
Center for
Reliable
Computing

TECHNICAL
REPORT

Synthesis for Scan Dependence
in

Built-In Self-Testable Designs

LaNae J. Avra and Edward J. McCluskey

94-2 Center for Reliable Computing
ERL 460

Computer Systems Laboratory
(CSL TR 94-621) Departments of Electrical Engineering and Computer Science

Stanford University
May 1994 Stanford, California 94305-4055

Abstract:
This report introduces new design and synthesis techniques that reduce the area and improve the
performance of embedded built-in self-test (BIST) architectures such as circular BIST and
parallel BIST. Our goal is to arrange the system bistables into scan paths so that some of the
BIST and scan logic is shared with the system logic. Logic sharing is possible when scan
dependence is introduced in the design. Other BIST design techniques attempt to avoid all types
of scan dependence because it can reduce the fault coverage of embedded, multiple input
signature registers (MISRs). We show that introducing certain types of scan dependence in
embedded MISRs can result in reduced overhead and improved fault coverage, and we describe
synthesis techniques that maximize the amount of this beneficial scan dependence. Finally, we
present fault simulation, layout area, and delay results for circular BIST versions of benchmark
circuits that have been synthesized with our techniques.

Funding:
This work was supported in part by the Innovative Science and Technology Office of the
Strategic Defense Initiative Organization and administered through the Office of Naval Research
under Contract No. N00014-92-J-1782, and by the National Science Foundation under Grant
No. MIP-9107760.

Imprimatur: Siyad Ma and Nur Touba

ii

Synthesis for Scan Dependence

in

Built-In Self-Testable Designs

LaNae J. Avra and Edward J. McCluskey
CRC Technical Report No. 94-2

(CSL TR 94-621)
May 1994

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, CA, USA 94305-4055

ABSTRACT

This report introduces new design and synthesis techniques that reduce the area and improve

the performance of embedded built-in self-test (BIST) architectures such as circular BIST and

parallel BIST. Our goal is to arrange the system bistables into scan paths so that some of the BIST

and scan logic is shared with the system logic. Logic sharing is possible when scan dependence is

introduced in the design. Other BIST design techniques attempt to avoid all types of scan

dependence because it can reduce the fault coverage of embedded, multiple input signature registers

(MISRs). We show that introducing certain types of scan dependence in embedded MISRs can

result in reduced overhead and improved fault coverage, and we describe synthesis techniques that

maximize the amount of this beneficial scan dependence. Finally, we present fault simulation,

layout area, and delay results for circular BIST versions of benchmark circuits that have been

synthesized with our techniques.

iii

TABLE OF CONTENTS

Abstract. ii

List of Tables .. iv

List of Illustrations .. v

1 Introduction .. 1

2 Embedded BIST Architectures .. 2

2.1 Parallel BIST Architecture .. 4

2.2 Circular BIST Architecture.. 9

2.3 Reconfigurable Register Design.. 10

3 Scan Dependence... 12

4 Synthesis for Scan Dependence ... 15

4.1 Scan Dependence Classification.. 15

4.2 Bistable Arrangement.. 19

4.3 Non-Hamiltonian Dependence Graphs .. 21

5 Results ... 22

5.1 Area and Delay Results. 23

5.2 Fault Simulation Results . 25

6 Scan Dependence in Data Path Logic... 26

6.1 Orthogonal Scan Path Architecture.. 27

6.2 Scan Dependence Functions in Data Path Logic... 28

6.3 Results... 30

7 Conclusions .. 30

Acknowledgments.. 31

References..... 32

iv

LIST OF TABLES

Table 2-1 Test session register configurations for design example in [Hudson 87]. 5

Table 3-1 Area and delay for shaded logic in Fig. 3-3 based on data in [LSI 91]................... 15

Table 4-1 Scan dependence classification of decomposed Boolean equations....................... 16

Table 4-2 Case 1 bistable operations .. 16

Table 4-3 Case 2 bistable operations .. 17

Table 4-4 Case 2 bistable operations for the first bistable in the MISR. .. 17

Table 4-5 Case 3 bistable operations .. 18

Table 5-1 Bistable characteristics for circular BIST benchmark circuits. 23

Table 5-2 Area and overhead for area-optimized circular BIST benchmark circuits. 24

Table 5-3 Delay and overhead for delay-optimized circular BIST benchmark circuits. 24

Table 5-4 Layout area overhead for area-optimized circular BIST benchmark circuits. 25

Table 5-5 Fault simulation results for circular BIST benchmark circuits............................. 26

Table 6-1 System equations for data path registers that benefit from scan dependence. 29

Table 6-2 Data path design examples with orthogonal scan path and circular BIST. 30

v

LIST OF ILLUSTRATIONS

Figure 2-1 Parallel BIST architecture... 4

Figure 2-2 Self-adjacent register implemented with CBILBO... 6

Figure 2-3 LFSR and MISR configurations for Fig. 2-1 .. 8

Figure 2-4 Circular BIST architecture.. 9

Figure 2-5 Reconfigurable register . 11

Figure 2-6 MISR error capture capabilities . 11

Figure 3-1 Embedded MISR with scan dependence.. 12

Figure 3-2 Fault simulation results of BIST operation of circular BIST circuits with
maximum scan dependence.. 13

Figure 3-3 Scan dependence solutions for Z = Q + f. 14

Figure 4-1 Case 1 bistable implementation .. 16

Figure 4-2 Case 2 bistable implementation .. 18

Figure 4-3 Case 3 bistable implementation .. 18

Figure 4-4 Bistable arrangement example... 20

Figure 4-5 Bistable 3 is a case-4 function of all other bistables . 21

Figure 4-6 General solution for non-Hamiltonian dependence graphs .. 22

Figure 6-1 Orthogonal scan path example .. 28

Figure 6-2 Live variable motion.. 30

1

1 INTRODUCTION

Hardware synthesis techniques automatically generate a structural hardware implementation

given an abstract description of the behavior of the design. Many different hardware designs can

implement a given behavioral description, a subset of which also meet specified requirements such

as area, performance, and testability. Current research in hardware synthesis techniques (e.g.,

[Brayton 87], [McFarland 88], [De Micheli 94]) typically focuses on the use of minimum area or

maximum performance as the primary criteria for selecting the best hardware implementation. We

have developed and implemented new synthesis-for-BIST techniques whose primary objective is

to satisfy requirements associated with a specific built-in self-test (BIST) architecture when

generating the system logic structural implementation.

BIST techniques (design techniques that allow a circuit to test itself) such as those described in

[McCluskey 85], [McCluskey 86], [Bardell 87], and [Abramovici 90] have long been recognized

as a means to reduce product life cycle test and maintenance costs by embedding external tester

features, such as test pattern generation (TPG) and output response analysis (ORA), into the

module that contains the circuit under test (CUT). BIST can provide shorter test times than

functional or deterministic testing techniques and allows the use of low-cost test equipment during

all stages of the product life: system debug, production test, field maintenance, and failure

diagnosis. Even though industry use of BIST techniques is becoming more common [Gelsinger

86], [Lake 86], [Nozuyama 88], [Ratiu 90], [Starke 90], [Bardell 91], [Illman 91], [Preissner 92],

[Sinaki 92], [Yokomizo 92], [Bonnenberg 93], [Broseghini 93], [Gage 93], [Langford 93], [Patel

93], area overhead, performance degradation, and increased design time are often cited as reasons

for the limited use of BIST. BIST synthesis techniques, where BIST circuitry is added or a BIST

architecture is selected after the system hardware has been implemented [Abadir 85], [Zhu 88], are

valuable in that they reduce the design time and the number of design mistakes by automating the

BIST circuitry implementation process. Unfortunately, earlier system design decisions can reduce

the effectiveness, increase the area, and reduce the performance of the implemented BIST

technique.

We have developed new synthesis techniques that address two of the major issues associated

with at-speed, embedded BIST architectures such as parallel BIST and circular BIST: 1)

implementation costs due to increased design time, area overhead, and performance degradation,

and 2) test effectiveness due to system logic design decisions. Our synthesis procedures use

criteria associated with the specified BIST architecture to guide the generation of the system logic,

allowing for design decisions that reduce BIST overhead and improve BIST effectiveness. In

particular, the goal of our synthesis techniques is to introduce scan dependence in the design so

that some of the BIST and scan logic can be shared with the system logic, reducing the area and

2

improving the performance of the design. Other BIST design techniques attempt to avoid all types

of scan dependence because it can reduce the fault coverage of embedded ORAs called multiple

input signature registers (MISRs). We show that introducing certain types of scan dependence in

embedded MISRs can result in reduced overhead and improved fault coverage.

This report is organized as follows. In Sec. 2, we first give an overview of two popular

embedded BIST architectures: parallel BIST and circular BIST. We then describe the

implementation and operation of a register design that is often used in embedded BIST

architectures. We use this register design to illustrate the concepts and design techniques presented

in the remainder of the report. In Sec. 3, we define scan dependence and illustrate its advantages

and disadvantages with a simple example. In Sec. 4, we describe design techniques for beneficial

scan dependence and show how to introduce it in the design by arranging the system bistables into

MISRs. Section 5 provides fault simulation and overhead results of several benchmark circuits

generated with our synthesis techniques and optimized for the circular BIST architecture described

in Sec. 2. In Sec. 6, we show that beneficial scan dependence can be maximized in data path logic

when an orthogonal scan path configuration [Avra 92] is used. Section 7 concludes this report.

2 EMBEDDED BIST ARCHITECTURES

BIST techniques are implemented by including a test pattern generator (TPG) and output

response analyzer (ORA) in the part (e.g., chip, multi-chip module, board) that contains the circuit

under test (CUT). During BIST operation, the TPG applies test patterns to the inputs of the CUT

and the ORA captures the response of the CUT to those test patterns. Typically, the TPG and

ORA are implemented such that they automatically generate patterns and analyze responses at test

time so that the test pattern and test response storage requirements are minimized. Embedded BIST

architectures use reconfigurable system bistables to implement both the normal system operation

and the BIST TPG and ORA operations. Since the BIST logic is combined with the system logic,

opportunities exist for the synthesis technique to generate hardware that can be shared by both the

system and test operations, resulting in improved performance and reduced cost. However, in

addition to system logic issues such as performance and cost, the synthesis technique must be

capable of addressing issues that affect the quality of the BIST operation, issues such as self-test

time, and TPG and ORA effectiveness. We discuss these issues in this section.

Most BIST architectures use pseudo-random pattern generators such as linear feedback shift

registers (LFSRs) or weighted random pattern generators [Waicukauski 89] to perform TPG

operations. The TPGs are called pseudo-random because, while they generate patterns whose

characteristics are similar to randomly-generated patterns, their behavior is deterministic. The test

is therefore repeatable, and the results of the test can be compared with expected results. In order

to test for all possible combinational faults (e.g., single and multiple stuck-at faults) within an n-

3

input cone of combinational logic in the CUT, where a cone of logic is delimited by starting at a

combinational logic output (either a primary output or a bistable input) and tracing backwards

through the gates to each input (either a primary input or a bistable output), a TPG must be capable

of applying all 2n possible test patterns. To test for pattern-dependent faults [Hao 91], delay

faults, or faults that cause combinational logic to behave sequentially, the TPG may be required to

generate multiple sequences of the 2n possible patterns. Faults that affect more than one cone of

logic (e.g., a bridging fault between the inputs of two logic gates that are in different cones) can be

detected if a single TPG covers multiple cones. We evaluate the TPGs generated by our synthesis

techniques in terms of their ability to generate 2n different test patterns for each n-input cone of

logic. Even though it may be determined that not all of the 2n test patterns need to be applied

during BIST operation, it is difficult to determine a priori which subset of test patterns will be

required to provide a high fault coverage test for each CUT. Therefore, the TPGs must be

designed such that they could generate all 2n different test patterns if necessary. This is known as

the “philosophy of possible exhaustion” [Bardell 87]. Also, if all 2n test patterns can be

generated, one can use probabilistic models, based on the number of test patterns applied and the

detectabilities of the faults in the CUT, to estimate the fault coverage provided by the TPG

[McCluskey 88], thus avoiding expensive and time-consuming fault simulations.

