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Abstract

Wave pipelining is an attractive technique used in high-speed computer systems to
speed-up pipeline rate without partitioning a system into pipeline stages. Although
recent implementations have reported very high-speed operation rates, a real evalua-
tion of the advantages and disadvantages of wave pipelining requires a comparative
study with other techniques, in particular the understanding of the trade-offs be-
tween conventional and wave pipelining is very important. This study is an attempt
to provide approximate models which can be used as first-order tools for comparative
study or sensitivity analysis of conventional and wave pipelined systems with differ-
ent overheads. The models presented here are for subsystem-level pipelines. The
product Latency x Cycle-Time is used as a measure of performance and is evaluated
as a function of all the parameters of a design, such as the propagation delay of the
combinational logic, the data skew resulting from the difference between maximum
and minimum propagation delays through various logic paths, rise and fall time, the
setup time, hold time, and propagation delay through registers, and the uncontrol-
lable clock skew. In this way, an analytical basis is provided for a comparison between
different approaches and for optimizations.
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1 Introduction

Pipelining is one of the most attractive and widely used design techniques in high-
speed computer systems as it offers a potential speed-up of n when n pipeline stages
are used. However, as new applications require the achievement of extremely short
cycle times — close to the physical limit of the technology — the potential performance
increase of conventional pipelining is substantially reduced due to the practical limita-
tions and overheads resulting from partitioning a system into several pipeline stages.
One alternative technique, which avoids the partition of the system, is the so called
technique of wave pipelining. Although proposed initially time ago [1], wave pipelin-
ing has received recently considerable attention from several research groups. Fig. 1
illustrates how the two pipelining approaches work. While conventional (or regular)
pipelining requires the insertion of clocked elements to increase the clock rate of the
system, wave pipelining achieves the same goal by clocking the system faster than
its propagation delay, thus effectively achieving pipelining, but without the need of
partitioning the system to insert clocked elements. If the number of sets of data -
waves — between registers at any time instance is n, a speed-up of n is achieved with
wave pipelining.
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Figure 1: Pipelining techniques: (a) Regular pipelining and (b) Wave pipelining

Despite the inherent difficulties encountered in the design of wave pipelined circuits, a
number of applications were implemented in bipolar and CMOS technologies [2], [3],
(4], [5], [6]. Speed-up factors between 2-7 were reported in different circuits. Although
performance numbers are encouraging, a real evaluation of the advantages and dis-
advantages of wave pipelining requires a comparative study with other techniques, in



particular the understanding of the trade-offs between conventional and wave pipelin-

hossible to achieve the same high performance
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as reported for wave plpelmlng using conventional techniques? What would be the
cost in this case? Is some degree of wave pipelining always convenient? What is the
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optimum combination of the two techniques?

This study is an attempt to answer some of the questions above by providing approxi-
mate models which can be used as first-order tools for comparative study or sensitivity
analysis of conventional and wave pipelined systems with different overheads. The
models pre sented here are for auusyst m-level pipChﬂCS The }uudu\,t Lateru,y X
Cycle-Time, as will be discussed below, is used as a measure of performance and is
evaluated as a function of all the parameters of a design, such as the propagation
delay of the combinational logic, the data skew resulting from the difference between
maximum and minimum propagation delays through various logic paths, rise and fall
time, the setup time, hold time, and propagation delay through registers, and the un-
controllable clock skew. In this way, an analytical basis is provided for a comparison
between different approaches and for optimizations.

The rest of this work is organized as follows. In Section 2, the effect of the partitioning
overhead is discussed. In Sections 4 and 5, Latency x Cycle-Time is evaluated using
edge-triggered registers for regular and wave pipelining, respectively, and examples
are provided of pipelined systems with different overheads. In Section 6, the two
approaches are compared and an upper bound is found for the difference in path delay
which guarantee a better performance for wave pipelining. In Section 7, Latency
x Cycle-Time is evaluated using edge-triggered registers for optimal pipelining, a
technique which combines both regular and wave pipelining. In Section 8, optimal
pipelining is compared against regular and wave pipelining only. It is shown that
optimal pipelining has always a better performance. In Section 9, the analysis from
Section 2 to Section 8 is extended for transparent latches. In Section 10, a practical
application of wave pipelining for 16 x16 multiplication is described and compared
with a conventional implementation. In Section 11, a summary is provided.

2 Partitioning Overhead

As mentioned above, the major factor limiting performance in conventional pipelining
when the goal consists of achieving the shortest possible cycle time, besides the area
penalties due to the registers (or latches), is the partition overhead. This overhead
has two main components: (a) register (or latch) overhead, due to the setup and
hold time of registers, propagation delay through registers, and uncontrollable clock
skew between different stages of the pipeline, and (b) quantization overhead, due to
the fact that a pipeline stage consists of an integer number of gate levels and hence
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the propagation delay is quantized. The register overhead limits the minimum clock
period that can be achieved, while the quantization overhead increases the latency.

The following study presents an example of conventional pipelining where the clocking
overhead becomes the dominating factor limiting the performance of a system and
reducing its cost-effectiveness (the computation of the minimum clock period in this
study will be explained in Section 3).

Study 1: Suppose a circuit has a logic depth of 10 gates. The delay of a gate is 0.3ns,
and the total overhead due to the delay of registers, setup time, and clock skew is
0.8ns. It is required to speed up the circuit as much as possible using a conventional
pipelining technique. If the pipeline is built as shown in Fig. 2, with only one gate
level per stage, the minimum achievable clock period is 0.3ns 4+ 0.8ns = 1.1ns, and
the latency is 10 x 1.1ns = 11ns. If no pipelining is used, the minimum clock period
is 10 x 0.3ns + 0.8s = 3.8ns. The pipeline scheme achieves a speed-up of 3.4.

Output

Clock Register
Figure 2: Fine-grain pipelined circuit.

