it is desirable for the direc-

tory to be multiple-threaded, that is, to allow multiple outstanding requests at the same

time. By encapsulating the state of outstanding requests in the messages themselves,

multiple-threading can be achieved without significantly increasing the directory storage

required to save the state of outstanding requests. Finally, we combined this technique

with the solutions to deadlock and the other correctness problems, and presented the

resulting state transition table for the directory datapath controller. The compact size of

this table illustrates the overall simplicity of the directory mechanism.

By using the techniques described herein, hardware-based cache coherence can be

added to large-scale multiprocessors in an inexpensive yet effective manner. During

the development of our ideas we found that for any given solution to some problem,

we could almost always think of a more complicated solution that might yield slightly

higher performance. Though potentially higher performance is always tempting, even

seemingly low-cost enhancements should be evaluated carefully. Though the incremental

hardware cost may be low, the additional design complexity can be significant. As we

have demonstrated, even very simple protocols are difficult to implement correctly in the
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presence of non-zero message latencies and message buffering in the memory system.

Our experience suggests that many (perhaps even most) design enhancements add at

least one unanticipated sequence of events that results in a subtle error in the initial

specification of the coherency protocol. Since the complexity of a protocol directly
affects the ease of proving or verifying its correctness, the performance improvement of

a given enhancement must be large enough to justify not only the extra hardware cost,

but also the additional design time and grief.

5.4 Future Work

This thesis examines many aspects of the design of cache coherency for large-scale

multiprocessors. However, the design space is large, and we have made several important

assumptions in order to limit the scope of our consideration. A natural extension of this

work would be to see if the performance or cost characteristics of the design may be

improved by relaxing or eliminating some of the assumptions we have made.

We have assumed that cache coherency is maintained by the machine hardware. For

programs written with more restrictive programming models than those assumed by this
thesis, researchers have recently made substantial progress in defining compiler-based

and compiler-aided techniques for maintaining cache coherence 117, 15, 11. Further

refinement may expand the set of programs to which these software algorithms can be

fruitfully applied. If shared data can be partitioned into distinct classes of sharing behavior

(as several papers have proposed 153, lo]) at compile-time, then the communication

required to maintain coherence can be optimized for minimum latency and traffic on

a per-class basis.  Non:Ltheless ~;oftwar+bcx~ed ::ohcrency remii)lr:: Lo dif’.Lzult  problem,

since compilers must often be conservative due to the lack of dynamic flow information.

But even if these schemes cannot replace hardware-based coherency for general-purpose

workloads, they may still be useful to optimize the performance of particular data items

with reference patterns that are readily determined by the compiler. This idea is appealing

since the increase in performance is not accompanied by an increase in hardware cost or

complexity

We have also assumed that the coherency protocol operates by invalidating, rather than
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updating, stale data that is cached. Although a pure update-based protocol would generate

far too much network traffic, hybrid update/invalidate protocols may be feasible. These

are often called adaptive protocols, because they adapt to the current reference behavior

to a block by switching “on-the-fly” between invalidation and update coherence strategies.

While most of the work to date has been targeted at snooping-based schemes [8, 291,

similar techniques can be applied to directory-based coherence as well. For instance,

caches could send updates to the directory for forwarding to the other caches containing

the block. To limit unnecessary traffic, caches not actively using the block could invalidate

the block and notify the directory to no longer send the updates. Each cache could detect

whether it is finding the updates useful by maintaining a bit for each block that indicates

whether its processor has accessed the block since the last update. These protocols that

selectively update cached data have the potential to increase the amount of sharing that

can be well-supported by a system, since the increase in invalidation misses with greater

sharing is curbed. However, the amount of traffic may be substantially increased, for both

high and low levels of sharing. This would tend to offset the performance advantage

unless a more costly, higher bandwidth network is provided. The hybrid strategy will

also add substantial complexity to the protocol design, so the performance improvement

must be sizable if the strategy is to be worthwhile.

It is possible to take adaptive protocols a step further by using different protocols for

different classes of data, depending on the usual access patterns exhibited by references

to each class [53, lo]. While this can be done to a limited extent in hardware (e.g., not

maintaining consistency for instructions, private data, and write-once data), much of this

work is more applicable to software-based coherency approaches.

Another assumption we have made is that the directory maintains coherence across a

number of single-processor nodes. An alternative is to use a two-level (or more generally,

multi-level) coherency protocol that groups processors into clusters at the lowest level.’

A cluster is defined here as a small number of nearby processors. In this scheme, one

strategy (e.g., snooping caches) is used for maintaining coherence within a cluster, while

another (e.g., directories) is used across clusters. One advantage of two-level protocols

‘These levels may also be reflected in the network topology (as in DASH [33],  for instance), but this
is not a requirement.
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is that directory resources may be shared across the processors of a cluster, potentially

reducing hardware cost if the intra-cluster coherence mechanism is relatively inexpensive.

In addition, clustering allows distant memory blocks to be fetched quicker if they are

already cached by another processor in the same cluster. A drawback of two-level pro-

tocols is that they increase the design complexity of the machine, because two protocols

and their interactions must now be managed. Also, reducing the latency of misses to

blocks cached in the cluster may not significantly improve the overall performance of

a parallel program if its algorithm does not map naturally onto the multi-level topology

defined by the protocol.

One of the primary results of this thesis is that the design complexity of simple

directory-based coherency protocols is significant yet still manageable. Before deciding

to enhance the protocol (e.g., by using adaptive or multi-level schemes), it is imperative

to carefully weigh the benefits against the potential to greatly complicate the design.
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Performance Model

In Chapter 1 we presented results from simple performance models in order to demonstrate

the usefulness of caching shared data (see Figures 1.1 and 1.2). The results are also useful

in providing perspective as to the granularity of sharing that we can expect large-scale

machines to support well under the best and worst of application sharing patterns (i.e.,

nearest-neighbor sharing and randomly distributed sharing, respectively). This appendix

describes the assumptions behind the models and presents the equations that make up the

models.

A.1 Machine Assumptions

Although disguised under the more pretentious appellation of “models,” our performance

calculations are actually closer in spirit to “back-of-the-envelope” scribblings,  designed

not to exactly represent a particular system in minute detail, but rather to grossly and

easily yield an idea of the performance we can expect from large-scale machines. Here

we state our simplifying assumptions about the machine so that the results can be properly

interpreted.

The machine we are studying is made up of n processing nodes, each with a single

processor, its associated cache, and l/n-th of the globally-shared main memory. The

nodes are interconnected by a network with a conventional two-dimensional mesh topol-

ogy; the boundary links of the mesh “wrap-around,” thereby forming a torus. Each
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network link allows bidirectional transmission to allow each node to rapidly communi-

cate with any of its neighbors. We do not consider the effects of non-uniform delivery

times in the network due to contention; each message incurs a fixed per-message delay

d,,-+ plus a per-link delay d/ink for each link it must traverse to reach its destination.