An ideal ORA is capable of analyzing the response of each test pattern applied to the CUT. In

practice, of course, this is not feasible for a built-in ORA. Instead, most BIST architectures use

ORAs, such as multiple-input signature registers (MISRs), that compact the test response,

resulting in a loss of information. Thus, under certain error conditions, the test response of a

faulty CUT may be indistinguishable from the test response of a fault-free CUT, a phenomenon

known as aliasing. Our synthesis techniques assume that MISRs are used as the ORAs in the

implemented BIST architecture and attempt to minimize the amount of aliasing in those MISRs.

In this section, we describe two popular embedded BIST architectures, parallel BIST and

circular BIST, and discuss BIST-related synthesis issues for each. In Sec. 2.1, we describe

parallel BIST, emphasizing often-overlooked implementation complexities that must be addressed

by the synthesis technique so that it generates a design that performs an effective BIST operation.

Although our synthesis techniques are applicable to all BIST architectures that use embedded

MISRs, we have implemented them in a design tool that produces circular BIST architectures. We

describe the assumed circular BIST architecture in Sec. 2.2. In Sec. 2.3, we describe one

possible implementation of a reconfigurable register design for embedded BIST architectures. The

register is configured as a normal parallel load register for system operation. During BIST

operation, it is configured as either a maximum-length LFSR for test pattern generation or as a

MISR for output response analysis.

4

2 . 1 PARALLEL BIST ARCHITECTURE

The parallel BIST architecture [Konemann 80] is an embedded BIST architecture in which

system registers are reconfigured to perform either LFSR or MISR operations during BIST. The

built-in logic block observer (BILBO) register [Konemann 79] is often used to implement the

system registers in parallel BIST architectures. A possible implementation of the BILBO register is

described in detail in Sec. 2.3. Variations of the parallel BIST architecture are discussed in

[McCluskey 81], [Krasniewski 85], [Hudson 87].

Figure 2-1 illustrates how the parallel BIST architecture is used to test a block of data path logic

that consists of five registers (R1-R5), five combinational logic units (CLU1-CLU5), primary

input signals (PI), and primary output signals (PO). During normal operation (Fig. 2-1a), the

system registers are configured to load data from the outputs of the CLUs. Prior to performing

BIST operation, the system bistables must begin in a known state. This can be accomplished by

configuring the registers into a scan path and shifting in known data or by configuring the registers

to perform a reset operation. During BIST operation, the registers are configured as either LFSRs

or MISRs. At each clock cycle, pseudo-random test patterns are applied to the inputs of the CLUs

by the LFSRs at the same time that the test results (the outputs of the CLUs) are compacted in the

MISRs. Figures 2-1b and 2-1c represent two different test sessions of the BIST operation, where

each test session consists of a unique mapping of registers to LFSRs and MISRs. CLU3, CLU4,

and CLU5 are tested during the first test session (Fig. 2-1b), and CLU1 and CLU2 are tested

during the second test session (Fig. 2-1c). After each test session, the registers are configured into

a serial shift path so that the test results can be shifted out and compared with expected results.

This comparison can be performed either by external test equipment or by BIST control logic that

may be included as part of a test access port controller [IEEE 90]. The BIST control logic also

generates signals that control the configuration of the system registers.

R1

R3

CLU3

PI PI R2

CLU4 CLU5

PI

R4 R5

CLU2

PI PI
PO

CLU1

CLU3

PI PI

CLU4 CLU5

PI

CLU2

PI PI
PO

CLU1

CLU3

PI PI

CLU4 CLU5

PI

CLU2

PI PI
PO

CLU1

LFSR

MISR MISR MISR

MISR

LFSR

MISR

LFSR LFSR

LFSR

(a) (b) (c)

Figure 2-1 Parallel BIST architecture: (a) normal operation; (b) first test session configuration;
(c) second test session configuration.

 One advantage of the parallel BIST architecture is that it supports at-speed self-test operation:

a new test pattern is applied to the CUT at each clock cycle. At-speed operation means that the

5

parallel BIST technique may be able to detect some delay faults. Another advantage of this

technique is that, since each system register can be reconfigured as either an LFSR or a MISR,

multiple CLUs can be tested in parallel, reducing the total self-test time.

We define an ideal parallel BIST architecture as one for which the system bistables can be

arranged into LFSRs and MISRs such that, for each n-input CLU in the design, 2n different test

patterns can be applied to the CLU inputs during the same test session that the CLU outputs are

captured in a MISR. Unfortunately, due to the inter-connectedness of the system bistables in

typical designs, many test sessions may be required to test all of the CLUs in an ideal parallel BIST

architecture. For example, register interconnection data and test session configurations for a

twenty-three register, parallel BIST design is provided in [Hudson 87]. This information is shown

in a different form in Table 2-1, which lists which registers, numbered 1 through 23, are

configured as LFSRs and MISRs for each test session. We assume that any CLU feeding a

register that is configured as a MISR during a given test session is tested during that test session.

For example, during test session 10, the CLUs that feed registers 9 and 16 are tested by test

patterns supplied by registers 10, 12, and 17. The design requires a minimum of twelve different

test sessions, where an average of 1.75 registers are configured as MISRs and 13.9 registers are

configured as LFSRs in each test session. The high number of test sessions corresponds to the

low degree of self-test parallelism in the design.

Table 2-1 Test session register configurations for design example in [Hudson 87].

Test Session MISRs LFSRs
1 3,13*,17 1,2,4,5,6,7,8,9,10,11,12,14,15,16,19,20,21,22,23
2 19,20* 1,2,4,5,6,7,8,9,10,11,13,14,15,16,21,22,23
3 23* 1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,19,20,21,22
4 6*,10* 1,2,4,5,7,8,9,11,13,14,15,16,19,20,21,22,23
5 5*,11* 1,2,4,6,7,8,9,10,13,14,15,16,20,21,22,23
6 4,12* 1,2,3,7,8,9,10,11,13,14,15,16,17,19,20,21,22,23
7 18 1,2,4,6,7,8,9,10,11,12,13,14,15,16,19,20,21,22,23
8 14* 1,2,4,7,8,9,10,11,13,15,16,20,21,22,23
9 7*,8* 1,2,9,10,13,14,15,16,20,21,22,23
10 9,16 10,12,17
11 1* 13,20,21,23
12 2*,15* 1,13,14,16,20,21,22,23

*Self-adjacent register configured as a MISR during test.

One of the barriers to implementing an economical parallel BIST architecture is self-adjacent

registers. A self-adjacent register, marked with an asterisk in Table 2-1, is one in which at least

one output of the register feeds through either a direct connection or combinational logic to at least

one input of the same register (see register R2 in Fig. 2-1a). If the self-adjacent register is

6

configured as an LFSR in order to supply test patterns to the CLU during BIST operation, the

response of the CLU cannot be observed. A self-adjacent register that is implemented with a

concurrent built-in logic block observer (CBILBO) design as described in [Wang 86] is able to

simultaneously perform both the LFSR and MISR operations because it has two sets of bistables.

CBILBO register operation for a self-adjacent register is illustrated in Fig. 2-2. During normal

operation, only one of the sets of CBILBO bistables is used (Fig. 2-2a). During BIST operation,

the set of bistables that drives the system logic is configured into an LFSR, and the other set of

bistables is configured into a MISR. Unfortunately, the prevalence of self-adjacent registers

combined with the higher hardware overhead for CBILBOs (CBILBO registers are approximately

1.75 times the size of BILBO registers) greatly increases the BIST overhead for the design in

Table 2-1. When CBILBOs are not used, a self-adjacent register can be configured as a MISR

during BIST operation. The MISR then provides test patterns to the CLU at the same time that it

captures the response of the CLU (e.g., register R2 configured as a MISR in Fig. 2-1c). Since the

state of the self-adjacent MISR depends upon its previous state and the CLU, there is no guarantee

that it can generate an exhaustive set of test patterns for the CLU. Also, the CLU can adversely

affect the output response capabilities of the self-adjacent MISR, as was noted by Hudson

[Hudson 87] for the case when a shift operation is implemented in the CLU . We discuss the

effect of the CLU on the MISR output response capabilities in detail in Sec. 3.

Ra

Rb

CLU CLU

MISR

LFSR

(a) (b)

Figure 2-2 Self-adjacent register implemented with CBILBO: (a) normal operation; (b) BIST
operation.

In an effort to solve this problem, high-level synthesis techniques have been proposed that

generate data path logic with a minimum number of self-adjacent registers [Avra 91], [Papachristou

91], [Mujumdar 92]. These synthesis techniques are among the first to use BIST criteria to guide

the high-level synthesis of the system logic. High-level synthesis techniques that only consider

area and performance during synthesis tend to generate system logic with a large number of self-

adjacent registers. For example, five of the eight registers in the Tseng example generated by the

synthesis technique described in [Tseng 86] and four of the five registers in the DiffEq example

generated by the synthesis technique described in [Paulin 89] are self-adjacent. The synthesis

technique described in [Avra 91] generated system logic with only one self-adjacent register for

both of these examples. For both examples, when CBILBO registers are used for the self-adjacent

7

registers, the synthesis-for-BIST technique generated lower-cost parallel BIST implementations

than the synthesis techniques that do not consider BIST.

Another implementation difficulty of the ideal parallel BIST architecture is determining the

arrangement of system bistables into LFSRs during each test session so that each CLU tested

during that test session could receive an exhaustive set of test patterns. The simplest arrangement

is to configure each n-bit system register as a maximum-length LFSR, which generates 2n-1

different test patterns (logic can easily be added to the LFSR so that it generates all 2n different

patterns [McCluskey 86]). This is not an acceptable solution, however, when a single CLU is fed

by multiple system registers (see CLU2 in Fig. 2-1). In this case, the total number of different test

patterns, P, that can be applied to the CLU is the least common multiple of the periods of the

individual LFSRs. For n maximum-length LFSRs, where LFSR i has bi bistables and b1 ≤ b2 ≤
... ≤ bn:

 (2bn - 1) ≤ P ≤ (2b1 - 1) (2b2 - 1) (2b3 - 1) ... (2bn-1 - 1)

P < 2b1+b2+b3+...+bn-1

The maximum value for P can only be achieved when the periods of the n LFSRs are mutually

prime. In data path logic, where a single CLU is often fed by n b-bit system registers, we have the

worst-case scenario:

P = 2b - 1 << 2nb

A better solution for providing a nearly exhaustive set of test patterns to each CLU is to

configure the bistables on the inputs of each CLU being tested during a given test session into a

single, maximum-length LFSR. Figure 2-3 illustrates this solution by showing one way to

configure the registers of Fig. 2-1 into LFSRs and MISRs for each of the two required test

sessions. During the first test session (Fig. 2-1b and 2-3a), registers R1 and R2 are configured

into a single maximum-length LFSR in order to provide an exhaustive set of test patterns to CLU4.

Registers R3, R4, and R5 are configured into a MISR to capture the output responses of CLU3,

CLU4 , and CLU5 . During the second test session (Fig. 2-1c and 2-3b), R2 , which is

implemented with a CBILBO register, is configured with R3, R4, and R5 into a single LFSR in

order to test CLU2. The second set of R2 bistables are configured with R1 into a MISR, which

captures the output responses of CLU1 and CLU2. The signal lines in Fig. 2-3 represent the

additional interconnections required for BIST operation. Each block of feedback logic (f1, f2, and

f3) consists of a tree of one or more exclusive-OR gates that implements the polynomial of the

associated LFSR or MISR. The arrangement of the registers during BIST operation (R1 → R2 →
R3 → R4 → R5) was chosen because it minimizes the amount of BIST interconnection and

feedback logic.

8

MISRLFSR

R1 R5R3 R4

R1 R2 R5R3 R4

R2

f2

MISR LFSR

(a)

(b)

f1

f1
f3

Figure 2-3 LFSR and MISR configurations for Fig. 2-1: (a) first test session; (b) second test
session.

