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ABSTRACT

A symbolic waveform simulator is proposed in this report.  The delay of a faulty

element is treated as a variable in the generation of the output waveform.  Therefore, many

timing simulations with different delay values do not have to be done to analyze the

behavior of the circuit-under-test with the timing fault.  The motivation for this work was to

investigate delay testing by Output Waveform Analysis, where an accurate representation of

the actual waveforms is required, although the simulator can be used for other applications

as well (such as power analysis).  Output Waveform Analysis will be briefly reviewed,

followed by a description of both a simplified and a complete implementation of the

waveform simulator, and simulation results.
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1 INTRODUCTION

The difficulty of testing digital circuits for delay faults led to the proposal of delay

testing by Output Waveform Analysis [Franco 91].  The aim of Output Waveform Analysis

is to reduce the burden on the characteristics of input patterns required by performing a

more thorough analysis of the circuit output response.  The information in the shape of the

actual output waveforms can be used to improve the thoroughness of delay fault testing.

The two classes of Output Waveform Analysis are shown in Fig. 1, together with a

two-pattern delay test <V1,V2> [Lesser 80] [Smith 85].  The initializing vector <V1> is

applied and the transients in the circuit are allowed to settle. The test vector <V2> is then

applied.  In traditional delay testing, after a timed interval equal to the cycle time, Tc, of the

circuit, the outputs are sampled and compared to the expected fault-free response.  In Post-

Sampling Waveform Analysis or Stability Checking, the circuit waveforms are checked for

any changes after the sampling time, whereas information is extracted from the waveforms

before the sampling time in Pre-Sampling Waveform Analysis.  Different extraction

functions are possible for Pre-sampling Waveform Analysis; the function used is

computing the average value or integral of the waveform.

X

Short Path

Long Path

Tc≥Tc

Apply Apply Sample

CUT
Output

 Input Clock

 Output Clock

<V ,V  > 1    2<V  > 1 <V  > 2

Pre-Sampling   Post-Sampling

Figure 1.  Output Waveform Analysis

Simulators are necessary to evaluate the effectiveness of Output Waveform

Analysis, and existing simulators were found to be cumbersome or not suitable, since the

actual waveforms at the circuit outputs need to be analyzed for many values of the variable

delay.  This report describes WSIM, a new simulator which is targeted to manipulating

waveforms.  WSIM allows one variable delay, and symbolically computes the circuit

waveforms as a function of the variable delay.  This eliminates the need to run a timing
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simulator many times with different delays to see the effect of different delay fault sizes.  A

simpler version of  WSIM using no variable delays was also implemented, and is similar to

a gate-level timing simulator.

Although WSIM was intended primarily as a tool for evaluating Output Waveform

Analysis, it has other uses as well.  An example is power estimation in digital circuits,

where not only the stable waveforms, but also the transients should be considered to

accurately estimate the switching current.

This report is organized as follows.  Existing simulators are reviewed in Sec. 2,

and their limitations for this application are noted.  The simple version of WSIM with fixed

delays in discussed in Sec. 3 to introduce the waveform representation used, followed by a

description of the complete simulator with one variable delay in Sec. 4.  Simple techniques

to increase the speed of the simulators are mentioned in Sec. 5.  Examples using WSIM are

included in Sec. 6, and Sec. 7 concludes the report.

2 EXISTING SIMULATORS

Existing simulators are reviewed in this section and shown to have limitations for

investigating Output Waveform Analysis.  Timing simulators, delay fault simulators and

symbolic simulators are discussed.

2.1 Timing Simulators

Timing simulators [Hitchcock 82], such as Verilog-XL can be used to generate the

actual waveform at the outputs of the circuit under test.  Verilog was used to analyze

Output Waveform Analysis at the start of my work, but there are two main problems with

this approach.  First, the simulation needs to be rerun for many different delay values at the

fault site.  Second, there is limited flexibility to try non-standard circuit modeling.  For

example, it is difficult to consider the effect of capacitive coupling and parasitics on gate

delay when multiple input changes occur [Franco 94].

2.2 Delay Fault Simulators

Delay fault simulators depend on the delay fault model adopted.  Transition fault

simulators use a slightly modified stuck-at fault simulator [Waicukauski 87], and only

model “gross” or very large delay faults.  Gate delay fault simulators [Pramanick 89]

[Iyengar 90], generally compute the size of the smallest detected delay fault.  This is done

by using the earliest arrival and latest stabilization time for transitions, as shown in Fig. 2.

