
Chapter 3

Case Studies

The previous chapter outlined classes of memory performance bugs and discussed infor-

mation useful in identifying and fixing them. In this chapter, we present case studies that

demonstrate the usefulness of such detailed, data oriented information, as embodied in

MemSpy.

The first application, a blocked matrix multiplication program, shows MemSpy’s use

in isolating a case of self-interference. We show that even in such simple, loop-oriented

applications, memory performance bugs can be difficult to discern without data oriented

statistics.

The second example, a parallel triangular sparse system solver, illustrates several

memory performance problems that are characteristic of shared memory parallel pro-

grams. For example, this case study shows instances of true and false sharing, and it also

illustrates the fairly common problem of decreased spatial locality in parallel applications.

The applications shown here were previously described in [LRW91] and [RG92],

where the authors developed and evaluated optimizations using extensive, manually-added

statistics instrumentation. The aim of this chapter is to show how MemSpy automates and

generalizes this process, making such information more accessible to all programmers.

Additional case studies are presented in Appendix A.

24



CHAPTER 3. CASE STUDIES 25

3.1 Sequential Case Study: Matrix Multiply

The first example is a sequential program,MatMul , which performs a blocked matrix

multiply. MatMul is an interesting example for a number of reasons. First, it represents

a case where the code was specifically written usingdata blockingto improve cache

memory behavior, but in spite of this (to the programmer’s surprise) poor memory per-

formance was discovered. Second, although this application is conceptually simple, it

still required detailed, data oriented statistics to tune it. The fact that such statistics are

needed on a fairly simple application like this one lends strength to our argument that

more complex applications will likely call for them as well.

3.1.1 Problem Description

The blocked matrix multiplication code being studied is shown in Figure 3.1. This code

multiplies matrixX by matrix Y to form matrix Z. Unlike standard matrix algorithms,

blocked algorithms such as this are coded to operate on sub-matrices or blocks of the

original matrix as shown in Figure 3.2. These sub-blocks are sized to fit in the cache, to

maximize reuse of the data. By iterating over all sub-blocks, the full matrix multiplication

can be performed, ostensibly with better cache performance due to the blocking.

As was reported by Lam et al. [LRW91], the performance of such blocked operations

is often erratic. It is extremely sensitive to even small changes in the matrix size, the

block size, and the cache organization. For example, on a DECstation 3100, the authors

report that a 300 by 300 blocked matrix multiply (with 56 by 56 block size) executes

at 4.0 MFLOPS. By contrast, an only slightly smaller 293 by 293 matrix with the same

block size executes at only 2.0 MFLOPS on the same machine. Thus, the goal of this

case study is to show how MemSpy can be used to point out to programmers what the

performance bug is. As we proceed through the case study, it is important to note how

data oriented statistics are a powerful method for focusing the user’s attention on problem

areas in the code. Note also how detailed statistics on the causes of cache misses are

crucial for understandingwhy the performance bottleneck is occurring.



CHAPTER 3. CASE STUDIES 26

1. block(X, Y, Z, N, B)
2. Matrix *X, *Y, *Z;
3. int N,B;
4. {
5. int kk,jj,i,j,k;
6. double r;
7. for kk = 1 to N by B do
8. for jj = 1 to N by B do
9. for i = 1 to N do

10. for k = kk to min(kk+B-1,N) do
11. r = X[i,k];
12. for j = jj to min(jj+B-1,N) do
13. Z[i,j] = Z[i,j] + r*Y[k,j];
14. }

Figure 3.1: Pseudo-code for blocked matrix multiply example.

Figure 3.2: Reference patterns in blocked matrix multiply.

= x

YXZ

3.1.2 Tuning Using MemSpy

To make the performance bug most evident, we will show MemSpy’s output on one of

the poor performance cases from [LRW91]. We multiply two 293 x 293 element matrices

together, using a block size of 56. Thus, a single 56 x 56 block requires 25,088 bytes,

and should easily fit into the simulated 64KB cache.

