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Abstract

This report describes a system called SAM that simplifies the task of programming machines with distributed
address spaces by providing a shared name space and dynamic caching of remotely accessed data. SAM makes it
possibleto utilize the computational power available in networks of workstations and distributed memory machines,
while getting the ease of programming associated with a single address space model. The global name space and
caching are especially important for complex scientific applications with irregular communication and parallelism.

SAM is based on the principle of tying synchronization with data accesses. Precedence constraints are expressed
by accessesto single-assignment values, and mutual exclusion constraints are represented by access to data items
called accumulators. Programmers easily express the communication and synchronization between processes using
these operations; they can also use aternate paradigms that are built with the SAM primitives. Operations for
prefetching data and explicitly sending data to another processor integrate cleanly with SAM’s shared memory model
and allow the user to obtain the efficiency of message passing when necessary.

We have built implementations of SAM for the CM-5, the Intel iPSC/860, the Intel Paragon, the IBM SP1, and
heterogeneous networks of Sun, SGI, and DEC workstations (using PVM). In this report, we describe the basic
functionality provided by SAM, discussour experiencein using it to program a variety of scientific applicationsand
distributed data structures, and provide performance results for these complex applications on a range of machines.
Performance results for applications of such complexity have not typically been available for most other distributed
shared memory systems. Our experienceindicatesthat SAM significantly simplifiesthe programming of these parallel
systems, supports the necessary functionality for developing efficient implementations of sophisticated applications,
and provides portability acrossarange of distributed memory environments.

1 Introduction

Software reuse and portability are two prerequisites to the success of developing a substantial software base for
paralel machines. To achieve reuse and portability, it isimportant to draw upon our experiences in paralel software
development to identify useful abstractionsthat can be generalized to work for many different applications. Oncethese
abstractions are encapsul ated either as compiler optimizations or run-time support, these ideas can then be reused by
new applicationsin aportable manner across different machine architectures. We envision that there will be alayered
software architecture for paralel machines, consisting of a set of well-established interfaces at different levels of
abstraction. Programmers can get access to the machines at different levels according to the need of their applications.

Run-time libraries such as PVM [21], which hide the variations in the message-passing protocols of different
hardware, have been shown to be very useful. Whileitslevel of abstraction is low, PVM has been extensively used
by application builders and language implementors to achieve portability. This message passing interface serves as an
excellent foundation to this layered software architecture design. This paper builds upon the message-passing layer
and proposes the next higher level of abstraction. This level is especially useful to support applications where the
parallel structuresare more dynamic and the data accesses areirregular. Programming such applicationsdirectly using



message passing isdifficult. Our run-time system, called SAM, enables the programmer to use acommon name space
to refer to dl shared data in distributed memory systems. SAM manages the details of locating and communicating
shared data for the user. Moreover, it automatically exploits the locality of reference in programs by caching and
replicating objects. Thus, the programmer need only concentrate on creating programs with high data locality; the
system will automatically handle the rest.

SAM is designed to meet the goas of both programmability and efficiency. In thisdesign, a program explicitly
specifies how it accesses data, and the system automatically enforces the necessary synchronization and performsthe
necessary communication. For example, areader of avaluemust wait until thevalueisproduced. Commutative updates
to an accumul ator need not be ordered but must be mutually exclusive. Shared data are accessed and managed at the
level of user-defined datatypes. Allowing global accesses to individual locationswould render the implementation too
inefficient. The SAM design avoids some of the efficiency problems associated with other distributed shared memory
systems and provides the flexibility to optimize communication as necessary.

We demonstrate that SAM supports portability and code reuse by implementing SAM on a variety of paralle
machine architectures and implementing a range of applications using this system. Figure 1 illustrates the various
abstraction layerswe used in devel oping our applications. SAM has been implemented on the CM-5, thentel iPSC/860
and Paragon, the IBM SP1, and on heterogeneous networks of workstations. To minimize the implementation effort
of SAM, PVM was used in our workstation implementation. Native message operations are used for al the other
parallel machines for efficiency reasons. All programsusing SAM primitives can run without modification on all these
machines.

« Barnes-Hut * Water
« Grobner basis « String
Direct Distributed Data Shared Imperative
Applications Structures Jade
« Block Sparse Cholesky . trees parallel « objects
. . language
« Multiple Min. Degree . sets « locks
SAM
PVM
CM-5 Paragon iPSC/860 Sparc ELC SP1

Figure1l: SAM Applications

We have implemented severa applications directly in SAM such as the block Sparse Cholesky and the Multiple
Minimum Degree algorithm. We have implemented aset of distributed datastructuresin SAM, whichin turnwere used
in devel oping the Barnes-Hut n-body a gorithm and Grobner Basis, a symbolic al gebra application. We have also used
SAM to implement Jade, acoarse-grain parallel programming language. Jadeisahigh-level programming languagein
that aprogrammer simply augments a sequential program with data usage specifications, and the system automatically
paralelizes the code. By implementing Jade in SAM, all applications written in Jade can run on all machines that
SAM runs on. Programmers may use Jade in the high-level coordination of paralelism, and drop down to use SAM
on those performance-critical sectionsto gain control over the parallelization. The combination of Jade and SAM isan
example of a multi-layered system that allows programmers to get access to different layers of abstraction, al within
the same program. Finally, we have aso implemented the shared imperative data model for programmers who would
rather stay within the familiar imperative programming paradigm. SAM isthefirst distributed shared memory system
that is portable across all these machines and is practical for such avariety of challenging applications.



In this paper, we describe the design of SAM, provide justification for our choices, and describe the results, in
terms of both programmability and performance, of using SAM to build several types of parallel applications. (We
include abrief discussion of itsimplementation in an appendix.)

