
BRANCH PREDICTION USING LARGE
SELF HISTORY

John D. Johnson

Technical Report No. CSL-TR-92-553

December 1992

The work described herein was supported in part by equipment donation
from Hewlett-Packard Company and by facilities supplied under NASA grant
NAGW 419

BRANCH PREDICTION USING LARGE SELF HISTORY

bY
John D. Johnson

Technical Report No. CSL-TR-92-553

December 1992

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

St anford University

Stanford, California 94305-4055

Abstract

Branch prediction is the main method of providing speculative opportunities for new high perfor-
mance processors, therefore the accuracy of branch prediction is becoming very important. Mo-
tivated by this desire to achieve high levels of branch prediction, this study examines methods of
using up to 24 bits branch direction history to determine the probable outcome of the next execu-
tion of a conditional branch. Using profiling to train a prediction logic function achieves an average
branch prediction accuracy of up to 96.9% for the six benchmarks used in this study.

Key Words and Phrases: Branch prediction, Trained branch prediction, Adaptive branch
prediction

Copyright @ 1992

bY
John D. Johnson

Contents

1 Introduction

2 Methodology, Tools and Benchmarks

3 Accuracy of the Prediction Functions

3.1 Optimal Static Branch Prediction .

3.2 Population Count Prediction Logic .

3.3 Simple Static Loop Prediction Logic .

3.4 Majority Trained Prediction Logic .

3.5 Self Trained Prediction Logic .

3.6 A d a,ptive Prediction .

4 Conclusions

1

2 -

5

5

6

9

13

16

19

24

. . .
111

1 Introduction

High performance processors are increasing the amount of speculative work they perform in order
to improve instruction-level parallelism they discover. Branch prediction is the main method of
providing speculative opportunities for a processor, therefore the accuracy of branch prediction is
becoming very important. This study investigates using moderately large self history of conditional
branches to predict the next outcomes of branches.

Previous investigations into branch prediction have been divided into two major categories: static
and dynamic branch prediction [Smisl]. Static branch prediction is performed at compile time
and uses static code analysis to either insert branch prediction hints into the emitted opcodes, or
to reorganize the emit ted code so the branch prediction implemented by the targeted machine’s
hardware is more effective. Dynamic branch prediction uses run time information when predicting
conditional branch outcomes. This information may be the previous history of a branch itself or it
may also include the outcomes of other branches near the branch to be predicted [SR92].

.

A category of branch prediction that falls between static and dynamic is branch profiling. This
method uses branch history information gathered during one run of a program to improve the
branch prediction accuracy during following runs. Improving the accuracy may be done statically
by creating a compiler that uses the collected profile information to modify its static prediction for
individual branches. As discussed in section 3, profile results may also be used to modify how the
machine’s hardware utilizes dynamic run-time history for branch prediction.

Most previous work in branch prediction used only a limited amount of a branch’s history to predict
its next outcome. A common approach is to predict a given branch will take the same directions
as it took last time, through the use of a “Branch Target Buffer” [Los82]. While a Branch Target
Buffer has advantages for pipelined implementations in that it can provide the predicted target
address very early in the instruction fetch sequence, it always predicts a branch will be to the same
address as its previous execution. This is equivalent to only 1 bit of branch direction history.

Lee and Smith [LS84] use profiling to build a distribution table of only five consecutive execution
of conditional branches. They also report that through the use of nonuniform history retention,
two bits for storing the state of a state machine branch predictor performs about as well as a five
bit taken/not taken history sequence. Yell and Patt report a few results for histories of 6 to 12
bits [YP91] and 6 to 18 bits [YP92] for the case of their “Two-Level Adaptive Branch Prediction”.

To achieve high prediction rates for the looping behavior found in some programs requires a mod-
erately large amount of self history. Assume a conditional branch is used to implement a loop that
repeats for 9 times then exits on the tenth time. Any scheme that does not keep track of at least
ten consecutive executions is limited to a 90% prediction rate.

Motivated by the desire to achieve a high level of branch prediction, this study examines possible
methods of using up to 24 bits of branch direction history for determining the probable next outcome
of a conditional branch. Figure 1 diagrams the basic structure studied. For each conditional branch
in the compiled code, a shift register of n bits is allocated. Executing a branch causes a taken/not
taken bit to be shifted into the shift registers associated with the branch. Each shift register thus
contains a direction history for the last n executions of the associated conditional branch.

Prediction

Logic

3 Prediction

CPU

Taken/Not Taken

History Shift Register

(one shift register per branch)

Figure 1: History Shift Register Block Dia,gram

The parallel output of the each shift register is transmitted to a logic block for predicting branch
direction. The function implemented by this prediction logic is the main variant considered by this
study. The simplest function studied is a population count over the input bits from the history
shift register. This function predicts a branch is taken if the majority of the previous executions of
this branch were taken. The next step in complexity for this function is to augment the population
count with the patterns generated by fixed size loops. For example, for 14 bits of history, the 3 trip
count loop pattern 00100100100100 would predict 1, even though there are fewer ones than zeros
in this history.

Next, the idea of training is introduced. By profiling the execution of programs, it is possible to
construct the function that best predicts branch outcome based upon the training samples. Training
may be unbiased, that is, trained without using the application for which branch prediction is being
performed. The training may instead be biased, that is, previous runs of the application itself are
used during the training. The training can also be adaptive, as studied by Yeh and Patt. Adaptive
training uses the current run to modify the prediction logic function while the application is running.

The reminder of this report is organized as follows. Section 2 presents the methodology, tools
and benchmarks used during this analysis. Section 3 presents and discusses the branch prediction
accuracy for the various prediction functions. Finally, section 4 offers concluding remarks and
future directions.

2 Methodology, Tools and Benchmarks

Trace driven simulation produces the results of this study. Figure 2 presents the overall methodol-
ogy. A benchmark is first compiled and optimized using the standard DEC Ultrix 4.2 C compiler
to emit Ucode intermediate language [Nye82]. This Ucode is then delivered to an instrumentation
program that inserts additional Ucode at basic block boundaries. The instrumented benchmark’s

2

Ucode is assembled, linked and executed. Executing the benchmark emits a basic block trace while
the benchmark runs, which is written to a file. Although not shown by figure 2, the instrumentation
program also generates static code information, such as the type of branch at the end of each basic
block, for use by the branch prediction simulator.