MemSpy begins here by presenting the output shown in Figure 3.3. (The displays

shown in case studies throughout this dissertation are screen dumps of actual MemSpy



CHAPTER 3. CASE STUDIES 27

Figure 3.3: MatMul: MemSpy overview statistics display.

output. We use black and white stipple patterns here, but in the actual tool users may

choose color displays as well.) The program procedures are indicated along the x axis of

this graph, and the time (in processor cycles) spent on behalf of each procedure is given

on the y axis. The bar for each procedure breaks down the elapsed time by how much

of it was spent in computation and how much in memory stalls. In addition, for parallel

programs, the bar indicates synchronization time as well.

Figure 3.3 indicates that the bulk of the application’s time is spent in theblock

routine. It accounts for over 90% of the execution time. Furthermore, the breakdown of

time within theblock routine shows a clear memory bottleneck. While we expected

the bulk of the computation to be spent inblock , the observation that roughly 80% of

the time is spent on memory stalls is surprising, since we expected the processing on the

25KB block to easily fit in the 64KB cache.

The bulk of the computation in this application is performed in line 13 of the code in

Figure 3.1. In this line, the appropriate elements ofX (r ) andY are multiplied, and the

result is accumulated in an element ofZ. From this portion of the example, we see that

code oriented statistics could be useful for focusing the programmer’s attention on this

section of the code. However, since all three matrices are accessed on source line 13,



CHAPTER 3. CASE STUDIES 28

code oriented statistics alone offer no help in determining the relative contributions of

the three matrices towards the bottleneck. To further understand and tune this code, users

need information on whether a single matrix is a bottleneck, or whether some interaction

between the three matrices is causing the stalls.

Data Oriented Breakdown

To understand the stall time contributed by each data structure, users can click on the

“memory” portion of theblock routine’s bar to request the next display. This display,

shown in Figure 3.4, gives a breakdown of the memory stall time into components

incurred by each data structure. With these data oriented statistics, one can learn that the

bottleneck in this routine is almost entirely due to cache misses on references to theY

matrix. These misses are responsible for over 85% of the total stall time in the program.

Note that theY matrix is actually the one that was blocked for better data reuse. Thus,

it is surprising thatY is responsible for so much stall time (and so many cache misses).

Figure 3.4: MatMul: Memory stall time in theblock procedure attributed to theX, Y,
andZ matrices.

The intuitiveness of this data oriented stall time breakdown belies the significant

implementation issues that arise when gathering and presenting these statistics. Critical



CHAPTER 3. CASE STUDIES 29

issues lie in dividing the program data space into data oriented components and in extract-

ing program names to label the statistics. That is, interesting issues arise in determining

(i) when to aggregate statistics on data structures versus viewing statistics on individual

data structures and (ii) how to derive program names for statistics in the face of this

aggregation. These will be treated in Chapter 4.

At this point, we note that while MemSpy has already provided insight as towherethe

bottleneck is occurring, we still have little understanding ofwhy it would be occurring.

To get more insights on the problem, we proceed to more detailed statistics.

Detailed Statistics on Causes of Misses

MemSpy allows users to request more detailed statistics about the behavior of references

for a particular procedure-data pair. By clicking on theY bar from Figure 3.4, the user

brings up the display shown in Figure 3.5.

Figure 3.5 gives more detailed statistics on the behavior of theY matrix in theblock

routine. Most relevant here is the bottom-most bar chart in the display. This graph breaks

down the causes of cache misses for theY matrix in theblock routine. The display

shows that in this routine, all ofY’s misses are caused by previous replacements. That is,

the data objects were all previously in the cache, but have been replaced out of the cache

before the re-references occurred that resulted in cache misses. (Note that the entireY

matrix is initialized in a separate routine. This is where the first reference misses occur.)

