
Appendix A

Additional Case Studies

This appendix presents two more case studies in addition to those presented in Chapter 3.

The first case study shows MemSpy’s use on LocusRoute, a parallel application that

is part of the SPLASH [SWG92] benchmark suite. This study shows MemSpy pointing

out false sharing in a number of program variables. A simple restructuring of the code

leads to significant performance improvements.

The second case study shows the tuning process for Vrender, a volume rendering pro-

gram [LL93, Agr93]. This study shows MemSpy’s use to detect a problem of poor spatial

locality in the sequential version of the code, as well as correctness and performance bugs

in the parallel version of the code.

In both the LocusRoute case study and the parallel portion of the Vrender case study,

we use a more complex memory simulator than the one described in Chapter 4. This

simulator is described in Section A.1.

A.1 Simulator Description

For the parallel case studies discussed in this appendix, we present results measured using

a slightly more complex simulator than the one described in the body of the thesis. There

are several main changes from the simpler simulator. First, while the previous simula-

tor rescheduled between simulated parallel threads at the granularity of synchronization

events, this simulator interleaves threads at a much finer granularity – once per memory
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reference. For applications which synchronize relatively frequently, this has little ef-

fect. However, for applications which synchronize less frequently, like LocusRoute, this

method more realistically interleaves references from different processors, which brings

out effects like the false sharing shown here.

A second key difference between this simulator and the original one is that an infinite

write buffer is simulated by setting the latency of all write operations to be exactly one

processor cycle. In the original simulator, reads and writes had the same latency.

Finally, in this simulator, cache misses have variable latency depending on which

processor’s memory services them, and how distant it is from the referencer. A cache

miss serviced locally incurs an overhead of 34 processor cycles. For cache misses serviced

remotely, transactions must travel across the two dimensional mesh network, which uses

a wormhole routing method. For a 32 byte line, a message traveling one hop on the

network take 85 cycles, but each additional hop requires only an extra 5 cycles.

For LocusRoute, the key attribute of this simulator that led to its use was the more

frequent thread reschedules. Since LocusRoute is an application which performs very

little synchronization, rescheduling only at synchronization points leads to thread inter-

leavings with significantly less false sharing. While the simple simulator was useful for

detecting early performance bugs in LocusRoute, the bug of false sharing described here

becomes more apparent with tighter, more realistic, thread interleavings.

For Vrender, this simulator was chosen to primarily to display the additional penalties

for accesses to memory in remote clusters, as compared to accesses to memory in local

clusters. The performance bugs discussed in this case study were also apparent when

using the simple simulator, but the simpler simulator was much more optimistic in the

degree to which fixing these bugs would improve the performance of the parallel Vrender.

A.2 LocusRoute

The LocusRoute program is one of the parallel benchmarks from the SPLASH benchmark

suite [SWG92]. LocusRoute performs automatic routing of the wires in VLSI standard

cell circuits.
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A.2.1 Initial MemSpy Output

Figure A.1: LocusRoute: Initial MemSpy output display.

Figure A.1 shows MemSpy’s initial output for LocusRoute. This output indicates that

a 16 processor run of LocusRoute on the input file Primary2.grin requires roughly 2.15

billion cycles totalled over all processors. The execution time for the parallel run is

roughly 14.5 seconds. This display also highlights significant memory bottlenecks in all

five of the routines shown. If we were to click on the bars for each of these routines, we

would bring up five different data breakdowns. To summarize these breakdowns, which

are not pictured here, they show that program’s main shared data structure,Global ,

is the bottleneck in theRegularEvaluateRoute andProcessDensity routines.

However, inGetNewRoute , ReleaseRoute , and PairEnumerate , the memory

bottleneck is, surprisingly, the program’s static data. Overall, it is responsible for roughly

45% of the program’s memory stall time. To understand why this is, we look at the

detailed statistics display for the static data (Figure A.2), and see a large number of

invalidation misses – over 98%.

