
TOLERATING LATENCY THROUGH

SOFTWARE-CONTROLLED DATA PREFETCHING

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studi es

of stanforduniversi ty

in partial fulfi llment of the requirements

for the degree of

doctor of phi losophy

By

Todd C. Mowry

May 1994

c
 Copyright 1994 by Todd C. Mowry

All Rights Reserved

ii

Abstract

The large latency of memory accesses in modern computer systems is a key obstacle to achieving

high processor utilization. Furthermore, the technology trends indicate that this gap between

processor and memory speeds is likely to increase in the future. While increased latency affects all

computer systems, the problem is magnified in large-scale shared-memory multiprocessors, where

physical dimensions cause latency to be an inherent problem. To cope with the memory latency

problem, the basic solution that nearly all computer systems rely on is their cache hierarchy.

While caches are useful, they are not a panacea.

Software-controlled prefetchingis a technique for tolerating memory latency by explicitly

executing prefetch instructions to move data close to the processor before it is actually needed.

This technique is attractive because it can hide both read and write latency within a single thread

of execution while requiring relatively little hardware support. Software-controlled prefetching,

however, presents two major challenges. First, some sophistication is required on the part of

either the programmer, runtime system, or (preferably) the compiler to insert prefetches into the

code. Second, care must be taken that the overheads of prefetching, which include additional

instructions and increased memory queueing delays, do not outweigh the benefits.

This dissertation proposes and evaluates a new compiler algorithm for inserting prefetches

into code. The proposed algorithm attempts to minimize overheads by only issuing prefetches for

references that are predicted to suffer cache misses. The algorithm can prefetch both dense-matrix

and sparse-matrix codes, thus covering a large fraction of scientific applications. It also works

for both uniprocessor and large-scale shared-memory multiprocessor architectures. We have

implemented our algorithm in the SUIF (Stanford University Intermediate Form) optimizing

compiler. The results of our detailed architectural simulations demonstrate that the speed of

some applications can be improved by as much as a factor of two, both on uniprocessor and

multiprocessor systems. This dissertation also compares software-controlled prefetching with

other latency-hiding techniques (e.g., locality optimizations, relaxed consistency models, and

iii

multithreading), and investigates the architectural support necessary to make prefetching effective.

Key Words and Phrases: Data prefetching, tolerating latency, compiler optimization, computer

architecture, shared-memory multiprocessors.

iv

Acknowledgments

Here is my top ten list of people I would like to acknowledge:

10. My fellow officemates in “the trailer”, for devising new methods of opening doors while

remaining seated, and ensuring that life as a graduate student was never a dull moment:

Andrew Erlichson, J.P. Singh, Jim Laudon, Chris Holt, Mark Heinrich, Steve Woo, Dave

Ofelt, Jeff Kuskin, and John Heinlein.

9. My friends and mentors at MIPS, who made my Silicon Valley experience complete, and

helped raise my standard of living above the starvation level: Earl Killian, Peter Davies,

and Paul Ries.

8. The DASH team, for answering all of my hardware questions, and for including me in their

ski trip: Dan Lenoski, Jim Laudon, Kourosh Gharachorloo, Dave Nakahira, Truman Joe,

and Wolf-Dietrich Weber.

7. The simulator gurus who cheerfully and tirelessly supported their creations, thus making these

quantitative results possible: Steve Goldschmidt for Tango, and Mike Smith for XSIM.

6. The SUIF team, for creating and supporting that wonderful porcine compiler: Steve Tjiang,

Michael Wolf, Mike Smith, Jennifer Anderson, Rob French, Dror Maydan, Saman Ama-

rasinghe, Todd Smith, and Bob Wilson.

5. The faculty members who graciously served on my reading and orals committees: Albert

Macovksi and Greg Kovacs.

4. The fearless leader of our extended research family, for his wisdom and guidance throughout

the years: John Hennessy.

3. My “second” primary advisor, for teaching me what compilers are all about, and for giving

me the luxury of having two sources of great advice: Monica Lam.

v

2. My “primary” primary advisor, for the tremendous time, energy, and wisdom he invested in

my graduate education, and for inspiring me to become an academic myself: Anoop Gupta.

1. My spouse, who shared each step of the Stanford graduate experience with me, from our

first day of class (when we met) through defending our dissertations (which we did within

24 hours of each other), and who was a very good sport during our “joint” academic job

search: Karen Clay.

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Cache Performance on Scientific and Engineering Codes: : : : : : : : : : : : : 2

1.2 Coping with Memory Latency: 4

1.2.1 Caches: 4

1.2.2 Locality Optimizations : 5

1.2.3 Buffering and Pipelining References: : : : : : : : : : : : : : : : : : : 6

1.2.4 Prefetching: 7

1.2.5 Multithreading: 9

1.2.6 Overall Approach: 11

1.3 Research Goals: 12

1.4 Related Work : 13

1.5 Contributions : 15

1.6 Organization of Dissertation: 16

2 Core Compiler Algorithm for Prefetching 18

2.1 Key Concepts : 19

2.2 Overview of Algorithm : 20

2.3 Locality Analysis : 21

2.3.1 An Example: 23

2.3.2 Reuse Analysis: 25

2.3.3 Localized Iteration Space: 31

vii

2.3.4 The Prefetch Predicate: 40

2.4 Scheduling Prefetches: 42

2.4.1 Loop Splitting: 42

2.4.2 Software Pipelining: 45

2.5 Putting It All Together: 46

2.5.1 Example Revisited: 46

2.5.2 Implementation Experience: 50

3 Prefetching for Uniprocessors 53

3.1 Experimental Framework: 54

3.1.1 Architectural Assumptions: 54

3.1.2 Applications: 55

3.1.3 Compiler Parameters: 57

3.1.4 Simulation Environment: 58

3.2 Evaluation of Core Compiler Algorithm: 58

3.2.1 Locality Analysis : 60

3.2.2 Loop Splitting: 64

3.2.3 Software Pipelining: 66

3.2.4 Summary : 67

3.3 Sensitivity to Compile-Time Parameters: 68

3.3.1 Policy on Unknown Loop Bounds: 68

3.3.2 Effective Cache Size: 69

3.3.3 Prefetch Latency: 70

3.3.4 Summary : 71

3.4 Interaction with Locality Optimizations: 71

3.4.1 GMTRY: Cache Blocking: 71

3.4.2 VPENTA: Loop Interchange: 72

3.4.3 Summary : 73

3.5 Prefetching Indirect References: 74

3.5.1 Modifications to Compiler Algorithm: : : : : : : : : : : : : : : : : : : 74

3.5.2 Experimental Results: 77

3.6 Chapter Summary: 80

viii

4 Prefetching for Multiprocessors 81

4.1 Multiprocessor Issues and Modifications to Compiler Algorithm: : : : : : : : : 82

4.1.1 Binding vs. Non-Binding Prefetches: : : : : : : : : : : : : : : : : : : 82

4.1.2 Coherence Misses: 84

4.1.3 Exclusive-Mode Prefetching: 88

4.1.4 Summary : 89

4.2 Experimental Framework: 90

4.2.1 Architectural Assumptions: 90

4.2.2 Applications: 91

4.2.3 Simulation Environment: 95

4.3 Experimental Results: 96

4.3.1 Locality Analysis : 98

4.3.2 Scheduling Algorithm: 102

4.3.3 Prefetching Indirect References: 105

4.3.4 Exclusive-Mode Prefetching: 106

4.4 Cache Size Variations: 109

4.5 Programmer-Inserted Prefetching: 112

4.5.1 Cases Where the Compiler Succeeded: : : : : : : : : : : : : : : : : : 112

4.5.2 Cases Where the Compiler Failed: 115

4.5.3 Summary : 118

4.6 Chapter Summary: 119

5 Architectural Issues 121

5.1 Basic Architectural Support for Prefetching: 121

5.1.1 Instruction Set Architecture: 122

5.1.2 Dropping Prefetches: 126

5.1.3 Performing the Prefetch Memory Access: : : : : : : : : : : : : : : : : 130

5.1.4 Hardware Modifications to Support Prefetching: : : : : : : : : : : : : 138

5.2 Achieving Larger Gains through Prefetching: : : : : : : : : : : : : : : : : : : 145

5.2.1 Improving Analysis: 146

5.2.2 Improving Effectiveness: 160

5.2.3 Reducing Overheads: 172

5.3 Alternative Latency-Hiding Techniques: 177

ix

5.3.1 Hardware-Controlled Prefetching: 177

5.3.2 Relaxed Memory Consistency Models: : : : : : : : : : : : : : : : : : 181

5.3.3 Multithreading: 183

5.4 Chapter Summary: 189

6 Conclusions 191

6.1 Future Work : 192

Bibliography 194

x

List of Tables

1.1 Techniques for coping with memory latency.: : : : : : : : : : : : : : : : : : : 11

2.1 Hit rates of affine array accesses.: 20

2.2 Prefetch predicates for the different types of locality.: : : : : : : : : : : : : : : 40

2.3 Loop splitting transformations for the various types of locality.: : : : : : : : : 43

2.4 Order in which the optimization passes occur in the SUIF compiler, including

prefetching. : 51

3.1 Description of uniprocessor applications.: 56

3.2 General statistics for the uniprocessor applications. Primary data cache miss

counts are for an 8 Kbyte direct-mapped cache.: : : : : : : : : : : : : : : : : 57