Waveform information during the transitions is not kept, so the needed waveform analysis

cannot be done (e.g. integration).  Path delay fault simulators [Smith 85] do not use delay

information, since “robust” tests that are independent of delays in other parts of the circuit
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are sought.  Multi-valued logic systems are used which include stable signals, hazard-free

transitions, and possible hazard pulses.

Earliest
Arrival
Time

Latest
Stabilization

Time

Figure 2.  Simplified Waveform used in Delay Fault ATPG

2.3 Symbolic Simulators

Various symbolic simulators have been described in the literature, including both

logic and timing simulators [Bryant 90].

Symbolic Fault Simulation [Cho 89], Symbolic Logic Simulation [Bose 89], and

Symbolic Simulation-based Verification [Jain 92] use boolean variables together with the

constants 0 and 1 in the simulation.  In essence, the circuit is evaluated for many input

combinations simultaneously.

The symbolic variable in the above simulators is used to represent a logic value.  In

Time-Symbolic Simulation [Ishiura 89, 90], and Symbolic Timing Verification [Amon 92],

the symbolic delay is used to represent time.  These simulators are used for timing

verification.  Variable delays are assigned to gate delay values, and it is determined whether

the circuit will operate at the specified speed.  These simulators are not suitable for

analyzing Output Waveform Analysis, as they are designed to determine the maximum

propagation delay through a circuit as a function of various variable delays, whereas the

actual shape of the output waveform for particular input combinations and a variable delay

fault is needed.

A symbolic simulator for delay fault diagnosis has been described [Girard 92].  The

simulator is a 6-valued simulator consisting of stable signals, hazard-free transitions, and

transitions with hazard pulses.  Failing vectors are simulated and possible delay fault

locations are found by intersecting the fault locations for the individual vectors.  Timing

information is not considered.

3 WAVEFORM SIMULATOR FOR FIXED DELAYS

The simplest implementation of WSIM uses fixed delays for gates.  This

implementation is a subset of the symbolic waveform simulator proposed that uses one

variable delay, as described in the next section.  An implementation of WSIM without this

variable delay is first described in this section, to introduce the waveform representation



4

and algorithms used.  This simulator is similar to running a conventional timing simulator.

It is more convenient however, as the internal representation simplifies the waveform

analysis that needs to be performed.

The simulator is described in terms of a logically complete set of primitives (AND

and NOT) and a separate DELAY element.  Other gate primitives can easily be added if

desired.  The representation chosen for waveforms is central to the algorithms described

here.  The representation for a waveform where all delays are fixed is given in Definition 1.

This representation is extended in to include a variable delay in Sec. 4.

Definition 1:

A waveform is represented as an ordered list of transitions (a1 a2 a3 a4 ...), where

the real number constants ai refer to the times of the transitions in the waveform, and ai < aj

if i < j.  The transitions are extended to include variable delay in the next section.  The BNF

description of the syntax is:

transitions ::= (point-in-time*)
point-in-time ::= const }   (1)

By convention, the waveform starts at 0 at time negative infinity.  A few examples

of waveforms are given below:

() or (+∞) : Logic 0;

(-∞) : Logic 1;

(0) : Rising transition at time 0;

(-∞ 20 50) : A 1-hazard starting at time 20 and ending at time 50.

Logic functions and delay operations are separated in the simulator.  Delays can be

added either at the inputs or the output of a gate.  For simplicity, equal rising and falling

delays will be added to the outputs of gates in this report.  The output waveform of a gate

is computed as a function of the input waveforms, and then modified to account for the

gate delay.  The three primitives, NOT, AND and DELAY, are described below.

3.1 NOT Function

The NOT function for fixed delays is very simple, and shows the power of the

waveform representation chosen.  Only the first element of the list needs to be inspected,

regardless of the number of transitions in the waveform.  Rising transitions become falling

transitions, and vice versa.
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NOT(-∞ a1 a2 a3 ...) = (a1 a2 a3 ...)