Benchmark

Ultrix Compiler

Instrument and
Execute

Trace file

I

Simulate

(Table file

Figure 2: Tools Block Diagram

Once a trace file exists it can be used by the branch prediction simulator. One function performed
by this simulator is producing the table files used for training the prediction logic. In this mode,
the simulator reads a trace file and uses the history shift registers to index into a table of counters.
During this process 24 separate tables are maintained in parallel, one for each history shift register
length that
executed, t l-
is taken, or
a table file.

will be used during prediction accuracy simulations. Every time a conditional branch is
Le counter selected by each length of history shift register is incremented if the branch
decremented if it is not. After the the trace is consumed these tables are written out to
Later, one or more of these tables files can be used as training input to the simulator.

Simulations using more than 24 bits of branch history were not performed because the real memory
requirements exceed the memory available on the workstation executing the simulations. For the
case of 24 bits of history, roughly one million counters are incremented and decremented during
the training run. A hash table is used to store and identify the counters, and each entry required
8 bytes if the count stayed between -127 and 127, or 12 bytes if it exceeded this range. All lengths
of direction history are simulated in parallel, so the memory requirements become large, and the
simulation becomes very slow when limited to the 64 Mbytes of real memory available on the
workstation.

Results presented in this report are generated by the branch prediction simulator. For the cases
when the prediction logic is untrained the simulator is instructed to generate the prediction logic
function, read a trace file and produce a report. For the cases when the prediction is trained, the
simulator reads one or more training tables before starting simulation. Which tables are read by
the simulator determines whether the training is biased or unbiased. No table files are used for
adaptive branch prediction simulations, however the adaptive logic sta(te is initialized to predict
the same as the simple loop logic case.

Static Static Dynamic Dynamic
Benchmark Instructions Branches Instructions Branches
compress 1690 9.94% 13252875 15.95%
espresso 24183 7.83% 153611785 14.92%
fft 364 4.40% 6692459 5.24%
gccl 135069 10.90% 42774378 14.72%
spice3 117339 9.03% 15403004J 17.48%
t e x 40253 7.40% 75865081 11.12%

Table 2: Benchmark Instruction Counts Branch Percentages

Benchmark
compress

espresso

Description
Reduces the size of a file using adaptive Lempel-Ziv coding
- compressing a 150KB tar file.

Boolean expression minimizer - reducing a 14-bit input, 8-bit
output PLA matrix.

fft

gccl

Fast Fourier transform - 1024x1024 2-D fft

Gnu C compiler version 1.36 - compiling (and optimizing) to
assembly code a 1500 line C program.

spice3 Circuit simulator - simulation of a Schottky TTL edge-
triggered register.

t e x Document preparation system - formatting of a 14 page tech-
nical report.

Table 1: Description of the Benchmarks

Six benchmarks were selected for this study and Table 1 provides a brief description of each one.
The benchmarks were selected to mimic an execution profile similar to a typical workstation envi-
ronment. Five of the benchmark programs are also used in the SPEC benchmark suite, although
the version of the programs and input data sets used here are not the same as those used in the
SPEC suite. All the benchmarks are written in the C language.

Table 2 presents both the static and dynamic instruction count for the benchmarks, along with the
percentage of the instructions that are conditional branches. The tracing methodology does not
support tracing run time library code nor system code, so the numbers presented are just for the
compiled C code.

The f f t benchmark is somewhat different from the other five in that is has a much lower percentage
of conditional branches. This is due to its structure being numerical or matrix code style, that is,
almost all control flow is loops over array data structures. Later it is reported this type of control
leads to very good branch prediction, and this benchmark is included to demonstrate this behavior.

4

The other five benchmarks have a higher percentage of conditional branches and much more varied
control structures. They execute many IF statements, have variable length loops and chase link
lists. Spice3 is considered a floating point program while the other four in this set are considered
integer programs.

3 Accuracy of the Prediction Functions

This section presents simulation results for the various prediction logic functions. Results are
presented in graphical form, with each benchmark plotted on its own graph. High variance between
the benchmarks motivated this arrangement of a separate graph for each benchmark. If averaging
was brought into effect it would mask the fact that benchmarks do not behave uniformly to changes
in the prediction function.

All the graphs have the same axis and scale. The horizontal axis is the number of branch outcomes
recorded by the history shift register, ranging from 1 branch to 24 branches. The vertical axis is
the conditional branch prediction accuracy, expressed as the percentage of conditional branches
that are correctly predicted. Note the all the graphs start at 75% correct prediction as almost all
of the prediction functions achieve better than this accuracy. Vl’hen branch predictions rates fall
below 75% they are not plotted.

To make it easy to compare changes in accuracy between one prediction logic and the next, most
of the set of graphs plot both the results for the logic being considered and the accuracy of the
previous function considered.

3.1 Optimal Static Branch Prediction

Optimal static branch prediction is used as a baseline for the various dynamic branch prediction
methods presented by this report. Static prediction requires a single predicted direction for each
conditional branch in a program’s code. Optimal static branch prediction is achieved when each
predicted branch direction is the direction each branch selects the most frequently during the
dynamic execution of a progra,m.

Optimal static branch prediction is easily simulated when a dynamic trace is ava.ilable. A pre-pass
examining the trace file to determine the majority direction of each conditional branch during the
entire execution of the program allows the optimal static prediction directions to be determined.
Optimal static prediction achieves better accuracy than a compiler can be expected to achieve as
examining the trace file provides knowledge that is available only after the input data set is known.
This knowledge is not available to a compiler. As the main emphasis of this report is on dynamic
branch prediction, this report does not discuss how closely a compiler can match optimal static
branch prediction or how the predicted branch direction should be encoded into the instructions.

Table 3 presents the branch prediction accuracies for optimal static branch prediction. The “Aver-
age Accuracy” column is the average over all forward and backward conditional branches executed

5

1 Average 1 Forward Branch 1 Backwards Branch

t%gG-1
espresso
fft
gccl
spice3

l/G&&--l

Accuracy Accuracy
- 85.04% 83.57%
85.62% 84.69%
93.98% 60.32%
89.05% 89.51%
86.04% 90.33%
86.77% 86.52%
87.75% 82.49%

Accuracy
97.59%
87.32%
94.02%
87.59%
79.83%
88.09%
89.07%

Table 3: Optimal Static Branch Prediction Accuracy

by each benchmark. The forward and backwards columns are the averages for just the forward and
backwards conditional branches respectively. The ratio of the forwards to backwards determines
how much each direction effects the average accuracy. Backwards branches usually have a better
prediction accuracy than forwards branches, but spice3 is an exception. Backwards branch predic-
tion if often more accurate than forward branch prediction because backwards branches frequently
implement loops that are repeated many times.