2 SAM

Systems that provide a shared address space (in hardware or software) typically provide synchronization operations
such as locks and barriers. Such operations are used by the applications programmer to establish orderings on events
in hisparallel program. Such orderings are important to ensure that locationsin the shared address space are read and
written in the intended sequence so that the proper data is communicated between processes. There are two kinds of
data relationshipsthat are enforced via synchronization operations. First, there are producer/consumer relationships
where data is produced by one process and then used by one or more other processes. Second, there are mutual
exclusion relationshipsthat are necessary for computations (such as datareductions) that produce a number of updates
to amemory location which require exclusive access but can occur in any order.

For synchronization operations to be effective, shared memory systems must guarantee that a modification to
a storage location will be observable by al processors by the completion of the next synchronization operation
associated with that storage location. However, most shared memory systems do not have any knowledge of the
connection between memory locations and synchronization operations. Therefore, these systems instead guarantee
that all modifications to memory are observable by all processors by the completion of the next synchronization
operation. In particular, for shared memory systems with caching, this guarantee requires that al caches be made
consistent (viainvalidates or updates) at every synchronization operation. Were the system more informed about the
association between synchronizations and data accesses, it could avoid much of this coherence traffic. Minimizing
unnecessary communication is especially important for machines without direct coherence support in hardware.

SAM avoids the need for coherence communication by coupling synchronization with the data accesses di-
rectly. SAM provides shared memory operations that directly model the data relationships we described above,
producer/consumer and mutual exclusion. SAM has two kinds of shared data, values and accumulators. Only the
names of values and accumul ators are globaly visible; internal locationsare specified as offsetsinto the shared objects.
A process explicitly specifies how it accesses the shared data and the system performs the necessary synchronization
and communication. (SAM dealsonly with the management and communi cation of shared data; datathat iscompletely
local to a processor can be managed by any appropriate method.)

Every value has a unique name and is immutable once created. A process specifies if it wants to creste a vaue
or to read a value; the writer of a value shares a producer/consumer relationship with all the readers of that value.
Unlike values, an accumulator may be modified multiple times. SAM only guarantees that al modifications to the
accumulator are mutually exclusive; processes are alowed to modify the accumulator in any order. A slight extension
to this data relationship that has been shown to be valuable in speeding up parale applicationsis the concept of a
chaotic access. Chaotic agorithmsare parallel computationsin which processes do not need to use the most up-to-date
dataall thetime. A computation that reads data that is dightly out-of-date but on the local processor may outperform
computationsthat always read the most current datathat resides on aremote processor. SAM alows the programmer
to explicitly make this tradeoff by providing operations that read a recent (but not necessarily current) version of an
accumul ator.

Besides data access specifications, SAM also provides a set of memory management primitives so that the user
can control the number of valuesin a system. Without such control, the use of single-assignment values can create an
excessive number of data copies. This combination of single-assignment values and memory management primitives
provides abetter aternative to using an imperative memory model and paying for the coherence overhead on machines
with nontrivial communication costs. Furthermore, a SAM programmer can use the memory management primitives
to experiment with trading off greater memory use to increase parallelism.

The three basic ways of accessing shared data supported by SAM (producer/consumer, mutual exclusion, and
chaotic) providetheflexibility required to build avariety of more complex paradigms for accessing data. In particular,
itiseasy to use SAM to implement locks and barriers and the familiar imperative data model. However, programmers



can typicaly use knowledge of the high-level data relationships in a particular computation or data structure to
communicate more efficiently using the basic SAM primitives.

2.1 Values

Every vaue generated in the system is given a distinct name when it is created and can be of any user-defined
type. Vaues have a single-assignment semantics: avalue is atomically created once itsinitial contentsare set and is
henceforth immutable. The code to initializea value, which may include arbitrary updates to different components of
the value, is encapsulated by a pair of primitives begi n_cr eat e_val ue and end_cr eat e_val ue. The system
allocates the storage before the initialization, and makes the valueimmutable and available to other processes after the
initialization code. The creator of the value must specify the type of the new value. With the help of a preprocessor,
SAM uses this type information to allocate space for, pack (for sending in a message), unpack, and free the storage
of the value. User-defined types may contain pointers and therefore need not be stored contiguously in memory. In
heterogeneous environments, SAM also handles any necessary data conversion between dissimilar machines.

Code accessing avaueisencapsulated by the primitivesbegi n_use_val ue andend_use_val ue. If thevaue
named is not present on the local processor, then SAM will determine where the value is located and fetch the value
from the appropriate remote processor. It is aso possible that the value has not yet been created. In either case,
SAM will suspend the local process until the value has been created and can be brought to the local processor. SAM
maintains local copies of values fetched from remote processorsin the form of a cache. Any references to values that
are cached localy will proceed immediately without any interprocessor communication by using the copy existing
in the cache. Because al values have distinct names and are immutable, there is no consistency problem associated
with maintaining this cache. Figure 2 shows some example code for creating and using a new vaue in two different
processes.

task t1 task t2
Node *p; Node *p;
p = begin_create_value(n, 1, Node, ...); p = begin_use_value(n, 1);
... Initialize node... ... use node..
end_create_value(n, 1); end_use_value(n, 1);

Figure2: Example (in C) of Creating and Accessing Values

SAM adopts a simple naming scheme that facilitates the representation of imperative data as a sequence of values.
All data values are named by an ordered pair of integers, which are typically written as (object id, versionid). In the
common case of modeling imperative data, the “object id” can be used to specify a particular object, and the “version
id” specifies a particular version of the object. Another value representing a new version of the object is created each
time the contents of the object are modified. Values that are not related to any other value can be assigned a unique
object id and a default version id. SAM provides primitives for creating globally unique object ids and sequences of
version ids, as an aid to the process of choosing names.