The high number of replacement misses incurred byY is an important piece of

information. As discussed in Chapter 2, it indicates that the bottleneck is probably

related to cache interference effects. To understand the mechanism causing the memory

bottleneck, however, still more information is required. Namely, the user needs to know

which accesses are causing the cache replacements. One might expect some small number

of replacements due to matrixX or matrix Z. However, the large number of misses is

quite unexpected. By clicking on the replacements portion of the “causes of misses” bar

in Figure 3.5, we get a breakdown of the causes of these replacements. This breakdown

is shown in Figure 3.6. Surprisingly, over 95% of the replacements are caused by theY

matrix itself. This indicates that the performance bug is, in fact, self-interference.



CHAPTER 3. CASE STUDIES 30

Figure 3.5: MatMul: MemSpy detailed statistics onY matrix in theblock procedure.



CHAPTER 3. CASE STUDIES 31

Figure 3.6: MatMul: Causes of replacements forY matrix in theblock procedure.

Thus in this case, MemSpy takes users to the point where they know that the bottle-

neck is in theY matrix, that it is caused by excessive cache interference, and that this

interference is in fact self-interference, since the replacements are cause by theY matrix

itself. The tool gives no further information, but from here, the user can reason about

the application to determine the precise fix to the problem in this case.

In particular, self-interference occurs here because the sub-rows within the currently

used block ofY are not stored contiguously, and thus do not map nicely across the whole

cache. Rather, as is shown in Figure 3.7, sub-rows are separated from one another by

arbitrary intervening amounts of storage. This leads to cases where some sub-rows map

on top of one another in the cache, while other portions of the cache remain unused.

Knowing that this is a problem, the programmer can minimize this effect by choosing a

block size with less interference, or by copying the block so that it occupies a contiguous

region of memory [LRW91].

3.1.3 Example Summary: Matrix Multiply

To summarize, MemSpy has provided step-by-step output that showed (i)Y has a sur-

prisingly high miss rate, (ii) the misses are primarily due to replacements, and (iii) the



CHAPTER 3. CASE STUDIES 32

Figure 3.7: Self interference in blocked matrix.

B

Cache

}

...
...

Overlap

} Overlap

replacements are mainly caused by other references to theY data object. These three

facts lead the programmer to identify the problem of self-interference in theY matrix.

Without MemSpy’s data oriented statistics, it would have been difficult to see which

matrix was causing the memory bottleneck. Furthermore, without detailed information

on the causes of misses and the causes of replacements, it would have been difficult to

interpret the situation as self-interference.

3.2 Parallel Case Study: Tri

The second case study is a parallel program (Tri ) which performs thetriangular system

solvephase of the incomplete Cholesky conjugate gradient (ICCG) algorithm. The ICCG

algorithm is a widely used iterative method for solving large sparse systems of equations

that arise in engineering applications. As we move to the parallel domain, new issues and

new types of performance bugs arise. The example is interesting because it illustrates

several such bugs and the role MemSpy plays in identifying them.

First, when parallelizing applications it is common to see a reduction in spatial lo-

cality, because data structures are often distributed across processors. In the first step of

the case study, MemSpy highlights this performance bug by pointing out a larger than

expected number of first reference misses on the main sparse matrix data structure of the



CHAPTER 3. CASE STUDIES 33

for i = 1 to N {
x[i] = b[i];
for j = 1 to i-1 {

x[i] = x[i] - M[i][j] * x[j];
}

}

Figure 3.8: Serial pseudo-code for Tri.

problem. An optimization to improve the spatial locality leads to disappointingly small

improvements in program performance, however. MemSpy’s ability to separate statis-

tics by data structure allows users to distinguish that while the heuristic has improved

memory behavior in one data structure, it has degraded it in two others. For one of the

data structures we illustrate a high-level change in the program’s task synchronization to

reduce references to it. For the other data structure, we use MemSpy to evaluate a task

scheduling heuristic that can reduce the sharing and improve the spatial locality in the

problem.

