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Abstract

In this paper, we present the details of the two update-based cache coherence protocols for scalable
shared-memory multiprocessors that were studied in our previous work. First, the directory
structures required for the protocols are briefly reviewed. Next, the state diagrams and some
examples of the two update-based protocols are presented; one of the protocols is based on a
centralized directory, and the other is based on a singly-linked distributed directory. Protocol
deadlock and the additional requirements placed the protocols to avoid such deadlock are also
examined. Finally, protocol verification using an exhaustive verification tool known as Mur' is
discussed.
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1 Introduction

In our previous work [8, 7, 9], we demonstrated the possible performance gains from update-based
cache coherence protocols when compared to invalidate-based protocols for a set of fine-grain
scientific applications running on a scalable shared-memory multiprocessor. In this paper, we
present the details of the update-based cache coherence protocols and discuss verification of the
protocols.

The paper is organized as follows. Section 2 gives a brief review of the directory structures
required for the protocols, and section 3 discusses protocol level deadlock. Next, section 4
presents the details of the update-based protocols. In particular, section 4.1 describes a centralized
directory protocol,and section 4.2 describes a singly-linked distributed directory protocol. Section 5
discusses verification of the protocols using an exhaustive verification tool called Mur' [5]. And
finally, section 6 summarizes the paper.

2 Directory Structures

Directory-based cache coherence protocols must maintain a directory entry for each memory line
in the system. This directory entry indicates which caches in the system have a copy of the
respective memory line. Each directory entry can be stored in a single, central location (centralized
directory protocol) or distributed among the caches holding a copy of the line (distributed directory
protocol). In both cases, the directory entries are distributed throughout the system with their
respective memory lines.

2.1 Centralized Directory

In a centralized directory (CD) protocol, each directory entry contains a pointer to each cache in
the system that contains a copy of the respective memory line. In the CD protocols studied in
this work, a fully mapped directory is used in which there is a single bit pointer for each cache in
the system [18]. For example, figure 1 shows a directory entry for a memory line in a four cache
system. In the example, caches 1 and 3 have a copy of the given memory line.

In this fully mapped scheme, each directory entry contains NCaches bits for a total of

Bits = NCaches �NMemoryLines

= O(NCachesNMemoryLines)

bits where NCaches is the number of caches and NMemoryLines is the number of memory lines in the
system.
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Directory

1 0 1 0

Cache 1 Cache 2 Cache 3 Cache 4

One bit vector per 
memory line.
Bits = NCaches

Figure 1: Centralized Directory Structure

2.2 Distributed Directory

In a distributed directory (DD) protocol, a linked list structure is used to maintain the list of caches
that have a copy of a given memory line. The directory entry contains a pointer to the head of
this list, and each cache line contains the necessary pointers to construct the list. The list may be
singly-linked or doubly-linked. It is important to note that the order of the list is not optimized
in any way. The order is determined by the order that the requests for the memory line reach the
directory.

2.2.1 Singly-Linked Directory Structures

In a singly-linked distributed directory protocol [20], a singly-linked list is used to maintain the list
as shown in figure 2. In this example, caches 0, 2 and 3 have a copy of the line.

Caches

Directory

3

Cache 3 Cache 0 Cache 2 Cache 1

0 2

One cache pointer per 
memory and cache line.
Bits per Pointer = log  N 

2

Figure 2: Singly-Linked Distributed Directory Structure

In this case, each directory entry contains log2(NCaches) bits, and each cache line must also include
a single pointer. This requires a total of

Bits = NMemoryLineslog2(NCaches) +NCacheLineslog2(NCaches)

= log2(NCaches)(NMemoryLines +NCacheLines)
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= O(log2(NCaches)NMemoryLines)

bits, which scales better than the fully-mapped CD directory structure as the size of the system
increases.

2.2.2 Doubly-Linked Directory Structures

Alternatively, a doubly-linked directory structure may be used [11], as shown in figure 3. In this
example, caches 0, 2 and 3 have a copy of the line.

Directory

3

Cache 0 Cache 2 Cache 1

One pointer per 
memory line and two 
per cache line.
Bits per Pointer = log  N 

2 Caches

Cache 3
M 0 3 2 0

Figure 3: Doubly-Linked Distributed Directory Structure

The amount of storage required is slightly more than that of the singly-linked distributed directory
structure since each cache line must now maintain two pointers. This requires

Bits = NMemoryLineslog2(NCaches) + 2NCacheLines log2(NCaches)

= log2(NCaches)(NMemoryLines + 2NCacheLines)

= O(Log2(NCaches)NMemoryLines)

bits of storage.

2.3 Scalability of Directory Structures

As shown above, the centralized directory structure scales as O(NCachesNMemoryLines), but the
distributed directories scale better as O(log2(NCaches)NMemoryLines). However, several different
approaches have been suggested to improve the scalability of the centralized directory schemes.
These include limited pointer schemes and cached directories.

The limited pointer schemes limit the number of cached copies of each memory line. When this
limit is exceeded, the limited pointer schemes either invalidates one of the copies to make room for
the new request [1], assumes all caches now have a copy of the line [1], switches to a coarse grain
mode where each bit represents several caches [10] or traps to software to extend the directory
list [3]. With a limited pointer scheme, the centralized directory scales asO(NLimitedNMemoryLines)

where NLimited is the number of bits in the limited directory entry.
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The other approach is to note that the maximum number of cached copies of a memory line is
limited by the total size of all caches and not the size of memory. In this case, a directory cache
could be used to cache this smaller set of directory entries [10]. Also, the bits for each directory
entry can be dynamically allocated out of a pool of directory bits [17].

