
COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY STANFORD. CA 943054055

*

SPREADSHEETS FOR IMAGES ’

Marc Levoy

Technical Report: CSL-TR-94-607

February 1994

This research was supported by the *National Science Foundation under contract
CCR-9157767 and by Software I’uhlishing Corporation. ’

SPREADSHEETS FOR IMAGES

Marc Levoy

Technical Report: CSL-TR-94-607

Computer Systems Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305-4070

Abstract

We describe a data visualization system based on spreadsheets. Cells in our
spreadsheet contain graphical objects such as images, volumes, or movies. Cells may
also contain graphical widgets such as buttons, sliders, or movie viewers. Objects are
displayed in miniature inside each cell. Formulas for cells are written in a
programming language that includes operators for array manipulation, image
processing, and rendering. Formulas may also contain control structures, procedure
calls, and assignment operators with side effects.

Compared to flow chart visualization systems, spreadsheets are more expressive, more
scalable, and easier to program. Compared to numerical spreadsheets, spreadsheets for
images pose several unique design problems: larger formulas, longer computation
times, and more complicated intercell dependencies. We describe an implementation

~ based on the Tel programming language and the Tk widget set, and we discuss our
solutions to these design problems. We also point out some unexpected uses for our
spreadsheets: as a visual database browser, as a graphical user interface builder, as a
smart clipboard for the desktop, and as a presentation tool.

Ktiywords:
Data visualization, User interfaces, Flow charts, Visual programming languages,
Spreadsheets

Spreadsheets for Images

Marc Levoy
Computer Science Department

Stanford University

January, 1993

Abstract
We describe a data visualization system based on spreadsheets.
Cells in our spreadsheet contain graphical objects such as images,
volumes, or movies. Cells may also contain graphical widgets
such as buttons, sliders, or movie viewers. Objects are displayed
in miniature inside each cell. Formulas for cells are written in a
programming language that includes operators for array manipula-
tion, image processing, and rendering. Formulas may also contain
control structures, procedure calls, and assignment operators with
side effects.

Compared to flow chart visualization systems, spreadsheets
are more expressive, more scalable, and easier to program. Com-
pared to numerical spreadsheets, spreadsheets for images pose
several unique design problems: larger formulas, longer computa-
tion times, and more complicated intercell dependencies. We
describe an implementation based on the Tel programming
language and the Tk widget set, and we discuss our solutions to
these design problems. We also point out some unexpected uses
for our spreadsheets: as a visual database browser, as a graphical
user interface builder, as a smart clipboard for the desktop, and as
a presentation tool.

CR Categories: 1.4.0 [Image Processing]: General - Image pro-
&sing sofhuare; 1.3.6 [Computer Graphics]: Methodology and
Techniques - Interaction techniques, Languages; D.3.2 [Pro-
gramming Languages]: Language Classifications - Data-jlow
languages

Additional keywords: Data visualization, User interfaces, Flow
charts,.Visual programming languages, Spreadsheets

1. Introduction
The majority of commercially available image processing

and data visualization systems employ a flow chart paradigm.
Users select processing modules from a menu and wire them
together using a mouse. Although elegant in principle, flow charts
are limited in expressiveness and scalability. Useful programming
constructs like procedure calls and run-time variable substitution
cannot be conveniently expressed in a flow chart. Flow charts
spend their screen real estate on operators and their interconnec-
tions, which becomes uninteresting once the flow chart has been
specified, and they run out of screen space if the program size
exceeds a few dozen operators. Flow charts also provide no con-
venient mechanism for managing multiple datasets. As a result,

these systems often prove too cumbersome to support the extem-
poraneous style of data analysis for which they were originally
intended.

We propose an alternative paradigm based on spreadsheets.
Broadly speaking, a spreadsheet is a two-dimensional cellular
automaton. Cells may contain a data value or a formula. Formu-
las compute a value for one cell as a function of the values in
other cells. These formulas are typically written in an simple,
interpreted language. Examples of spreadsheet systems are
Microsoft’s Excel, Lotus’s l-2-3, and Borland’s Quattro.

We have implemented a spreadsheet for images (henceforth
denoted SI) in which we extend the notion of a data value to
include graphical objects such as images. These objects are
displayed in miniature inside each cell. Double clicking on a cell
brings up the full-size object. Cells may also contain interactive
widgets. Manipulating a widget modifies the data associated with
the cell. If formulas in other cells reference the modified cell, they
are recomputed as well. Widgets are a powerful addition to the
semantics of a spreadsheet. In a sense, they turn the spreadsheet
into a graphical user interface builder.

Formulas in our spreadsheet are written in Tel, a general-
purpose programming language that provides variables, pro-
cedures, assignment statements with side effects, and a full com-
plement of control structures. Using such a language, the formula
for a cell can range from a one-line expression to an entire pro-
gram. To support editing of such formulas, SI is intimately tied to
Emacs, a popular, customizable text editor. Double clicking on a
cell brings up an Emacs window devoted to that cell. Double
clicking on other cells brings up additional Emacs windows,
allowing the user to write formulas for several cells at once.