Traditionally, synchronization isthetrickiest part in writing a paralel program. SAM programs generally do not
have any explicit synchronization operations. SAM programmers need only to focus on how to name the values. It
is relatively straightforward for a programmer to derive a naming scheme from his mental model of the program’s
dynamic control structure. For example, in an iterative algorithm in which a new value is computed on each iteration,
the names of the values can be based on the iteration number. A program with several phases can name the results of
each phase according to the phase number. (The phase nhumber can be dynamically assigned and need not be coded
intothe program). In Section 3, we will describe some of the details of naming dataitemsin our example applications.



2.2 Accumulators

An accumulator is used to represent a piece of datathat isto be updated a number of times, and whose fina value
is independent of the order in which the updates occurs, as long as mutua exclusion is ensured. Because of the
mutual exclusion requirement, only one valid copy of an accumulator exists in the system at any given time. SAM
automatically migratesthe accumul ator between processors as necessary and ensures that a process does not access the
accumulator until mutual exclusion isobtained. Accumulators are named in the same way as vaues and can be of any
user-defined type. Updatesto an accumulator must be encapsulated by the SAM primitivesbegi n_updat e_accum
and end_updat e_accum There are aso primitives for creating accumulators directly or converting a valueinto an
accumulator or an accumulator to avalue.

SAM supportstheidiom of chaoticcomputationviathebegi nr ead_r ecent _accumandend._r ead_r ecent _accum
operations, which provide access to a“recent” value of the accumulator, which isnot guaranteed to be the most current
valueof theaccumulator. SAM maintainsacache on each processor of versionsof accumulatorsthat have been recently
accessed and therefore may be able to satisfy the chaotic request locally without communication. The recent value
can only beread, not updated. However, a“recent” value may be dl that is necessary for some kinds of computation,
and the use of chaotic accesses can increase available paralelism by reducing synchronization and communication.
Chaotic accesses provide away for the SAM programmer to build a“relaxed” consistency model into his application
based on hisknowledgeof the higher-level semantics of the program. Such chaotic accesses are especially useful when
encapsul ated in operations on distributed data structures; we will discuss some examplesin Section 3.

2.3 Memory Management

In addition to alocating the memory used for creating the initial copy of a value, SAM automatically manages the
memory used for local copies of values that have been fetched from a remote processor. Because each of a process
accesses to a value is delimited by the begi n_use_val ue and end_use_val ue primitives, SAM can determine
when al processes have finished accessing aloca copy of avaue. If necessary, the storage for alocal copy can be
immediately freed up when the local copy is no longer being accessed. However, SAM maintains a main-memory
cache of local copiesthat have been recently accessed, in order to reduce non-local communication inthe future. SAM
automatically frees up local copies as necessary when the cache memory becomes filled. However, SAM must ensure
that at least one copy of avaue is maintained in the system, until it can determine that there will not be any other
processes that will need to access the value. The user of SAM provides thisinformation by explicitly indicating when
all accesses to thevalue have occurred or specifying the number of users of thevalue. Inthelatter case, SAM maintains
at least one copy of the value in the system until the indicated number of accesses have occurred.

SAM also provides a mechanism to reuse the loca storage of values and eliminate unnecessary copying of data.
Values are frequently created as modifications of other values. In such asituation, it ishighly desirable, if possible, to
use the storage of thefirst valuein creating the second value. In thisway, copying and memory management overhead
isavoided. SAM supportsthisoptimizationviather enane_val ue primitive, which essentially alows an old value
to be renamed and reinitialized to create anew value.

Imperative data objectsare easily represented in SAM viaa sequence of val uesthat represent the changing contents
of each object. A SAM implementation of imperative memory can potentially eliminate all anti-dependences between
processes, because all versions of an imperative object are individually named and can be accessed independently.
Even if the programmer chooses to keep only one version of an imperative object on each processor, a processor can
create anew version of an object whileanother processor istill reading an ol der version. In contrast, traditional shared
memory systems require that data be consistent across all processors.

2.4 Low-level Control of Communication

An important mechanism for improving the efficiency of systems is support for asynchronous communication. SAM
provides the capability to fetch values and accumulators asynchronously; that is, the process does not stall if the fetch
cannot complete immediately. An asynchronous fetch succeeds immediately if a copy of the value is available on
the local processor. However, if the value is not immediately available, the fetch operation returns an indication that



the value is not available. The requesting process can proceed with other accesses or computation. When the value
becomes avail ableonthelocal processor, therequesting processisnotified. For asynchronousaccess to an accumulator,
the process is not notified until the accumul ator has been fetched to thelocal processor and mutual exclusion has been
obtained.

Another method for minimizing the communication latency isto send data directly from one processor to another
processor which will need it. A copy of any specified value available on a processor can be explicitly sent (“pushed”)
to a remote processor via the push_val ue primitive. SAM'’s basic mechanisms combine smoothly to provide
the buffering necessary to support a message-passing style. |f a process attempts to receive a piece of data (via
begi n_use_val ue) beforeit has arrived, then the process suspends until the named value arrives. Conversdly, if a
value arrives at a processor before it is needed, it is automatically buffered by caching it as alocal copy. Thereisno
requirement to receive messages (values) in the order in which they are sent.

3 Experience

We have implemented SAM as a run-time library that runs on the CM-5 using Active Messages [22], on the Intel
iPSC/860 and Paragon using the native messaging primitives, and on the IBM SP1 and heterogeneous networks of
workstationsusing PVM [21]. Below we describe in more detail several systems we have built using SAM and give
some performance numbers. Each of these different applications is programmable in a straightforward way using
SAM, and dl the applications run without modification across al platforms.

3.1 Block Cholesky

The block Cholesky application [19] does a Cholesky factorization of a sparse, symmetric matrix in parald. It
decomposes the sparse matrix into blocks and assigns work to processors at the granularity of updatesto blocks. Such
updates typicaly involve using two source blocks to update one destination block. The block Cholesky agorithm
potentialy exposes more parallelism and asymptotically requires less (though still large) communication bandwidth
than other column-oriented methods. The block Cholesky algorithm benefits substantialy from dynamic caching,
since each block may be used many times by a processor to update other blocks.