Several studies have indicated that the average number of shared copies of a memory line is
small [2, 16, 21, 1, 6]. Therefore, the limited directory schemes result in minimal performance
loss [1, 3, 10]. Similarly, the cached directory has also been shown to have a minimal affect on
execution time [10].

Some of the limited pointer schemes require that the directory be able to invalidate cached copies
of a line. The centralized directory update-based protocol presented in this work currently does
not support invalidations, but the protocol could be extended to support such directory initiated
invalidations.

3 Protocol Deadlock

If the system has finite buffering, then protocol level deadlock is possible [19, 15, 8]1. For example,
figure 4 shows two caches that are sending requests to each other through a set of finite buffers.
Each buffer can hold a single request. First, cache A sends two requests to cache B, and it begins
processing a request that will generate another request to cache B. But because the buffers are
already full, cache A must wait until a buffer becomes available before it is able to complete the
processing of the new request. Meanwhile, cache B generates two requests to cache A, and it
attempts to generate a third request. The system is now deadlocked. Neither cache A nor B can
complete the processing of their current request because their output buffers are full, and they will
never empty. A timeout is used to detect such deadlocked situations.

There are two techniques to handle protocol level deadlock. The first technique attempts to avoid
deadlock by using local memory to expand the buffer space as needed [14]. When a buffer fills
and a possible deadlock situation is detected, packets are removed from the buffer and placed in
a secondary buffer created in the local memory. The cache and directory controllers must then
process packets from this secondary buffer until it is empty. This technique essentially creates
an almost infinitely sized buffer, but it requires a tight coupling of the cache controller, directory
controller and local memory.

The second technique attempts to break the deadlock by removing requests from the deadlocked
buffer and sending them back to their source through an exception network [15, 19, 8]. To minimize
the probability of deadlock, messages are statically divided by the protocol into request and reply
messages. A request message is a message that may generate another message and, therefore, lead
to deadlock. A reply message is a message that never generates any new messages and, therefore,
can always be consumed. This is the technique assumed throughout this work.

This second technique requires three logical networks: a request, reply and exception network.
The reply network is deadlock free since replies can always be consumed. The request network

1The actual network is assumed to be deadlock free.
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Cache B
(Busy)Cache A

Cache B
(Busy)

Cache A
(Busy)

(a) Cache A sends two requests to Cache B which is currently busy.
      Cache A begins processing a request that will generate another 
      request for Cache B.

(a) Cache A can not complete current request since the buffer is full.
      Meanwhile, Cache B generates two requests to Cache A and
      attempts to generate a third request. Neither cache can proceed
      since their output buffers are full.  The system is deadlocked.

Single request
buffers

A2 A1

A2 A1

B1 B2

Figure 4: Protocol Level Deadlock

may experience deadlock if the request at the head of the buffer generates another request. If the
request generates a reply, then the request can always be completed since the reply network will
never deadlock. The request-request deadlock is broken by sending the request at the head of the
deadlocked buffer back to the source of the request to be retried. The act of removing a message
from the deadlocked network may break the deadlock. If not, this process would remove another
request packet and send it back to the source. This is repeated until the deadlock condition is
eliminated.

The frequency of deadlock is dependent on the size of the buffers. If reasonable buffer sizes
are used, deadlock is extremely rare [19, 15]. In the system simulated in this work, the cache
and memory buffers were 128 words deep, and deadlock never occurred for any of the cases
examined [8, 7, 9].

The separate request and reply networks also require logically separate controllers in both the
cache and directory. Otherwise, a cache that is attempting to process a request would not be able to
consume pending replies. This would violate the condition that replies always be consumed. Also,
since replies are always consumed, the reply network may also be used as the exception network.
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4 Update-Based Protocol

This section presents the details of the update-based protocols. Since the scalability of the directory
structures is still an open research topic, update-based protocols are presented for both a fully-
mapped centralized directory and a singly-linked distributed directory. Both update-based protocols
require an order preserving network. An order preserving network guarantees that messages
between nodes are received in the same order that they are sent.

In the protocols examined in this work, each memory line may be in one of several states. These
states usually specify if there is a single or multiple cached copies of the memory line and if
memory’s copy of the line is valid. Each cache line may also be in one of several states. These
states specify the local processor’s access privileges for the cached copy of the line. The state
may also specify if the cache has the only cached copy of the memory line. In this section, the
actions of the cache coherence protocols will be described using state transition diagrams for both
the memory and cache line states. The state of the lines may change as a result of a request from
the local processor, the directory or a remote cache.

4.1 Centralized Directory (CD-UP)

In this section, the details of the centralized directory update-based protocol (CD-UP) are presented.

4.1.1 Cache and Memory Line States

In the CD-UP protocol, a cache line can be in one of five states:

� Invalid - the cache’s copy of the line is not valid

� Pending - the cache has issued a miss and is waiting for a reply

� Shared - the line is shared by multiple caches - writes must update other cached copies of the
line and memory

� Replacing - the cache’s copy is being replaced

� Exclusive - the cache’s copy is the only copy of the memory line (cache is “owner” of line),

and a memory line can be in one of four states:

� Absent - no cached copies of the line exist

� Shared - at least one cache has a copy of the line - memory is consistent

� Exclusive - one cache has a copy of the line - memory is not consistent

� Pending - the directory is awaiting a write back for the memory line.
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Table 1 gives a description of the protocol messages. The first column of the table gives the message
name, and the next two columns give the source and destination type of the message. The source
(Src) and destination (Dst) can be a processor (P), a cache (C) or a directory (D). The next column
specifies if the message is a request (Req) or reply (Rep). This determines which network channel
the message will traverse. The next column gives a brief description of the message, and the data
column specifies what data type, a word or line, is sent with the message. Finally, the last column
specifies what actions are taken by the destination node. These actions may include incrementing
and decrementing the pending write counter (PWC) and the pending update counter (PUC). These
counters are used to determined when all issued writes have been performed. Other actions include
writing the data value (V) from the message into the cache line data (CD) or memory line data
(MD) at the specified cache line offsets (O) and setting or clearing the directory (DIR) pointers. A
Stall indicates that the processor is stalled until the proper reply is received by the cache, and Block
indicates that the write is not processed, and it is not retired from the write buffer. A pending bit
(PB) is used to control the writing of data into the cache line for certain conditions. The pending
bits are identical to the valid bits in the invalidate-based protocols [19].