The presence of an embedded formula language gives SI
expressiveness. The infinite grid of the spreadsheet, together with
the ability to resize cells, gives SI scalability, SI also spends its
screen space on operands rather than operators, which is usually
more interesting to the user. Finally, because spreadsheets are
two-dimensional, they provide a natural mechanism for applying
multiple operators to multiple datasets.

The remainder of the paper is organized as follows. Sec-
tion 2 presents our reasons for using Tel as the formula language,
and it describes how Tel and SI fit together. Section 3 describes
the logical structure and command set of SI. The remaining sec-
tions describe SI’s implementation, our experiences with SI, com-
parisons with other systems, and the future of SI.

Kegister manipulation load, store, display, undisplay,
openwindow*, closewindow*,
popwindow, pushwindow

Spreadsheet services

Cell manipulation

loadsheet, storesheet,
winsize*, titleheight,
view-pixel*
cellsize*, view-cell,
c u t l , copy*,
paste*, delete*,
enable*, disable*

Figure 1: Commands of the SI kernel. Starred
available using a point and click interface.

commands are also

2. Tel as a formula language
From a conceptual point of view, the choice of a formula

language is unimportant. We envision SI as a kit of parts in which
the language is a replaceable module. For our prototype, we
sought a language that was powerful, easy to type, and interpreted
rather than compiled (for interactivity). Our choice was Tel
(Toolkit Command Language) [Ousterhout90]. Tel consists of an
application-independent embeddable command interpreter, a set of
built-in commands for manipulating variables, strings, lists, and
files, and a set of C-callable interface routines for adding addi-
tional commands. Here is the Tel code to compute the factorial of
5:

s e t r e s u l t 1
set i 5
while ($i > 0) {

s e t r e s u l t [expr Sresult * Si]
incr i -1

From the user’s point of view, Tel’s advantages are that it
is easy to type (like UNIX shell commands) and that it provides a
variety of control structures and run-time substitution mechanisms
(like the UNIX shell but better). From the implementors’ point of
view, Tel’s advantages are its small code size, its fast execution
(fast enough to use for mouse event loops), and its simple inter-
face to-C - procedure calls with string arguments.

Tel has one further advantage: it is the basis for Tk
[Ousterhout91], an Xl1 toolkit similar to Xt. Tk provides a base
set of graphics and text-oriented widgets, a mechanism for
defining new widgets, and a simplified interface between user
applications -and the X window system. For SGI users, Tk
replaces the window management and event handling services that
are present in GL but are missing in OpenGL. As the Tcl/Tk user
communities expand, we expect to see Tk widget sets for 3D
graphics and image processing.

Tel appears in two places in SI. First, it is the language in
which formulas are written. Second, the SI program provides a
Tel command prompt. Users may invoke all of the functionality
of SI, including functions normally driven by the mouse, by enter-
ing commands at this prompt. This capability allows users to
record and play back interactive sessions, to customize SI from an
initialization script, and to perform many other useful tasks.

Register creation

Display widgets

Register manipulation

“Pixel operations

Spatial operations

3D occupancy grids

scalar, vector, scanline,
image, volume
button, slider, label,
plot, imageviewer, cineviewer
COPY, extract, insert,
promote, slice, delete

add, subtract, multiply,
divide, mod, over, and,
or, makeramp, ramp, shift
rotate, convolve,
scale, displace,
warp, makedisplacement
readabekas, deinterlace,
profile, opinion, occupancy

Figure 2: Commands of a prototype image processing package.
including the commands for processing 3D occupancy grids that
were used to generate figure 5.

3. The structure and commands of SI
SI consists of a kernel program and one or more standalone

application packages. This modular design reflects one of
Ousterhout’s goals for Tel; it leads to systems composed of com-
pact, reusable parts. In this section, we take a tour through the
logical structure and command set of the SI kernel. Our examples
include commands from a simple image processing application
package. The command set of the SI kernel is listed in figure 1.
The command set of our image processing package is listed in
figure 2.

3.1. Registers
The basic unit of storage in SI is called a register. A regis-

ter is a named allocation of memory. Registers may contain any-
thing: images, geometry, formulas, etc. SI controls the allocation
and deallocation of registers and keeps track of which formula
produces and consumes each register, but SI knows nothing about
the contents of a register. The contents and interpretation of regis-
ters is determined by those commands that know how to manipu-
late them and those widgets that know how to display them.

Commands generally consist of a command name followed
by options and one or more arguments. The argument list for
most commands includes the name of one or more registers. For
example,

r o t a t e -Bspline myreg Y 45 newreg

rotates a volume register named myreg around its Y-axis by 45
degrees. The command uses a cubic Bspline as its resampling
filter, and it places its result into a register named new reg.

