
REUSE OF HIGH PRECISION
ARITHMETIC HARDWARE TO PERFORM
MULTIPLE CONCURRENT LOW
PRECISION CALCULATIONS

Daniel F. Zucker and Ruby B. Lee

Technical Report CSL-TR-94-616

April 1994

This research has been supported by NASA under grant number NAG2-842.

Reuse of High Precision Arithmetic Hardware
to Perform Multiple Concurrent Low Precision

Calculations

by

Daniel F. Zucker and Ruby B. Lee

Technical Report CSL-TR-94-616

April 1994

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

Many increasingly important applications, such as video compression, graphics, or
multimedia, require only low-precision arithmetic. However, because the widespread
adoption of the IEEE floating point standard has led to the ubiquity of IEEE double
precision hardware, this double precision hardware is frequently used to do the low
precision calculations. Naturally, it seems an inefficient use of resources to use 54 bits of
hardware to perform an 8 or 12 bit calculation.

This paper presents a method for packing operands to perform multiple low precision
arithmetic operations using regular high precision hardware. Using only source level
software modification, a speedup of 15% is illustrated for the Discrete Cosine Transform.
Since no machine-specific optimizations are required, this method will work on any
machine that supports IEEE arithmetic. Finally, an analysis of speedup and suggestions
for future work are presented.

Key Words and Phrases: Arithmetic, floating point, discrete cosine transform, data
compression, double enhancement

Copyright © 1994

by

Daniel Zucker and Ruby Lee

iii

Table of Contents

1. Introduction ... 1

2. Methodology ... 1

2.1 Overview ... 1

2.2 Packing .. 2

2.3. Unpacking ... 4

2.4. Length, Absolute Magnitude, and Relative Magnitude 5

2.5. Implementation for Experiments .. 6

3. Data ... 10

3.1 Overview ... 10

3.2 Load and Pack ... 13

3.3 DCT Calculation ... 15

3.4 Store and Unpack .. 17

4. Analysis ... 18

4.1 Model .. 18

4.2 Comparison of Predicted and Observed Data ... 18

4.3 Explanation of Parameters .. 19

4.4 Loeffler.. 23

4.5 Multiple Enhanced DCT in JPEG ... 23

5. Conclusion .. 24

5.1 Summary ... 24

5.2 Future Work .. 24

iv

List of Figures

figure 1 Signal to noise ratio vs. quality factor... 7

figure 2 Method for extracting parallelism ... 9

figure 3 Total instruction count .. 11

figure 4 Instruction count vs. execution time ... 12

figure 5 Load and pack instruction count ... 13

figure 6 DCT instruction count ... 15

figure 7 Store and unpack instruction count ... 17

figure 8 Predicted vs. observed speedups ... 19

figure 9 Idealized speedup .. 20

figure 10 Effect of H/K ... 21

figure 11 Effect of R/K ... 22

figure 12 Speedup for Loeffler’s DCT ... 23

1

1. Introduction

IEEE floating point arithmetic hardware has become widely available on most
workstations and personal computers. This trend towards high precision calculations has
been largely motivated by scientific applications where higher precision translates to a
more accurate calculation.

There are many increasingly important applications, however, where high precision is
unnecessary. Video, graphics, multimedia, and data compression algorithms generally
operate on only 8 or 16 bit words. Yet since floating point arithmetic is faster on many
machines, these algorithms are often computed using floating point data types. To use a
64 bit data path to calculate on 8 or 16 bit quantities is clearly an inefficient use of
resources.

This paper proposes a methodology in which a single high precision multiplier can be
reused to perform multiple low precision operations in parallel. The technique presented
is implemented completely in high-level software--no machine specific optimizations are
required.

The Discrete Cosine Transform, popular in many image compression algorithms, is
performed as an example to show the feasibility of this methodology. Two operations
were performed in parallel. This is referred to as "double enhanced." Three separate
algorithms are used to calculate the DCT. The most realistic case produced a speedup of
15%.

Finally, a model to describe obtainable speedup is presented, and suggestions are made
for further enhancements.