If performance is measured as pipeline clock rate only, the scheme shown in Fig. 2 is
probably the fastest possible solution. However, if other important factors such as la-
tency increase, area penalties, and power consumption are included in the evaluation
of performance, the efficiency of this approach is very poor. Note that despite 10 seg-
ments are used, the speed-up is only 3.4. Furthermore, the total latency is increased
2.9x, and the area about 5x (assuming the area required by a one-bit register is 4 x
the area of a gate). Also power would be increased proportionally to the area growth.
Rather than pipelining, a more efficient approach in this case would be three logic
units working in parallel, without pipelining at all. This scheme would provide a 3 x
speed-up, with relatively minimum latency penalties, and only 3x increase in area
and power.

The reason behind the low efficiency of the scheme proposed in Study 1 is because the
delay of one stage in the pipeline is less than the total clocking overhead. In cases like
this, wave pipelining seems to be a better choice. Since no clocked elements are re-
quired, the cycle time can be decreased while the latency remains practically the same,
minimizing in this way the area penalties and power consumption increase incurred



in conventional systems. However, the reduction in cycle time for wave pipelining
is limited by the difference between maximum and minimum delay. Although tech-
niques were developed for the equalization of path delays [7], [8], differences cannot
be completely eliminated in practice. Circuit structures, data-dependencies, process
variation, and temperature changes are among the factors which prevent the achieve-
ment of a perfect balance. If the difference in delay cannot be reduced to small values,
the potential advantages of wave pipelining over conventional pipelining are limited.

The study above suggests that a better way of characterizing the performance of a
pipeline system is the product Latency x Cycle-Time. This metric, rather than the
cycle time only, can provide an indication of how the latency of a circuit is affected by
pipelining. This is of particular concern if a design is aimed to achieve a cycle time in
the order of a few gate delays. Latency x Cycle-Time can also be correlated, although
indirectly, to the effects of pipelining on area increase and power consumption. In
the following sections, Latency x Cycle-Time is evaluated for different pipelining
techniques.

3 Definitions

e 1T Propagation delay of the longest path in the combinational logic
e ts Setup time for the registers

e ty Hold time for the registers

e (p Propagation delay for the registers

o trr Worst-case rise or fall time in the logic

o AT Difference between maximum and minimum path delay

o AC Worst-case clock skew

o tcx Clock period

4 Regular Pipelining Using Edge-Triggered Reg-
isters

The product Latency x Cycle-Time is first evaluated for regular pipelining. The

following analysis is for single-phase clocking and edge-triggered registers.

Suppose a pipeline is constructed by dividing a combinational logic circuit with initial
delay T' into n stages, where each stage has delay 1, = T'/n, as shown in Fig 3.



Assume that the segmentation of the circuit does not add overhead by itself, i.e., all
stages have equal delay T, (zero quantization overhead).

T/n T/n Tin

Input

CLF*1CL Output

Clock “— — —

n Register

Figure 3: A regular pipelined circuit with n stages

The total latency of the system, denoted as L, can be formulated as:

L:nxtCK (1)

where tox is the clock period at which the pipeline is clocked.

The product Latency x Cycle-Time, denoted as LC', can be computed as:

LC =n x tC]\'2 (2)

It is required to find the value of n that minimizes the product Latency x Cycle-Time,
under the assumption that for any given n the minimum clock period is achieved.

The clock period in a regular pipelined system must be such that data are stored into
the output register only after all data have arrived. This timing constraint can be
formulated as:

tCI\' > Y'mao; (3)

where Thue = T +tp+trr+ts+ AC, and T, is the delay of one stage of the pipeline
previously defined as T'/n.

A timing diagram of the clocking scheme is shown in Fig. 4 including all the circuit
parameters. Note that the definition of 7,4, includes all the overheads due to the
clock. Although parameter t gr is determined by the logic and not by the registers, it
is considered part of the clock overhead, since a signal transition must become fully
steady before it can be stored, which results in some overhead.

According to constraint (3), the minimum clock period is achieved when tox = Tinaa-
For notation convenience, all the overheads resulting from the partition of the logic
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are grouped into a single parameter H, referred to as the clocking overhead, which
is defined as H = tp + trr + ts + AC. In this way, the minimum clock period is
expressed as:

min{tc;\f} = Tn + H (4)

The use of a single parameter H not only contributes to make the notation more
concise but also shows in better way the effect of the total overhead in the performance
of the system. For the rest of this study, parameter H is assumed to be constant
independently of the number of pipeline stages into which the logic is partitioned.
This and the assumption above that the quantization overhead is zero provide a
simplified model which is used as a first-order approximation in order to find an
optimum number of pipeline segments such that the product Latency x Cycle-Time
is minimized. The result will be compared against the performance of wave pipelining,
as will be discussed in Section 5.
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Figure 4: Timing diagram for regular pipelining using edge-triggered registers

Combining Eqs. (4) and (2) and replacing 75, with 7'/n, the final expression for LC
is obtained:

T +nH)?

Lo =t (5)

n

Now, the value of n which minimizes function LC' can be computed by solving

OLC /On = 0 for n. The minimum LC' is found for:

n,=1T/H (6)

Since n must be integer, a possible heuristic is to pick n = [n,], if (n, — [n.]) > 1/2,
or n = |n,| otherwise. Thus, if n, is replaced in Eq. (5), the function LC is bounded
by:
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The maximum number of stages into which the logic can be divided is limited by
the race-through constraint [7]. Assuming that the delay of the shortest path of a
segment can be expressed as T'/n — 6T /n, where 0 < § < 1, it can be shown that the
maximum n is given by:

A | C\
Nmaz = (1 — 0)

~.
)

—~~
oo

~—

where (G is defined as G = t, + AC — .

Depending upon the value of §, partitioning the system into n, segments might be
feasible or not. In any case, constraint (7) holds. In the following study, 14 > 1,
is assumed.