Figure A.3 shows the code for one of the routines with many invalidation misses to

static data. Here, the only static data is theRouteFreeListHead array. This array

holds per-processor free lists forRoute data objects. Each of the array elements is a
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Figure A.2: LocusRoute: Detailed MemSpy output forstatic data .
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Route GetNewRoute(NumberOfBytes)
int NumberOfBytes;
{

Route NewRoute;
int SlaveNumber;

GET_PID(SlaveNumber)

if (RouteFreeListHead[SlaveNumber] == RouteNil) {
NewRoute = (Route) G_MALLOC(sizeof(RouteCornerType));

}
else {

NewRoute = RouteFreeListHead[SlaveNumber];
RouteFreeListHead[SlaveNumber] =

RouteFreeListHead[SlaveNumber]->Link;
}

return(NewRoute);
}

Figure A.3: LocusRoute:GetNewRoute code.

4 byte pointer, so the pointers for 8 different processors fit into a single 32 byte cache

line. Thus, the potential for false sharing of these cache lines is quite significant. Similar

instances of false sharing appear in several other procedures as well.

A.2.2 Reducing False Sharing

Figure A.4 shows the definitions of several frequently used per-processor static variables,

including RouteFreeListHead , the one accessed inGetNewRoute . Each of these

variables is defined as a one-dimensional vector of lengthMAXPROCS. Throughout the

program, they are indexed using the particular thread index. Such array-based definitions

of fairly small per-processor variables are prone to false sharing, because several elements,

assigned to different processors, are contained in a single cache line.

To reduce the false sharing, we can restructure the definitions as shown in Figure A.5

to coalesce per-processor variables into a single structure definition, and then define an
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Route RouteFreeListHead[MAXPROCS];
struct SegmentHeadSyncRecord *SegmentHeadSync[MAXPROCS];
int CurrentRouteListEntry[MAXPROCS];
Wire *CurrentWire[MAXPROCS];
struct SegmentHeadSyncRecord *SegmentHeadSyncFreeList[MAXPROCS];
struct EnumerateSyncRecord *EnumerateSyncFreeList[MAXPROCS];
RoutedWire *RoutedWireFreeList[MAXPROCS];
SegmentRouteType *SegmentRouteFreeList[MAXPROCS];
Route RouteSets[MAXPROCS][MAXROUTESETS];
Route BestRoute[MAXPROCS];

Figure A.4: Static variable definitions prone to false sharing.

typedef struct perprocvars {
Route RouteFreeListHead;
struct SegmentHeadSyncRecord *SegmentHeadSync;
int CurrentRouteListEntry;
Wire *CurrentWire;
struct SegmentHeadSyncRecord *SegmentHeadSyncFreeList;
struct EnumerateSyncRecord *EnumerateSyncFreeList;
RoutedWire *RoutedWireFreeList;
SegmentRouteType *SegmentRouteFreeList;
Route RouteSets[MAXROUTESETS];
Route BestRoute;

} perproc;

perproc pp[MAXPROCS];

Figure A.5: Static variable definitions restructured to reduce false sharing.

array of that structure. In this way, data items are grouped by the processor using them.

This tends to (i) reduce false sharing and (ii) improve per-processor spatial locality. It

reduces false sharing because most cache lines contain only data used by one process.

It improves spatial locality because each cache line contains items useful to a particular

processor. In the previous approach using per-processor arrays, cache lines contained

only one item of use to a particular processor.
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Figure A.6: LocusRoute: MemSpy output display after restructuring.

Following this optimization, simulated performance improved by more than a factor

of two. Simulated runtime for the code is now just 4.76 seconds. Figure A.6 shows the

new execution time breakdown for LocusRoute after the restructuring.

A.3 Vrender

The second case study, Vrender, shows the tuning process for a fast volume rendering

program that uses a novel shear-warp algorithm [LL93]. Volume rendering is a technique

for producing two dimensional images from three dimensional sampled data. This visu-

alization problem is important in many domains, including medical imaging, graphical

visualization for science and engineering, and the entertainment industry.

The input for volume rendering is a large three dimensional array of scalar values

called voxels. Using models for computing opacity, color and shading, the volume

renderer processes this voxel data into two-dimensional color images.