2. Methodology

2.1 Overview

The basic idea is to use simple arithmetic operations to pack two operands into the left
and right parts of a single register. Standard floating point hardware is then used to
operate on these packed operands, now performing two operations in parallel. Only
multiplication by a constant, addition, or subtraction will produce correct results. In fact,
there are a number of criteria that must be met for this methodology to be worthwhile.
This technique is not suitable for speeding up all calculations, but is designed for DSP-
style calculations in which these four criteria will be met:

1) Because additional instructions must be added to pack and unpack operands before
and after arithmetic calculations, it is desirable to have a long series of calculations
between the packing and unpacking so the packing/unpacking cost is effectively
amortized over a large number of operations.

2) Because this technique relies on packing multiple lower precision operations into a
single high precision unit, it is essential that the functions it calculates require only lower
precision calculations.

2

3) Because careful attention must be paid to operand length and magnitudes in order to
insure correct results, information about the range and domain of the data must be known
beforehand.

4) Because calculations done on each operand concurrently must be the same, the
application is best suited for multiple loop iterations done in parallel.

The DCT calculation, used in the JPEG image compression standard, meets all these
criteria. 16 1-D DCTs must be calculated to perform a single 8x8 2-D DCT, so there are
many identical loop iterations that can be done in parallel. Baseline JPEG is defined for 8
bits of precision, so condition 2 is easily met. Furthermore, from the input and output
restrictions on the range of data, and from the mathematical properties of the DCT, we
have the necessary information referred to in condition 3. Though the DCT is used in this
paper to illustrate the double enhancement technique, it is generally applicable to similar
DSP-style applications.

2.2 Packing

Packing is performed by a multiplication by a constant and an addition. If two words, L
and R, are to be packed into a single word X, then

X = L*2c + R (1)

where c is a suitably chosen constant. In binary form, this might look like

X = eeeeee000000rrrrrrr (2)

where e and r are the bits in L and R, respectively. One word is on the left, one word is
on the right, and a buffer is between them. Assuming an architecture with a floating
point multiply-add instruction12, packing can be performed with just a single instruction.
Otherwise two instructions are needed

Multiplication and addition can be performed in this packed format by using the
distributive property. For example, to multiply by a constant, k, we have

X*k = (L*k)*2c + (R*k).

So, both L and R are multiplied simultaneously by the same constant, k. Or to add Y, a
similarly packed number, to X

Y = A*2c + B and
X + Y = (L+A)*2c + (R+B).

By using this simple algebraic method to pack two numbers, the sign information for the
R term is automatically encoded in the empty bits between the L and R terms. The sign
for the L term is encoded in the sign bit for the entire floating point quantity, and the bits
between L and R indicate whether R is the same or opposite sign of L.

3

2.2.1. Example 1

Consider L=5, R=3, the constant of packing, c, equal to 4, and a decimal system. The
packed quantity is obtained as:

X = 5*104 + 3
 = 50000 + 3
 = 50003.

Since both numbers are positive, the bits between them are zero.

2.2.2. Example 2

If, now, R=-3, then

X = 5*104 - 3
 = 50000 - 3
 = 49997.

Now, the bits in the buffer area are non-zero, indicating that the R term is opposite in sign
to the L term.

2.2.3. Example 3

Now consider the same example in binary: L=101, R=11, and the constant of packing, c,
equals 5. The packed quantity is obtained as:

X = 101*25 + 11
 = 10100000 + 11
 = 10100011.

Again, since both numbers are positive, the bits between them are zero.

2.2.4. Example 4

If, now, R=-11, then

X = 101*25 - 11
 = 10100000 - 11
 = 10011101.

Again, the bits in the buffer area are non-zero, indicating that the R term is opposite in
sign to the L term.

4

2.2.5. Example 5

If L=-5 and R=3, the packed quantity becomes:

X = -5*104 + 3
 = -50000 + 3
 = -(50000 - 3)
 = -49997.

In this case, the minus sign for the entire fp number is stored in the sign bit. Also, the
fact that R has the opposite sign from L is indicated by the non-zero digits in the buffer
area between L and R.