Figure 5 shows the state transition diagrams for cache and memory lines. The diagrams show the
state changes for each received message and the resulting messages generated, if any.
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Message Src Dst Type Description Data Destination Actions

RD P C Processor read If Pending & PB(O) = F Then Stall
WR P C Processor write Word If Shared & PB(O) = T Then Stall

Else CD(O) = V
If Invalid Then PWC += 1
If Pending Then PB(O) = T
If Shared Then PWC += 1, PB(O) = T

R P C Line replacement If ForAny O: PB(O) = T Then Stall
FENCE P Stall until writes performed Stall until PWC = PUC = O

RM C D Req Read miss DIR(Src) = T
WM C D Req Write miss Word MD(O) = V, DIR(Src) = T
WW C D Req Write word to directory Word MD(O) = V
RL C D Req Replace line DIR(Src) = F
RLD C D Req Replace line with data Line MD = V, DIR(Src) = F

SR M or C C Req Shared miss reply Line PWC -= 1, PUC += U
with update count (U) Forall O: If PB(O) = F Then CD(O) = V

Else PB(O) = F, send WW with CD(O)
ER D C Rep Exclusive miss reply Line PWC -= 1

Forall O: If PB(O) = F Then D(O) = V
Else PB(O) = F

WB D C Req Write back line to directory
WBU D C Req Write back line to directory CD(O) = V

with data update
UW D C Req Update word to cache(s) Word If PB(O) = F Then CD(O) = V

RA D C Req Replacement ack
WA D C Req Write ack PWC -= 1, PUC += U, PB(O) = F

with update count (U)
UA C C Rep Update ack PUC -= 1

LR C D Rep Line already replaced
LRD C D Rep Line already replaced Word
UL C D Rep Write back of line Line MD = V

RMB D C Req Bounce RM to cache Resend RM
WMB D C Req Bounce WM to cache Resend WM, V = CD(O)
WWB D C Req Bounce WW to cache Resend WW, V = CD(O)
LRB D C Req Bounce LR to cache Resend LR
LRDB D C Req Bounce LR to cache Word Resend LRD
UWB C D Req Bounce UW to directory Resend UW, V = MD(O)
WBB C D Req Bounce WB to directory Resend WB
WBUB C D Req Bounce WBU to directory Resend WBU, V = MD(O)

Table 1: CD-UP: Description of Messages
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UW/UA
WB/LR

WBU/LRD
UA

Absent

Exclusive

RM/ER
WM/ER

RL/RA
RLD/RA

RM/WB
WM/WBU

RL/RA (Last Copy)

RM/RMB
WM/WMB
WW/WWB
WBB/WB

WBUB/WBU
RL/RA

RLD/RA
LR/SR or LRB if DIR[C] = T

LRD/ER or LRDB if DIR[C] = T

RM/SR
WM/SR and UW
WW/UW and WA

UWB/UW
RL/RA

UL

Shared

Pending

Invalid

UW/UA
WB/LR

WBU/LRD
UA

RD
WR

UW/UA (No Update)
UA

RD, if PB(O) = T
WR

WB/WBB
WBU/WBUB

UW/UWB
RMB/RM

WMB/WM
UA

R/RL

ER

RA

R/RLSR/WW

RD/RM
WR/WM

Pending

Shared Exclusive

Replacing

WA

RD
WR/WW

UW/UA
WWB/WW

UA

WB/SR and UL
WBU/SR and UL

Received/Generated Messages

(a) Cache Line State Diagram

(b) Memory Line State Diagram

Notes:
If not otherwise specified,
resend any bounced or
excepted messages.

Figure 5: CD-UP: Cache and Memory Line State Diagrams
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The next few sections describe the actions taken by the CD-UP protocol for typical read misses,
write misses, write hits and line replacements. Protocol races and exception handling are also
discussed.

4.1.2 Read Miss

For a read miss, the requesting cache sends a Read Miss to the directory, and the state of the cache
line is set to Pending, as shown in figure 6. When the directory receives the miss request, the
directory can reply with the line’s data if the memory line state is Absent or Shared. If the memory
line state is Absent, then the directory replies with an Exclusive Reply and the memory line state
is set to Exclusive. If the memory line state is Shared, then the reply is a Shared Reply. After the
cache receives the reply, the cache line state is set to Exclusive for an Exclusive Reply or Shared
for a Shared Reply.

Memory/
Directory

(E)

Cache
(E)

3. Directory points to cache1. Read Miss to Directory

Memory/
Directory

(A)

Cache
(P)

RM

2. Exclusive Reply to cache

Memory/
Directory

(E)

Cache
(P)

ER w/Line
Request/Reply

Memory Line State

Cache Line State

Figure 6: Read Miss to Absent Memory Line

If the memory line state is Exclusive on a Read Miss, the line’s data must be fetched from the
owning cache, as shown in figure 7. Once the requesting cache receives the line’s data, the cache
line state is set to Shared, and when the memory receives the Update Line with the line’s data, the
memory line’s state is set to Shared and memory is updated.