NOT(a1 a2 a3 ...)     = (-¥ a1 a2 a3 ...)
}   (2)

3.2 AND Function

The two-input AND function is described in this section; an n-input AND function

is computed by taking 2 inputs at a time.  Whereas the waveform was interpreted as a list

of transitions for the NOT function, it is more convenient to consider the waveform as a

series of pulses for the AND function.  This is done by considering two terms at a time in

the waveform representation.  For example, the waveform (3 4 6 10) represents two

pulses, the first between times 3 and 4, and the second between times 6 and 10.

The AND function is computed by considering one pulse in each input waveform at

a time, until there are no more pulses.  The three possible cases for a two-input AND

function are shown in Fig. 3.  The earliest transition is assumed to be in input waveform

A, else the inputs are switched.

A

B

Z

A

B

Z

A

B

Z

Case 1 Case 2 Case 3

Figure 3.  Three Cases for AND Function

Case 1:  The first pulse in waveform A ends before the first pulse in waveform B

starts.  This means that the first pulse in A disappears.  The AND function is repeated with

the first pulse removed from waveform A, and waveform B kept the same.

Case 2:  The first pulse in waveform B ends before the first pulse in waveform A

ends.  This means that the first pulse in B appears at the gate output.  The AND function is

repeated with waveform A unchanged, and the first pulse removed from waveform B.

Case 3:  The first pulse in waveform A ends before the first pulse in waveform B

ends.  This means that a pulse starting from the beginning of the first pulse in B, and

ending at the end of the first pulse in A, appears at the gate output.  The AND function is

repeated with waveform B unchanged, and the first pulse removed from waveform A.

After performing the above operations, the resulting waveform can sometimes be

simplified.  If there are two transitions at the same time, the transitions can be removed:
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(... a1 a2 a2 a3 ...) = (... a1 a3 ...)    (3)

3.3 DELAY Function

Delay is added to a waveform in two steps.  First transport delay is added, and then

inertial delay is added.  Transport delay is very simple.  If a delay del is to be added, then

every transition is delayed by del:

TRANSPORT_DELAY:   (a1 a2 a3 ...) ® (a1+del a2+del a3+del ...)    (4)

Inertial delay is more complex, as hazard pulses shorter than the gate delay are

removed from the waveform.  This is sometimes called high frequency rejection.  Inertial

delay is computed by analyzing the waveform as a series of pulses, and removing those

that are shorter than the gate delay.  Unlike the AND function, both positive and negative

pulses must be considered.  The algorithm is shown in Table. 1.

Table 1.  Inertial Delay Algorithm for Fixed Delays

Inertial_Delay(Waveform A, Delay del)
  While transitions remain in A do
    Begin
      If (second_transition(A) - first_transition(A)) < del
         Then /* remove first pulse */
            A = remove_first_2_transitions(A);
         Else /* transition remains */
            Add first_transition(A) to output waveform;
            A = remove_first_transition(A);
    End;

As an example, consider the waveform (0 2 3 6 8 10 11 12) shown in Fig. 5, and a

gate delay del  = 1.5.

Output Waveform
The first pulse (0 2) > del, so transition (0) appears at the output: (0)
The next pulse (2 3) < del, so transitions (2 3) disappear: (0)
Pulse (6 8) > del, so transition (6) remains: (0 6)
Pulse (8 10) > del, so transition (8) remains: (0 6 8)
Pulse (10 11) < del, so transitions (10 11) disappear: (0 6 8)
Pulse (12 ¥)* > del, so transition (12) remains: (0 6 8 12)

* Note that transitions at ¥ can be added without affecting the waveform.
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Input
Waveform

Ouput
Waveform

0     1     2     3    4     5     6     7    8     9   10   11   12   13   14  15   

(0 2 3 6 8 10 11 12)

(0 6 8 12)

Figure 5.  Inertial Delay Example (del = 1.5)

3.4 Example

A small example circuit is shown in Fig. 6.  This example is included to show the

waveform representation used for a few simple waveforms.  The delay of the OR gates is 2

units, and the delay of the NAND gates is 1 unit.

S1

S2

S3
S4

S5

S6

S7

S8

S9

S10

S11

0      1     2     3    4     5     6

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

(0)

(-¥ 0)

(¥)

(-¥ 0)

(-¥)

(2)

(-¥ 2)

(-¥ 4)

(3)

(-¥ 3 5)

(-¥ 4 5)

&

+

+

+

&

&

Figure 6.  Example Circuit

3.5 Computing Output Waveform Analysis Information

Collecting the necessary information for Output Waveform Analysis is discussed in

this section.

