
ANALYZING AND TUNING MEMORY PERFORMANCE

IN SEQUENTIAL AND PARALLEL PROGRAMS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studi es

of stanforduniversi ty

in partial fulfi llment of the requirements

for the degree of

doctor of phi losophy

By

Margaret Rose Martonosi

January 1994

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Anoop Gupta
(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Thomas Anderson

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Albert Macovski

Approved for the University Committee

on Graduate Studies:

ii

Acknowledgments

In this section I gratefully acknowledge some of the people who offered me help through-

out graduate school.

First, I thank my advisor, Professor Anoop Gupta, whose work ethic and passion for

perfection offer such a strong example for all of his graduate students. His many insights

and comments on the research, papers, and talks that led to this dissertation have been

important to me as I made the transition from student to researcher. I am also grateful to

my associate advisor, Professor Thomas Anderson, for his input and encouragement along

the way. Professor Monica Lam offered useful suggestions for the work as a member of

my thesis orals committee. Thanks also to Professor Albert Macovski for serving as my

third reader and for chairing my orals committee.

I gratefully acknowledge the financial support given me by a fellowship from the

National Science Foundation and research funding from the Advanced Research Projects

Agency.

Members of the Stanford DASH group made contributions which helped this work

as well. Dr. Stephen Goldschmidt developed the Tango Lite system which has been so

useful in building MemSpy, as well as in so much other Stanford research. Dr. Edward

Rothberg, Maneesh Agrawala, Phil Lacroute and others contributed applications which

formed MemSpy case studies.

My good friends Dr. Paul Barbone, Brendan Del Favero, and Chris Pohalski spiced

up life here at Stanford, and Brendan deserves special mention for proofreading a draft

of this work in the final days. Thanks also to fellow CIS denizens Don Ramsey and Phil

Lacroute, for the fun ski trips and crossword puzzle lunches, and also to Tony Todesco,

for being such a considerate officemate and kind friend. My housemates at 167 Hillside

iii

have been great as well — particularly Jeff Welser, who had the decency to graduate

after me! Finally, I especially want to acknowledge two fellow EE women: Dr. Susan

Lord and Kathy Richardson, for all their friendship and understanding along the way.

My family has also been amazingly supportive of me all along. Thanks to my sister

Susan and my brother Anthony for the amusing phone conversations and glimpses of

life outside academia, and also to my aunt, Leonore Gouvea, who has always been such

an enthusiastic cheerleader. I am especially grateful to my sister Mary Anne and her

husband Dan. They made me feel welcome to stop by their house in Redwood City

anytime, provided me with lots of fun distractions (the dearest of which is my two year

old nephew Stephen!), and dished up a lot of free meals.

Most of all, I thank my parents, Anthony and Mary Martonosi, who always placed

such a high priority on the growth and education of their four children. As I complete

this dissertation, I dedicate it to them with more love and gratitude than I can express

here.