In the preprocessing phase of the algorithm, blocks are formed by partitioning the rows and the columns of the
matrix in away appropriateto the sparsity structure of the matrix. Whilethe partitioning stepis nontrivia, it takesvery
little time compared to the main computation. The following pseudo-code describes the basic algorithm for factoring
matrix L (wherethe I, J, and K subscriptsiterate over the non-zero blocks of the matrix):

1. for K =0toN — 1do
LKK :FECtOf(LKK)
forI=K+1toN — 1withL;x <> 0do
Lix = Lig L5
for/ =K+ 1toN — 1withL;x <> 0do
forI=JtoN — 1lwithL;x <> 0do
Lig=1Lpy-LigL%

Nookowd

The paralld agorithm involves executing the tasks represented by the computations on line 2, 4, and 7 above while
respecting the necessary data dependences. The parallel algorithm includes an enhancement in which some parts of
the matrix, called domains, are processed in a column-oriented fashion on a single processor, before the remaining
blocks are processed.

Our implementation of block Cholesky is derived directly from aversion for the DA SH multiprocessor [14], which
supports a shared address space with hardware caching support. Each individua block and domain of the matrix is
a SAM data item, and the matrix data structures remained largely unchanged. SAM’s ability to deal with complex,
non-contiguous data types as a single item isimportant, since each block actually contains a number of dynamically
allocated index and data arrays.



Each block in the matrix goes through three phases. The first phase consists of a series of commutative updates
(updates that can occur in any order) inline 7. When the last update is done, the contents of the block are finalized in
lines2 and 4 above. Inthethird and final phase, the data are only read to update other blocksin lines 5-7. Thus each
block is represented as an accumulator in thefirst phase and the second phase creates a value (using the same storage
as the accumulator) that is used in the third phase.

Each processor isresponsiblefor all the updatesto astatically assigned set of blocksin thematrix. A task iscrested
when one of the operands becomes available and is assigned to the processor that “owns’ the block. The processor
then accesses the second operand asynchronously. The system will supply the processor with the local copy of the
requested valueif one exists. If the value has not been created, or if the value needs to be fetched remotely, the system
will handle the transfer in the background while the processor continues computing with other data.

In Figure 3, we give the paralel speedups of the block Cholesky algorithm for all machines for both a sparse
matrix tk15.0 and dense matrix d1000, al with reference to the corresponding 1-processor run, in which the matrix is
factored efficiently as a single domain (with essentially no SAM overhead). In Figure 4, we give the corresponding
absol ute performances in megaflops. Because we simply recompiled the block Cholesky DASH code, we did not take
full advantage of the fl oating-point capabilities of theindividual node processors of theiPSC/860, Paragon, and CM-5.
In the case of the iPSC/860 and Paragon, the compiler does not make use of the specia dual-operation instructions
that alow a floating-point add and floating-point multiply to be executed in paradlel. Also, on the CM-5, we do
not explicitly use the four vector units at each node to enhance floating-point performance. The SP1 achieves very
good single-node performance without any modifications to the code. For comparison, we have aso included the
performance of the block Cholesky algorithm on the DASH shared-memory multiprocessor. The parallel speedups for
all machines arefairly low for the sparse matrix, because of therelatively small size of the matrix, the l[imited inherent
paralelism available in the algorithm, and the difficulty in load balancing. The speedup curves have very similar
shapes on all machines, except that the performance of theiPSC/860 does not scale aswell to 32 processors, because of
bandwidth limitations. Similarly, the SP1 does not speed up as well even for small numbers of processors, because of
the high single-node performance and limited bandwidth; however, these low speedups still yield impressive absolute
performance. The results indicate that, with the software support provided by SAM, complex agorithms written for
shared-memory machines can be readily adapted to run well on distributed-memory machines.
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Figure 3: Block Cholesky Speedup for tk15.0 (left) and d1000 (right)

3.2 AnOct-treeLibrary

We have built a simple, easy-to-use system in SAM for running applications that manipul ate tree data structures on
distributed memory machines. An example application is the Barnes-Hut algorithm [2], which is afast algorithm for
simulating the evolution of a system of astronomical bodies as they interact with each other viathe gravitational force
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Figure 4: Block Cholesky Performance for tk15.0 (left) and d1000 (right)

(the“n-body problem™). At each time step, the algorithm computes the gravitational forces between the n bodies, and
determines the new position and vel ocity of each of the bodies. The Barnes-Hut algorithm uses a tree data structure
caled an oct-tree to summarize the gravitational effects of nearby groups of bodies, so that the force calculation for
each body can be done more quickly. The location of abody inthetreeisbased on the spatial coordinates of the body.
Figure 5 shows a particular configuration of bodiesin space and the oct-tree that represents them.

positions of bodies spatial oct-tree

+J T

Figure 5: Oct-tree Representation of Bodiesin Space

The oct-tree in the Barnes-Hut algorithm may be quite large and therefore cannot be replicated in full on each
processor. The memory to hold the oct-tree structure cannot be statically allocated and partitioned across processors,
since the structure of the oct-tree is complex and dependent on the input data. In addition, the parts of the tree that
various tasks will access cannot be determined statically. However, the work of the force calculation phase can be
partitioned so that thereis extensive locality in each processor’s access to the tree nodes. The programmer only needs
to worry about doing this partitioning correctly; SAM automeatically exploitsthislocality by caching recently accessed
tree nodes on each processor.

We have built alibrary of functionsfor building and manipulating oct-trees on distributed memory machines. This
library includes primitives for building an oct-tree, modifying the contents of the nodes in a pre-order or post-order
traversal, reading the nodes of thetree in an arbitrary traversal, and destroying the tree. Tasks can access and modify
nodesin the tree using these functionswithout regard to where the nodes were originally crested or currently reside.