This case study is divided into two parts. First, we discuss changes made to the

sequential version of the code, to improve its memory behavior. The changes result in

an overall performance improvement of 11.2% in rendering an image. This performance
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improvement is especially significant since the volume rendering code was already highly

optimized prior to this change. (It is currently the fastest existing sequential volume

rendering implementation.) Next, we discuss the process of using MemSpy as an aid

to parallelizing this code. We show MemSpy’s usefulness in detecting both memory

correctness and performance bugs.

A.3.1 Sequential Vrender Code

Figure A.7: Vrender: Initial MemSpy output display.

The initial MemSpy simulation indicates that the original sequential code renders an

image from a 256 x 256 x 225 volume data set in 1.5 seconds. A single rendering takes

roughly 1.2 seconds, while the rest of the time is spent in initialization. Figure A.7 shows

an overview of the memory bottlenecks in this original version of the code.

Figure A.8 shows the data bottlenecks withinOrthComp DCMono, the main ren-

dering routine. The bulk of the stall time is devoted to the run-length-encoded volume

data stored inrun data and run lens . The volume data is much too large to fit

in the cache, so it is not surprising to see that it incurs much of the stall time. How-

ever, the programmer at this point was surprised to see the other three data structures:

cm opcflt , cm clrflt , andcm lnk that also appeared near the top of the bottleneck
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Figure A.8: Vrender: MemSpy data display for initial sequential code.

ranking. These data structures are much smaller, and were not expected to be signifi-

cant bottlenecks. The arrayscm opcflt , cm clrflt contain the opacity and color

information of the composited image being calculated. The third arraycm lnk indicates

which parts of the image have been fully computed so far.

As Figure A.9 shows forcm opcflt , the misses for these data structures are split

between roughly one third first reference misses, and two thirds replacement misses. Most

of the elements in these arrays are accessed on each processing of a two dimensional

256 x 256 “slice” of voxel data. However, each element is read only once per slice of

voxel data. With this referencing pattern, there is little temporal locality in the three

arrays. Since so much volume data sweeps through the cache on each iteration, elements

of cm opcflt , cm lnk , andcm clrflt are unlikely to remain in the cache until their

next usage. Thus, the code must optimize the spatial locality of the three arrayswithin

each iteration, to best take advantage of cache line prefetching opportunities.

To do this, the programmer merged the three arrays into a single data structure

so that corresponding elements of the arrays are likely to be on the same cache line.

The programmer redefined the array elements as three elements of a structure, and then

allocated an array of that structure. This takes advantage of locality: corresponding
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Figure A.9: Vrender: Detailed MemSpy output forcm opcflt .
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elements of the three arrays are expected to be read in close succession. When the first

variable of the triplet is referenced, the other two variables are likely to be pulled into

the cache on the same cache line.

Figure A.10: Vrender: MemSpy output display for optimized sequential code.

Figure A.10 shows the new MemSpy output following this optimization. The overall

performance of the code has been improved by about 12%. It now runs in roughly

1.32 simulated seconds. The percentage of stall time attributed to the three interleaved

variables has dropped to less than 5%. (Note that this performance improvement applies

to the first rendering performed for a volume. If subsequent renderings are performed

from slightly different viewing angles, the three arrays would be likely to remain in the

1MB secondary cache anyway, so the locality improvement has little effect.) At this

point, the bulk of the memory overhead stems from accesses to the volume data itself,

which are difficult to optimize further.

A.3.2 Parallel Vrender Code

In order to obtain substantially faster execution time, the sequential Vrender code was

parallelized [Agr93] to run on medium-scale shared memory multiprocessors such as the

Stanford DASH machine [LLG+90, LLJ+93]. In the decomposition, each processor is
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assigned a contiguous set of rows from the volume data, to calculate their contribution to

the image. By statically assigning tasks, the programmers hoped to minimize synchro-

nization overhead in the parallel decomposition. Furthermore by assigning contiguous

lines to the same processor, the programmers hoped to take advantage of locality in the

data set. The locality comes about because a single voxel scanline contributes to two

scanlines of the composited image. Thus, one can reuse the common voxel data.