To minimize the number of type coercions a user must per-
form, most commands accept a variety of register types, perform-
ing conversions, applying defaults, or ignoring arguments as
appropriate. One very important default is that if the name of the
output register (newreg above) is omitted, SI will make up a
name. To make this form useful, commands that produce a regis-
ter as output return a string result giving the name of the output
register. The register produced by such a command can be used as
the input to another command using Tel’s command substitution
mechanism:

rotate -Bspline [l o a d head.mri] Y 4 5 n e w r e g

2

In this formula, the load command executes first, generating an
arbitrary name for its output register, e.g. Reg123. The
rot ate executes next, with arguments Reg123 Y 45
newreg. The registerproducedbythe loadeomrnandisnever
seen by the user and is unimportant. It is deleted automatically by
SI when the formula is modified or when the cell is deleted.

3.2. Display widgets
The contents of registers are by themselves undisplayable.

The second building block in SI is a display widget. It is a view
of a register. Some types of registers may have more than one
widget that knows how to display them; others may have none.
Such a register would need to be converted to a displayable type
in order to view it.

Display widgets are associated with registers using a
widget command. For example,

cineviewer -rocking [load head.mri]

loads a volume into a register, then opens a window on the works-
tation screen that contains an instance of the tine viewer widget.
This widget contains image subwindows and interactive controls
for viewing slices of a volume as a flipbook animation. The
-rocking option specifies that the animation should alternate
between forwards and backwards animation rather than circling
from the last frame back to the first frame. Other display widgets
include buttons for Boolean registers, labels and sliders for scalar
registers, plots for vector registers, and image viewers for image
registers.

3.3. Cells
The third building block in SI is a cell. In addition to their

usual appearance, all display widgets in SI know how to draw
themselves in miniature inside a spreadsheet cell. Miniature ver-
sions of widgets may be live, meaning that they respond to mouse
events just like the full-size widget, or they may be dead, meaning
that they are for viewing only. If the miniature version of a
widget is dead, double clicking on it brings up the full-size widget.
For example, the miniature version of a slider widget is live,
although its positional resolution is necessarily reduced. The
miniature version of a tine viewer is not live because that would
require decimating the entire image sequence before it could be
animated. However, any time the tine viewer is not animating, its
current frame is decimated and displayed in the associated cell.

Display widgets are associated with cells by adding a cell
name argument to the widget command. To display a miniature
version of the tine viewer widget in cell al, we type

cineviewer -rocking [load head.mri] al (1)

So far, we have assumed that all formulas are entered at the SI
program prompt. If a formula is instead typed into an Emacs win-
dow that is associated with a particular cell, the cell name argu-
ment may be omitted:

al: cineviewer -rocking [load head.mri]

We use the notation “al:” (typeset in Times Roman) in this paper
to signify that the formula that follows (typeset in Courier) is con-
tained in the cell al. The “al:” does not appear in the cell. Every
type ofregister has adefaultdisplay widget. For volumes, it is the
tine viewer. Therefore, the formula in cell al -could be further
simplified to read

al: load head.mri

Executing this formula would cause the specified file to be loaded
into a volume register, and a miniature version of the tine viewer
to be displayed in the cell. If the formula contains several more
than one command (separated by newlines or semicolons in accor-
dance with Tel syntax), only the register returned by the last com-
mand executed will be displayed in the cell.

3.4. Chaining formulas together
Cell names may be used in any context in which a register

name is valid. This allows us to reference the data in a cell by
either its register name or its cell name. Here is a simple three-
cell spreadsheet:

a l : l o a d alps.rgb
bl: rotate al 45
cl: ramp bl [makeramp {{O 255) (255 0}}]

The f&t command loads an image into cell al. A miniature ver-
sion of the image is displayed in the cell. The second command
rotates the image by 45 degrees and displays the result in cell bl.
The third command inverts the pixel values in the rotated image,
displaying its result in cell cl. The makeramp command
accepts a Tel list of coordinate pairs and returns a Tel list of coor-
dinates piecewise linearly interpolated from the specified coordi-
nates. In this example, the command would return the Tel list
({O 255) {l 254) 12 253}...)}. Thislistbecomesan
input argument to the ramp command, which modifies the image
from cell bl .

3.5. Active widgets
In addition to being live or dead, widgets may be passive,

meaning that they only display their underlying registers, or
active, meaning that they both display and modify their underlying
registers. For example:

al: load alps.rgb
bl: slider
b 2 : r o t a t e a l [b l]

The command slider in cell bl is a widget command, Since it
is invoked without arguments (compare to the cineviewer
command in example (1)). a default scalar integer register is
created, and the slider displays the contents of that register. The
operand [bl] in cell b2 invokes a command named bl. Every
occupied cell in the spreadsheet has associated with it a Tel com-
mand that returns the contents of the register displayed in that cell.
Thus, the command bl returns the value displayed on the slider,
and the rotate command rotates the image in cell al by this
amount. Since the formula in cell b2 depends on cell bl, moving
the slider causes the rotation to be recomputed.