‘ Study 2: Suppose a pipelined system can be built with three types of registers. The

‘ delay of the logic is T = 10ns, and depending upon the type of register used, the
clock overhead is H = 1ns, H = 1.5ns, and H = 2ns. It is required to compute the
value of n which minimize the product Latency x Cycle-Time for each different type.
The values of n are computed using Eq. (6), which yields n = 10, n = 7, and n = 5,
respectively. Fig. 5 plots LC as a function of n in each case.
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Figure 5: Latency x Cycle-Time as a function of the number of pipeline stages

The analysis above shows that independent of how the logic is partitioned in a con-
ventional pipelined system, the product Latency x Cycle-Time has a lower bound
provided by constraint (7). For values of n beyond the minimum LC, although

-1



shorter cycle times could be achieved, the latency of the system would be increased
substantially due to the preponderant effect of the clock overhead.

5 Wave Pipelining Using Edge-Triggered Regis-
ters

The product Latency x Cycle-Time is now evaluated for wave pipelining. As in the
case of regular pipelining, Latency x Cycle-Time is evaluated for single-phase clocking
and edge-triggered registers. The clock at the input and output registers is the same,
as shown in Fig. 6. In this way, a fair comparison can be established between regular
and wave pipelining, since both techniques use the same clocking scheme.

T

[e— N waves —=

Input CL

Register

Clock
Figure 6: A wave pipelined circuit with N effective stages

The product Latency x Cycle-Time in this case can be formulated as:

LC = N x top? (9)

where tck is a valid clock period and N is the number of effective pipeline stages of
the circuit. The number N can be physically interpreted as the number of waves in
the system at any time instance.

It is required to find the number of effective pipeline stages, or waves, and the cor-
responding clock period, which minimizes the product Latency x Cycle-Time. A
timing analysis for wave pipelining is presented below.

In contrast to conventional pipelining, double sided timing requirements must be met
in this case in order to clock safely a circuit. The clock period must be such that
the data emerging from the last stage of the logic are stored into the output register
only after the latest data of the current wave has arrived and before the earliest data
from the coming wave arrives. Assuming that NV X tcx is the time elapsed between
the occurrence of the clock at the input and the occurrence of the clock at the output



which stores the wave after it has propagated through the logic, then the double

timing constraint can be formulated as:

s 1iL

Tmax < N x tCI\" < Tmin + tC[\" (10)

where Thor =T +tp+tprr +ts+ AC, Thin =T +tp —tyg — AC — AT, and N is a
positive integer number. Like before, the definition of T',,, and T, includes all the
overheads due to the clock. Fig. 7 shows a timing diagram in this case.

The time interval [Toaz, Tmin + tox] is called the valid clock interval, because the
occurrence of the leading edge of the clock, without accounting for the clock skew,
must fall within this interval in order to store safely the data emerging from the
pipeline into the output register (see Fig. 7). The product N x t¢k is defined as the
latency of the circuit.

Constraint (10) can be formulated in a different way as:

TI‘THG().' Tmin
L e L
jV Ch N _ 1

~~~
—
[—
~—

If N =1, as in conventional pipelining, the expression above becomes T, < tox <
oo [9]. Consequently, constraint (10) is meaningful for wave pipelining as long as
N > 1.

Clock 49 Clock
Overhead Interval Overhead
e —— ~ - v —A—
Ltd_L (e T IIRSI ts IACI IAC LtH | AT |
| I 1 Rt R D bt e R ul
wa / . =
4
] (( N x tCK o
r 24 o
tcK r
1

Figure 7: Timing diagram for wave pipelining using edge-triggered registers

- Constraint (10) can be used to compute a lower bound on the clock period. This
lower bound can be derived from the condition that the length of the valid interval
is null, that is Thyuz = Tomin + tor. The result is given by:

min{tcx} = AT + H' (12)

9



where H' is the total clocking overhead for wave pipelining defined as H' = trs +
ts +ty + 2 x AC (see Fig. 7).

The lower bound given by Eq. (12) guarantees that a wave does not interfere with
the next wave at the end of the combinational logic. Additional constraints on the
clock period can be derived from the requirement that waves do not interfere inside a
section of the combinational logic [7], [10]. In this study, the constraint at the output
register is assumed to prevail over the constraints inside the logic. Therefore, the
minimum clock period is given by Eq. (12). The analysis can be generalized however
if internal constraints prevail, as discussed below.

The number of waves in the pipeline is related to the clock period as expressed by
constraint (10). Suppose now that the leading edge of the clock can be adjusted to
be exactly in the middle of the valid interval. Then, the latency of the wave-pipelined
circuit can be computed as L = (Thuz + Toin + tex)/2, which yields:

L=T+1tp+(tpr+ts—ty+tcxk — AT)/2 (13)

For notation convenience, Eq. (13) is rewritten using parameters H and H' defined
above in the following way:

L=T+H—-H/2+tcr/2— AT/2 (14)

Now, replacing L with N x t¢x in Eq. (14) gives:

N xtew =T+ 1 — H' 2+ tci |2 — AT/2 (15)

Eq. (15) can be used to compute N, given a valid clock period tcx, or conversely, to
compute tcg given a valid number of waves N. If N is given, t¢x can be computed
as:

T —AT/2+ H — H'/[2
N —1/2

ek = (16)

Finally, combining Eqs. (16) and (9), the product Latency x Cycle-Time for wave
pipelining can be formulated as:

N

D= [T - AT/2+ H — H' |2
LC =[T - AT/2+ H H/](N#1/2)2

10



Since function LC above decreases as N increases, the minimum Latency x Cycle-
Time is achieved when the number of waves is maximum. The maximum N can be
derived from Eq. (16), considering that the clock period should be greater than a
minimum:

T —AT/2+ H — H'/2
max{N} —1/2

> min{tck } (18)

Then, max{N} can be computed as:

(19)

T —AT/?2 - H'/[2
max{N}:ll/‘ZwL 2+ i H/J

min{tcy }

The minimum clock period given by Eq. (12) can be used to computed max{N}
above. If the minimum clock period is limited by constraints inside the logic, an
expression similar to Eq. (12) can be used where parameters AT; is defined as the
difference between maximum and minimum delay for an internal node of the circuit,
and H'; = tps + tsr + AC, where tsr is defined as the minimum time that the signal
at the internal node must be stable [7].

Study 3: Suppose a system has parameters T' = 11.5ns, H = H' = lns, and
AT = 2ns. It is required to compute the best performance of the system using wave
pipelining. According to Eq. (12), the minimum clock period is 2ns+1ns = 3ns. The
maximum number of waves, computed with Eq. (19), is 4. The valid clock period is
computed using Eq. (16), which yields 3.14ns. The latency is 4 x 3.14ns = 12.57ns,
and the product Latency x Cycle-Time is 39.5ns?.

Notice that the maximum value of N which minimizes the product Latency x Cycle-
Time also minimizes the clock period, thus maximizing the pipeline rate of the system.

6 Wave Pipelining Versus Regular Pipelining

One of the problems of using conventional pipeline techniques when a very short
cycle time is required in a design is that the latency of the system is substantially
increased due to the overhead introduced by clocked elements. Instead, the use of wave
pipelining can decrease the cycle time while the latency of the system remains almost
unchanged - an attractive advantage. However, the reduction in cycle time is limited
by the difference between maximum and minimum path delay. If the difference in
delay cannot be reduced to a small fraction of the total delay due either to the practical

11



limitations of the balancing techniques being used or to the uncontrollability of some
sources of delay variation, such as data-dependent delay and process deviation, the
number of waves that a system can support are substantially reduced, blurring the
the potential advantages of wave pipelining over conventional systems.

Assuming that a system must be designed to achieve a very short cycle time, the
use of wave pipelining is justified depending upon the parameters of the system. In
particular, the difference in path delay must be small enough to allow a minimum
number of waves propagate in the combmatlonal logic. If the conditions for wave

pipelining arc not favorable, the use o

both, should be considered alterna.tlvely.

or a combination of

In order to evaluate the most suitable technique for a particular design, it is required
to find a relation between the parameters of a system which guarantee that the
performance achieved with wave pipelining is better than in regular pipelining. Like

in previous sections, the product Latency x Cycle-Time is used as a mcasurc of
performance.
Problem Formulation: For a generic system, find a relation between its parameters
to satisfy the constraint:

LC(wave pipelining) < min{ LC(regular pipelining)} (20)

A relation which is necessary but not sufficient is derived as follows. First, the maxi-
mum clock period which satisfies constraint (20) is determined. Then, the maximum
allowed AT required to achieve this clock period is computed.

Instead of using Eq. (17) for the Latency x Cycle-Time of wave pipelining, the fol-
lowing expression, which has tcx explicited, is preferred:

LC = (T+H—H'/2+ter/2 — AT/2) x lox (21)

Then, constraint (20) can be formulated as:

(T+H—H’/2+t01;/2—A’I“/‘2)xtcﬁ—<4HT (22)

Solving constraint (22) for tcx gives:

tox < (T =AT/2+ H — H'j22 + S HT — (I = AT/2+ H — H'/2) (23

Therefore. if a svstem can be wave-pipelined with a clock that satisfies constraint (23),

12



the performance achieved is guaranteed to be better than the best regular implemen-
tation.

According to Eq. (12), the clock period is bounded by the following constraint:

AT+ H < tcg (24)

Combining constraints (23) and (24), a necessary condition to satisfy initial con-
straint (20) can be found. As a result, the maximum AT is bounded by:

4 H

AT « —22
ST+ H/T

H (25)