Stability Checking is very simple.  The waveform is stable during the interval

starting at a and ending at b, if there are no transitions in the waveform during this

interval:

STABLE(<a1 a2 ... an>, a, b): If for all i:, ai < a OR ai > b    (5)
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The integral values used in Pre-Sampling Waveform Analysis are computed by

considering the waveform as a series of pulses, as was done for the AND gate.  The

integral of the waveform is the sum of the integral of the pulses, i.e.:

(A B C D E)dt
a

b

ò = (A B)dt
a

b

ò + (C D)dt
a

b

ò + (E ¥)dt
a

b

ò (6)

Each pulse (A B) during the integration period contributes B-A to the total integral.

(A B)dt
a

b

ò = B - A if a £ A £ B £ b (7)

Pulses that partly overlap with the integration period are narrowed, as shown

below:

(A B)dt
a

b

ò = (a B)dt
a

b

ò if A < a

(A B)dt
a

b

ò = (A b )dt if B > b
a

b

ò
}   (8)

3.6 Implementation

A prototype of the simplified waveform simulator WSIM has been implemented in

Common LISP.  The simulator is similar to an event driven simulator, except that no

explicit event queue is needed to schedule events.  A levelized netlist is read in, and the

simulation is performed on all gates in order.  No optimizations have been implemented,

and the core algorithm is only approximately 160 lines of LISP code.  The data structures

for waveforms are simply lists as have been described above, and built-in functions

simplify operations.  For example, once a two-input AND function is implemented, n-input

ANDs are coded using the built-in function reduce, i.e. (reduce 'Process_2_AND

in-waves).

There are two ways to run WSIM: simulating all input vectors together in one pass;

or simulate single pairs of vectors in turn.   For sequential circuits with feedback, it is

necessary to simulate each pair of vectors individually.  The advantage of simulating all

vectors together is that each gate is only evaluated once, but the memory requirements can

be high.  Simulating single pairs of vectors is substantially slower.  An effective alternative

is a hybrid solution, where multiple simulation passes are performed, each with a fraction

of the input vectors.
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Table 2 shows the runtime of the simulator compiled under Lucid Common Lisp

compared with Verilog-XL (with the accelerate flag, -a), both running on a SparcStation2

with 32MB of memory.  The times shown are computed by subtracting the time for

simulating 20 vectors from the time to simulate 120 and 220 random vectors, to eliminate

the startup overhead for both cases.  A single pass was used for WSIM, except for the (*)

entries which required too much memory.  (The overhead to read the netlist was higher for

Verilog; probably due to the error checking done.)  The times in the table represent the

average of five simulation runs.

Table 2.  Runtime of Verilog-XL and WSIM

Circuit Verilog-XL (sec) WSIM (sec)
(all vectors together)

t(120)-t(20) t(220)-t(20) t(120)-t(20) t(220)-t(20)

ALU181 1.2 2.2 0.3 0.7
c432 2.1 4.3 0.8 1.9
c499 1.9 3.9 1.1 2.7
c880 4.6 8.8 1.6 3.6
c1355 2.1 4.0 3.1 8.1
c1908 4.5 9.5 4.9 13.23
c2670 15.0 31.6 3.5 8.0
c3540 7.7 16.1 9.49 24.7
c5315 32.7 67.0 17.8 53.0
c6288 41.1 81.3 * *
c7552 51.5 102.3 * *

Simulations were done for both 100 and 200 vectors to see the runtime dependence

on the number of vectors.  Verilog runtimes are linear in vector size.  WSIM runtimes are

linear for the smaller circuits.  For the larger circuits, multiple passes of WSIM would

decrease the runtime.

4 SYMBOLIC WAVEFORM SIMULATOR
WITH ONE VARIABLE DELAY

In the complete version of the symbolic waveform simulator WSIM, one of the

nodes in the circuit is assumed to have an arbitrary delay.  This allows the simulation of a

localized delay fault or gate delay fault in the circuit.  Simulating multiple varying delays or

path delay faults is not practical using this simulator, unless the delays are correlated and

track each other.  The variable delay is a real number, and is denoted by d in this report.

