
CtlMPUTER SYSTEMS LABORATORY

STANFCIRD LJRlVERSIT'r STAhlFORD. CA 94305N55

AREAANDPERFORMANCEANALYSIS
OFPROCESSORCONFIGURATIONS
WITHSCALINGOFTECHNOLOGY

Steve Fu and Michael Flynn

Technical Report: CSL-TR-94-605

March 1994

AREA AND PERFORMANCE ANALYSIS
OF PROCESSOR CONFIGURATIONS
WITH SCALING OF TECHNOLOGY

St,eve Fu and Michael Flynn

Technical Report: CSL-TR-94-605

March 1994

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 943054055

Abstract

As integrated circuit, density increases, computer architects face the interesting problem
of how best to utilize t,he a,vailable die size given cost and performance constraints. Tra--
ditionally, area partitioning and floor-planning have been done in an ad hoc fashion based
on intuition and experience of the designers. This paper proposes a systematic methodol-
ogy for correlating area and performance as the designer increases the transistor count of

. a given sub-unit. Specifically, we invest)iga,te t8he performance of three possible processor
: configurat,ions, and present performance results as the rnimimun feature size is reduced.

Key Words and Phrases: cache, technology scaling, bus traffic, Area modeling, super-
scalar, multiprocessor

Copyright @ 1994

bY

Steve Fu and Michael Flynn

List of Tables

1 Pipeline Specifications . 3
2 Given Conditions . 4
3 Given Area Specifications . 7
4 Baseline Processor Area Calculation . 8
5 Area Summary . 8
6 Cache Configurations(KBytes) . 10
7 Cache/Memory Interface Options . 16

List of Figures

6

7

8

9

10

11

12
13
14

15
16
17
18
19

-

Baseline Block Diagram .
Processor Organization . ~
MP Block Diagram .
Percent total cache area used for cache tags.
Percent CPI improvement of CBWA buffer management scheme 2 and 3 rel-
ative to scheme 1 for 0.75~ (Write Policy-Configuration-Buffer Management
Scheme). .
Percent CPI improvement of WTNWA buffer management scheme 2 relative
to scheme 1 for 0.75~ (Write Policy-Configuration-Buffer Management Scheme).
Percent CPI improvement of 64b memory bus relative to 32b memory bus
for a 0.75~ Baseline processor. .
Percent CPI improvement of 64b memory bus relative to 32b memory bus
for a 0.75~ Superscalar processor. .
Percent CPI improvement of 64b memory bus relative to 32b memory bus
for a 0.75~ MP- processor. .
Percent CPI improvement of implementations with secondary cache relative
to implementation without secondary cache for 1.0~ across different line sizes.
Percent CPI improvement of implementations with secondary cache relative

17

18

18

to implementations without secondary cache for 0.3~ across different line sizes. ~~
Baseline cache management policy/traffic analysis for 0.75~. 22
MP cache management policy/traffic analysis for 0.75~. 23
Baseline WTNWA traffic breakdown for 0.75,~(Configuration- Reference
T y p e) . 2 3
Baseline CBWA traffic breakdown for 0.75~ (Configuration- Reference Type). 24
Baseline WAC traffic breakdown for 0.75~(Configuration- Reference Type). 25
CPI/cache management policy summary for 0.75~ (Write Policy-Configuration). 26
CPI/cache management policy summary for 0.30~ (Write Policy-Configuration). 26
CPI versus feature size summary. 27

19

19

20

31

iv

Contents

1 Introduction 1

2 Processor Specifications

3 Methodology

4 Area Modeling

1

6 .

6

5 Cache Configuration Exploration 7

6 Cache Design 10
6.1 Unified versus Split . 11
6.2 Line Size and Associativity . 12
6.3 Traffic Analysis . 12
6.4 Write Buffer and Memory Interface Schemes 14

7 Results 16
7.1 Write Buffer Management and Memory Interface 17
7.2 Physical Word Size . 17
7.3 Secondary Cache . 20
7.4 Traffic and Line Size . 21

7.5 CPI versus Feature Size . 25

8 Conclusions 27

. . .
111

1 Introduction

Advances in technology have allowed recent microprocessors to have more than 3 million
transistors, operating frequencies of 200MHz, and over 500 pins on a single chip. The
architect faces the complex problem of how to balance performance against complexity and
design time. Since the life cycle of a microprocessor is about two years, the architect must
examine ways to use the advances in IC technology and design a microprocessor that fits
the needs of the target market in terms of performance, power consumption, and cost.

The importance of die size with regard to fab costs [l]? design cost, and power consump-
tion has been determined empirically through statistics. The design cost of a microprocessor
has increased drastically with density, and power consumption has scaled up with die size *
cloclc frequency. With recent industrial design examples, it is obvious that early partitioning
of die area, cycle time, and power budget leads to a successful microprocessor design. Tra-
ditionally, tools for evaluating performance have evaluated the TIME resource only. Time
aspects include such parameters such as latency and throughput of operations. This paper
proposes techniques to correlate performance to another key resource in the design space:
AREA.

Another growing problem is the ever-widening gap between CPU cycle time and main
memory access time. This paper proposes an analytical approach to incorporate the effect
of bus contention and bus saturation in the overall performance of the processor. Different
cache management and memory interface schemes are analyzed with respect to memory
traffic and resulting CPI.