3.2 Population Count Prediction Logic

The first prediction logic function studied is a population count function over the history bits in a
branch’s shift register. This function’s accuracy graphs for each benchmark is presented by figure 3.
The population count function predicts a given branch will be taken if the majority of the previous
executions of this branches were taken. In the case when exactly the same number of taken and
not taken branches occur in the history shift register, the tie is resolved by predicting the branch
will be in the same direction as its previous execution. For example, the 6 bit history “111000”
would predict “0” while the history “000111” would predict “1”.

This population count function has the advantage of being easy to understand and it would be
relativity easy to implement in hardware. It has the disadvantage of not performing very well.
Performance is gauged by comparing the prediction accuracy of this function to the accuracy of
optimal static branch prediction, which is also plotted on the graphs in figure 3. Since static branch
prediction uses no direction history, the accuracy of static prediction is plotted as horizontal lines
in the figure.

Examining the graphs of figure 3 reveals that population count logic over 5 bits of branch direction
history achieves about the same accuracy as the optimal static prediction. Averaged over the six
benchmarks, 5 bit population count prediction achieves an 87.5% accuracy while the optimal static
predictions achieves 87.7% accuracy. Another feature of figure 3 worth noting is that two bits of
history does not improve the performance over 1 bit of history. Both 1 and 2 population count
prediction have an average accuracy of 84.4%. As shown by Lee and Smith [LS84], a two bit shift
register is not the best method of allotting two bits of storage for predicting branches. They show
that relevant history for branch prediction can be more effectively captured by a two bit state
machine than by a two bit shift register.

6

87.00 ~~-x-x~xTxJtx-x
+

83.00 '
t I

0 3 6 9 12 15 18 21 24
History Bits

g 99.00 t
2
if
s 9 5 . 0 0 %X+4 x-x-x *x-x*xFx* x-x-x x-x-x WH‘L ,
0

,.

t
. -
$
c 91.00

87.00

83.00
t

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
History Bits History Bits

s 99.00 /-

6 95.00
.r;0.-
x
& 91.00

I

79.00 dI- + ~ + spice3 optimal static
x - - -x spice3 pop-count

75.00 J I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

87.00
t

83.00
t IX-K

J(*xJ(x-x-x * >c-x* x-x-x *fl* M
*X'

t

+ ___ +
79.00

espresso optimal static
x- - -x espresso pop-count

75.00
0 3 6 9 12 15 18 21 24

History Bits

g 99.00
9
2 t

83.00

g 99.00
s
2
5 95.00
%
2
h 91.00

I

x-xx X-X-N xx-+ *x--x-H %x-x wx-j(*)+

87.00 y' •t

83.00

79.00

I

+ ___ + tex optimal static
x - - -x tex pop-count

75.001 ! I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

Figure 3: Prediction Accuracy for Population Count Prediction Logic
7

g 99.00

j$ 97.00

t

t ++-t-t+--t-tt-t-t+t-++i-t++-t++

i 95.00 t+/

8 99.00 t

75.00 1 I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

+ - - - + fft pop-count Backwards
x - x fft pop-count Both

i 95.00
‘J=
g 93.00

: 91.00
89.00 .-

87.00 .-
85.00 --
83.00 --
81.00.-
79.00 --
77.00 --
75.007 ! I I I I I I I

0 3 6 9 12 15 18 21 24
History Bits

+- - - + spice3 pop-count Backwards
x - x spice3 pop-count Both
A A spice3 pop-Count Forward

0’ 9 5 . 0 0
‘S
g 9 3 . 0 0

: 91.00 .A-& .~.~'~'~.A.A.A..~A.A.A.A.~.*.A.A..A..A
89.00
87.00 t

75.001 t- +f ! I I I I I 75.001 ! I I I I I I I
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

History Bits History Bits

+- - - + espresso pop-count Backwards
x -x esp resso pop -coun t Bo th
A’ A espresso popeCOUnt Forward

89.00

87.00

75.00 4-i 1 I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

g 99.00
2 97.00

i 95.00
'Z
2
$

93.00
ii: 91.00

+- - -+ gccl pop-count Backwards
x - x gccl p o p - c o u n t B o t h
A A gccl pop-count Forward

I +

75.001 ! I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

s 99 .00

2 9 7 . 0 0

i 9 5 . 0 0
‘Zi

+- - - + tex pop-count Backwards
x - x tex pop-count Both
A --.......-A tex pop-count Forward

Figure 4: Forwards and Backwards Accuracy for Population Count Prediction Lopic

1 Backward 1 Forward 1 Bwd/Fwd

1 espresso
fft
gccl
spice3
tex

Branches
221354

8122589
350152

1505854
10993330

1320804

Branches Ratio
1892530 0.12

14796726 0.55
378 926.33

4790373 0.31
15929770 0.69

7112983 0.19

Table 4: Backward to Forward Branch Ratios

Figure 3 reveals there is little accuracy to be gained by using a large self history with the population
count prediction logic. Almost all of the benchmarks have essentially no change in prediction
accuracy for 5 to 24 bits of branch history. This is expected as the population count function is
not able to identify repeating patterns occurring within the history shift registers.

Additional insight as to how this branch prediction strategy behaves is gained by plotting the
forward and backward branches separately. Figure 4 plots the branch prediction accuracy in this
manner, along with the average prediction rate that was plotted by figure 3. Examining figure 4
illustrates that for most benchmarks, prediction accuracy between forward and backward branches
is quite different. For example, compress achieves a 97.5% accuracy for backwards branches, while
it achieves only a 85% accuracy for forward branches. The f ft benchmark forward accuracy is
always below 75% and is not plotted because of the scale of the graph. However, fft has a very
small number of forward branches compared to backward branches, so the average prediction rate
is almost that of the backwards branch prediction rate. The relative frequency of forward and
backwards branches determines whether the average prediction accuracy is closer to the forward or
backwards branch prediction accuracy.

Domination by backward or forward branches is not uniform between the benchmarks, and their
prediction rate is even more varied. Table 4 provides the dynamic ratio of backward to forward
branches and exhibits that backwards branches are dominant only for the fft benchmark. As for
prediction accuracy, backward branches can be predicted more accurately in compress and fft.
Forwards branches are predicted more accurately for espresso, gcci and spice3. Forward and
backward branch prediction accuracy is about equal for tex.