The spreadsheet for this example is shown in figure 3. The
slider widget is really Tk’s “scale” widget. The options visible on
the slider command in the figure are options defined by Tk for
its scale command. In addition to these Tk-defined options,
most active widgets accept a -continuous option, meaning
that they will fire their descendents repeatedly (as fast as possible)
until the mouse button is released. If the slider in the previous
example were so defined, dragging the slider bar back and forth
would cause the image to rotate back and forth. To reduce com-
putational delays if cell b2 were the beginning of a long chain of
operations, active widgets also accept a -nofiredescen-
dents option. If specified, the widget will fire only its

3

- ---

Figure 3: Slider widget lxing used to control a rotation. Cell b2
rotates the image in cell al by the AI@ specified on the slider in
cell bl. Each time the s&&r is moved, cell b2 (and its desccndents,
if it had any) arc rccomputai__

immediate children as long as the mouse button is down. When
the button is released, the widget’s other descendents will be fired.

3.6. Functional versus imperative styles
In a purely functional programming language such as ML,

a function communicates only through its calling arguments and
rctum value. In an imperative programming language such as C, a
function may assign a value to a variable that outlives the function
invocation. In other words, functions in an imperative language
may have side effects.

Conventional numerical spreadsheets enforce a functional
programming style. The formula associated with a cell computes
a value for that cell as a function of the other cells in the
spreadsheet, and a formula cannot assign values to cells other than
itself. While a functional style is preferred for many tasks, certain

, programs can be expressed more naturally using an imperative
style.

The option in SI of specifying a register or cell name as the
output of a command means that SI supports both functional and
imperative styles. As an example of when an imperative style is
more natural than a functional style, consider the following frag-
ment that splits a color image into its red, green, and blue com-
ponents:

a l : l o a d a l p s . r g b
b l : e x t r a c t -camp 1 a l
b 2 : e x t r a c t -camp 2 a l
b 3 : e x t r a c t -camp 3 a l

Here is an imperative formulation of the same program:

c l : l o a d alps.rgb t e m p (2)
foreach i {l 2 3)

{ e x t r a c t -camp Si t e m p c$i}

In the second formulation, the load command places its output
into a temporary register that is referenced later in the code but
never displayed. The extract command places its outputs into

4

I
I

Figure 4: A slider that chooses among three input files. To insure
a correct firing order, cell al declares that it produces cells al, a2,
and a3. Cell c2 declares that it might consume cells al, a2, or a3.
With the slider set as shown, c2 consumes al, hence its arrow is
darker.

cells cl, c2, and c3. Although both formulations are reasonable in
this example, the imperative formulation would prove superior if
the loop contained 100 iterations rather than 3, or if several nested
loops were present.

In the context of spreadsheet systems, an important advan-
tage of the functional approach is simplicity; one data value per
cell, one update rule per cell, and no hidden memory. An impor-
tant advantage of the imperative approach is ease of editing since
the commands making up a program are not scattered in different
cells. In the extreme case, the entire program is contained in one
cell, and the rest of the spreadsheet serves as an addressable clip-
board. Rearranging the visual appearance of an imperative com-
putation involves merely changing a variable in a program, rather
than cutting and pasting blocks of cells. Another advantage of the
imperative approach is that it allows commands that read, modify,
and write their operands. A commonly encountered example of
such a command is insert, which might be used for inserting
slices into a volume. A functional program must make a new
copy of the volume, which is inefficient.

3.7. Substitutions on operands
There are numerous ways to specify operands in SI. As in

numerical spreadsheet systems, references to cells can be relative
or absolute. al is a relative cell name. If cells al and bl are
moved to cells f3 and g3 using cut and paste, a reference by bl to
al will be changed to reference f3. If the formula is being edited
in an Emacs window at the time it is relocated, SI sends the
updated text to Emacs. In contrast, the notation /al, a/l, or
/a/l forces the column, row, or both coordinates to be absolute,
respectively. Absolute references are not modified if the cells are
relocated.

If an operand includes a Tel variable substitution, it is not
known until run time whether the reference is to a cell, and
whether it is absolute or relative. If the operand is moved using
cut and paste, it cannot be changed to reflect its new location. To

+

c

support relocatable cell names in the presence of run-time substi-
tutions, we define a command cellexpr that computes arith-
metic expressions on cell locations. As an example, the reference
c$i in example (2) is not relocatable as written. To make it relo-
catable, we rewrite it as

{extract -camp Si
[cellexpr cl +

temp
aSi])

The addition of two cell names using cellexpr cause their row
and column addresses to be added. Rows and columns count
downwards and rightwards, with al being the additive identity.
If the formula above were moved from cell cl to cell fl, a right-
ward shift of 3 columns, the cl will be recognized as a relative
cell name and will be changed to f 1. The resulting formula will
place the three color component images into cells fl, f2, and f3.
These substitution mechanisms can be combined with Tel pro-
cedures to define powerful spreadsheet macros.