We consider simple RISC-style processors capable of issuing up to one instruction per

cycle, and having no more than one data reference outstanding at a time. The CPU/cache

configuration is such that an instruction reference and a data reference can be satisfied in

the same cycle. We also make the simplifying assumption that the CPU is never stalled

due to an invalidation occurring in its cache. The caches exhibit a miss ratio of mpvt for

both instructions and data, not including misses due to data sharing. There are fdata data

references per instruction.

For simplicity, all sharing occurs between pairs of processors.’ Under this assumption,
directory organization is not an issue; we presume the directory maintains full information

about the locations of cached data. The coherency protocol is the base Censier/Feautrier

protocol described in Section 3.1. There are no write buffers, so processors must stall on

a write hit to a clean, shared block. This is not the case for private data, which we assume

is not coherently cached. Weak ordering allows the directory to send acknowledgements

to processors (allowing them to continue) before sending invalidations. Once a memory

request has reached the node where the target memory is located, the memory access

itself incurs delay d,,,,.

The workloads we examine exhibit two extremes of geographic locality. First, to

maximize geographic locality, we look at nearest-neighbor sharing. In this case, we

assume that sharing occurs only between adjacent processors in the network, and further-

more, that the shared data is located on the same processing node as one of the CPUs.

With nearest-neighbor sharing, the processor utilization is independent of the number of

processors since memory latency remains constant as the machine is scaled. The second

workload behavior we examine is random sharing, which exhibits no geographic locality.

In this case, sharing occurs between randomly selected pairs of processors for data located

in main memory at a third randomly selected node. Since memory latency between two

randomly chosen nodes depends on the size of the system, processor utilization decreases

‘This is also the most common case observed in our benchmark applications.



A . 2  UTILLUTION 107

as n is increased.

For the graphs in Chapter 1 (i.e., Figures 1.1 and 1.2), we assume the following

machine parameters: dmsg = 10 cycles, d/ink = 2 cycles, d,,,,,,, = 20 cycles, fdata = 0.33,
and mpvt = 0.02.

A.2 Utilization

Both the models for cached and uncached  shared data present per-processor utilization as

a fraction of uniprocessor utilization. By this metric, a result of 1.0 would indicate that

all CPUs are running as fast as a uniprocessor constructed of a single processing node. In

this section we describe how the uniprocessor utilization is calculated; following sections

derive multiprocessor per-CPU utilization.

Each instruction requires one cycle plus some number of extra cycles due to cache

misses on instructions and data. The processor utilization is therefore
1

u= l+i,+d, (A4

where i, and d, represent these extra cycles. The extra number of cycles due to instruction

misses is

2, = 172pvt dmem (A.2)

since we assume instruction misses are satisfied by each node’s local memory. For a

uniprocessor, the extra number of cycles due to data misses is:

de = fdatampdnem (A.3)
We are now in a position to compute uniprocessor utilization. To compute multiprocessor

utilization, we must revise our expression for d, to account for additional cycles required

to satisfy shared data misses. In the next two sections we derive d, for a systems with

and without caching of shared data.

A.3 Model for Uncached Shared Data

If shared data is not cached, then all shared references must be satisfied by main memory.

Let us call fsh the fraction of data references that are to shared data, and 1 the average
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latency to satisfy such a reference. We can now modify the uniprocessor expression for

d, (A.3) as follows:

de = fdato[(l  - fsh)mpvdmem  + fd] (A-4)
The expression for 1 depends on the degree of geographic locality in the workload.

For nearest-neighbor sharing, half of the references to the block in main memory are

from the CPU on the same node on average, while the other half are from an adjacent

processor. A given reference is therefore satisfied with latency

I= &n,, + ;Mnern + 2&n,, + 2dlink) (A.?

For random sharing, to first order all references are to main memory located on a

different node. On average, &/2 links must be traversed to reach that node.2  Shared

reference latency is therefore

The multiprocessor utilization for uncached shared data is obtained by eliminating 1,

d,, and i, by substitution from the system of equations formed by (A.l), (A.2), (A.4),

and either (AS) or (A.6).

A.4 Model for Cached Shared Data

In the previous section we derived a model for uncached shared data that depends on fsh,
the fraction of data references that are to shared data. This makes sense if shared data is

not cached, because every shared reference impacts performance negatively. However,

if shared data is cached, then fsh is not sufficient to characterize the communication

activity due to sharing, since only a fraction of shared references require main memory

access. We therefore introduce a new parameter minv that specifies the fraction of all

data references that are invalidation misses. This parameter is an attractive measure of

the amount of sharing in a workload, since invalidation misses occur on precisely those

references that require inter-processor communication to take place if the most recently

2This assumes that fi is an even number, which is true for the processor sizes we have evaluated in
our graphs.
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written value of the data is to be returned. Notice that our results now depend on both

minv and fsh. On the graph in Figure 1.2, we have shown m;,,, on the horizontal axis

and drawn each curve twice, once with fsh = 0.2 and once with fsh = 0.8, since fsh will

fall in this range for most programs.3

As before, we need to rewrite equation (A.3), which describes the number of extra

cycles required to service data misses. We assume a migratory pattern of sharing between

each pair of processors sharing a piece of data. In this pattern, each processor reads the

data and then performs some number of references, including at least one write, to the

data before the other sharing processor begins a similar sequence of references. Note

that this results in exactly one invalidation when a processor writes the data the first

time, which is the most common case observed in our benchmark applications. So one

processor experiences a read miss to a block dirty in another CPU’s cache and a write hit

to a clean block. The other processor then undergoes the same experience, and the cycle

is repeated. The significance is twofold: (1) each invalidation miss requires the directory

to retrieve the block from another cache, and (2) following each invalidation miss there

is a write hit to a clean block. This allows us to write an expression for d,:

de = fdata[(  1 - fs/i)~np~tdmem + fshmpvJ  + m;,,(21)  + minuZ] (A.7)

where the latency 1, representing a single round trip from a cache to main memory, is as

given by either (A.5) or (A.6), depending on whether the sharing is nearest-neighbor or

random. In (A.7), the first two terms within the square brackets represent the interference

misses for private and shared data, while the last two terms correspond to invalidation

misses and write hits to clean blocks. As in Section A.3, the multiprocessor utilization

is derived by substitution.