Memory/
Directory

(S)

Cache2
(S)

4. Directory points to both caches

Cache1
(S)

1. Read Miss to Directory

Memory/
Directory

(E)

Cache2
(E)

Cache1
(P)

RM

2. Write Back  to owning cache

Memory/
Directory

(P)

Cache2
(E)

Cache1
(P)

WB

3. Owning cache returns line to
    memory and requesting cache

Memory/
Directory

(P)

UL w/Line

Cache2
(S)

Cache1
(P)

SR
w/Line

Figure 7: Read Miss to Exclusive Memory Line
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4.1.3 Write Miss

The actions for a write miss to a memory line in the Absent state are identical to a read miss except
that the cache sends a Write Miss to the directory. If the memory line is in the Exclusive state, the
actions are similar to a Read Miss except that the directory updates memory’s copy of the line and
sends a Write Back Update to the owning cache. The Write Back Update contains the write value.
This allows the owning cache to update its copy of the line before sending a Shared Reply to the
requesting cache and an Update Line to the directory. After the transaction is complete, the states
of both cache lines and the memory line are Shared.

If the memory line is in the Shared state on a write miss, the other copies of the line must be
updated, as shown in figure 8. The writing cache sends a Write Miss along with the new value to
the directory, increments the pending write counter (PWC) and sets the cache line state to Pending.
Once the directory receives the miss request, it sends an Update Word with the new value to all
caches that have a copy of the line, and the directory also sends a Shared Reply with a count of the
updates sent and the line’s data to the writing cache. When the writing cache receives the reply, it
decrements the pending write counter and adds the number of updates sent to the pending update
counter (PUC). The updated caches receive the Update Word, update their copy of the line and send
an Update Ack to the writing cache. Upon receipt of an Update Ack, the writing cache decrements
the pending update counter. When both the pending write and pending update counters are zero,
all previously issued writes have been performed.

2. Update Word to all caches with 
    line and Shared Reply with 
    count of updates to writing cache

Memory/
Directory

(S)

Cache2
(S)

Cache1
(P)

UW
w/Word

SR
w/Count

& Line

1. Write Miss to Directory

Memory/
Directory

(S)

Cache2
(S)

Cache1
(P)

WM
w/Word

3. Updated caches reply with 
    Update Ack

Memory/
Directory

(S)

UA

Cache1
(S)

Cache2
(S)

Figure 8: Write Miss to Shared Memory Line

4.1.4 Write Hit

Write hits to a cache line in the Shared state must also update all other cached copies of the line, as
shown in figure 9. The resulting actions are similar to that of a Write Miss. The only difference is
that the directory responds to the writing cache with a Write Ack rather than a Shared Reply since
the writing cache already has a copy of the line.

The CD-UP protocol limits the number of outstanding updates per word to one per cache. When
the processor issues a write to a cache line in the Shared state, the proper update-pending bit (PB)
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1. Write Word to Directory

Memory/
Directory

(S)

Cache2
(S)

Cache1
(S)

WW
w/Word

2. Update Word to all caches with 
    line and Write Ack with count 
    of updates to writing cache

Memory/
Directory

(S)

Cache2
(S)

Cache1
(S)

UW
w/Word

Write Ack
w/Count

3. Updated caches reply with 
    Update Ack

Memory/
Directory

(S)

UA

Cache1
(S)

Cache2
(S)

Figure 9: Write Hit to Shared Memory Line

is set. When the write is acknowledged by a Write Ack, the bit is cleared. Any write to a cache line
in the Shared state with the update-pending bit set for the written word is blocked. If the line is in
the Pending state, the value is written into the cache line and the word’s update-pending bit is set,
but unlike writes to a line in the Shared state, writes are not blocked if the update-pending bit is
already set. They overwrite any previous value. If the pending miss reply is a Shared Reply, then
all words with the update-pending bit set are sent to the directory in a Write Word message. If the
miss reply is an Exclusive Reply, then no updates are required. In both cases, the update-pending
bits are cleared after the reply is received.

4.1.5 Line Replacement

Line replacement in the CD-UP protocol is straight forward, as shown in figure 10. The cache
sends a Replace Line to the directory. The directory clears the cache’s bit pointer in the directory
entry for the memory line and acknowledges the replacement with a Replacement Ack. If the cache
line was in the Exclusive state and had been modified, then the cache must send the line’s data
along with the replacement request to the directory.

Memory/
Directory

(S|A)

Cache
(I)

3. Memory line state now Absent
    if no other cache has a copy
    of the line. Otherwise, the
    state remains Shared

1. Replace to Directory

Memory/
Directory

(S)

Cache
(R)

RL

2. Replace Ack to cache

Memory/
Directory

(S)

Cache
(R)

RA

Figure 10: Replacing Cache Line in the Shared State
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4.1.6 Protocol Races

There are several types of protocol races in the CD-UP protocol. The first type occurs when the
directory receives a request to a memory line in the Pending state. These requests include Read
Miss, Write Miss and Write Word. These races may occur when a cache has sent a miss request
for a line that is currently owned by another cache and either the requesting cache initiates a Write
Word or a third cache sends a miss request for the line before the Update Line from the owning
cache is received by the directory. Figure 11 shows how a Write Word race might occur. For all
three request types, the directory can bounce the request back to the sender to be retried.