3.8. Static declarations
The flow of data in a conventional numerical spreadsheet

(not including its command macro language, if it has one) can be
represented by a directed acyclic graph. Each node in this graph is
a cell. Each reference by a formula to a cell is a directed edge.
When a cell is modified, its for&la is scanned, edges are added to
or deleted from the graph as appropriate, and the modified cell and
its descendents are recomputed. If more than one cell has been
modified, as occurs in
modified ancestors may tl paste operation,

fired first.
any cell that has no

The presence in SI of conditionally executed commands
and run-time substitutions in formulas means that the set of data
objects that will be consumed or produced by a formula cannot be
determined in advance of execution. (Doing so would be
equivalent to solving the halting problem.) Without this informa-
tion, it is impossible to determine which cell from a group that has
been modified should be fired first.

To resolve this dilemma, we have added two commands to
the language, consumes and produces, which statically
declare the set of all objects that a formula might consume or pro-
duce when it is executed. Formally, these commands allow us to
partition a spreadsheet into disjoint sets of cells and to draw a
directed acyclic graph whose nodes are these sets. For example:I

b 2 : c o n s u m e s a l a 2 a 3
copy [cellexpr al + a [bl]]

states that cell b2 will be assigned a copy of cell al, a2, or a3, the
choice to be determined at run-time by the value of cell bl. In the
figure; cell bl contains a slider, which serves to choose among
three input files.

The requirement of static declarations in SI restricts its
power, but we have not found this requirement objectionable in
practice. The ability to declare the set of references a formula
might make, rather than the set it will make, makes the require-
ment palatable. In fact, we find that enforcing a partition of the
spreadsheet into producer and consumer regions leads to clearer
designs and fewer errors. To further reduce the onus on the user,
SI applies the following defaults. If a formula contains no con-
sumes statements, it is assumed to consume all cell? that can be
recognized in a lexical scan of the formula. If a formula contains
no produces statements, it is assumed to produce only the cell
in which the formula appears. These assumptions cover the most
common case. In practice, therefore, static dcclaratisns are only
used in rare special cases.

3.9. Control structures
SI supports all of the control structures in Tel, including

if, while, for, foreach, and case. Ofparticularinterest
are the looping commands. Loops in SI take one of three general
forms:

Single-cell loops. A loop can be coded entirely within one
cell using an imperative programming style:

a l : l o a d alps.reg t e m p
for {set i 0) (Si <= 90) {incr i 30)

{ r o t a t e t e m p Si a l }

This formula will step the alpine pasture image through four rota-
tional positions.

Multi-cell for loop. If the user has already built a
sequence of processing steps and decides retrospectively to iterate
one or more parameters of the sequence over a range of values,
this can be done without reworking the entire spreadsheet by
inserting one additional cell at the beginning of the loop to trigger
it:

a 2 : p r o d u c e s a 2 b2
for {set i 01 {Si <== 90) (incr i 30)

{byte Si a2; fire b2)

bl: load alps. reg
b2: rotate bl [al]
b3: ramp b2 [makeramp ((0 0) (255 lOO}}]

The original spreadsheet consisted of cells bl through b3. Cell a2
has been added to control the loop. The byte command creates
a scalar byte register and displays it in a2 using a Tk label widget.
The fire command executes cell b2 immediately. When cell b2
(and its descendents, although there are none in this example)
have finished executing, control is returned to a2, which incre-
ments i and loops.

Multi-cell while loop. If the user wishes to predicate
loop termination on a value computed by the loop body, two cells
are required to control the loop:

al: load head.pix (3)
cl: byte 3
b2: convolve -box [cl] [cl] al
c3: if {[max [gradient b2]] > 50)

{byte [expr [cl] + l] cl}

In this example, the byte command in cell cl initializes the
loop. The if command in cell c3 evaluates a data object com-
puted by the loop body and conditionally modifies cell cl, on
which the loop body depends. The loop body will be executed
repeatedly until the condition is false. In this example, cell al is
blurred by a box filter of increasing width, stopping when the
maximum gradient magnitude in the image drops below 50.

The ability to construct a loop in SI would appear to
severely impact the firing algorithm, since it introduces a cycle
into the dependency graph. Loops in SI, however, are always
driven by imperative programming constructs, so it is possible to
omit the edge that generates a cycle in the graph without affecting
the operation of the loop. The details are given in Appendix A.

4. Implementation
SI is implemented in C, C-H, Tcl/Tk, and Emacs Lisp.

These depend on UNIX and the X window system but are other-
wise platform independent. Some of the widgets currently depend
onGL- the nonportable version of Silicon Graphics’s graphics

5

library - but these will shortly be converted to OpenGL, a
platform-independent library. Our widgets do not rely for their
performance on the SGI rendering pipeline and could have been
written using X instead of GL. On the other hand, the fast deci-
mation hardware of SGI’s RealityEngine offers a natural path for
improving the performance of SI.