The library hides the naming and synchronization issues associated with building, traversing, and modifying the
tree. Because the fina structure of the oct-tree depends only on the spatia positions of the bodies, the library alows
datato be inserted into thetree in parale in any order. Nodes are therefore initially designated as accumulators while



the tree is being loaded. To reduce communication while building the tree, the library uses chaotic accesses when
traversing the tree to determine where an item should be inserted; the properties of the oct-tree allow this optimization
as long as an exclusive access is used when a potential insertion point has been reached. In atypical shared memory
system, it isimpossible to express such chaotic accesses, and extra coherence communication is unavoidable. When
all the nodes of the tree have been inserted, the nodes are converted to values. The library handles the naming of the
values as the tree is accessed and modified. The library executes pre-order and post-order modifications of the tree
in parald; all synchronization occurs appropriately as nodes are accessed. In an imperative shared memory system,
additional locks and flags at each node would be necessary to ensure that nodes are accessed in the proper order.

To reduce address trandation and message passing overhead for this application, we have experimented with
blocking the nodes of the tree together. That is, as the oct-treeis built in each time step, we combine several nodes of
the tree into one SAM dataitem. These blocks are determined dynamically by grouping together nearby nodes into
asingle block up to a certain maximum number. Figure 6 illustrates the blocks that might be chosen for a particular
oct-tree. We have hidden the complexity of the blocking in the oct-tree library and allow the option of blocking or not
blocking. When blocking, the tree library automatically brings over a whole block when the “top” node in the block
isaccessed. Such blocking increases the granularity and reduces the frequency of communication. It also doesaform
of prefetching, since it fetches awhole collection of nodes that are likely to be accessed in the near future when one
of them is accessed. The disadvantageis that extra bandwidth and memory is sometimes used in bringing over nodes
that are never accessed. In addition, the paralelism in some of the pre-order and post-order tree traversal phasesis
significantly decreased, because only one processor can modify ablock at atime.

Figure 6: Blocking of Nodesin an Oct-tree

We have written a parallel version of the Barnes-Hut algorithm using the tree library that is adapted directly from
the original serial agorithm, with the addition of a phase for partitioning the force calculation for good locality and
load balancing [20]. Figure 7 shows speedup and absol ute run-time curves of our parallel version running on the CM-5,
iPSC/860, Paragon, and SP1 for an n-body simulation of a highly irregular distribution of 25000 bodies. Speedup is
measured relative to an efficient serial agorithm. Tree blocking is used for the runs on the iPSC/860, Paragon, and
SP1, whiletree blocking isnot used for the runs on the CM-5. The communication costs onthe CM-5 are small enough
that tree blocking does not significantly improve performance for small numbers of processors and makes performance
worse for more than 32 processors. For comparison, we have also included the performance of an implementation
of the Barnes-Hut agorithm on the DASH shared-memory multiprocessor. Though the curves show less than linear
speedup for the distributed memory machines, the speedup isscaling withincreasing numbers of processors. We expect
the overall parallel performance to improve substantially with more efficient support for handling messages on newer
machines. Though the SP1 shows lower speedup than the other machines (in part because of its high uniprocessor
computation rate), it provides impressive performance for small numbers of processors.

A very finely tuned message-passing version of the Barnes-Hut agorithm has been implemented [23] and can
achieve nearly linear speedup for simulationswith alarge enough number of bodies. This message-passing agorithm
is much more complex and difficult to program than the original serial agorithm and is highly dependent on the way
that the Barnes-Hut algorithm usesthe oct-tree. By using SAM to program the Barnes-Hut al gorithm, we have explored
the tradeoff between the reusability and ease of programming of thetree library versus achievable performance.
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3.3 A Symbolic Algebra Application

One application area that can involve large amounts of highly irregular computation is symbolic algebra. We have
used SAM to paralelize an important agorithm from symbolic algebra systems on distributed memory machines.
The a gorithm computes the Grobner basis [6] of a set of polynomials, which isused in solving systems of non-linear
equations and determining implicit forms for parametric equations. This algorithm has been previoudy implemented
on the CM-5 by Chakrabarti [8].

The basic structure of the algorithm is to start with the initiad basis equd to the input set of polynomials. Then,
each possible pair of polynomials from the basisis examined; potentially a new polynomial is produced that is added
to the basis, and a new set of pairs between the new polynomial and the current members of the basis is generated.
The algorithm continues until there are no more pairs left to be examined. The two important data structures in the
algorithmareBasi s, theset of polynomialsinthebasisand Pai r s, thelist of pairsstill to be examined. Anoverview
of thealgorithmisas follows:

Pairs = InitPairs(Basis); /* Initidlize Pairs to all possible pairs of theinitia basis. */
while (size(Pairs) !=0) {
pair = choose(Pairs);  /* Heurigtically chooseapair */

S= Spoly(pair); /* Compute the S polynomial */
R = Reduce(S, Basis); /* Reducethe S polynomid wrt the basis*/
if(R'=0){

/* Add the new polynomial to the basis, and all possible pairs
* petween it and current members of the basisto Pairs. */
Pairs = UpdatePairs(Pairs, Basis, R);

Basis= union(Basis, R);

Inthiscode, Spol y computes afunction of two polynomials called the S-polynomial, and Reduce reduces as much
as possible one polynomial by a set of other polynomials.

In the Grobner basis algorithm, each polynomia remains unchanged once added to the basis. In our parallel
implementation of the Grobner basis algorithm using SAM, each polynomia is represented by a SAM value. The
dynamic caching of the polynomias in the basis set that is automatically provided by SAM is crucid to good
performance, since each processor repeatedly accesses these polynomials in attempting to reduce its current S
polynomial.