The biggest complication over the previous algorithm is that the waveform now

depends on the value of the variable delay, and could be very different for different delays,

as hazard pulses can disappear or new pulses appear.  This is shown in Fig. 7.  Assume
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both the transport and inertial delay of the AND gate are 2 units.  If the variable delay d

which appears in waveform B exceeds 3 units, then the pulse in input A does not propagate

through the AND gate due to the inertial delay of the gate.

A

B Z

ZIf d  £ 3: 

If d  > 3:

d

0 5

A
B

Z

72+d
Delay = 2

&

Figure 7.  Hazard Pulse “Disappearing” Example

The waveform representation with one variable delay is more complex than before.

The list of transitions, transitions, is similar to the case without the variable delay,

except that the transitions can now depend on the variable delay.  For example, a transition

at time 3 + d is represented as point-in-time = <3+d>.

transitions ::= (point-in-time*)
point-in-time ::= const | <const + variable-delay> }   (9)

The complete waveform is now one or more wave packets, each valid for an

interval of the variable delay.

waveform ::= {wave-packet+}
wave-packet ::= (interval transitions)
interval ::= [start end]
start ::= const
end ::= const

}   (10)

Note that each wave-packet is valid for all time, but only for the specified

interval of the variable delay.  Each list of transitions is ordered, meaning that a transition

with variable delay cannot overlap other transitions, i.e. if wave-packet = ([a b] (x

<y+d> z)), then a > x-y, and b < z-y, in order for there to be no intersections.

Referring to the AND gate in Fig. 7, the waveform at input A is represented by

{([0 ¥] (0 5))}.  This means that the list of transitions (0 5) is independent of the variable

delay and therefore valid for any value of the variable delay.  Similarly, the waveform at

input B is {([0 ¥] (<0+d>))}.  The list of transitions (<0+d>) describes a single

transition at time <0+d>, or d.  The output waveform is expressed as two wave packets,

one for d£3, and the other for d>3:
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Z = {([0 3] (<2+d> 7))
       ([3 ¥] ())}

4.1 NOT Function

The NOT function is similar to before.  The simple NOT function is applied to the

transitions in each wave-packet.

4.2 AND Function

The AND function is more complicated, as new wave-packets can be

generated.  There are four levels of AND functions, each operating on successively simpler

waveforms.  The idea is to reduce the complexity of the waveforms until the variable delay

is not a factor anymore.

Top-level Process_n_AND takes any number of waveforms.  It simply calls the

Process_2_AND function repeatedly on two inputs at a time.  At present no sorting of

inputs is done to improve efficiency.

The example in Fig. 8 will be used to illustrate how the AND function is

performed.

The second level Process_2_AND function takes two waveforms as inputs.

The overlap interval between the first wave packets of the two waveforms is found, and

Process_tr_AND is called with the overlap interval and the first two wave packets.

This is repeated until all the wave packets in the input waveforms are processed.

For the example in Fig. 8, there are two ranges of the variable delay that need to be

considered separately.  Process_tr_AND is called twice, for the two intervals [0 2] and

[2 ¥].

Process_tr_AND takes two transitions and an interval.  All possible

values of the variable delay, d, for which the two lists of transitions can intersect are

found.  These are the boundary conditions where hazard pulses can be created or

eliminated.  The lowest level Process_simp_tr_AND function is then called for the

intervals between transitions.

In the interval [0 2], in the example in Fig. 8, there is an intersection at d=1.  This

is because both the list of transitions trA = (1 <3+d>), and trB = (-¥ 4) have a transition at

time 4 when d=1.  Therefore, Process_simp_tr_AND is called three times, for the

intervals [0 1], [1 2], and [2 ¥].

Process_simp_tr_AND takes two transitions and the minimum value

min_delay of the variable delay in the specified interval.  There is no need to consider
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the variable delay anymore, as it is within limits that it cannot create or remove pulses.

Therefore the function is similar to the non-symbolic AND function used in Sec 3.2.

The different wave packets are then combined to get the final waveform.