3.3 Memory performance improvement for the selective prefetching algorithm.: : : 59

3.4 Memory performance improvement for the indiscriminate and selective prefetch-

ing algorithms.: 62

3.5 Ratio of prefetches issued under the indiscriminate and selective algorithms.: : 64

3.6 Average instruction overhead per prefetch.: 65

3.7 Average instruction overhead per prefetch of indirect reference.: : : : : : : : : 79

4.1 Latency for various memory system operations in processor clock cycles (1 pclock

= 30 ns). : 92

4.2 Description of multiprocessor applications.: 92

4.3 General statistics for the multiprocessor applications.: : : : : : : : : : : : : : : 93

4.4 Reduction in memory stall times for the multiprocessor applications.: : : : : : 99

4.5 Statistics on exclusive-mode prefetching.: 107

xi

5.1 Average processor stall on a primary prefetch fill (lf) and the fraction of prefetches

that suffer primary cache conflicts (pd
pt

) for each uniprocessor application.: : : : 134

5.2 Distribution of where data was found both by prefetch and by subsequent refer-

ence. “X) Y” means prefetch found data atX, subsequent reference found data

at Y, whereX,Y = C1 (primary cache),C2 (secondary cache), andM (memory). 135

5.3 Statistics on multithreading behavior.: 186

xii

List of Figures

1.1 Speed of commercial microprocessors and commodity DRAM over the past decade. 2

1.2 Breakdown of execution of scientific and engineering codes on uniprocessor ar-

chitecture. : 3

1.3 Breakdown of execution of scientific and engineering codes on multiprocessor

architecture. : 4

1.4 Illustration of how prefetching improves performance.: : : : : : : : : : : : : : 7

1.5 Illustration of how multithreading improves performance.: : : : : : : : : : : : 10

2.1 Data locality example.: 23

2.2 Example of a more complicated access pattern that can be handled by reuse analysis. 27

2.3 Example of non-uniformly generated references.: : : : : : : : : : : : : : : : : 29

2.4 Example of uniformly generated references that do not have reuse.: : : : : : : 29

2.5 Example of references that access the same cache lines despite never accessing

the same data items.: 30

2.6 Example of how loop iteration counts and cache size affect locality.: : : : : : : 32

2.7 Algorithm for computing the localized iteration space. (Continued on next page.) 34

2.7 Algorithm for computing the localized iteration space. (Continued from previous

page.) : 35

2.8 Example of algorithm for estimating volume of data accessed by each loop.: : 36

2.9 Example of how symbolic values can be useful when computing volume of data

accessed by each loop.: 38

2.10 Example of references with group reuse but not group locality.: : : : : : : : : 39

2.11 Example of how prefetch predicates are constructed.: : : : : : : : : : : : : : : 41

2.12 Generic schema for peeling a loop.: 43

2.13 Generic schema for unrolling a loop.: 44

xiii

2.14 Generic schema for strip-mining a loop.: 44

2.15 Algorithm for computing the shortest path through a loop body.: : : : : : : : : 46

2.16 Example of how software pipelining is used to schedule prefetches the proper

amount of time in advance. For this example, assume that 5 iterations are enough

to hide memory latency.: 47

2.17 Example of selective prefetching algorithm. (Continued on next page.): : : : : 48

2.17 Example of selective prefetching algorithm. (Continued from previous page.): : 49

3.1 Overall performance of the selective prefetching algorithm (N = no prefetching,

andS = selective prefetching). : 59

3.2 Overall performance comparison between the indiscriminate and selective prefetch-

ing algorithms (I = indiscriminate prefetching, andS = selective prefetching). : 61

3.3 Statistics for evaluating locality analysis for the uniprocessor applications (I =

indiscriminate prefetching, andS = selective prefetching). Note that the unneces-

sary prefetch percentages are computed with respect to the number of prefetches

issued, which changes between the two cases.: : : : : : : : : : : : : : : : : : 63

3.4 Loop splitting effectiveness (N = no prefetching,C = selective prefetching with

conditional statements, andS = selective prefetching with loop splitting).: : : : 65

3.5 Breakdown of the impact of prefetching on the original primary cache misses for

the uniprocessor applications.: 67

3.6 Sensitivity of results to compile-time parameters (N = no prefetching,S= selective

prefetching variations). : 69

3.7 Results with locality optimization (N = no prefetching,I = indiscriminate prefetch-

ing, andS = selective prefetching).: 72

3.8 Example of an indirect array reference.: 74

3.9 Example of how software pipelining is used to prefetch indirect references. For

this example, assume that 5 iterations are enough to hide memory latency.: : : 76

3.10 Example of how prefetching multiple levels of indirection may result in invalid

addresses and possibly a load exception. Assume that 5 iterations are sufficient

to hide memory latency.: 77

3.11 Prefetching indirect references in the uniprocessor applications (N = no prefetch-

ing, D = dense-only prefetching, andB = both dense and indirect prefetching).: 78

4.1 Example of when a binding prefetch would be illegal.: : : : : : : : : : : : : : 83

xiv

4.2 Example of how coherence activity can cause cache misses.: : : : : : : : : : : 85

4.3 Example containing explicit synchronization.: : : : : : : : : : : : : : : : : : : 87

4.4 Illustration of how exclusive-mode prefetching improves performance.: : : : : 89

4.5 Architecture and processor environment.: 91

4.6 Performance of multiprocessor applications without prefetching.: : : : : : : : : 97

4.7 Overall performance of the selective prefetching algorithm for the multiprocessor

applications (N = no prefetching, andS = selective prefetching). : : : : : : : : 98

4.8 Overall performance comparison between the indiscriminate and selective prefetch-

ing algorithms for the multiprocessor applications (I = indiscriminate prefetching,

andS = selective prefetching). : 100

4.9 Statistics for evaluating locality analysis for multiprocessor applications (I = in-

discriminate prefetching, andS = selective prefetching).: : : : : : : : : : : : : 101

4.10 Breakdown of the impact of prefetching on the original primary cache misses for

the multiprocessor applications.: 103

4.11 Prefetching indirect references in the multiprocessor version of MP3D (N = no

prefetching,D = dense-only prefetching, andB = both dense and indirect prefetch-

ing). : 106

4.12 Performance with and without exclusive-mode prefetching givensequential con-

sistencyrather than release consistency (S = shared-mode prefetching only,X

= exclusive-mode prefetching available). Performance is normalized to release

consistency without prefetching.: 108

4.13 Performance of multiprocessor applications with varying cache sizes (N = no

prefetching, andS = selective prefetching).: 110

4.14 Comparison of compiler-based and hand-inserted prefetching for the cases where

the compiler succeeded (N = no prefetching,A = prefetches inserted automatically

by compiler,H = hand-inserted prefetching).: : : : : : : : : : : : : : : : : : : 114

4.15 Cases where the compiler failed to improve prefetching (N = no prefetching,H

= hand-inserted prefetching).: 117

5.1 Format of prefetch instructions, using “base-plus-offset” addressing mode.: : : 123

5.2 Example of how prefetches can reuse load/store base registers (in this caser7). 124

5.3 Possible encoding of prefetch instruction.: 125

5.4 Dropping vs. stalling on full prefetch issue buffer (D = drop,S = stall). : : : : : 128

xv

5.5 Performance when prefetches do not check either caches before going to memory

(M = go straight to memory,C = check caches).: : : : : : : : : : : : : : : : : 130

5.6 Performance when prefetching into the primary cache (1) versus prefetching only

into the secondary cache (2). : 134

5.7 Performance when prefetching into the secondary cache, both when compiled for

the primary cache size (O), and when recompiled for the secondary cache size (R).136

5.8 Prefetch issue buffer in the uniprocessor architecture. Note that for prefetches,

the fetched data goes directly into the cache, rather than being held in an MSHR.