In this paper, three processor configurations with different instruction and data band-
width requirements are mapped to a technology-independent area model. Under the con-
straints of fixed cycle time and die area, an optimal cache and memory interface design is
selected for each processor configuration. Repeating this sequence for the feature sizes of
interest, an evolution path in terms of processor configuration and performance is derived.

2 Processor Specifications

The instruction set is to remain consistent across the three configurations. The configura-
tions also share common modules with the only modifications allowed being the data path
widths and controls. The three configurations are:

1. Single issue processor with a branch adder and expanded cache. The high level block
diagram is shown in Figure 1, and the processor organization is shown in Figure 2.

2. Superscalar
cycle.

processor that inspects 4 instructions and issues up to 2 instructions every

3. Two baseline processors, each possessing its own Icache and sharing one Dcache. The
high level block diagram is shown in Figure 3.

An optimal cache and memory organization for each configuration is selected given the
area constraint, and a 256KB off-chip secondary cache is optional.

Integer Unit

t

-r

FP Unit

ICache DCache

r Memory Interface

I

i Seconday Cache 1
I____“____“__ ------------- ---------------_------------I

Memory Bus

Figure 1: Baseline Block Diagram

,___-_-- - __“_“__--_--------““-----“-----__““~----“_“----““““---~“-~-------”--.

I

: Integer Unit I 1

Instruction
Buffer

4

t
Integer
Register
File

* ,
Bypass
Network

I Decoder
I

1 v w

4 1

I v I

1 c 1 1 * 1 I ,
Shifter/

Branch Load/ Store
Incrementor

I I

” “----“““----“““““----------------------”””””~~~““““~~~~~“~”~~~”~~~~~~~~“~“~~~~~~~,
FF unit 1 I

:

FP :
Register Bypass I
File Network

I

I

7 * I
I I

4 I

I
w

1 + 4 4

FP Mu1 tiplier Divide Support Load/ Store

1 1T I1~_““__“““““____“““““~~~“““““-~““””””~””””””~~””““~~~~““““~~~”””~“~~~““““~~----~

Figure 2: Processor Organization

2

1 op t iona l 1
: Secondary Cache I
I
L”““““““““““““““““““““““““““““““””” “““““““““““““-““““““----,--------1

Memory Bus 1

Figure 3: MP Block Diagram

Table 1: Pipeline Specifications

3

Table 2: Given Conditions

Area
Total Chip Area 230mm2
I/O Pad Overhead 20%
Latch Overhead 10% of Integer and FP units
Bus Overhead 40% of Integer and FP units
Aspect Ratio Mismatch Overhead 10% of cache area

Base CPI
Implementation Type
Baseline Processor
Superscalar Processor
Multiprocessor Processor

Base CPI
1.47
0.833
0.795

1

Reference Per Instruction
Instruction Reference
Data Read Reference
Data Write Reference

1
0.33
0.235

L2 Cache TacceSS 24 ns

Timing Specification
Cycle time
Memory TacceSS
Memory Tpagemode
Memory TbUs
On-chip Cache Access

8 ns
96 ns
16 ns
8 ns
8 ns

Memory Specifications
Memory Size
Types
Fast Sequential Page Mode
Interleaving

64MB
4Mx8b
Available
2 or 4

128
Associativity 2-way
Page Size 4KB
TLB Miss Rate 0.0065
TLB Miss Penaltv 20 cycles

Secondary Cache Specifications
Size 256KB or 4x First Level Cache Size
Organization Direct-mapped

4

Superscalar Specifications

o 2 Integer ALUs

l Pipelined FP Unit

l 1 Branch Adder

0 1 L/S Unit

l Register File with 2 Read and 2 Read/Write Ports

l Additional Bypassing Muxes

l Doubled Instruction Buffer Size

l Doubled Decoder Hardware Size

Dual Issue Combinations

l 2 Integer ALU Ops

l 1 FP and 1 Integer Op

l 1 FP Multiply and 1 FP Addition

l 1 Branch

0 1 L/S

MP Specifications

l Two Baseline Processors

l Two I Caches

l Two I TLBs

l One Shared D Cache

l One Shared D TLB

Assumptions

l For copyback cache, assume a dirty line ratio of 50% (w).

l For the MP shared data cache, the cache miss ratio is based on a multiprogram level of
two and a task switch quantum of 100. This is intended to account for cache collision
effects.

l Secondary cache implementations increase the cost of the system by 20%.

5

l The processor’s intended environment is scientific.

l Physical address space is 64MB.

l Each cache tag includes an additional 4-bit control field (for cache coherency and line
replacement purposes).

l Two memory interface widths to choose from for all possible implementations due to
pin limitations. Either 32b or 64b physical words can be utilized, although the 64b
implementation is assumed to add 5% to system cost.

3 Methodology

The methodology can be divided into six steps:

l Map each processor configuration to a technology independent area model of processor-.
units.

l Explore all possible cache configurations given remaining area.

l Instruction and write buffer design.

l Cache design.

l Memory design.

l Evaluate performance of each configuration.