Unfortunately, the parallel BIST architecture illustrated in Fig. 2-3 can, in practice, be

extremely complicated and costly to implement. In our discussion, we have ignored how to

configure LFSRs to drive the input signals (primary input signals and control signals) of the data

path logic during BIST operation. Considering these signals could greatly complicate the

configurations of the LFSRs during each test session, particularly if a single state machine

generates all of the control signals for the data path logic. Also, Fig. 2-1 is a relatively simple data

path design example. More complicated data path designs, or non-BIST scan path arrangement

requirements, such as minimizing test time for deterministic stuck-at tests as described in [Gupta

91] and [Narayanan 92], could greatly increase both the hardware overhead and the total self-test

time for the parallel BIST architecture. Table 2-1 provides a hint of how complicated the parallel

BIST architecture could be for a real design. For example, test session seven in Table 2-1 shows

that the combinational logic feeding register 18 is fed by the outputs of 19 different registers.

When these 19 registers are configured into a single, maximum-length LFSR, 2b-1 different test

patterns are applied to the CLU, where b is the total number of bistables in the 19 registers.

Subsets of these 19 registers must be combined with other registers to create the LFSRs for the

remaining eleven test sessions. As the number of test sessions increases, the BIST control logic

and the LFSR interconnection logic for the design can become very complicated.

The synthesis techniques described in [Avra 91], [Papachristou 91], and [Mujumdar 92]

address one of the implementation difficulties of parallel BIST architectures by generating system

logic that has a minimum number of self-adjacent registers. However, the data in Table 2-1 shows

that complicated register interconnections in the system logic can greatly complicate the LFSR

configurations required for a parallel BIST architecture. This issue must be addressed by synthesis

techniques before extensive use of the parallel BIST architecture is practical. To that end, we have

investigated more simple TPG and ORA configuration schemes, such as those found in the circular

BIST architecture. The circular BIST architecture is described in Sec. 2.2 and new synthesis

techniques for this architecture are described in Secs. 4 and 6.

9

2 . 2 CIRCULAR BIST ARCHITECTURE

Circular BIST is a low overhead, embedded BIST architecture that provides at-speed self-test

operation. Circular BIST has lower area overhead than parallel BIST because it has simpler BIST

control logic and interconnection logic, which also simplifies and speeds the implementation

process. The circular BIST architecture was first introduced as simultaneous self-test (SST) by

Bardell and McAnney [Bardell 82]. It was later described in slightly different forms by Stroud

[Stroud 88] and Krasniewski [Krasniewski 89]. Figure 2-4 illustrates the circular BIST

architecture for the data path logic in Fig. 2-1a. During BIST operation, all system bistables are

configured into a single MISR as shown in Fig. 2-4b. At each clock cycle during BIST operation,

the outputs of all CLUs in the design are captured in a single MISR, and the outputs of the MISR

provide test patterns to the CLUs. The circular BIST architecture requires little BIST control logic

since there is only one test session during which a single MISR simultaneously performs the TPG

and ORA operations. The problems of register self-adjacency and LFSR configuration discussed

in Sec. 2.1 for the parallel BIST architecture are not applicable to circular BIST. However, since

the CLUs in the circular BIST architecture are simultaneously tested by a single, self-adjacent

MISR, the pattern generation and response analysis capabilities of self-adjacent MISRs must be

analyzed to ensure an effective self-test operation. These issues are discussed in Sec. 3.1 and are

addressed by our synthesis for scan dependence techniques described in Secs. 4 and 6.

CLU3

PI PI

CLU4 CLU5

PI

CLU2

PI PI
PO

CLU1

R1 R2

MISR

R1 R5R3 R4R2

f

R3 R4 R5

(a) (b)

Figure 2-4 Circular BIST architecture: (a) normal operation; (b) BIST register configuration.

Since slightly different versions of the circular BIST architecture have been described in

[Bardell 82], [Stroud 88], and [Krasniewski 89], we state here our assumptions concerning the

circular BIST architecture implemented in our synthesized designs. First, we assume that all

bistables in the design are included in the MISR during BIST operation. Other architectures

([Krasniewski 89], [Stroud 88]) allow some bistables to be configured in the normal mode during

BIST operation in order to reduce the BIST overhead, but there is evidence that this can reduce the

observability of the logic feeding those bistables [Kim 88]. Second, we assume that every system

bistable is an edge-triggered flip-flop that can be configured to perform normal, shift, and MISR

10

operations. A reset mode of operation is optional since the bistables can be controlled through the

shift mode of operation. Using flip-flops simplifies the discussion of the synthesis techniques.

Similar synthesis techniques can be applied if the double-latch, level-sensitive scan design method

is used to implement the system bistables as described in [Bardell 82], but we do not discuss these

techniques in this paper. Finally, we assume that the MISR feedback logic is simply a direct

connection from the output of the last bistable in the MISR to the input of the first bistable. A

reconfigurable register design that supports these operations is described in Sec. 2.3.

2 . 3 RECONFIGURABLE REGISTER DESIGN

The distinguishing characteristic of embedded BIST architectures is that the system bistables

can be configured to perform both normal operation (parallel load) as well as test operations such

as serial shift, TPG, and ORA. The test operations that must be supported by each bistable depend

upon the embedded BIST architecture used. The Circular Self-Test Path architecture [Krasniewski

89], for example, does not require that the system bistables perform a serial shift operation. The

built-in logic block observer (BILBO) register [Konemann 79] is often used in embedded BIST

architectures and implements normal, synchronous reset, serial shift, TPG, and ORA modes of

operation.

Figure 2-5 illustrates a reconfigurable register design that can be used for both the parallel

BIST and circular BIST architectures. The register implementation is not necessarily optimal. Its

purpose is to more easily illustrate the BIST operations. In Secs. 3 and 4, we use Fig. 2-5 to

illustrate scan dependence and our synthesis techniques. Figure 2-5a shows the register

configuration, where each bistable in the register is implemented as shown in Fig. 2-5b. The

bistable could also be implemented with a dual-port latch, such as the design specified for the SST
technique [Bardell 82]. The Qi-1 input to the first bistable (bistable B1) in the register is determined

by BIST mode select signal BIST, and is either the scan data input (SDI) signal for shift operation

or the output of the MISR feedback logic for MISR operation or LFSR operation. For circular

BIST architectures, since a separate TPG operation is not required, signal BIST can be replaced by
signal T1, resulting in four possible modes of operation: reset, shift, normal, and MISR. Test

mode select signals T1 and T2 determine the D input to each bistable in the register, as specified in

Fig. 2-5c, where Zi is the system logic input to bistable Bi.

For circular BIST architectures and for parallel BIST architectures with self-adjacent registers

that are not implemented with CBILBOs (i.e., for self-adjacent MISRs), the MISR operation must

simultaneously provide both sufficient test patterns and accurate output response analysis. It has

been proven that, when the Z inputs are independent of the state of an n-bit MISR, the MISR

generates test patterns that are similar in behavior to random patterns [Krasniewski 89], [Kim 88].

Specifically, as P goes to infinity, where P is the number of test patterns applied during BIST

11

operation, the probability of the MISR being in any one of the 2n possible states is 2-n. The Z

inputs to a self-adjacent MISR, however, are a function of the state of the MISR. Simulation

results presented in [Kim 88] and [Stroud 88] indicate that the MISR test pattern characteristics are

not significantly different from random patterns when the Z inputs depend upon the state of the

MISR. It is not clear whether a MISR implemented with a primitive polynomial [Kim 88]
produces any better patterns than a MISR implemented with a single Qn feedback connection

[Krasniewski 89].

Normal

Mode

0 Reset
Shift or

MISR

T1

Z ⊕

T2

00
01

10
11

0
1

MUX
G

Q

BIST

T1
T2

Z

Q

Z

Q

Z

Q

&
⊕ 1D

C1

T1

T
2

&

SDO

⊕

Z 1 2 i n

1 2 i n

Di

Zi

i

Z i

Q iQi-1

Q i-1

Qi-1

Di

0
1

LFSR

SDI
B 1 B 2 B i Bn

(a) (b) (c)

Figure 2-5 Reconfigurable register: (a) bistable interconnections; (b) reconfigurable bistable;
(c) modes of operation.

Figure 2-6a shows a portion of the reconfigurable register during MISR operation to illustrate
its error capture capabilities. During MISR operation, the input to each bistable, Di, is the

exclusive-OR of the output of the previous bistable in the MISR, Qi-1, and the system logic input

to the bistable, Zi. At each clock cycle, an error in either Zi or Qi-1 is observable at Di (i.e.,

captured in bistable Bi) regardless of the state of the error-free signal. Figure 2-6b is a truth table

for signals Di (Di = Qi-1 ⊕ Zi) and DEi (DEi = QEi-1 ⊕ Zi), where QEi-1 is the faulty version of

signal Qi-1. Figure 2-6b shows that, regardless of the state of signal Zi, Di differs from DEi, so

when Zi is fault-free, an error in Qi-1 is always captured in bistable Bi. Because the exclusive-OR

operation is symmetric, the same is true when Qi-1 is fault-free and Zi is faulty. However, errors

in both signals Zi and Qi-1 in a single clock cycle are not observable at Di. Thus, once captured in

a bistable of the MISR, an error is transferred from one bistable (Qi-1) to the next (Qi) at each clock

cycle as long as it is not masked by a simultaneous error in the corresponding system logic input
signal Zi. In addition, the error may be transferred to other bistables in the MISR through the

MISR feedback logic or, if the MISR is self-adjacent, through the system logic.

⊕ 1D

C11D

C1

Q i-1

Di 0
0
1
1

1
1
0
0

0
1
0
1

0
1
1
0

1
0
0
1

QE DEZ i DiZ iQ i-1 i-1 iSystem
Logic

(a) (b)

Figure 2-6 MISR error capture capabilities: (a) MISR configuration; (b) error response.

12

3 SCAN DEPENDENCE

Performance degradation, area overhead, and test transparency (the fraction of defects not

detected by the test) are three issues that must be addressed when synthesizing a built-in self-

testable design. Sharing of system logic and test logic can reduce the area and improve the

performance of embedded BIST architectures without increasing the test transparency. In this

section, we define scan dependence and discuss how to use scan dependence to increase the

sharing of system and test logic.
A system bistable Bi is that can be reconfigured to perform scan operation is scan dependent if

and only if its system logic input, Zi, is functionally dependent on the bistable that immediately

precedes it in the scan path. For example, assume that the system logic input to bistable B5 is the

function Z5 = Q1 Q '3 + Q2 Q4. If any of the bistables B1 - B4 immediately precede B5 in the scan

path, bistable B5 is scan dependent on that preceding bistable. If, however, bistable B6

immediately precedes B5 in the scan path, B5 is not scan dependent since Z5 is not a function of

Q6. Bhatia [Bhatia 93] showed that scan dependence can be used to reduce the area overhead of

certain types of scan architectures. We showed in [Avra 93] that some types of scan dependence

can be used to reduce the overhead and improve the effectiveness of embedded BIST architectures.

Figure 3-1 illustrates a problem that can occur in embedded MISRs if the type of scan

dependence is not identified when arranging bistables in the scan path. In this example, the system
logic input to bistable B2 is the function Z2 = Q1 + f, where f is an output of combinational logic

(CLU), the inputs to which are primary inputs (PIs) and bistable outputs excluding the output of
bistable B1 (DFFs). When bistable B2 is implemented as shown in Fig. 2-5b, the function of its

D input during MISR mode (T1 = 1, T2 = 1) is D2 = Q1 ⊕ (Q1 + f) = Q1' f, as shown in Fig. 3-

1b. The problem with this function is that it greatly reduces the number of errors that the MISR

can capture during MISR operation. An error previously captured by the MISR and located at
bistable B1 will only remain in the MISR (via transfer to bistable B2) when f = 1. Similarly, an

error in f is only captured in the MISR when Q1 = 0.

&
⊕ 1D

C1

&
1D

C1

+
f

D2Q1

Z2

1D

C1

&1D

C1

D2

f

1

1

Q1

C
L
U

DFFs
PIs

C
L
U

DFFs
PIs B2 B2B1B1

(a) (b)

Figure 3-1 Embedded MISR with scan dependence: (a) implementation; (b) MISR operation.

In order to determine whether or not scan dependence could be a significant problem in

embedded BIST architectures, we implemented the circular BIST architecture, as described in Sec.