Therefore an MSHR is simply a resource forcontrolling an outstanding miss

under this model. : 141

5.9 Distribution of previously outstanding prefetch misses upon each prefetch miss for

the original uniprocessor architecture (which supports up to seventeen outstanding

misses). : 142

5.10 Performance when the number of MSHRs is varied.: : : : : : : : : : : : : : : 143

5.11 Performance when the size of the prefetch issue buffer size is varied between

four, eight, and sixteen entries, given four MSHRs.: : : : : : : : : : : : : : : 144

5.12 Example of why intrinsic data reuse matters when scheduling prefetches even

when miss rates are precisely known.: 149

5.13 Results using feedback (N = no prefetching,S = prefetching with static analysis

only, F = prefetching with feedback).: 151

5.14 Example of adapting at runtime by checking problem size.: : : : : : : : : : : 153

5.15 Example of adapting at runtime by checking for data alignment conflicts.: : : : 154

5.16 Example of adapting at runtime by checking hardware miss counters.: : : : : : 155

5.17 Example of adapting at runtime to temporal locality along an outer loop by check-

ing hardware miss counters.: 157

5.18 Results with adaptive version of BCOPY (N = no prefetching,S = statically

prefetch all the time,D = adapt prefetching dynamically). “BxT” means the

sameB-byte block is copied to the same destinationT times. Performance is

renormalized for each case.: 158

5.19 Results with adaptive version of LU (N = no prefetching,S = statically prefetch

all the time,D = adapt prefetching dynamically). Performance is re-normalized

for each cache size.: 159

5.20 Performance of CHOLSKY with victim caches and set-associative primary caches.163

xvi

5.21 Loop that suffers cache conflicts in CHOLSKY.: : : : : : : : : : : : : : : : : 163

5.22 Performance of the original TOMCATV code with victim caches and set-associative

primary caches. The performance of TOMCATV on the original direct-mapped ar-

chitecture after arrays are manually realigned is shown by the dotted (no prefetch-

ing) and dashed (with prefetching) horizontal lines.: : : : : : : : : : : : : : : 164

5.23 Performance of the realigned version of TOMCATV with victim caches and set-

associative primary caches. Note that performance is normalized to the speed of

this realigned code.: 164

5.24 Performance of the original MXM code with victim caches and set-associative

primary caches. The performance of MXM on the original direct-mapped archi-

tecture after arrays are manually realigned is shown by the dotted (no prefetching)

and dashed (with prefetching) horizontal lines.: : : : : : : : : : : : : : : : : 166

5.25 Loop that suffers cache conflicts in MXM.: 166

5.26 Performance of the original CFFT2D code with victim caches and set-associative

primary caches. The performance of CFFT2D on the original direct-mapped archi-

tecture after arrays are manually realigned is shown by the dotted (no prefetching)

and dashed (with prefetching) horizontal lines.: : : : : : : : : : : : : : : : : 167

5.27 Loops that suffer cache conflicts in CFFT2D.: : : : : : : : : : : : : : : : : : : 167

5.28 Performance of the original VPENTA code with victim caches and set-associative

primary caches. The performance of VPENTA on the original direct-mapped ar-

chitecture after arrays are manually realigned is shown by the dotted (no prefetch-

ing) and dashed (with prefetching) horizontal lines.: : : : : : : : : : : : : : : 169

5.29 Loop that suffers cache conflicts in VPENTA.: : : : : : : : : : : : : : : : : : 169

5.30 Example where it is not clear whether to use uncached prefetches.: : : : : : : 171

5.31 Example of how instruction overhead can be eliminated by issuing large block

prefetches outside the main loop.: 176

5.32 Example where imperfect branch prediction makes it difficult to look far enough

ahead in the instruction stream.: 180

5.33 Performance with sequential consistency (SC) versus release consistency (RC),

normalized to RC without prefetching (N = no prefetching,S = selective prefetch-

ing). : 182

5.34 Performance of multithreading with 1, 2 and 4 contexts and switch latencies of 4

and 16 cycles.: 185

xvii

5.35 Effect of combining multithreading with prefetching (multithreading schemes have

a 4-cycle switch latency).: 188

xviii

Chapter 1

Introduction

Microprocessor-based systems are increasingly becoming the workhorse for all scientific and en-

gineering computation. With numerical processing capabilities that already rival older generations

of supercomputers, the microprocessors used in these systems will continue to improve dramat-

ically due to every-increasing clock rates and the exploitation of instruction-level parallelism.

In contrast to the vector-based machines that have long dominated high-performance computing,

these new scalar systems are considerably more cost-effective since they contain commercial

microprocessors that are mass-produced for the large general-purpose computing market. In ad-

dition, these commodity microprocessors can be used to build large-scale multiprocessors capable

of aggregate peak rates surpassing that of current vector machines.

Unfortunately, a high computation bandwidth is meaningless unless it is matched by a similarly

powerful memory subsystem. Although microprocessor speeds have been increasing dramatically,

the speed of memory has not kept pace. As illustrated in Figure 1.1, the speed of commercial

microprocessors has been doubling roughly every three years, while the speed of commodity

DRAM has improved by little more than 50% over the past decade. Part of the reason for this is

that there is a direct tradeoff between capacity and speed, and the highest priority in improving

DRAM has been increasing capacity. The result is that from the perspective of the processor,

memory is getting slower at a dramatic rate. This will affectall computer systems, making it

increasingly difficult to achieve high processor efficiencies. The latency problem is magnified in

large-scale multiprocessors, where sheer physical dimensions result in large latencies to remote

memory locations.

To deal with memory latency, most computer systems today rely on their cache hierarchy

to reduce the effective memory access time. While the effectiveness of caches has been well

1

2 Chapter 1. Introduction

 Processors
� � Memory

|
79

|
81

|
83

|
85

|
87

|
89

|
91

|
93

|0

|
|

||
||

|||1

|
|

||
||

|||10

|
|

||
||

|||100

|
|

||
||

|||1000

 Year

 S
p

ee
d

 (
M

H
z)

� � � � �

Figure 1.1: Speed of commercial microprocessors and commodity DRAM over the past decade.

established for general-purpose code, their effectiveness for scientific and engineering applications

has not. One manifestation of this is that several of the scalar machines designed for scientific

computation did not use caches [14, 16].

This thesis investigates a technique calledsoftware-controlled prefetchingwhich mitigates the

impact of long cache miss penalties, thereby helping to unlock the full potential of microprocessor-

based systems. The remainder of this chapter provides further motivation for improving cache

performance, discusses software-controlled prefetching in light of other techniques for coping

with memory latency, presents our research goals, and summarizes related work. We conclude

this chapter with a list of the major contributions of this thesis and an overview of the remaining

chapters.

1.1 Cache Performance on Scientific and Engineering Codes

To illustrate the need for improving the cache performance of microprocessor-based uniprocessor

and multiprocessor systems, we present results in this subsection for a set of scientific and engi-

neering applications. We begin with the uniprocessor architecture. For the sake of concreteness,

Chapter 1. Introduction 3

|0

|20

|40

|60

|80

|100

|120

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e memory access stalls

 23

 62 69 59 66

 19

 70
 55 53

 38

 70

 12
 29

 77

 38 31 41 34

 81

 30
 45 47

 62

 30

 88
 71

MXM
CFFT2D

CHOLSKY
BTRIX

GMTRY
EMIT

VPENTA
TOMCATV

OCEAN
IS

CG
EP

MG

instructions

Figure 1.2: Breakdown of execution of scientific and engineering codes on uniprocessor archi-
tecture.

we pattern our memory subsystem after a typical MIPS R4000-based workstation. The archi-

tecture consists of a single-issue processor running at a 100 MHz internal clock. The processor

has an on-chip primary data cache of 8 Kbytes, and a secondary cache of 256 Kbytes. Both

caches are direct-mapped and use 32 byte lines. The penalty of a primary cache miss that hits

in the secondary cache is 12 cycles, and the total penalty of a miss that goes all the way to

main memory is 75 cycles. In this simple model, we assume that all instructions execute in a

single cycle and that all instructions hit in the primary instruction cache. The performance of the

benchmarks was simulated by instrumenting the MIPS object code usingpixie [74] and piping

the resulting trace into our detailed cache simulator.