3Across the set of programs, r and f#h will be statistically correlated, since programs with a higher
fraction of shared references will tend to incur invalidation misses more frequently. In Figure 1.2, high
vduix of fsh Muse negative effects if invalidation misses are infrequent;  however, few programs will
exhibit both of these traits.
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Appendix B

Limited Pointers Model

In this appendix we present the details of the limited pointers model used in Chapter 2.
Recall from Section 2.2.1 that there are m processors that may access a block q, and that

a sequence of references proceeds as shown in Figure 2.3. For all 1 < i 5 m we can

calculate the probability that exactly i processors access q during a sequence, thereby

occupying i pointers in the corresponding directory entry. Let us call this probability

f;. Note that this is a different value than the probability that q was accessed i times,

since some processors could have accessed it more than once. In order to calculate f;,

we define some probabilities of interest:’

t; = P(at least i processors read the data q at least once)

72; = P(some processor that has not yet accessed the data q will eventually access q,

given that i processors have already accessed q)

Si = P(some processor that has not yet accessed the data q is eventually selected, given

that i processors have already accessed q)

Pi = P(in a given selection, a processor is selected that has not yet accessed the data q,

given that i processors have already accessed q)

f, = P(a processor accessing the data q for the first time issues a read)

f, = P(a processor accessing the data q, but not for the first time, issues a read)

‘The notation P(A) is used to indicate the probability of event A.

111
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gni = P(a se1 ec et d processor that has not yet accessed the data q accesses q, given that

i processors have already accessed q)

ci = P(a selected processor that has accessed the data q in the past does not terminate

the reference sequence, given that i processors have already accessed q)

SOi = P(a selected processor that has accessed the data q in the past accesses q, given

that i processors have already accessed q)

Note that the subscripts 72 and o in the above events refer to new and old processors.

We now point out the important relationships between these probabilities. First,

remember that we are seeking an expression for ft:

fi = it - ti+l W)

In other words, the probability that exactly i processors read the data q before it is written

is equal to the probability that at feast i processors read q minus the probability that at
feast i + 1 processors read q. This is readily apparent, for once i processors have read q,

then it is either the case that at least 1. + 1 processors will read q or exactly i processors

read q before it is written (i.e., the i + lSt processor writes q).

We can also relate t ,+I to tie At least i + 1 processors access the data q without ending

the sequence if at least i processors have done so, a new processor will eventually access

q, and that access happens to be a read:2

t;+l = t,?Z.ir, P.2)

We make the assumption that a reference sequence begins in a state in which one processor

has already accessed q.3 This reflects the fact that the write ending the previous sequence

of references to Q leaves the data cached in a single processor, that is, one pointer is

already in use when a reference sequence begins. This assumption implies that tl = 1.

*The simple product is valid since the factors are the probabilities of independent events. This is also
true for each of the terms in the upcoming equations (B.3) through (B.5). Also, equations (B.3) through
(B.5) are simple sums-of-products; the sums are valid because the product terms are the probabilities of
mutually exclusive events.

3A previous p pe [ 1a r 44 describing this work did not make this assumption. The results in that paper
assume a reference sequence begins in a state in which no processors have accessed q.
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We can write an expression for ni by observing that a new processor will eventually

access the data q if a new processor is eventually selected and accesses q, or if a new

processor is eventually selected but does not access q but another is later selected and

accesses q, or if . . . , etc. This results in a simple series:

ni = SiQni  + si( 1 - gTLi)sig,i  + Si( 1 - gni)Si(  1 - gni)sign; + . . . 03.3)

In a similar vein, a new processor is eventually selected if a new processor is selected

now, or if an old processor is selected now but does not end the sequence and a new

processor is then selected, or if . . . , etc.:

4 = Pi + C1 - pi)Cipi  + (1 - pi)Ci( 1 - pi)cipi + . . . 03.4)

Finally, an old processor that has been selected does not end the sequence if it either

does not access the data q or if it does access q and that access is a read:

ci = (l - goi) + goiro

Equations (B.3) and (B.4) can be written in a simpler form as follows:

II; = 5 si!Jni[si(  1 - gni)]j
j=O

SiQ7li
=

l - Si( 1 - g7Li)

(B.5)

03.6)

Si = ePi[ci(  1 - pi)]j
j=O

Pi
= 1 -Ci(l  -pi)

03.7)

Since processors are selected at random, the probability of selecting a new processor if

i of them have already accessed the data q is given by

pi = m--2
m w-9

We can now reduce the system of equations given by (B.l), (B.2), (B.5), (B.6), (B.7),

and (B.8) by eliminating the variables ci, pi, si, rzi, and ti, leaving us with the following
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The model may be extended to calculate the number of extra invalidations incurred

by the no-broadcast (Dir; NB) directory. Although we do not show the details here, the

basic idea is to add an input parameter that specifies the number of pointers per entry.

The previous model indicates the frequency with which those pointers are not sufficient

and we must begin invalidating data. For these circumstances, we construct a Markov

chain whose states can be represented by a two-dimensional matrix. One dimension

represents the number of extra invalidations that have occurred up to this point, and

the other represents the number of caches that have received invalidations. It is then a

straightiorward  matter to compute the state transition probabilities and therefore calculate

the average number of extra invalidations per write.
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there were no old processors. Since the processors are selected at random, the probability

the first access to q will be from a secondary processor is

P(first old CPU is a secondary CPU) =
(m - 1)d

b+(m-1)d’ (B.lO)

since the single primary processor accesses q with probability b, and the m - 1 secondary

processors access q with probability d. The expression for the probability that the next

processor making the new-to-old transition is also a secondary processor is similar: each

occurrence of m - 1 is replaced by m - 2, since there is one fewer new secondary

processor to choose from. So we can now write the expression for the probability of
case 2:

P(case 2) = Jj (m - ‘)d
j=l b + (m - j>d ’

(B. l l )

where i is the number of old processors. This gives us the probability of case 1 as well,

because P(case 1) + P(case 2) = 1. We are now in position to write expressions for g,i

and 90;. First consider g,i, the probability with which a selected new processor accesses

the data block q. If case 1 is true, then all new processors are secondary processors,

and the selected one accesses q with probability d. If case 2 is true, then of the m - i

new processors, one is the primary CPU and the other m - i - 1 are secondary CPUs.

Therefore, we can write the expression for gni as follows:

gni = P(case 1)d + P(case 2) m-z-id+m - i
Lb
m - i 1

Furthermore, we can easily derive g,i using a similar analysis, yielding

goi = P(case 1) lb+
i - l

i
- d

i 1 + P(case 2)d

(B.12)

(B.13)

Substituting (B.12) and (B.13) into (B.9) completes the model for the probability distri-

bution of the number of pointers used. Not surprisingly, the resulting expression for fi

depends only on the ratio of the primary and secondary processor access probabilities b

and d, so we replace them with a single parameter a = b/d. The model now takes four

parameters as inputs, each with respect to the single block of data being modeled: the

number of processors m accessing the data, the read probabilities r, and rot and the ratio

of the primary and secondary processor access probabilities a.
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requests per cycle with reasonable latency. ’ To avoid exceeding this rate, the following

constraint must be satisfied:

nrfm < q (C-1)

Now let us introduce a dynamic pointer allocation directory at the memory module.

The resulting miss ratio mdpa is as follows:

mdpa = (1 - f)m + f(m + m&a)

= 777.  + f nbztra K.2)

where meZfril is the extra misses that occur because the directory must invalidate blocks

when ir runs short of pointers. To calculate mestra, we need to describe the directory.

