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Abstract

In this report, we consider the problem of routing multicast audio and video streams in a

communications network. After describing the previous work in the area and identifying

its shortcomings, we show that the problem of optimally routing multicast streams can be

formulated as an integer programming problem. We propose an e�cient solution technique,

composed of two parts: (i) an extension to the decomposition principle, to speed up the

linear relaxation of the problem, and (ii) enhanced value-�xing rules, to prune the search

space for the integer problem. We characterize the reduction in run time gained using these

techniques. Finally, we compare the run times for the optimummulticast routing algorithm

and for existing heuristic algorithms.

Key Words and Phrases:multicast routing, audio and video streams, multimedia, linear

programming, integer programming, decomposition.
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1 Introduction

Multimedia represents the integration of a variety of media, such as data, video, audio

and still images. The tra�c underlying networked multimedia applications has di�erent

requirements than that underlying traditional data applications. These di�erences pertain

to three aspects; namely:

Bandwidth - multimedia streams use relatively high bandwidth on a continuous basis for

long periods of time, while the average bandwidth used by data applications is low.

For example, a high-quality compressed video stream can use anywhere from 1.5 to

8 Mb/s for extended periods of time, while the average bandwidth used by typical

data applications can be well below 1 Mb/s.

Multipoint Communications - it is expected that a signi�cant fraction of the multime-

dia tra�c will be multipoint. Examples are videoconferencing, one-way video distri-

bution and collaborative computing. Data applications, on the other hand, typically

make only occasional use of multicasting.

Low Latency (on the order of 100-200 ms end-to-end), required for some applications

(such as videoconferencing or collaborative computing) that provide interactive com-

munications. Data applications typically do not have latency constraints.

A stream is a continuous 
ow of information (i.e., video frames or audio samples) that

has to be delivered in a timely fashion. Some video/audio encoders produce constant bit-

rate streams; others produce variable bit rate streams. However, even variable bit-rate

streams are not as bursty as data tra�c; both for constant bit rate and for variable bit

rate streams one can de�ne a certain bandwidth requirement to transport the stream. In

a computer network, streams are divided into packets for transmission. Several streams

can be multiplexed in time and sent through a channel, each stream using a fraction of

the channel's bandwidth. Due to their bandwidth and latency requirements, streams are

given priority over data; in other words, in a given link, a certain amount of bandwidth is
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reserved for stream tra�c. A multicast stream is a stream with one source and multiple

destinations.

Applications generate streams in sessions. A session is composed of one or more streams

which are logically related. For example, a videoconference with P participants can be seen

as a session composed of P multicast streams, from each of the participants to the other

P �1 conferees. The transport layer can treat a multicast stream either as a set of unicasts

or as a single multicast communication. In the former case, network resources will be

wasted because multiple copies of the same information are sent over some links; this waste

can be especially severe for high-bandwidth streams. However, if the network is able to

replicate the information at appropriate locations, and the transport layer at the source

node takes advantage of this feature, at most one copy of the stream is transmitted over

any given link.

The routing algorithm is responsible for computing the routes for a session, and, in

the case of multicast streams, for deciding where the stream should be replicated to reach

all destinations. For traditional data applications, there are no bandwidth or latency re-

quirements (in fact, the bandwidth is not even known); routing is done from a topological

point of view, with little regard for the bandwidth of the path used. Moreover, multi-

casts happen only occasionally; it is not very important to route them e�ciently (in fact,

bridged networks implement multicast by broadcasting the information). On the other

hand, multimedia applications require a multicast routing algorithm that can take into

account the bandwidth and latency requirements when routing the stream. Moreover, due

to the relatively high bandwidths involved, the algorithm has to be e�cient. Existing rout-

ing algorithms do not directly take into account the bandwidth and latency requirements

when computing the routes, and can route only one stream at a time; an algorithm that

can simultaneously route a number of streams can potentially optimize better the usage of

network resources.

In section 2, we describe the two elements of the routing problem, namely the network

and the tra�c, and give a formal problem de�nition for the multicast stream routing
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problem. In section 3, we describe the previous work in the area of multicast routing

algorithms, indicating the shortcomings of existing algorithms. In section 4 we present

an integer programming formulation for the optimum multicast stream routing problem,

and in section 5 we present an e�cient solution technique, based on the branch-and-bound

method, which has two parts: (i) an extension of the decomposition procedure, to speed-

up the linear relaxation of the problem, and (ii) enhanced value-�xing rules, to prune the

search space for the integer solution. This speed-up is characterized in section 6, were

we also compare the run times for the optimum solution and for the heuristic solutions.

Finally, in section 7, we summarize our conclusions. The extension to the decomposition

procedure is given in the Appendix.

2 The Problem Formulation

When an application requests a multicast session, the multicast routing algorithm is respon-

sible for �nding routes for each of its component streams; each route should have enough

free bandwidth to support the stream, and should not exceed its latency constraint. If there

are multiple routes that satisfy the requirements for a given stream, the routing algorithm

will choose one so as to optimize a certain objective function. In this section, we charac-

terize the elements of the routing problem, namely the network and the tra�c model, and

formulate the routing problem.

2.1 The Network

The network is a collection of nodes, interconnected by links subject to a certain topology.

In this report, we consider all links to be point-to-point and directed (i.e., information can


ow in only one direction); latter we show how other kinds of topologies (such as shared-

medium and WDM networks) can be accommodated. Full-duplex connections between a

pair of nodes correspond to two independent links, one in each direction; this is needed

because multicasts are unidirectional, and the bandwidth is managed separately in each
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direction. Each link is characterized by the following parameters:

Capacity: Link bandwidth, in bits/second.

Cost: Monetary cost of using the link, in $/bit. In other words, the cost of routing a

stream of r bits/second over a link costing C $/bit is rC $/second.

Delay: Each link has associated with it a certain delay D, which is the time between the

instant a bit of information becomes ready to be transmitted at the source of the link,

and the instant it is received in the other end. The delay D has three components,

as illustrated in �gure 1:

� The node processing delay, DN . For a given node, this component of the de-

lay is a constant. Since routing is usually hardware-assisted, we neglect this

component of the delay.

� The queueing delay, DQ. This component of the delay is a function of all the

tra�c in the link, and thus is a function of the routing. It includes the time

waiting in the queue and the service time. For data applications, it is common

to use a M=M=1 model for this queue; in this case, the delay DQ is a function of

the 
ow in the link. However, since we consider that stream tra�c has priority

over other kinds of tra�c, and has a certain amount of bandwidth pre-allocated

to it, DQ is bounded and typically small, and can be considered independent of

the load.