Figure 1.2 breaks down the total program execution time into instruction execution and stalls

due to memory accesses for 13 uniprocessor programs taken from the SPEC [77], SPLASH [72],

and NAS Parallel [8] benchmark suites. Many of the programs spend a significant amount of

time on memory accesses. In fact, 8 out of the 13 programs spend more than half of their time

stalled for memory accesses.

We conducted a similar experiment to evaluate the impact of memory latency on large-scale

shared-memory multiprocessors by simulating the entire SPLASH [72] parallel application suite

on an architecture resembling the Stanford DASH multiprocessor [54]. The architecture we model

includes 16 R3000 processors running at 33 MHz, two-level cache hierarchies (64 Kbytes/256

Kbytes), and a low-latency interconnection network. Miss latencies for loads range from 15

cycles to the secondary cache to over 130 cycles for “remote dirty” lines. Further details on this

architecture and the parallel applications will be presented later in Chapter 4. Figure 1.3 shows the

results. Execution time is now broken into three categories: time spent executing instructions,

4 Chapter 1. Introduction

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e synchronization

 9 6 1
 16 9 10 4

 58 65
 47

 50

 41
 8

 59

 39

 32 28
 52

 34
 59

 83

 31
 58

OCEAN
LU

MP3D
CHOLESKY

LOCUS
WATER

PTHOR
BARNES

memory access stalls
instructions

Figure 1.3: Breakdown of execution of scientific and engineering codes on multiprocessor archi-
tecture.

time spent stalled for memory, and time spent stalled for synchronization (such as locks and

barriers). Once again, memory stalls are significant, with 7 of the 8 applications spending more

than 35% of their time stalled waiting for memory accesses to complete.

1.2 Coping with Memory Latency

To reclaim some of the lost performance potential illustrated in Figures 1.2 and 1.3, techniques

for coping with memory latency are essential. These techniques fall broadly into two categories:

those thatreducelatency, and those thattoleratelatency. Techniques for reducing latency include

caching data and making the best use of those caches through locality optimizations. Techniques

for tolerating latency include buffering and pipelining references, prefetching, and multithreading.

We will briefly discuss each of these techniques in this subsection to show how prefetching fits

into the overall approach to hiding latency, and to motivate why prefetching itself is worth

studying.

1.2.1 Caches

Caches are a critical first step toward coping with memory latency, but are not a panacea, as

we saw already in Figures 1.2 and 1.3. Caches reduce latency from a memory access to a

cache access whenever data items are found in the cache. The likelihood of finding data in

Chapter 1. Introduction 5

the cache depends not only on the size and organization of the cache, but also on the inherent

locality of referencewithin the application. Locality can occur in both time and space:temporal

locality is the tendency for a recently-accessed item to be accessed again soon, andspatial

locality is the tendency for itemsneara recently-accessed item to be accessed soon. Since most

applications exhibit a reasonable amount of locality, caches are generally quite useful. As a

result, most commercial RISC microprocessors provide support for cache hierarchies, including

on-chip primary instruction and data caches. The benefits of caches in multiprocessors have also

been recognized, where despite the complication of keeping shared writable datacoherent[6], a

number of multiprocessors with caches have been implemented [3, 41, 47, 55]. Therefore caches

are an integral part of the memory latency solution, and the remaining techniques we discuss

build upon caching as a foundation.

1.2.2 Locality Optimizations

Locality optimizations attempt to make caches more effective by restructuring computation to

enhance data locality. One important example of a locality-improving transformation isblocking

(also known astiling) [1, 22, 23, 30, 60, 64, 87], which works as follows. Rather than operating on

entire rows or columns of an array, blocked algorithms operate on submatrices orblocks, so that

data loaded into the faster levels of the memory hierarchy are reused. Other useful transformations

include unimodular loop transforms such as interchange, skewing and reversal [87]. Since these

optimizations improve the code’s data locality, they not only reduce the effective memory access

time but also reduce the memory bandwidth requirement.

For multiprocessors, the concept of data locality can be extended to minimize not only

accesses to main memory, but also communication between processors. This involves both

the placement of data in processors’ local memories (known asdata decomposition) and the

mapping of the computation onto the processors of the parallel machine (known ascomputation

decomposition). The most popular approach to this complex optimization problem is for the

programmer to explicitly specify the data decomposition through directives in the programming

language [11, 38, 43, 67, 78, 82, 88], while the compiler is responsible for decomposing the

computation. Another approach is for the compiler to determine both the data and computation

decompositions [4, 5, 10, 12, 34, 35, 56].

While locality optimizations are quite useful when they work, their applicability is somewhat

limited because not only must there be a better way to structure the code (which is not always

the case), but it also must belegal to do so. Whenever dependence analysis [58] is inexact,

6 Chapter 1. Introduction

the compiler usually has to be conservative and assume that dependencies could be violated

if the code was restructured. In practice, this means that these types of optimizations are not

frequently applicable (as we will observe later in Section 3.4). Therefore to cope with whatever

latency cannot be reduced through caching and locality optimizations, we consider techniques for

toleratingmemory latency.

1.2.3 Buffering and Pipelining References

One way to tolerate memory latency is to allow references to bebufferedand pipelined. In

current uniprocessor systems, this technique is typically applied only to writes in the form of

write buffers. Write buffers exploit the fact that a processor does not have to wait for a write to

complete as long as it properly observes the effect of the written data in the future. Therefore

the processor can perform a write by simply issuing it to the write buffer, provided that future

reads check the write buffer for matching addresses. The advantage of a write buffer is not only

that the processor does not stall when executing a write, but also that multiple writes can be

overlapped to exploit pipelining.

Buffering read accesses is more difficult because unlike writes, the processor typically cannot

proceed until the read access completes, since it needs the data that is being read. Withnon-

blocking loadsand a lockup-free cache[45], it is possible to buffer and pipeline reads. A

non-blocking load means that rather than stalling at the time the load is performed, the processor

postpones stalling until the data is actually used. A lockup-free cache permits multiple outstanding

cache misses. By combining the two, it would be possible to buffer multiple reads, and to pipeline

their accesses. However, very few commercial microprocessors currently support non-blocking

loads due to the complexity involved, and in practice the use of a load value typically occurs

shortly after the load is performed. Therefore tolerating read latency through buffering and

pipelining is not especially promising.

Buffering and pipelining accesses in a multiprocessor is complicated by the restrictions placed

on the causality of accesses in different processors. In the strictest case, known assequentialor

strongconsistency [50], all accesses to shared data must appear as though the different processes

were interleaved on a sequential machine. While conceptually intuitive and elegant, sequential

consistency imposes severe restrictions on the outstanding accesses that a process may have,

thus restricting the buffering and pipelining allowed. In contrast,relaxed consistency models[2,

18, 26, 27] permit accesses to be buffered and pipelined, provided that explicit synchronization

events are identified and ordered properly. Once again, however, the main benefit of these relaxed

Figure 1.4: Illustration of how prefetching improves performance.

consistency models is hiding write latency [26]. To address read latency effectively, we must

look beyond buffering and pipelining.

1.2.4 Prefetching

The two main techniques for tolerating read latency as well as write latency areprefetchingand

multithreading. The key to tolerating read latency is to split apart therequestfor data and the

useof that data, while finding enoughparallelism to keep the processor busy in between. The

distinction between prefetching and multithreading is that prefetching finds the parallelism within

a single threadof execution, while multithreading exploits parallelism acrossmultiple threads.

To hide the latency within a single thread, the request for the data (i.e. the prefetch request)

must be moved back sufficiently far in advance of the use of the data in the execution stream.

This effectively requires the ability topredict what data is needed ahead of time. In contrast,

the multithreading approach splits read transactions by swapping out the currently executing

thread when it suffers a cache miss, executing other concurrent threads for the duration of the

miss to keep the processor busy, and finally resuming the initial thread once the memory access

completes. Prefetching will be discussed in this section, while multithreading will be discussed

in more detail in Section 1.2.5.

Figure 1.4 is a simple illustration of how prefetching improves performance. In the case

8 Chapter 1. Introduction

without prefetching (shown on the left), the processor stalls when it attempts to load two locations

(A andB) that are not present in the cache. If prefetches forA andB can be issued far enough

in advance in the instruction stream (as shown on the right), then the memory accesses for

both locations will have completed before the loads are executed, and hence the processor will

not stall. The key observation here is that prefetching not only allows memory accesses to be

overlapped with computation, but it also allows memory accesses to be overlapped with other

memory accesses (i.e. the accesses can be pipelined).