Assume the memory module has p times as many pointers as there are blocks in a

processor cache. For instance, p = 4 for the 4:l ratio of pointers to cache lines we

calculated in Section 2.3.3.

The key to calculating nzertra is recognizing that the pointer/link store behaves as a

cache, in that it contains information about recently accessed blocks. The analogous cache

is fully associative with random replacement, since information pertaining to any address

from the module may reside in any pointer/link pair, and pointer/link pairs are chosen at

random for replacement when the available pointers are exhausted. The value mertra is

simply the miss ratio of this cache.2 We can compute mertra from nz by relating the size

and associativity of the processor cache and the pointer/link store. If the processor cache

size is C: bytes, then the pointer/link store will behave like a fully associative cache of

size PC/n; the overall pointer/link store size pC must be divided by n since it is shared

by n processors. We also assume the processor cache is direct-mapped, given the trend

towards large, direct-mapped caches.

Many studies [46, 52, 2,401 have confirmed Chow’s speculation that cache miss ratio

is related to cache size by the expression m = I;C” [ 161, where Ic and a are constants for

a given cache organization. The miss ratios ml and m2 of any two caches of respective

‘In other words, q is not the maximum available bandwidth of the memory module, but rather takes
into account the fact that the module should not be 100% utilized.

*This is conservative since this assumes all “misses” in the directory would have otherwise hit in the
processor cache, which is not the case.
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Dynamic Pointer Allocation Model

In this appendix we calculate the expected increase in miss rate due to dynamic pointer

allocation, under the assumption that a workload is running that exhausts the available

pointers on a memory module. Obviously, if the module does not run short of pointers,

then no miss rate increase is incurred. We limit our coverage of the model parameter

space to those workloads that would run well with an unlimited number of pointers.

Specifically, we exclude workloads with memory bandwidth demands that exceed the

available bandwidth of the memory module, since these workloads will run poorly in any

case.

Let us first characterize the workload. We consider a single memory module that

contains data accessed by n processors. Each of these processors issues references at

the rate of r references per cycle. We also assume that each accesses data from the

module on a given reference with probability f. It is easy to see that this uniform

distribution of references across the processors is the worst case, since this will cause the

maximum number of pointers to be in use. Finally, let us state that all references miss in

the processor’s cache with probability m, assuming an infinite number of pointers were

available. This parameter corresponds to the miss ratio. Using these parameters, requests

arrive at the memory module at the rate nrfm.

By specifying the bandwidth of the memory module, we can now constrain the param-

eter space to include only those workloads that do not overwhelm the available bandwidth.

Let us say the memory module is capable of satisfying requests at an average rate of q

117
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Figure C. 1: Increase in miss rate with r = 0.167 and q = 0.035.

We noted before that the model we have presented is only valid in those situations

in which the directory has run short of pointers. This is because the model assumes the

pointer/link store behaves as a fully associative cache with random replacement. Due

to the free list mechanism, the directory actually performs much better than random

replacement, since no useful data is ever discarded if there are any free pointers. Even

during a time span when the directory’s pointers are often exhausted, if any data sharing

causes invalidations, some pointers will be at least temporarily available, resulting in a

lower miss rate increase than the model predicts.
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sizes Ct and Cz are therefore related as follows:

ml Cl cl-= -

m2 ( >c2
(C-3)

We can empirically determine a by examining measured miss ratios for different sized

caches. Przybylski’s data (see Figure 4-5 in [40]) shows a to be roughly -0.5, which

corresponds very closely with the rule of thumb reported by Stone [48] that doubling the

cache size reduces the number of misses by 30%. Of course, this assumes the two caches

have the same organization. In our situation, the processor cache is direct-mapped, while

the pointer/link store is fully associative. We can take this into account by observing that

the miss ratio of a fully associative cache is roughly the same as that of a direct mapped

cache that is twice as large (again, see Figure 4-5 in [40]). So m,,l,, is given by:

meztra=n~(~)so.s=m/$ (C-4)

By substituting (C.4) into (C.2) we can generate an expression for the extra misses due

to dynamic pointer allocation. We can now use the maximum miss ratio as given by

(C.l) to solve for the maximum number of percentage points by which dynamic pointer

allocation increases the miss rate:

percentage point increase = 1OOfm ~=lW(-&/$=-$g (C.5)

Let us set r and q in order to demonstrate the miss increase. If a single instruction-

per-cycle processor is 50% utilized and issues a data reference every third instruction,

then r = (0.5)(0.33) = 0.167 references per cycle. If a non-pipelined memory module

requires 20 cycles to satisfy a request up to about 70% utilization, then q = (0.7)(0.05)

= 0.035 requests per cycle. The resulting percentage point increase in the miss rate as

n and p are varied is shown in Figure C.l. If there are a large number of processors

accessing the data, then the increase in misses is low since the base miss rate m must be

very low to avoid exceeding the memory module bandwidth. For smaller values of n,

the increase in the miss rate can be higher, but it is less likely to occur since the directory

is less likely to run short of pointers. For the values of r and q we have chosen, the miss

rate never rises by more than 3.3 percentage points given a 4:l ratio of pointers to cache

blocks, or by more. than 1.7 percentage points given an 8: 1 ratio.
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first unlinks a pointer from the free list, and then inserts the pointer at the head of the

list for the requested block. The pseudocode for this insertion is shown in Figure D.2.

Since the pointer can be unlinked from the free list during the slow head links access,

the actions described by Figure D.l require a time of d, + df + s.

Figure D.3 shows the actions required for a write hit to a clean block. Invalidations

must be sent to all of the caches indicated by the pointers on the block’s list, except for

the cache that issued the request. This will return all but one pointer to the free list.

Rather than serially insert each pointer at the head of the free list, it is more efficient to

write the id. of the requesting cache into the first pointer on the list, and then link the

remainder of the list into the free list in one step after all the invalidations have been

sent. These operations require at least ds + i.s -t 2s time to complete, where i is the

number of pointers on the list. An additional delay s is also incurred if the first pointer
on the list is not the id. of the requesting cache. As the list is traversed, a state bit called

found is set if the cache that sent the request is found on the block’s list; this information

is needed by the controller (see Section 4.5.2). The pseudo-code of Figure D.3 can be

easily modified to handle a write miss to a clean block; the only difference is that all

caches on the list receive invalidations.

Another means of handling a write hit to a clean block is shown in Figure D.4. This

pseudo-code is used if invalidation acknowledgements are counted using the pointers

themselves, as described in Section 4.5.1. Using this strategy, a block’s pointers are not

immediately returned to the free list after the invalidations are sent. Instead, the number

of pointers on the list is used to represent the number of outstanding invalidation acknowl-

edgements. When each of these acknowledgements is received, the directory returns a

pointer to the free list, thereby decrementing the count of outstanding acknowledgements.