3.3 Simple Static Loop Prediction Logic

Correctly predicting the branches implementing fixed count loops repeating fewer times than the
number of maintained history bits can be achieved by replacing some of prediction logic terms
generated by the population count function. Figure 5 presents the results for a prediction logic
function called simple-table. This functions is the same as the population count function, except
that patterns for fixed size loops take precedence over the population count function.

Very few of population count function’s truth table entries need to be changed when implementing
the simple-table function. Since the population count function correctly predicts a loop’s branch

9

g 99.00

i-2
2
6 95.00
‘Z0. -
%

& 91.00 i

0 3 6 9 12 15 18 21 24
History Bits

z 99.00 t
3
s
g 95.00 X x- - x * x - x * n-t-K x
‘Z
0 Xi
.-
B
& 91.00

87.00 _-

s 99.00

22
E
5 95.00'S
.- i
L 91.00

87.00

83.00-- 83.00

79.00 -- + ___ + fft simple-table
x - - - x fft pop-count 79.00

75.00 -(I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

75.00

s?
E
0" 95.00
'Z0.-
z
; 91.00

87.00
., I

87.00

83.001

g 9 5 . 0 0
%.-
Ii
n' 91.00

87.00

83.00

A-X’

79.00

t

+ ~ + espresso simple-table
x - - -X espresso pop-count

75.00 1 I 1 I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

+ ~ + gccl simple-table
x - - -x gccl pop-count

T
I I I I I I I I

0 3 6 9 12 15 18 21 24

g 99.00

0’ 95.00
‘F;0. -
x
h 91.00

79.00 d

Y

+ - + spice3 simple-table
x - - -x spice3 pop-count

75.0011
0 3 6 9 12 15 18 21 24

History Bits

83.00

79.00

75.00

History Bits

+ ___ + tex simple-table
x - - -x tex pop-count

I I I I I I I I
3 6 9 12 15 18 21 24

History Bits

Figure 5: Prediction Accuracy for Simple Static Loop Prediction Logic
10

gg 95.0095.00 //
ZZgg 93.0093.00 JJ /-/-++

:: 91.0091.00 \\ tJtJ//

89.0089.00 +t+t
LL

I”I”
87.0087.00 \\ +J+J

85.00
83.00

iii l!

- - + compress simple-table Backwards
x - x compress simple-table Forward

I i A corn prey popFn\ F o r w a r d
A compress pop-count Backwards

!

0 3 6 9 12 15 18 21 24
History Bits

g 99.00 .-

2 97.00 .-
,; 95.00 .-
‘ci
2

AX’
93.00 .--8

a' 91.00.-
89.00 .-
87.00 .-
85.00 .-
83.00 .-
81 .OO .- +- - - + fft simple-table Backwards

x - - - x79.00 .- fft Backwardspop-count

77.00 --
75.00 7 I I I I I I I I

0 3 6 9 12 15 18 21 24
History Bits

g 9 9 . 0 0

2 9 7 . 0 0

i 95.00

+ - - - + spice3 simple-table Backwards
x - x spice3 simple-table Forward
A - - -A spice3 pop-count Backwards
A - A spice3 pop-count Forward

..z+

g 93.00 .-

87.00
85.00
83.00
81 .OO

History Bits

g 9 9 . 0 0

t

+- - - + espresso simple-table Backwards
x - x espresso simple-table Forward

4% 9 7 . 0 0 A - - - A espresso pop-count Backwards

87.00
85.00
83.00
81 .OO
79.00
77.00
75.00

A - A espresso pop-count Forward

I
--I
-I ,, ~rr‘+dd-Ab~ ~~~~~~~~~~
-I / b
&-A I I I I I I I I

0 3 6 9 12 15 18 21 24
History Bits

$J 99.00 --

$j 97.00 .-
i 9 5 . 0 0 - -

:E 9 3 . 0 0 - -
T3
; 91.00 --

+ - - - + gccl simple-table Backwards
x - x gccl simple-table Forward
A - - -A gccl pop-count Backwards
A - A gccl pop-Count Forward

0 3 6 9 12 15 18 21 24
History Bits

g 99.00
2 97.00
i 95.00

‘i3

+ 93.00$ 91.00 t

+- - - + tex simple-table Backwards
x - x tex simple-table Forward
A - - - A tex pop-count Backwards
A - A tex pop-count Forward

0 3 6 9 12 15 18 21 24
History Bits

Figure 6: Forwards and Backwa#rds Accuracy for Simple Static Loop Prediction Logic
11

Loop Length History Pattern Prediction
5 01111 0
4 10111 0
3 11011 0
2 10101 0
2 01010 1

Figure 7: History Length 5 Differences for “Simple Table”

.for all cases except for the the last transversal, only one truth table entry needs to be changed
for each length of loop that fits within the maintained history. For example, figure 7 shows the 5
entries that do not match the population count function for a 5 bit branch direction history. The
5 bit history table has 5 entry changes, the 6 bit table has 6 entry changes, a,nd so forth. The 24 bit
history table has only 24 entry changes, which is only 0.0001% of the total entries in the table.

Augmenting the population count function with fixed loop trip count predictions achieved a healthy
9% prediction accuracy improvement for the espresso benchmark, but surprisingly achieves only
very small increases or decreases in prediction accuracy for the other benchmarks. Compress has
the most notable decrease, a decrease of about 3% in the range of 5 to 15 bits of branch history.

Fixed loop trip count prediction performs well for espresso, improving accuracy from about 83%
to about 91%. Furthermore, only 2 bits of history are need to attain this improvement. Scruti-
nizing espresso reveals that this program has many short loops with fixed loop counts, thereby
corresponding well to this prediction logic.

Fixed loop count prediction does not perform well for the other benchmarks. Examining the
behavior of forward and backward branches conveys some the reasons for the prediction accuracy
decreases. Figure 6 plots the forward and backward branch prediction accuracy for both population
count prediction and fixed loop prediction. One of the most prominent features of this figure is the
dip in the backward branch prediction accuracy of compress. The reason is compress has only 6
static backward branches and only 2 of them account for more than 98% of the backwards dynamic
branches. One of these two branches account for 32% of the backward branches and is taken 65,145
out of 70,472 executions, or is taken 92% percent of the time. This branch implements a while loop
and does not have a fixed loop count, so occasionally predicting this branch is not taken reduces
the prediction accuracy as compared to predicting it is always taken.