The above steps are applied to each processor configuration, and repeated for minimum
feature sizes of lp, 0.75~, 0.6~~ 0.5~~ 0.4~, and 0.3~.

e 4 Area Modeling

The area model used in this paper is based on the work done by Mulder [3]. Register
bit- equivalent (rbe) is the basic unit of area. An rbe is a six-transistor static cell with
input/output isolation, and has been determined to be about 2700 X2. (X is the fundamental
resolution unit proposed by Mead and Conway, and f is the actual feature size in ,Q.) In
this paper, static ram cells are used for cache storage bits, and these are estimated to be 0.6
rbe. A larger area unit “A” is used throughout this paper. This is the size of a 3-ported
32 entry register file.

In Table 4, each module is shown with its corresponding area utilization in “A,” where
“A” is defined as 1481 rbe and each rbe is 675 f2. The various units that belong in the
baseline processor are summed up. After obtaining the total area for both integer and FP
unit, the overhead for both latches and busses for communication is added. These are 10%
and 40% of the units, respectively. It is given that the die area is 230 mm2. However, to
account for peripheral area such as IO Pads, 20% of the die area is subtracted, which gives

6

Table 3: Given Area Specifications

1 Feature Size 0.75/L
Defect Density 1 per cm2
Yield 10%
Control Ovrhd 20%
Aspect Ratio Ovrhd 10%
Latch Ovrhd 10%
Bus Ovrhd 40%

us 184 mm2. To convert the available area from mm2 to units of A, the following formula
is used:

Area(A) = (area) mm2/(1481 * 675 * f * f * 0.001 * 0.001).

Subtracting th.e baseline area and deducting 10% for aspect mismatch gives the area
available for cache + directory. A similar analysis is used for superscalar and MP imple-
mentations of the chip. The basic parameters are given in Table 3. A sample calculation
is shown in Table 4 for the case of a baseline processor with 0.75 p feature size. Similar
analysis can be done with superscalar and MP, but is not shown for brevity. The total area
without cache is summarized in Table 5.

5 Cache Configuration Exploration

Tag Memory Modeling
A physical address is broken into the following:

Tag Index Offset

Direct Map Cache

Tag bits = log (Mem size/Cache size)

Index bits = log (Number of lines)
Offset bits = log (Number of bytes/ line)

Associative Cache

Tag bits = log (Mem size/Cache size) + log (Degree of associativity)

Index bits = log (Number of lines/Degree of associativity)
Offset bits = log (Number of bytes/line)

7

Table 4: Baseline Processor Area Calculation

Baseline Area Conversion To KB
Integer ALU l.OOA D i e A r e a 230mm2
Integer register 1 .OOA Area Available 180mm2
Shifter 0.50A Area Available in A 335.11A
Incrementor 0.40A - Total Baseline 82.35A
PC unit 1 .OOA Remaining Area 335.11A
2 TLBs 6.00A -10% Aspect Ratio Mismatch 25.28A
Decode/Control l.OOA Total Cache Area 227.48A
Cache Controller l.OOA Cache Bi ts 561116.96b
Bus Logic 2.00A C a c h e K B 68.5KB
Stored Buffer+E3ypass l.OOA
Load/store 0.20A
Clock generator l.OOA
Branch Adder 1 .OOA
Total Integer Unit 17.10A
F P RegFile l.OOA
FP Adder 13.5A
FP Multiplier 20.30A
Divide Support 3.00A
Total FP Unit 37.80A
Latch Ovhd 5.49A
Bus Ovhd 21.96A
Integer Unit 17.10A
Total Baseline 82.35A

Table 5: Area Summary

8

%

60

50

40

30

20

10

0

m fully Assoc

0 Direct

Set Assoc=2

m Set Assoc=4

m Set Assoc&

8 16
LineSize

32 64 128

Figure 4: Percent total cache area used for cache tags.

Fully Associative Cache

Tag bits = log (Mem size/Cache size) + log (Number of lines)

Index b i t s = 0
Offset bits = log (Number of bytes/line)

For tag memory, four bits are added as control bits. In addition, the direct-mapped
cache requires only one comparator, while the set-associative requires as many comparators
as its degree of associativity. The fully-associative cache requires a content-addressable
memory (CAM) as its directory, since every line is a candidate. These memory bits are
modeled as 2 rbe each.

Figure 4 shows the tag memory area for different configurations and line sizes. The
fully-associative cache is prohibitively expensive for small line sizes. Given a certain target
data cache size, the smaller line size implementations simply do not fit in the given area.
Set associativity of 8 gives us the greatest reduction in cache miss ratio, yet provides a
relatively low tag memory overhead. Increasing line sizes has the greatest effect in reducing
tag memory overhead.

After calculating the area available for cache, we proceed with the selection of the cache
configuration that results in the optimal CPI. One of the problems is that the area may not
fall squarely into 27zKB boundaries, where n is a positive integer. Industry implementations
use different associativities to accommodate this problem, but this greatly increases the

9

6 . 2 Line Size and Associativity

Line size is the unit of transfer between cache and memory. The selection of line size is
critical for processor performance. Altering the line size affects the following:

l Cache Miss Ratio.

l Memory Traffic.

l Tag Memory Size for cache directory.

Increasing or decreasing the line size is a decision based on balancing cache miss ratio,
memory traffic, and tag memory size. Increasing the line size decreases the miss rate due
to the enhanced spatial locality of the cache (sequential address request). However, the
decrease in miss ratio becomes smaller as we increase the line size further, since the cache
is losing its temporal locality (fewer lines). The optimal point is reached when the effect of
decreasing the miss ratio no longer compensates for the increase in Y-line. Increasing the line
size decreases the number of lines in the cache, thus decreasing the overhead of tag memory
associated with each line. With small caches, if we increase the line size too much, we hurt
the temporal locality of the cache, since we tend to replace lines too often due to the small
number of lines available.