2.2, on three of the ACM/SIGDA LGSynth91 benchmark circuits [ACM 91]. For each circuit, the

13

order of the bistables in the MISR was selected to maximize the number of scan dependent

bistables in order to represent a worst-case scenario. We then fault-simulated BIST operation,

using the bistable outputs as observation points. For each circuit, BIST operation was first

executed until all of the single stuck-at faults in the circuit had been captured at least once in the

MISR (i.e., detected by the BIST operation). The number of BIST operation clock cycles, P,

required to detect 100% of the single stuck-at faults varies from circuit to circuit, depending upon

the testability of the combinational logic, and from simulation to simulation, depending upon the

initial state of the bistables. To determine a value for P, we ran five fault simulations on the

combinational logic portion of each circuit, applying test patterns randomly-generated by the fault

simulator to the inputs of the circuit. We chose P to be equal to the average number, over the five

simulations, of randomly-generated test patterns required to detect all single stuck-at faults in the

combinational logic. We then fault-simulated the BIST operation of the entire circuit

(combinational logic plus bistables) for P+90 clock cycles, observing the states of all of the

bistables during the last 90 clock cycles. The fault simulation results of these 90 clock cycles are

shown in Fig. 3-2. At each clock cycle, the percentage of faults that alias is the percentage of

faults for which the states of the bistables in the faulty and fault-free circuits are identical. Our

motivation for performing the experiment in this manner is that, in practice, BIST operation would

probably be terminated, and the test response shifted out, at some point during that window of 90

clock cycles. Figure 3-2 shows that, even though the TPG function of the BIST architecture is

sufficient to detect all single stuck-at faults, there is a significant chance that a faulty circuit will not

be identified due to aliasing in the ORA function. For example, if BIST operation is halted and the

state of the circuit is observed at clock cycle P+40, there is a probability of approximately 40% for

mult32b, 25% for mult16b, and 10% for s641 that the faulty circuit will be indistinguishable from

the fault-free circuit. We show in Sec. 6.3.2 that these probabilities are approximately zero for the

same circuits if there is no scan dependence in the design.

0

20

40

60

80

100

%
 F

au
lts

 th
at

 A
lia

s

0 20 40 60 80

Clock Cycle after 100% of Faults Detected

mult16b

mult32b

s641

Figure 3-2 Fault simulation results of BIST operation of circular BIST circuits with maximum
scan dependence.

14

One way to address the scan dependence problem is to arrange the bistables in the MISR such

that a minimum number of bistables are scan dependent [Stroud 88], [Pilarski 92]. For example,

in order to eliminate scan dependence for bistable B2 (Z2 = Q1 + f) in Fig. 3-1, neither B1 nor any

of the bistables that are inputs to function f can immediately precede B2 in the MISR.

Unfortunately, it may not always be possible to create an embedded MISR that has no scan

dependent bistables, particularly in “control-dominated” designs where bistable inputs are often a

function of a significant number of the bistable outputs in the design. Also, eliminating all scan

dependence eliminates opportunities to share system and test logic.

We propose to solve the problem of MISR aliasing due to scan dependence by using a different

function for MISR mode for the scan dependent bistables. The MISR function used depends upon

the type of scan dependence. For example, when the system logic for bistable B2 has the general

form Z2 = Q1 + f, where B1 immediately precedes B2 in the MISR, we use Q1 ⊕ f as the MISR

function. The Boolean function for the input to B2 is then:

D2 = T1' T2' Q1 + T1' T2 Q1 + T1 T2' (Q1 + f) + T1 T2 (Q1 ⊕ f)

= T1' Q1 + T1 T2' (Q1 + Q1' f) + T1 T2 (Q1 ⊕ f)
= Q1 (T1' + T2' + f') + Q1' (T1 f)

One possible logic implementation for this function is compared with a scan dependence avoidance

implementation in Fig. 3-3. Figure 3-3a shows our implementation, where the MISR function is

D2 = Q1 ⊕ f. The scan dependence avoidance implementation is shown in Fig. 3-3b, where the

MISR function is D 2 = Q x ⊕ Z2 = Q x ⊕ (Q 1 ⊕ f), and f is not a function of Q x. Both

implementations were mapped to LSI Logic 1.0 micron standard cell gates [LSI 91]. Area (in LSI

Logic cell units) and delay (f to D2 in nanoseconds) for the shaded areas of Fig. 3-3 are provided

in Table 3-1. Note that the circuit in Fig. 3-3a performs the shift operation (D2 = Q1) when T1 =

T2 = 0, whereas the circuit in Fig. 3-3b performs a synchronous reset operation (D2 = 0). Note

also that bistable B2 in Fig. 3-3a has greater observability of system logic errors during MISR

mode than bistable B2 in Fig. 3-3b. If bistable B2 is not scan dependent, an error observable at f is

only captured in the MISR when Q1 is 0 (i.e., when the error is observable at Z2), whereas if scan

dependence is implemented as shown in Fig. 3-3a, all errors observable at f are captured in the

MISR. Greater observability of system logic errors can reduce the test transparency of the BIST

operation.

&
T1

T2
&

1D

C1

f

Q1

&
T1

T2

&
1D

C1

f

Qx

&

1D

C1 Q1

+

Q20
1

MUX
G 0

1 1D

C1

D2
Q20

1

MUX
G 0

1 1D

C1

D2

Z2

(a) (b)
Figure 3-3 Scan dependence solutions for Z2 = Q1 + f : (a) our technique, MISR operation:

D2 = Q1 ⊕ f; (b) avoiding scan dependence, MISR operation: D2 = Qx ⊕ (Q1 ⊕ f).

15

Table 3-1 Area and delay for shaded logic in Fig. 3-3 based on data in [LSI 91].

Circuit Area (CUs) f→D2 Delay (ns)

Fig. 3-3a 33 1.88
Fig. 3-3b 41 2.21

The disadvantage of scan dependence, as shown in Fig. 3-2, is that it can result in significant

error loss in embedded MISRs if the function for MISR mode is not specifically selected for the

type of scan dependence. The advantage of scan dependence, as shown in Fig. 3-3, is that, when

the MISR function is carefully selected, the delay and area of the test logic for the scan dependent

bistable can sometimes be reduced. When arranging the bistables in the scan path, the synthesis

technique must therefore analyze not only the bistable interconnection information, but also the

system logic functions in order to determine whether or not scan dependence will be beneficial to

BIST. The identification, analysis, and synthesis of this system logic is discussed in Sec. 4.

4 SYNTHESIS FOR SCAN DEPENDENCE

Scan dependence that may be beneficial for embedded MISRs must be identified early in the

design cycle since it can affect how the system logic is implemented, as was illustrated in Fig. 3-3.

Rather than analyzing a structural description of the system logic, the synthesis-for-BIST technique

must analyze the system logic Boolean function for each system bistable to determine whether or

not scan dependence is beneficial, and if so, to select the appropriate test mode functions. In Sec.

4.1, we describe how to identify beneficial scan dependence, and we specify the test mode

functions for each scan dependence classification. Section 4.2 formalizes the problem of arranging

bistables in the embedded MISR in order to maximize beneficial scan dependence. In Sec. 4.3, we

discuss possible solutions when non-beneficial scan dependence is unavoidable.

4 . 1 SCAN DEPENDENCE CLASSIFICATION
We use Shannon decomposition to transform each system logic equation, Zj, into a form that

can be easily analyzed for scan dependence, and if beneficial for embedded BIST, synthesized into

an efficient structural implementation. Shannon decomposition of a Boolean equation
Zj(Q1,Q2,...) with respect to variable Q1 results in:

Zj(Q1, Q2, ...) = Q1 Zj(1, Q2, ...) + Q '1 Zj(0, Q2, ...)

where Zj(1, Q2, ...) is the Q1-residue and Zj(0, Q2, ...) is the Q '1-residue of Zj. For each Qi that is

essential for system logic equation Zj, i ≠ j, we perform Shannon decomposition on Zj with respect

to Qi. Then, based on the values of the residues, we classify Qi as one of four cases according to

Table 4-1. Qi is essential for Zj if and only if all sum-of-products expressions for Zj include either

Qi or Q 'i or both. If Qi cannot be classified as case 1, case 2, or case 3, it is classified as case 4.

16

The classification is then used to determine whether or not to have bistable Bj be scan dependent on
bistable Bi. In Table 4-1, “constant” is either logic 0 or logic 1, and Q *i is either Qi or Q 'i .

Table 4-1 Scan dependence classification of decomposed Boolean equations.

Class Qi-residue Q 'i-residue Equation Form MISR Function

Case 1 constant constant Zj = Q*i Dj = Q*i

Case 2 constant
not constant

not constant
constant Zj = (Q*i + f)* Dj = Q*i ⊕ f

Case 3 (Q 'i -residue)' (Qi-residue)' Zj = Q*i ⊕ f Dj = Q*i ⊕ f

Case 4 not constant not constant Zj = Qi f + Q'i g AVOID

Case 1 is the most obvious case of beneficial scan dependence and includes all system logic
equations of the form Zj = Q *i . Case-1 equations for all but the first bistable of the MISR are

implemented as shown in Fig. 4-1a. Figure 4-1b shows the implementation for bistable B1, where

the equation for shift operation is Dj = SDI. Table 4-2 lists the bistable input functions for the

normal, shift, and MISR operations of case-1 equations. The Q *i column in Table 4-2 specifies

whether Qi or Q 'i is used in Fig. 4-1. In each case, MISR operation is identical to the normal

operation of the system logic, and there is no performance overhead or area overhead for BIST.

The first bistable in the MISR requires an addition multiplexer for shift operation. Note that if the

reconfigurable bistable of Fig. 2-5b were used for this case, the function for MISR operation
would be Dj = Qi ⊕ Qi = 0, and any errors captured in the MISR would be eliminated when

transferred to bistable Bj. Also, the output of bistable Bj would never supply a logic 1 as a test

pattern during MISR operation.

Table 4-2 Case 1 bistable operations: Zj = Q*i.

Q*i Normal Shift MISR

Qi Dj = Qi Dj = Qi Dj = Qi

Q 'i Dj = Q'i Dj = Q'i Dj = Q'i

Test Overhead

1D

C1

1D

C1

Q*i Dj
0
1

MUX
G0

11D

C1

1D

C1

DjQ*i SDI
T1

(a) (b)

Figure 4-1 Case 1 bistable implementation: (a) all bistables except B1; (b) bistable B1.

Table 4-3 lists the four different case-2 system logic equations, which have the general form
Zj= (Q *i + f)*, where f is a function of primary inputs and outputs of bistables excluding bistable

Bi. Figure 4-2 shows one possible circuit implementation for case-2 equations, where L is either
an AND gate or an OR gate, Q *i is either Qi or Q 'i , T *1 is either T1 or T '1, and T *2 is either T2 or

17

T '2, as specified in Table 4-3. Note that the equation for the shift operation, the MISR operation,

or both may be complemented, depending upon the normal operation equation. Complementation

does not change the effectiveness of the shift and MISR operations, but, depending upon the areas

and delays of the available logic gates, may have a significant effect on the test logic overhead.

However, it may also complicate test pattern generation software that uses the scan path to shift test

patterns into the design. We found that using the operations listed in Table 4-3 (complemented

shift function for the second and fourth equations, complemented MISR function for the second

and third equations) results in minimum performance and area overhead when the equations are

mapped to the technology library in [LSI 91]. In general, the test logic overhead for case-2

equations (illustrated in Fig. 4-2) is lower than the overhead shown in Fig. 3-3b, so we consider

case-2 scan dependence equations to be beneficial. Table 4-4 and Fig. 4-2b show the operations

and implementation when the first bistable in the MISR is a case-2 function of the last bistable in

the MISR.

Table 4-3 Case 2 bistable operations: Zj = (Q*i + f)*.

Q*i Normal Shift MISR L T*1 T*2

Qi Dj = Qi + f Dj = Qi Dj = Qi ⊕ f & T1 T2

Q 'i Dj = Q'i + f Dj = Q'i Dj = Q'i ⊕ f & T1 T2

Q 'i Dj = Qi f Dj = Qi Dj = Q'i ⊕ f + T '1 T '2

Qi Dj = Q'i f Dj = Q'i Dj = Qi ⊕ f + T '1 T '2

Table 4-4 Case 2 bistable operations for the first bistable in the MISR.