1. Read Miss to Directory

Memory/
Directory

(E)

Cache2
(E)

Cache1
(P)

RM

2. Write Back  to owning cache

Memory/
Directory

(P)

Cache2
(E)

Cache1
(P)

WB

Memory/
Directory

(P)

Cache2
(S)

4. Write Word bounced back to
cache where it is retried

Cache1
(S)

3. Owning cache returns line to
    memory and requesting cache

Memory/
Directory

(P)

Cache2
(S)

Cache1
(P)

SR
w/Line

3. Write Word to Directory in
    Pending state

Cache2
(S)

Cache1
(S)

Memory/
Directory

(P)

WWBUL w/Line UL w/Line
WW

w/Word UL w/Line

Figure 11: Race: Write Word to Pending Memory Line

The second type of protocol race is a request to a cache line in the Pending state. These requests
include Update Word and Write Back. The Update Word race may occur if a cache sends a miss
request to the directory, and if before the cache receives the miss reply, the cache receives an
Update Word from a write by another cache, as shown in figure 12. The Update Word may reach
the pending cache before the Shared Reply since the messages follow different paths: the Update
Word from the directory and the miss reply from another cache. In this case, the cache must bounce
the Update Word back to the directory. When the directory receives the bounced update, it resends
the Update Word with the latest value of the memory word. This implies that a cache may not
see all updated values if there are multiple writes to the same address without any synchronization
events controlling the writes, but it will see the latest value.

The Write Back race may occur since an Exclusive Reply to a cache is a reply and the subsequent
Write Back is a request; and therefore, they travel down different networks and may reach the cache
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1. Read Miss to Directory

Memory/
Directory

(E)

Cache2
(E)

Cache1
(P)

RM

2. Write Back  to owning cache

Memory/
Directory

(P)

Cache2
(E)

Cache1
(P)

WB

Memory/
Directory

(S)

Cache2
(S)

4. Update Word bounced back to memory where
it is retried with memory’s current value

Cache1
(P)

3. Owning cache returns line to
    memory and requesting cache

Memory/
Directory

(P)

Cache2
(S)

Cache1
(P)

UL w/Line

SR
w/Line

3. Write Word to Directory and
     Update Word to cache

Cache2
(S)

Cache1
(P)

WW w/Word

SR
w/Line

UW
w/Word

Memory/
Directory

(S)

UWB

SR
w/Line

Figure 12: Race: Update Word to Pending Cache Line

out of order, as shown in figure 13. In this case, the Write Back is bounced back to the directory to
be retried.

The final type of race is a request to a cache line in the Replacing state. These requests include
Update Word and Write Backs. For the Update Word request, the cache can simply acknowledge
the update. For the Write Back requests, the cache line must have been in the Exclusive state
previously and just sent a Replace Line request to the directory. In this case, the cache sends a
Line Replaced (a Line Replaced Data with the update data if the request was a Write Back Update)
back to the directory. When the directory receives the Line Replaced, it will have already received
the Replace Line request, and memory’s data will be valid. The directory may now respond to the
initial miss request with memory’s current data.

4.1.7 Exceptions

As described in section 3, the protocol must be able to break request-request deadlock. Table 2
shows the request messages that may generate another request. These messages can be divided
into two classes. The first class of messages are essentially order-independent (OI). They do not
rely on the order preserving nature of the network and, therefore, do not introduce any additional
complexity to the protocols if they are bounced back to the sender as an exception. For example,
the Read Miss message is order-independent. Once a cache sends a Read Miss to the directory,
the cache will not generate any other messages relating to this line, and until the directory receives
the miss request, it will not send the cache any message pertaining to the line. The Read Miss
message can take any path from the cache to the directory including being sent back to the cache
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Figure 13: Race: Write Back to Pending Cache Line

as an exception without introducing any new complexities to the protocol.

Of the order-dependent messages, the exception of a Replace Line message may cause a race
condition, as shown in figure 14. In this case, a Line Replaced may reach the directory before the
Replace Line. The directory must bounce the Line Replaced back to the replacing cache. This is
repeated until the directory receives the Replace Line message and the line’s current data. Now
when the Line Replaced is received, the directory may respond to the initial miss request.

An Update Word Bounce may also result in an exception, but since an Update Word Bounce does
not carry data (it only carries a promise of an update), it can take an arbitrary path between the cache
and directory without introducing any additional problems in the protocol. Once the directory is
able to process the Update Word Bounce, it sends an Update Word with the memory’s current data.
If the destination of the update no longer has a copy of the line, the directory acknowledges the
writing cache directly.
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Message Src Dst Description Type

RL C D Replace line OD
UWB C D Bounce UW to directory OD

RM C D Read miss OI
WM C D Write miss OI
WW C D Write word OI
WB D C Write back line OI
WBU D C Write back line w/update OI
SR DC C Shared miss reply OI
LR C D Line replaced OI
RMB D C Bounce RM to cache OI
WMB D C Bounce WM to cache OI
WWB D C Bounce WW to cache OI
WBB C D Bounce WB to directory OI
WBUB C D Bounce WB to directory OI
LRB D C Bounce LR to cache OI

Table 2: CD-UP: Messages That May Deadlock

1.  Read Miss to Directory

Memory/
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Cache1
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RM

2. Write Back to cache and Replace 
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Figure 14: Race: Line Replaced to Pending Memory Line



17

4.2 Distributed Directory (DD-UP)

In this section, the details of the singly-linked distributed directory update-based protocol (DD-UP)
are presented. The DD-UP is based on the directory structure and singly-linked lists of the SDD
invalidate-based protocol [19, 20].