Since the focus of this paper is AREA, not TIME, we assume that the cache implemen-
tation is not the critical path of the processor. Empirical data of recent industry implemen-
tations indicates that 8ns is sufficient for accessing most cache configurations. With this in
mind, we assume that increasing the associativity does not penalize cycle time. What we
can consider is the area cost due to associativity, along with the cost of comparators. We
consider the cases of direct mapped, 2,4,8-way set associative, and fully associative. More
associativity reduces the miss rate, but also results in larger tag memory comparator and
muxing cost.

6.3 Traffic Analysis

To provide a more quantitative view of memory traffic differences between different cache
management schemes, simple models are presented for four different schemes. The following
parameters are utilized in these models :

l 7’rine is the time required to complete a line access. It is dependent on the line size
(L), the memory interleaving factor (M), the memory bus width, the sequential page
mode access time (Tpagemude), and the bus cycle time (7jbUs):

%ne = ~access + Tpagemode [L/M - 11 + Tbus((L - 1) mod M).

l Two r d is the word access time(T,,,,,,).

l Cache Miss Ratio (MR).

12

6 . 1 Unified versus Split

Given a fixed area to implement the cache, we first qualitatively consider whether to use the
unified or the split cache scheme. Unified cache offers a lower overall miss rate, but we must
consider the amount of contention delay due to conflicting data and instruction accesses. A
split cache offers higher bandwidth, since separate data paths exist for instruction and data
accesses. However, we must provide the additional area required for the data paths and a
higher overall miss rate. As a rough approximation, we assume that for a split cache 10%
of the cache area is utilized by data paths and overhead.

In calculating the contention, one needs to take the actual CPI into consideration. Many
of the instruction requests are from branches that degrade the CPI of the processor. Only
in-line reference stream and executed instructions need to be considered, since an instruc-
tion that is not executed cannot result in contention. We can model the contention using
probabilistic models. Furthermore, the analysis is divided into Copy Back Write Allocate
(CBWA) and Write Through No Write Allocate (WTNWA) cases. The abbreviations used
are Instruction (I), Instruction Fetches (IF) , Data Fetches (DF), and Data Stores (DS).

C B W A

For CBWA, the data traffic needs to include both data fetch and data store, since, unlike
WTNWA, both access the cache.

Prob (Contention/I) = (Inline IF/I) * (
DF+DS

I)

= (0.5) t (0.235 + 0.33) = 0.283

Since the on-chip cache can be accessed every cycle, we should take CPI into account
and calculate the probability of contention per cycle:

Prob (Contention/Cycle) =
(Inline IF/I) * (y) = o 131

CP12
. .

Assuming the penalty due tlo contention is one cycle, the additional CPI is 0.131

W T N W A

Prob (Contention/Cycle) = @line IF/I) * cDF/‘) = 0 0764
CPI2

.

Additional CPI = 0.0764

Based on the preceding penalty estimation, we can compare the performance lost due
to contention versus the performance lost due to smaller split caches and higher miss rates.

11

Table 6: Cache Configurations(KBytes)

Feature
Size Baseline Supersca lar MP
l.Ou 24-U 16-U 2I/2I/2D

161/8D 81/8D
81/ 16D

0.75j.L 64K-U 48K-U 81/81/16D
321/32D 161/32D 161/161/8D

321/16D

0.6~ 641/48D 641/32D 32D/321/321
I 481/64D 11 321/64D I] 48D/161/161 1

0.5j.L 96Ij64D 1281/32D 48D;481;481
I 1281/32D]I 961/64D]I 64D/321/321]

II

0.4j.L 256-U 256-U]I 128D/641/641
I 1281/128D I] 1281/128D]I I

0.3p 512-U 512-U 256D/l281/1281
I 2561/256D I] 2561/256D]I I

number of configurations that we must look at. An example is the SuperSparc with its
20KB Icache and a associativity of 5.

The effect of non-binary associativity is better utilization of the available area, but it
should have only a second-order effect on CPI. The cache configurations that were considered
are shown in Table 6.

6 Cache Design

After examining the possible cache sizes with respect to area constraints, we can consider
other aspects of on-chip cache design. The cache miss data is based on a series of design
target miss rates (DTMR) from the work of Smith [6]. In comparisons with SPEC92 cache
performance data produced by Hill [4], DTMR tends to be a more conservative estimate of
cache performance.

The following aspects of cache design were explored:

l Unified versus Split.

l Line sizes and associativity.

l Traffic generated by different cache management schemes.

l Different buffer management and memory interface schemes.

10

l ($6 of total lines that are dirty (W).

l Reference Traffic Patterns.