The SI kernel communicates with its application packages,
which run as separate programs, using shared memory and the Tel
inter-process send command. The kernel manages shared
memory, displays the spreadsheet, and contains the firing algo-
rithm. Application packages, which have their own embedded Tel
interpreter, are responsible for parsing commands not recognized
by the kernel. To assist in this task, SI provides a library of func-
tions for creating and manipulating registers. The contents of
registers, however, are understood only by the application pack-
ages. Each application package is also responsible for defining a
set of Tk-compatible widgets that can display the registers it
creates.

Dependencies among formulas and data objects in SI are
represented using doubly-linked lists. The firing algorithm is
described in detail in Appendix A. The complexity of this algo-
rithm is linear in the number of modified nodes and their descen-
dents. Except for actions that affect all cells such as loading, stor-
ing, or resizing, there is no reason to traverse the entire graph.
The time required to perform a dependency analysis is usually
several orders of magnitude smaller than the time required to com-
pute a formula or decimate an image.

The unique characteristics of SI pose several challenging
user interface design problems. Firstly, our cells are larger than
those in numerical spreadsheets, so fewer of them are displayed at
once. To make navigation easier, we provide an accelerated scrol-
ling tool and the ability to quickly change the size of all cells.
Secondly, our cells also take longer to compute than cells in
numerical spreadsheets - several minutes in extreme cases. To
keep the spreadsheet visually consistent during long computations,
cells that depend on modified cells are grayed out (in Macintosh
style) to indicate that they are out of date. As each cell fires, it is
highlighted to provide feedback of its progress. The mouse is
alive during cell computations and can be used to manipulate the
spreadsheet (as long as it doesn’t change it) or to abort an errant
computation. Blocks of cells can also be temporarily disabled,
allowing the user to work on one part of the spreadsheet at a time.
Thirdly, our longer formulas and powerful language semantics
lead to-more complicated intercell dependencies than in numerical
spreadsheets. To keep users from getting lost, the formula for
each cell is displayed inside the cell. Long formulas can option-
ally be decimated to fit (see figures 5 and 6). Although the
decimated text is not legible, its overall structure is clearly visible.
To clarify intercell dependencies, the dependency graph can be
displayed as an overlay (see figure 5).

5. Experience and examples
Our experience with SI has been limited but positive.

Although its image processing package offers only rudimentary
functionality, we have used it in several research projects (see
figure 5).

We have also found some unexpected uses for SI, such as
summarizing research results for colleagues and giving public
presentations. If the presentation is given using a live workstation
image, impromptu changes can be made in the spreadsheet in
response to audience questions. We have successfully used SI in
this way to teach graphics concepts to undcrgraduatcs (see figure
6).

Sometimes, we use SI simply as a smart clipboard for stor-
ing images on our desktop, like the Macintosh clipboard but more
powerful. Other plausible applications for SI are as a database
browser, as an exposure sheet for computer animation, or as a
video postproduction planner. Indeed, SI bears some resemblance
to several commercially available multimedia authoring tools.

6. Comparisons
The internal structure of SI was inspired by OBVIUS

[Heeger91], an image processing environment based on Common
Lisp and Emacs. OBVIUS defines “viewables” and “pictures” that
are similar to SI’s registers and display widgets, but OBVIUS has
no notion comparable to SI’s cells or spreadsheet. The advantage
of using Lisp as the user programming language is that OBVIUS
is itself implemented in Lisp, leading to a seamlessly extensible
environment. The disadvantages of Lisp are its clumsy syntax, the
difficulty of interfacing to C code, and its lack of acceptance in the
scientific community.

It is interesting to compare SI to conventional spreadsheet
systems that offer command macro languages. Excel’s command
language, for example, offers many of the imperative program-
ming constructs available in Tel [Microsoft92]. Programs written
in this language, however, stand apart from the spreadsheet and
are triggered by events such as button presses. If a macro changes
a spreadsheet cell, its descendents are recomputed. In SI, the
imperative programming constructs are contained in the cells, and
they participate in determining the order in which cells are fired.
This approach reduces unnecessary recomputation in many cases
and leads to a more self-documenting program

Closest in spirit to SI are the flow chart visualization
environments. The earliest system to combine a graph-based exe-
cution model with a visual programming interface was Paul
Haeberli’s ConMan [Haeberli88]. Currently popular packages
include AVS, Explorer, apE, Khoros, IBM’s Data Explorer, PV-
Wave, Wavefront’s Data Visualizer, FIELDVIEW from Intelli-
gent Light, VoxelView, and many others. A good survey of these
systems can be found in [Earnshaw92]. SGI’s Explorer [SGI93] is
perhaps the most highly developed of these packages, so it is
instructive to compare it to SI. Three major factors can be
identified:

Expressiveness, The “repeat” and “while” modules of Explorer
approximate the for and while loops of Tel. Explorer con-
tains no modules, however, that evaluate conditionals or perform
run-time substitutions (unless the user writes a custom module).
As a result, the wiring in an Explorer flow chart is static, whereas
the reference patterns of formulas in SI are dynamic (modulo the
statically declared partition of the spreadsheet into producing and
consuming regions as described in section 3.8).