The basis set isa monotonically growing set of polynomials. We represent the set by a linked list of polynomids
and an accumulator which points to the polynomials at the head and tail of the list. Using SAM, we have built a
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(distributed) set abstraction, which allows polynomiasto be added to the set and provides an operation to iterate over
the current elements in the set. The set abstraction also provides a“chaotic iterate” which iterates over the recent, but
not necessarily latest contents of the set. (That is, the chaotic iterate may not see some of the most recent additionsto
the set.) In our parale implementation, we create a separate task to handle each new pair. Therefore, the pair listis
implicitly represented by tasks that have been created but not yet run.

Parallel Grobner basisimplementations are non-deterministic, since pairs (tasks) distributed across processors may
execute in differing orders and cause different polynomiasto be added to the basis set. They use a priority scheme to
order the executions in such way to maximize the effectiveness of the non-deterministic operations. Priority functions
also have the effect of minimizing non-determinism and thus make it possible to compare the speeds of different
computations on the same data set.

Figure 8 shows the speedups of our Grobner basis implementation on the CM-5 for a representative sample of
input polynomial sets. Speedups are determined by running the a gorithm three times for a particular input set and
number of processors, and dividing the average run time by the run time for the parallel algorithm on one processor.
The smaller input sets (gupta, trinksl) have limited parallelism and therefore do not scale well to many processors.
Speedups for some of the larger input sets (Lazard, katsurad) scale fairly well, while the speedup is more limited for
other sets.

The speedup is not limited by the system overhead but isinherent in the parallel algorithm. The parallel execution
performs more work than the sequentia counterpart; the basis set may become larger in a paralel execution since
computation on each processor is performed without the knowledge of the polynomials that are about to be added to
the basis set by other processors. To quantify the inefficiency of the algorithm, we compare the parallel runswith serial
runsthat perform exactly the same computation. The normalized speedup curves in Figure 8 measure the speedup of
each paralel run with respect to a run on one processor doing identical work. (These figures are not exact because
of the instrumentation overheads, but we estimate the error to be within 3%.) The normalized speedup curves of the
larger polynomial sets tend to scale more consistently.
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Figure 8: Grobner Speedups on CM-5, Real (left) and Normalized(right)

The parallelization of the Grobner Basisalgorithmby Chakrabarti [8] on the CM-5 waswritten directly in message-
passing primitives. The usefulness of SAM can beillustrated by approximate counts for the lines of code in different
implementationsof the agorithm. All versionslink in amulti-precision arithmetic and apolynomial arithmeticlibrary.
The sequential algorithm from which the parallel implementations are derived consists of about 3700 lines of code.
The SAM parallel implementation is similar to the sequentia version and is 300 lines more; the extra code mainly
implements the set abstraction and defines necessary packing functions for sending polynomial s between machines.
The message-passing CM-5 implementation is 2000 lines longer than the sequential version. The extra lines of code
implement an application-specific form of caching and consistency based on invaidation. In contrast, SAM provides
generic caching functionality that is reusable for a variety of applications.

Our implementation appears to have better heuristicsfor setting the priority of tasks than the CM-5 implementation.
In consequence, we have better serial and paralée run times on the mgjority of the available polynomial benchmarks;
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in addition, our implementation has less variation in parallel run times due to non-determinism. Some runs have
superlinear speedup, but this happens|ess often than with [8], because our seria times are already quite good. Finaly,
our implementation runs immediately on the iPSC/860, Paragon, and SP1, as well as the CM-5.

34 Implementation of the Jade Language Using SAM

Jade [18] is a parallel programming language for exploiting coarse-grain concurrency in sequential, imperative pro-
grams. Jade provides the convenience of a shared memory model by allowing any task to access shared objects
transparently. Jade programmers augment their sequentia programs with constructs that decompose the computation
into tasks and declare how tasks access shared objects. The Jade implementation dynamicaly interprets this infor-
mation to execute the program in parallel while preserving the sequential semantics — if there is a data dependence
between tasks, tasks run in the same order asin the sequential execution. The structure of parallelism produced by the
Jade program is a directed acyclic graph of tasks, where the edges between tasks are the data dependence constraints.
Because the constructs for declaring data accesses are executed dynamically, thistask graph can be dynamic and can
therefore express data-dependent concurrency available only at run-time.

I'n our implementation of Jade using SAM, a Jade object i srepresented by asequence of val ues; aval ue representing
anew version of the object is created whenever atask writes the object. The implementation minimizes copying and
memory usage by reusing the storage of an old version whenever cresting a new version. Theimportant point is that
the data usage information provided by the Jade constructs is sufficient to determine exactly which versions of each
object atask will access and when atask creates anew version of an object. Thus, conceptually, each task can fetch its
required versions using SAM primitives and execute; the synchronization implicit in a use of a value ensures that the
ordering constrai nts between tasks are respected and the task does not run until al the versions it requires have been
created. Our implementation optimizes this process by fetching the required versions asynchronously and scheduling
the task only when al the versions have become available. The latency of the fetches are hidden via concurrency if
there are other tasks on the processor which can run while the fetches are occurring. Because different versions of
Jade shared objects are explicitly represented, it is possible for atask on one processor to be reading one version of an
object, while atask on another processor is creating a new version of the object from the older version.

We have built animplementation of Jade using SAM, and have al soimplemented several applicationsin Jade. These
include a program from geophysicsthat uses seismic travel-timeinversion to construct avelocity model of the geology
between two oil wells, the Perfect Club benchmark program MDG that eval uates forces and potentialsin a system of
water molecules in the liquid state, and an application that simulates the interaction of electron beams with various
solids using Monte Carlo techniques. Figure 9 gives the speedup curve for a parallelization of the MDG benchmark
using Jade. The speedups shown are for a run involving 2197 particles on a collection of Sparc ELCs connected by
Ethernet, a CM-5, a Paragon, and an iPSC/860. Our implementation of Jade performs essentialy identically to a
previous Jade implementation based directly on message-passing primitives, but is much simpler to implement and
understand.