Notice that constraint (25) is a necessary condition only to satisfy constraint (20).
However, if the valid clock period is close to the minimum, which is desired in practice,
it can be considered a sufficient condition as well. Besides, constraint (25) was derived
assuming that the product Latency x Cycle-Time in the case of regular pipelining is
equal to 4 HT, which is a lower bound. The fact that n must be integer in Eq. (2)
prevents regular pipelining from achieving this minimum. Furthermore, breaking
down a logic circuit into small pieces all with equal delay is difficult in practice due
to quantization problems. If the slowest segment is used in the evaluation of the
product Latency x Cycle-Time, a result less close to the theoretical minimum of
4 HT is achieved.

Finally, assuming 7' > H and H' = H, constraint (25) can be approximately formu-
lated as:

AT <3H (26)

Study 4: Suppose a system has parameters T = 9.5ns, H = 1ns, and AT = 3ns
(assume H' = H). It is required to determine whether wave pipelining or regular
pipelining is the best approach to increase the pipeline rate of the system. Since AT =
3 H, according to constraint (26), the two approaches would achieve about the same
performance. For instance, a wave-pipelined implementation would support only 2
waves and achieve a clock period of 5.66ns, yielding a latency of 2 x5.66ns = 11.33ns.
Instead, a regular pipeline with two stages could be clocked at 6ns, with a latency of
2 x 6ns = 12ns. And a regular pipeline with three stages could be clocked at 4.33ns,
with a latency of 3x4.33ns = 13ns. The ratio LC'(w.p.)/LC(7.p.)2—stage 1s 64.22/72 =
0.89, while the ratio LC (w.p.)/LC(r.p.)3—stage is 64.22/56.33 = 1.14. Notice that the
3-stage regular pipeline performs better than the wave-pipelined design, although it

13



requires two internal registers.

Another useful expression for AT can be derived from the condition LC(w.p.) =
1/2 min{LC(r.p.)}. This condition means that the latency of a regular pipelined
circuit will be increased at least by a factor of 2 with respect to wave pipelining if
both circuits were designed to achieve the same cycle time. The solution in this case
is given by:

21

AT < —
STYHT

H' (27)

which can be formulated approximately, under the same assumptions 7' > H and

H' = H, as:
AT < H (28)

The condition LC(w.p.) = 1/2min{LC(r.p.)} can be used as a heuristic for the design
of optimal pipelined systems, as will be discussed in Section 8. This requires that the
difference in path delay must be less than the clock overhead of the system, as given
by constraint (28).

Study 5: Suppose the delay variation in Study 4 is reduced from 3ns to 1ns through
improved balancing techniques. It is required to evaluate the performance of both
techniques is this case. According to constraint (28), wave pipelining can achieve a
performance about 2x better than the best regular implementation, since AT = H.
For instance, a wave-pipelined circuit would support 5 waves at 2.11ns, and have a
latency of 5x2.11ns = 10.55ns. Instead, a regular pipeline with 10 stages, where each
stage has 1ns, would achieve a clock cycle of 2ns, and a latency of 10 x 2ns = 20ns.
The ratio LC(w.p.)/LC(r.p.) in this case is 22.3/40 = 0.56, which reflects the better
performance of wave pipelining.

6.1 Wave Pipelining Versus Regular Pipelining Assuming
Latency Increase

In Section 6, it was assumed that techniques used in wave pipelining do not affect
the maximum propagation delay of the combinational logic. In some cases, however,
although the techniques used for balancing delays should ideally increase the length of
short paths only, they might slow down the longest path delay as well. In other cases,
the choice of a circuit structure which is best suitable for wave pipelining might result
in longer delays. For instance, a circuit whose structure has inherently balanced delays
- well suited for wave pipelining — might be slower than a circuit which is not designed

14



for wave pipelined applications, i.e., a circuit with no minimum delay constraints. If
the latency of a wave-pipelined system is increased due to design constraints required
for equalizing delays, this effect must be taken into account when the performance of
wave pipelining is evaluated and compared with regular pipelining.

Assuming that the maximum delay of a wave-pipelined circuit is increased to oT,
where T' is the delay for non pipelining, and a > 1 is the factor of latency increase
due to wave pipelining, in order to satisfy constraint (20), it is required that:

(T + H — H'[2 +tox /2 — AT/2) X tex < 4 HT (29)

The maximum AT, which is derived in the same way as in Section 6, is now bounded
by the following expression:

4 Hla
A< ———— —H' 3
< 14+ HfoT (30)
And the approximate relation, assuming o7 > H and H' = H, is given by:
AT < (4 —a)H/a (31)

Notice that constraint (31) becomes tighter as « increases. For instance, if a = 2
(100% latency increase due to wave pipelining), AT < H is required to achieve a
performance similar to regular pipelining. If @ = 1, constraints (30) and (27) are
equivalent.

Study 6: Suppose a system has initial parameters " = 10ns, H = H' = 1lns, and
AT = 4ns. After balancing the circuit for wave pipelining, the difference in path delay
is reduced to 1ns, but the latency is increased by 15% (a = 1.15). It is required to
compare the performance of the two techniques. Since T' = 11.5ns for wave pipelining,
the system could work with 6 waves at 2.1ns, resulting a latency of 12.54ns. If the
regular pipeline is built with the initial circuit (' = 10ns), the clock cycle would
be 2ns, and the latency 20ns (as in Study 5). The ratio LC(w.p.)/LC(r.p.) is now
26.2/40 = 0.66, which shows a performance degradation for wave pipelining compared
with the value of 0.56 obtained in Study 5, as a consequence of the 15% increase in
the latency of the circuit.
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As discussed in Section 6, the difference between maximum and minimum delay
through various path in the logic has to be approximately less than three times the
clocking overhead of the system in order to achieve a good performance with wave
pipelining. However, as the length of a combinational logic increases, the difference in
path delay increases proportionally due to the accumulative effect of delay variations
which cannot be completely eliminated by balancing techniques. Therefore, if the
logic depth of a system is of considerable length, the performance of wave pipelining
might be substantially degraded. In this case, a combination of wave pipelining and

conventional pipelining techniques seems to be the best approach to optimize the

overall performance, as shown in Fig. 8.

.
2
£
o
@
o

Register
Register

Combinational

Figure 8: Optimal Pipelining: a combination of Regular and Wave Pipelining