2.3. Unpacking

Unpacking is accomplished by rounding X just so that all bits of R are eliminated. L is
recovered by a multiplication, and R is recovered with a subtraction.

L = round(X) * 2-c (3)
R = X - round(X). (4)

2.3.1. Example 1

Consider a base 10 system where L=12, R=-15, and C=4.

X = 120000 - 15 = 119985.

To recover, X must be rounded to the 103 place, since R is 3 digits long (including the
sign). This is one digit to the left of R. Then,

round(X) = 120000
L = 120000 * 10-4 = 12
R = 119985 - 120000 = -15.

2.3.2. Example 2

If X were truncated instead of rounded, then an incorrect result may be obtained. For
example for the above example with L=12, R=-15, and C=4:

trunc(X) = 119000
L = 119000 * 10-4 = 11.9
R = 119985 - 119000 = 985.

2.3.3. Example 3

This will also work for a base 2 system. Consider L=7, R=-6, and C=6.

X = 111000000 - 110 = 110111001.

5

To recover, X must be rounded to the 24 place, since R is 4 digits long. Then,

round(X) = 111000000
L = 111000000 * 2-6 = 111
R = 110111001 - 111000000 = -110.

2.3.4. Example 4

Similarly, in a base 2 system, if X were truncated instead of rounded, then an incorrect
result may be obtained. Consider the above example with L=7, R=-6, and C=6:

trunc(X) = 110110000
L = 110110000 * 10-6 = 110.11
R = 110111001 - 110110000 = 1001.

2.4. Length, Absolute Magnitude, and Relative Magnitude

It is extremely important to keep track of length and magnitude of the operands to ensure
that the final results can be successfully separated into the original components. The
relative magnitude of R and L is defined as |L/R| and is a measure of the distance between
the left most bits of the two parts. For most cases in a floating point system, only the
relative magnitude is important since large changes in absolute magnitudes can be
handled by simply changing the exponent field (assuming the relative magnitude is
unchanged). For a fixed point system, absolute magnitude is also important since care
must be taken that X does not overflow.

Imagine a packed word, X, composed of two parts, L and R, with the bits in L
represented by e, and the bits in R represented by r.

X = eeeeee000000rrrrrrr (2)

As L becomes longer the buffer space between the numbers will become smaller.
Therefore, one must assure that the buffer space is large enough to accommodate the
growth of L. As R becomes longer there will be no effect in a floating point system,
since the hardware will left align the word to the leftmost bit of L, and round R so that it
will fit into the number of bits available in mantissa hardware. In a fixed point system,
the length of R must also be considered since X will be right aligned to the rightmost bit
of R. If R is too large, X will overflow.

As the relative magnitude increases in a floating point system, precision in R will be lost.
That is, as the space between L and R increases, more and more of R will have to be
rounded off to fit into the available hardware. As the relative magnitude decreases, the
space between the parts will shrink and there will be more of a tendency to overlap,
though R will have more bits of precision.

In order to ensure that the final result is separable, we must guarantee that the maximum
length of L and the relative magnitude are such that the rightmost bits of L do not overlap
with the leftmost bits of R.

6

2.5. Implementation for Experiments

2.5.1. Packed Formats

In order to determine how to pack the operands for the DCT examples, we must first
determine the largest possible value. If the DCT is used in JPEG, then the inputs are
restricted to 8 bits or less. (We ignore, for these experiments, the case where the input
data is 12 bits.) Mathematically, we know that the terms can grow by at most 3 bits
within an 8 point 1-D DCT, so we know that at most 11 bits will be required to hold the
data. However, since the sign bit for L will be held in the sign bit for the entire fp
number, only 10 bits are needed to represent L. We begin by allocating 21 bits to hold
the integer portions of L and R. Since we have 53 bits available in the IEEE double
precision format, this leaves 32 bits.