In addition, because our implementation is layered on top of SAM, the Jade programmer can program directly
in SAM for critical sections of their application, while using Jade to manage the remaining communication and
paralelism. The programmer may choose to use SAM primitives directly to optimize communication, manipulate
complex distributed data structures more efficiently, or to exploit parallelism that cannot be expressed viathe sequential
semantics of Jade.

4 Discussion and Comparison
In this section, we justify some of our design choicesin SAM and compare with related work.

4.1 Shared Memory Functionality

One fundamenta choice in the design of SAM is to provide shared memory functionality on distributed memory
machines. Applicationswrittenin a shared memory style often lose some of the efficiencies of pure message-passing
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Figure9: MDG Speedup (left) and Times (right) for Simulation of 2197 Particles

programs. Message-passing programs minimize communication by sending data via point-to-point messages between
nodes. The latency of message sends is usually partially hidden by attempting to send messages before they are
needed remotely. The design of SAM allows the efficiency of message passing to be achieved when necessary within
the framework of a shared memory model. Tasks can send (“push”) avalue to a remote processor to reduce latency
and eliminate request overhead if that remote processor is likely to access the value. Also, data can be fetched
asynchronously, thus allowing for the possibility of prefetching, pipelining reads of data, and/or hiding latency with
concurrency. Therefore, SAM’s design not only provides the ease of use of a shared memory model, but it has the
flexibility to achieve the efficiency of message passing when necessary.

Another important considerationiswhether to providedynamic caching of shared data. Someimperativedistributed
shared memory (DSM) systems, such as Amber [9], Prelude[24], and Split-C [10] implement a shared address space
without automatic caching. The user must manage any local copies of remote data and make sure that they do not get
out-of-date with respect to the current contents of the data. Amber and Prelude aso provide mechanisms to access
to shared objects by moving tasks to the processor containing the data. Imperative DSM systems that do implement
replication of data[1, 3, 4, 15] in loca storage require a consistency protocol to ensure that processors do not access
the wrong version of a particular data object. The consistency protocol must send information to al processors
that currently have a copy of an object when that object is modified. Some of these invalidate/update messages are
unnecessary since a cached copy may never be referenced again. Another cost of consistency protocolsis the round-
trip latency associated with the required acknowledgment of invalidate or update messages. SAM provides dynamic
caching of data, but does not have any such consistency problems. Because of their single-assignment property, values
in SAM can easily be replicated for faster access without consistency problems. There are no consistency problems
associated with accumulators, since only one process accesses an accumulator at a time (except for chaotic accesses,
which don’'t guarantee any consistency properties).

SAM supports a global address space at the level of user-defined types, like many other systems[1, 4, 5, 9, 24].
Such an approach provides maximum flexibility in expressing communi cation and avoids the problem of false sharing.
In addition, because it has the type information necessary to do the proper data conversion, SAM can operate in a
heterogeneous environment. In contrast, shared virtual memory (SVM) systems [3, 13, 15, 17] provide a flat, global
address space. SVM usesthe virtual memory hardware to implement a page-based coherence protocol. The page-fault
hardware automatically detects accesses to remote or invalid pages, and the page-fault handler is used to move or
copy pages from remote processors. The advantage of the SYM approach is that the shared memory abstraction is
provided completely transparently to the user. However, this can also be a disadvantage, since the user cannot control
when communication occurs. The fixed and comparatively large size of the page (the unit of coherence) increases
the possibility of problems due to false sharing, especialy for the dynamic data structures in some of the applications
we have considered. Both Munin [3] and TreadMarks [13] attempt to minimize this problem by alowing multiple
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processors to write to a page and merging changes at the next synchronization point. SVM systems have aso been
mainly limited to homogeneous systems (but see [25]), because they typically lack the type information to do the
proper conversions between machines with differing data representations.

4.2 Expressing Data Relationships

Our choice to provide primitives to express data relationships explicitly has a number of implications. The main
result is that SAM primitives capture the high level information about the data relationships among processes in a
parallel application. Thishigh-level information alowsfor efficient implementation of the communi cation required by
these relationships. First, these primitives tie the necessary synchronization and communication with the data usage.
Therefore, the synchronization can beincorporated into the communi cati on process, without adding any extraoverhead.
Thiscontrastswith many other DSM systems, where the synchronization (locking) is separate from data access and may
entail additional message overhead. Second, these primitives encompass both types of data relationships, precedence
congtraints and mutua exclusion. Many systems provide direct support for expressing one of these relationships, but
not both.

Midway [4] ties data objectsto locks, so that it can fold in synchronization operations with the necessary commu-
nication when modifying objects with mutual exclusion. Acquiring alock causes the data associated with the lock to
be transferred in the same message. However, Midway has no support for expressing precedence rel ationships; such
relationships must be built up using additional locks and synchronization operations. The Linda system [7] provides
distributed shared memory in the form of a global tuple space. Processes interact via operations that insert, read, and
remove tuplesfrom tuple space. These low-level operations can be used to implement both precedence constraintsand
mutual exclusion. However, compiler analysis is necessary to determine exactly what relationship is being expressed
and choose the most efficient implementation of the operation. VDOM [11] is an object-based DSM system that
allowsfor explicit naming of and access to successive versions of shared objects, and can therefore express precedence
constraints. However, neither VDOM nor Linda has support for explicit memory management or communication
optimizations.

The SAM primitivesare intended to capture the data rel ationships of a program without unnecessarily introducing
any extra constraints. In contrast, programs expressed using imperative shared memory often over-specify the data
relationships in a program. In particular, by storing many values in a single location, an imperative program may
introduce anti-dependences that limit the paralelism in a program. That is, a dependence may result between a
write to a location and a preceding read of the location, even though no actua dataflow relationship exists. These
anti-dependences are enforced by the imperative semantics, even in the case where the processes involved in the
anti-dependence execute on different processors and therefore are actually operating on distinct copies of the data.
These anti-dependences can be eliminated using SAM, because al vauesin the system are named separately.