� The propagation delay, DP . This component of the delay is a function only of

the physical length of the link.

In this report, we consider that the link delay D is constant and independent of the


ow in the link.

Formally, a network topology with N nodes and K links is described by:
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Figure 1: The components of the link delay

Topology Matrix: Denoted by A, is an N �K matrix where element (i; j) is 1 if node i

is the origin of link j, -1 if node i is the destination of node j, and 0 if link j is not

connected to node i.

Link Parameters Vector: Denoted byW , it is a vector with K triplets (V;C;D), where

(Vi; Ci;Di) are the capacity, cost and delay of link i.

We will denote the network described by A and W by G(A;W ).

The formulation presented here can also be used to describe network topologies which

are capable of physical broadcast or multicast. Two examples of such networks are shown

in �gures 2(a) (a shared-medium network, such as an Ethernet, where a transmission from

a node is heard by all other nodes, providing physical broadcast) and 2(b) (an optical

network where two or more receivers can be tuned to the same wavelength �, providing

physical multicast).

The models for the networks of �gures 2 (a) and (b) are shown in �gure 3. For the

bidirectional (broadcast) case (�gure 3(a)), two \virtual nodes" V1 and V2 are created. The

access from the nodes to V1 and from V2 to the nodes is performed at zero cost/delay. The

interconnection between V1 and V2 represents the shared channel, which imposes a limit

on the capacity of the actual system. For the unidirectional (multicast) case (�gure 3(b)),

only one \virtual node" (V ) is needed, and the actual channel is represented by the link

between the source and the virtual node. The virtual node is reached with zero cost/delay,

and the actual physical delay and the costs for each of the outgoing links are assigned to

the branches leading to the destination nodes.
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Figure 2: Physical multicast

2.2 The Tra�c Model

Multicast streams are o�ered to the network in sessions. A session is a group of multicasts

which are logically related. One example is a video-conference, where each of the partic-

ipants can see all other conferees; if there are P participants, a video-conference session

would be composed of P multicasts, one from each of the participants to the other P � 1

conferees. We will denote by T the number of multicasts in the session; each of these

multicasts is characterized by:

Addressing Parameters: Source si and ni destinations, denoted by fdi1; di2; : : : ; dinig,

i = 1; : : : ; T .

Bandwidth Requirement: The amount of bandwidth needed to carry the stream, in

bits/second; it will be denoted by ri, i = 1; : : : ; T .

Latency Constraint: The maximum delay acceptable between the source and any of the

destinations in this multicast; it will be denoted by Li, i = 1; : : : ; T .
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Figure 3: Model for the physical multicast

2.3 Problem De�nition

In this section, we give a formal problem de�nition for the multicast stream routing problem.

We de�ne:

Path from node s to node d: Sequence of k links fl1; l2; : : : ; lkg, where the source of

link l1 is node s, the destination of link lk is node d, and the node which is the

destination of link li is also the source of link li+1, i = 1; : : : ; k � 1.

Multicast Path from node s to nodes fd1; d2; : : : ; dng: Tree formed by merging the

paths from s to d1; d2; : : : ; dn.

Cost of a Multicast Path: Sum of the costs of the links belonging to the multicast path.
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Delay of a Path: Sum of the delays of the links in the path.

Delay of a Multicast Path: Maximum of the delays of the paths that compose the mul-

ticast path.

Formally, the multicast stream routing problem can be stated as: \Given the network

and a session composed of T multicast streams, with multicast i, i = 1; : : : ; T , being

characterized by its source si, its set of ni destinations fdi1; : : : ; dinig, its maximum delay

constraint Li and its bandwidth requirement ri, �nd a multicast path for each stream that

satis�es its bandwidth and delay constraints, while minimizing a given linear combination

of the costs and delays of the multicast paths.

3 Previous Work in Multicast Routing

In this section, we describe the previous work in multicast routing algorithms. The de-

scription is divided into two parts: (i) algorithms used for multicast routing, and (ii) work

in evaluation of multicast routing algorithms.

3.1 Algorithms for Multicast Routing

Current multicast routing algorithms have the following limitations: (i) they are able to

route only a single multicast; (ii) most do not directly take into account the bandwidth

and latency constraints of the streams; and (iii) the structure of the algorithm de�nes the

optimization criterion, which is either cost or delay. To compute the routes for a multiple-

multicast session, these algorithms have to be applied sequentially to each multicast in the

session, in a given order (and the routes found will be function of the order used). For

each multicast in the session, in order to take the bandwidth requirements into account,

the network topology must be temporarily pruned of the links not having enough free

bandwidth to support the stream, prior to routing it. Finally, after the route has been
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computed, its delay has to be checked against the latency constraint; if the constraint is

not satis�ed, the algorithm fails.

As far as the objective function is concerned, existing algorithms can be classi�ed into:

� Shortest-Path Algorithms; and

� Minimum-Cost Algorithms.

Shortest-Path Algorithms

The routes are computed independently from the source to each destination, using

the shortest path; the paths are then merged in a single tree. There are several exact

algorithms available to compute the shortest path [1]. If the link labels used in the routing

are the link delays, this approach will yield the minimum delay routing from the source to

each of the destinations. Other measures, such as cost, can also be used for link labels.

This algorithm is used in [2] and in the Multicast OSPF routing protocol [3] (where the

link labels can be set arbitrarily). Note that this algorithm computes the routes from a

topological point of view; to accommodate for the stream bandwidth requirement, the links

which do not have enough free bandwidth to support the stream must be pruned from the

network graph prior to applying the algorithm. Moreover, it can only route one stream

at a time; for sessions composed of multiple multicasts, it has to be applied sequentially

in some arbitrary order to each of the multicasts in the session (and the routes found are

order-dependent). Finally, the routes computed must always be checked to ensure that the

latency constraint is satis�ed, as it is not explicitly taken into account by the algorithm.

Minimum-Cost Algorithms

As with the shortest path algorithm, existing minimum cost algorithms can only com-

pute one route at a time. The routing is done so as to minimize the sum of the labels of

the links used; if the link labels are set to the link costs, this approach will lead to the

minimum cost multicast routing. For a single multicast, this is the well-known problem of

�nding minimum-cost Steiner trees in graphs, which is known to be NP-complete [4]. Many

9



exact solutions (with exponential worst-case run times) and heuristics have been proposed

to address this problem; see [5] for a comprehensive survey of the �eld. For exact solutions,

mention should be made to the elegant algorithm proposed by Dreyfus and Wagner [6], the

branch-and-bound solution by Shore et al [7], and the linear programming formulation by

Beasley [8]. The most important heuristic solutions are the algorithms by Kou, Markowsky

and Berman [9] (which we will refer to as KMB), Rayward-Smith [10] (which we will refer

to as RS) and Takahashi and Matsuyama [11] (TM). As with the shortest-path algorithms,

the network topology must be pruned of the links that do not have enough free capacity.