Next, we must worry about the increase in length of L after every multiply (remember
that the R component will get automatically rounded so there is no problem here). From
the above calculation, we know that L can grow by at most 32 bits. Multiplication by a
constant will result in an increase in length equal to the length of the constant. To be able
to perform a 1D Lee's DCT3, we must be able to do 4 sequential multiplies. So we must
express the constants as 32/4 = 8 bit quantities so that the left component grows as shown
below. Note that the 11th bit of L is stored as the sign bit for the entire fp quantity.

left part mult 1 mult 2 mult 3 mult 4 right part
xxyyyyyyyyyyy
<---10---><--8---><--8---><--8---><--8---><----11--->

Inspection of images compressed using these 8 bit constants showed no perceptible
difference with images compressed using full 53 bit constants.

The figure below shows the signal to noise ratio in decibels for an image compressed
with a range of quantization factors compared to the original uncompressed image. The
two lines compare images in which the DCT was performed with multiplication by
constants of only 8 bits, and with constants of full 53 bit precision. A low Quality Factor
constant indicates large quantization, and a Quality Factor of 100 indicates quantization
only to the nearest integer. A small deviation between the two lines is evident only at
high Q Factors.

7

Signal to Noise Ratio for Image Lena

Quality Factor

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

8 bit 53 bit

figure 1 Signal to noise ratio vs. quality factor

The implemented format shows that L must be spaced 43 bits over from R. Therefore,
for these experiments, the constant of packing was set equal to 243.

2.5.2. Rounding Implementation

Any method may be used to implement the round operation required to unpack the
operands as described in equations (3) and (4) above. For these experiments, the round
was implemented by performing an addition and subtraction with a large predetermined
constant.

This method takes advantage of the round that must be performed by the hardware when
a number becomes too large to be fit into available hardware. First, the large constant is
added to force the round at the desired position, and second, the constant is subtracted to
restore the correct value to the result.

2.5.2.1. Example 1

Assume a 6 digit decimal system where it is desired to round X to the nearest 1000. For
this example, the correct constant is 100000000.

X = 498657
X + 100000000 = 100498657

8

X + 100000000 = 100499 * 103 Round must be performed to fit
 result into available 6

decimal places
(X + 100000000) - 100000000 = 499000.

The correctly rounded result is obtained.

2.5.2.2. Example 2

This method will also work for binary. Assume a 6 binary decimal system where it is
desired to round X to the nearest 8 = 10002. For this example also, the correct constant is
1000000002.

X = 110111
X + 100000000 = 100110111
X + 100000000 = 100111 * 23 Round must be performed to fit
 result into available 6

binary places
(X + 100000000) - 100000000 = 111000.

The correctly rounded result is obtained again.

Implementing the round in this manner with an add and subtract means that 2 operands
can be completely unpacked with a multiply, an add, and 2 subtracts. Some of these
operations can be combined with multiply-add or multiply-subtract instructions.

2.5.3. Method for Extracting Parallelism

The calculation of a 64 element 8 point two dimensional DCT can be done by performing
8 one dimensional DCTs on the rows followed by 8 one dimensional DCTs on the
columns of the input matrix. Therefore, it might seem reasonable to use the double
enhanced methodology to calculate two rows or two columns in parallel. However, a
problem is reached when the switch is made between doing calculations on the rows and
the columns. The operands would have to be unpacked and then packed again in a
transposed layout in order to do the switch correctly. The amount of packing and
unpacking overhead would be doubled, since each element would now have to be packed
and unpacked twice.

To avoid this additional overhead, calculations are done on two independent 2D DCTs in
parallel, rather than two rows or two columns within a single DCT. The amount of
parallelism achieved is identical, and no additional packing and unpacking is required.

9

Perform Two 2D DCTs in parallel

Not rows and columns within a DCT in parallel

figure 2 Method for extracting parallelism

The disadvantage with performing the two 2-D DCTs in parallel is the slight initial delay
in having to decode two 8x8 blocks before the DCT may be performed in parallel on both
these blocks. Also, fast storage is needed for two 64 element blocks rather than just one.
For JPEG, the additional startup delay is not important, and the cache sizes of most
workstations can usually accommodate two 64 element blocks quite easily since 128x8 =
1 Kbytes.