Prefetches on a scalar machine are analogous to vector memory accesses on a vector machine.

In both cases, memory accesses are overlapped with computation and other accesses. Further-

more, similar to vector registers, prefetching allows caches in scalar machines to be managed

by software. A major difference is that while vector machines can only operate on vectors in a

pipelined manner, scalar machines can execute arbitrary sets of scalar operations well.

Prefetching can occur in many different forms. One common type of prefetching occurs

whenever cache lines are longer than a single word. In these cases, additional words are brought

into the cache on each cache miss. This is most useful when there is abundant spatial locality,

such as when iterating across an array in a unit-stride manner. However, increasing the cache line

size is not the most effective form of prefetching, since memory bandwidth is wasted whenever

useless data is brought into the cache [64]. In addition, long cache lines can aggravate miss rates

in shared-memory multiprocessors by causing unnecessary amounts offalse sharing[19, 81]. As

we have seen already in Figures 1.2 and 1.3, a significant amount of latency remains despite the

prefetching benefit of multi-word cache lines.

Another form of prefetching could occur withnon-blocking loads[66]. With a non-blocking

load, rather than stalling when the load is executed, any stalls are postponed until the load result

is actually needed. So one could imagine that if the loads could be moved far enough in advance

of the uses of data, then prefetching could be implemented in this manner. However, there are

two important limitations on how far loads can be moved ahead of their uses. First, there is

the problem of running out of registers. If the compiler attempts to extend register lifetimes to

hundreds of cycles, it will run out of registers very quickly. Second, there is the problem of

maintaining program correctness. For example, a load cannot be moved ahead of a store unless it

is certain that they are to different locations. Since memory disambiguation is a difficult problem

for the compiler to solve (particularly in codes with indirect references), this is likely to be a

serious limitation.

Some elaborate prefetching schemes that are strictly hardware-based have also been proposed.

Chapter 1. Introduction 9

We will discuss those schemes only briefly now, and will examine them in greater detail later

in Section 5.3.1. Perhaps the most sophisticated of these techniques is the one proposed by

Baer and Chen [7]. With this scheme, the processor maintains a history table to keep track

of the types of reference patterns it is seeing. If it detects a pattern of constant-stride access

behavior for a particular instruction, it will attempt to prefetch ahead for that reference in the

future. This prefetching occurs through a “lookahead PC”, which walks ahead of the actual PC

using branch prediction. The lookahead PC is used to look up these future instructions in the

history table to see whether they should be prefetched. Another scheme proposed by Lee [53]

attempted to decode future instructions using a lookahead buffer to detect memory references.

One advantage of strictly hardware-based schemes is that they do not incur any instruction

overhead, unlike software-controlled prefetching (which we will discuss next). However, their

disadvantages include the fact that they are limited to prefetching constant-stride accesses, they

are limited by branch prediction (which is less than perfect), and they may entail a significant

hardware cost.

Finally, with software-controlled prefetching, explicit prefetch instructions are executed by

the processor to move data into the cache. The format of these instructions resembles a normal

load instruction, but without a register specifier (since the data is only placed in the cache).

Prefetch instructions also differ from normal load instructions in that they are non-blocking and

they do not take memory exceptions. The non-blocking aspect allows them to be overlapped

with computation, and the fact that they do not take exceptions is useful because it permits more

speculative prefetching strategies (e.g., dereferencing pointers before it is certain that they point

to legal addresses). The challenges of software-controlled prefetching include the fact that some

sophistication is needed to insert the prefetches into the code, and also that the new prefetch

instructions will involve some amount of execution overhead. The advantages of software-

controlled prefetching are that only a small amount of hardware support is necessary, and a

broader class of reference patterns can be covered than simply constant stride accesses (e.g.,

indirect references, such as in sparse-matrix code).

1.2.5 Multithreading

Figure 1.5 illustrates how multithreading (also known as “multiple-context processing”) can also

be used to tolerate latency [3, 36, 44, 85]. In this figure, context #1 suffers a cache miss when

it attempts to load locationA. At this time, context #1 is swapped out and the processor begins

to execute context #2. Hopefully by the time context #2 needs to be swapped out (which occurs

Figure 1.5: Illustration of how multithreading improves performance.

when it suffers a cache miss trying to load locationB), the memory access for the original context

has completed, and therefore context #1 is ready to run again.

Multithreading has two advantages over software-controlled prefetching. First, it can handle

arbitrarily complicated access patterns, including situations where it is impossible to predict the

addresses ahead of time (and therefore prefetching will not work). Second, since it does not

require any software support, it can improve the speed of existing executables without recompi-

lation.

However, multithreading has several disadvantages relative to software-controlled prefetching.

First of all, to make a single application execute faster, additional concurrent threads of execution

are needed. This concurrency may or may not exist. Particularly in a uniprocessor environment, it

is unlikely that a programmer would go through the pain of parallelizing their application for the

sake of multithreading. A second limitation is the overhead of switching between contexts. Such

overhead occurs because: (i) data cache misses are detected late in the pipeline, and subsequent

instructions that have entered the pipe must be flushed; and (ii) saving and restoring context state

(e.g., the register file) may take additional time. These switching overheads can potentially offset

much of the performance gain of multithreading. Finally, to minimize the context switching

overhead, a significant amount of hardware is required (e.g., replicated register files). Therefore

multithreading is clearly a more expensive solution than prefetching, both in terms of concurrency

demands and hardware support.

Chapter 1. Introduction 11

Table 1.1: Techniques for coping with memory latency.

Technique Benefit Exploits Hardware Support Software Support

Caching Reduces Locality of Caches1 None
Latency Reference

Locality Reduces Reordering Locality-
Optimizations Latency Computation to Caches Enhancing

Enhance Locality Transformations
Buffering and Tolerates Writes Can Occur Lockup-free None3

Pipelining Write Latency Out-of-Order Caches2

Software- Tolerates Parallelism Lockup-free Insert
Controlled Read and within a Caches, Prefetch Prefetches
Prefetching Write Latency Single Thread Instruction

Tolerates Parellelism Lockup-free
Multithreading Read and across Caches, Thread None

Write Latency Multiple Threads Control Logic,
Replicated State4

1.2.6 Overall Approach

We now focus on how each of these techniques, particularly prefetching, fits into the “big picture”

of coping with memory latency. As a quick summary, Table 1.1 presents the benefits and

requirements of each technique. Given these techniques, we would like to apply them in the

following order.

First, the latency should bereducedas much as possible, through caching and locality op-

timizations. Reducing latency is preferable over tolerating latency since it actually reduces the

demand for main memory bandwidth, which can be crucial. Caches provide the foundation for

all of these latency-hiding techniques, and locality optimizations are also attractive since they

require no additional hardware support.

After reducing latency, we then want totolerateany remaining latency, starting with the least

expensive techniques before resorting to more costly techniques. The first step is buffering and

pipelining accesses, which is an effective means of hiding write latency and requires only a lockup-

free cache—a requirement common to all latency-tolerating techniques. To address read latency

as well, the choices are either prefetching or multithreading. Software-controlled prefetching

1Hardware to support coherency mechanism is also needed for multiprocessors.
2Lockup-free caches permit both buffering and pipelining. For buffering alone, write buffers are sufficient.
3Explicit synchronization must be identified for multiprocessors.
4The replicated thread state may include replicated register files.

12 Chapter 1. Introduction

appears to be the more desirable solution since it requires significantly less hardware support

than either hardware-controlled prefetching or multithreading, and perhaps more importantly it

can speed up the performance of asingle thread of execution, rather than requiring multiple

concurrent threads as in the case of multithreading. If software-controlled prefetching cannot

effectively hide read latency, the final step would be multithreading.

Thus the open question of just how effective software-controlled prefetching can be in prac-

tice is a key factor in deciding whether processor architectures should support prefetching, mul-

tithreading, or both. Addressing this open question is one of the goals of this dissertation, as we

discuss further in the next section.

1.3 Research Goals

This section discusses the research goals of this dissertation. At the highest level, our goal is

to evaluate and improve upon the latency-hiding benefits of software-controlled prefetching. We

focus specifically oncompiler-insertedprefetching, since this is obviously preferable to placing the

burden of prefetch insertion on the programmer. Since we are interested in practical results rather

than theoretical limits, we implement our prefetching algorithms in a state-of-the-art compiler to

measure the actual performance of working codes with prefetching. The goals of the compiler

algorithm itself are described below.