Additionally, the routes have to be checked to ensure that the delay constraint is satis�ed.

Kompella et al [12] proposed a variation of the KMB algorithm which is able to take into

account the latency constraint.

There is another di�culty in applying minimum-cost Steiner tree algorithms to multi-

cast routing: these algorithms are intended to solve connectivity problems; in other words,

given a graph composed of undirected links and a subset of its nodes, the algorithm will

�nd the subgraph with lowest cost that still provides connectivity (i.e., there is at least

one path in the subgraph between any pair of nodes in the subset under consideration).

Because the links are undirected, this minimum-cost subgraph will be a tree1. However,

when routing multicast streams, there is a very well-de�ned direction of 
ow, from the

source to each of the destinations. Moreover, even if a link is physically full-duplex, the

bandwidth in both directions is managed independently, so it has to be treated as a pair

of directed links.

There are heuristics speci�cally designed for directed graphs (for example, see [5, 13,

14]); they are, however, much more complex than their undirected counterparts. An alter-

native to using these heuristics for multicast routing is to modify one of the well-known

undirected heuristics to take into account the directionality of the links. While it is not

clear how this would be done to the RS heuristic, it is relatively simple to modify the KMB

1If the links are directed, the solution to the minimum-cost connectivity problem is in general a set of

trees.
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and TM heuristics to operate in directed graphs. In the sequel, we introduce a modi�ca-

tion to the KMB algorithm, which makes it capable of operating in directed graphs; this

algorithm will be used latter in section 6, where solutions from di�erent algorithms are

compared.

The Modi�ed KMB Algorithm

We �rst introduce a trivial modi�cation to Prim's algorithm [1] to �nd a minimum-

weight directed spanning tree, and then use it to obtain the modi�ed KMB algorithm.

The Minimum Weight Directed Spanning Tree

PROBLEM: Given a directed graph G(A;W ), where the link weights W are composed

only of the link costs C, and a source node s0, �nd the minimum-cost span-

ning tree TM rooted at s0, composed of paths from s0 to all other nodes.

ALGORITHM:

Step 1: Initially, the tree TM is empty. Add the node s0 to TM .

Step 2: Between all the links whose source is a node in TM and whose destination is a

node that is not in TM , select the one with the least cost. Add this link and its

destination node to TM .

Step 3: If all nodes in the graph have been added to TM , stop; otherwise, return to

step 2.

The Modi�ed KMB Algorithm

PROBLEM: Given a directed graph G(A;W ), where the link weights W are composed

only of the link costs C, a source node s and a set of n destination nodes

d1; d2; : : : ; dn, �nd the minimum cost directed subtree TH, rooted at s, and

composed of paths from s to d1; d2; : : : ; dn.

ALGORITHM:
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Step 1: Build an auxiliary directed graph G1 as follows: the nodes in G1 are s and

d1; d2; : : : ; dn. For every pair of nodes (ni; nj) in G1, add a directed link in G1

from ni to nj whose cost is equal to the cost of the shortest path (in cost) in

the original graph G. Note that the links from d1; : : : ; dn to s can be skipped.

Step 2: Using the MinimumWeight Directed Spanning Tree algorithm described above,

�nd the minimum spanning tree T1 of G1 with root in s.

Step 3: Construct a subgraph G2 of G by replacing each link in T1 by its corresponding

shortest path in G.

Step 4: Find the minimum weight directed spanning tree T2 of G2 with root in s.

Step 5: Prune from T2 any leaf nodes that are not in the d1; : : : ; dn set; the resulting

tree is the minimum cost TH.

Using Existing Algorithms for Multicast Stream Routing

As indicated before, both the Shortest-Path and the Minimum-Cost algorithms only

�nd the routes in a topological sense, and for one multicast at a time. The issues of

bandwidth, latency, and multiple-multicast sessions have to be handled externally to the

algorithm. In other words, both the Shortest-Path and the Minimum-Cost algorithms are

just a part of the more general multicast stream routing algorithm. This general multicast

routing algorithm is illustrated in �gure 4 and described below:

PROBLEM: Given a multicast session composed of T multicast streams, each stream

having its source, set of destinations and bandwidth and latency require-

ments, and a network described by G(A;W ), �nd multicast paths for each

of the streams satisfying their requirements, optimizing a certain objective

function.

ALGORITHM:
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Step 1: Create a vector U to hold the current usage of each link. Initially set Uj =

0; j = 1; : : : ;K. Make a list of not-yet-routed streams, initially containing all

requests in the session.

Step 2: Take one request from the list of not-yet-routed streams; let us denote it by re-

quest i. For routing this stream, temporarily remove from the network topology

all links in which Vj < ri + Uj ; j = 1; : : : ;K (i.e., all links that do not have

enough free bandwidth to support this multicast).

Step 3: Route this request using the topology created in step 2, using the single-request

routing algorithm (i.e., shortest path, minimum cost, etc).

Step 4: If the routing in step 3 was successful2, and if the delay of the multicast satis�es

the latency constraint, update the U vector as follows:

Uj  Uj � ri j 2 multicast path for stream i

Otherwise, if no route was found or the route found does not satisfy this multi-

cast's latency constraint, terminate; there is no solution to the routing problem.

Step 5: Remove request i from the list of not-yet-routed streams and record its route.

If all streams have been processed, terminate; routes for all the components of

the session have been found. Otherwise, return to step 2.

3.2 Previous Work in Evaluation of Multicast Routing Algo-

rithms

The shortest path and minimum cost algorithms have been studied in the context of mul-

ticast routing by a number of researchers. Kumar and Ja�e [15] compared a number of

2The routing may fail if the network becomes disconnected when removing links in step 2.
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minimum delay and minimum cost algorithms when the link cost and delay weights are the
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same (i.e., Ci = Di) and derived some analytical bounds for this scenario. Waxman [16]

and latter Doar and Leslie [17] studied the problem of dynamically adding and removing

destinations on a multicast that had been already routed. Waxman studied the RS and

KMB heuristics, while Doar and Leslie compared shortest path with KMB for re-routing

the multicast. Leung and Yum [18] proposed a number of minimum-cost heuristics, and

compared their performance with the RS heuristic. Their heuristics are applicable to di-

rected graphs as well, although this aspect is not explored in their paper. One of their

heuristics is actually a variation on the basic Takahashi-Matsuyama heuristic, and was also

given by Chow [19]. Chow explicitly studies the case of directed graphs, and proposes a

minimum cost heuristic for the case where not all nodes are capable of multicasting. Am-

mar et al [20] studied the minimum cost routing under a variety of additional constraints

using a non-linear integer programming formulation.