The schemes considered are:

l Write Through No Write Allocate (WTNWA)

l Copy Back Write Allocate (CBWA)

l Write Through with a Write Assembly Cache (WAC)

l Write Through with CBWA Secondary Cache (WTWSC)

W T N W A

- Line Accesses/I = IF/I * (ICache.MR) + DF/I * (DCache.MR)

Word Access / I = DS/I
Total BUS Time/I = DF/I t Dcache.MR * Trine + DS/I

*TacceSS + IF/I t ICache.MR t Tline

Total Offered Occupancy = (Total Bus Time/I) /Cycle time

CBWA

Line Accesses/I = IF/I * (ICache.MR) + (DF + DS)/I
*(1 + W) * (DCache.MR)

Word Access/cycle = 0
Total Bus Time/I = LineAccesses/I * Tline

Total Offered Occupancy = (Total Bus Time/I)/Cycle time

WAC

Line Accesses/I

Word Access/cycle
Total Bus Time/I

Total Offered Occupancy

W T W S C

= IF/I * (ICache.MR) + DF/I * (1 + W)
*(DCache.MR) + DS/I * (1+ W) * (WAC.MR)

= 0
= IF/I t (ICache.MR) t Tline

+DF/I * (1 + W) * (DCache.MR) * Tline

+DS/I * (WAC-MR) * Tline.wac
= (Total Bus Time/I)/Cycle time

13

Table 7: Cache/Memory Interface Options

Option 1 Option 2 Option 3
Write dirty line to memory Fetch new line Fetch missing word first
Fetch new line Start processor Start processor
Start processor Write dirty line to buffer Finish line fetch and write

dirty line to buffer
Tm.miss = (1 + w)Zine Tm.miss = (I+ w)Xine
Tc.miss = (1 + w)Zine Tc.miss = Zinc

Tbusy = 0 Busy = Whine

Tm.miss = (I+ w)qi,e
Tc.miss = T’accese

Tb usy = (I+ w)Tine - Taccess

Scheme 3: In a read miss, the dirty line is transferred to the write buffer simultaneously
with the initiation of the fetching of the line. The processor resumes when the first
word is returned from memory (wrap -around fetch).

-.

Instead of repeating the analysis, the required terms are summarized in Table 7.
For CBWA, both read and write interferences have been incorporated into Ti~~e~~~~nce,

since the Tm.miss includes both read and write reference traffic of the cache. For all three
schemes, the interference time and the resulting CPI can be approximated as follows:

rl?lnte.rference = (DCache.MR * (DF/I + DS/I) + ICache.MR * IF/I)
1 Tbusy2

* C y c l e t i m e * 2 ’

C P I = CPIb,s, + (DCache.MR t DF/I + ICache.MR * IF/I) * Tc’m~y~l~~~~nce.

- 7 Results

The effects of different choices in cache and memory interface design on performance are
presented in the following sections. Similar analysis is carried out for all possible minimum
feature sizes, but in most cases only the results from the 0.75~ case are presented, for
brevity. With the goal of achieving an optimal CPI, variations in performance with respect
to the following design choices are shown:

l Different write buffer management and mpmorv interface schemes.

l Doubling the memory bus width.

l Addition of a secondary cache.

l The effect of memory bus traffic.

The last section presents the CPI versus feature size of the different configurations.

16

Since 5?busy(Read) = 0, no memory contention can occur due to a read blocking another
read, However, a write that is being serviced can block a read request, and is accounted for
in Tw.interference-

Tw.interference = (1 - (1 - (IF+DF)/I) m) (DS/I) (Twrite.mem/2) +

The first term, (1 - (1 - (IF+DF/I)‘w+tte.memlcyclctrme), is the probability of a read request
during the number of cycles it takes to process the write request. The second term, (DS/I),
is the probability of a write request during any cycle. The third term, (Twrite.men,z), is the
average waiting time of a read request.

After inc
CPI are:

.I uding the write interference time, the time to process a read and the resulting

T c . m i s s = %ine + Tw.interference

CPI = CPIbase + (DF/I * DCache.MR * T,.mi,,)/Cycle time
+(IF/I * ICache.MR * Tc.miss) /Cycle time.

For scheme two:

Tm.miss = Eine

Tc.miss = Taccess

Twrite.mem = max(Access, Cycle)

Tw r i t e . c = 0

For this case, a read in progress can block an upcoming read, since TbUsY = Tline - TacceSS.
AS a result, we must also include Tr.interference in the final read processing time of memory.
The read interference time and the resulting CPI can be approximated as follows:

Tr.interference = ((DCache.MR t (DF/I/Cycle Time)

+ICache.MR * (IF/I/Cycle Time)) * TbUsy2 .>
C P I = CPIbase+ (DF/I t DCache.MR + (IF/I) * ICache.MR)

*(‘I‘c.miss + Tw.interference + T r.interference) /Cycle time.

For CBWA, we consider three buffer management schemes.

Scheme 1: In a read miss, the dirty line is written to memory, followed by the entire line
being fetched and loaded into the cache, prior to the resumption of processing.

Scheme 2: In a read miss, the dirty line is transferred to the write buffer simultaneously
with the initiation of the fetching of the line. The processor resumes when the entire
line has been loaded into the cache.

15

%

18

16

12

10

8

6

d WTNWA-Baseline-i

0 WTNWA-Super-2

WTNWA-MP-2

4 8 16 32 64 128 Lkdiie

. Figure 6: Percent CPI improvement of WTNWA buffer management scheme 2 relative to
scheme 1 for 0.75~ (Write Policy-Configuration-Buffer Management Scheme).

%

9

8

7

I Basdine-CBWA

II BaselineJVTNWA

4 8 16 32 64 128 LineSize

Figure 7: Percent CPI improvement of 64b memory bus relative to 32b memory bus for a
0.75~ Baseline processor.