10

3. Data

3.1 Overview

Three methods were used to compute 64 element 2D DCTs. The algorithms used were
Lee's, Loeffler's4 , and an earlier slower version of Lee's which was coded with
unnecessarily high overhead. DCT input data was obtained from a standard “ppm”
image.

Data was first loaded from memory, then the DCT calculations were performed, and
finally the results were stored to memory. The same calculations were performed using
both regular fp arithmetic and double enhanced technique so that accurate comparisons
could be made. For the regular arithmetic, two 64 element DCTs were calculated
sequentially. For the double enhanced case, the data for two 64 element arrays was
loaded and packed, a single DCT was calculated that performs the two calculations in
parallel, and finally the data was unpacked and stored to memory.

The C code for the DCTs was compiled on a Hewlett Packard 9000/720 workstation
using the HP92453-01 A.09.34 HP C Compiler with optimization set to -O. No hand
assembly code optimizations were performed. The data below was obtained from
simulations assuming an infinite cache size. However, this is not unreasonable since
most workstations can easily accommodate two 64 element blocks in cache, and hence no
additional cache miss performance degradations are likely in going from the regular to
the double enhanced methods.

11

Two 64 element 2D DCT Transforms--by
functional block

Loeffler

0

2000

4000

6000

8000

10000

12000

14000

16000

reg DE

pack

unpack

load

2D-DCT

store

Lee Slow Lee

reg DE reg DE

figure 3 Total instruction count

This graph shows the dynamic instruction count broken up by the five functions of pack,
unpack, load, 2D-DCT, and store for the three algorithms. The change in dynamic
instruction count going from the regular to the double enhance (DE) implementation are
-6.4%, 21.5%, and 53.2% for Lee, Loeffler, and Slow Lee algorithms respectively. The
load, store, pack, and unpack blocks are the same regardless of DCT algorithm used.

12

Instruction Count vs Execution Time

0

5000

10000

15000

20000

25000

re
g

D
E

re
g

D
E

re
g

D
E

Instruction
Count

Execution Time

For two 64 Element 2D DCTs

Lee Loeffler Slow Lee

figure 4 Instruction count vs. execution time

This graph compares dynamic instruction counts with actual execution times. From the
graph it is clear that these two quantities track each other fairly well. Actual execution
time is higher due to cold start cache misses and pipeline interlocks. Speedups of the DE
over the regular implementation obtained from execution times, are -5.8%, 15.1%, and
48.2% for Lee, Loeffler, and Slow Lee respectively.

13

3.2 Load and Pack

Instructions to Load and Pack two 64 Element

0

200

400

600

800

1000

1200

1400

1600

1800

2000

DE reg

fp logic/arith

fp load/store

branch

integer logic/arith

integer load/store

Data Sets

figure 5 Load and pack instruction count

Instruction mix for load and pack
DE % of

total
regular % of

total
LDW 387 384
LDO 3 2
STWS 129 128
STW 128 128
integer load/store 647 35% 642 38%

OR 130 130
integer logic/arith 130 7% 130 8%

COMIBT 129 128
BV 129 128
BL 129 128
ADDIBT 128 128
ADDIBF 0 0
COMBT 1 0

14

branch 516 28% 512 31%

CLDDS 64 0
CSTDS 128 128
CLDWS 128 128
fp load/store 320 17% 256 15%

FCNVXF,SGL,DBL 128 128
FMPY,DBL 64 0
FADD,DBL 64 0
FSUB,DBL 0 0
FMPYSUB 0 0
fp logic/arith 256 14% 128 8%

Aside from slight differences due to overhead, the double enhanced load routine requires
64 extra fp loads, 64 extra fp adds, and 64 extra fp multiplies from the regular method.
The 64 extra fp adds and multiplies are understandable since each DCT element requires
1 fp add and 1 fp multiply to pack. The 64 extra fp loads result since the data must be
loaded from memory sequentially in 64 element blocks. In the first pass, 64 elements are
copied from sequentially accessed memory to a local workspace. In the second pass, the
second block of 64 elements are loaded from sequential memory and packed with the
elements from the local workspace. An extra fp load is required for each element for this
load from the local workspace. This extra load is probably due to the way the code has
been structured and is not intrinsically necessary for packing elements from 2 separate 64
element blocks.