iv

Contents

Acknowledgments iii

1 Introduction 1

1.1 Problem Statement: 2

1.1.1 Using Memory Hierarchies to Mask Latencies: : : : : : : : : : 3

1.1.2 Improving Cache Performance: : : : : : : : : : : : : : : : : : 4

1.2 Thesis Statement: 6

1.2.1 Contributions : 6

1.3 Organization: 8

2 Tuning Program Memory Behavior 10

2.1 Common Memory Performance Bugs: : : : : : : : : : : : : : : : : : : 10

2.1.1 Cache Interference: 11

2.1.2 Poor Spatial Locality : 13

2.1.3 Interprocessor Sharing: 15

2.1.4 Summary : 18

2.2 Information for Tuning Memory Bottlenecks: : : : : : : : : : : : : : : 18

2.2.1 Data and Code Oriented Statistics: : : : : : : : : : : : : : : : : 19

2.2.2 Memory Statistics on Causes of Cache Misses: : : : : : : : : : 20

2.2.3 Hierarchies of Presentation: 21

2.3 Chapter Summary: 22

3 Case Studies 24

3.1 Sequential Case Study: Matrix Multiply: : : : : : : : : : : : : : : : : 25

v

3.1.1 Problem Description: 25

3.1.2 Tuning Using MemSpy: 26

3.1.3 Example Summary: Matrix Multiply: : : : : : : : : : : : : : : 31

3.2 Parallel Case Study: Tri: 32

3.2.1 Problem Description: 33

3.2.2 Tuning Using MemSpy: 34

3.2.3 Example Summary: Tri: 45

3.3 Chapter Summary: 47

4 Implementation Issues 49

4.1 MemSpy Data Collection: 49

4.1.1 Simulator Implementation: 50

4.2 Data and Code Oriented Statistics: 51

4.2.1 Code Oriented Statistics: 52

4.2.2 Data Oriented Statistics: 54

4.2.3 Organizing Statistics into Bins: : : : : : : : : : : : : : : : : : 56

4.2.4 Mapping Current Procedure to a Statistics Bin: : : : : : : : : : 59

4.2.5 Mapping Current Data Address to a Statistics Bin: : : : : : : : 59

4.2.6 Naming Issues in Data and Code Oriented Statistics: : : : : : : 62

4.2.7 Statistics on Causes of Cache Misses: : : : : : : : : : : : : : : 64

4.2.8 Statistics on Causes of Cache Replacements: : : : : : : : : : : 66

4.2.9 Discussion: 66

4.2.10 Summary : 69

4.3 Other Options in Data Collection: 70

4.4 Chapter Summary: 72

5 Performance 74

5.1 Performance Measurement Setup: 75

5.1.1 Simulator Characteristics: 75

5.1.2 Benchmark Applications: 76

5.2 Performance of Baseline MemSpy Implementation: : : : : : : : : : : : 79

5.2.1 MemSpy Performance on Sequential Benchmarks: : : : : : : : 80

vi

5.2.2 MemSpy Performance on Parallel Benchmarks: : : : : : : : : : 84

5.3 Performance Optimizations: 86

5.3.1 Statistics on Cache Misses Only: : : : : : : : : : : : : : : : : 86

5.3.2 Hit Bypassing : 88

5.4 Simulator Accuracy and Completeness: : : : : : : : : : : : : : : : : : 91

5.4.1 Stack Reference Filtering: 92

5.4.2 Virtual vs. Physical Addresses: : : : : : : : : : : : : : : : : : 93

5.4.3 Relaxed Event Ordering : 93

5.4.4 Operating System References: : : : : : : : : : : : : : : : : : : 94

5.4.5 Multiprogramming References: : : : : : : : : : : : : : : : : : : 95

5.5 Chapter Summary: 96

6 Optimizing MemSpy Performance Using Sampling 97

6.1 Motivation : 98

6.2 Background : 99

6.2.1 Performance Issues: 101

6.2.2 Accuracy Issues: 101

6.3 Time Sampling in Sequential Programs: : : : : : : : : : : : : : : : : : 104

6.3.1 Accuracy vs. Number of Samples: : : : : : : : : : : : : : : : : 105

6.3.2 Accuracy vs. Cache Size: 109

6.3.3 Accuracy vs. Sample Length: : : : : : : : : : : : : : : : : : : 111

6.4 Time Sampling in Parallel Programs: : : : : : : : : : : : : : : : : : : 114

6.5 Sampling-Induced Error in MemSpy Metrics: : : : : : : : : : : : : : : 118

6.5.1 Memory Stall Breakdown by Procedure-Data Pairings: : : : : : 118

6.5.2 Causes of Cache Misses: 120

6.6 MemSpy Performance Using Sampling: : : : : : : : : : : : : : : : : : 121

6.6.1 Implementation : 122

6.6.2 Performance: 123

6.6.3 Discussion: 124

6.7 Discussion: 125

6.7.1 Avoiding Periodic Behavior: 125

vii

6.7.2 Incorporating Other Forms of Sampling: : : : : : : : : : : : : : 125

6.8 Chapter Summary: 127

7 Related Work 128

7.1 Performance Monitoring Tools: 128

7.1.1 Gprof : 129

7.1.2 Mtool : 130

7.1.3 SHMAP : 131

7.1.4 CPROF : 132

7.2 Reference Trace Sampling: 132

7.3 Chapter Summary: 134

8 Conclusions 135

8.1 Contributions: 135

8.2 A Broader Perspective: 138

8.3 Future Directions : 140

8.3.1 Improving Simulator Performance Through Static Analysis: : : 141

8.3.2 Broadening Targeted Usage: 141

A Additional Case Studies 143

A.1 Simulator Description: 143

A.2 LocusRoute : 144

A.2.1 Initial MemSpy Output : 145

A.2.2 Reducing False Sharing: 147

A.3 Vrender : 149

A.3.1 Sequential Vrender Code: 150

A.3.2 Parallel Vrender Code: 153

B MemSpy User Interface 159

B.1 Initial Statistics : 159

B.2 Full Stall Time Breakdown : 160

B.3 Data Breakdowns : 162

viii

B.4 Detailed Statistics Displays: 162

B.4.1 Read, Write Breakdowns: 162

B.4.2 Causes of Cache misses: 164

B.5 Causes of Replacements: 164

Bibliography 167

ix

List of Tables

3.1 Tri: Summary of MemSpy output throughout tuning sequence.: : : : : : 45

3.2 Tri: Summary of simulated performance throughout tuning sequence.: : 47

5.1 Sequential application characteristics. Measured for a 128KB direct-

mapped cache with 32 byte lines.: 77

5.2 Parallel application characteristics. Measured using 16 processors, each

with a 64KB direct-mapped cache with 32 byte lines.: : : : : : : : : : 78

5.3 Sequential Applications: MemSpy performance when simulating a 128KB

direct-mapped cache.: 80

5.4 Sequential applications: Overhead incurred by each type of instrumented

MemSpy event, as a percentage of total MemSpy overhead.: : : : : : : 81

5.5 Sequential applications: Overhead incurred by each category of memory

reference processing overhead, as a percentage of total MemSpy overhead

due to memory reference processing.: : : : : : : : : : : : : : : : : : : 82

5.6 Parallel Applications: MemSpy performance when simulating 16 proces-

sors, each with a 64KB direct-mapped cache.: : : : : : : : : : : : : : : 84

5.7 Parallel applications: Overhead incurred by each category of memory

reference processing overhead, as a percentage of total MemSpy overhead

due to memory reference processing.: : : : : : : : : : : : : : : : : : : 85

6.1 Sequential applications: Overhead incurred by memory reference pro-

cessing and procedure logging, as percentages of total MemSpy overhead

using hit bypasssing.: 99

x

6.2 Parallel applications: Overhead incurred by memory reference processing

and procedure logging, as percentages of total MemSpy overhead using

hit bypasssing.: 99

6.3 Estimated and true miss rates for sequential applications with 128KB

direct-mapped cache. Measured using a 10% sampling ratio and 0.5M

references per sample.: 105

6.4 Estimated and true miss rates for parallel applications. Measured with

16 processors and 64KB direct-mapped cache per processor, using a 10%

sampling ratio and 3M references per sample.: : : : : : : : : : : : : : 115

6.5 Relative error versus number of processors, where each processor has a

64KB direct-mapped cache. Measured using a sampling ratio of 10% and

3M references per sample. The error is presented relative to the true miss

rate within samples.: 117

6.6 MemSpy memory bottleneck listing for MatMul.: : : : : : : : : : : : : 120

6.7 MemSpy memory bottleneck listing for Cholesky.: : : : : : : : : : : : 121

xi

List of Figures

1.1 Processor and memory performance trends: 1980 to 1992.: : : : : : : : 2

1.2 Uniprocessor memory hierarchy.: 3

2.1 Decomposing programs into data and code statistical bins.: : : : : : : : 19