18

%

15

10

5

0 3 :. .:. . . .I ., Go ;:: (0_:, v- 8 % g-5 :::: :: ;rlll :: ,:

Ii!
:: ;; F LineSize::::2 .: :.
:: ‘.-10 ::3:: .:
:: ::

n CBWA-Baseline-2

0 CBWA-Baseline-3

CBWA-Super-2

n CBWA-Super-3

q CBWA-M p e2

Figure 5: Percent CPI improvement of CBWA buffer management scheme 2 and 3 relative
to scheme 1 for 0.75~ (Write Policy-Configuration-Buffer Management Scheme).

7.1 Write Buffer Management and Memory Interface

The CPI versus line size of each scheme is generated and summarized. Figures 5 and 6
detail the performance improvement of schemes two and three relative to buffer management
scheme one. Two observations can be made based on the data:

l For the CBWA data, at low line sizes, there is no benefit in using the more complicated
schemes due to the higher miss ratios and the inability to :mort,ize the memory access
time.

l For the CBWA-MP data, at higher line sizes, the benefit in using the more complicated
schemes is reduced. This reduction is because the decrease in cache miss ratio cannot
compensate for the increase in bus contention time.

7.2 Physical Word Size

The effects of increasing the memory bus for botJh CBWA and WTNWA are displayed in
Figures 7-9.

These figures exhibit an interesting point. The increase in bus width brings a large
return in CPI reduction for the CBWA case. but not for the WTNWA case. It is somewhat
intuitive that increasing bus width reduces Tline ,but, does nothing for Taccess. Since WTNWA

1 7

The secondary cache is assumed to be CBWA, and has a fixed line size of 128 bytes. The
sizes of the secondary cache vary across different feature sizes from a minimum of 256KB
to 2MB in order to maintain a reasonable size ratio between the first-level cache and the
secondary cache. The first-level cache associated with the secondary cache is WTNWA.

Line Accesses/I = IF/I * Secondary Cache.MR

+(DF + DS)/I * (1 + W)
*(Secondary Cache.MR)

Word Access/cycle = 0

Total Bus Time/I = Line Accesses/I * Tline(128B)
Total Offered Occupancy = (Total Bus Time/I)/Cycle time

6.4 Write Buffer and Memory Interface Schemes

Different combinations of CBWA and WTNWA and different buffer management schemes
have different implications for the overall CPI. For the analysis below, a “perfect write
buffer” is assumed, since the effect of write traffic is analyzed separately. With this as-
sumption, no write buffer contention can occur.

Before proceeding, a few terms need to be introduced:

Tm.miss = Time memory is busy due to a read request.
Tc.miss = Time processor is stalled due to a read miss.

Twrite.mem = Time memory is busy due to a write miss.
Twrite.c = Time processor is stalled due to a write miss.

Tb,,,(R=d) = Tm miss - Tc.miss*

- With the WTNWA configuration, we consider two buffer management schemes.

Scheme 1: In a read miss, the entire line must be fetched in prior to the resumption of
processing.

Scheme 2: In a read miss, wraparound is used so that the first word is returned first, and
processing continues while memory finishes loading the rest of the line into cache.

For scheme one:

Tm.miss = Zinc

Tc.miss = T*line

Twrite.mem = max (Taccess, Tcycle)

Tw r i t e . c = 0.
Tbusy(Read) = 0 .

14

%

20

18

16

8

6

T

1 Super-CBWA

fl Super-WTNWA

4 8 16 32 64 128 LineSize

Figure 8: Percent CPI improvement of 64b memory bus relative to 32b memory bus for a
0.751.L Superscalar processor.

%

18

16

14

12

10

8

t I

1

1
I

4 8 16 32 64

m MP-CBWA

cl MP-WTNWA

128 LineSize

Figure 9: Percent, CPI improvement of 64b memory bus relative to 32b memory bus for a
0.75~ MP processor.

19

60

Baseline Super
CBWi

Super $ w MJ
WTNWA

u

:.:.
CBWA WJJtJW/?, jjij.:.: CSWA WINWA. . . .

Architecture/Write Policy

. Figure 10: Percent CPI improvement of implementations with secondary cache relative to
implementation without secondary cache for 1.0~ across different line sizes.

traffic is dominated by the write traffic as the miss ratio is reduced, its performance is not
enhanced by a reduction in Tlines

Another interesting question is why the improvement reaches a peak for the MP-CBWA
case at line size of 16B, and drops after that. The reduction is due to the small cache area
for the MP implementation. CPI reaches a peak at smaller line sizes.

For CBWA implementation, it is worthwhile in all cases to implement a wider memory
- interface, since the performance benefit is greater than the 5% additional cost for most line

sizes.

7.3 Secondary Cache

The effect of the addition of a secondary cache to CPI across the different line sizes, write
policy, and architecture is shown for the 1.0~ and 0.3~ cases. These cases are selected in
order to show the benefits of secondary cache as feature size is shrunk. The size of the
secondary cache is either 256KB or a minimum of 4x the size of the first level cache.

From the data in Figure 10, it is beneficial to add a secondary cache only with shorter
line sizes, since it is assumed that the secondary cache adds 20% to system cost.