Kompella et al [12] studied the case of minimum-cost routing under maximum delay

constraints. They assume independent weights for costs and delays (Ci 6= Di), undirected

links, and give a variation of the KMB heuristic (with exponential worst-case run time) to

compute a sub-optimal solution in the case where the link delays Di belong to a discrete

set of values.

Jiang [21] studies the problem of establishing video-conferences; a video-conference with

N participants is established as N multicasts, from each conferee to all other members of the

conference. He proposes variations to the KMB and RS heuristics to take into account the

link bandwidths. Links are still considered to be undirected, with the bandwidth available

in any direction.

In summary, most of the previous work in this �eld has focused on proposing and

evaluating minimum-cost heuristics for routing a single multicast, usually on undirected

graphs.

15



4 An Integer Programming Formulation for the Op-

timum Multicast Routing

In this section, we show that the multicast routing problem de�ned in section 2.3 can

be written as an integer programming problem, or a linear programming problem if 
ow

bifurcation is allowed.

De�nitions:

N : Number of nodes in the network.

K : Number of (directed) links in the network.

A : N � K network topology matrix; Aij = 1 if node i is the source of link j,

Aij = �1 if node i is the destination of link j, and Aij = 0 if link j is not

connected to node i.

C : 1�K cost vector.

D : 1�K delay vector.

V : K � 1 available capacity vector.

T : Number of multicast streams.

si : Source node for multicast i

ni : Number of destinations for multicast i

fdikg : Set of destinations for multicast i, k = 1; : : : ; ni

ri : Bandwidth requirement for multicast i

X i : K�ni multicast routing matrix for multicast stream i. X i

jk
= 1 if link j is used

in the multicast path for stream i to reach destination dik, otherwise X i

jk
= 0,

k = 1; : : : ; ni.

Y i : K � 1 multicast path vector for stream i. Y i

j
= 1 if link j is in the multicast

path for stream i, otherwise Y i

j
= 0.

Mi : Delay for multicast request i.

Li : Latency constraint for multicast request i.
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Bi : N � ni source-destination matrix for multicast stream i; Bi

jk
= 1 if j = si,

Bi

jk
= �1 if j = dik, and Bi

jk
= 0 otherwise, k = 1; : : : ; ni.

�c : Weight of the cost in the optimization.

�d : Weight of the delay in the optimization.

The optimum routing problem can be formulated as follows:

GIVEN: A;C;D;V ; N;K; T;Bi; ri;L; �c; �d

MINIMIZE:
TX
i=1

ri (�cCY i + �dMi) (1)

WITH RESPECT TO: X i; Y i;Mi; i = 1; : : : ; T

UNDER CONSTRAINTS:

1. For every stream, there must be a path from its source to each of its destinations.

This is equivalent to writing a set of 
ow conservation equations for routing one unit

of 
ow from the source to each of the destinations:

AX i = Bi i = 1; : : : ; T ; (2)

2. If a link is in the path from the source to any of the destinations, then it must be

included in the multicast path.

X i

jk
� Y i

j
; k = 1; : : : ; ni; j = 1; : : : ;K; i = 1; : : : ; T ; (3)

3. The delay for a multicast is the delay to the farthest destination:

Mi �
KX
j=1

DjX
i

jk
� 0; k = 1; : : : ; ni; i = 1; : : : ; T ; (4)

4. There is a maximum delay constraint for each of the multicast streams:

Mi � Li; i = 1; : : : ; T ; (5)
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5. The total 
ow through a link cannot exceed its bandwidth:

TX
i=1

riY
i � V ; (6)

6. No bifurcation of 
ow; a single path is taken from the source to each of the destina-

tions.

X;Y are binary: (7)

Equations (1) to (6) de�ne a linear programming problem, which can be solved by the

simplex method; the solution for X and Y is generally non-integer. When constraint (7)

is included, the problem becomes an integer programming problem3.

5 Solution of the Optimum Multicast Routing Prob-

lem

In this section, we present an e�cient solution technique for the integer programming

problem presented in section 4. The technique is based on the well-known branch-and-

bound method [22], which has two phases: (i) the linear relaxation (where the integer

constraints are relaxed, and the problem is solved as a linear problem) and (ii) the branch

and bound phase, where the values of variables with integer constraints are �xed either to

zero or to one. In this section, we present enhancements to speed-up both phases.

5.1 Solution to the Linear Relaxation

In this section, we provide a solution to the linear relaxation of the integer programming

problem presented in section 4. In this phase we disregard the integer constraints and solve

the problem de�ned by equations (1) to (6), which generally yield non-integer X i

jk
.

3In a packet-switched network, it is conceivable that bifurcation of 
ow could be allowed. In this case,

constraint (7) does not apply, and the problem is no longer NP-complete.
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Although the linear relaxation could be solved using the traditional simplex method, it

is possible to apply an extension of the decomposition procedure [23] to obtain a solution

more e�ciently. In other words, it is possible to decompose the problem of routing T

multicast streams into T single-multicast routing problems. Moreover, each of the single-

multicast routing problems can be further decomposed into ni unicast routing problems,

which can be e�ciently solved by methods such as network simplex [23]. In the Appendix

we show the extension to the decomposition equations presented in [23] used in the solution

of the optimum multicast routing problem.

5.1.1 First Decomposition

In this section, we show the decomposition of the problem of routing T multicast streams

into T single-multicast routing subproblems. To accomplish this, we observe that equa-

tions (2), (3), (4) and (5) apply to each multicast in isolation, while equation (6) is the only

connection between 
ows belonging to di�erent multicasts. Rewriting those equations, and

using positive slack variables to turn inequalities into equalities, we �nd:

GENERAL CONSTRAINTS (valid for i = 1; : : : ; T ):

AX i = Bi

X i

jk
� Y i

j
+ Z i

jk
= 0; k = 1; : : : ; ni; j = 1; : : : ;K

Y i

j
+ SY j = 1; j = 1; : : : ;K

KX
j=1

DjX
i

jk
�Mi + Si

ak
= 0; k = 1; : : : ; ni

Mi + SLi = Li

(Z i

jk
, SYj , S

i

ak
and SLi

are positive slack variables)

COMPLICATING CONSTRAINTS:

TX
i=1

riY
i + S = V

Let IK denote the K �K identity matrix; we de�ne:
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Xi =

2
66666666666666666666666666666666666666664

X i

1

X i

2

...