The insertion of a few registers between sections of logic provides a way of synchroniz-
ing data in a conventional way, keeping the difference in path delay within acceptable
margins, in such a way that wave pipelining can work efficiently between registers.
This approach has the advantages of the high pipeline rates achievable with wave
pipelining while it minimizes the disadvantages of conventional pipelining, such as
latency increase and area penalties, since fewer register are required. This combined
technique will be called hereafter optimal pipelining.

7.1 Optimal Pipelining Using Edge-Triggered Registers

Latency x Cycle-Time is now evaluated for optimal pipelining. Suppose a system
with initial delay T' is divided into n regular-pipelined stages, where each stage has
delay T, = T'/n, as shown in Fig. 9. Each stage is wave-pipelined and the number of
waves between registers is N. Therefore, the total number of effective stages in the

pipeline is n x V.
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Figure 9: An optimal pipelined circuit with n regular stages, where each stage has IV
effective stages (N waves)

The total latency of the system can be expressed as:

L=nxNx tlok (32)

And the product Latency x Cycle-Time as:

LC =nx N x tc'[\"2 (33)

The latency of one stage of the regular pipeline, N X t¢x, is given by:

NXtC]\r’:Tn-I-H——H,/Q—{—tCK/Q—-ATn/Q (34)

where AT, is the difference between maximum and minimum delay in one pipeline
stage (see Eq. (15) for similarity). The model assumptions are that AT, is the same
for every segment and that parameters H and H' are constant (same assumption as
in Section 4).

The same steps followed in the derivation of Eq. (17) are repeated here, except for
the fact that now AT, depends upon the logic length of one pipeline stage resulting
from the partition. A model which seems to agree with the practice assumes that the
difference in path delay increases directly proportional with the delay of the logic.
This is formulated as AT = &t , where t < T is the delay of one section of the
logic, and § < 1 is a positive number which depends upon the structure of the circuit
and the technology being used (parameter ¢ was introduced in Section 4 to find the
maximum number of segments in a regular pipeline; although the definition is the
same, in this case minimum § is required to maximize performance).

Replacing T,, with (T'/n) and AT,, with (67'/n) in Eq. (34) yields:

N xtox =T/n+H—H'/2+tck/2—68(T/n)/2 (35)
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From Eq. (35), the clock period {¢r can be derived as:

(1-6/2)T/n+H —H'/2

tox = ,
o N —1/2 (36)
And the maximum number of waves in one section of the pipeline as:
1-6/2)T H - H'/2
max{N} = 1/2+( /)./"+ / (37)
min{tck}

where min{tcx } is the minimum clock period at which one section of the pipeline can
be wave pipelined. Assuming that the constraint at the output prevails, it is defined

as min{tcx} = AT, + H', where AT, = 6 T'/n.
Combining Egs. (36) and (33), the product Latency x Cycle-Time can be finally

formulated as:

(1 =6/2)T + n(il — H'/2)])? N
i N —1/2)

LC = (38)

where N is computed using Eq. (37).

Latency x Cycle-Time for optimal pipelining is given by Eq. (38) as a function of
the parameters of the system and the number of regular pipeline stages. Notice the
correspondence of Eq. (38) with the expressions for regular pipelining in Eq. (5), and
for wave pipelining in Eq. (17). If n = 1, Eqs. (17) and (38) are equivalent, except
that the latter uses é instead of AT

It is required to find the optimum number of segments such that the product Latency
x Cycle-Time is minimized for optimal pipelining. How to compute analytically the
values of n which minimize the function LC above is described in Appendix A. Due to
the intricate math involved, the following case study is considered more instructive.

Study 7: Suppose a design is implemented in three different technologies. For the
three technologies, T' = 100ns, H = H' = 1ns, but AT depends upon the technology
being used and is 10% (6§ = 0.1), 20% (6 = 0.2), and 30% (6 = 0.3) of the total
delay in each case. It is required to find the best implementation in each technology
using optimal pipelining. Fig. 10 plots the number of waves per section, the clock
period, and the Latency x Cycle-Time as a function of n in each case, according
to Eqs. (37), (36), and (38), respectively. The values of n which minimize LC are
summarized in Table 1. While the absolute minimum is found for n = 35 in the case
where § = 0.1, notice that near optimal results can be achieved for n = 20 or n = 12,
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[ Delay Variation | Stages ] Waves | Clock l Latency x Cycle-TimeJ

10% 35 3 1.28ns 173ns?
20% 60 2 1.33ns 213ns?
30% 40 2 1.75ns 245ns2

Table 1: Optimal pipelining: minimum Latency x Cycle-Time

saving a considerable number of registers. The maximum value of n in each case (80,
60, and 40, respectively) is determined as the maximum n which allows a minimum
number of waves between registers, which is 2 in this case. Bevond this point, the
system behaves as a regular pipeline since N = 1.

8 Optimal Pipelining Versus Regular and Wave
Pipelining

As discussed in Section 6, depending upon the difference in path delay, in some cases
regular pipelining can achieve a better Latency x Cycle-Time than wave pipelining,
but at a cost of a large number of registers. If the difference in path delay is greater
than three times the clocking overhead, rather than the costly solution of regular
pipelining, optimal pipelining seems to be the best approach to decrease the product
Latency x Cycle-Time while minimizing the number of required registers.

Based on the analytical models derived in the previous sections, a comparison is
established for a given system between the performance of optimal pipelining with
respect to both regular and wave pipelining. Independently of the parameters of
the system, it is demonstrated that the use of optimal pipelining, if achievable, can
always yield a better product Latency x Cycle-Time compared with the other two
approaches.

Theorem 1 For any given system, if the logic is divided into n stages of equal
length, the product Latency x Cycle-Time using optimal pipelining is always
less than the product Latency x Cycle-Time using regular pipelining if at least
two waves are allowed per stage.

Proof: According to Eq. (5): LC(r.p.) = (T+nk)?

n

According to Eq. (38): LC(o.p.) = [(1_‘5/2)T+2(H‘H//2)]2 X (N.]Y/2)2
To prove that LC(o.p.) < LC(r.p.), it is sufficient to verify:
(a) 1 —6/2 <1,
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(b) H—- H'/2 < H, and
(c) N/(N—-1/2) <1

Since 0 < 6 < 1, (a) is true. Since H' > 0, (b) is true. Since N/(N —1/2)% is