Figure 10 compares the best CPI without secondary cache to the CPI implemented with
a secondary cache. The negative improvement with longer line sizes is due to the fact that
the implementation with secondary cache uses a simple write buffer management scheme.
AS a result, for the CBWA case, Tc.miss = (1 + w)Tline.l28 (we first need to write back

2 0

%

40
T

30

20

10

0

-10

-20

-30 1 Architecture/Write Policy

416

0 32

64

1 128

Figure 11: Percent CPI improvement of implementations with secondary cache relative to
implementations without secondary cache for 0.3~ across different line sizes.

the dirty line and wait for the entire read line to be returned prior to the resumption of
processing).

Therefore, for the baseline case (which has the biggest level-l cache and smallest ref-
erence traffic), as the line size is increased, the best CPI without secondary cache is lower
than with secondary cache.

The addition of secondary cache brings no improvement for the 0.3~ case, since the miss
rate of the level-l cache is now even lower (a much larger on-chip cache), and the ratio of
size between the first-level and secondary caches is only four. This conclusion is shown in
Figure 11 for the 0.3~ case.

Based on these data, the addition of a secondary cache is not warranted, since the
performance improvement does not exceed 20% for higher line sizes. However, we have

- not taken memory traffic into account, and secondary cache has a great effect in reducing
memory traffic.

7.4 Traffic and Line Size

Traffic on the memory bus is critical to overall system performance. When the offered
bandwidth exceeds the achieved bandwidth, the memory bus dictates the performance of
the overall system. Four main implementations are considered:

l Write Through No Write Allocate cache.

21

Offered Bus
Time/Cycle

I CBWAR

0 CBWA-W

128 LineSize

Figure 15: Baseline CBWA traffic breakdown for 0.75~ (Configuration- Reference Type).

As Figure 14 for WTNWA shows, when line size is increased, the traffic from both data
and instruction read references is reduced, but the data write traffic remains constant. In
this implementation, the CPU performance is bus saturated since offered bus time is greater
than the maximum achievable bus time.

Figure 15 gives the traffic breakdown for the CBWA implementation. One can see that
as line size increases, reducing the cache miss ratio, a significant reduction in all three
streams of traffic occurs. At line size of 128 bytes, the bus occupancy is kept below 0.5, and

- processor performance degradation due to the bus contention among the three reference
streams is taken into account by the read/write interference time, as described earlier.

Figure 16 shows the traffic breakdown of the WAC case. In using the write assembly
cache, the data write traffic is converted from word traffic to the more efficient line traffic.
Data from [7] hs ow that the WAC can filter out approximately 70% of the write traffic.
With WAC, the write traffic is reduced, but still dominates the overall reference traffic.

In order to prevent the bus from becoming the system bott,leneck, we can pick either
the CBWA or the implementation with secondary cache. The total offered occupancy has
to be kept below the maximum achievable occupancy. As we decrease the feature size, the
situation is improved because larger caches reduce the bus traffic.

The CPI models that we used previously assumed a “perfect write buffer.” These models
for CPI are valid as long as bus occupancy is kept below one, and a sufficiently large write
buffer exists. However, when bus occupancy is above one, the bus saturates and we must
consider total traffic and degrade the base CPI accordingly. Figure 17 shows the final CPI
for the 0.75p implementations , with bus traffic taken into account by scaling t,he base CPI

Offered Occupancy

n WTNWA-o

0 CBWA-o

WAC-o

q WI 2nd cache-o

4 8 16 32 64 128 LineSize

Figure 13: MP cache management policy/traffic analysis for 0.75~.

25

20

15

IO

5

0

Offered Bus

Time/Cycle (ns)

4 8 16 32 64 128
LineSize

L’igllre 14: Baseline WTNWA traffic breakdown for 0.75/r(Configuration- Reference Type).

Offered Occupancy

4.5 -j-

2.5

0.5

16 32 64 128

n WTNWA-o

•l CBWA-o

m WAC-o

I WI 2nd cache-o

ax. Achievable
ccupancy

LineSize

Figure 12: Baseline cache management policy/traffic analysis for 0.75~.

l CopyBack Write Allocate cache.

l Write Through No Write Allocate cache with a Write Assembly cache.

l WTNWA with the addition of a secondary cache.

A total of 8 ns of bus time is available to each instruction, and the ideal offered bus time
- has to be below 8ns to avoid significant performance degradation. The data is presented in

two ways. We first compute the total offered occupancy assuming an ideal bus (bus is able
to supply the required bandwidth) for each implementation, and next, we break down the
traffic of each implementation into different reference streams to get a better idea of the
types of traffic on the bus and how it changes with increasing line size. When the offered
tritffic with an ideal bus exceeds that of available bus time, the base CPI is scaled to account
for the effect of bus saturation.

The results indicate that the WTNWA implementation has the highest offered occu-
pancy among the four implementations. Even at a line size of 128 bytes, the offered traffic
is three times more than the available bandwidth. These data rule out the use of a WTNWA
cache, since the bus has become the lirniting resource even without multiple processors on
the bus. In a multiprocessor systern, we can select either the CBWA with large line size
or the WTNWA implementation with a secondary cache. Figure 13 shows that traffic is
higher for the MP implementation. In the MP implementation, it is even more import ant
to have a secondary cache to reduce bus traffic.