3.2.1 Problem Description

The basic problem solved by Tri is:Mx = b, whereM is a sparse, lower triangular

matrix with unit diagonal, andx andb are vectors.M andb are known inputs;x is the

solution vector to be computed. The pseudo-code in Figure 3.8 gives a straightforward,

serial solution to this problem. SinceM is lower triangular,j is always less thani in

the summation and the sum involves onlyx [j ] that have already been computed.

The actual parallel solution we study differs from Figure 3.8 in several ways. First,

since the input matrixM is sparse, the data structures are modified to store the inputs

more compactly. The non-zero elements of all rows of M are stored contiguously in the

one dimensional arrayM.nz . Another array,col , stores the column number of each

non-zero inM.nz . A third array stores pointers to the beginning of each row inM.nz .

To parallelize Tri, the algorithm attempts to compute values for severalx[i] concur-

rently. Of course, not all iterations can be performed at once, because computingx[i]



CHAPTER 3. CASE STUDIES 34

in row i may requirex[j] from a previous rowj . In fact for a dense matrixM, the de-

pendencies would fully serialize the problem. For sparseM, the non-zeroes ofMrepresent

dependencies between parallel tasks. To exploit parallelism, the dependencies between

rows (variousx[i] ) can be determined in advance, and an acyclic dependency graph

built. By doing a topological sort on this graph, we can assign each row to a discrete

level of computation so that it depends only on rows in lower levels (i.e., thosex[i]

that have been computed earlier). In the version of Tri we begin with here, processors

are assigned the rows from each level in a round-robin fashion. Figure 3.9 shows the

pseudo-code executed by each processor.

1. For each "row" assigned to me {
2. /* initialize accumulator variable*/
3. accum = b[row];
4. For each non-zero entry,j,in this row{
5. /* wait until x[j] is ready */
6. while (!ready[col[j]]) ;
7. /* update accum using M.nz and x */
8. accum = accum - M.nz[j] * x[col[j]];
9. }

10. /* set x[row] to its final value */
11. x[row] = accum;
12. /* x[row] is now usable by others */
13. ready[row] = 1;
14. }

Figure 3.9: Pseudo-code for parallel Tri implementation.

3.2.2 Tuning Using MemSpy

Starting with the original parallel code, we describe tuning steps which improve (i) the

spatial locality in the matrixM, (ii) the synchronization method used, and (iii) the sharing

behavior and spatial locality in the vectorx .



CHAPTER 3. CASE STUDIES 35

Performance of Original Tri Code

When we run the original Tri code using the benchmark matrix BCSSTK15 [DGL89],

we find that the speedup with 4 processors is very low, only a factor of 1.6. To explore

the cause, we use MemSpy to identify whether memory performance is a bottleneck.

Figure 3.10 gives the initial MemSpy overview of how execution time is spent in the

original parallel version of Tri.1 The total time spent doing useful computation (shown

by the unshaded area in the bar) is roughly the same as that for the sequential code. (The

MemSpy displays for the sequential code are not shown here.) Thus, the parallel version

spends little time doing computations that were not also present in the sequential version.

Furthermore, this application has no significant explicit synchronization time, since the

synchronization is implemented implicitly, through spin-loops on shared variables. How-

ever, this breakdown shows that there is a significant memory bottleneck in the solver

procedure, with over half of the time spent in memory stalls. The time spent stalled

for memory in the parallel version is more than triple that for the sequential version.

Thus, memory behavior is likely to be the prime reason for the poor speedups. To better

understand why these memory stalls are occurring, we can click on the memory portion

of the bottleneck bar, to bring up the data oriented breakdown shown in Figure 3.11.

The data breakdown in Figure 3.11 shows that of the solver’s total memory stall time,

roughly 45% can be attributed to accesses to the non-zeroes of the matrix M, referred to

in the code asM.nz . The remainder of the stall time is spent primarily in the solution

vectorx and a synchronization vectorready . SinceM.nz causes the most misses in

the multiprocessor version, we focus first on its behavior.