Scalability. The “micro” form of a module icon in Explorer
measures 116 x 40 pixels; 30 modules and their associated wiring
makes for a crowded window. Modules may be grouped together
and represented by a single icon, but the user is responsible for
performing this reduction. Cells in SI can be resized down to 12 x
17 pixels simply by dragging the window frame. Formulas,
images, and widgets are automatically d&mated to fit. This
allows up to 6000 cells to be displayed at once in a typical works-
tation window. Although cells are unreadable at that size, such a
view makes it easy to navigate through a big spreadsheet.

Customization. Explorer provides extensive support for writing
custom modules, but the jump in complexity from visual program-
ming to module programming in C or Fortran is large. In a
spreadsheet, the formula language is also the customization

6

language. The transition from novice user to expert user is there-
fore smooth. To facilitate rapid module prototyping, Explorer also
offers an interpreted language called Shape. Its power is greater
than Tel in some respects because it directly supports array mani-
pulations, but the encapsulating “LatFunction” module still
requires compilation, and the language currently lacks robust pro-
gram development tools.

7. Status and future work
The kernel of SI is complete and relatively stable. Our

efforts are now focused on building application packages. The
image processing package used in these examples needs more
commands and a richer library of widgets. We plan to soon add a
volume visualization package, a polygon mesh package, and a sur-
face fitting package.

The most critical issue for the future of SI is performance.
Spreadsheets offer a natural mechanism not present in flow charts
- and not yet exploited in SI - for controlling computational
expense; images need only be computed at a resolution commen-
surate with the size of the cells in which they are displayed. In the
early stages of a data exploration, miniature images suffice, and
computations should be fast. If the user stretches the spreadsheet,
images get bigger and computations slow down. If the user dou-
ble clicks on a cell, that cell is recalculated at full resolution.
Many image processing operators lend themselves in an obvious
way to such computation shedding; spatial warps can be subsam-
pled; frequency domain operators can be windowed; polygonal
meshes can be retiled using fewer polygons. Our goal in these
investigations is to make optimization nearly transparent to the
user, like enabling a compiler option.

Another area for future development is the formula
language. Tel is not an ideal solution in many respects. It offers
only one datatype - strings. Interfacing a C routine to a Tel rou-
tine requires converting all numerical arguments to and from
string arguments. Because there are no numerical datatypes, arith-
metic expressions are cumbersome to write, as the examples in
this paper demonstrate. Tel also does not support multidimen-
sional arrays. All manipulation of arrays (and hence images) in SI
must be done through C-language commands. Finally, Tel does
not have the speed of a compiled language like C. We often find
ourselves prototyping a computation in Tel, then rewriting it in a
combination of Tel and C. Alternatives to Tel include Lisp, a C or
C++ interpreter (several now exist), or a new language that com-
bines the simplicity of Tel with the power of an array manipula-
tion language like Mathematics or MATLAB.

To summarize, SI combines the power of a data analysis
language the interactivity of a flow chart visualizer, and the
extemporaneous qualities of a spreadsheet. It offers a new para-
digm for interacting with images, and it suggests a new direction
for data visualization environments.

8. Acknowledgements
This research was supported by the National Science Foun-

dation under contract CCR-9157767 and by Software Publishing
Corporation. Discussions with Richard Frank of Software Pub-
lishing and Bob Brown, Robert Skinner, and other members of the
Explorer team at Silicon Graphics were useful in the early stages
of the project. I wish to particularly acknowledge the many fruit-
ful discussions I had with Philippe Lacroute, who’also provided a
helpful reading of the manuscript. Michael Halle wrote the Tk
GLX widget used in the current implementation.

9. References
[Eamshaw92] Earnshaw, R.A., An Introductory Guide to

Scientific Visualization, Springer-Verlag, 1993.
[Haeberli88], Haeberli, Paul, “ConMan: A Visual Programming

Language for Interactive Graphics,” Computer Graphics
(Proc. SZGGRAPH), Vol. 22, No. 4, Atlanta, Georgia,
August, 1988, pp. 103-l 11.

[Heeger91] Heeger, David, Eero Simoncelli, and Eduardo-Jose
Chichilnisky, OBVIUS: Object-Based Vision and Image
Understanding System, Version 2.2, MIT Media Lab,
April, 1993.

[Microsoft921 Microsoft Corporation, Excel User’s Guide 2,
Microsoft Corporation, Document Number XL26297-1092,
1992.

[Ousterhou@O] Ousterhout, John K., “Tel: An Embeddable Com-
mand Language,” Proc. 1990 Winter USENIX Conference.

[Ousterhout91] Ousterhout, John K., “An Xl 1 Toolkit Based on
the Tel Language,” Proc. 1991 Winter USENIX Corsfer-
ence.