Q*i Normal Shift MISR L f* T*2

Qi Dj = Qi + f Dj = SDI Dj = Qi ⊕ f & f T2

Q 'i Dj = Q'i + f Dj = SDI Dj = Q'i ⊕ f & f T2

Qi Dj = Qi f Dj = SDI Dj = Q'i ⊕ f + f’ T '2

Q 'i Dj = Q'i f Dj = SDI Dj = Qi ⊕ f + f’ T '2

18

L

1D

C1

T*1

T*2

L

1D

C1 f

Test Overhead

D j

Q*i

0
1

MUX
G 0

1

1D

C1

T1

T*2 L
1D

C1

f*
D j

Q*i 0
1

MUX
G 0

1
0
1

MUX
G 0

1
SDI

(a)

(b)

Figure 4-2 Case 2 bistable implementation: (a) all bistables except B1; (b) bistable B1.

Case-3 equations also represent beneficial scan dependence and include all system logic
equations of the form Zj = Q *i ⊕ f, where f is a function of primary inputs and outputs of bistable

excluding bistable Bi. The bistable input functions for the normal, shift, and MISR operations of

case-3 equations are listed in Table 4-5, and the implementation of case-3 equations is shown in

Fig. 4-3. As with case-1 equations, MISR operation is identical to the normal operation of the

system logic. However, some overhead logic is required for the shift operation: a 2-to-1

multiplexer when the case-3 equation is for the first bistable in the MISR, and a 2-input AND gate

when the case-3 equation is for any other MISR bistable. An uncomplemented shift function could
be implemented for the second equation in Table 4-5 if Qi is input to the XOR gate and f ' is input

to the AND gate in Fig. 4-3a.

Table 4-5 Case 3 bistable operations: Zj = Q*i ⊕ f.

Q*i Normal Shift MISR

Qi Dj = Qi ⊕ f Dj = Qi Dj = Qi ⊕ f

Q 'i Dj = Q'i ⊕ f Dj = Q'i Dj = Q'i ⊕ f

1D

C1
1D

C1

&

⊕

Test Overhead
f

T 1

Q*i D j

1D

C1

1D

C1⊕
Test Overhead

f

T1

Q*i

D j

0
1

MUX
G 0

1SDI

(a) (b)

Figure 4-3 Case 3 bistable implementation: (a) all bistables except B1; (b) bistable B1.

To date, we have not determined a way for system logic equations classified as case-4

equations to benefit, in terms of reduced area and performance overhead, from scan dependence.
Therefore, if the Shannon decomposition of Zj with respect to Qi is a case-4 equation, bistable Bi

should not immediately precede bistable Bj in the scan path, otherwise the effectiveness of the

19

MISR will be compromised. To show that this is true, let p and q be the Qi- and Q 'i -residues,

respectively, of Zj (Zj = Qi p + Q 'i q), and let Bi immediately precede Bj in the scan path. If Bj is

implemented as shown in Fig. 2-5b, then during MISR operation, Dj = Qi ⊕ (Qi p + Q 'i q) = Qi p'

+ Q 'i q. Any error in p or q that is observable at Zj (an error in p is observable when Qi is 1; an

error in q is observable when Qi is 0) is also observable at Dj (i.e., captured in the MISR) during

MISR operation. However, an error in Qi is only observable at Dj (i.e., transferred to the next

bistable in the MISR) when p = q, because when p=q=0, Dj = Qi, and when p=q=1, Dj = Q 'i,

whereas when p=q', Dj = 0. If the bistables in the scan path are arranged such that Bi precedes

bistable Bk where Qi is not essential for Zk, then during MISR operation, Dk = Qi ⊕ Zk, and all

errors in either Qi or Zk, but not both, are observable at Dk. Therefore, case-4 scan dependence

reduces the observability of errors in the previous bistable in the scan path, but does not reduce the

observability of system logic errors.

4 . 2 BISTABLE ARRANGEMENT

To determine the best arrangement of bistables in an embedded MISR for beneficial scan

dependence, our synthesis procedure first creates a directed graph called a dependence graph,

where the vertices of the graph represent the system bistables. We add a weighted edge from

vertex i to vertex j if Zj is a case-1, case-2, or case-3 function of Qi (see Table 4-1). The weight of

the edge is a cost function associated with the test logic overhead as illustrated in Figs. 4-1, 4-2,

and 4-3. The cost function could represent the performance overhead, the area overhead, or a

combination of the two. We also add a weighted edge from vertex i to vertex j if Qi is not essential

for Zj. In this case, bistable Bj is not scan dependent on Bi, and the weight of the edge is a cost

function associated with the test logic overhead of Fig. 2-5b. No edge is added from vertex i to

vertex j if Zj is a case-4 function of Qi since this represents a scan dependence situation that we

wish to avoid. The best order of bistables is determined by finding the lowest-cost Hamiltonian

cycle in the graph, where the cost of the cycle is the sum of the weights of the edges in the cycle.

A Hamiltonian cycle contains all vertices in the graph, and all vertices in a Hamiltonian cycle are

distinct. Frieze [Frieze 88] describes a polynomial-time algorithm for finding Hamiltonian cycles

in directed graphs.

Figure 4-4 is an example that illustrates how the dependence graph is used to determine the best

order of bistables. Figure 4-4a gives the system logic functions for four system bistables. Figure

4-4b is the dependence graph, where each vertex represents a system bistable. A cost is assigned

to each edge based on whether Qi is a case-1, case-2 (“c2”), or case-3 (“c3”) function of Zj or

whether it is non-essential (“ne”) for Zj. Since there is only one Hamiltonian cycle in this

dependence graph, the only possible order of bistables in the MISR is 1 → 4 → 3 → 2 → 1. Note

that, for this example, it is not possible to completely avoid scan dependence as is required by the

20

circular BIST techniques described in [Stroud 88] and [Pilarski 92]. To determine whether scan

dependence avoidance is possible for a given design, the dependence graph must have a

Hamiltonian cycle made up of only non-essential edges. No such cycle exists in the graph of Fig.

4-4b.

Z1 = Q2 + Q3 Q4

Z2 = Q2 ⊕ Q3

Z3 = Q1 Q '3

Z4 = Q2 Q3 Q4 + Q '2 Q '3 Q '4

ne

c2

c3

4

3

2

1

ne

ne ne

c2
ne

(a) (b)

Figure 4-4 Bistable arrangement example: (a) system logic functions; (b) dependence graph.

After the bistable order has been determined for the MISR, the dependence graph can be used

to determine the first bistable in the MISR (i.e., which bistable receives SDI during shift operation)

and which bistable output signals can be inputs to the MISR polynomial feedback logic. A

Hamiltonian cycle in the dependence graph corresponds to a MISR with just the nth bistable fed

back to the input of the first bistable in the MISR. This is the polynomial feedback logic

implemented in [Krasniewski 89] and in the circular BIST designs generated by our synthesis

technique. As shown in Fig. 2-5a, the MISR function for the first bistable in the MISR is D1 = Z1

⊕ FB, where FB is the output of the feedback logic exclusive-OR tree. The inputs to the

exclusive-OR tree are a subset of the outputs of the MISR bistables, and the subset depends upon

the MISR polynomial implemented. For example, the MISR function for the first bistable of a 5-

bit MISR with feedback polynomial x5+x3+x1+x0 is D1 = Z1 ⊕ Q2 ⊕ Q4 ⊕ Q5. A discussion of

polynomial implementations is given in [McCluskey 86] and [Bardell 87]. An exclusive-OR tree

has the characteristic that if an odd number of its inputs are in error, the error is observable at the

output. Thus, if an odd number of inputs to FB are in error and there is no error in Z1, the error is

observable at D1. Similarly, if Z1 is in error, it is observable at D1 if an even number of the FB
inputs are in error. However, if any input, Qi, to FB is essential for Z1, then Z1 = Qi p + Q 'i q ,

where p and q are the Qi- and Q 'i -residues, respectively, of Z1 and the equation for D1 becomes:

D1 = Z1 ⊕ FB

= (Qi p + Q 'i q) ⊕ (Qi ⊕ FBx) where FBx = Qi ⊕ FB

= (Qi p' + Q 'i q) ⊕ FBx

 Since Qi is not essential for FBx, an error in Qi is only observable at D1 when p = q and there is

no error in FBx. Thus, a dependence of Z1 of any of the inputs to FB can reduce the observability

of that input during MISR operation. We can avoid this situation by analyzing the dependence of
Z1 on all inputs to FB and using the methods described in Sec. 4.1 to determine the MISR function

21

for D1 based on the type of dependence. For example, if Z1 = Qn + Q3, and FB = Qn ⊕ Q3, the

MISR function for bistable B1 could be implemented as D1 = Qn ⊕ Q3.

4 . 3 NON-HAMILTONIAN DEPENDENCE GRAPHS

Unfortunately, some designs may have a dependence graph that does not contain a Hamiltonian

cycle. There are various solutions to this problem depending upon the characteristics of the

dependence graph. For example, no Hamiltonian cycle exists in a dependence graph that has a

vertex with no incoming edges. One possible solution to this problem is illustrated in Fig. 4-5.

Figure 4-5a is a dependence graph that does not have a Hamiltonian cycle because vertex 3 has no

incoming edges. This means that Z3 is a case-4 function of all other bistables in the MISR. Our

solution is to remove bistable B3 from the MISR since case-4 scan dependence occurs if any of the

other bistables immediately precede B3 in the scan path. We remove vertex 3 and its adjacent

edges from the dependence graph and search for a Hamiltonian cycle in the remaining graph.

Figure 4-5b shows a possible configuration during MISR mode. Errors in Z3 are captured in the

MISR during BIST operation by feeding the output of B3 through an exclusive-OR gate into the

MISR at bistable B2. For this example, B3 can feed either B2 or B4 as shown by the edges from

vertex 3 to vertices 2 and 4 in Fig. 4-5a. Note that if errors occur simultaneously at bistables B3

and B4, they will cancel. Note also that, since B3 is not included in the MISR, test pattern quality

at the output of B3 may be compromised during BIST operation, and logic must be added to

include B3 in the scan chain during scan operation.

1D

C1

1D

C1

1D

C1
⊕

1D

C1
Z 1 Z 4 Z 2

Z3

4

3

2

1

⊕ ⊕

(a) (b)

Figure 4-5 Bistable 3 is a case-4 function of all other bistables: (a) dependence graph; (b)
MISR design.

A more general solution for a non-Hamiltonian dependence graph is to add vertices to the

graph, one at a time, until a Hamiltonian cycle is created. In the worst case, which corresponds to

an original dependence graph with n vertices and no edges (each bistable is a case-4 function of

every other bistable), n vertices must be added to create a Hamiltonian cycle. Adding a vertex to

the dependence graph corresponds to adding a bistable to the design that is only used during test

operations. Since the added bistable does not have a system logic function, it can perform a shift

operation during both MISR mode and normal mode, so a case-1 edge is added from each vertex in

the graph to the new vertex. Also, the output of the new bistable is not essential for any of the

system bistable functions, so a “non-essential” edge is added from the new vertex to each “system”

22

vertex in the graph. In the worst case, which corresponds to an original dependence graph with n

vertices and no edges (each bistable is a case-4 function of every other bistable), n vertices must be

added to create a Hamiltonian cycle, and the cycle will have alternating “system” and “test-only”

vertices. Figure 4-6 illustrates this solution for the dependence graph of Fig. 4-5a. Figure 4-6a

shows the dependence graph with the added vertex, x. For clarity, only the edges from the

original dependence graph and the edges adjacent to vertex x that are used in the Hamiltonian cycle

are shown in Fig. 4-6a.

1D

C1

1D

C1
⊕ 1D

C1

Z 1 Z 4

1D

C1

Z2

1D

C1

Z 3

4

3

2

1

x
⊕ ⊕ ⊕

(a) (b)

Figure 4-6 General solution for non-Hamiltonian dependence graphs: (a) dependence graph;
(b) MISR design.