X i

ni

Y i

Mi

Zi

1

...

Zi

ni

SY

Si

a

SLi

3
77777777777777777777777777777777777777775

(8)

Ai =

2
6666666666666666666666666666666666666666666666664

A 0 � � � 0

0 A � � � 0

...
...

... 0 0 0 0 0 0

0 0 � � � A

IK 0 � � � 0 �IK

0 IK � � � 0 �IK
...

...
...

... 0 IKni
0 0 0

0 0 � � � IK �IK

0 IK 0 0 IK 0 0

D 0 � � � 0 �1

0 D � � � 0 �1

...
...

... 0
... 0 0 Ini 0

0 0 � � � D �1

0 0 1 0 0 0 1

3
7777777777777777777777777777777777777777777777775

(9)
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Bi =

2
66666666666666666666666664

Bi

1

Bi

2

...

Bi

ni

0

1

0

Li

3
77777777777777777777777775

(10)

Ci =
�
0 ri�cC ri�d 0 0 0 0

�
(11)

Di =
�
0 riIK 0 0 0 0 0

�
(12)

We can re-write the multicast optimization problem as:

MINIMIZE:
TX
i=1

CiXi

WITH RESPECT TO:

Xi

SUBJECT TO:

AiXi = Bi
TX
i=1

DiXi + S = V

which is the same formulation as the one presented in equations (19), (20) and (21) in the

Appendix, with E = 0 and F = 0. The condition 0� Xi � Ui is satis�ed because X i,

Y i and Zi are binary, and Mi and Sa are limited by the maximum delay in the network.

Each of the subproblems corresponds exactly to the problem of routing a single multicast

request over an empty network, with arbitrary link weights.
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5.1.2 Second Decomposition

In the previous section, we showed how the general multicast problem can be decomposed

into T subproblems, each one corresponding to one multicast request, and a master problem.

In this section, we will look into these multicast subproblems in detail, and show how they

further decompose into ni unicast routing problems.

The subproblem to be solved in the �rst decomposition is:

MAXIMIZE:

(!Di � Ci)Xi + �i (13)

WITH RESPECT TO:

!

SUBJECT TO:

AiXi = Bi (14)

Introducing (8), (11) and (12) in the objective function (13), it becomes:

(!Di � Ci)Xi = ri [(! � �cC)Y i � �dM ] (15)

We can now rewrite the problem de�ned by equations (14) and (15) into the format

presented in the Appendix; most of the matrices involved can be identi�ed by inspection

from equations (8) to (12):

X j =X i

j

Aj = A

Bj = Bi

j

Cj = 0
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Y =

2
664 Y

i

Mi

3
775

E =
�
�ri(! � �cC) ri�d

�

Dj =

2
66666666666666666666666666666666666666664

0

...

IK (position Kj)

...

0

0

0

...

Di (row niK+K+j)

...

0

0

3
77777777777777777777777777777777777777775

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

niK +K + ni + 1

F =

2
666666666666666666666666666664

�IK

... 0

�IK

IK 0

�1

�1

0
...

�1

0 1

3
777777777777777777777777777775

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

niK +K + ni + 1
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S =

2
666666666666666664

Zi

1

...

Zi

ni

SY

Si

a

SLi

3
777777777777777775

V =

2
6666666664

0niK�1

1K�1

0ni�1

Li

3
7777777775

The problem can be expressed as follows:

MINIMIZE:
niX
j=1

CjX j + EY = EY (16)

WITH RESPECT TO:

X j;Y

SUBJECT TO:

AjX j = Bj j = 1; � � � ; ni (17)
niX
j=1

DjX j + FY + S = V (18)

5.1.3 Summary of the Decomposition Procedure

In sections 5.1.1 and 5.1.2 we have shown that the problem of routing T multicast streams

can be �rst divided into T subproblems, each one representing the routing of a single

multicast request to its ni destinations. This problem can be further decomposed into ni

unicast routing problems, from the source to each of the destinations of that stream. In

other words, the original problem of routing the T multicast streams is decomposed into
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P
T

i=1 ni unicast routing problems, as illustrated in �gure 5. In this section we summarize

the full algorithm.

T multicast streams

MASTER PROBLEM

Solutions Coefficients

Unicast
Routing

Unicast
Routing

CoefficientsSolutions

Unicast
Routing

Unicast
Routing

ni destinations ni destinations

Single Multicast
Routing

Single Multicast
Routing

Figure 5: Illustration of the decomposition algorithm

The complete solution algorithm is:

INITIALIZATION STEP:

Start with a feasible initial solution. The unicast subproblems can be initialized by just

computing the shortest path (or any path) between each source and its destinations; the

initial solutions to the multicast subproblems are directly computed from the solution to

the unicast subproblems by using equation (18). The initial solution to the master problem

can be found by the two-phase method [23, 22]. The revised simplex array (see equation

32) is then built.

MAIN STEP

� Select the entering variable according to one of the rules indicated below. If no

variable can enter, then stop - the optimum has been reached. The rules to identify

the entering variable are:

{ If !k > 0, then Sk can enter the basis, k = 1; � � � ;K

25



{ If ri [(! � �cC)Y i � �dMi] +�i > 0, then the �ij corresponding to this solution

can enter the basis. The solution itself is found by applying the decomposition

principle again, as follows:

� Select the entering variable according to the rules below. If no entering

variable can be found, then the solution is at hand. The entering variable

is identi�ed as follows ([! �] are the dual variables for this subproblem):

� If !k > 0, then Sk can enter the basis, k = 1; : : : ; (ni + 1)(K + 1).

� If !ni�K+k �
P

ni�1
l=0 !l�K+k + ri(!k � �cCk) > 0 then Y i

k
can enter the

basis, k = 1; : : : ;K.

� If !ni(K+1)+1 �
P

ni

l=1 !l+niK � ri�d > 0, then Mi can enter the basis.

� If
�
!1+(j�1)K +D1!niK+K+j � � � !jK +DK!niK+K+j

�
X i

j
+ �j >

0 then the �ij corresponding to this solution can enter the basis,

j = 1; : : : ; ni. The solution can be found by using network simplex

(see [23]), by maximizing this objective function subject to AX i

j
= Bi

j
.

� For each entering variable, pivot as follows:

� If Sk will enter the basis, the column to pivot is B�1

2
64 ek

0

3
75

� If Y i

k
will enter the basis, the column to pivot is B�1

2
66666666666664

�ek

...

�ek

ek

0

3
77777777777775

� If Mi will enter the basis, the column to pivot is B�1

2
66666666666664

0 [niK�1]

0 [K�1]

�1 [ni�1]

1 [1�1]

0 [ni�1]

3
77777777777775
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� If �ij will enter, the column to pivot is B�1

2
666666666666666666666666666666666666666666664

0

...