15

3.3 DCT Calculation

Instruction Mix for 2 2D DCTs

0

2000

4000

6000

8000

10000

12000

14000
re

g

D
E

re
g

D
E

re
g

D
E

fp logic/arith

fp load/store

branch

integer logic/arith

integer load/store

Lee Loeffler Slow Lee

figure 6 DCT instruction count

Instruction mix for DCT
Reg

Slow Lee
DE

Slow Lee
Reg

Loeffler
DE

Loeffler
Reg
Lee

DE
Lee

LDIL 16 80 1 1 1 65
LDO 1757 1837 106 106 187 315
LDW 6 8 0 0 0 5
LDWM 1 1 0 0 0 1
STW 6 8 0 0 0 4
STWM 1 1 0 0 0 1
integer
load/store

1787 1935 107 107 188 391

ADDIL 16 16 0 0 0 0

16

OR 259 251 1 1 3 64
SH3ADD 96 160 0 0 0 0
SUBI 64 64 0 0 0 0
integer
logic/arith

435 491 1 1 3 64

ADDIBF 120 96 16 16 18 18
ADDIBT 320 320 0 0 0 64
BL 17 81 1 1 1 65
BV 17 81 1 1 1 65
COMIBF 112 176 0 0 0 2
branch 586 754 18 18 20 214

CLDDS 776 960 199 199 140 336
CLDDX 872 880 0 0 0 0
CSTDS 688 752 141 141 132 200
CSTDX 720 720 0 0 0 0
fp load/store 3056 3312 340 340 272 536

FADD,DBL 272 464 280 280 176 368
FCPY,DB 16 16 0 0 0 0
FMPY,DBL 336 336 128 128 272 272
FMPYADD 0 0 120 120 32 32
FMPYSUB 0 0 8 8 80 80
FSUB,DBL 192 384 104 104 128 320
fp logic/arith 816 1200 640 640 688 1072

As described above in the section on packed formats, only four multiplies can occur
before the left and right operands will overlap. Since each 1D Lee DCT requires four
multiplies, if 1D DCTs were performed on the rows and columns with no special
treatment, each element would see eight multiplies and incorrect results would result.

To correct this problem, it is necessary to reset the buffer space between the left and right
operands. This is accomplished by unpacking the operands, rounding the left operand to
the correct length, and repacking them. As evidenced from the table above, this is quite a
costly operation costing 1,106 instructions for the Lee DCT and 1,012 instructions for the
Slow Lee. Because of this large overhead, the cost for the DE Lee is approximately the
same as the cost for the regular DCT, and there is virtually no speedup. Slow Lee is still
improved despite the additional overhead, since the initial code was so inefficient.

Although the Loeffler algorithms requires approximately the same number of operations
as the Lee, it has the great advantage that each data element sees only 1 multiply per 1D
DCT. Thus, only 2 multiplies are required for a 2D DCT and no reset operations are
required. Furthermore, it is now possible to increase the precision of the multiplies to 16
bits, since only 2 are required. It is because no reset operation is required that the
Loeffler produces the best speed-up as described above. Notice that all instructions, not
just arithmetic, are reduced by half. Speedup is caused not only by faster arithmetic, but
also by increased data bandwidth.