2.2 Hierarchies of focus in data oriented tools.: : : : : : : : : : : : : : : : 22

3.1 Pseudo-code for blocked matrix multiply example.: : : : : : : : : : : : 26

3.2 Reference patterns in blocked matrix multiply.: : : : : : : : : : : : : : 26

3.3 MatMul: MemSpy overview statistics display.: : : : : : : : : : : : : : 27

3.4 MatMul: Memory stall time in theblock procedure attributed to theX,

Y, andZ matrices. : 28

3.5 MatMul: MemSpy detailed statistics onY matrix in theblock procedure. 30

3.6 MatMul: Causes of replacements forY matrix in theblock procedure.: 31

3.7 Self interference in blocked matrix.: 32

3.8 Serial pseudo-code for Tri.: 33

3.9 Pseudo-code for parallel Tri implementation.: : : : : : : : : : : : : : : 34

3.10 Tri: MemSpy overview statistics for original parallel code.: : : : : : : : 36

3.11 Tri: MemSpy data breakdown for original parallel code.: : : : : : : : : 37

3.12 Tri: MemSpy detailed statistics for theM.nz data structure.: : : : : : : 38

3.13 Tri: MemSpy overview statistics for step one.: : : : : : : : : : : : : : 39

3.14 Tri: MemSpy detailed statistics for thex vector in step one.: : : : : : : 40

3.15 Tri: MemSpy detailed statistics for theready vector in step one.: : : : 41

3.16 Tri: MemSpy causes of replacements forx in step one. : : : : : : : : : 42

3.17 Tri: MemSpy causes of replacements forready in step one. : : : : : : 43

xii

3.18 Tri: MemSpy overview statistics after step two.: : : : : : : : : : : : : 44

3.19 Tri: MemSpy data breakdown after step two.: : : : : : : : : : : : : : : 44

3.20 Tri: MemSpy data breakdown forx after step three.: : : : : : : : : : : 46

4.1 MemSpy memory reference instrumentation.: : : : : : : : : : : : : : : 51

4.2 Maintaining one bin per memory range in LocusRoute.: : : : : : : : : : 55

4.3 Maintaining one bin per source code line in LU Decomposition.: : : : : 55

4.4 MemSpy approach to data binning in LocusRoute and LU Decomposition. 57

5.1 Sources of MemSpy instrumentation overhead.: : : : : : : : : : : : : : 82

5.2 MemSpy performance when not gathering statistics on cache hits.: : : : 87

5.3 Bypassing registers saves and restores on cache hits.: : : : : : : : : : : 89

5.4 MemSpy performance with hit bypassing.: : : : : : : : : : : : : : : : : 90

6.1 Time samples in an application reference trace.: : : : : : : : : : : : : : 100

6.2 Varying number of samples taken, while holding sampling ratio constant. 102

6.3 Cache priming and unknown references in time sampling.: : : : : : : : 103

6.4 Absolute sampling error as a function of the number of samples taken.

Measured using a 10% sampling ratio and simulating a 128KB direct-

mapped cache.: 106

6.5 Relative sampling error as a function of the number of samples taken.

Measured using a 10% sampling ratio and simulating a 128KB direct-

mapped cache.: 107

6.6 True miss rate over time in the sequential applications. The time axis is

numbered as a cumulative count of program references.: : : : : : : : : 108

6.7 Relative sampling error as a function of cache size for a sampling ratio

of 10% and a sample length of 0.5M references.: : : : : : : : : : : : : 110

6.8 Absolute deviation between true and estimated cache miss rates for 1MB

direct-mapped cache. Measured using a 10% sampling ratio and 0.5M

references per sample.: 111

6.9 Relative error as a function of sample length for 1MB direct-mapped caches.113

xiii

6.10 Sample length required to achieve less than 10% relative error, as a func-

tion of cache size.: 114

6.11 Relative error as a function of the number of processors, while holding

total cache constant at 1MB. Measured using a 10% sampling ratio and

3M references per sample.: 116

6.12 Inlined assembly code for sampling.: 122

6.13 MemSpy performance overhead using sampling and hit bypassing.: : : 123

8.1 Application characteristics and MemSpy usage.: : : : : : : : : : : : : : 139

A.1 LocusRoute: Initial MemSpy output display.: : : : : : : : : : : : : : : 145

A.2 LocusRoute: Detailed MemSpy output forstatic data . : : : : : : : 146

A.3 LocusRoute:GetNewRoute code. : 147

A.4 Static variable definitions prone to false sharing.: : : : : : : : : : : : : 148

A.5 Static variable definitions restructured to reduce false sharing.: : : : : : 148

A.6 LocusRoute: MemSpy output display after restructuring.: : : : : : : : : 149

A.7 Vrender: Initial MemSpy output display.: : : : : : : : : : : : : : : : : 150

A.8 Vrender: MemSpy data display for initial sequential code.: : : : : : : : 151

A.9 Vrender: Detailed MemSpy output forcm opcflt . : : : : : : : : : : : 152

A.10 Vrender: MemSpy output display for optimized sequential code.: : : : : 153

A.11 Vrender: MemSpy output display for initial parallel code.: : : : : : : : 154

A.12 Vrender: MemSpy data display for initial parallel code.: : : : : : : : : 155

A.13 Vrender: Detailed MemSpy output forresample buffervalid . : : 156

A.14 Vrender: MemSpy output display after tuning step 1.: : : : : : : : : : : 157

B.1 Initial MemSpy output display.: 160

B.2 Detailed display of overall statistics.: : : : : : : : : : : : : : : : : : : 161

B.3 Full stall time breakdown display.: 163

B.4 Data breakdown display.: 164

B.5 Detailed display.: 165

B.6 Causes of replacements display.: 166

xiv

Chapter 1

Introduction

Processor speeds in modern computers are improving at a much faster rate than main

memory speeds, and as a result, relative latencies from processors to main memory have

increased. In uniprocessors, main memory latencies can be tens of processor cycles, while

in multiprocessors, latencies can be over a hundred cycles. These figures are likely to be

even larger in the future. Architects have responded to this trend by introducing memory

hierarchies, where one or more levels of cache are imposed between the processor and

main memory. However even with these hierarchies, many programs still have poor

performance due to memory stalls.

To improve program memory performance, compilers and programmers can often

transform the application so that its memory referencing behavior takes better advantage

of the memory hierarchy. The challenge in performing these transformations, however,

is that an application’s referencing behavior and interactions with the memory system are

often difficult to statically analyze or reason about. The high-level information collected

by many existing performance monitoring tools is often not sufficiently detailed to analyze

specific memory performance bugs. Thus, the focus of this work is on devising techniques

to efficiently collect detailed statistics on application memory behavior and to effectively

organize the large volumes of data collected. This information can then be used to

guide programmers or compilers towards the program transformations that will be most

effective in improving program performance.

1

CHAPTER 1. INTRODUCTION 2

1.1 Problem Statement

Ultimately, the motivation for this research stems from trends in processor and main

memory speeds. For more than a decade, improvements in processor cycle times have

outpaced improvements in Dynamic RAM (DRAM) speeds [HP90, CWN92, HJ91]. To

illustrate this, Figure 1.1 plots trends in processor and DRAM performance from 1980

to 1992 [HP90]. The data (from 1990) indicate that high-performance processors have

been improving by a factor of 100% per year since 1985 and extrapolated out to 1992.