To get more detailed information onM.nz ’s memory behavior, we click on its bar to

bring up the data shown in Figure 3.12. This display indicates that theM.nz data structure

incurs 19K misses during the program execution. By comparison, the corresponding

MemSpy display for the sequential version of this code (not shown here) indicates only

11K misses for theM.nz data structure. So, in converting to a parallel approach, the

number of misses inM.nz has increased by over 70%.

1Since we are studying only one phase of the problem here, we gather statistics only in the
ForwardSolve routine. Here the specific name isForwardSolvePar Self .



CHAPTER 3. CASE STUDIES 36

Figure 3.10: Tri: MemSpy overview statistics for original parallel code.

We note that the non-zero elements of matrix M are accessed only once in both the

sequential and parallel version of the code; thus, ideally the total number of misses for

the matrixMshould not increase as we go from the sequential to the parallel code. Yet

the data show that the number of misses increases by over 70%. Furthermore the detailed

statistics in Figure 3.12 indicate that most of the misses (roughly 65%) are first reference

(cold) misses and not invalidation or replacement misses.

Once MemSpy points out that most of the misses are first reference misses, it is fairly

intuitive for the application programmer to figure out that the real cause for increased

misses is poor spatial locality in references toM.nz in the parallel version of the code.

In particular, the explanation for this is related to the fact that the number of non-zeroes

per row ofM is very small in typical input matrices. (For example, ifM comes from a

partial differential equation corresponding to a 5-point stencil, each row has only two

off-diagonal non-zeroes.) Since cache lines are 8 double words long (64 bytes), each

cache line contains non-zeroes from multiple rows. In the parallel code, successive rows

are frequently assigned to different processors, and as a result, when a processor fetches

the contents of a row it needs, it also fetches useless data (adjacent rows relevant only



CHAPTER 3. CASE STUDIES 37

Figure 3.11: Tri: MemSpy data breakdown for original parallel code.

to other processors). This does not occur in the uniprocessor code where adjacent rows

are accessed consecutively by the same processor.

We emphasize that MemSpy has facilitated this observation about spatial locality by

allowing us to isolate the miss statistics forM.nz , and letting us compare the uniprocessor

and multiprocessor statistics on a per-data-structure basis. Without such detailed data

oriented statistics, the loss of spatial locality would be difficult to infer.

Step 1: Restoring Spatial Locality

The goal of this tuning step is to improve the spatial locality of references toM.nz . This

is accomplished by symmetrically reordering the rows and columns of the matrixM.nz ,

so that the indices of rows assigned to a particular processor are contiguous and appear

in the order in which the rows are processed. The details of the reordering method are

discussed in [RG92].

When the program is rerun, using the new ordering scheme for spatial locality,

MemSpy output indicates that this change leads only to a very minimal improvement

in overall performance, about 8%. The overview output shown in Figure 3.13 shows that

memory performance continues to be a problem, only slightly improved from before.



CHAPTER 3. CASE STUDIES 38

Figure 3.12: Tri: MemSpy detailed statistics for theM.nz data structure.



CHAPTER 3. CASE STUDIES 39

Without more detailed information, the user might surmise that the reordering heuristic

was not effective at improvingM.nz ’s memory behavior. However, with more detailed

MemSpy statistics, we can see that misses inM.nz have been reduced from 19K to

13K, and are now only 18% greater than misses inM.nz in the sequential version. The

reordering for spatial locality has been effective in reducing theM.nz misses closer to the

intrinsic number required by the application. However, this reordering has also affected

the behavior ofx and ready .

Figure 3.13: Tri: MemSpy overview statistics for step one.