[SC1931 Silicon Graphics Inc., IRIS Explorer User’s Guide and
IRIS Explorer Module Writer’s Guide, Silicon Graphics
Inc., Document numbers 007-1371-020 and -1369-, 1992-
1993.

Appendix A: The firing algorithm
The flow of data in SI can be represented by a directed acy-

clic graph having two types of nodes, formulas and data objects.
A cell consists of a formula and a data object. A formula will be
marked as modified or unmodified, and its data object will be
marked as modified or unmodified and as valid or invalid. Data
objects consist of cells, named registers, Tel variables, and Tel
procedures. (When a formula specifies a register by cell name, the
cell name is entered in the graph, not the made-up name of the
underlying register.) Formulas in SI become modified in one of
three ways:

(1)
(2)

The user changes a formula using the Emacs text editor.

The user adds, deletes, cuts, pastes, or loads a cell.
(3) The user enables for firing a previously disabled cell.

Following user modification of one or more formulas, the firing
algorithm proceeds as follows: (Error handling has been omitted
from this description.)

Step 1: scan modified cells. For each modified for-
mula i, delete all edges originating or terminating at i. Parse
all consumes and produces commands. If the formula
contains no consumes command, lexically scan it for
recognizable references. If the formula contains no pro-
duces command, assume that it produces the cell in which
the formula appears. For each consumes (or produces) refer-
ence by formula i to data object j, add a directed edge from j
to i (or from i to j) to the graph. If two produces references
point to the same data object, a collision has occurred; flag it
as an error.

Step 2: invalidate descendents. For each modified
formula i that survived step 1, mark as invalid all data objects
k such that there exists a path of length one or more originat-
ing from i and terminating at k. Allow cycles of length two
involving a formula and a data object. This allows a formula
to read/modify/write a data object. Cycles of length greater
than two are flagged as errors.

7

Step 3: fire cells having valid inputs. For each
modified formula i that survived step 2, if all edges termirtat-
ing at i originate from data objects marked as valid, then i
may be executed. Delete all statically declared references by
i to produced objects, i.e. all edges originating from i. For
each data object j actually produced by i during execution,
add a directed edge from i to j. When execution completes,
fire all immediate consumers of the produced data objects,
i.e. resubmit to step 3 all formulas m that survived step 2 and
for which the graph now contains a directed edge of length
two from i to m (i.e. passing through a data object).

Following user modification of a data object, for example by an
active widget, all formulas that consume the object are invalidated
and fired using a similar algorithm.

To avoid introducing cycles into the dependency graph,
loops whose termination is predicated on a value computed by the
loop body require the following special treatment. In example 3
(section 3.9), we have deliberately omitted the static declaration
produces cl from the loop controller in cell c3. Without it,
there is no cycle in the dependency graph before iteration begins.
When c3 is fired, it conditionally overwrites cl using a byte
command, creating an edge connecting the formula in c3 to the
scalar register in cl and temporarily generating a cycle in the
graph. This edge is deleted each time c3 begins execution. On the
last iteration through the loop, the byte command is not exe-
cuted and no edge is created. Therefore, in the quiescent states
that precede and follow execution of the loop, the graph is acyclic.

1

Fiiure 5: This qmadsheet depids the flow of data In 3 Xl fax ma&tne- a machme we are building in our lah for digitizing the shap and external appear-
ance 01 phystcal &jerls using a laser scanner and prcc~oo motion platform. When the button in cell ai is pressed, four laser re&ctioo image sequeoccs are
loaded rnto cvlls a2 thnugh rS. rqcctively. A tine viewa widget associated wrth each 41 displays a frame from that image sequence in miniature in the
cell. The she spmtied In the slider in cell bl is then loaded into cells b2 tbrou# b5. Two Merest occupancy grid algorithms arc applied to these slices, lead-
mg after some intermedtate s(cps to the results shrrwn in cells c3 and i5. Mume renderings of the complete vohmte-tric occupancy grid have been iupcrted
from aootha spreadsheet and are shown in oclls & and i6. The user has double chcked on cell i6, so its image is also shown full SIW at the bottom of the
screen. The scene is a pile of wooden &ildrco’s Mocks. An Etnacs editor window is also visibk; it is currently editing the contents of the formula in all g2.

Figure 6: This spreadsheet was used to give a live classroom ckmonstratlan *A the effects of image quantization. The ortgmal 8-bit images are in cells a.3
through 3. ‘he sliders in c&s cl through I 1 are used to set the mtmbcx of brts tc, whtch the mllrgcs ~EU-@ in that column art’ yuatttized. ‘Ihis exampIe dem-
onstrates how the two-dimearioaal g-id of a spreadsheet kads &elf naturally to visualizing multtplr operators applied to muit~plr data&s. The user has dou-
hle &kd on ails g3 aal ~5. so they are also shown at full size. This qxe&hcet took about 10 mmutes to cwashnrct.