This operation is shown in Figure D.5 (which performs one of its steps using the pseudo-

code of Figure D.6). Both Figures D.4 and D.5 show two exit points, labeled done and

done_noinvacks.  The pseudo-code uses these two exit points to indicate whether there

are still outstanding invalidation acknowledgements. The exit point done is used if further

acknowledgements are expected; when they have all been received, donenoinvach  is

used. The time used to send the invalidations is d, + df + is + 3s, where i is the number

of pointers on the list. The time required to handle each invalidation acknowledgement
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Dynamic Pointer Allocation Operation

In this appendix we provide pseudocode that defines the sequence of sub-operations

that must take place on the bus in Figure 2.15 in order to accomplish common directory

operations. We also describe the amount of time required to execute these operations

in terms of the access times of the head link storage and pointer/link store. We assume

the head link storage is implemented with dynamic RAM, with an access time of d, for

random addresses and df for subsequent accesses to the same address. The pointer/link

store is built with static RAM with an access time of s. The times we provide for each

operation do not include controller delays or register-to-register transfer times, because

these are highly dependent on the actual implementation and are probably dominated by

the RAM accesses in any case.

Throughout this appendix we use the following conventions in our pseudo-code. In

all cases, the main memory address register contents are supplied as the head links

address by the multiplexer (see Figure 2.15) unless otherwise specified by the pseudo-

code. Indentation is used in the pseudo-code to indicate the beginning and end of if-then-

else clauses and while loop bodies. Multiple operations are delimited by a semicolon (;)

if they may be executed in parallel. Pseudo-code sequences that are repeated in several

places are sometimes moved into separate figures for clarity.

Figure D.l shows the pseudo-code that is executed at the directory for a read miss to

a clean block, the most common directory request. In this case, a new pointer identifying

the new reader must be added to the block’s list. To accomplish this, the pseudo-code

121
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begin
if (free list empty)

got0 nopointers
addrreg+free
if (end-of-list)

free list empty + 1
else

free - link data
[insert addressed pointer at head of list]

end

# are free pointers available?
# no, go handle it (see Figure D.8)
# address first free pointer/link
# is this the last pointer/link on free list?
# yes, set free list to be empty

# no, remove pointer/link from free list
# set up pointer to new cache (see Figure D.2)

Figure D.l: Pseudo-code for adding a new cache to a data block’s list of pointers.

[insert addressed pointer at head of list]:
begin

ptr data - new cache id.;
if (not empty)

link data +- head link data; end-of-list - 0
else

# set pointer to new cache
# is this block’s list of pointers empty?
# no, link to next pointer in block’s list

link data +- mem block address; end-of-list +- 1
head link data +- addr reg

end

# yes, link back to head of list
# make new pointer/link head of list

Figure D.2: Pseudo-code for inserting the currently addressed pointer at the head of the
current list. In addition, the pointer is set to the cache that issued this request.
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is d, + df + 2s, except for the acknowledgement that arrives last, which requires a time

of d, + s.

Figure D.7 shows the pseudo-code used to process replacement notifications (see

Section 2.3.2). This involves searching the block’s list of pointers for the id. of the

cache that sent the notification, and returning the pointer that matches to the free list.

The search itself requires time d, + is, where the matching cache id. is stored in the i*

pointer on the list. The additional time to return the matching pointer to the free list is

d,+sifi=lor2sifi>l.

The steps required to process a read miss request when no free pointers remain are

shown in Figure D.8. In this case, a pointer must be selected and freed by sending an

invalidation to the cache identified by the pointer (see Section 2.3.2)’ To do this, a

pointer is first selected at random. If the selected pointer is at the end of a list, then it

cannot be removed from its list since lists are singly linked. Instead, the back link is

used to address the head link of the list, and the first pointer on the list is removed. The

entire operation requires time 2d, + 2d, + 3s. If the selected pointer is not at the end of

a list, the list is traversed to find the last pointer, which is then removed. In this case,

the time required is d, + df + (i + 3) s, where i is number of links that must be traversed

from the selected pointer to the pointer at the end of the list. The time d, may actually

be hidden, since the DRAM access can proceed while the list is being traversed.

‘Other policies are possible as well. One option that would seem to make sense is to free multiple
pointers in an attempt to forestall recurrences of this situation.
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begin
found - 0
if (empty)

goto done
addrreg+- head link data
while (true)

if (ptr data # sender id)
send invalidation to cache indicated by ptr data

else
found - 1

if (end-of-list)
goto setup-count

addr reg - link data
setup-count:

ptr data - sender id
if (found)

addr reg - head link data
if (end-of-list)

goto done-no-lnvacks
head link data - link data
[add addressed link to free list]

goto done
donenoinvacks:
done:
end

# haven’t found sender pointer yet
# is this block’s list empty?
# yes, we are done
# address first pointer/link on block’s list

# does pointer match sender?
# no, send invalidation

#I yes, we have found sender on list
# is this last pointer/link on list?
# yes, go set up for counting invack replies
# no, move on to next pointer/link on list

# write sender id into last pointer on list
# did we find sender on block’s list?
# yes, address first pointer/link on list
# is there only one pointer/link on list?
#I yes, must be sender, no invacks will arrive
# no, unlink first pointer/link from list
# reclaim pointer/link (see Figure D.6)
# go wait for first invack to arrive

Figure D.4: Pseudo-code for sending invalidations to all of the caches on a block’s list
of pointers, except for the cache that issued the request. This pseudo-code assumes the
pointer list itself is used to count invalidation acknowledgements.

begin
addr reg - head link data
if (end-of-list)

goto donenoinvack
head link data c link data
[add addressed link to free list]
goto done

donenoinvacks:
done:
end

# address first pointer/link on block’s list
# is there only one pointer/link on list?
# yes, this is last invack
# no, unlink first pointer/link from list
# reclaim pointer/link (see Figure D.6)
# count decremented, wait for next invack

Figure D.5: Pseudo-code for handling an incoming invalidation acknowledgement. This
pseudo-code assumes that the pseudocode shown in Figure D.4 was used to send the
invalidations.
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begin
found + 0
if W-m9

goto done
addr reg + head link data
if (ptr data # sender id)

send invalidation to cache indicated by ptr data
ptr data - sender id

else
found - 1

if (end-of-list)
goto done

templ + link data
link data - mem block addr; end-of-list t 1
addr reg + templ
while (true)

if (ptr data # sender id)
send invalidation to cache indicated by pu data

else
found - 1

if (end-of-list)
golo final

addr reg - link data
final:

if (-free list empty)
link data - free; end-of-list t 0

free - templ; free list empty +- 0
done:
end

# haven’t found sender pointer yet (see text)
# is this block’s list empty?
# yes, we are done
# address first pointer/link on block’s list
# does first pointer match sender?
# no, send invalidation
# set first pointer to sender id

# yes, we have found sender on list
# only one pointer/link on list?
# yes, we are done
# no, save link to first pointer to free
# link back to head of list
# move to second pointer/link on block’s list
# loop until we explicitly branch out of it
# does pointer match sender?
# no, send invalidation