However, improvements in DRAM speeds have not kept pace; since 1980, row access

times for DRAMS have improved at a rate of only about 7% per year.

|
80

|
82

|
84

|
86

|
88

|
90

|
92

|

1

|
|

|
|

|
|

||
|

10
|

|
|

|
|

|
||

|

100

|
|

|
|

|
|

||
|

1000

 Year

 R
el

at
iv

e
Pe

rf
or

m
an

ce Processors

Memory

� �
�

�
�

Figure 1.1: Processor and memory performance trends: 1980 to 1992.

The result is that main memory latencies in systems built with current generation

high-performance microprocessors are typically quite large. In today’s high-performance

workstations, cache miss latencies of 20 to 50 cycles are not uncommon. By comparison,

on the VAX 11/780 computer (shipped in 1978), the additional time required to service

a cache miss was less than a single instruction execution time [HP90].

In current shared-memory multiprocessor machines, latencies can be even larger.

As an example, the Stanford DASH multiprocessor [LLJ+93] arranges its processors in

clusters interconnected by a mesh. For references in which the data must be fetched

from a remote memory in another cluster, DASH has memory latencies of roughly 130

CHAPTER 1. INTRODUCTION 3

processor cycles. These higher multiprocessor memory latencies result both from the

physical distribution of the memory and from the potential contention between processors

on the shared interconnection network.

1.1.1 Using Memory Hierarchies to Mask Latencies

The most common technique for mitigating the effects of the processor-memory perfor-

mance gap is to introduce one or more levels of caches, as shown in Figure 1.2. A small,

fast, cache memory placed directly on the processor chip can feed the processor with

data, and can in turn be fed either by a larger (but slower) cache, or by main memory.

Cache hierarchies become even more important in multiprocessors, because of the typi-

cally larger memory latencies. That is, since a cache miss serviced by a remote processor

can incur over 100 cycles of delay, it becomes especially important that references to

commonly used data can mainly be serviced by the cache.

Processor

Cache1

Disk

Cache2

Memory

Figure 1.2: Uniprocessor memory hierarchy.

Caches improve the memory performance encountered by the application by taking

advantage of several types of program locality. In programs with goodtemporal locality,

once a data item has been referenced, it is very likely to be referenced again soon. Caches

CHAPTER 1. INTRODUCTION 4

take advantage of this by fetching data items when they are first referenced and storing

them in fast memory until they are replaced. As long as data are in the cache they can

be accessed with low latency.

In programs with goodspatial locality, once a data item has been referenced, other

nearby items are likely to be referenced soon. Caches take advantage of this by loading

not just the referenced word, but a group of multiple words (also called aline or block)

when a cache miss occurs. Other items in the same line can be subsequently referenced

with low latency. (We refer to this effect ascache line prefetching.)

In multiprocessors, programmers also try to exploit an additional dimension of locality.

Since operations involving remote processors or remote memories can involve time-

consuming transactions across a network, programmers often schedule tasks to localize

memory requests to a particular processor. In this way, cache misses can be reduced.

Furthermore, by appropriately placing data in local memories, misses are more likely to

be serviced by local memory, rather than remote memory, when they do occur. When

programs exploit locality in all of these ways, caches can be extremely effective at

masking the high main memory latencies.

1.1.2 Improving Cache Performance

Unfortunately although locality is essential to good application performance, many pro-

grams fail to fully exploit it. In some cases, intrinsic characteristics of the algorithm

preclude localized memory references. In other cases, poor application memory perfor-

mance is simply a result of the specific coding implementation. In either case, when a

tool gives profile information showing that memory stalls limit program performance, it

can induce the compiler or programmer to restructure the algorithm or implementation

so that it takes better advantage of the memory hierarchy.

There are several primary categories of performance “bugs” that memory profilers

can point out to programmers. For example,cache interferencearises from interleaved

references to different data structures which map into the same region of the cache.

Another potential problem,poor spatial locality, refers to cases where a program’s sparse

or irregular access patterns do not take advantage of cache line prefetching. Finally,

CHAPTER 1. INTRODUCTION 5

parallel code is subject to the same sorts of problems as sequential code, but in addition

can also have memory bottlenecks due tointer-processor communicationand excessive

sharing.

Since a large program can have many potential causes of poor memory performance,

detailed program information is needed to discernwhereand why memory bottlenecks

are actually occurring. Some of this program analysis can be performed statically. For

example, simple static compiler analysis can detect some instances of poor spatial and

temporal locality, and use techniques likeloop reorderinganddata blockingto transform

access patterns to improve the memory referencing patterns. However, the scope of such

analysis is limited mainly to scientific, loop-oriented code. When looking at a broader

class of applications, more general analysis, information, and transformations are needed.

Previous Performance Monitoring Approaches

One can look to previous performance monitoring tools to see some examples of more

general performance analysis, but very few performance monitoring tools have been

introduced specifically to identify wherememorybottlenecks are occurring. One exam-

ple, Mtool [Gol92], provides information onwhere memory bottlenecks are occurring

by presenting per-basic-block statistics on the amount of time spent on memory stalls.

However, tools providing information at this level offer no insights as towhybottlenecks

are occurring. Without more detailed information on why bottlenecks occur, it is often

difficult to discern the problem and develop a strategy for remedying it.

Moving in this direction, SHMAP [DBKF90] is an example of a performance moni-

toring tool which does provide some detailed information on application memory behav-

ior. SHMAP presents a reference-by-reference animation of the actual program memory

behavior. This animation of cache activity can allow programmers to discern memory

performance pitfalls. However the tool relies on programmers observing long animations;

it offers little summary information or support for automatically analyzing the memory

behavior. Especially in irregular, non-scientific code, reference patterns and performance

bugs may be difficult to understand through this almost purely visual (non-numeric) ap-

proach. In any case, the volume of animation data required to analyze a real benchmark

is overwhelming.

CHAPTER 1. INTRODUCTION 6

An additional limitation of approaches like SHMAP is that for collecting application

reference traces, they rely either on expensive specialized monitoring hardware, or on

simulation-based approaches. Monitoring hardware limits the generality of the tool,

since most production machines do not provide trace capturing hardware. On the other

hand, simulation-based approaches are more general, but have previously been too slow

to encourage the programmer to iterate through several program tuning steps. In this

work we address these limitations by developing MemSpy, an efficient simulation-based

implementation of a detailed memory performance profiler.