Unfortunately, the MemSpy simulated runtime for this version with 1 processor is

2.4 seconds, or roughly 1.8 times larger than the previous sequential version. With 16

processors, the execution time drops to 1.65 seconds, a runtime which is still larger than

the best sequential code and which represents only a factor of 1.4 speedup over the

1 processor parallel code. This subsection details the use of MemSpy to improve the

parallelism and execution time of the parallel code.

Initial Parallel Decomposition

Figure A.11: Vrender: MemSpy output display for initial parallel code.

Figure A.11 shows the MemSpy output for the initial parallel decomposition. The output

is shown only for the core volume rendering routine itself, and not for the (still sequential)

initialization routines. The output shows that only a tiny fraction of the total time, less



APPENDIX A. ADDITIONAL CASE STUDIES 155

than 10%, is spent in useful computation. The rest of the time is split roughly equally

between memory stall time and waiting at synchronization objects.

Figure A.12: Vrender: MemSpy data display for initial parallel code.

Figure A.12 shows the data breakdown for memory stall time in this routine. The

programmer noticed a significant fraction of stall time (15%) was devoted to the variable

called resample buffervalid . This data structure is associated with the current

scanline of voxels. It is used to indicate whether these voxels have been visited before

or not. Figure A.13 shows the detailed statistics for this data structure. Almost half the

misses in this data structure are due to invalidations. Since voxel scanlines are associated

with particular processors, each processor should have its own copy of this buffer. That

is, this data structure was intended to be an unshared structure withno invalidations at all!

At this point, the programmers examined the code and realized that due to acorrectness

bug in the code, the data had been misallocated; all the processors were sharing a single

buffer, rather than each allocating its own.

This bug is an interesting example of how MemSpy’s detailed information on the

causes of a data structure’s misses can point both performance and correctness behavior

that does not match the programmer’s expectations.
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Figure A.13: Vrender: Detailed MemSpy output forresample buffervalid .
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At the same time, the programmers also noticed a significant amount of time spent in

the resampledopac and resampledcolor data structures. In studying this, they

noticed that the initialization of several shared data structures had been included within a

parallel loop, rather than outside it. That is,all processors were initializing these arrays

to 0, rather than just one. Since the correct value was placed in the arrays regardless,

this is not a correctness bug per se. However, it is clearly an unintentional error which

led to significant performance degradation.

Parallel Decomposition Following Tuning

Figure A.14: Vrender: MemSpy output display after tuning step 1.

Figure A.14 shows the the new MemSpy output after the two major bugs from the

initial implementation were fixed. At this point, the memory bottleneck has become

less significant. In addition, removing the extraneous initialization code has improved

performance from 1.65 seconds to 1.01 seconds. However, memory is still a major

bottleneck. References to the input volume data are the main factor here, and are difficult

to optimize away.

The work presented here is part of an ongoing study to improve the parallel per-

formance of shear-warp volume rendering. Work on different parallel decompositions
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is currently continuing. Future versions of Vrender could focus on (i) prefetching the

volume data to reduce its contribution to memory stall time, and (ii) assigning volume

data to local memories in order to reduce the stall times of cache misses when they do

occur.



Appendix B

MemSpy User Interface

The MemSpy user interface is roughly 7000 lines of object oriented C++ code written

using the InterViews toolkit [LVC89]. The InterViews toolkit, also in object oriented

C++, offers graphical programming abstractions (such as scroll bars, buttons, and drawing

primitives) built on top of X11 [SG86].

Using this toolkit, the MemSpy interface was built to provide to the user the series

of histograms and displays shown in the examples of Chapter 3 and Appendix A. This

appendix provides a complete description of each of the displays presented in MemSpy.

B.1 Initial Statistics

MemSpy initially provides two displays. The first is a per-procedure breakdown of the

application time spent in computation, memory stalls, and synchronization. An example

of this initial breakdown is shown in Figure B.1. This corresponds to the displays shown

in Figures 3.3 and 3.10.