# yes, we have found sender on list
# is this last pointer/link on list?
# yes, go return pointer/links to free list
# no, move on to next pointer/link on list

# is free list empty?
# no, link free list to end of invalidated list
# insert invalidated list at head of free list

Figure D.3: Pseudo-code for sending invalidations to all of the caches on a block’s list
of pointers, except for the cache that issued the request. This pseudo-code assumes the
pointer list itself is not used to count invalidation acknowledgements.
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no-pointers:
b e g i n

addr reg - random value
if (end-of-list)

temp 1 - link data, head links addr - templ
addr reg - head link data
send invalidation to cache indicated by ptr data
head link data +- link data; empty - end-of-list
head links addr - main memory addr reg
[insert addressed pointer at head of list]

else
while (-end-of-list)

templ - addr reg
addr reg - link data

send invalidation to cache indicated by ptr  data
temp2 - link data
[insert addressed pointer at head of list]
addr reg + templ
link data - temp2; end-of-list - 1

end

# select a pointer/link at random
# is this the last pointer/link on list?
# use return pointer to address head links
# address first pointer/link on this list
# get addr for invalidation from link data
# unlink pointer/link from list
# address block requested in miss
# set up pointer to new cache (see Figure D.2)

# traverse list to last pointer/link
# save address of this pointer/link
# address next pointer/link on block’s list
# get addr for invalidation from link data
# save link back to head of list
# set up pointer to new cache (see Figure D.2)
# address last pointer from the random list
# set link back to head of list

Figure D.8: Pseudo-code for adding a new cache to a block’s list of pointers when no
pointers remain on the free list.
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[add addressed link to free list]:
begin

if (free list empty)
end-of-list - 1

else
link data t free; end-of-list + 0

free c addr reg; free list empty t 0
end

# is free list empty?
# yes, pointer/link will be end of free list

# no, pointer linked to rest of free list
# insert pointer/link at head of free list

Figure D.6: Pseudo-code for inserting the currently addressed pointer at the head of the
free list.

begin
if (empty)

goto done
addr reg c head link data
if (ptr data = sender id)

head link data t link data; empty
[add addressed link to free list]
goto done

templ t addr reg
addr reg + link data
while (true)

if (pn data = sender id)
temp2 +- link data, end-of-list
[add addressed link to free list]
addr reg + templ
link data, end-of-list +- temp2
goto done

templ - addr reg
addr reg +- link data

done:
end

end-of-list

# is this block’s list empty?
# yes, pointer not found, we are done
# address first pointer/link on block’s list
# does first pointer on list match?
# yes, unlink first pointer/link from list
# reclaim pointer/link (see Figure D.6)
# pointer/link reclaimed, we are done
# save address of this pointer/link
# address next pointer/link on block’s list
# loop until we explicitly branch out of it
# does this pointer on list match?
# yes, going to xfer link to previous pointer
# reclaim pointer/link (see Figure D.6)
# address previous pointer/link on list
# get link & end-of-list from reclaimed ptr.
# pointer/link reclaimed, we are done
# no match, save address of this pointer/link
# address next pointer/link on block’s list

Figure D.7: Pseudo-code for searching a block’s list of pointers for a particular pointer
and returning that pointer to the free list.
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than main memory blocks, multiple blocks must map into each entry. This mapping

is done in the same way that cache addressing is accomplished: a subset of the bits

that address main memory are used to address the directory. We call this subset the

directory index bits of the address. Main memory blocks with identical directory index

bits combine their directory information into a single entry. The combined information in

the entry represents the union or logical-OR of the information that would be carried if

the blocks had their own entries. For instance, in a pointer-based directory, the pointers

would identify those caches containing at least one of the blocks. An exception is the

dirty bit; in entry combining we continue to maintain a dirty bit for every block of main

memory. In Section E.3 we will see that combining the dirty bit would substantially

increase the performance penalty of entry combining.

Since we would like to minimize the frequency with which directory entries represent

more than one cached block at a time, the directory index bits should be lower-order bits

from the memory address. This prevents blocks that are nearby in the address space (and

therefore likely to be cached simultaneously due to spatial locality) from mapping into

the same entry.

There are several obvious ways entry combining may be used in conjunction with

the width-reducing directory organization described in Chapter 2. In a limited pointers

directory of a given size, the designer can double the number of pointers per entry for each

halving of the length using entry combining. In a dynamic pointer allocation directory,

entry combining can be used to reduce the length of the head links storage. Alternatively,

the head links storage could be completely removed by directly indexing the pointer/link

store using the directory index bits. In this case it would probably be best to make the

pointer/link store large enough that those pointers addressable by the directory in&x bits

could be reserved for head links. In this way, a pointer never needs to be freed to begin

a list.

E.2 Directory Protocol

We now describe the coherency protocol used by the entry combining directory to main-

tain coherency. Assuming direct-mapped processor caches, the actions taken by the



Appendix E

Directory Entry Combining

In Chapter 2 we proposed limited pointers and dynamic pointer allocation directories.

Both of these schemes reduce the directory width, or number of bits in each directory

entry. We believe that these techniques should be sufficient to meet the performance goals

of the directory under reasonable cost constraints. However, for a given implementation,

a designer may feel that a width-reducing scheme does not go far enough in reducing

the cost of the directory required for a given level of performance. For this situation, the

width-reducing strategy may be used in concert with a technique for reducing the length

of the directory, or the number of directory entries.

In this appendix we propose directory entry combining, a general method for reducing

the directory length. Entry combining combines the data pertaining to multiple memory

blocks (and therefore normally residing in multiple directory entries) in a single entry.

The idea is to take advantage of the fact that most main memory blocks at a given time

are in fact not cached in the system at all. Most entries, while potentially responsible for

multiple blocks, therefore usually contain data for no more than a single block, thereby

losing no efficiency.

E.1 Directory Organization

Entry combining does not dictate the organization of each directory entry; instead, it

simply reduces the number of those entries in the directory. With fewer directory entries
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the requesting cache, and the data is written back to memory and sent to the requesting

cache.

Write buck. When dirty data is written back, the directory clears the block’s dirty bit and

the pointer indicating the cache that had the data.

Of course, this description of the protocol is meant to be informal. Keep in mind

that there are other cases that must be handled, such as when a block is invalidated

from a cache before the cache’s write hit request reaches the directory. These situations

are orthogonal to the introduction of entry combining into a directory, and are therefore

handled in the same way as for a directory without entry combining. For more details,

see Chapter 4.

As in the dynamic pointer allocation scheme, accumulating pointers to caches that

no longer contain the data degrades the performance of entry combining directories (see

Section 2.3.2). These stule pointers, which are caused by clean replacements in caches,

cause the directory to send a cache messages pertaining to a block the cache no longer

contains. One option is to send explicit replacement notifications, as we did in the

dynamic pointer allocation directory. The other option takes advantage of the fact that

caches must check their tags and respond to each message received from a directory. In

the response, the caches can easily indicate in their responses whether they contain a

valid datum corresponding to the directory entry containing a pointer to them. When the

directory receives a given reply, the pointer can be cleared if the cache indicated that it

no longer has valid data corresponding to that directory entry.