monotonically decreasing for N > 2, and less than 1 for N = 2, then (c¢) is true for

Theorem 2 For any given system, the product Latency x Cycle-Time using
optimal pipelining is always less than the product Latency x Cycle-Time using
wave pipelining, assuming that the optimal pipeline is divided into n stages of
equal length, where n is less than a mazimum defined by the system.

Proof: According to Eq. (38): LC(o.p.) = A=/ T+nH-H/I ST

where N(n) denotes the value of N computed for a given n using Eq. (37).
For wave pipelining, LC(w.p.) = [(1 = 6/2) T + H — H’/‘Z]QXW{\;}%W (sincen = 1).
To prove that LC(o.p.) < LC{w.p.). it is sufficient to verify:

(a) N(n)/(N(n) —1/2)* < N(1)/(N(1) —1/2)*> forn>1, and
(b) [(1=6/2)T +n(H —H'/2) /n<[1=6/2)T+H —H'J2)° forl<n<mn

Since the function N/(N — 1/2)? is monotonically decreasing, and N(1) < N(n)
for all n > 1, then (a) is true. Since function [(1 —&8/2) T +n(H — H'/2)]? /n is
monotonically decreasing for 1 < n < (1 —§6/2)7/(H — H'/2), and monotonically
increasing for (1 —68/2)T/(H — H'/2) <n < [(1 =6§/2)T/(H — H'/2)]?, then (b) is
true for 1 < n < n;, where n; = [(1 — 6/2)T/(H — H'/2)]*. O

In practice, n; is relatively a very large number. The validity of the theorem is of
interest for small values of n.

Study 8: Suppose a circuit has parameters 7' = 100ns, H = H' = 1ns, and AT =
10% T (6 = 0.1). It is required to compare the performance of three implementations:
regular pipelining, wave pipelining, and optimal pipelining. Fig. 11 plots the Latency
x Cycle-Time as a function of n for regular pipelining, according to Eq. (5), and for
optimal pipelining, according to Eq. (38). Notice that wave pipelining is a special
case of optimal pipelining when n = 1. If wave pipelining only were used, the clock
period would be 11.2ns, the latency 101.1ns, and the Latency x Cycle-Time 1136ns?.
Instead, for n = 100, regular pipelining could achieve a clock period of 2ns, a latency
of 200ns, and a Latency x Cycle-Time of 400ns?. For n = 11, however, optimal
pipelining can achieve a clock period of 2.03ns, a latency of 111.66ns, and a Latency
x Cycle-Time of 226.7ns%. The results are summarize in Table 2. Observe that
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[ Pipeline | Clock Period I Registers | Latency | Lat. x Cycle-Time

Optimal 2.03ns 10 111.7ns 226.Tns?
Regular 2.0ns 99 200ns 400n 52
Wave 11.23ns - 101.1ns 1136ns?

Table 2: Three pipelined circuits

while optimal pipelining can achieve the same pipeline rate as regular pipelining,
it has about half the latency and saves 89 registers (the poor performance of wave
pipelining is due to the fact that AT = 10ns).
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Iigure 11: Regular and Optimal Pipelining as a function of the number of pipeline
stages using edge-triggered registers

A heuristic approach based on constraint (28) can be used in optimal pipelining to
find a partition of the logic without need of computing all possible values of function
LC. According to constraint (28), AT, < H. Since AT, = éT/n, n can be computed
as:

n>6T/H (39)

However, due to the discontinuity of LC, this approach might yield inefficient parti-
tions in some cases. For example, if T' = 100ns, H = Ins, and § = 0.2, constraint (39)
yields n > 20. According to Fig. 10, values of n between 12 and 20 can achieve the
same performance saving a number of registers. If § = 0.1, constraint (39) yields
n > 10, which is a good approximation.

o
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9 Regular, Wave, and Optimal Pipelining Using
Transparent Latches

In this section, the analysis described in Section 4 to Section 8 is re-evaluated assuming
transparent latches are used.

9.1 Definition

e ion Length of the transparent period of the clock signal

9.2 Regular Pipelining

Since all sections have equal delay in the model here considered, there is no ‘borrowing’
of time from the transparent period. Thus, the timing constraint for the minimum
clock period is given by Eq. (4) and the product Latency x Cycle-Time by Eq. (5).

However, due to race-through constraints, the maximum number of segments is con-
strainted by the length of the transparent period. In this case, parameter & used in
Eq. (8) is defined as as G = ton + tp + AC — t4. The longer the transparent period,
the shorter the maximum number of segments.

9.3 Wave Pipelining

A timing diagram in this case is shown in Figure 12. The minimum clock period that
can be achieved is also limited by the length of the transparent period tpn. Parameter
H' is defined as H' = tps + tony + 1y + 2 % AC.

Assuming toy > ts, it can be demonstrated that the maximum number of waves is
given by:

T —AT/2+ H — H'/2 + ton — ts

max{N} = [1/2 + - (40)
min{tck }
and the product Latency x Cycle-time:
LC =[T—~AT/24+ H—-H'/2+ton — 1 ]2-—N————— (41)
T ° ON TN —1/2)2
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Figure 12: Timing diagram for wave pipelining using transparent latches
9.4 Optimal Pipelining

For a given partition n, the number of waves and the product Latency x Cycle-time
can be computed, respectively, as:

_ . (1—5/2)T/7l+1‘1—H’/Q-}-tON—tS
max{N} = [1/2—%— min{on] (42)
\ A ) N
LC = [T~AT/2+H —H /2 +tON—t5]2-(—jV_—l/2)2- (43)

Note that parameter H is the same as in the case of edge-triggered registers, while
H' is redefined in Section 9.3 including ton.

9.5 Comparison between Regular, Wave, and Optimal
Pipelining Using Transparent Latches

In order to satisfy constraint (20), now the maximum AT is bounded by:

4 H ,
AT < — H' 44
1+ (H +tony —ts)/T (44)

Since H' increases as ton increascs constraint (44) is more restrictive as the trans-
parent period becomes longer.

In can be proved that Theorem 1 holds if H'/2 > ton —ts (sufficient condition). This
can be rewritten as:



ton <tpp+itg+2xts+2xAC (45)

Theorem 2 holds, but n; is defined as n; = [(1 — §/2) T/(H — H'/2 + ton — ts)]*.

Study 9: Suppose a system based on transparent latches has parameters 7' = 100ns,
B o I C — o — o _ y  —

H = 1.5ns, H' = 3.9ns, toy = 2.5ns, ts = 0.3ns, and AT = 10% T (6 = 0.1)
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in this case. Fig. 13 plots the Latency x Cycle-Time as a function of n for regular

pipelining, according to Eq. (5), and for optimal pipelining, according to Eq. (43)
(wave pipelining is for n = 1). For n = 5 and n = 8, optimal pipelining has the best
performance. For n between 10 and 19, the performance of optimal pipelining is close
to regular pipelining. This is due to the fact that the overhead for optimal pipelining
is affected by the length of the transparent period. For n > 19, the number of waves
for optimal pipelining is one, as in regular pipelining. Compare the plots of Fig. 13
with Fig. 11.
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Figure 13: Regular and Optimal Pipelining as a function of the number of pipeline