17

3.4 Store and Unpack

0

50

100

150

200

250

300

350

400

450

500

DE reg

fp logic/arith

fp load/store

branch

integer logic/arith

integer load/store

Instructions to Store and Unpack 2 64 element
Data Sets

figure 7 Store and unpack instruction count

Instruction mix for store and unpack
DE % of

total
regular % of

total
LDO 4 6
integer
load/store

4 1% 6 2%

integer
logic/arith

0 0

ADDIBF 31 62
branch 31 6% 62 19%

CLDDS 128 128
CSTDS 128 128
fp load/store 256 53% 256 79%

FMPY,DBL 2 0
FADD,DBL 64 0

18

FSUB,DBL 66 0
FMPYSUB 62 0
fp logic/arith 194 40% 0 0%

The DE store block requires approximately 64 extra fp adds, fp subtracts, and fp
multiply-subtracts. Surprisingly, it also requires 31 fewer branches. To unpack two
values requires an fp add, an fp multiply, and 2 fp subtracts. Here, the compiler has done
us the favor of implementing an add and subtract together in a single multiply-subtract
instruction. Fewer branches are required since the DE store routine loops through only
64 elements, and unpacks them to store 128 values to memory. The regular routine loops
through all 128 elements storing them to memory individually, so the DE store routine
uses half as many loops, and therefore needs only half as many branches.

4. Analysis

4.1 Model

In order to determine how to maximize speedup using multiple enhanced arithmetic, the
following model was developed. Begin with the following assumptions.

Let
K = code that is not parallelized (load and store)
H = pack and unpack overhead
D = code that is parallelized (DCT)
R = reset overhead
P = degree of parallelism.

Then, speedup, defined as the execution time to perform P iterations of regular code
divided by execution time to perform P iterations of multiple enhanced code is

Speedup = P * (K + D)

(P * K) + (D + R) + (P −1) * H

dividing by P*K gives

Speedup = 1 + (D
K)

1 + (D
K + R

K)

P
+ (P−1

P) * (H
K)

Using the data obtained above, D/K is 0.5 for Lee and Loeffler, and 6.6 for Slow Lee.
R/K is 0 for Loeffler and 0.5 for Lee and Slow Lee, and H/K is 0.2 for all three.

4.2 Comparison of Predicted and Observed Data

Using the numbers above, predicted and observed data is compared as shown below. The
slight mismatch between predicted and observed is partially due to rounding errors in the
parameters R/K, H/K, and D/K. Also, the savings from reducing the number of store
branches by half is not included in the model.

19

Speedup Predicted vs Observed

D/K

S
p

ee
d

u
p

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

R/K = 0

R/K = .5

observed

Loeffler

Lee

Slow Lee

figure 8 Predicted vs. observed speedups

4.3 Explanation of Parameters

4.3.1. Ideal

The best way to understand the model presented above is first to imagine that R/K and
D/K are both zero. This simplifies the model to just

Speedup = 1 + (D
K)

1 + (D
K)

P

This is simply Amdahl’s law and states that the speedup asymptotically approaches P as
the ratio of parallelizable code to non-parallelizable code grows large. This is shown in
the graph below.

20

Classic Speedup H/K=0; R/K=0

D/K

 S
p

ee
d

u
p

0

1

2

3

4

5

0 2 4 6 8

2

4

8

figure 9 Idealized speedup

4.3.2. Effect of H/K

Adding the H/K term simply shifts the curve slightly to the right so that the point where
all the lines equal unity is now where D/K equals H/K. This is shown in the graphs
below.

Speedup H/K=0; R/K=0

D/K

S
p

ee
d

u
p

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

8

Parallelism

21

Speedup H/K=0.1; R/K=0

D/K

S
p

ee
d

u
p

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

8

Parallelism

Speedup H/K=0.2; R/K=0

D/K

S
p

ee
d

u
p

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

8

Parallelism

figure 10 Effect of H/K

4.3.3. Effect of R/K

The effect of R/K is to shift the curve down, and to increase the spread between the
different degrees of parallelism. This increase in spread results since the added work, R,
is parallelized, so that its negative impact is mitigated for higher parallelism. The effect
of R/K is shown in the graphs below.