A = 
î
í
ì

þ
ý
ü[0 2] (1 <3+d>)

([2 ¥] (1 5))
B = { }([0 ¥] (-¥ 4))

Process_2_AND

trA = (1 <3+d>) trA = (1 5)
trB = (-¥ 4) trB = (-¥ 4)
interval [0 2] interval [2 ¥]

Process_tr_AND

Intersections: d=1 Intersections: none

[0 1] [1 2]

trA1 = (1 <3+d>) trA = (1 <3+d>) trA = (1 5)
trB = (-¥ 4) trB = (-¥ 4) trB = (-¥ 4)
d > 0 d > 1 d > 2

Process_simp_tr_AND

trZ = (1 <3+d>) trZ = (1 4) trZ = (1 4)

Z = 
î
í
ì

þ
ý
ü([0 1] (1 <3+d>) )

([1 ¥] (1 4))

( )

Figure 8.  WSIM AND Gate Example

4.3 DELAY Function

Transport delay is added by delaying every transition by del.  This is the same as in

Sec. 3.3, except that every wave packet must be handled.  Inertial delay is more complex,



13

as pulses that depend on the variable delay d could disappear for certain values of delay.

The inertial delay function is implemented in levels, similar to the AND function.

The top level Process_inertial_delay, takes a waveform and a value for

inertial delay, and calls Simp_process_inertial_delay on every wave packet.

Simp_process_inertial_delay takes an interval, a list of transitions, and the value

of inertial delay.  Like the AND function, values of the variable delay d for which

transitions can intersect are found.  Note that the value of inertial delay needs to be taken

into account when computing the intersection points.  The lowest level function

Simp_pr_inertial_delay, is similar to the inertial delay function in Sec. 3.3.

As an example, consider the waveform A = {([0 7] (2 <3+d> 10))} and an inertial

delay of del=2.  This waveform consists of only one wave packet, and it is only valid for

d£7, else the transitions at <3+d> and 10 will overlap.

Simp_process_inertial_delay finds the values of d that will cause hazard

pulses to be eliminated or appear.  In this case, the values are 1 and 5.  When d=1, the first

pulse will be (2 4), which is the same size as the inertial delay.  This means that the first

pulse will disappear for d<1.  When d=5, the last pulse is (8 10), once again the size of the

inertial delay.  Therefore the lowest level function is called three times, with d in the range

[0 1], [1 5] and [5 7].

The resulting waveform is Z = {([0 1] (10)) ([1 5] (2 <3+d> 10)) ([5 7] (2))}.

4.4 Examples

WSIM was run on the ISCAS’85 circuits to investigate the shape of the output

waveforms.  Two waveforms are shown as examples, with faults near the primary inputs.

Z1 = {([0 1] (-¥ <13+d> 16 19))
([1 3] (-¥ 19))
([3 ¥] (-¥ 15 17 19))}

Z2 = { ([0 3] (-¥ 32 41 55))
([3 5] (-¥ 32 41 44 <44+d> 55))
([5 ¥] (-¥ 32 41 44 52 55))}

Z1 is from the ALU181, and Z2 is from c3540.  Both examples show that the

output waveform is a complicated function of the variable delay d.  For some ranges of d,

the waveforms do not change, and then abruptly change as pulses appear or disappear.  It

is difficult to find the information above using a conventional timing simulator.
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5 SPEEDING UP WSIM

Since the symbolic implementation of WSIM can be significantly slower than the

simple implementation, it is worth trying to reduce unnecessary computations.  Only nodes

in a circuit with transitions need to be evaluated using WSIM.  Simpler simulators can be

used to pre-process the circuit to determine which nodes to evaluate.  Two functions have

been implemented: a forward 3-value simulator and reverse 4-value simulator.  These are

discussed below.

5.1 3-SIM

3-SIM uses the values: 0 for a constant zero; 1 for a constant one; and X for

possible transitions.  Any inputs that are not constant are assigned the value X, and then

the gates are traversed in forward levelized order using the truth tables in Table 3.  The

function performed by 3-SIM is called “hazard simulation” and was described in

[Eichelberger 65], where the value 1/2 was used instead of X.

Table 3.  3-SIM Truth Tables
0 1 X

0 1 0 0 0 0
1 0 1 0 1 X
X X X 0 X X

NOT AND

5.2 4-SIM

After 3-SIM there are still nodes that do not have to be evaluated.  For example, if a

gate is not sensitized to the circuit outputs, then the input waveforms at the gate do not have

to be evaluated (except when all transitions are needed, as in power estimation, for

example).  The simulator 4-SIM is used to find the nodes that need to be evaluated.  4-SIM

uses four logic values: 0 and 1 for constants; W for nodes with possible transitions that

need evaluation; and X for nodes with possible transitions that do not need evaluation.