1.2 Thesis Statement

This thesis argues thatdetailedinformation on a program’s dynamic referencing behavior

is necessary to tune many memory performance bottlenecks. Furthermore, it is natural

to understand the interactions of different data structures and different code segments

by viewing statistics in terms ofboth data and code structures in the program, rather

than solely in terms of code structures. Performance monitoring tools can be crucial

in automating the collection and presentation of such program performance data. We

implement a tool, MemSpy, based on this premise.

Since efficiency is a key concern in such simulation-based performance monitoring,

we introduce and evaluate a set of optimizations which reduce the execution time overhead

required to gather such information. Thus, we are able to give detailed memory statistics

about a program at speeds that are competitive with other, less detailed approaches.

1.2.1 Contributions

This dissertation makes the following contributions:

� Data Oriented Statistics

This dissertation introduces the notion ofdata oriented statistics. Here, information

is collected and presented in terms of source level data objects with which the

programmer is familiar. Such information is orthogonal to traditional code oriented

techniques, and combining the two offers powerful new views of program behavior.

CHAPTER 1. INTRODUCTION 7

We have found that data oriented statistics can be a natural way of viewing memory

bottlenecks, since the way a program accesses memory is so intertwined with the

data structures it uses.

� Detailed Memory Performance Statistics

This work also shows the importance of detailed statistics, such as information on

thecauses of cache missesandcauses of cache replacements, when tuning memory

system behavior. Such information allows programmers to understandwhy bottle-

necks are occurring, in addition towhere they are occurring. Typical sources of

poor memory performance, such as poor spatial locality, cache interference, and

inter-processor sharing, are most easily distinguished by noting the exact causes

of the resulting cache misses. When programmers must select from many pos-

sibly useful ways of tuning code, information like this guides them towards the

transformations that will be most fruitful.

� Simulation Performance

Statistics at this level of detail are difficult to collect except by software simulation;

however tools based on memory system simulation have previously been dismissed

as being impractically slow. This work refutes that belief by implementing a tool,

MemSpy, which uses an efficient memory simulator to gather the data described

above. We present an optimization, calledhit bypassing, which specializes the

simulation of cache hits, leading to significant performance improvements. With

it, MemSpy’s simulation based approach can be implemented with roughly a factor

of 8 to 17 times overhead for sequential programs, and roughly 30 to 50 times

overhead for parallel applications.

� Reference Trace Sampling

Finally, to further optimize simulation performance, this thesis examines the use

of reference trace sampling. Unlike hit bypassing, performance optimizations from

sampling explicitly trade off small decreases in simulator accuracy for significant

performance improvements. Using sampling, cache miss rates can be estimated to

within 10% of their true value while simulating only about one tenth of the total

CHAPTER 1. INTRODUCTION 8

references of the program. Sampling further improves MemSpy’s performance,

bringing the final execution overhead down to factors of 3 to 10 for sequential code,

and roughly 8 to 25 for parallel code. That is, sequential programs that normally

run in 1 minute will take only 3 to 10 minutes to run when generating MemSpy

statistics. Since MemSpy’s detailed statistics can actually accelerate tuning by

giving programmers important insights on program bottlenecks, this overhead is

generally quite acceptable.

1.3 Organization

In Chapter 2, we begin with a discussion of common program characteristics that result

in poor memory system behavior. We then discuss the kinds of information that would

be useful in isolating and understanding such problems. Following this, in Chapter 3, we

present two case studies that demonstrate the use of such statistics to tune both sequential

and parallel applications. These case studies illustrate MemSpy’s discovery of memory

performance bugs involving cache interference and poor spatial locality.

The case studies of Chapter 3 raise interesting questions of how one determines

appropriate divisions for data oriented statistics, and how one efficiently implements

such detailed statistics gathering. Thus Chapter 4 presents the design details related to

collecting this information. We also present heuristics for aggregating information on

the individual data structures together, and the naming issues in applying labels for these

statistics aggregations.

Having demonstrated the utility of MemSpy’s memory performance profiles and dis-

cussed MemSpy’s implementation, in Chapter 5 we go on to discuss the tool’s execution

time overheads in gathering this data. This chapter introduces performance optimizations

which further reduce the execution time overhead for simulation based tools such as

MemSpy.

While the tool performance overhead after the initial optimizations in Chapter 5 is

already quite good, Chapter 6 describes an additional performance optimization: reference

trace sampling. We present results on accuracy issues in implementing sampling for both

CHAPTER 1. INTRODUCTION 9

sequential and parallel applications. We then discuss the significant performance benefits

available through sampling.

Chapter 7 discusses related work in the areas covered by this dissertation. Finally in

Chapter 8, we offer conclusions and suggest avenues for future work.

To illustrate MemSpy’s use on a broader set of performance tuning examples, Ap-

pendix A presents additional case studies using MemSpy. Finally, Appendix B presents

a full description of the statistics provided by MemSpy.

Chapter 2

Tuning Program Memory Behavior

As the relative speeds of processors and memory have diverged, memory system perfor-

mance has become an increasingly important factor in achieving good overall program

performance. The goal of this chapter is to give an understanding of ways in which

programs fail to use caches effectively, and the information required to isolate these

problems and reason about them.

We first describe the primary types of memory performance “bugs” in sequential

and parallel programs. This description in Section 2.1 also discusses the information

and statistics that programmers and compilers need to identify such performance bugs.

This drives the discussion in Section 2.2 of specific performance monitoring features

we propose for identifying where and why such bugs are occurring. Building on this,

Chapter 3 gives case studies that demonstrate these features as implemented in MemSpy.

2.1 Common Memory Performance Bugs

On modern computers it is essential that programs exhibit good memory reference locality,

in order to make good use of the caches and achieve high performance on these machines.

In reality, however, programs often access memory in ways that thatdo notmake effective

use of the memory hierarchy. The goal of this section is to outline the main ways in which

applications can fail to obtain good performance from cache systems. These performance

“bugs” stem from combinations of both (i) unfavorable referencing characteristics in

10

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 11

the programs (such as a lack of spatial or temporal locality) and (ii) implementation

constraints on the cache designs (such as limited cache associativity).

For each performance bug, we discuss the characteristics that can lead programmers

to discover the problem, and the methods for tuning it once it has been diagnosed. We use

this section’s characterizations of memory performance bugs and their tuning techniques

to drive the next session’s discussion of what information is called for in performance

debugging tools.

2.1.1 Cache Interference

The first performance bug we discuss is cache interference, which occurs when multiple

memory lines map to the same line in the cache. Thus interleaved references to these

lines may lead to conflicts in the cache, causing premature replacements of useful data.