22

Speedup H/K=0; R/K=0

D/K

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

8

Parallelism

Speedup H/K=0; R/K=0.5

D/K

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

8

Parallelism

Speedup H/K=0; R/K=1.0

D/K

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

8

Parallelism

figure 11 Effect of R/K

23

4.4 Loeffler

The Loeffler algorithm is the best example of multiple enhanced speedup, even though
the Slow Lee algorithm resulted in higher actual speedup. This higher speedup largely
resulted from the inefficiency of the original algorithm, and so is not a fair measure of
speedup. The Loeffler algorithm, furthermore, is better than both Lee and Slow Lee since
no reset instructions are needed between 1D DCTs.

Because Loeffler’s algorithm needed no reset instructions, the R/K term reduced to zero.
The graph below shows how the 15% speedup for Loeffler was achieved. Notice that
increasing to higher parallelism will raise speedup only slightly along the line where R/K
= 0.5. Furthermore reducing H/K would have the same effect as shifting the operating
point along the R/K axis to the right. If H/K were completely reduced to zero, the
speedup for a parallelism of 2 would be raised to only about 20%.

Speedup Obtained with Loeffler's Algorithm

D/K

S
p

ee
d

u
p

0
0.2
0.4

0.6
0.8

1

1.2
1.4
1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

8

figure 12 Speedup for Loeffler’s DCT

4.5 Multiple Enhanced DCT in JPEG

Using this technique to speedup the DCT in JPEG will clearly result in a fairly small
speedup, since the DCT is only a fraction of the entire JPEG code. Runtime
measurements of execution times show that the factor D/K is approximately 0.19 since K,
or the non-parallelized part of the code, is now so large. On the other hand, this causes
H/K, or the ratio of pack and unpack overhead to non-parallelized code, to be reduced to
almost zero: 0.0003. Using the formula above predicts a speedup of 8.7% for the entire
JPEG compression algorithm using double enhancement. The speedup improves to
13.6% and 16.2% when using parallelism of 4 and 8, respectively.

24

5. Conclusion

5.1 Summary

A technique to reuse high precision hardware to perform multiple low precision
operations has been illustrated. This methodology requires only high level source code
modifications, and will work on any machine that supports the IEEE floating point
standard. This methodology is, in effect, a low cost way to get a SIMD architecture from
a SISD workstation.

The above graphs seem to indicate that the dominant factor in obtainable speedup is the
ratio of parallelizable work to non-parallelizable, D/K. Furthermore, once the D/K factor
has been made larger, thereby shifting the operating point to the right, going to higher
degrees of parallelism will have greater advantage.

Finally, it has been shown that H, the packing and unpacking overhead is not
significantly large. Packing requires only a single operation in machines with a multiply-
add instruction, and unpacking can be done in 3 operations using a multiply-subtract
instruction. Since non-arithmetic instructions including branches, loads, and stores, as
well as arithmetic operations are done in parallel, speedup results from both an increase
in data bandwidth, and an increase in arithmetic speed.

5.2 Future Work

Because the major limit in performance comes from the D/K ratio, it must be made easier
to perform longer stretches of code in parallel, in order to make D larger. One major
obstacle to this currently is the care that must be taken in selecting the length of
multiplication constants and number of multiplies in each data path. A slightly modified
multiplier could ensure that the result will be the correct length, thereby allowing an
unlimited number of multiplies in succession.

Another approach to the above problem might be to add a separate reset instruction.
Although this would add additional instructions, it would have the advantage of not
slowing down the multiplier.

Finally, by building overflow detection into the hardware, the need to know the absolute
maximum values of the data would be eliminated, and perhaps more general algorithms
could be implemented.

1R.B. Lee, “Precision Architecture,” IEEE Computer, Vol. 22, No. 1, June
1989.

2R.K. Montoye, E. Hokenek, and S.L. Runyon, “Design of the IBM RISC
system/6000 floating-point execution unit,” IBM Journal of Research and
Development, vol. 34, no. 1, pp. 59-70, Jan. 1990.

3K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms,
Advantages, Applications, Academic Press, Inc., San Diego, CA, 1990.

25

4C. Loeffler, A. Ligtenberg, G. Moschytz, "Practical Fast 1-D DCT
Algorithms with 11 Multiplications," Proceedings International
Conference on Acoustics, Speech, and Signal Processing, 1989.