For maximum benefit, higher-level synthesis operations, such as state assignment and register

binding, should be biased toward generating more system bistables with beneficial dependence

equations. Eschermann [Eschermann 91] describes state assignment procedures for case-1 and

case-3 equations, but does not consider using case-2 equations or avoiding the detrimental

consequences of case-4 equations.

5 RESULTS

We have implemented both our synthesis technique (called BSD for beneficial scan

dependence) and the synthesis technique of avoiding all types of scan dependence (called AVD)

using procedures from the SIS logic synthesis tool [Sentovich 92]. The synthesis techniques use

the categories listed in Table 4-2 to first identify the different dependence cases for each bistable

input and create a dependence graph. Then, for the BSD technique, the bistables are arranged into

a circular BIST scan path that has the maximum number of case-1, case-2, and case-3 functions,

and no case-4 functions. For the AVD technique, the bistables are arranged into a circular BIST

scan path that has no scan dependencies. For both techniques, “test-only” vertices are added one at

a time to the dependence graph, if necessary, until a Hamiltonian cycle is created. We applied the

synthesis techniques to the ACM/SIGDA LGSynth91 benchmark circuits [ACM 91] and provide

both implementation results and fault simulation results in this section.

Table 5-1 lists the number of system and test-only bistables in the generated circular BIST

versions of the benchmark circuits, and the number of beneficial scan dependence equations in the

BSD versions of the benchmark circuits. Twelve of the 23 benchmark circuits have no instances

23

of beneficial scan dependence in the circular BIST path selected by the BSD technique, so there is

no difference between the AVD and BSD versions of these circuits. Additional implementation

details of the remaining circuits, highlighted in Table 5-1, are provided in Tables 5-2, 5-3, and 5-4.

5 . 1 AREA AND DELAY RESULTS

Tables 5-2 and 5-3 compare area and delay values for the circular BIST benchmark circuits.

For both tables, the SIS logic synthesis tool [Sentovich 92] was used to apply multi-level logic

optimizations, and the CERES technology mapping tool [Mailhot 93] was used to map the logic to

LSI logic 1.0 micron standard cell gates [LSI 91]. The area values are given in terms of LSI logic

cell units, and the delay values are in nanoseconds. “% Overhead” is the percentage increase in

area or delay of the circular BIST version of the circuit over the system logic version with no test

logic added. “% Diff” is the percentage decrease in area or delay of the BSD version of the circuit

over the AVD version. Area optimization techniques were used for both logic optimization and

technology mapping for the circuits in Table 5-2, and delay optimization techniques were used for

the circuits in Table 5-3.

Table 5-1 Bistable characteristics for circular BIST benchmark circuits.

AVD Bistables BSD Bistables # BSD

Circuit System Test-Only System Test-Only Eqns
s1196 18 0 18 0 0
s1488 6 6 6 6 0
s1494 6 6 6 6 0
s208.1 8 1 8 1 0
s298 1 4 0 1 4 0 1
s344 15 3 15 3 0
s349 15 3 15 3 0
s382 2 1 0 2 1 0 3
s386 6 6 6 3 3
s400 2 1 0 2 1 0 3
s420.1 16 1 16 1 0
s444 2 1 0 2 1 0 3
s510 6 6 6 6 0
s526 2 1 0 2 1 0 1
s641 1 7 0 1 7 0 6
s713 1 7 0 1 7 0 8
s820 5 5 5 5 0
s832 5 5 5 5 0

s838.1 32 1 32 1 0
sbc 2 7 0 2 7 0 6

mm4a 12 0 12 0 0
mult16b 3 0 0 3 0 0 1 4
mult32b 6 2 0 6 2 0 3 0

24

Table 5-2 Area and overhead for area-optimized circular BIST benchmark circuits.

AVD BSD

Circuit Area % Overhead Area % Overhead % Diff

s298 779 38.4 778 38.2 0.1
s382 1131 40.3 1110 37.7 1.9
s386 649 51.3 624 50.7 3.9
s400 1124 39.3 1111 37.7 1.2
s444 1137 44.3 1134 43.9 0.3
s526 1207 36.5 1206 36.4 0.1
s641 1534 42.6 1635 52.0 -6.6
s713 1539 43.4 1595 49.5 -3.6
sbc 3053 23.7 3045 23.4 0.3

mult16b 1516 46.7 1303 17.3 14.1
mult32b 3096 49.2 2648 16.5 14.5

Table 5-3 Delay and overhead for delay-optimized circular BIST benchmark circuits.

AVD BSD

Circuit Delay % Overhead Delay % Overhead % Diff

s298 6.8 19.0 6.8 20.2 0.0
s382 7.3 33.6 7.4 36.3 -2.1
s386 6.8 20.0 7.9 39.1 -15.9
s400 6.8 26.7 6.8 26.7 0.0
s444 7.5 25.8 7.1 19.5 5.0
s526 6.7 11.4 6.8 12.9 -1.3
s641 11.7 31.9 11.5 29.4 1.9
s713 11.0 24.8 11.0 24.7 0.1
sbc 11.8 10.1 11.8 10.0 0.1

mult16b 9.1 -0.4 8.6 -6.6 6.1
mult32b 14.2 -13.1 13.7 -16.1 3.5

Table 5-4 shows the gate area overhead, net area overhead, and total area overhead for layouts

of the circular BIST benchmark circuits. The layouts were generated using SIS for area-optimized

logic optimization, CERES for area-optimized technology mapping, and TimberWolf 6.0 for

standard cell place and route. The circuits were mapped to version 2.2 of the scalable CMOS

standard cell library that is included with the TimberWolf tool. We used the best of five different

layouts generated by TimberWolf for each circuit in Table 5-4.

25

Table 5-4 Layout area overhead for area-optimized circular BIST benchmark circuits.

AVD % Overhead BSD % Overhead % Difference

Circuit Gate Net Total Gate Net Total Gate Net Total

s298 46.7 61.5 55.1 45.1 53.5 51.8 1.1 4.9 2.1
s382 44.8 62.4 53.7 44.3 62.3 53.7 0.4 0.1 0.0
s386 39.8 32.9 36.3 39.0 39.1 39.9 0.6 -4.7 -2.6
s400 45.1 51.5 49.7 43.8 55.7 52.9 0.9 -2.8 -2.1
s444 51.2 62.0 52.5 51.4 54.9 53.0 -0.1 4.3 -0.3
s526 39.5 53.5 49.3 38.3 53.8 49.3 0.9 -0.2 0.0
s641 45.1 57.0 54.3 55.3 71.9 68.2 -7.0 -9.5 -9.0
s713 44.4 56.5 53.9 53.9 68.5 67.3 -6.6 -7.6 -8.7
sbc 21.3 22.3 26.4 21.1 22.8 26.2 0.2 -0.4 0.2

mult16b 56.8 68.1 57.3 17.0 18.7 16.9 25.4 29.4 25.7
mult32b 57.3 84.5 74.5 16.1 15.2 14.6 26.2 37.6 34.3

For most of the benchmark circuits we investigated, the sizes of the AVD and BSD versions

are not significantly different. Two of the BSD circuits (s641 and s713) are larger than the AVD

circuits. We determined that this is due to high fanout of some of the system logic equations that

are re-structured for beneficial scan dependence in the circular BIST path according to Fig. 4-2.

An enhancement to the synthesis technique should consider the fanout of the system logic when

determining whether or not a particular system logic equation is beneficial for scan dependence.

According to Tables 5-2, 5-3, and 5-4, the BSD versions of two of the circuits (mult16b, mult32b)

have significantly less area and delay than the AVD versions of these circuits. The reason for this

low overhead is that both mult16b and mult32b perform a serial multiplication operation which has

the property that many of the system logic equations are case-3 equations. Our synthesis technique

is able to arrange the bistables into a circular BIST path such that most of the bistables are case-3

scan dependent on the previous bistable in the path, and these case-3 equations have very little

overhead for BIST (see Fig. 4-3). We focus on this property of arithmetic operations in the Sec. 6

discussion of scan dependence in data path logic.

5 . 2 FAULT SIMULATION RESULTS

We performed extensive fault simulations on several of the benchmark circuits in order to

evaluate how scan dependence affects the quality of BIST operation. For each benchmark circuit,

we created four different circuit models for gate-level, single stuck-at fault simulation: FNL, IGN,

AVD, and BSD. The FNL version is the original benchmark circuit, and it executes normal

operation during the fault simulation. The front-end test logic shown in Fig. 2-5b was used for

every bistable in the IGN version (IGN stands for ignore scan dependence), and the bistables were

arranged into a circular BIST path such that the number of scan dependent bistables was

26

maximized. The AVD and BSD circuits were generated as described previously in this section.

The fault simulation results are given in Table 5-5. The fault coverage is the percentage of

collapsed, single stuck-at faults that are detected at least once during BIST operation, and is a

measure of the quality of the TPG operation. We define error loss as the percentage of clock

cycles for which the faulty and fault-free machines are identical (i.e., the percentage of aliased

clock cycles) given that the fault has been detected. Error loss is a measure of the quality of the

ORA operation. Table 5-5 shows that the BSD versions of the benchmark circuits have the highest

fault coverage, and for most of the circuits, the lowest error loss. The slightly elevated error loss

for the BSD version of circuit s386 could be attributed to the fact that its circular BIST path has

three fewer bistables than the AVD version. Even if a circuit has a high fault coverage percentage,

a non-zero error loss percentage means that there is a chance that a defective circuit will be labeled

fault-free even if the fault is detected at some time during the BIST operation. The defective circuit

can only be identified if the BIST operation terminates on a non-aliased state.

Table 5-5 Fault simulation results for circular BIST benchmark circuits.

% Fault Coverage % Error Loss

Circuit FNL IGN AVD BSD FNL IGN AVD BSD

s298 33.3 100.0 100.0 100.0 49.1 0.6 0.2 0.0
s386 37.6 30.2 77.8 80.2 59.2 0.2 0.0 2.8
s444 35.5 100.0 100.0 100.0 50.5 0.0 0.0 0.0
s641 88.9 100.0 100.0 100.0 73.4 9.5 0.0 0.0

mult16b 100.0 98.6 100.0 100.0 37.9 26.0 0.0 0.0
mult32b 99.0 95.7 100.0 100.0 1.9 39.7 0.0 0.0

6 SCAN DEPENDENCE IN DATA PATH LOGIC

 The synthesis technique described in Sec. 4 is a general technique for maximizing beneficial

scan dependence given that the system logic is described in terms of Boolean equations and

bistables. One way to maximize beneficial scan dependence in data path logic is to first apply high-

level synthesis operations to a data flow description of the design, then apply the technique

described in Sec. 4 to the generated data path logic. Unfortunately, due to the types of function

blocks typically found in data path logic (e.g., multipliers, adders), generating the dependence

graph could be very computationally expensive. More importantly, the high-level synthesis

technique may generate logic with very few beneficial dependencies between the bistables. There

are several advantages when beneficial scan dependence is considered during high-level synthesis

of data path logic, where the input to synthesis is a data flow description, rather than Boolean

equations. First, we can simplify the generation of the dependence graph since the Boolean

equations for the system logic can be inferred for multiple bistables given a single operation in a

data flow equation. For example, given the data flow equation R3 = R1 ADD R2, where R1, R2,

27

and R3 are n-bit registers, we can infer that the system logic equation for each bistable, Bi, of

register R3 has the form R3i = R1i ⊕ R2i ⊕ Ci, where Ci is the carry function for Bi. We need

not perform Shannon decomposition on the system logic equations of the addition operation in

order to determine the dependence information for the bistables in R3. Second, in data path logic,

all bistables in a register are typically controlled by the same group of control signals. When test

operation control signals can be used in the same manner, i.e., one block of test control logic for

each register rather than for each bistable in the design, test overhead can be reduced. Finally,

since the synthesis technique determines how variables in the data flow description are assigned to

bistables, it may be able to generate data path logic with more instances of case-1, case-2, and

case-3 dependencies between the bistables, resulting in a lower-cost, self-testable design.