X i

j

...

0

0

0

...

P
K

k=1DkX
i

kj

...

0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ni�1

0

ej

3
777777777777777777777777777777777777777777775

(the summation appears in row niK +K + j)

� For each entering variable, pivot as follows:

{ If Sk will enter the basis, the column to pivot is B�1

2
64 ek

0

3
75

{ If �ij will enter the basis, then the column to pivot is B�1

2
64 riY

i

ei

3
75, where Y i

corresponds to the extreme point associated with �ij

5.2 Solution to the Integer Programming Problem

The the general integer programming problem can be solved by the \branch-and-bound"

method. The solution to the linear relaxation, as described in section 5.1, is a necessary

step to the �nal solution. In this section, we will describe only the additions to the branch-

and-bound method to prune the search space, thus making it run faster.
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A phase in the branch-and-bound method consists on setting binary variables either to

0 or to 1. We can use our knowledge of the structure of the problem to further reduce

the number of free variables in this phase. The variables with integer constraints are

X and Y ; however, if X is integer, the constraint set and the objective function will

automatically ensure that Y is also integer. Therefore, when �xing values, we can consider

only the components of X. The following rules can be applied to reduce the number of

free variables:

At initialization: Since the links leading to the source of a multicast will never carry any


ow for that multicast, one can set:

X i

jk
= 0 i = 1; : : : ; T ; k = 1; : : : ; ni; j : Asij

= �1

where si is the source of multicast i. By the same token, links originating from

multicast destinations cannot be in the path to that destination:

X i

jk
= 0 i = 1; : : : ; T ; j; k : Adikj

= 1

When X i

kj
is set to 0: This means that request i, on its way to its kth destination, will

not use link j. Denoting by N the node from which link j originates, and assuming

that l links originate from N , if N is the origin of request i (or if one of the incoming

links to N has been set to 1 as a result of previous value-�xing) and if the X i

kj

corresponding to l � 2 branches out of the remaining l � 1 branches have been �xed

to 0, then the last remaining X i

kj
out of N can be set to 1.

When X i

kj
is set to 1: This means that request i, on its way to its kth destination, will

use link j. Denoting by N the node from which link j originates, and assuming that

l links originate from N , the X i

kj
corresponding to the remaining l� 1 links must be

all set to 0. Set also Y i

j
= 1, as per equation (3).
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Capacity Constraints: At any given step in the value-�xing process, there are some X i

jk

that have been set to 1, setting the corresponding Y i

j
also to 1. This means that a

certain amount of bandwidth (given by ri) has been reserved on that link already.

Therefore, streams requiring more than the free bandwidth on that link should not

use it. Formally:

De�ne: Uj = Vj �
X

i:Y i
j

is set to 1

ri j = 1; : : : ;K

If ri > Ui, set X
i

jk
= 0; k = 1; : : : ; ni; i : Y i

j
is not set

Note that these rules can be applied recursively, i.e., if setting a variable to 1 implies

setting another variable to 0 (or to 1), the corresponding rule can also be invoked. Moreover,

if a con
ict arises (e.g., the rule being used calls for �xing a certain variable to 0 when it

is already �xed to 1, or vice-versa), then it is not necessary to solve the linear relaxation

for that particular case; it can be immediately marked as infeasible.

6 Run Time Evaluation

In this section, we give a numerical evaluation of the average run times of the algorithm

presented in this report, and compare them with run times for the heuristic solutions as

described in section 3.1. The algorithms were implemented in a DEC 5000/240 workstation

in C, and compiled with the highest level of optimization available. The evaluation consisted

of routing a single multicast session in an empty network.

The numerical evaluation is organized as follows:

Step 1: Obtain the run times for the linear relaxation of the integer programming prob-

lem presented in section 4, both for the traditional simplex method and for the

decomposition shown in section 5.1, to characterize the improvement gained

when the original problem is decomposed into subproblems.
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Step 2: Obtain the run times for the integer programming problem, with and without

the pruning rules of section 5.2, to characterize the speed-up when they are

employed.

Step 3: Obtain the run times for the heuristic algorithms of section 3.1 (shortest path

and minimum cost) and compare with the linear programming approach.

6.1 Evaluation Scenarios

The evaluation scenarios have two components: (i) the network scenario, and (ii) the

tra�c scenario. This section describes the choices made for these two components in the

evaluation.

For the network scenario, we chose the following:

Topology: A simpli�ed version of the NSFNet T3 backbone, with 12 nodes and 15 full-

duplex links, shown in �gure 6. We also considered topologies with 6 nodes and

8 full-duplex links (half of the size of the NSFNet), and 6 nodes and 15 full-duplex

links (a completely-connected topology), generated at random.

Link Costs: Link costs have been set to 1 for all topologies.

Link Delays: For the NSFNet, the link delays have been set equal to the propagation

delays, as indicated in �gure 6, where the link delays (in milliseconds) are shown next

to the links. For the 6-node topologies, the link delays were generated at random

between 0 and 18 ms.

Link Capacities: All links are assumed to have the same capacity.

For the tra�c scenario, we chose the following:

Number of Multicasts per Session: between 1 and 4.

Number of Destinations: variable, although all the multicasts in a given session have

the same number of destinations.
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Figure 6: The NSFNet T3 backbone (simpli�ed)

Addressing: sources and destinations are chosen at random, uniformly between all the

nodes in the network.

Stream bandwidth: the bandwidth requirement for all streams in a given session is con-

stant. In this evaluation, for single-multicast sessions, the bandwidth is irrelevant as

long as it is less than the link capacity. For 2-multicast sessions, we set the bandwidth

requirement to 60% of the link bandwidth, and for 4-multicast sessions, to 30%.

Latency Constraint: no latency constraint was imposed.

We considered the following objective functions for the optimum multicast routing algo-

rithm:

� minimum cost (�c = 1, �d = 0 in equation (1)); this solution will be referred to as

\Cost" in the discussion;

� minimum cost, with delay as a secondary objective (�c � �d > 0); this solution will

be referred to as \Cost/delay"; and

� minimumdelay, with cost as a secondary objective (�d � �c > 0); this will be referred

to as \Delay/cost".
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Note that, for single-multicast sessions, the multicast path found by the \Delay/Cost"

solution will have the same delay as a multicast path found using the shortest path algo-

rithm. However, this only means that the routes used in both cases to reach the farthest

destination will be the same or equivalent. The shortest path algorithm will also minimize

the delay to the other destinations; the integer programming solution, on the other hand,

is able to make use of the fact that the only constraint on the routes to the other destina-

tions is that their delay should not exceed the delay to the farthest destination to further

minimize the cost of the multicast.