The protocol described above may be easily modified to work with set-associative

processor caches. The fundamental difference is that a cache can invalidate (or write back)

a block that maps to a given directory entry, and still contain a block that maps to the Sante

entry. When this occurs, the directory must not clear the pointer indicating the cache,

even though an invalidation has occurred. To modify the protocol, all acknowledgements

sent by a cache on writes must indicate whether the cache still contains a block that

maps to the directory entry corresponding to the request sent to the cache. This is also

true for write back messages as well. When an acknowledgement or write back message
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indicates the cache no longer contains such a block, then the directory frees the pointer

identifying that cache.

Entry combining may also has an impact on the width-reducing scheme with which

it is used. If pointer resources are exhausted, some width-reducing directories (e.g.,

no-broadcast limited pointers and dynamic pointer allocation) select a pointer and free

it by sending an invalidation to the cache indicated by that pointer. However, using

entry combining, there is no way the directory can determine the address (or addresses)

corresponding to the selected pointer. In this case, the directory must send a special

type of invalidation that includes only the directory index bits instead of a full address.

On receiving such an invalidation, a cache must invalidate its block2  that maps into that

directory entry.

E.3 Performance

Since directory entry combining incurs no performance penalty in entries for which

no more than one block is cached at a time, we expect configurations in which most

entries satisfy this condition to closely approach the performance of the same organization

without entry combining. For instance, an entry-combined limited pointers directory that

has, say, one quarter as many entries as there are memory blocks should perform close

to a standard limited pointers directory with the same number of pointers per entry. This

is because a directory that large makes it unlikely that many entries will be shared by

more than one cached block simultaneously. However, if the directory length is reduced

further and is closer to the number of cache sets, then more entries will maintain pointers

for multiple blocks simultaneously.

Even when an entry is required to store pointers pertaining to multiple blocks, there

is no increase in the number of cache misses due to entry combining since no extra

invalidations are performed. However, there is a traffic penalty from two sources. First,

misses on blocks dirty in another cache require the directory to send requests to return the

block to all cache identified by the pointers. Only one of these requests will be successful;

the others waste network and cache bandwidth. Second, writes to clean blocks require

*Or blocks. in the case of a set-associative cache.
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invalidations to be sent to all caches3  identified by the pointers. Those invalidations

directed at caches without the block also waste network and cache bandwidth.

Using trace-driven simulation to determine the performance of directory length-

reducing measures such an entry combining is problematic. This is because the directory

performance depends on the relative sizes of the application working set, the processor

caches, and the directory. Address traces typically do not have enough references to

properly exercise the large cache sizes of today. One approach is to scale down the

simulated cache and directory sizes to match the smaller number of addresses touched
by R trace: this methodology is suspect for determining the absolute performance of

a &ge-sc:i!e  machine since it is largely unknown how application behavior scales up.

However, d scaled-down simulated directory does create plausible interference behavior

within a given directory entry; we can use this behavior to asses the relative performance

of different length-reducing directory schemes that map multiple addresses into the same

direx tory entry.

Using the multiprocess address traces described in Section 2.2.2, we ran simulations to

measure the increase in network traffic and memory latency incurred by entry combining

and another length-reducing measure, directory caches 1.7, 261. As in entry combining,

multiple blocks map into the same entry in a directory cache. Unlike entry combining,

directory cache entries may not be shared by several addresses simultaneously. Instead,

the address of the block currently represented by a given entry is stored in a tag associated

with that entry. If a request arrives at the directory and the corresponding entry is being

used by another block, the entry must be cleared by invalidating that block from all

caches indicated by the entry.

The simulator maintains cache and directory state, and modifies that state as each

reference in the trace is processed. In other words, no effects due to network delay or

cache/directory latencies are included in the study. The simulated caches contain both

private and shared data, but no instructions. There are 16 directories and 16 caches.

Each directory is sized to have the same number of entries as there are blocks in the

cache. Each entry uses the full valid bit vector organization of Censier and Feautrier (see

Section 1.1). The caches are direct-mapped, as are the directories in the case of directory

30r all but one cache in the case of a cache hit.
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caches. Shared data is allocated randomly to a given directory, while data private to

process i is allocated to directory i. Nonetheless, all messages between directories and

caches are counted equally without regard to whether the message destination is local

or remote. To measure network traffic, we simply count the number of messages sent

between caches and directories. To measure memory latency, we count the number of

messages that must serially complete before a cache request is satisfied by memory. For

instance, a read miss to a block dirty in another cache incurs a latency of four messages

(i.e., two round trips in the network). We assume a weakly ordered model of execution;

therefore, invalidation messages on write hits to clean blocks do not contribute to the

latency.

The results of the simulations are shown in Figures E.l and E.2. The vertical axes

show the percentage increases in the number of messages, relative to the traditional

directory organization of Censier and Feautrier. The horizontal axes indicate the size of

the data space touched by the trace, as expressed by the number of blocks that map into

a single directory entry. 4 So moving to the right on the horizontal axes decreases the

size of the caches and directories, thereby increasing the interference between different

memory blocks in a given directory entry. The four graphs in each figure indicate the

results for different applications.

Figures E.l shows the percentage increase in traffic due to the two directory strategies.

Figure E.2 shows the percentage increase in latency for the directory cache; since there

is zero increase in latency for entry combining, it is not shown on the graph. In general,

we see that the basic entry combining directory, indicated by the solid lines, is quite

competitive with the directory cache. Entry combining generates substantially less traffic

and latency for P-Thor and LocusRoute,  and slightly less for Maxflow. The directory

cache generates less traffic than entry combining for MP3D. Even in this case, however,

the percentage increase in traffic for entry combining appears to be leveling off at a

modest 15%.

Though a study using more benchmarks would be beneficial, it appears from our data

that entry combining is more robust from a performance standpoint than a direct-mapped

4Actually, the trace does not necessarily reference all of the blocks in the data space, since the granularity
of data space allocation is 1024 bytes in these simulations.
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directory cache. Of course, the directory cache could be made set-associative; this will

improve performance, but is more costly. One would hope that the directory is long

enough that interference between addresses in a directory entry is minimal; in this case,

both the entry combining and directory cache schemes will work very well, and the choice

between them may be based on implementation concerns. In terms of implementation,

the disadvantage of entry combining is slightly more complex controllers at the caches

and directories. However, it does have the advantage that no extra storage structures are

necessary, as opposed to the directory cache, which requires tags on each directory entry.