A key goal for any compiler-based prefetching algorithm is the ability to cover a wide range

of programs (e.g., dense-matrix codes, sparse-matrix codes, irregular general-purpose codes, etc.).

Ideally, any application suffering from memory latency could benefit from prefetching. However,

covering all types of applications and access patterns is an overly-ambitious goal, and therefore

we must limit our scope to make substantial headway. Our approach is to start with an important

class of applications and handle them well, and then later build upon this core algorithm to

cover other important cases. The access pattern we start with is array references where the

array indices areaffine (i.e. linear) functions of surrounding loop indices; such access patterns

occur in many types of applications, particularly dense-matrix codes. These applications are

interesting both because they tend to suffer from memory latency, due to the large size of the

arrays and the often wide separation between reuses, and because the access patterns are regular

and predictable, which gives prefetching a good chance of success [61]. Next we extend this

algorithm to handleindirect array references, which are another important case and are common

to sparse-matrix codes. Finally, we address multiprocessing, where memory latencies can be quite

Chapter 1. Introduction 13

large. By handling all of these cases, our compiler can cover a significant fraction of scientific

and engineering codes.

The second key goal of a prefetching compiler algorithm is maximizing the performance

improvement for the cases that are covered. Since prefetching involves acost as well as a

benefit, care must be taken to minimize these overheads while maximizing the latency-hiding

benefits to achieve the best overall performance.

In addition to these compiler-oriented research goals, our goals in the architecture domain

are to determine the proper architectural support for prefetching, and to comparatively evaluate

prefetching with respect to other latency-hiding techniques, such as locality optimizations, relaxed

consistency models, and multithreading.

1.4 Related Work

Several other researchers have also worked on software-controlled prefetching. This section

summarizes their work and relates it to ours.

Porterfield [9, 64] was the first to explore software-controlled prefetching for uniprocessors.

He proposed a compiler algorithm for inserting prefetches into dense-matrix codes. He imple-

mented his algorithm as a preprocessing pass that inserted prefetching into the source code. His

initial algorithm prefetched all array references in inner loops one iteration ahead. He recognized

that this scheme was issuing too many unnecessary prefetches, and presented a more sophisti-

cated scheme based on dependence vectors and overflow iterations (i.e. the predicted number of

iterations where a loop will access more data than fit in the cache). Since the simulation occurred

at a fairly abstract level, the prefetching overhead was estimated rather than measured. Overall

performance numbers were not presented. Also, the more sophisticated scheme was not automat-

ed, since the overflow iterations were calculated by hand, and did not take cache line reuse into

account. Despite leaving many important questions unanswered, Porterfield’s work demonstrated

that software-controlled prefetching was a promising technique that warranted further exploration.

Klaiber and Levy [42] extended Porterfield’s work by recognizing the need to prefetch more

than a single iteration ahead. They included several memory system parameters in their equation

for how many iterations ahead to prefetch, and inserted prefetches by hand at the assembly-

code level. The results were presented in terms of average memory access latency rather than

overall performance. Also, in contrast with this dissertation, they proposed prefetching into a

separatefetchbufferrather than directly into the cache. However, as we will discuss in detail

14 Chapter 1. Introduction

later in Section 5.1.3, using a separate fetchbuffer has a number of important disadvantages,

including the sacrifice of chip area that could otherwise be used for a normal cache, and the fact

that it becomes very difficult to makes prefetchesnon-binding, which is a crucial property for

multiprocessors.

Gornish, Granston and Veidenbaum [31, 32] presented an algorithm for determining the

earliest time when it is safe to prefetch shared data in a multiprocessor with software-controlled

cache coherency. Since the prefetches are binding, all control and data dependencies must be

carefully considered. Their work is targeted for a block prefetch instruction, rather than the

single-line prefetches considered in our study. The proposed schemes are evaluated using a large

number of numerical subroutines. Although the speedups predicted from static analysis are quite

high, over twofold, the speedups obtained using detailed simulations are limited to 10-20%. The

complexity of the compiler algorithm presented in this work illustrates how difficult the compiler’s

job becomes whenbinding rather thannon-bindingprefetches are used. This is in sharp contrast

with the simplicity of our non-binding prefetching algorithm, presented later in Section 4.1.

Chenet al. [13] investigated prefetching for non-numerical codes. They attempted to move

address generation back as far as possible before loads to hide a small cache miss latency (10

cycles), and found mixed results. Generating addresses early is difficult in non-numerical code

because control and data dependencies tend to be tight, and the access patterns can be very

irregular. Although these codes are difficult to prefetch, they also tend to make better use of the

cache than numerical codes and therefore typically suffer less from memory latency. Because

of the difficulty of prefetching highly irregular access patterns and the relatively small expected

gains, we chose not to focus on this class of applications during this dissertation.

Tullsen and Eggers [83] post-processed reference traces to evaluate the performance of an

“oracle” prefetching scheme on a bus-based multiprocessor architecture with limited bandwidth.

They observed that if an application is already bandwidth-limited, prefetching cannot improve

performance. However, because of their post-processing trace methodology, they were not able

to make proper use ofexclusive-modeprefetches, which can potentially eliminate up to half of

the memory bandwidth consumption. As we will show later in Section 4.3.4, exclusive-mode

prefetching eliminates up to 27% of the memory requests in our applications, which would have

translated directly into improved performance in their bus-bandwidth-limited architecture.

We now place this related work in the context of our own research. Porterfield’s work on

software-controlled prefetching for uniprocessors was done concurrently with our investigation of

non-binding software-controlled prefetching for multiprocessors as part of the DASH project [54].

Chapter 1. Introduction 15

Our study, where we inserted prefetches by hand, was the first to considernon-bindingprefetch-

ing for multiprocessors [61]. The compiler algorithm presented in this dissertation partially

overlapped the work by Porterfield and by Klaiber and Levy, but has a number of key dif-

ferences. First, our uniprocessor algorithm is more comprehensive in the types of locality it

optimizes for, including temporal, spatial, and group locality. Second, unlike previous studies,

we have implemented our algorithm in an optimizing compiler, and can therefore generate overall

performance numbers for fully-functional codes. Finally, the scope of our complete algorithm is

much broader since it also covers indirect references and multiprocessing.

1.5 Contributions

The primary contributions of this dissertation are the following:

� The proposal of a new compiler algorithm for inserting prefetch instructions in scientific and

engineering codes. This algorithm improves upon several previous proposals that focused

on dense-matrix uniprocessor codes [31, 42, 64]. In addition, this algorithm handles indirect

references, which frequently occur in sparse-matrix codes, and targets large-scale shared-

memory multiprocessors as well as uniprocessors.

� A detailed evaluation of the prefetching algorithm based on a full compiler implementation.

The prefetching algorithm is implemented in the SUIF (Stanford University Intermediate

Form) compiler, which includes many of the standard optimizations and generates code

competitive with the MIPS 2.10 compiler[80]. Using this compiler system, we have been

able to generate fully functional and optimized code with prefetching. By simulating the

code with a detailed architectural model, we can evaluate the effect of prefetching on

overall system performance. It is important to focus on the overall performance, because

simple characterizations such as the miss rates alone are often misleading. The results

of this evaluation show that our algorithm is quite successful at hiding memory latency,

improving the performance of some applications by as much as twofold.

� A study of the interaction of prefetching and other techniques for hiding latency, such

as data locality optimizations, relaxed consistency models, and multithreading. We find

that prefetching is complementary to both locality optimizations and relaxed consistency

models, but the benefit of combining prefetching and multithreading is less clear.

16 Chapter 1. Introduction

� An investigation of the architectural support necessary for software-controlled prefetching,

including proposals that may further increase the prefetching performance benefit. In addi-

tion to including prefetch instructions in the instruction set, we find that the main support

necessary for prefetching is a lockup-free cache. Further enhancements to the architec-

ture may include hardware miss counters to expedite the use of dynamic information, and

associativity to reduce the cache conflict problems.

1.6 Organization of Dissertation

Chapter 2 describes our core prefetching algorithm, which handles affine array references and

thus dense-matrix code. A key feature of this algorithm is minimizing prefetching overhead by

only prefetching references that are predicted to suffer cache misses. This core algorithm is the

basis for all of our experiments, and will be extended in later chapters.