Overall, a,dding the fixed loop predictions does not achieve a good average improvement in predic-
tion accuracy. It achieves limited success for backwards branches, and attains almost no improve-
ment for forward branches. Forward branches make up the majority of the conditional branches for
most of the benchmarks, so there is a need for a prediction function that address their behavior.
The next section formulates a method for finding an improved branch prediction function.

12

3.4 Majority Trained Prediction Logic

This section introduces a training method to construct the prediction logic function. Through the
use of profiling it is possible gather samples describing which patterns in the branch prediction logic
are utilized and how successful each pattern is at predicting branches. These samples are called
training samples.

There are many possible methods of combining the training samples from various benchmark runs
into a branch prediction logic function. In this section, the goal is to combine the samples in a
manner that does not result in very complex function, and a function that is not obviously biased
towards a given execution of a given benchmark. The case of training with a bias towards a given
benchmark is discussed in the next section.

The method chosen for combining training samples in this section is, for each branch history pattern,
an average over the benchmarks provided at least 5 of the 6 benchmarks has the pattern present
in their training samples. For example, assume 6 bits of history. Also assume the branch history
pattern 001001 occurs in 5 of the 6 benchmark training samples and that 2 of the benchmark’s
samples report the next use of this pattern should prediction taken while 3 report that the next
used should prediction not taken. This 001001 pattern qualifies for including in the prediction logic
as it occurred in at least 5 of the benchmark run. The value of the the prediction logic for this input
pattern is “not taken” as more of the benchmarks report not taken for this particular pattern.

This methods of training is called majority training as there must be 5/G majority of the benchmark
voting on a pattern before the pattern can be enter into the branch prediction logic. If the 5/6
majority is not met for a given pattern, the population count function is used on this pattern predict
the branch outcome. By requiring a 5/6 majority of the benchmarks to participate in creation of
a entry, only the most frequently encountered patterns will be included in the branch prediction
logic, thereby limiting the complexity of this function.

Figure 8 shows the number of terms in the branch prediction functions that are different from a
population count prediction function. In the figure, the diagonal line is the the total number of
entries for a given number of branch history bits. The shaded area is the number of entries that
are different from the population count function. As the number of branch history bits becomes
large, the number of entries that are different from the population count function drops off. This
is because of the 5/6 majority voting requirement. When a large number of history bits is used
there are many more different possible patterns so there are fewer that meet the 5/6 majority
requirement.

Figure 9 plots the branch prediction accuracy with this 5/6 ma’jority trained prediction logic, along
with last section’s simplehble prediction accuracy for comparison. There is rapid improvement in
prediction accuracy for the range of 1 to 6 bits. At 1 bit the average accuracy is 84.4% and by
6 bits it has increased to 91.3%. At 6 bits of history, there are 16 entries in the branch prediction
logic that are different from the population count function and these entries change the average
branch prediction rate from 88.3% to 91.3%, and increase of 3%.

From 6 to up to about 16 bits of branch history, prediction accuracy usually gradually improves.
At 16 bits the average accuracy is 92.8%, up 1.3% from the 6 bit accuracy. For 16 bits, there are

13

fia5 16777216
c
w 4194304

1048576

262144

65536

16384

4096

1024

256

64

16

4

1
0 3 6 9 12 15 18 21 24

History Bits

Figure 8: Number of Entries Not Matching Population Count for Majority Training

12,835 entries in the branch prediction logic that are different the population count function, which
is 19.6% of the 65,536 total entries. These entries change the average prediction accuracy at 16 bits
of history from 88.5% for the population count logic to 92.8% for the majority trained logic, and
increase of 4.3%.

Above 16 bits is the range where the 5/6 majority rule starts restricting the number of trained
entries in the branch prediction logic function. Since training in this area is weak, the branch
prediction accuracy tends to fall off slowly, decreasing down to an average accuracy of 91.8% at
24 bits.

In summation, training is useful in creating a prediction logic function, especially in the range of
6 bits of branch history. At 16 bits of branch history the 12,000 additional terms in the prediction
logic function may be somewhat expensive to implement and achieves an average accuracy increase
of only 1.3% over 6 bits of branch direction so the worthiness of implementing large fixed prediction
function logic is questionable. The next section introduces the idea of a prediction logic function
that can be customized for a particular program in order to allow a large branch direction history
to be more fully exploited.

14

8 99.00 t g 99.00
3
!I
g 95.00
*e.-
h:
k 91.00

x-x *)(-3<* x-x* x-xJ(*x

87.00

83.00

i2
i!

-

5 95.00
‘Z0.-
?3

i 91.00
::I::

t cd

t

+ - +
79.00

compress majority
x - - -x compress simple-table

75.00 J I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

87.00.-

83.00.-

79.00 .- + ~ + fft majority
x - - -x fft simple-table

+-+ gccl majority
x - - - x gccl simple-table

75.00 -t I I I I I I I I 75.00 J I I I I I I I I
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

History Bits History Bits

g 9 5 . 0 0
‘S0. -
$
z 91.00

f I

79.00
+ - + espresso majority
x - -- x espresso simple-table

75.00
0 3 6 9 12 15 18 21 24

History Bits

87.00 87.00
x-x+ X*j(-x ten*

83.00 83.00

+ ___ +
spice3 majority

+ ___ + tex majority
x - - - x spice3 simple-table 79.00 x - - -X tex simple-table

75.00 J I I I I I I I I 75.00 - I I I I I I I I
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

History Bits History Bits

Figure 9: Prediction Accuracy for Majority Trained Prediction Logic
15

3.5 Self Trained Prediction Logic

All the previous sections assume the prediction logic function is determined at the time the machine
is designed and thus can not depend upon the program being executed. This section relaxes this
constraint and assumes the prediction logic function can be configured when a program is loaded.
However, the prediction logic is still constrained so that the function does not change during the
execution of programs.

The configurable prediction logic function could be implemented as a full look up table, with 2n
entries if n bits of branch directions history are maintained. Or it could be implemented as a
population count function over the n bits of branch directions history along with an associative
table of entries that are different from the population count function. Data is presented later in
the section describing how many entries are used in a associative table specifying non-population
count function entries.

.

Training the prediction logic function with the same trace as the one used for the prediction accuracy
simulation realizes the best possible results for the shift register feeding predictions logic structure
being studied. Figure 10 presents the accuracy results for this self training of the prediction logic,
along with the accuracy of the majority trained logic of la,st section for comparison.