This section contains a discussion of how to apply the synthesis technique described in Sec. 4

to data path logic. We assume that an orthogonal scan path, where the shift direction in the

orthogonal scan path is orthogonal to the shift direction in traditional scan paths (shifting bits

within registers), is implemented in the data path logic. We then identify data path functions that

are well-suited for the synthesis technique described in Sec. 4, and show that the occurrence of

these functions can be increased if an orthogonal scan path is used in the data path logic. Finally,

we describe a register binding algorithm that, assuming an orthogonal scan path architecture,

attempts to maximize the number of beneficial scan dependence equations in the generated data path

logic.

6 . 1 ORTHOGONAL SCAN PATH ARCHITECTURE

Figure 6-1a is an example of logic that is commonly found in data path designs. The outputs

of two registers, R1 and R2, are the inputs to a combinational logic unit, Adder, that performs the

addition operation, the output of which is stored in register R3. Each of the registers consists of n

bistables. Traditional scan path architectures are arranged as shown in Fig. 6-1b, where each

bistable of register R1 feeds the next bistable of register R1 during scan operation. When BIST is

implemented in the data path logic, this scan path arrangement implies a correspondence between

system registers and BIST registers, such as LFSRs and MISRs. For example, registers R1 and

R2 could be implemented as LFSRs and R3 could be implemented as a MISR during BIST

operation if the parallel BIST architecture is used.

Figure 6-1c shows the bistable arrangement for an orthogonal scan path. Each bistable of R1

feeds the corresponding bistable of register R3 during scan operation. The outputs of R3 may, in

turn, be inputs to another register in the data path logic during scan operation. Note that, for this

example, the flow of data during normal operation (from R1 to R3) is parallel to the flow of data

during scan operation. This may allow for the sharing of system and test logic, which is the

motivation for the orthogonal scan path arrangement.

28

R1 R2

R3

Adder 1D

C1

1D

C1

1D

C1

1D

C1

1D

C1

1D

C1

1D

C1

1D

C1

1D

C1

R1
1

SDI

2 n

SDO

SDI

R1

R3B B B

1 2 nB B B

1 2 nB B B

1 SDI2 SDIn

SDO1 SDO2 SDOn

(a) (b) (c)

Figure 6-1 Orthogonal scan path example: (a) normal operation; (b) typical scan path
arrangement for R1; (c) orthogonal scan path arrangement for R1.

6 . 2 SCAN DEPENDENCE FUNCTIONS IN DATA PATH LOGIC

The system logic equations for the bistables in register R3 in Fig. 6-1a have the general form
R3i = R1i ⊕ R2i ⊕ Ci, where Ci is the carry function for bistable Bi of R3. Since Ci is a function

of the less-significant bistables of R1 and R2, and is not a function of R1i or R2i, each bistable in

R3 is a case-3 function of the corresponding bistable in R1 and the corresponding bistable in R2.

The implementation for case-3 equations shown in Fig. 4-3 can only be used if the bistables in

either R1 or R2 immediately precede the corresponding bistables in R3 in the scan path. This can

be accomplished when an orthogonal scan path is used in the data path logic.

Table 6-1 lists seven types of system logic equations for bistables in data path logic that we

have determined can benefit from scan dependence. The equation type and an associated area

overhead cost estimate based on LSI Logic cell units [LSI 91] are listed, where n represents the

width of the data path (i.e., the number of bistables in each register). Lower-case letters a and b

represent system logic control signals that determine the input to each bistable of register R1.

Upper-case letters F and G represent outputs of combinational logic, the inputs to which are

primary inputs and outputs of bistables excluding the corresponding bistables associated with

register R2. For example, for a 2-bit data path (n = 2), the equation R1 = a' R2 + a F represents

two system logic equations:

Z10 = a' Q20 + a F0
Z11 = a' Q21 + a F1

where F0 is not a function of Q20, and F1 is not a function of Q21.

Data flow equation types 1, 7, and 3 correspond to the case-1, case-2, and case-3 equations,

respectively, described in Sec. 4.1, and the bistables of these registers can be implemented as

shown in Figs. 4-1, 4-2, and 4-3. Equation types 2, 4, 5, and 6 are combinations of case-1 and

case-3 equations and have control logic can be shared between the test control signals and system

control signals a and b. If the system logic equation for R1 cannot be classified as one of the first

29

seven types of equations shown in Table 6-1, it is classified as type 8, and the more general

synthesis technique described in Sec. 4 can be applied to determine whether or not beneficial scan

dependence exists for any of the bistables in the register. Register R3 in Fig. 6-1a can be

represented by the type-3 equation in Table 6-1, R1 = R2 ⊕ F.

Table 6-1 System equations for data path registers that benefit from scan dependence.

Type Cost Function
1 0 R1 = R2
2 4 R1 = a' R2 + a (R2 ⊕ F)
3 4n R1 = R2 ⊕ F
4 12+2n R1 = a' b' R2 + a' b (R2 ⊕ F) + a G
5 4+8n R1 = a' (R2 ⊕ F) + a G
6 8+8n R1 = a' R2 + a F
7 10n R1 = R2 + F
8 18n R1 = F

We have identified two types of operations that are common in data path designs and can be

mapped to equation types 1-6 in Table 6-1: addition operations and live variable motion. Addition

operations are common in DSP-based data path designs. [Waser 82] describes several types of

adder implementations, including conditional sum, Ling, and carry-look-ahead adders. The output
equations for each of these adder implementations can be expressed as: R1i = R2i ⊕ R3i ⊕ Ci,

where Ci is a function of the less-significant bistables of R2 and R3, and is not a function of R2i or

R3i. The logic implementation for Ci varies with adder type. If any of the variables in the data

flow description that are assigned to register R1 are the result of an addition operation, it may be

possible to implement R1 by one of equation types 2-5 in Table 6-1.

Another type of function that can occur in data path designs is the transfer of data from one

register to the next, known as live variable motion. Variables whose lifetimes are longer than one

clock cycle can either be held in a single register, or transferred from one register to another.

When the latter technique is used, equations of the form R1 = a R2 + a' F occur in the data path

logic, where a live variable is transferred from R2 to R1 whenever control signal a = 1. Depending

on the logic that generates F, this equation can be mapped to equation types 1, 2, 4, 5, 6, or 7 in

Table 6-1. Figure 6-2a is a data flow graph illustrating live variable motion. Variable H is loaded

into register R3 during the first clock cycle, but is not needed for computation until the second

clock cycle, and so is loaded into R2 during the second clock cycle. Variable G is loaded into R2

during the first clock cycle. The system logic equations for the bistables of R2 are type-6

equations, which can be implemented as shown in Fig. 6-2b. The control signal a is high during

the first clock cycle and low during the second. The test logic overhead for this case consists of

two AND gates per bistable in R2 plus an AND gate and an OR gate to generate control signals for

30

all bistables in the register. The exclusive-OR gate is used to perform the MISR function during

BIST operation and a multiplexer function during normal operation.

6 . 3 RESULTS

Our high-level synthesis procedure for beneficial scan dependence assumes that the data path

logic has an orthogonal scan path architecture, and biases the register binding operation to assign

variables in the data flow equations to registers such that equation types 1-7 listed in Table 6-1 are

used most often. This synthesis procedure was applied to two high-level synthesis benchmark

circuits, Tseng [Tseng 86] and DiffEq [Paulin 89]. The results are presented in Table 6-2. The

size of the data path (in LSI Logic cell units [LSI 91]) and the overhead for test logic as a

percentage of total size are given for two situations: 1) bistables are arranged into orthogonal scan

paths after register binding (labeled “Test Synthesis”), and 2) equation types 1-7 in Table 6-1 are

favored during register binding (labeled “Synthesis-for-Test”). We assumed a 16-bit data path,

and estimated interconnect area as being one cell unit per interconnection. For both the test

synthesis and synthesis-for-test procedures, beneficial scan dependence was maximized by using

an orthogonal scan path arrangement in a circular BIST architecture. For both examples, the total

size and the test overhead are smaller when scan dependence is considered during register binding.

T &
⊕ 1D

C1

R3

R2

Test Overhead

&

&

+

G

T

a
a'

R1 R3R2

R2R1

R1

F G H

+

+

to each bistable in R2

1

2

i

i i

(a) (b)

Figure 6-2 Live variable motion: (a) data flow graph; (b) R2 bistables.

Table 6-2 Data path design examples with orthogonal scan path and circular BIST.

Test Synthesis Synthesis-for-Test

Design Size (cell units) % Overhead Size (cell units) % Overhead

Tseng 14,146 13.5 11,574 6.4
DiffEq 12,342 11.7 11,518 7.3

7 CONCLUSIONS

We have introduced new synthesis techniques for generating low-cost, built-in self-testable

designs that are free of the types of system bistable dependencies that can reduce the effectiveness

of the embedded MISRs that are used to perform BIST operations. We showed that some types of

system bistable dependencies can reduce the effectiveness of BIST, whereas other types of

dependencies can allow sharing of BIST and scan logic with system logic, thereby reducing BIST

31

overhead. Care must be taken, however, when system logic and BIST logic is shared, so that the

BIST operation effectiveness is not compromised. Our logic synthesis technique (Sec. 4) and our

high-level synthesis technique (Sec. 6) both attempt to maximize sharing of system logic and test

logic to reduce the cost and improve the performance without increasing the test transparency of

BIST architectures, such as circular BIST and parallel BIST, that make use of embedded MISRs.

We have implemented the synthesis technique described in Sec. 4 in a system-for-test design

tool and used it to generate circular BIST implementations of the sequential logic synthesis

benchmark circuits. For most of the benchmark circuits we investigated, the sizes of the circuits

generated by our technique did not differ significantly from the sizes of circuits with no scan

dependence. However, better results for our technique should be possible when higher-level

synthesis operations, such as state assignment and register binding, are biased toward generating

more system bistables with beneficial dependence equations. Results presented in Sec. 5 showed

that this is true for the register binding operation when an orthogonal scan path configuration is

used. The orthogonal scan path allows for greater sharing of BIST logic and commonly-used data

path logic such as multiplexers and adders.

While our synthesis techniques are applicable to any BIST architecture that uses embedded

MISRs, our implementation of the technique generates circular BIST designs because circular

BIST has far fewer complex implementation issues than the parallel BIST architecture.

Unfortunately, theoretical results for TPG fault coverage and ORA aliasing are not valid for

circular BIST because of the dependence of the MISR inputs on the state of the MISR. Extensive

fault simulations of the circular BIST implementation must therefore be executed to guarantee high-

quality BIST operation. Fault simulations of the designs generated by our logic synthesis

technique show that the test transparency is comparable to circular BIST architectures that allow no

scan dependence. These simulations also showed that for two common design practices, not

including any BIST circuitry, or if circular BIST is implemented, ignoring scan dependence, fault

coverage can be high, but high error loss reduces the overall quality of the BIST operation. This

suggests that further investigation into techniques for improving the ORA characteristics of self-

adjacent MISRs could yield lower-cost, self-testable designs.

ACKNOWLEDGMENTS

The authors wish to thank Piero Franco, Siyad Ma, Nur Touba, and Xingning Xu for their

useful comments and suggestions. This work was supported in part by the Innovative Science and

Technology Office of the Strategic Defense Initiative Organization and administered through the

Office of Naval Research under Contract No. N00014-85-K-0600, and in part by the National

Science Foundation under grant Nos. MIP-8709128 and MIP-9107760.

32

REFERENCES

[Abadir 85] Abadir, M. S., and M. A. Breuer, “A Knowledge-Based System for Designing

Testable VLSI Chips,” IEEE Des. and Test of Comput., pp. 56-68, August 1985.

[Abramovici 90] Abramovici, M., M. A. Breuer, and A. D. Friedman, Digital Systems Testing

and Testable Design, Computer Science Press, New York, NY, USA 1990.

[ACM 91] ACM/SIGDA 1991 Logic Synthesis Benchmark Circuits, available via anonymous ftp

from mcnc.mcnc.org.

[Avra 91] Avra, L., “Allocation and Assignment in High-Level Synthesis for Self-Testable Data

Paths,” Int. Test Conf., Nashville, TN, USA, pp. 463-472, October 26-30, 1991.

[Avra 92] Avra, L., “Orthogonal Built-In Self-Test,” COMPCON Spring 1992 Dig. of Papers,

San Francisco, CA, USA, pp. 452-457, February 24-28, 1992.