Figures 3.14 and 3.15 show the detailed output for thex and ready vector after

step 1. We see that 72% ofx ’s misses are due to replacements, as are 68% ofready ’s

misses. The programmer can get further information by clicking on the replacement

misses portions of the “causes of misses” bars. This causes MemSpy to bring up the new

information shown in Figures 3.16 and 3.17. These show that 71% ofx ’s replacements

are caused byready and 83% ofready ’s replacements are caused byx . These large

numbers of replacements caused by another data structure are known ascross-interference,

and the interference results in unnecessary memory stall time. (This cross-interference

is data dependent, and does not occur as severely in other matrices we have studied.)

Thus while the reordering heuristic led to a reduction in misses inM.nz , it was offset by



CHAPTER 3. CASE STUDIES 40

Figure 3.14: Tri: MemSpy detailed statistics for thex vector in step one.



CHAPTER 3. CASE STUDIES 41

Figure 3.15: Tri: MemSpy detailed statistics for theready vector in step one.



CHAPTER 3. CASE STUDIES 42

an increase in misses due to cross-interference. Without MemSpy, such countervailing

effects are difficult to isolate and understand. The following two subsections will discuss

further steps taken to reduce the this cross-interference and improve the behavior of

ready andx .

Figure 3.16: Tri: MemSpy causes of replacements forx in step one.

Step 2: ReducingReady Traffic

Theready vector is used to indicate when a particularx element has been computed and

is ready for use by later computations. After step 1, theready misses constitute roughly

one third of all misses. Of these, the majority are due to cross-interference betweenx and

ready (indicated by replacements). Another 22.2% are due to invalidations or sharing,

and a small amount (9.6%) are first reference misses.

To reduce misses inready , one might first consider ways to reduce the cross-

interference or sharing. However, Rothberg and Gupta in fact devised a new form of

self-scheduling that allowsready to be eliminated entirely [RG92]. This method takes

advantage of the NaN (Not a Number) value provided for by the IEEE 754 Standard for

Binary Floating Point Arithmetic. The NaN value is stored into each element of thex

vector before the Tri phase begins. Then, instead of using theready vector to indicate



CHAPTER 3. CASE STUDIES 43

Figure 3.17: Tri: MemSpy causes of replacements forready in step one.

an x element has been computed, processes waiting forx elements can simply spin on

the x value itself. When the value changes from NaN to a valid floating point value, it

is ready for use.

This change substantially improves program performance as shown in Figure 3.18.

The improvement comes due to two effects on the memory system behavior. First, as

shown in Figure 3.19,ready misses are eliminated entirely. Furthermore, misses due

to thex vector are also substantially reduced due to a decrease in the cross-interference

previously described. As with the previous examples, MemSpy’s ability to isolate and

quantify the performance of different data structures drives the tuning process here. The

next subsection focuses on improving the performance ofx .

Step 3: Reducing Traffic due tox

Having reduced the cross-interference misses forx , cache misses forx now primarily

occur when anx element produced by one processor is subsequently used by another

processor. It would be preferable forx[i] to be produced and then used by the same

processor. Thus, the goal of this step is to devise strategies for assigningx elements

to processors such that each element primarily depends on otherx elements assigned to



CHAPTER 3. CASE STUDIES 44

Figure 3.18: Tri: MemSpy overview statistics after step two.

Figure 3.19: Tri: MemSpy data breakdown after step two.



CHAPTER 3. CASE STUDIES 45

the same processor. This reduces the need for interprocessor communication of these

values, and reduces thex traffic. Rothberg and Gupta investigate several heuristics

for accomplishing this. MemSpy is helpful in comparing the effects of these different

heuristics.

For brevity, we present results for only the final heuristic proposed by Rothberg and

Gupta. In it, eachx[i] is assigned to the processor that currently owns the most previous

elements required to compute thatx[i] . MemSpy shows (see Figure 3.20) that misses

due to thex vector decrease from 6.4K to 4.3K with this heuristic. At this point around

30% of these misses are first reference misses, 8% are due to invalidations, and 62% are

due to replacements. MemSpy further indicates that almost all (99%) of the replacements

at this point are due to theM.nz matrix. Since Tri streams through the data in the very

large M matrix, these replacements are essentially unavoidable (unlike the interference

due toready that was previously noted).