A striking feature of the self trained prediction logic graphs is after rapid improvement for the
first few bits of branch history, the accuracy continues to improve almost linearly with the number
of maintained history bits. At 5 bits of branch direction history an average accuracy of 91.0%
is achieved, almost the same as the 90.4% achieved with majority training. At 24 bit of branch
direction history the average accuracy is 96.9x, an improvement of more than 5% over the majority
training case.

Part of the explanation for this continued improvement is in some sense the future is trained into
the branch prediction logic. Because the same trace is used both for training and for simulation it
is possible in effect to “know the future.” In the unrealistic environment of knowing the future, it
would be possible to store a list describing each direction of all branches taken and achieve 100%
branch prediction. In the shift register indexing a table environment studied here, branches having
very hard to predict behavior cause the history shift register to act somewhat like a hash function
into a branch direction list. For large prediction logic functions there are enough entries in the
function that the behavior of some branches is in effect stored in this function without interference
from other branches.

Even though it is not usually possible to train prediction logic with the same program and data set
used during the re-execution a program, the continued improvement of prediction accuracy seen
here is an interesting result. It is likely there are many programs where changes in the input data
sets will have only minor changes in the branch pattern, thereby making it possible to achieve very
high prediction rates. Using this type of branch prediction logic training requires the prediction
logic function be able to implement the large number of entries that occur.

Figure 11 plots the forwards, backwards and average prediction accuracy for the six benchmarks
with self trained prediction logic. The behavior of the forward and backward branches is as ex-
pected. Both branch direction improve with increasing number of branch history bits and there

16

5 9 5 . 0 0
Z=0. -
-ii
& 91.00

87.00

83.00

79.00

I
x

y/ + ~ + compress self-train
x - --x compress majority

75.00
0 3 6 9 12 15 18 21 24

History Bits

87.00

83.00

+ - + fft self-train
x - - - x fft majority

75.00 J I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

5 9 5 . 0 0
‘z=0. -
$
h 91.00

87.00

83.00

0 3 6 9 12 15 18 21 24
History Bits

87.00

83.00

x- - - x espresso majority

75.00 J I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

g 99.00
9
2
5 95.00
‘S

.- ii
k 91.00

87.00

83.00

79.00

75.00

g 99.00
s
?!
5 95.00'c;0

+ ~ + gccl self-train
x - --x gccl majority

I I I I I I I I
3 6 9 12 15 18 21 24

History Bits

83.00
t

79.00
+ ~ + tex self-train
x - - -x tex majority

75.00 1 I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

Figure 10: Prediction Accuracy for Self Trained Prediction Logic
17

83.00 :dtJ:
+- - -+ compress self-train Backwards
x - x compress self-train Both
A A compress self-train Forward

75.00 J I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

g 99.00

g 97.00

i 95.00
‘Z
g 93.00

: 91.00
89.00
87.00
85.00
83.00
81 .OO
79.00

77.00

+- - -+ fft self-train Backwards
x - x fft self-train Both
Aa A fft Self-train Forward

75.00
0 3 6 9 12 15 18 21 24

History Bits

- - + spice3 self-train Backwards

0 3 6 9 12 15 18 21 24
History Bits

t-+-b t-l-k I--+

81 .OO --?’ +- - - + espresso self-train Backwards
x - x79.00 espresso self-train Both.-

1 Aa A espresso self-train Forward
77.00 --I
75.00 41 1 I I I I I I I

0 3 6 9 12 15 18 21 24
History Bits

85.00 t)’ I

+- - - + gccl self-train Backwards
x -x gccl self-train Both
A A gccl self-train Forward

75.00 1 ! I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

g 99.00 t
j$ 97.00
i 95.00
‘Z=
.g-8 93.00
h‘ 91.00

89.00
87.00
85.00 .--$--!
83.00 .-
81 .OO .- +- - -+ tex self-train Backwards

x - x79.00 tex self-train Both.-
A A teX Self-train Forward

77.00 .-
75.00 1 I I I I I I I I

0 3 6 9 12 15 18 21 24
History Bits

Figure 11: Forward/Backwards Accuracy for Self Trained Prediction Logic
18

are no peculiarities that are not explained in the previous sections.

Figure 12 presents for each benchmark the number of entries used in the prediction logic function.
An entry is considered used if at some time during a run its value is present in the branch history
shift register. The darkly shaded area of the graphs represents entries that are both used and differ
from the population count, while the lightly shared area represents entries that are used and match
the population count function.

For 1 to about 8 branch history bits, all the the possible entries of the prediction logic function
are used. The f ft benchmark does not have a varied branch behavior so it does not require more
than about 300 entries to achieve an accuracy of 99.5% correct prediction. The other benchmarks
have a more varied branch history patterns and require many more entries in their prediction logic
functions. These benchmarks have 100,000 to 400,000 entries not matching the population count
function at 24 bits of branch history.

Note that in figure 12, the log scale obscures the fact that the number of used entries matching
population count is almost always more than 2 times the number not matching population count.
In contrast, figure 13 plots only the portion of used entries that match population count and
the portion of used entries that do not match population count. These graphs present the same
information as the graphs of figure 12, but plotted in a manner that demonstrates the amount of
change needed to the population count function for achieving the reported prediction accuracies.
For more that 8 bits of branch direction history, 20% to 40% of the used entries are different from
the population count over the branch history bits.

In summary, these benchmark demonstrate it is possible to achieve very good prediction accuracies
using large branch direction history through the use of profiling to train the prediction logic function.
At 24 bits of branch direction history, these benchmarks have an average branch prediction accuracy
of 96.9%. Achieving this accuracy requires several hundred thousand entries to differ from the
population count prediction function and requires the training data set create branch behavior
very similar to the behavior occurring during execution. The next section presents a method of
removing the profiling requirement by replacing it with an adaptive learning technique.

3.6 Adaptive Prediction

Self training of the prediction logic achieves very good prediction branch prediction accuracy with
large branch direction history but has the problematic requirement of profiling the application. In
this section we present the branch prediction accuracy when profiling is replace by an adaptive
learning technique. This adaptive technique is similar to the two-level adaptive branch prediction
of Yeh and Patt [YP91] but this study extend their results to larger branch history shift registers
and more state in the adaptive prediction logic.