As an extreme example of cache interference, consider a program that is performing a

vector addition on two vectors positioned such that they map into exactly the same lines

of the cache. As the program references corresponding vector elements, the elements

will interfere in a direct-mapped cache, since memory lines for both vectors will map

to the same cache line. This interference can lead to much larger amounts of memory

stall time than if the vector elements did not interfere in the cache. For example, if

four vector elements fit on a line, then without interference, cache misses need occur

only once every four references to each vector, because the lines could remain in the

cache between references. With interference, the lines will be replaced out of the cache

prematurely, and cache misses may occur on each reference to a vector element.

We find that cache interference is most prevalent when caches have low associativity,

especially in direct-mapped caches that are commonly used for primary data caches in

current processors. It is also more significant in smaller caches, where the program data

space “wraps around” the cache more often. For a data space of a given size, mapping it

into a smaller cache increases the number of memory lines that map to each cache line.

This increases the probability of a bad alignment between two data structures.

Cache interference is strongly tied to the way the data structures map into the cache

and is clearly a function of the positioning of data structures in memory. Because of this,

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 12

it can be hard for programmers to predict or reason about, since high level languages

often shelter programmers from details like the precise positioning of the program data.

Recognizing the Problem

Tools can help programmers recognize memory performance bugs by providing particular

performance information. First, leaving cache interference aside, tools can assist in

diagnosing and tuning any memory performance bug by pointing out data structures or

sections of code where the memory stall time attributed to it is both “large” in an absolute

sense, and “larger than expected” in a relative sense. That is, if a data structure has a

“large” memory stall time, but this stall time is expected and unavoidable, then this is not

a performance bug. Conversely, if the data structure has a “larger than expected” share

of the stall time, but its share is not significant to program performance in an absolute

sense, then the performance bug is of little consequence. While the tool often cannot

directly point out “larger than expected” stall times, programmers can use the size of the

data structure and the access pattern to reason about the expected memory behavior.

Beyond this, the specific bug of cache interference is recognized by seeing that the

cache misses are primarily caused by replacements. That is, data items were previously

in the cache, but were prematurely replaced out of the cache before the re-reference that

caused the miss.

To fully understand and eliminate a problem of cache interference, one also needs

to ascertain whether the problem is one ofcross-interferenceor self-interference. In

cross-interference, the memory corresponding tomultiple data structures is conflicting

in the cache, leading to interference. In self-interference, different portions of thesame

data structure interfere in the cache. Tools can help programmers distinguish these two

cases by providing information on the data structure causing the cache replacements.

Information on the causes of replacements is important because it guides the programmer

towards an appropriate tuning fix.

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 13

Tuning the Memory Behavior

Once cache interference has been diagnosed, program transformations can be used to

reduce or eliminate the effect. In some cases the interference occurs because of a specific

alignment between two data structures. In such cases, the interference can be reduced by

adding additional code that checks the alignment of the two data structures when they

are allocated, and offsets one data structure slightly if needed to avoid cache conflicts.

In other cases, interference sometimes occurs because the referenced memory regions

are not stored contiguously, and thus are more likely to wrap-around in the cache and

possibly interfere. For example, in the blocked matrix multiply case study in Chapter 3,

non-contiguously stored rows in the sub-block of the matrix interfere with each other in

the cache. By copying the current sub-block so it is contiguously stored in a separate

buffer, the probability of wrap-around is reduced, and the incidence of cache interference

is diminished as well.

2.1.2 Poor Spatial Locality

A second class of memory performance bugs stems from a lack of spatial locality in

the application reference behavior. In programs displaying good spatial locality, once an

item is referenced, items nearby in memory will also tend to be referenced soon. Caches

take advantage of this by fetching data in multi-word lines, rather than fetching single

words as they are accessed.

For example, unit stride accesses through a vector show very good spatial locality.

They take advantage ofcache line prefetchingbecause a miss to the first element in a

particular line brings an entire line of elements into the cache, and subsequent references

to elements on the same line are more likely to be hits.

Examples of poor spatial locality fall into several categories. An extreme example

of poor spatial locality is the case of accessing a two dimensional array in row-major

order when its elements are stored in column-major order, or vice versa. More generally,

non-unit strides through data structures reduce spatial locality compared to unit stride

accesses. This is because a series of non-unit stride accesses will not touch as many of

the data items on a single cache line before moving on to the next cache line.

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 14

Spatial locality can also be degraded when data items referenced close to each other in

time are stored as non-contiguous data structures. For example, in the Vrender application

in Appendix A, three arrays are used to hold three different attributes about each point in a

two dimensional space. An element of each of these arrays is accessed on each iteration

of a loop, but between iterations the values are likely to be replaced from the cache.

By merging the three arrays into a single data structure with three attributes per array

element, all positioned on the same cache line, the programmer was able to significantly

improve the spatial locality of the application. As these examples show, spatial locality

is of primary importance when a data structure does not fit in the cache or is unlikely

to remain in the cache between usages. When a data structure remains in the cache and

is referenced several times, poor spatial locality on the references that bring it into the

cache can be offset by good hit rates on subsequent references.

The problem of poor spatial locality often becomes even more pronounced in parallel

code. When parallelizing code, data structures that were stored and accessed contiguously

in the sequential case can become distributed over several processors in the parallel case.

Thus, even though the data structure as a whole may be stored in a contiguous region

in shared memory, each individual processor may use non-contiguous regions. The Tri

example in Chapter 3 gives an example of such a performance bug, and a reordering

heuristic that was used to fix the problem.

Recognizing the Problem

As with cache interference, the first step towards recognizing poor spatial locality is

to notice a data structure making a large contribution to the total program stall time.

Although this does not always indicate a performance bug (it could simply indicate

unavoidable memory stalls for this data structure), it does indicate places where program

tuning, if needed, will be most fruitful. Beyond this, poor spatial locality can sometimes

be diagnosed due to a large number of first reference misses for a particular data structure.

However, if the poor spatial locality occurs in a phase after the data has been initialized,

then the causes of the misses may not be indicative of the problem.

One piece of information that may be useful in identifying poor spatial locality is

information indicating what fraction of data words on a particular line were touched

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 15

before the line left the cache. This would give an indication of the effectiveness of cache

line prefetching in pulling in data items that are actually used later. Unfortunately, this

is not a foolproof approach for identifying poor spatial locality, since instances of cache

interference or processor sharing (defined in the next subsection) can also cause a line to

be removed from the cache before multiple words have been referenced from it.