Chapter 3 studies the performance benefits of prefetching for uniprocessor applications, be-

ginning with a detailed evaluation of the algorithm described in Chapter 2. Next we evaluate the

interaction between prefetching and locality optimizations, which are another important latency-

hiding technique for dense-matrix codes. Finally, we extend our core compiler algorithm to

handle indirect references (and hence sparse-matrix codes), and measure the resulting perfor-

mance improvement of relevant applications.

Chapter 4 focuses on prefetching for large-scale shared-memory multiprocessors. These

machines are interesting because of their large performance potential, and because they are

particularly prone to suffering from memory latency. We begin by discussing how the prefetching

compiler algorithm described in Chapters 2 and 3 is modified to address the issues unique to

multiprocessing, and then evaluate its effect on the performance of the entire SPLASH [72]

application suite. We also compare compiler-inserted prefetching with hand-inserted prefetching

to see whether the compiler is living up to its potential, and to discover methods for further

improvement.

Chapter 5 explores the architectural issues associated with prefetching, and is divided into

three distinct sections. The first section examines the architectural support necessary for the

basic prefetching model assumed in Chapters 3 and 4. The second part considers ways to

enhance the architecture to further improve prefetching. The third section comparatively studies

other latency-hiding techniques that require architectural support, namely hardware-controlled

prefetching, relaxed consistency models, and multithreading.

Chapter 1. Introduction 17

Finally, Chapter 6 contains a summary of the important results in this dissertation, and dis-

cusses their implications. It also discusses directions for future work in this area.

Chapter 2

Core Compiler Algorithm for

Prefetching

In this chapter we present our compiler algorithm for prefetching dense-matrix codes. These

applications are a top priority since they consume large numbers of cycles on supercomputers

today, they have poor caching behavior, and yet they have regular enough access patterns that

prefetching has a reasonable chance of success. Therefore we start by handling these affine array

accesses (i.e. where the index functions are affine expressions of the surrounding loop variables),

and later build upon this core algorithm in subsequent chapters to handle other important cases

such as indirect references and multiprocessor codes.

This chapter is organized in five sections. The first section discusses some key concepts

for compiler-based prefetching, including the need to avoid unnecessary overhead. In light of

these goals, Section 2.2 provides an overview of our compiler algorithm, which includes both an

analysis phase and a scheduling phase. Details of these two phases are presented in Sections 2.3

and 2.4, respectively. The analysis phase useslocality analysisto predict which references should

be prefetched, and the scheduling phase first usesloop splitting to isolate those dynamic miss

instances, and then usessoftware-pipeliningto schedule prefetches the proper amount of time

in advance. Finally, Section 2.5 makes our algorithm concrete by showing the output for some

example code, and also discusses issues that arose when implementing the algorithm in the SUIF

compiler, such as whether prefetch insertion should occur before or after scalar optimization. The

success of this algorithm will be evaluated later in Chapter 3.

18

Chapter 2. Core Compiler Algorithm for Prefetching 19

2.1 Key Concepts

In this section we discuss some important concepts that are useful when thinking about prefetching

compiler algorithms.

First of all, prefetches are onlypossibleif the memory addresses can be determined ahead of

time. For example, if the address is dependent on data that is only available immediately before

the memory reference, it may not be possible to compute the address far enough in advance.

While this is an important concern with irregular computations, such as those containing pointers

and linked lists, it is not an issue for the dense-matrix codes considered in this chapter, since the

affine array addresses can always be computed ahead of time.

Given that prefetching is possible, a useful metric for determining success is thecoverage

factor, which is the fraction of original cache misses (i.e. without prefetching) that have been

prefetched. Ideally, we would like to prefetch all cache misses, thus achieving a coverage factor

of 100%.

However, it is not necessarily the case that “more is better” with prefetching, since prefetches

issued for data already in the cache result in overhead without any benefit. Such prefetches are

referred to asunnecessary prefetches, and should be avoided.

Finally, even if a prefetch is issued for data that is not already in the cache, it may not be

effectiveat improving performance if the data is not found in the cache during the subsequent

memory reference. This can happen for two reasons. Obviously if the prefetch is issuedtoo

late, there simply isn’t enough time to hide the memory latency. But on the other hand, if the

prefetch arrives in the cachetoo early, it may be displaced by other references before it has a

chance to be referenced. Having discussed these high-level prefetching concepts, we now focus

on the compiler algorithm itself.

Any compiler algorithm for inserting prefetches can be viewed as having two distinct phases.

The first phase is ananalysisphase, where the compiler is trying to answer the question: what

exactly should be prefetched? The ideal answer to this question is precisely the set of dynamic

references that suffer cache misses. By answering this question correctly, the compiler will

maximize the coverage factor and minimize unnecessary prefetches. Once the compiler knows

what it wants to prefetch, the second phase is toschedulethose prefetches so that they are

effective and so that they add a minimum amount of instruction overhead.

Minimizing overhead is important, because although the benefit of prefetching is hiding

latency, prefetches can introduce two forms of overhead. First, there are additional instructions

20 Chapter 2. Core Compiler Algorithm for Prefetching

Table 2.1: Hit rates of affine array accesses.

Affine Access
Benchmark Hit Rate (%)

MXM 91.2
CFFT2D 87.7

CHOLSKY 60.9
BTRIX 68.7

GMTRY 36.0
EMIT 87.1

VPENTA 57.7
TOMCATV 91.5

OCEAN 91.9
IS 89.1
CG 88.9
EP 75.7
MG 95.4

to issue the prefetches. This includes not only the prefetch instructions themselves, but also

any instructions needed to generate the prefetch addresses. Second, any prefetches that do not

eliminate cache misses, either because they are unnecessary or ineffective, will increase the load

on the memory subsystem,1, which can lead to increased queueing delays for all references.

For the dense-matrix applications shown earlier in Figure 1.2, we find that while the miss

rate is high enough to substantially affect performance, the hit rate of the array references is still

very high (over 60% for most programs), as shown in Table 2.1. (Details of this uniprocessor

architecture were given earlier in Section 1.1.) Therefore if we were to prefetch all of the array

references, then over 60% of the prefetches would be unnecessary for most of the programs.

Avoiding these unnecessary prefetches is an important goal of our compiler algorithm, which we

describe in the next several sections.

2.2 Overview of Algorithm

We have developed a compiler algorithm that selectively prefetches only those references that

are likely to suffer cache misses [62]. Our algorithm consists of the following three major steps:

1If the primary cache is checked before prefetches proceed further through the memory hierarchy (we will discuss
this in more detail later in Section 5.1.3) then the additional memory subsystem loading caused by unnecessary
prefetches will be limited to increased primary cache tag contention.

Chapter 2. Core Compiler Algorithm for Prefetching 21

1. For each static affine array reference, uselocality analysisto determine which dynamic

accesses are likely to be cache misses and therefore should be prefetched.

2. Isolate the predicted dynamic miss instances usingloop splittingtechniques such as peeling

and unrolling. This avoids the overhead of adding conditional statements to the loop bodies.

3. Schedule prefetches the proper amount of time in advance usingsoftware pipelining, where

the computation of one iteration is overlapped with prefetches for a future iteration.

The first step in our algorithm comprises theanalysisphase, thus answering the question

of what we should prefetch. The details of this locality analysis algorithm are presented in

Section 2.3. The second and third steps constitute theschedulingphase of our algorithm, and are

described in Section 2.4. We will tie all of these components together in Section 2.5 by showing

the code generated for a running example that is introduced in Section 2.3.1 and used throughout

the remainder of this chapter.

2.3 Locality Analysis

This section describes the first step in our algorithm, which is to uselocality analysisto determine

which references are likely to cause cache misses.

Before we begin our discussion, we must define and distinguish two fundamental concepts:

reuseand locality. We say thatreuseoccurs whenever the same data item is referenced multiple

times. Understanding data reuse is essential to predicting cache behavior since a data item will

normally only be found in the cache if its line was referenced sometime in the past. However,

reuse might not result in a cache hit if intervening references flush the data item from the cache

between uses. If the reused data actually does remain in the cache, we say that the reference

that enjoys the cache hit haslocality. Therefore, it is important to realize thatreuse does

not necessarily result in locality. Instead, the references with data locality are a subset of the

references with data reuse.

Given this relationship between reuse and locality, our locality analysis algorithm is broken

down into the following three substeps:

1. Discover the intrinsic data reuses within a loop nest throughreuse analysis. This would

be equivalent to solving the locality analysis problem if we had an infinitely large cache.