6.2 Run Time Evaluation of The Optimum Multicast Routing

Algorithm

In this section, we evaluate the speed-up gained by the use of decomposition (as compared

to the traditional simplex) and by the enhanced value-�xing rules, when computing the

optimum solution for the multicast stream routing problem.

Speed-Up due to Decomposition

The run time for the linear relaxation of the routing problem is a function of is size; the

important parameters are: (i) number of links in the topology; (ii) number of destinations

in the multicast; and (iii) number of multicasts in the session.

We applied both the traditional simplex method and the decomposition shown in sec-

tion 5.1 to the scenarios described in section 6.1; the general conclusion is that decompo-

sition signi�cantly reduces the time needed to compute the optimum. The di�erence in

performance is a function of the size of the problem and the objective function, going all

the way from increase in run time by a factor of 2 (observed at 6 nodes, 15 links, single

multicast, minimum cost) when using decomposition, to an improvement by factor of 100

or more; for example, to compute the routes for a 4-multicast session in the NSFNet, each

multicast having 5 destinations, the traditional simplex method took 542 seconds, while

using decomposition the time was reduced to 4.8 seconds.
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Figure 7: Observed run times for the NSFNet topology, 2-multicast sessions, linear relax-

ation only

In �gure 7, we plot the run time as a function of the number of destinations in the

multicast, for 2-multicast sessions in the NSFNet, using the various objective functions.

For this scenario, an improvement of 10 times is observed. Figure 7 also shows that the

run time for the linear relaxation is largely independent of the objective function when

using decomposition. Figure 8 shows a case where decomposition actually increases the

computation time, namely minimizing cost in a 6-node, 15-link network for a single-session

multicast. The reason for the increase is that this is a small, strongly-connected network,

where the paths are simple to �nd; therefore, the overhead of the decomposition procedure

is not compensated by the reduction in execution time. The �gure also shows that, if the

objective is minimizing delay, then the run time is reduced by using decomposition. For

sessions of more than one multicast, decomposition always reduces the run time.

Speed-Up due to the Pruning of the Search Space

In this section, we evaluate the reduction in the search space of the integer problem

resulting from the value-�xing rules described in section 5.2. In all cases, the linear relax-
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Figure 8: Observed run times for a 6-node, 15-link topology, 1-multicast sessions, linear

relaxation only

ations of the original problem were solved using decomposition. The main result is that, in

general, the impact of the value-�xing (pruning) rules is much less dramatic than the e�ect

of decomposition. Figure 9 shows the run times for 2-multicast sessions in the NSFNet,

as a function of the number of destinations. The �gure shows that, while there is little

advantage if the objective is to minimize cost, there is a large advantage (2 to 4 times) if

the objective is to minimize delay. Similar comments can be made for the other scenarios.

6.3 Run Times for the Heuristic Algorithms

In this section, we evaluate the run times for the minimum-cost and shortest-path algo-

rithms, as described in section 3.1. The general conclusion is that these algorithms run

much faster than the optimum presented in this report; however, for multiple multicast

sessions, they might not �nd any solution to the multicast routing problem, even though a

solution exists. The run times for the KMB heuristic and the shortest-path algorithm are

shown in �gure 10, for single-multicast sessions over the NSFNet; the heuristics are one to
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two orders of magnitude faster than the optimum.
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Table 1: Success Probability for a 6-node, 8-link network under 2-multicast sessions

# Destinations KMB Shortest Path Optimum

2 0.95 0.95

3 0.90 0.80

4 0.75 0.70 1.0

5 0.60 0.50

Table 1 shows the fraction of successful routes for 2-multicast sessions, routed through

a 6-node, 8-link network, for the di�erent methods. In all cases, there was at least one

solution, and the optimum algorithm always found it; the heuristics not always were able

to �nd the routes. For example, for 5-destination multicasts, the shortest path failed in 50%

of the cases, and the KMB failed in 40%. However, it should be stressed that these �gures

are typical of scenarios where the stream bandwidth requirements are a large fraction of

the link bandwidth; if they are not, then the fraction of successful routes for the heuristic

algorithms is close to the optimum.

7 Conclusions

In this report, we showed that the optimum multicast routing problem for multimedia

streams can be formulated as an integer programming problem, and proposed an e�cient

solution technique. We have shown that the proposed techniques vastly reduce the run

times, when compared with traditional methods. We also compared the run time of the

optimum solution with well-known heuristic algorithms, with the appropriate modi�cations

to operate in the multicast stream environment. The run time for the heuristics is still one

to two orders of magnitude less than that for the optimum, but they might fail to �nd

a solution even if one exists, when routing multiple-multicast sessions. In a companion

report [24], we present a complete evaluation of the optimum multicast routing algorithm

under realistic conditions, and compare its performance to the heuristic algorithms.
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For large networks, the optimum solution presented here is not practical; its main use

is as benchmark for other multicast routing algorithms.
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Appendix

In this appendix we show an extension of the decomposition problem shown in [23],

used in the solution of the linear relaxation of the optimum multicast routing problem.

A Formulation

Consider the following optimization problem (bold letters represent matrices or vectors):

GIVEN: Ai; bi; Ci; Di; E; F; V;Ui

MINIMIZE:
TX
i=1

Cixi + Ey (19)

WITH RESPECT TO: xi; y; s

SUBJECT TO:

Aixi = bi; i = 1; : : : ; T (20)
TX
i=1

Dixi + Fy + s = V (21)

0 � xi � Ui

y � 0

s � 0

Where Ai is N �K, bi is N � 1, Ci is 1�K, Di is M �K, E is 1� L, F is N � L, y is

L� 1, xi is K � 1, and s; V are M � 1. Additionally, we will assume that all elements in

vector V are non-negative.

B The Decomposition Procedure

De�ne Xi = fxi : Aixi = bi; 0 � xi � Uig. Since xi is limited, the set Xi will have

a �nite number ki of extreme points. Therefore, any xi 2 Xi can be written as a convex

combination of those extreme points, as follows:

39



xi =
kiX
j=1

�ijxij (22)

�ij � 0 (23)
kiX
j=1

�ij = 1 (24)

The xij in equation (22) are the extreme points of Xi.