Finally, information on reference stride can also be helpful in isolating some cases

of poor spatial locality. An example of this might be statistics on the stride distance and

data structures involved in adjacent accesses, accesses that are two references apart, three

references apart, and so on. By providing summarized averages of stride information,

users may be able to glean information on (i) strided accesses within a data structure,

as well as (ii) typical interleavings of references to different data structures. The former

information could be useful in determining when loop transformations or data reorderings

within a data structure are warranted. The latter could be useful in determining when

disjoint data structures could be merged for better performance.

Tuning the Memory Behavior

In general, one can say that poor spatial locality occurs when a program’s data access order

is not highly correlated with the data storage order. Thus, tuning fixes for spatial locality

generally involve either reordering data accesses to match storage order, or reordering data

storage to match access order. Techniques which reorder data accesses include compiler

transformations like loop reordering and data blocking. Techniques which reorder data

storage include the array merging technique used in Vrender (Appendix A) and the matrix

row reordering heuristic used in Tri (Chapter 3). When the reorderings are feasible, they

can provide for a better match of access and storage order leading to good memory

performance.

2.1.3 Interprocessor Sharing

Finally, we discuss cache misses due to interprocessor sharing, one of the leading causes

for poor memory system performance in shared memory parallel programs. In shared

memory multiprocessors, multiple processors may each simultaneously hold the same

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 16

memory item in their local caches. Cache coherence protocols are used to maintain

consistency among the data cached by each processor, by requiring update or invali-

date operations to be performed after one processor modifies a particular cache line. In

these operations, other caches in the system are notified of the write operation, and if

they are caching the same memory line, they update its value or invalidate it from the

cache. In this dissertation, we primarily treat the invalidation based coherence model

since it is more commonly implemented in production multiprocessors. However, exces-

sive interprocessor sharing exacts a performance cost under both update and invalidate

protocols.

Interprocessor sharing can be categorized as eithertrue sharingor false sharing. The

first category, true sharing, occurs when multiple processors are actively reading and

writing the same data item. Since shared data is the basic vehicle for interprocessor com-

munication in shared memory parallel programs, memory stalls due to sharing are often

unavoidable. Programs can often be restructured, however, to minimize the communi-

cation required. For example, communication in parallel programs can often be reduced

by assigning parallel tasks to processors in ways that localize data usage to particular

processors. True sharing becomes especially significant in large-scale multiprocessors,

because in these machines, cache misses following an invalidation can incur memory

latencies of one hundred cycles or more.

The second category, false sharing, refers to the situation where multiple processors

are actively reading and writingdifferentvariables on the same cache line. For example,

this can happen when distinct elements of an array are used by different processors, but

stored on a single cache line. Even though the processors may not be writing to the same

array elements, coherence protocols will be executing transactions to keep the line’s value

consistent in all caches. False sharing becomes increasingly important with the general

trend towards longer cache lines in multiprocessors, because of its dependence on the

number of data items in a cache line.

Recognizing the Problem

Excessive sharing is recognized by noticing data structures with a large number of misses

caused by invalidations. By separating information in a data structure oriented way, and

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 17

providing information on the causes of cache misses, tools can greatly help in recognizing

performance bugs like this.

To distinguish true sharing from false sharing, one needs further information that

identifies the cause of the invalidation. Recall that false sharing occurs when a processor’s

copy of a cache line is invalidated even though the processor is not using the specific

address from the cache line that caused the invalidation. Thus, false sharing can be

distinguished from true sharing by tracking the bytes in the cache line that have actually

been referenced by a particular processor, and comparing these to the address causing

the invalidation. If the processor has not referenced the “invalidating” address since the

line has been in the cache, then the invalidation is due to false, rather than true, sharing.

Tuning the Memory Behavior

Performance tuning for true and false sharing requires different approaches. Reducing

true sharing is typically accomplished by restructuring the algorithm or implementation

to localize the usage of particular memory regions to particular processors. For example,

in the parallel version of Vrender discussed in Appendix A, the programmers assign

particular portions of the image data to the same processor for computation in each of

several iterations.

A key tradeoff in reducing true sharing is the balance between improving data locality

and improving task load balancing. For example, when the amount of processing time

required by particular parallel tasks is not known in advance, parallel programs typically

distribute tasks dynamically to processors to balance the work done. Constraining task

distribution in order to enforce data locality may degrade the performance through load

imbalances more than it improves the performance through locality. One of the contri-

butions of dynamic program monitoring tools is that they allow the user to actively test

and compare different approaches, to achieve a balance between load balancing and data

locality.

In tuning false sharing, one generally attempts to reorder either accesses or storage

such that a particular cache line is mainly accessed by a single processor. In some

cases this may involve high level algorithm or implementation changes to localize the

task assignments. In other cases this may involve merging data structures (such as

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 18

described in the LocusRoute example in Appendix A), to group together variables used by

particular processors. Finally, when neither of these approaches is feasible, programmers

or compilers can choose to pad variable definitions (for example, array elements) with

extra dummy variables such that all the data on a particular cache line is likely to be

accessed by only one processor, and no data used by other processors fits on that line.

Of course the benefits of this latter approach have to be balanced against the drawback

that it leads to overall increases in the program data space.

2.1.4 Summary

The goal of this discussion was to outline the primary categories of poor application

memory performance, and discuss how to reorganize applications to fix them. While

particular application characteristics may sometimes prevent tuning, some tuning fixes

for these problems are quite trivial. Techniques like reordering loops to improve spatial

locality or realigning data structures to reduce cache interference require little effort from

the programmer, and can sometimes even be automated in the compiler.

In working with a collection of sequential and parallel applications we have found

that even in cases when tuning a performance bug is not trivial per se,diagnosingthe

problem without proper tools is often more difficult than actually tuning it. For example,

solutions like data structure merging in Vrender in Appendix A are relatively easy once

the particular problem (in this case poor spatial locality) is identified by MemSpy. We

see this as a strong argument for the development of detailed, data oriented tools capable

of isolating and analyzing memory performance bugs.

2.2 Information for Tuning Memory Bottlenecks

Overall our experiences tuning sequential and parallel applications have shown that the

key issue in developing performance tuning tools is to be able to indicate to programmers

wherethe performance bottlenecks are andwhy they are occurring. From this informa-

tion, programmers can often restructure or transform the code to improve the memory

performance.