4.2.1 Cache and Memory Line States

In the DD-UP protocol, a cache line may be in one of 12 states:

� Invalid - the cache’s copy of the line is not valid

� Pending - the cache has issued a miss and is waiting for a reply

� Exclusive - the cache’s copy is the only copy of the line (cache is owner of line),

� Shared - the line is shared by multiple caches and the cache is not the head nor tail of the list
- writes must update other cached copies of the line

� Shared-Head - the line is shared by multiple caches and the cache is the head of the list -
writes must update other cached copies of the line

� Shared-Tail - the line is shared by multiple caches and the cache is the tail of the list - writes
must update other cached copies of the line

� Replacing-Head - the cache’s copy, which is the head of the list, is being replaced

� Replacing - the cache’s copy, which is not the head nor tail of the list, is being replaced

� Replacing-Tail - the cache’s copy, which is the tail of the list, is being replaced

� Replacing-Exclusive - the cache’s copy, which is the only copy of the line, is being replaced

� Exclusive-Replacing - the cache’s copy was the head of the list and the next cache in the list,
which was the tail of the list, is replacing itself

� Shared-Head-Replacing - the cache’s copy is the head of the list and a cache in the list is
replacing itself.

A memory line may be in one of 3 states:

� Absent - no cached copies of the line exist

� Present - at least one cache has a copy of the memory line - memory is not consistent

� Replacing - a cache in the list is removing itself from the list - memory is not consistent.
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Table 3 gives a brief description of the protocol messages. The columns have the same meaning as
in the CD-UP protocol. The DD-UP protocol can store (Store) requests to cache lines in the Pending
state in the pointer field of the cache line. When the appropriate reply is received and the cache line
state is changed, the pending signal is processed (Process-Stored). The state Shared-States implies
any of the three shared states: Shared-Head, Shared or Shared-Tail. The Aux field is an additional
pointer field used by some of the message types. Figure 15 shows the state transition diagrams for
cache and memory lines.

Message Src Dst Type Description Data Destination Actions

RD P C Processor read If Pending & PB(O) = F Then Stall
WR P C Processor write Word If SharedStates & PB(O) = T Then Stall

Else CD(O) = V
If Invalid Then PWC += 1
If Pending Then PB(O) = T
If Shared-States Then PWC += 1, PB(O) = T

R P C Req Line replacement If ForAny O: PB(O) = T Then Stall Else Aux = Dir
FENCE P C Stall until writes performed Stall until PWC = PUC = O

RM C D Req Read miss Dir = Src
WM C D Req Write miss Word Dir = Src, Aux = Src
UWM C D Req Update word memory Word Aux = Src
UW D or C C Req Update word Word If PB(O) = F Then CD(O) = V

If Src = Aux Then PB(O) = F

RE C D Req Replace exclusive line
RH C D Req Replace shared-head line Dir = Aux
R C D Req Replace shared line

D or C C Req Replace shared line If Dir = Src Then Dir = Aux
If Dir = Aux Then Dst is replacing cache

RT C D Req Replace shared-tail line
D or C C Req Replace shared-tail line

HRF C C Req Head replace flush
RC C C Req Replace complete
MRF D C Req Memory replace flush
RF C C Req Replace flush

MR C C Req Miss reply Line PWC -= 1, PUC += U, DIR = Src
with update count (U) Forall O: If PB(O) = F Then CD(O) = V
(U = 0,1) Else send UW with CD(O), PB(O) = F

MRM D C Rep Memory miss reply Line PWC -= 1
Forall O: If PB(O) = F Then CD(O) = V Else PB(O) = F

RMF D C Req Read miss forward
WMF D C Req Write miss forward CD(O) = V

with data update

RA D C Req Replace ack
UA C C Rep Update ack PUC -= 1, PB(O) = F

RMB D C Req Bounce RM to cache Resend RM
WMB D C Req Bounce WM to cache Resend WM, V = CD(O)
UWB D C Req Bounce UW to cache Resend UW, V = CD(O)

C D Req Bounce UW to directory Resend UW
RHB D C Req Bounce RH to cache Resend RH
REB D C Req Bounce RE to cache Resend RE
RTB D C Req Bounce RT to cache Resend RT
RB D C Req Bounce R to cache Resend R

Table 3: DD-UP: Description of Messages
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Figure 15: DD-UP: Cache and Memory Line State Diagrams
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The next few sections describe the actions taken by the DD-UP protocol for typical read misses,
write misses, write hits and line replacements. Protocol races and exception handling are also
discussed.

4.2.2 Read Miss

For a read miss, the cache sends a Read Miss request to the directory. If the state of the memory
line is Absent, then the directory replies to the miss with a Miss Reply Memory. The state of the
memory line is set to Present, and the cache line state is set to Exclusive, as shown in figure 16.

Memory/
Directory

(P)

Cache
(E)

3. Directory points to cache1. Read Miss to Directory

Memory/
Directory

(A)

Cache
(P)

RM

2. Miss Reply Memory to cache

Memory/
Directory

(P)

Cache
(P)

MRM w/Line

Figure 16: Read Miss to Absent Memory Line

If the memory line state is Present, then the data must be fetched from the cache at the head of
the list, and the requesting cache must be added to the head of the list, as shown in figure 17. The
directory responds to the miss request by sending a Read Miss Forward to the cache at the head of
the list, and the directory pointer is changed to point to the requesting cache, the new head of the
list. The old head of the list responds to the Read Miss Forward by sending a Miss Reply and the
line’s data to the requesting cache. After receiving the reply, the requesting cache sets its directory
pointer to point to the cache that sent the reply.
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     at head of list
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(P)
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Cache1
(SH)

3. Cache at head of list forwards 
    data to requesting cache

Memory/
Directory

(P)

Cache2
(ST)

Cache1
(P)

MR
w/Line

Figure 17: Read Miss to Present Memory Line
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4.2.3 Write Miss

The actions for a write miss are identical to a read miss if the memory line state is Absent. If the
memory line state is Present, then the directory sends a Write Miss Forward and the new data value
to the old head of the list, as shown in figure 18. The old head of the list updates its copy of the
line, sends a Miss Reply along with the line’s data to the requesting cache and sends an Update
Word down the list of caches. The cache at the end of the list acknowledges the update, and the
writing cache becomes the head of the list.