22

Offered Bus
Time/Cycle (ns)

8
m WAC-R

0 WAC-W

WAGIR

8 16 32 64 128 LineSize

Figure 16: Baseline WAC traffic breakdown for 0.75~(Configuration- Reference Type).

with respect to the offered occupancy.
Some useful conclusions can be drawn from Figure 17. The best-performing configu-

rations are the superscalar and the baseline implementation with CBWA cache at a line
size of 128 bytes. The fact that the baseline implementation comes out relatively even
with the superscalar can be attributed to its larger cache and smaller need for bandwidth.
Another interesting point is that the worst performing implementations are all WTNWA,
with WTNWA-MP being the worst. It is also notable that increasing the line size has less
beneficial effect on WTNWA than on the other implement,ations. This is due to the fact
that most of its traffic is word writes, and the initial access time cannot be amortized, as
in the case of line accesses.

Figure 18 shows the same analysis for the 0.3~ implementation. In this case, the best
performance is MP with CBWA. This is a reversal from the 0.75~ implementation, where
MP generally performs the worst. This graph does not8 include the WTNWA cases, since
we have concluded that those are not feasible implementations. However, the secondary
cache(2$) implementations are shown.

The main difference between t,he 0.3~ and the 0.75~ implementations is that the first-
level cache is now sufficiently large to supply the bandwidth demands of the MP implemen-
tation. There is also much less degradation of CPI due to bus saturation (except in the
case of WTNWA implementation).

7 .5 CPI versus Feature Size

25

6

WAGMP
xCBWA-MP

3 --n CBWA-B

-.- W-f-NWA-B
- CBWA-B
-.-

WACB
- WTNWAS
- - - C B W A - S
- WAGS
-.-

WTNWA-MP
- CBWAhnP
-x- WAGMP

.= I CBWA-S

!
I I I 1 I 1 I

0 I I I I I I

4 8 16 32 64 128 LineSize

Figure 17: CPI/ cache management policy summary for 0.75~ (Write Policy-Configuration).

- - - C B W A - B

 WAC-B

- - - C B W A - S

 WAGS

-.- CBWA-MP

- - W A G M P
-.- 2$-B

 2$-S

-x- 2$-MP

16 32 128
LineSize

Figure 18: CPI/cache management policy summary for 0.30~ (Wr te Policy-Configuration).

26

m
6 T

-.- Baseline

- Superscalar

1 0.75 0.6 0.5 0.4 0.3
Feature Size

Figure 19: CPI versus feature size summary.

Figure 19 shows the best CPI across feature sizes. At the ly feature size, the bandwidth
supplied is not sufficient to match that of the MP implementation. This results in a dramatic
drop in CPI for the MP case as we go from 1~ to 0.75~. It can also be observed that the
increasing cache size does not help the baseline CPI much after 0.75~. With this observation,
one should consider moving to either superscalar or MP architecture. This coincides with
what is happening in the industry. To decide between the superscalar and MP cases is a
different story. The MP implementation has a higher demand for bandwidth, and it is at a
disadvantage due to the requirement for split ICache. The CPI of the two implementations
is roughly equalized at 0.3~. The slow decrease of CPI after 0.6~ indicates that architects
should consider other architectures at this point, such as higher-number issue superscalar or
higher MP implementations. However, steps must be taken to provide memory bandwidth
so that the memory bus does not become the limiting factor.

8 Conclusions

This paper presents a t!echnique to correlate area and performance as technology is scaled
for three processor configurations. Performance gain due to scaling of technology levels
out for the three implementations at different points. For the baseline case, insignificant
gains are achieved as one scales below 0.75~1.. For the superscalar and MP implementations,
the reduction of gains occurs at 0.61.1. This should give designers a hint for the future.
As technology scales to below 0.6/L, architects need to explore the design of higher-issue

27

superscalars and more than t,wo multiprocessors on a single chip. The benefits of single
level on-chip caches decline as t(hese caches reach 128KB and beyond. The desire to scale
cycle time also prevents t]he continued expansion of the first level cache. One alternative
that should be considered is on-chip secondary cache.

This paper also addresses the widening gap between processor speed and memory la-
tency. Based on our analysis, only the CBWA and secondary cache implementations are
feasible. A simple model is presented which scales the base CPI as the offered traffic exceeds
that of the available bus bandwidth. The results show that a simple bus-based memory
interface quickly becomes the system bottleneck, requiring higher-bandwidth implementa-
tions such as crossbar switches to force down contention.

References

[I] S. K. Ghandi. VLSI Fabrication Principles: Silicon and Gallium Arsenide. Interscience
Series. Wiley, New York, 1983.

[2] M. J. Flynn. Computer Architecture: Concurrent and Parallel Processor Design. Jones
and Bartlett, Boston, 1994.

[3] J. M. Mulder, et al. An area model for on-chip memories and its application. Journal
of Solid State Circuits 26(2) , February 1991.

[4] M. D. Hill. Cache Performance of the SPEC92 Benchmark Suit. IEEE Micro, Vol. 13,
Number 4, pages 17-27, August 1993.

[5] M. Johnson. Superscalar Microprocessor Design. Innovative Technology Series. Prentice
Hall, 1990.

[6] A. J. Smith. Line size choices for CPU cache memories. IEEE Transactions on Com-
puters, C-36(9):1063-1075, September 1987.

M [7] B. K. Bray and M. J. Flynn. Write caches as an alternative to write buffers. Technical
Report CSL-TR-91-470, Stanford University, April 1991.