A number of systems have supported the notion of chaotic access. Hutto [12] advocates the use of “dow memory”
in distributed shared memory systems which alows the effects of writes to propagate slowly through the system.
Agora [5] supports a shared memory model in which all accesses are chaotic, since all modifications to shared data
structures are alowed to compl ete before holders of cached copies have been notified. Mether [16] alows aprocess to
access an “inconsistent”, read-only copy of avirtual-memory page whichisnot kept consistent as the page is modified.
Clouds[17] supports an operation for getting a copy of a segment that will not be kept coherent even if the contents of
the segment are changed. We believe that we are the first to use such chaotic operationsto attain higher performance
in complex scientific agorithms.

Finally, asweshowed in Section 3, the SAM primitivesprovidethe precisionto build avariety of datausage models.
The SAM primitives can be used for emulating imperative shared memory, implementing a variety of distributed data
structures, and modeling communication patterns unique to particular parale languages or data structures.

5 Conclusion

In this paper we have presented the design of SAM, a distributed shared memory system that simplifies the process of
programming complex applicationsin a distributed memory environment. SAM provides a portablelayer of software
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which provides a useful set of functionaities to higher-level applications while hiding the details of the hardware.
Data items in SAM are accessed via a shared address space and are automatically replicated and cached to exploit
the locality of reference in programs. SAM is based on the principle of exposing al data relationships in parallel
programs explicitly. Data relationships are cleanly expressed via access to two different kinds of shared data, values
and accumulators. Vaues have a single-assignment semantics; access to vaues result in precedence constraints.
Accumulators may be updated multipletimesin any order, but mutual exclusion is enforced.

Our experience with the system suggests that SAM is versdtile in supporting different parallel programming
paradigms and that it greatly simplifies programming and provides portability. We demonstrated SAM’sflexibility by
using it in a variety of systems, including a parallel programming language, distributed data structures, and severa
irregular scientific algorithms. We have shown that it can be used to support the familiar model of imperative data,
common idioms such as chaotic data accesses, and custom synchronization schemes made possible by high-level
language semantics. Because SAM providesagloba name space and automatic data caching, programmingin SAM is
much easier than using explicit message passing, and the programs are easier to understand and maintain. By sharing
the same SAM softwareimplementation, individual SAM applications have substantially fewer linesof code. We have
implemented SAM on avariety of systems. the CM-5, theIntel iPSC/860 and Paragon, the IBM SP1, and a network of
workstations. The same programs written using SAM can run without modifications on all these platforms. We have
achieved good performance on these platforms on a variety of large, complex applications.
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A SAM Implementation

In this section we briefly discuss the details of our implementation of SAM that runs on the CM-5, Intel iPSC/860 and
Paragon, and networks of workstations.

At any one time, many processors in the system may hold a copy of a particular value. However, the SAM
implementation uniquely identifies one copy of the value as the master copy. The master copy isthe copy of thevalue
on the processor that originally crested the value. Also, for each value, there is a distinguished processor, called the
directory server, that handles requests for the value from processors that don’t know where the master copy is. The
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identity of the directory server is based only on the name of the value, so any processor that knows the name of the
value can determine its directory server. The directory server queues up requests for a value until the location of the
master copy is known, then forwards requests to that processor.

On each processor, thereisavalue tablethat storesinformation on valuesin the system and isindexed by the name
of thevaues. Theinformation stored for each value includes such things as the current state of the value, the location
of the master copy, queues of processes and processors that are waiting to access the value, and a pointer to any local
copy of thevalue.

When aprocess attemptsto access ava uethat isnot locally available, theimplementation adds the current process
to the queue associated with the value and tries to fetch the value remotely (if it has not aready done s0). If the
location of the master copy is known, then the value is requested from that processor; otherwise, a request is made
to the directory server. When a copy of avalue arrives at a processor in response to a request, all processes waiting
for the value are notified that the value is now available localy. Similarly, when avaueis created localy, al waiting
processes are notified. In addition, the existence and location of the new value are announced to the directory server
for the value.

The value table entry for each value also includes a reference count. If the reference count of a particular value
drops to zero, then that value is placed on a“free” list. A value on thefree list can still be accessed; if it is accessed,
it istaken off the free list. However, whenever all available memory has been used up, the least recently used values
on the free list are removed from the va ue table and their memory freed up so that it can be reused for other values.
The reference count is maintained based on callsto begi n_use_val ue and end_use_val ue. In addition, for the
master copy, SAM uses information supplied by the user to ensure that the master copy is not freed until al possible
accesses to the value have occurred.

Accumulators are implemented using an efficient, specialized protocol. The current version of an accumulator
exists only on one processor a atime. When all waiting processes on one processor have updated the accumul ator,
it is passed on to the next processor that has processes waiting to update the accumulator. However, each processor
keeps one “old” version of the accumulator which is used to satisfy chaotic read requests for the accumulator. Thus,
when a processor passes an accumulator on to another processor, it actually keepsits copy of the current version of the
accumulator, but marks the copy as old (since the accumulator will continueto be updated by other processes). There
are avariety of strategies for determining the current location of an accumulator. In the simplest scheme, requests for
the accumulator are sent to the directory server for the accumulator whenever the accumulator is not availablelocally.
Periodically, the processor that holds the current version of the accumulator communicates with the directory server
and receives these requests in batch from the directory server.

On machinesthat allow it, the SAM implementation makes use of thefacility for interrupting the main computation
on aprocessor when amessage arrives. On other systems, theimplementation periodically pollsfor incoming messages.

A preprocessor is supplied with the SAM system that automatically builds the necessary packing functions for
transmitting SAM dataitemswhich are complex C datatypesin messages. The programmer must use aspecial allocator
for building these complex data types, so that the SAM run-time system can determine the number of elementsin
dynamically allocated arrays.
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