1. Write Miss to Directory

Memory/
Directory

(P)

Cache2
(SH)

Cache1
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w/Word
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(ST)
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4. Tail cache acknowledges update.
    Writing cache now head of list

Cache1
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Cache3
(ST)

UW
w/Line
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Figure 18: Write Miss to Present Memory Line

4.2.4 Write Hit

On a write hit to a cache line in any of the three shared states, Shared-Head, Shared or Shared-Tail,
the other caches in the list must be updated. If the writing cache is at the head of the list, it can
simply send an Update Word to the next cache in the list, as shown in figure 19. This cache updates
its copy and forwards the Update Word down the list. The cache at the end of the list acknowledges
the update.

If the cache is not the head of the list, the write value must be forwarded to the head of the list. To
do this, the writing cache sends an Update Word Memory to the directory, as shown in figure 20.
The directory forwards it to the head of the list, and an Update Word is propagated down the list.
The cache at the end of the list acknowledges the update. Note that the writing cache will receive
the update request, but must forward the update on to the next cache in the list.
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Figure 19: Write Hit from Cache Line in Shared Head State

As in the CD-UP protocol, the DD-UP protocol limits the number of outstanding updates per word
to one per cache. When a cache modifies a cache line in the Shared or Shared Tail states, the proper
pending bit (PB) is set. When the cache receives its own Update Word, the bit is cleared. Writes
to words in shared lines with the word’s pending bit already set are blocked and updates to these
words do not update the cache line, but the update is still forwarded to the next cache in the list. If
there are multiple writes to the same word by different processors, each processor may not see all
values, but the final value will be consistent. The order that the updates reach the cache at the head
of the list determines the total ordering of the writes.



23

1. Update Word Memory to Directory

Memory/
Directory

(P)

Cache2
(S)

Cache1
(SH)

Cache3
(ST)

Cache1
(SH)

4. Cache updates its copy  and sends Update Word 
    to the next cache. This cache updates its copy and
    acknowledges the update (since it is at the end of
    the list)

Memory/
Directory

(P)

Cache2
(S)

Cache3
(ST)

UA

UWM
w/Word

2. Update Word to cache at head of list

Memory/
Directory

(P)

Cache2
(S)

Cache1
(SH)

Cache3
(ST)

Cache1
(SH)

3. Cache updates its copy and sends
    Update Word to next cache in list

Memory/
Directory

(P)

Cache2
(S)

Cache3
(ST)

UW
w/Word

UW
w/Word

UW
w/Word

Figure 20: Write Hit from Cache Line in Shared State
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4.2.5 Line Replacement

Line replacement is much more difficult in the DD-UP protocol than in the CD-UP protocol. In
the CD-UP protocol, the message path from the directory to each cache is fixed. But in the DD-UP
protocol, the path from the directory to a given cache is dependent on the current structure of the
directory list for the line. As caches are added and deleted from this list, the structure of the list
is altered. This changes the path of messages sent between the directory and caches and between
caches.

To make line replacement possible without a significantly more complex protocol, a new state,
Replacing, is added to the possible states of a memory line. If a memory line is in this state, all
requests to the line are bounced back to the requester. This prevents new messages from attempting
to traverse the list while it is being altered. Messages currently traversing the list are flushed out
with special flushing messages, which will be described in the next few sections.

For a cache line in the Exclusive state, line replacement is identical to the CD-UP protocol. The
cache sends a Replace Line message to the directory and the directory responds with a Replace
Ack.

If the cache line is in the Shared Head state, the cache sends a Replace Head message to the
directory, as shown in figure 21. The directory changes the memory line state to Replacing and
replies to the replacing cache with a Memory Replace Flush. The replacing cache then sends a
Head Replace Flush to the next cache in the list. This cache now becomes the head of the list, or
if it was the tail of the list, the state of the cache line state is set to Exclusive. This cache sends a
Replace Ack back to the directory. This indicates that the replacement is complete, and the memory
line state is set back to Present. The Memory Replace Flush and the Head Replace Flush are used
to flush any pending messages that might be traversing the list.

To replace a cache line in the Shared state, the cache sends a Replace message to the directory, as
shown in figure 22. The directory sets the memory line state to Replacing and forwards the Replace
to the head of the list. The cache at the head of the list changes its cache line state to Shared Head
Replacing. This prevents this cache from generating any new updates while the list is being altered.
Each cache in turn forwards the Replace request down the list. The request specifies the replacing
cache and the next cache in the list after the replacing cache. When a cache receives the request,
it checks if its directory pointer points to the replacing cache. If so, it sets its directory pointer
to point to the cache following the replacing cache. When the replacing cache receives its own
request, it sends a Replace Flush to the next cache in the list, and sets its cache line state to Invalid.
The Replace and Replace Flush messages have flushed out any requests that were flowing down
the list. Once the next cache in the list receives the Replace Flush, it sends a Replace Complete
back to the head of the list. The cache at the head of the list changes its cache line state back to
Shared Head and sends a Replace Ack back to the directory. The memory line state is then changed
back to Present.