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 19

The following three subsections discuss the features we propose for locating and

understanding memory performance bugs in sequential and parallel programs. These are

(i) data and code oriented statistics, (ii) statistics on the causes of cache misses, and

(iii) hierarchical data presentation.

2.2.1 Data and Code Oriented Statistics

To provide information onwhereperformance bottlenecks are occurring, MemSpy pro-

vides high-level performance statistics broken down into both data oriented and code

oriented subsets.Data oriented statisticsare statistics presented in terms of source-level

application data structures. Traditionally, performance tools have provided statistics only

in terms of code structures such as procedures or basic blocks.

Figure 2.1 gives an abstract illustration of possible code oriented and data oriented

subdivisions. While code oriented statistics only divide program statistics along one

dimension, the key contribution of data oriented statistics is that they allow for statistics

to be presented along a second dimension of this space, by subdividing the program into

different data divisions. Data oriented statistics can be crucial to reasoning about memory

behavior, and combinations of data and code oriented statistics are often instrumental in

isolating particular memory bottlenecks.

Code

Data

Variables,
Data classes,
...

Procedures, loops, source lines

Figure 2.1: Decomposing programs into data and code statistical bins.

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 20

Fundamental design issues for data oriented (as well as code oriented) statistics lie in

determining a natural granularity at which to present application statistics. Chapter 4 will

discuss these implementation issues, the mapping techniques we propose for organizing

these statistics, and the naming issues that arise in our approach.

2.2.2 Memory Statistics on Causes of Cache Misses

After determining where program bottlenecks lie, users need progressively more detail

to understandwhy bottlenecks are occurring. Detailed statistics summarizing the fre-

quency and causes of cache misses are quite useful for understanding and fixing memory

bottlenecks.

As discussed in Section 2.1, cache misses occur for one of three reasons. First

reference misses occur when a particular memory line has not been referenced before,

and thus is not in the cache. Replacement misses occur when a particular memory line

has been referenced before, but has been replaced out of the cache by another line.

Invalidation misses occur in parallel programs when a particular memory line has been

referenced before, but was invalidated out of the cache by another processor. MemSpy’s

statistics on the frequency and primary causes of cache misses, the programmer can often

gain insight about the type of memory performance bottleneck present, and how to tune

it.

In spite of the importance of detailed information in understanding such effects, most

existing tools have provided no statistics on memory system behavior at all. Other tools,

such as Mtool [GH91b], give only high-level information about which parts of the code

cause memory bottlenecks. The lack of detailed support for memory bottleneck identi-

fication is partly due to the difficulty in efficiently gathering memory system statistics.

Gathering detailed memory statistics requires fine-grained monitoring using either spe-

cialized hardware or software simulation. The drawback of specialized hardware is that

it can limit the generality of the tool, but on the other hand software simulation can often

be too slow. A major contribution of this dissertation is its proposal of optimizations that

greatly improve the efficiency of simulation-based monitoring.

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 21

2.2.3 Hierarchies of Presentation

Because tuning memory behavior requires a large volume of detailed statistics, it is also

important that the tool control the amount of information presented to the user at each

step of the tuning process. Hierarchical statistics presentation is a common method for

accomplishing this, and this section discusses two methods for making use of hierarchies

in performance profiles.

Hierarchy of Detail

One hierarchy commonly used by tools is ahierarchy of detail. That is, as the user steps

through the user interface, the statistics presented at each step move from high level to

more detailed. Because MemSpy offers more detailed statistics than previous tools, it is

able to offer a deeper hierarchy of detail than previous tools.

For example, MemSpy initially provides high-level information indicating which pro-

cedures in the program are responsible for most of the execution time. It also gives a

breakdown of how much of this time is spent in computation, memory stalls, or (in

parallel programs) synchronization. From this high-level overview, programmers can

choose to bring up more detailed statistics. These detailed statistics include information

on memory stall time, more detailed information on the causes of cache misses, and even

more detailed information on the causes of replacements.

Hierarchies of Focus

Another common hierarchy is ahierarchy of focus. That is, at each step the user’s

attention is focused in on increasingly smaller portions of code or data. A significant

aspect of MemSpy’s design is how its data oriented statistics make availableseveralnew

hierarchies of focus, in addition to the one available in code oriented tools.

In code oriented tools, it is common to provide statistics on the whole program’s

behavior, and then to allow the user to focus in on particular procedures, and perhaps

even particular source code lines or basic blocks. The leftmost hierarchy in Figure 2.2

shows this sort of approach. Within a code structure like a procedure, one can break

down statistics by smaller code units, like basic blocks or source code lines.

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 22

Proc1

Line2

...

Code Oriented Hierarchy

LineN
Line1

Proc1

Data2

...

DataN
Data1

Data1

Proc2

...

ProcN
Proc1

Additional Code/Data Hierarchies

Figure 2.2: Hierarchies of focus in data oriented tools.

When one moves to an approach that is both data and code oriented,additional hi-

erarchies of focus are available, such as the ones shown on the right in Figure 2.2. For

example, within a particularprocedure, one may want to separate the memory perfor-

mance bottleneck according to whichdata structuresincurred stall time. Moreover, data

oriented statistics also allow the user to first view the effects of particulardata structures,

and then subdivide these effects by code structures such as procedures. This type of pro-

gram view is especially useful in cases where a performance bottleneck is most naturally

attributed to a particular variable, but has accesses spread over several procedures.

2.3 Chapter Summary

To summarize, this chapter has argued for the collection of detailed, data and code ori-

ented memory performance statistics. It describes three major causes of poor application

memory performance and how they can be recognized and tuned. We argue that per-

formance monitoring tools employing (i) data oriented statistics, (ii) detailed statistics

on the causes of cache misses, and (iii) hierarchical presentations, can be instrumental

in identifying bugs and their causes. Performance information broken down by data

structure is important in initially isolating memory performance bugs. In addition, infor-

mation on the causes of cache misses and cache replacements can be invaluable in further

understanding particular memory bottlenecks. Finally, a hierarchical presentation style

CHAPTER 2. TUNING PROGRAM MEMORY BEHAVIOR 23

can be extremely useful in organizing and managing the large volumes of information

gathered. To support these claims, the case studies in Chapter 3 will concretely illustrate

the information collected in our implementation of MemSpy, as well as MemSpy’s use

in tuning sequential and parallel applications.