4-SIM is run after 3-SIM, and traverses the circuit in reverse levelized order,

changing X’s to W’s when necessary.  The first step is to change all primary outputs that

are X to W.  For each gate, if the gate output is W, then all inputs that are X become W.

Table 4 shows the percentage of nodes in the ISCAS’85 benchmark circuits that

need evaluation after running 3-SIM and 4-SIM.  The percentages represent the circuit

activity, and are the average over 120 random vectors.
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Table 4.  Percentage of Nodes that Need Evaluation after 3-SIM and 4-SIM

Circuit After 3-SIM After 4-SIM
ALU181 57.2 54.3

c432 61.5 50.8
c499 85.9 85.5
c880 59.9 54.2
c1355 82.4 82.2
c2670 67.6 54.2
c3540 62.9 46.6
c5315 66.5 47.0
c6288 87.9 87.9
c7552 70.6 65.4

6 RESULTS

A few examples using WSIM are shown in this section.  Most of the examples

involve Output Waveform Analysis.

6.1 Stability Checking: Number of Output Transitions per Vector

The greater the number of hazard pulses in the output waveforms, the greater the

possibility of test invalidation for conventional delay testing.  These pulses will be detected

using Stability Checking [Franco 91].  Figure 9 shows the distribution of the number of

transitions at the outputs of the ISCAS’85 combinational benchmark circuits.  The

distributions are based on counting the number of output transitions for each output for 120

random vectors.  The fixed delay version of WSIM was used, since there were no variable

delays.  Some of the circuits have multiple transitions a small fraction of the time, while

others have a reasonable fraction of multiple output transitions.  C6288 is very different

from the rest; there was even one output with 80 transitions.
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Figure 9.  Distribution of Number of Output Transitions
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6.2 Power Estimation -- Number of Transitions per Vector

By repeating the analysis in Sec. 6.1 for all nodes instead of only the output nodes,

the switching activity in circuits can be estimated.  This is useful for computing dynamic

power dissipation, which depends on the number of times node capacitances are charged

and discharged.  Table 5 shows the average number of transitions per node, per input

vector for all nodes, as well as the output nodes.  (The average value of the output nodes is

the mean of the distributions in Fig. 9.)

Table 5.  Average number of transitions per node per vector

Circuit All Nodes Output Nodes
ALU181 0.423 0.613

c432 0.545 1.131
c499 0.520 0.526
c880 0.523 0.527
c1355 0.739 0.536
c1908 0.790 0.886
c2670 0.500 0.513
c3540 0.649 1.370
c5315 0.744 0.634
c6288 12.956 31.660
c7552 0.874 1.081

6.3 Delay Fault Coverage Using Integration

A simple fault simulator has been implemented based on the implementation of

WSIM with fixed delays.  Basically, the fault-free circuit is simulated, and the integral

values as well as the sampled values are stored.  Various sized delay faults are then injected

into each node in turn, and the circuit is resimulated.  To compare integration and sampling

fairly, only detectable delay faults were injected, since smaller delay faults could not be

detected by sampling.  The timing slack [Hitchcock 82] is computed for each node, and

then delay faults larger than the slack are injected.  Figures 10-12 show the results for

some of the benchmark circuits.  The “sampling” curve is the fault coverage for

conventional delay testing, and the other curves are for different forms of integration.  A

fault was considered detected if the integral differed from the fault-free integral by more

than Tc/RES, where RES is the resolution of the integrator.  The curve with f=0.5 was

computed by only integrating over the last half of the cycle.
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7 CONCLUSION

A new waveform representation and algorithm for waveform simulation have been

presented in this report.  By processing all transitions for each gate in turn, there is no need

for an explicit event queue.  The main motivation was that existing simulators were not

suitable for evaluating Output Waveform Analysis.

The fixed delay implementation of WSIM is comparable in speed to Verilog for

timing simulation, and is faster when computing waveform information.  WSIM with one

variable delay is more complex as much more information is computed, but seems feasible

as long as only one pair of inputs is simulated at a time.  The only alternative would be to

run a timing simulator repeatedly for many different values of the variable delay.

WSIM is also suitable for other applications, such as dynamic power estimation,

where the actual number of transitions at each node is needed.
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