The actions to replace a cache line in the Shared Tail state are almost identical to the replacement
of a Shared line, but since the replacing cache is at the end of the list, it does not need to flush the
next section of the list. It can send the Replace Complete to the cache at the head of the list once it
receives its own replace request.
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Figure 21: Replacing Cache Line in Shared Head State
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Figure 22: Replacing Cache Line in Shared State
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4.2.6 Protocol Races

There are two types of protocol races in the DD-UP protocol. The first type is a request to a
memory line in the Replacing state. In this case, the directory can bounce the request back to the
sender to be retried. The second race condition is an Update Word to a cache line in the Pending
state, as shown in figure 23. In this case, the Update Word can be bounced back to the directory to
be retried. The Update Word Bounce still carries the data value, but this does not create an update
ordering problem since the order is determined by the order that the Update Words reach the cache
at the head of the list. The bounced update has yet to reach the head of the list and, therefore, is
not yet an ordered update.
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Figure 23: Race: Update Word to Pending Cache Line

4.2.7 Exceptions

As described in section 3, the protocol must be able to avoid protocol level deadlock. Table 4
shows the request messages that may generate another request in the DD-UP protocol. As with the
CD-UP protocol, the order independent (OI) requests can be sent back to the source as an exception
without adding any complexity to the protocol.

The only order-dependent message, Update Word, may change the order of updates flowing down
the list. For example, figure 24 shows two updates from different processors flowing between
two caches. The first update results in an exception and is sent back to the sender. The second
update reaches the destination cache and updates the cache line. Once the sending cache receives
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Message Src Dst Description Type

UW C C Update Word OD

RM C D Read Miss OI
WM C D Write Miss OI
UWM C D Update word to directory OI
RE C D Replace Exclusive OI
RH C D Replace Shared-Head OI
R C D Replace Shared OI
RT C D Replace Shared-Tail OI
UW D C Update Word OI
R D C Replace Shared OI
RT D C Replace Shared-Tail OI
MRF D C Memory Replace Flush OI
BOUNCE D C All Bounced messages OI
RF C C Replace Flush OI

Table 4: DD-UP: Messages That May Deadlock

the excepted update, it must resend it with the latest value, which is the value from the second
update. The destination cache receives this update and updates its cache line. Now both caches are
consistent with the value from the second update, although the second cache never saw the update
of the first value.
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Figure 24: Update Word Exception
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5 Protocol Verification

An exhaustive verification tool called Mur' [4, 5] was used to verify the update-based protocols.
To verify a protocol using Mur', a description of the system and a behavioral description of the
protocol is required. From this, Mur' builds a system state and attempts to traverse it by applying
rules from the behavioral description of the protocol. Error statements and invariants are used to
detect errors.

For example, figure 25 shows the architectural model on which the update-based protocols were
verified. The system consists of three caches and one directory/memory. The caches each have one
request and one reply buffer, and the directory has four request and one reply buffer. The memory
consists of a single line with a two-bit data word. The single line is sufficient since protocols
actions do not interact between lines. The single, two-bit data word is also sufficient since if there
is a case in which a “wrong” value overwrites a “correct” value then the exhaustive nature of the
tool will find the same case for the two values used for the data word.

Cache

Processor

Request  Reply

Cache

Processor

Request  Reply

Order Preserving Network

Directory/Memory
Request  Reply

Cache

Processor

Request  Reply

Figure 25: Verification Model

The system state created by Mur', consists of a concatenation of all the state bits in the system.
This includes the bits in the cache and memory line data and state information and the message
data in the network buffers. In this simple case, this would result in several hundred bits of state,
or 2state�bits states, a significant number of states.

The actual number of states traversed is dependent on the behavioral rules of the protocol. For the
update-based protocols examined, this number quickly consumes all the memory available for the
verification since Mur' must remember which states have been visited. There are two techniques
to reduce the number of states traversed and, therefore, Mur'’s memory requirements.

The first technique is to use symmetry to eliminate redundant states [12, 13]. Symmetry in a
system allows Mur' to find states that are equivalent in their current and future behavior with
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respect to error checking. During verification, only one member of each equivalence class needs
to be examined. This technique is able to significantly reduce the total number of states examined.
Using symmetry does not affect the correctness or coverage of the protocol verification.

The second technique is to limit the number of concurrent actions. Since Mur' is an exhaustive
verification tool, every possible combination of events must be verified. Therefore, the more active
events, the larger number of traversed states. In the verification of the update-based protocols, the
number of outstanding updates was limited to one per cache.

Overall, the verification tool was useful in verifying the correctness of the protocols. Errors
were detected very quickly, but the state explosion problem limited the size and scope of the
verification. As discussed above, the only limitation of the verification that might affect correctness
was the limited number of outstanding updates, but the combination of Mur' verification, running
simulation with the update-based protocols and hand verification have produced a correct protocol
with a high confidence level.

6 Summary

In this paper, the details of two update-based cache coherence protocols were presented. The
centralized-directory (CD-UP) protocol was much simpler than the singly-linked distributed direc-
tory protocol (DD-UP). The main source of the complexity in the DD-UP resulted from the extra
states needed for cache line replacements. In the CD-UP protocol, the path from the directory to
a cache was fixed, but in the DD-UP protocol, the path changed as the structure of the list was
altered by caches adding and removing themselves from the list. This changing path required the
special flushing messages and extra states of the DD-UP protocol. The alternative doubly-linked
directory structure might result in a simpler protocol since replacements would be simpler.
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