The second display is shown in Figure B.2. This display is a summary of overall

memory statistics for the program. This is identical in form to the displays shown in

Figures 3.5 and 3.12. The distinction here is that this initial display gives statistics forall

references in the program, rather than for particular procedures or data structures. This is

useful for getting an overall view of memory behavior, and for comparing overall results

from multiple runs.
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Figure B.1: Initial MemSpy output display.

From here, the user can follow one of two courses for obtaining more program

statistics. The first option is to request the “Full Memory Stall Time Breakdown”. This

brings up the display shown in Figure B.3 and discussed in Section B.2. Second, to

find out more about the memory behavior of a particular procedure, the user can use the

mouse to click on the memory portion of the procedure’s breakdown bar. This brings up

the display shown in Figure B.4 and discussed in Section B.3.

B.2 Full Stall Time Breakdown

Selecting the “Full Stall Time Breakdown” button brings up the display shown in Fig-

ure B.3. This display gives memory stall time statistics in three different ways. The top-

most display gives an ordering of memory stall time attributed to different procedure-data

pairs. The second display orders memory stall times attributed to data bins in the code.

The third display orders stall times by procedures. These different displays offer the user

three orthogonal views of program behavior. As discussed in Section 2.2.3, these differ-

ent views can give unique insights about program behavior. Ranking bottlenecks by data

bins can be helpful when a particular data bin causes a bottleneck, but references to it
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Figure B.2: Detailed display of overall statistics.
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are spread over several procedures. Similarly, a per-procedure or per-data/per-procedure

ranking may be more useful when bottlenecks are localized to a particular procedure.

From here, the user can click on any of the individual stall time bars, and bring up

detailed statistics for an individual bin. Section B.4 describes these.

B.3 Data Breakdowns

Clicking on the memory portions of any procedure’s time breakdown in the MemSpy

overview display (Figure B.1) brings up a data breakdown, as shown in Figure B.4. This

display shows how the program’s memory stall time is broken down among the different

data bins accessed in this procedure. This breakdown has been very useful in localizing

memory bottlenecks to particular data objects, within a particular procedure. From here

the user can view more detailed information about a particular procedure-data bin by

clicking on the memory bar for the bin of interest. This brings up the detailed display

discussed in the next section.

B.4 Detailed Statistics Displays

One of the main thrusts of MemSpy was to provide detailed statistics for programmers on

the frequency and causes of cache misses. Our focusing mechanisms, already described,

work well to guide the user towards problems. At this point more detailed information

about the cache misses for a particular bin can give important guidance about what

is causing problems and how to fix them. MemSpy’s detailed display is broken into

sub-parts described below.

B.4.1 Read, Write Breakdowns

MemSpy gives a breakdown of how many of the misses occurred on read references

versus how many of the misses occurred on write references. This can be useful for the

programmer to understand the reference patterns around the memory bottleneck.
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Figure B.3: Full stall time breakdown display.
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Figure B.4: Data breakdown display.

B.4.2 Causes of Cache misses

One of the most helpful statistics provided by MemSpy has been a breakdown of the

causes of cache misses for each statistical bin. This is included as part of the detailed

statistics box shown in Figure B.5. This breakdown indicates what fraction of the misses

to this bin were (i) first-reference (cold) misses, (ii) invalidation misses, or (iii) replace-

ment misses. These statistics help the user understand whether a memory bottleneck is

due to interference (high replacement misses) or due to excessive sharing in parallel code

(high invalidation misses). To further understand cases of interference, the user can click

on the replacement portion of the bar. MemSpy will then provide statistics on the causes

of replacements.

B.5 Causes of Replacements

As shown in Figure B.6, this display breaks down the causes of replacement misses

for a particular statistical bin. It is used to show which data structures are primarily

responsible for causing items to be pushed out of the cache, for the references that
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Figure B.5: Detailed display.
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pertain to this statistical bin. This is useful for detecting instances of interference, in

which data structures are competing for some or all of the cache space.

Figure B.6: Causes of replacements display.
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