3.2.3 Example Summary: Tri

This case study has highlighted how MemSpy may be used to tune a parallel application’s

memory behavior. To summarize, Tables 3.1 and 3.2 give a step-by-step synopsis of the

memory behavior for the main program variables, as well as overall program performance

at each tuning step. In the first tuning step, MemSpy was used to calculate miss counts for

the M.nz data. These data oriented statistics played a key role in pointing out that poor

spatial locality was the cause of the increase in misses when parallelizing the application.

Table 3.1: Tri: Summary of MemSpy output throughout tuning sequence.

Cache Misses (x 1000)
Version Total M.nz ready x

Seq. 13 11 (85%) — 1.7 (13%)
Orig Par. 43 19 (44%) 10 (23%) 13 (30%)
Step 1 34 13 (38%) 10 (29%) 11 (32%)
Step 2 20 13 (65%) — 6.6 (33%)
Step 3 16 11 (69%) — 4.3 (27%)



CHAPTER 3. CASE STUDIES 46

Figure 3.20: Tri: MemSpy data breakdown forx after step three.



CHAPTER 3. CASE STUDIES 47

Table 3.2: Tri: Summary of simulated performance throughout tuning sequence.

Execution Time
Version (x1000 processor cycles)Speedup

Seq. 2694 1.00
Orig Par. 1677 1.61
Step 1 1537 1.75
Step 2 1016 2.65
Step 3 989 2.72

Based on this information, we reordered the matrix which improved spatial locality.

MemSpy’s information on the causes of misses was instrumental in helping us understand

the cross-interference that resulted from this reordering. Without MemSpy, it would have

been difficult to separate the two effects.

In Step 2, we eliminatedready misses. MemSpy’s data oriented output was key in

indicating thatready was responsible for a large amount of traffic.

In the final tuning step, a heuristic for improvingx access patterns was examined.

Here again, MemSpy’s miss counts were useful in showing the improvement inx behavior.

Furthermore, MemSpy’s data indicating which data object caused replacements was also

useful. By knowing that most ofx ’s replacements were caused byM.nz , we were able

to reason that they are largely unavoidable.

3.3 Chapter Summary

This chapter has illustrated MemSpy’s use on both sequential and parallel applications. In

the sequential application, blocked matrix multiply, an instance ofself-interferencewas

identified. Here, MemSpy’s data oriented statistics were useful in initially identifying

which of three matrices was primarily responsible for the memory stalls. Also, MemSpy’s

detailed statistics on the causes of cache misses were useful in identifying the problem

asself-interference, rather than either cross-interference with other variables, or perhaps

other possible performance bugs.



CHAPTER 3. CASE STUDIES 48

In the parallel application Tri, we stepped through a case study improving the memory

behavior of each of the primary data structures in the algorithm. The tool was instru-

mental in isolating the initial contributions of different variables to the total memory

stall time, and quantifying the effects of the optimizations on different variables. This

easily identified and separated instances of poor spatial locality, cross-interference, and

interprocessor sharing.

MemSpy has also been used to tune several other programs. For example, it has

identified performance bugs due to: (i) false sharing and a “vestigial” (incremented but

unused) variable inLocusRoute , a SPLASH benchmark [SWG92], (ii) self-interference

in theElementArray in Pthor , another SPLASH benchmark, (iii) poor spatial locality

in a sequential volume rendering program,Vrender , and (iv) shared accesses to a private

variable in a parallel version ofVrender .

Overall, these experiences have demonstrated the importance of data oriented statistics

in identifying memory performance bugs and offering insights on program behavior.

Their combination with detailed information on the causes of cache misses allows users

to discern types of performance bugs present for each data structure. Furthermore, the

detailed, data oriented information on the causes of replacements allows users to easily

identify causes of self-interference and cross-interference, and devise solutions for them.