stages using transparent latches

10 Example Application: a 16 x16 multiplier

In order to evaluate the performance of wave pipelining in a real application, a 16 x16
wave-pipelined integer multiplier was built in CMOS technology. Fig. 14(a) shows a
block diagram of the circuit including the main building blocks. For details on the

N
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[ Pipeline I Clock-Period [ Speed-up ] Stages ] Latency ] Latency x Cycle-Time I

No 10.ins Ix 1 10.1ns 102ns?
Regular 2.Tns 3.7x 6 16.2ns 43.7ns?
Wave 1.45ns 7.0x 7 10.2ns 14.8ns?

Table 3: Performance comparison between regular and wave pipelining

construction of the layout, equalization of path delays, and simulation results, see [4].
Fig. 14(b) shows the scheme of a regular pipelined version of the same multiplier where
the logic is divided into 6 stages. One stage of this structure was built and simulated,
so its overall performance can be predicted and compared with wave pipelining. In
both designs, edge-triggered registers were used.
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Figure 14: 16x16 Multiplier: (a) wave pipelining, (b) regular pipelining

The parameters of the system, measured through circuit simulation, are T' = 9.0ns,
H = 12ns, H = 0.7ns, and AT = 0.7Tns. Since AT < H, according to con-
straint (28), a factor of 2 at least is expected for the Latency x Cycle-Time in favor
of wave pipelining.

Table 3 summarizes the main features of each design. The numbers for the non-
pipeline implementation correspond to the same circuit used in wave pipelining but
clocked in a conventional way (only one wave at a time). They are included to
show the speed-up of the two pipelined designs. The ratio LC(w.p)/LC(o0.p.) is
43.7/14.8 = 2.95, which shows the better performance of wave pipelining and confirms
what is predicted by the theory. In practice, considering effects not accounted for in
simulations, a ratio close to 2 is expected.

Waveforms obtained in the simulation are shown in Fig. 15 for wave pipelining. The
latency and the clock period are indicated in the figure. Compare the waveforms with
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the timing diagram shown in Fig. 7. The number of waves in the pipeline is 7, thus
the latency is equal to 7 clock cvcles.
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Figure 15: Waveforms for the wave-pipelined multiplier obtained through simulation
(16 waveforms from 16 outpus of the multiplier and the clock signal are superimposed)

[n the regular pipelined design, the partition of the logic into 6 stages was chosen
for practical reasons, since in this way nearly all stages have one functional block
with equal delay, except for the last two stages where the Carry Propagate Adder is
split into two parts to equalize the delay of each section [4]. Theoretically, this is not
the optimum partition. Since T = 9.0ns, and H = 1.2ns, according to Eq. (6), the
optimal partition would be |9.0/1.2] = 7. In this case the Latency x Cycle-Time
could be reduced from 43.7ns? to 40.8ns? (7% improvement). However, a partition
into 7 stages would complicate the optimization of each stage, resulting in additional
quantization overhead.

11 Concluding Remarks

This paper provides approximate models which can be used as a first-order approx-
imation for the optimization of pipelined systems and as a way of understanding
the trade-offs between conventional and wave pipelining. A comparative study and
sensitivity analysis was presented of conventional and wave pipelined circuits with
different overheads.

Pipeline optimization was achieved by minimizing the product Latency x Cycle-Time
of a circuit. This product was first evaluated for regular and wave pipelining using
edge-triggered registers. An upper-bound was derived for the difference between max-
imum and minimum delay which is necessary (although not sufficient) to guarantee
that wave pipelining achieves a better Latency x Cycle-Time than regular pipelining.
If for practical limitations, the difference in delay cannot be reduced below this upper
bound, it was also demonstrated that the combination of the two techniques yields
optimal results. The results were extended for the case of transparent latches. The
same conclusions apply, except that the wave pipelining operation is constrained by

o
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the length of the transparent period. Finally, an application of wave pipelining, a
16 x 16 multiplier, was described and compared with a regular design.

In practice, assumptions such as constant register overhead and zero quantization
overhead are not true in general. Once a techniqueis chosen and a number of segments
is found using approximate methods, further optimizations can be performed. For
instance, non-uniform partitions and intentional clock skew can be used [10].
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13 Appendix A: Optimum Partition for Optimal
Pipelining |

The relative minimums of the function LC given by Eq. (38) can be computed analyt-

ically considering that function LC' is monotonic between discontinuities (see Fig. 10).

If the interval of n for a given N is known, one limit of the interval yields a relative
minimum for LC.

According to Eq. (37), values of n and N are related as follows:

(1—68/2)T/n+H — /2

min{tm{}

N<1/2+ <N +1 (46)

Replacing min{tcx} with 6§ 7'/n + H’, the above inequalities can be expressed as:

N < T/n+ H

LT 47
S5t <N (47)

Solving each side of the above inequalities, the interval for n can be derived. The
result is given by:

L (N+18T (1 =-N§T
N+ OH -0 ~" = NH -H

(48)

[\
oL



[N] n [ Latency x Cycle-Time |

2 180 202.5ns?
3135 173.6ns?
4 120 180.0ns?
5 112 209.9ns?
6| 8 243.0ns?
715 315.0ns?
8 2 655.4ns?
9 (1 1136.1ns?

Table 4: Partitions which yield relative minimums in the product Latency x Cy-
cle-Time for optimal pipelining

Since LC is monotonically decreasing, the right limit of the interval yields the mini-
mum LC. From constraint (48), n is computed as:

o l(l — Né) TJ (49)

NH' — H

The value of N to compute n above is defined as the maximum number of waves
allowed in one section of the logic for a given partition. The range of possible values
of N is determined as follows. From the left-hand side of constraint (47), for n = 1,
max{N} = |(T + H)/(6 T+ H")|, and for n = oo, max{N} = [H'/H]. Thus, n is

computed between these two limits.

In the case where T' = 100ns, H = H' = 1ns, and 6§ = 0.1, the maximum number
of waves per section range from [1/1] =1 to [(100 +1)/(10 +1)] = 9. The relative
minimums, computed with Eq. (49), are given in Table 4 for N > 2. The absolute
minimum if found for n = 35.
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