We also investigated the performance of a more aggressive entry combining scheme

which also combines the dirty bits of the blocks that map into an entry, rather than

maintaining dirty bits for every block of main memory. In a given entry, the combined

dirty bit is set if at least one of the blocks mapping to the entry is dirty. Unfortunately,
when a block is requested, the dirty bit may be set even if the block is clean. In this case

the directory is forced to attempt to retrieve the block needlessly, resulting in additional

latency and traffic. We found that this scheme more than doubled the percentage increase

in traffic for three out of the four benchmarks, and incurred an increase in latency similar

to the directory cache. In general, the basic entry combining directory that maintains

a dirty bit per block of main memory performs substantially better. Since the memory

overhead for this single bit is only 0.8% for 16-byte blocks, we do not recommend

combining the dirty bits of multiple blocks.

E.4 Conclusion

Directory entry combining is a general directory length-reducing technique that combines

directory information for multiple cached blocks into a single entry when necessary. Since

it is compatible with most width-reducing measures, entry combining gives the designer

wide latitude in choosing a combination of strategies that meet his or her directory

performance and storage goals. For the cost of more complicated state machines at the

directory and caches (but no additional storage structures), full-length directories can be

shortened to any length from a small factor shorter than full length down to lengths on

the order of the number of blocks in a cache.
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In most cases, only a single address mapping to a given entry is cached at a time,

resulting in directory behavior identical to a full-length directory. In the event an entry

becomes shared by multiple addresses, we have shown that in some cases entry combining

performs substantially better than direct-mapped directory caches, another length-reducing

strategy. Unlike directory caches, entry combining does not increase the number of cache

misses, and often results in lower network traffic. Overall, directory entry combining is a

relatively inexpensive technique that helps reduce storage requirements while maintaining

high performance in those situations where a width-reducing directory alone is deemed

insufficient.
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Trace Event Frequencies and Costs

In Chapter 3 we evaluated coherency protocol design options by measuring event fre-

quencies from multiprocess address traces and assigning costs to each type of event. In

this appendix we show the event frequencies that we measured in each trace, as well as

the corresponding costs for protocols with and without the clean/exclusive state.

Table F. 1 gives the event frequencies measured using infinite-sized caches and a block
size of 16 bytes. For the rows in the table specific to protocols with a clean/exclusive

state, a non-aggressive protocol is assumed (see Section 3.3.2). If an aggressive protocol

is used, the table is identical except that all rm-drycx events become rm-drty-rwtcx

events and all wm-drty-cx events become wm-drty-rwtcx events.

Table F.2 shows the costs for each event, that is, the number of network messages

required to handle a reference of each type. Even though the simulator differentiates

between some events based on whether the directory shows the block clean/exclusive,

we can use the same event frequencies to evaluate the base Censier/Feautrier  protocol

(which does not include the clean/exclusive state). Table F.2 demonstrates how this is

done: for the Censier/Feautrier scheme, equal cost is assigned to any two events that

are distinguished only by whether the directory shows the block clean/exclusive. For

example, the rm-cfn-cx and rm-cfn-rwtcx events both cost two network messages. This

makes sense, because the Censier/Feautrier protocol has no notion of a clean/exclusive

state in its directory; therefore, the resulting cost of the event cannot depend on whether

the simulated directory shows the block clean/exclusive.
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T
Event Type

read
r&hit
&miss

rm-cln-cx
rm-drty-cx
rm-cln-notcx
rm-drty-notcx

l-m-first-ref
write

wrt-hir
wh-drty
wh-cln

wh-cln-cx
wh-cln-notcx

wrt-miss
wm-cln-cx
wm-drty-cx
wm-cln-notcx
wm-drty-notcx

wm-first-rcf
wrt-cln-Oinv ~
wn-cln-  linv
wrt-cln-2inv
wrt-cln-3inv
wrt-cln4inv .-

P-Thor
78.31
76.16

1.15
0.22
0.11
0.54
0.27
1.00

21.69
21.19
20.54

0.65
0.34
0.31
0.28
0.01
0.01
0.04
0.22
0.22
0.34
0.25
0.07
0.01
0.00

LocusRoute
75.50
74.69

0.46
0.12
0.01
0.26
0.07
0.35

24.50
24.39
24.17

0.22
0.13
0.08
0.01
0.00
0.00
0.00
0.01
0.11
0.13
0.05
0.01
0.01
0.01 .-

Maxflow
76.99
70.45

6.51
0.02
0.01
3.29
3.19
0.03

23.01
22.83
19.71
3.12
0.01
3.11
0.18
0.00
0.00
0.09
0.08
0.00
0.01 -
1.82
0.59
0.34
0.20

h4P3D
84.35
70.01
13.19
0.95
0.16
3.05
9.03
1.15

15.65
15.64
5.74
9.90
0.19
9.71
0.00
0.00
0.00
0.00
0.00
0.01
0.19
8.43
0.59
0.68
0.02

LEGEND
rd
WR

ml
wh
wm
Ch

dw

read
write
read miss
write hit
write miss
clean
dirty

cx marked clean/exclusive at the directory
notcx not marked clean/exclusive at the directory
first-ref first reference by any processor
iinv invalidations sent to i caches; 6inv through 15inv not shown

Table El: Event frequencies for infinite-sized caches. The numbers are shown as a
percentage of all data references. The fractions in each sub-category add up.
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protocol: CensierlFeautrier Cleanlexclusive  state added
sequential weak sequential weak weak ordering

Event Type consistency ordering consistency ordering (aggressive)
read

rd-hit
r-d-miss

nn-cln-cx 2 2 4 4 Ir2 T=4
rm-drty-cx 4 4 4 4 4
r-m-cln-notcx 2 2 2 2 2
r-m-drty-notcx 4 4 4 4 4

rm-first-ref
write

wrt-hit
wh-drty
wh-cln 2 2

wh-cln-cx 0 0 L=O T=2
wh-cln-notcx 2 2 2

wrt-miss
wm-cln-cx 2 2 4 4 4
wm-drty-cx 4 4 4 4 4
wm-cln-notcx 2 2 2 2 2
wm-drty-notcx 4 4 4 4 4

wm-first-ref
wrt-cln-Oinv
wrt-cln- 1 inv L=2 T=2 L=O T=3 L=2 T=2 L=O T=3 L=O T=3
wrt-cln-2inv L=2 T=4 L=O T=5 G-2 T=4 IsO T=5 L=O T=5
wrt-cln-3inv L=2 T=6 L=O T=7 L=2 T=6 d-0 T=7 L=O T=7
wrt-cln-4inv L=2 T=8 La=0 T=9 L=2 T=8 L=O T=9 La=0 T=9

write back (replacement) L=O T=l G-0 T=l L=O T=l L=O T=l L=O T=l

LEGEND (see also Table F.1)
(blank, i.e., no value) latency = traffic = 0 network messages
i (a single value) latency = traffic = i network messages
L=i latency = i network messages (used only if latency # traffic)
T=i traffic = i network messages (used only if latency # traffic)

Table F.2: Event costs. The numbers indicate the latency and traffic for each event of a
given type, expressed as the number of network messages.
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