Figure 14 presents a block diagram of this adaptive prediction method. Instead of a static prediction
logic function, adaptive prediction uses an array of saturating up/down counters. A branch direction
history shift register is used to index into this array and select one counter. If the value of counter
is greater than or equal to zero the branch is predicted taken, else it is predicted not taken. Branch
result information is also routed to the counter. After the branch outcome is known, the counter

19

i

.g 16777216
g 4194304

1046576

-
compress
::.: pop count

not pop count

262144
65536
16384
4096
1024

256
64
16
4
1

b
15 4194304

1048576
262144
65536
16384
4096

1024
256
64
16
4
I . .

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 1’8 2; 2’4
History Bits History Bits

.g 16777216 fft

g 4194304
1048576 /

256
64
16
4
1

15 18 21 24
History Bits

.a 16777216 &- Spice3 1
$ 4194304

1048576

:.,.:.:.:.:_:.:.:.:.:.::::::::::::::::::::::. pop count
not pop count

/-

655361

0 3 6 9 12 15 18 21 i4
History Bits

.g 16777216 g

g 16777216w 4194304
1048576

gccl.::::::::::::::::::::::,._ ., ._. ,. pop count
not pop count

262144
65536
16384
4096
1024
256
64
16
4
1

History Bits

.$ 16777216
g 4194304

1048576

pop count
not pop count

262144
65536
16384
4096

1024
256
64
16

History Bits

Figure 12: Table Entries Filled

20

espresso

$
1.0

. -
:
LIJ
; 0.8
3
6
-2 0.6
2

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

compress

0 3 6 9 12 15 18 21 24
History Bits

fft

.: _....,.. ..,.. .~.~,~.~,~...~.~.~.~.~...~.~.~.~.~,~.~.~.~...~.~.~...~.~.~.~.~.........~,.. .~.~.~.~,~.~,~.~.~...~.~.~.~,~.~.~.~...~.~.~.~.~.~.~...~,~.~...~...~.~.~......,~.~.~.....~.....~...~...~..,..... ~,~...~.~.~...~,~...~.....~..
~~~~~pop count  :iiiiii8iiiiii:i:::::iiii:::::::::::::::~~:::::
.,.,.,.,.,.,.,...,.,.,...,.,.,.,.,.,.,.,.,.,.,.,.~.,.,.~.,.,.,.,.~. : ._..._._._.~.~.~_~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~...~.....~.....~...~.......~.~...~...~  . :...: ._.~.,.,.,.,.:. . . . . . . . . . . . . . . . :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..i.. . . . . . . . . . . . . . . . . . . . . . .

-_-
0 3 6 9 12 15 18 21 24

ii
1.0

.-)3
15
$ 0.8
3
6
-g 0.6
2

spice3

History Bits

not pop count I

0 3 6 9 12 15 18 21 24
History Bits

: 1.0
.-
+Lu
z 0.8
3
z
-2
2

0.6

% 1.0
.-ti
15
z 0.8
3
'ii

0.4

0.0

s 1.0
.-
*UJ
: 0.8
3
6
-2 0.6
2

0.4

0.2

0.0

0 3 6 9 12 15 18 21 24
History Bits

gccl
............................................................................................... . . ... ............ . . . . ... ..... . . ......... ... ... ... ............ . ....................................................................................................................................................................
......................................................................................................................................................................................................................................................................................................................................
...................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................................................
:.:.:.:.:.:.: :.:.:.:.:.:.:.:.:.:.:.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~,~.~.~,~.~.~.~
.:.:.:.:.:.:.:.:.:.:.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~

........

............
.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:,
...................................................................................................................................................................
.................................... ...............................................................................................................................
......................................................................................................................................................................................................................................................................................................................................
:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:
.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~:.:.:.:.~.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:,:.:.:.:.:,
...................................................................................................................................................................
...................................................................................................................................................................
......................................................................................................................................................................................................................................................................................................................................
:.:.:.:.:.:.:.:.:.:.:.‘.~.:.:.~.~.~.~.~.:.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~~~.~.~.~.~.~.~.~.~.~.~,~.~.~.~.~.~,~.~.~.~.~,~.~.~.~
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
.:.:.:.:.:.:.:.:.:.:.:.~.:.:.:.:.~.~.~.:.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~
~.:.:.:.:.:.:.:.:.:.:.~.:.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~,~.~.~.~.~.~.~.~.~.~.~,~.~.~,~.~.~,~.~.~.~.~.~.~
. . ................................................................................................................................................................
... . . :.:.:.:.:.:.‘.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:,

.:.:.:.:.:.:.:.:.:.:.~.~.~.~.~.~.~.~.~.:.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~,~.~.~,~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~,~
‘.‘...:.:.:.:.:.:.:.:.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~~.~.~.~.~.~.....................................................................................................................................................................................................................................
........................................................................................................................................................
........................................................................................................................................................
.................................................................................................................................................................. ......... ...................... ..........................................
............................................................................

.....................................................................
.......................................................................................................................................................
:::::::;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

0 3 6 9 12 15 18 21 24
History Bits

tex

not pop count 1

3 6 9 12 15 18 21 24
History Bits

Figure 13: Ratios of Filled Entries

21



Prediction

I I I I I I I I I I n-
History Shift Register

(one shift register per branch)

CPU

Taken/Not Taken

Figure 14: Adaptive Prediction Block Diagram

is incremented if the branch was taken, otherwise it is decremented. Saturating counters are used,
so incrementing a counter that is already at its maximum value results in the counter remaining at
its maximum value. Decrementing the minimum value also remains at the minimum value. Eight
bit counters are used for the data presented in this report.

The motivation for this configuration is to adapt to patterns found in the branch history shift
register. If a given history pattern almost always corresponds to a taken branch, then the up/down
counter selected by this history pattern will increment up and saturate, solidly predicting a taken