[Avra 93] Avra, L. J., and E. J. McCluskey, “Synthesizing for Scan Dependence in Built-In Self-

Testable Designs,” Int. Test Conf., Baltimore, MD, USA, pp. 734-743, October 17-21, 1993.

[Bardell 82] Bardell, P. H., and W. H. McAnney, “Self-Testing of Multichip Logic Modules,”

Int. Test Conf., pp. 200-204, November 1982.

[Bardell 87] Bardell, P. H., W. H. McAnney, and J. Savir, Built-In Test for VLSI:

Pseudorandom Techniques, John Wiley & Sons, Inc., 1987.

[Bardell 91] Bardell, P. H., and M. J. Lapointe, “Production Experience with Built-In Self-Test in

the IBM ES/9000 System,” Int. Test Conf. Proc., Nashville, TN, USA, pp. 28-36, October 26-

30, 1991.

[Bhatia 93] Bhatia, S. and N. K. Jha, “Synthesis of Sequential Circuits for Robust Path Delay

Fault Testability,” 6th Int. Conf. on VLSI Des., pp. 275-280, January 1993.

[Bonnenberg 93] Bonnenberg, H, A. Curiger, N. Felber, H. Kaeslin, R. Zimmermann, and W.

Fichtner, “VINCI: Secure Test of a VLSI High-Speed Encryption System,” Int. Test Conf.,

Baltimore, MD, USA, pp. 782-790, October 17-21, 1993.

[Brayton 87] Brayton, R. K., R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, “MIS: A

Multiple-Level Logic Optimization System,” IEEE Trans. on Comput.-Aided Des., Vol. CAD-6,

No. 6, pp. 1062-1081, November 1987.

[Broseghini 93] Broseghini, J., and D. H. Lenhert, “An ALU-Based Programmable

MISR/Psedudorandom Generator for a MC68HC11 Family Self-Test,” Int. Test Conf.,

Baltimore, MD, USA, pp. 349-358, October 17-21, 1993.

[De Micheli 94] De Micheli, Giovanni, “Synthesis and Optimization of Digital Circuits,” McGraw-

Hill, Inc., Hightstown, NJ, USA, 1994.

[Eschermann 91] Eschermann, B., and H.-J. Wunderlich, “A Unified Approach for the Synthesis

of Self-Testable Finite State Machines,” 28th ACM/IEEE Des. Autom. Conf., San Francisco,

CA, USA, pp. 372-377, June 17-21, 1991.

33

[Frieze 88] Frieze, A. M., “An Algorithm for Finding Hamiltonian Cycles in Random Directed

Graphs,” J. of Algorithms, pp. 181-204, June 1988.

[Gage 93] Gage, R., “Structured CBIST in ASICs,” Int. Test Conf., Baltimore, MD, USA, pp.

332-338, October 17-21, 1993.

[Gelsinger 86] Gelsinger, P. P., “Built In Self Test of the 80386,” Int. Conf. Comput. Des., pp.

169-173, 1986.

[Gupta 91] Gupta, R., and M. A. Breuer, “Ordering Storage Elements in a Single Scan Chain,”

IEEE Int. Conf. Comput.-Aided Des., Santa Clara, CA, USA, pp. 408-411, November 11-14,

1991.

[Hao 91] Hao, H., and E. J. McCluskey, “‘Resistive Shorts’ Within CMOS Gates,” Int. Test

Conf., Nashville, TN, USA, pp. 292-301, October 26-30, 1991.

[Hudson 87] Hudson, C. L. Jr., and G. D. Peterson, “Parallel Self-Test with Pseudo-Random

Test Patterns,” Dig. Int. Test Conf., Washington, DC, USA, pp. 954-963, September 1-3,

1987.

[IEEE 90] IEEE Standard 1149.1-1990, “IEEE Standard Test Access Port and Boundary Scan

Architecture,” Institute of Electrical and Electronics Engineers, Inc., New York, NY, USA,

1990.

[Illman 91] Illman, R., T. Bird, G. Catlow, S. Clarke, L. Theobald, and G. Willetts, “Built-In

Self-Test of the VLSI Content Addressable Filestore,” Int. Test Conf. Proc., Nashville, TN,

USA, pp. 37-46, October 26-30, 1991.

[Kim 88] Kim, K, D. S. Ha, and J. G. Tront, “On Using Signature Registers as Pseudorandom

Pattern Generators in Built-in Self-Testing,” IEEE Trans. on Comput.-Aided Des., Vol. 7, No.

8, pp. 919-928, August 1988.

[Konemann 79] Konemann, B., J. Mucha, and G. Zwiehoff, “Built-In Logic Block Observation

Techniques,” 1979 IEEE Test Conf., Cherry Hill, NJ, USA, pp. 37-41, 1979.

[Konemann 80] Konemann, B., J. Mucha, and G. Zwiehoff, “Built-In Test for Complex Digital

Integrated Circuits,” IEEE J. of Solid-State Circuits, Vol. SC-15, No. 3, pp. 315-319, June

1980.

[Krasniewski 85] Krasniewski, A., and A. Albicki, “Automatic Design of Exhaustively Self-

Testing Chips with BILBO Modules,” Int. Test Conf., Philadelphia, PA, USA, pp. 362-370,

November 19-21, 1985.

[Krasniewski 89] Krasniewski, A., and S. Pilarski, “Circular Self-Test Path: A Low-Cost BIST

Technique for VLSI Circuits,” IEEE Trans. on Comput.-Aided Des., Vol. 8, No. 1, pp. 46-55,

January 1989.

[Lake 86] Lake, R., “A Fast 20K Gate Array with On-Chip Test System,” VLSI Systems Design,

pp. 46-55, June 1986.

34

[Langford 93] Langford, T., “Utilizing Boundary Scan to Implement BIST,” Int. Test Conf.,

Baltimore, MD, USA, pp. 167-173, October 17-21, 1993.

[LSI 91] LSI Logic 1.0-Micron Cell-Based Products Databook, LCB007 Cell-Based ASICs,

February 1991.

[Mailhot 93] Mailhot, F., and G. De Micheli, “Algorithms for Technology Mapping Based on

Binary Decision Diagrams and on Boolean Operations,”IEEE Trans. on Comput.-Aided Des.,

Vol. 12, No. 5, pp. 599-620, May 1993.

[McCluskey 81] McCluskey, E. J., and S. Bozorgui-Nesbat, “Design for Autonomous Test,”

IEEE Trans. on Comput., Vol. C-30, No. 11, pp. 866-874, November 1981.

[McCluskey 85] McCluskey, E. J., “Built-In Self-Test Structures,” IEEE Des. and Test, pp. 29-

36, April 1985.

[McCluskey 86] McCluskey, E. J., Logic Design Principles with Emphasis on Testable

Semicustom Circuits, Prentice-Hall, Englewood Cliffs, NJ, USA, 1986.

[McCluskey 88] McCluskey, E. J., S. Makar, S. Mourad, and K. D. Wagner, “Probability

Models for Pseudo-Random Test Sequences,” IEEE Trans. on Comput.-Aided Des., Vol. 7,

No. 1, pp. 68-74, January 1988.

[McFarland 88] McFarland, M. C., A. C. Parker, and R. Camposano, “Tutorial on High-Level

Synthesis,” 25th ACM/IEEE Des. Autom. Conf., Anaheim, CA, USA, pp. 330-336, June 12-

15, 1988.

[Mujumdar 92] Mujumdar, A., K. Saluja, and R. Jain, “Incorporating Testability Considerations

in High-Level Synthesis,” Int. Symp. Fault-Tolerant Comput., Boston, MA, USA, pp. 272-

279, July 8-10, 1992.

[Narayanan 92] Narayanan, S., R. Gupta, and M. Breuer, “Configuring Multiple Scan Chains for

Minimum Test Time,” Int. Conf. on Comput.-Aided Des., Santa Clara, CA, USA, pp. 4-8,

November 8-12, 1992.

[Nozuyama 88] Nozuyama, Y., A. Nishimura, and J. Iwamura, “Design for Testability of a 32-Bit

Microprocessor, the TX1,” Int. Test Conf. Proc., Washington, DC, USA, pp. 172-182,

September 12-14, 1988.

[Papachristou 91] Papachristou, C. A., S. Chiu, and H. Harmanani, “A Data Path Synthesis

Method for Self-Testable Designs,” 28th Des. Autom. Conf., San Francisco, CA, USA, pp.

378-384, June 17-21, 1991.

[Patel 93] Patel, R, and K. Yarlagadda, “Testability Features of the SuperSPARC

Microprocessor,” Int. Test Conf., Baltimore, MD, USA, pp. 773-781, October 17-21, 1993.

[Paulin 89] Paulin, P. G., and J. P. Knight, “Force-Directed Scheduling for the Behavioral

Synthesis of ASICs,” IEEE Trans. on Comput.-Aided Des., Vol. 8, No. 6, pp. 661-679, June

1989.

35

[Pilarski 92] Pilarski, S., A. Krasniewski, and T. Kameda, “Estimating Testing Effectiveness of

the Circular Self-Test Path Technique,” IEEE Trans. on Comput.-Aided Des., Vol. 11, No. 10,

pp. 1301-1316, October 1992.

[Preissner 92] Preissner, J., G.-H. Huamann-Bollo, G. Mahlich, J. Schuck, H. Sahm, P.

Weingart, D. Weinsziehr, J. Yeandel, R. Evans, “An Open Modular Test Concept for the DSP

KISS-16V2,” Int. Test Conf., Baltimore, MD, USA, pp. 678-683, September 20-24, 1992.

[Ratiu 90] Ratiu, I. M., and H. B. Bakoglu, “Pseudorandom Built-in Self-Test Methodology and

Implementation for the IBM RISC System/6000 Processor,” IBM J. Res. Develop., Vol. 34,

No. 1, pp. 78-84, January 1990.

[Sentovich 92] Sentovich, E.M., J. K. Singh, C. Moon, H. Savoj, R. K. Brayton, and A.

Sangiovanni-Vincentelli, “Sequential Circuit Design Using Synthesis and Optimization,” Int.

Conf. on Comput. Des., Los Alamitos, CA, USA, pp. 328-333, 1992.

[Sinaki 92] Sinaki, G., “C-17A Mission Computer Built-in Test and Fault Management

Strategies,” IEEE National Aerospace and Electronics Conf., Dayton, OH, USA, pp. 822-828,

May 18-22, 1992.

[Starke 90] Starke, C. W., “Design for Testability and Diagnosis in a VLSI CMOS System/370

Processor,” IBM J. Res. Develop., Vol. 34, No. 2/3, pp. 355-362, March/May 1990.

[Stroud 88] Stroud, C. E., “Automated BIST for Sequential Logic Synthesis,” IEEE Des. and Test

of Comput., pp. 22-32, December 1988.

[Tseng 86] Tseng, C.-J., and D. P. Siewiorek, “Automated Synthesis of Data Paths in Digital

Systems,” IEEE Trans. on Comput.-Aided Des., Vol. CAD-5, No. 3, pp. 379-395, July 1986.

[Waicukauski 89] Waicukauski, J. A., E. Lindbloom, E. B. Eichelberger, and O. P. Forlenza, “A

Method for Generating Weighted Random Test Patterns,” IBM J. Res. Develop., Vol. 33, No.

2, pp. 149-161, March 1989.

[Wang 86] Wang, L.-T., and E. J. McCluskey, “Concurrent Built-In Logic Block Observer

(CBILBO),” Int. Symp. on Circuits and Systems, San Jose, CA, USA, pp. 1054-1057, May 5-

7, 1986.

[Yokomizo 92] Yokomizo, K., and K. Naito, “A 333 MHz, 72 Kb BiCMOS Pipelined Buffer

Memory with Built-in Self Test,” Symp. on VLSI Circuits, Seattle, WA, USA, pp. 32-33, June

4-6, 1992.

[Waser 82] Waser, S., and M. Flynn, Introduction to Arithmetic for Digital Systems Designers ,

Holt, Rinehart, and Winston, 1982.

[Zhu 88] Zhu, X.-A., and M. A. Breuer, “A Knowledge-Based System for Selecting Test

Methodologies,” IEEE Des. and Test of Comput., pp. 41-59, October 1988.