Introducing equations (22)-(24) into equations (19) and (21)4, the optimization problem

becomes:

GIVEN: xij; Ci; Di; E; F; V

MINIMIZE:
TX
i=1

kiX
j=1

Ci(�ijxij) +Ey (25)

WITH RESPECT TO: �ij , y; s

SUBJECT TO:

TX
i=1

kiX
j=1

Di(�ijxij) + Fy + s = V (26)

kiX
j=1

�ij = 1; i = 1; : : : ; T (27)

�ij � 0

y � 0

s � 0

Equations (25), (26) and (27) can be written in matrix format as:

MINIMIZE:

�
Cixij E 0

�
2
666664
�

y

s

3
777775 (28)

SUBJECT TO:

4Equation (20) is automatically satis�ed by the xij.
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2
64 A F IM

D 0 0

3
75
2
666664
�

y

s

3
777775 =

2
64 V
1

3
75 (29)

where:

A = [Dixij ]

IM is the M �M identity matrix

D =

2
666666666664

1 � � � 1 0 � � � 0

0 1 � � � 1 � � � 0

...
...

...

0|{z}
k1

0|{z}
k2

� � � 1 � � � 1| {z }
kT

3
777777777775
=

2
4 e1 � � � e1| {z }

k1

� � � eT � � � eT| {z }
kT

3
5

ei is the ith unit vector (i.e., a vector that has a \1" in row i and \0" elsewhere)

Let us assume that a basic feasible solution in terms of the �ij 's and y; s is available5,

and let [ ! � ] be the vector of dual variables corresponding to this basic solution (!

is 1 �M and � is 1 � T ). To determine the entering variable, one has to compute the

following vector:

�
! �

� 264 A F IM

D 0 0

3
75� �

Cixij E 0

�
(30)

The positive elements in the vector de�ned by equation (30) correspond to variables

that can enter the basis and improve the objective function. Substituting the values for A

and D in equation (30), we �nd:

�
(!Di �Ci)xij + �i !F �E !

�
(31)

From (31) we learn:

1. If (!Di �Ci)xij + �i > 0, then �ij can enter the basis;

5This solution can be obtained using the well-know two-phase method, for example
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2. If (!F � E)k > 0, then yk can enter the basis;

3. If !l > 0, then sl can enter the basis.

Given ! and �, conditions 2 and 3 above are immediate to compute. Since xij is an

extreme point of Xi, condition 1 above can be rewritten as:

a. Solve the following problem:

Maximize (!Di � Ci)xi + �i

Subject to Aixi = bi, 0 � xi � Ui

b. If the objective value of the problem solved in (a.) is positive, then the �ij corresponding

to the optimum xi in that problem can enter the basis. Otherwise, no �ij from

subproblem i can enter the basis.

C Solution Algorithm

In the following description, we will denote by Master Problem the problem described by

equations (28) and (29).

INITIALIZATION STEP:

Begin with a basic feasible solution to the master problem. Store the basis inverseB�1,

b = B�1

2
64 V
1

3
75 and [ ! � ] = ĉBB

�1, where ĉij = Cixij for the basic �ij variables, and

ĉk = Ek for the basic yk variables, in the revised simplex array shown below:

�
! �

�
ĉBB

�1b

B�1 B�1b

(32)
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MAIN STEP:

� Select the the entering variable according to the rules given in section B. If there is

no candidate to enter the basis, stop { the optimum solution has been reached.

� If a variable has been selected to enter the basis, compute its column, adjoin it to

the revised tableau, and pivot. This will update all the variables in the tableau. The

columns are computed as follows:

{ If �ij will enter the basis, the column is B�1

2
64 Dixij

ei

3
75

{ If yk will enter the basis, the column is B�1

2
64 Fk

0

3
75

{ If sl will enter the basis, the column is B�1

2
64 el

0

3
75

� Repeat the previous steps until the optimum has been reached.

D Finding an Initial Solution

The procedure described in the previous section assumes that an initial basic feasible so-

lution is available. In this section, we make use of the two-phase method to identify this

initial solution. Let us consider the problem in the format described by equation (29). We

add a number of arti�cial variables that enable us to immediately identify an initial feasible

basis for this extended problem. We then optimize to drive the arti�cial variables out of

the basis. We add T arti�cial variables to the problem, denoted by the T � 1 vector a, as

follows:
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MINIMIZE:

�
0 0 0 1

�
2
6666666664

�ij

y

s

a

3
7777777775

(33)

SUBJECT TO:

2
64 A F IM 0

D 0 0 IT

3
75

2
6666666664

�ij

y

s

a

3
7777777775
=

2
64 V
1

3
75 (34)

Since all elements of V are non-negative by hypothesis, one can immediately identify

a basis in equation (34): it will be composed by the s variables (with si = Vi) and by the

arti�cial variables a (with ai = 1). Therefore,

B =

2
64 IM 0

0 IT

3
75 = IM+T = B�1 (35)

ĉB =

"
0 � � � 0| {z }

M

1 � � � 1| {z }
T

#
(36)

�
! �

�
= ĉBB

�1 = ĉB (37)

b = B�1

2
64 V
1

3
75 =

2
64 V
1

3
75 (38)

ĉBB
�1b =

"
0 � � � 0| {z }

M

1 � � � 1| {z }
T

# 264 V
1

3
75 = T (39)

Equations (35) to (39) can be represented by the following revised simplex array:
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0 � � � 0 1 � � � 1 T

IM+T

V

1

To determine the entering variable, we must compute:

�
! �

� 264 A F IM 0

D 0 0 IT

3
75� �

0 0 0 1 � � � 1

�
(40)

which resolves into:

�
!Dixij + �i !F ! �� 1

�
(41)

The positive entries in the vector on (41) correspond to variables that can enter the basis.

Therefore,

� If !Dixij + �i > 0, then �ij can enter the basis, and the column to pivot is

B�1

2
64 Dixij

ei

3
75.

� If (!F )k > 0, then yk can enter the basis, and the column to pivot is B�1

2
64 Fk

0

3
75.

� If !l > 0, then sl can enter the basis, and the column to pivot is B�1

2
64 el

0

3
75.

� If �m � 1 > 0, then the arti�cial am can enter the basis, and the column to pivot is

B�1

2
64 0

em

3
75.

The solution procedure indicated earlier in this appendix used here. At optimality, one

of the following three situations will happen:

1. All the arti�cials are out of the basis. An initial feasible solution has been found.

One just has to compute [ ! � ] = ĉBB
�1 and ĉB(B

�1b), and proceed according

to what was indicated in section C.
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2. There is at least one arti�cial in the basis at non-zero level. This means that the

original problem is infeasible, i.e., has no solution.

3. There is at least one arti�cial in the basis at zero level. We can proceed to the main

optimization as described in item 1, but during the pivoting process, we always select

one of the remaining arti�cials as the leaving variable, if possible.
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