branch. If given history pattern correspond a near 50/50 percent chance of be correctly predicted,
then the counter will stay near zero and the prediction will track short term variation in the average
branch direction.

Figure 15 presents the prediction accuracy for adaptive branch prediction, along with self trained
and 5/6 majority trained prediction logic. Averaged over the six benchmarks, the average branch
prediction accuracy is 93.5% at 15 bits of branch direction history and 94.1% at 24 bits of history.
Adaptive branch prediction accuracy is almost always between self trained and majority trained
prediction logic.

The spice3 benchmark shows adaptive branch prediction accuracy improvements with the number
of history bits all the way out to the maximum simulated length of 24 bits. For the gccl and tex
benchmarks, adaptive branch prediction accuracy improves with increasing branch history up to
about 15 bits, but shows little improvement with larger numbers of history bits. For the other
three benchmarks, adaptive branch prediction achieves only slightly better accuracy than majority
trained prediction logic.

For a few benchmarks and a low number of branch history bits, adaptive branch prediction does
slightly better than self trained prediction logic. For example, at 3 bits of branch history the
compress benchmark shows a 85.9% accuracy for adaptive verse a 85.3%  accuracy for self trained
prediction logic, an improvement of 0.6%. This is due to the adaptive branch prediction’s ability to
track changes occurring while the program is executing. The non-adaptive prediction logic is fixed

22



87.00

83.00 cf + - +
79.00

compress self-train
x - - - x compress adaptive
A -A compress majority

75.001 I I I I I I I I
0 3 6 9 12 15 18 21 24

History Bits

g 99.ocl
9
i!
g 95.00
*=

.- i
& 91.00

87.00

83.00

I--

I --

.-

+ - + fft79.00 self-train.-
x- - - x fft adaptive
A - A fft majority

75.00+ ! I I I I I I I
0 3 6 9 12 15 18 21 24

g 99.00
B
i!
5 95.00
‘L0.-
$
h 91.00

87.00

83.00

75.00 -
0 3 6 9 12 15 18 21 24

History Bits History Bits

+ ___ + spice3 self-train
x - - -x spice3 adaptive
A - A spice3 majority

i s 9
71

12 l-5 l-8 21 24
History Bits

87.00

0 3 6 9 12 15 18 21 24
History Bits

g 99.00
9
2
5 95.00
‘f:
$
h 91.00

87.00

83.00

79.00

g 99.00

9
2
5 95.00
‘Z0

+ ~ + gccl self-train
x -  --x gccl adaptive
A  - A  gccl m a j o r i t y

I I I I I I I I

z
& 91.00

87.00

0 3 6 9 12 15 18 21 24
History Bits

Figure 15: Prediction Accuracy for Adaptive Prediction
23



for the entire execution of the program. If a certain branch history pattern should predict “taken”
during one phase of the program and “not taken” during another, then static training cannot
achieve high accuracy for this time varying behavior. However, since adaptive branch prediction
is seldom better than self trained prediction logic, it appears this type of time varying behavior of
branch direct patterns is rare in these benchmarks.

Overall, the effectiveness of adaptive branch prediction varies widely for large branch direction
history. It is very good for the spice benchmark, but offered little improvement over majority
trained prediction logic for the compress benchmark. There are implementation complexities of
the adaptive mechanism as it probably requires to both reading one counter and writing another
during a single cycle, so further study is needed to determine if this is a cost-effective method of
branch prediction.

.

4 Conclusions

This report presents the branch prediction accuracies achieved when maintaining for each condi-
tional branch a direction history of up to 24 bits. Several methods for fabricating predictions based
upon patterns found in the branch direction histories are presented. These methods range from a
simple population count over the direction history bits to a self trained prediction logic to adaptive
training.

Simple static prediction logic benefits very little from branch direction histories over about 3 bits.
Complicated static prediction logic, as demonstrated by the 5/6 majority trained case, does not
benefit from branch direction histories of more than 12 bits. No regular simple prediction logic
function for achieving attractive branch prediction was found, and the trained complicated functions
tend to have about l/3 of their truth table values differing from that of a population count function.

Self training the prediction logic function can achieve very good branch prediction accuracy, pro-
vided the data set used for training models very similar branch behavior to that occurring during
program execution. When the training and execution data sets are the same, the reported pre-
diction accuracy increases almost linearly with the number of maintained branch direction history
bits, up to an average prediction accuracy of 96.9% with 24 bits of branch direction history.

This study shows that large branch direction history can be effective in predicting branch outcome if
self trained is used, however, additional study is required before this technique can be cost-effectively
implemented in machines. Sensitivity to input data sets is another question that requires additional
study.

The arrays used in this study to store the prediction logic function are large and sparse. This
inefficiency points towards studying associative or set associative structures for implementing the
prediction logic function. Not all terms in the prediction logic function contribute equally to the
prediction accuracy, so cost-effective implementations may have methods of detecting the most
important patterns found in the branch history shift register and only storing a limited number of
these patterns. This and other implementation issues are attractive a,rcas for future work.

24



I

Another area for future work in improving branch prediction accuracy is using additional infor-
mation to a branch’s self history. Correlation between nearby branches seems an attractive area
to study, as well as correlation- between recently computed data values. Compiler help may be
a possible method to identify the branch and data items that may be correlated to conditional
branches outcome.

Future deep-pipelined and superscalar machines will depend on effective branch prediction. This
study reports that improved branch prediction can be achieved when the application branch be-
havior is well identified through the use of self training and large branch direction history. This
identifies a direction for continued study into methods of achieving the highly accurate branch
prediction required by these future machines.

25



References

[Los821

[LS84]

[NYefQl

[Smi81]

[SR92]

[YP91]

[YP92]

J. J. Losq. Generalized Bistory Table for Branch Prediction. IBM Technical Disclosure
Bull., 25( 1):99-101,  June 1982.

J. Lee and A. J. Smith. Branch Prediction Strategies and Branch Target Buffer Design.
IEEE Computer, 17( 1):6-22,  January 1984.

Peter Nye. U-code an intermediate language for Pascal*  and fortran. S-l Document PAIL-
8, Stanford University, May 1982.

J. E. Smith. A Study of Branch Prediction Strategies. In Proceedings of the l&h Annual
Symposium on Computer Architecture, pages 135-148, Minneapolis Minnesota, May 1981.
IEEE.

Shieb-Tai  Pan Kimming So and Joseph T. Rahmeh. Improving the Accuracy of Dynamic
Branch Prediction Using Branch Correlation. In Conference Proceedings, Architectural
Support for Programming Languages and Operating Systems (ASPLOS V), pages 76-84,
October 1992.

Tse-Yu Yeh and Yale N. Patt. Two-Level Adaptive Training Branch Prediction. In Pro-
ceedings of the 24th Annual International Symposium on Microarchitecture, pages 51-61,
November 1991.

Tse-Yu Yeh and Yale N. Patt. Alternative Implementations of Two-Level Adaptive Branch
Prediction. In Conference Proceedings, The 19th Annual Symposium on Computer Archi-
tecture, pages 124-134, May 1992.

26