22 Chapter 2. Core Compiler Algorithm for Prefetching

2. Given that we have afinite rather than an infinite cache, determine the set of reuses that

actually result in locality. This is accomplished by computing thelocalized iteration space

for the given cache size, which is the set of loops within a nesting that can carry locality.

By intersecting the intrinsic data reuses with the localized iteration space, we can compute

data locality, i.e.

Data Reuse\ Localized Iteration Space)Data Locality

3. Express the data locality for each reference in terms of aprefetch predicate, which is a

logical predicate that is true during each dynamic iteration when the reference is expected

to suffer a cache miss. We will later insert prefetches such that a reference is prefetched

whenever its prefetch predicate is true.

These first two substeps have been adapted from Wolf and Lam’s data locality optimizing

algorithm [86, 87], while the third substep is unique to prefetching. Although analyzing data

locality is essential for both locality optimizations and prefetching, the differing goals of the two

techniques lead to differences in how the analysis is applied. For locality optimizations, the goal

of locality analysis isquantifyingthe data locality of various permutations of the loop nest to select

the transformation that yields the maximum locality. For prefetching, the goal isidentifyingrather

than quantifying references with data locality, and the algorithm does not consider permuting the

given loop nest. There are other differences, such as the way the localized iteration space is

computed. For Wolf and Lam’s algorithm, the assumption is that all loop bounds are large,

and therefore the localized iteration space only contains loops other than the innermost loop if

transformations such as “cache blocking” are actively applied. In contrast, since prefetching is

interested indiscoveringrather thanenhancingdata locality, it is more important to determine

the given localized iteration space accurately, so our algorithm attempts to reason about constant

and symbolic loop bounds. A final difference is that prefetching attempts to analyze locality in

all loop nests, rather than just the well-behaved loop nests where it is considered safe to reorder

the computation.

The result of the first two substeps of this algorithm is a mathematical description of the data

locality in a vector spacerepresentation. While this description is precise, a more convenient

representation for our purposes is the prefetch predicates which are constructed during the third

substep of our locality analysis algorithm. Details of these three substeps will be presented in

Sections 2.3.2, 2.3.3, and 2.3.4, respectively. Before going into these details, however, we first

introduce the following example.

Figure 2.1: Data locality example.

2.3.1 An Example

The code in Figure 2.1 illustrates the types of locality that our algorithm can discover. We will

use this code as a running example throughout the remainder of this chapter. We assume, for

this example, that the cache is 8 Kbytes, the prefetch latency is 100 cycles and the cache line

size is 4 words (two double-word array elements to each cache line). (Note that for the purpose

of illustration, these parameters differ slightly from our previous uniprocessor architecture.) For

this example, the set of references that will cause cache misses can be determined by inspection.

For each array reference in our example code, Figure 2.1(b) shows which iterations hit

and miss in the cache usingiteration spaceplots. In this representation, the horizontal axis

corresponds to thej loop, the vertical axis corresponds to thei loop, and each node represents

24 Chapter 2. Core Compiler Algorithm for Prefetching

an iteration within the loop nest. Therefore as the loop nest is executed, the nodes in the iteration

space would be visited in the following order: first the bottom-most row is visited from left-to-

right, then the second-from-bottom row is visited from left-to-right, and so on. To simplify the

graphs, we only show the first eight out of 100j loop iterations.

The three array references in Figure 2.1 illustrate the three different types of locality: temporal,

spatial, and group.Temporal localitycan occur when a given reference reuses exactly the same

data location.Spatial localitycan occur when a given reference accesses different data locations

that fall within the same cache line.Group Localitycan occur when different references access

the same cache line.

TheA[i][j] reference in Figure 2.1 illustrates spatial locality. In this case, given that each

cache line contains two array elements, we would expect misses to occur on every other iteration

as cache line boundaries are crossed. These misses are shown graphically in Figure 2.1(b).

TheB[j+1][0] reference is an example of temporal locality. In contrast with theA[i][j]

reference, since theB[j+1][0] reference traverses the columns rather than the rows of the

matrix along the inner loop, there is no cache line reuse and therefore allB[j+1][0] references

suffer misses the first time through thej loop. However, since the sameB[j+1][0] locations

are reused on subsequenti loop iterations, and since these 800 bytes of data are likely to remain

in the 8 Kbyte cache acrossi loop iterations, we would expect theB[j+1][0] references to

hit in the cache after the firsti loop iteration. This effect is also illustrated in Figure 2.1(b).

Finally, theB[j+1][0] andB[j][0] references are an example of group locality. Group

locality is a relationship that can occur between multiple references whenever one reference brings

in much of the data used by the other references. In this example, the data for theB[j][0]

reference is fetched by theB[j+1][0] reference during the previousj iteration. Consequently

the B[j][0] reference suffers only a single cache miss during the entire loop nest. Whenever

group locality occurs, we only worry about prefetching theleading referencewithin the group,

which is the reference that accesses new data first and therefore suffers the bulk of the cache

misses. In this example,B[j+1][0] is the leading reference, and therefore we would not issue

prefetches forB[j][0] .

The remainder of this section describes how locality analysis systematically uncovers the

types of locality shown in this example.

Chapter 2. Core Compiler Algorithm for Prefetching 25

2.3.2 Reuse Analysis

Since locality can only occur if there is reuse, the first step in locality analysis is determining the

intrinsic data reuse throughreuse analysis. Reuse analysis attempts to discover those instances

of array accesses that refer to the same memory line.2 There are three kinds of reuse, which

parallel the three kinds of locality described in Section 2.3.1: temporal, spatial, and group. The

difference is that while reuse is an inherent property of code, locality also depends on the ability

of the cache to retain data. Therefore if we had an infinitely large cache, which would retain

data perfectly, reuse would be equivalent to locality.

Our reuse analysis step is nearly identical to that proposed by Wolf and Lam [86, 87], which

we will briefly summarize in this subsection. Our terminology is slightly different, however,

since we tailor our reuse categories to more closely match our prefetching algorithm. What they

refer to asself-temporalreuse is the same as what we refer to astemporalreuse, and corresponds

to whenever a given array reference accesses thesamedata location multiple times within a loop

nest. However, whereas they defineself-spatialreuse to include accesses anywhere within the

same cache line, we definespatial reuse only as accesses todifferent locations within the same

line. Therefore their definition of self-spatial reuse includes self-temporal reuse as a subset, while

our definition of spatial reuse does not. Finally, what they callgroup-spatialreuse is the same as

what we callgroup reuse, and occurs whenever different array references access the same cache

line. We do not treat theirgroup-temporalreuse (different references accessing exactly the same

location) as a special case, since it is a subset of our group reuse. As we will demonstrate later

in this chapter, our categories of reuse correspond to different cases for scheduling prefetches.

A key simplification of reuse analysis is that rather than trying to precisely compute the sets of

iterations (i.e. actual loop index values) that use the same data, which is prohibitively expensive,

we instead succinctly capture the intuitive notion that reuse is carried by a specific loop with the

following mathematical formulation. We represent ann-dimensional loop nest as a polytope in

an n-dimensional iteration space (i.e. a finite convex polyhedron bounded by the loop bounds),

with the outermost loop represented by the first dimension in the space. We represent the shape

of the set of iterations that use the same data by areuse vector space[87]. The remainder of this

subsection describes how this mathematical representation is used to compute temporal, spatial,

and group reuse.

2“Memory line” refers to cache-line-sized blocks of contiguous memory, which are the unique elements that can
be mapped into cache entries.

26 Chapter 2. Core Compiler Algorithm for Prefetching

Temporal Reuse

Since temporal reuse occurs whenever a given reference accesses the same location in multiple

iterations, we can isolate these cases by solving for whenever the array indexing functions yield

identical results, given different loop indices. To facilitate this task, we represent an array indexing

function ~f(~{) which mapsnloop indices intod array indices, wherenis the depth of the loop

nest andd is the dimensionality of the array, as

~f (~{) = H~{+~c

whereHis a dx nlinear transformation matrix,~{ is ann-element iteration space vector, and~c

is a d-element constant vector. For example, the three array references in Figure 2.1 would be

written as

A[i][j] = A

0
@
2
4 1 0

0 1

3
5
2
4 i

j

3
5+

2
4 0

0

3
5
1
A ,

B[j][0] = B

0
@
2
4 0 1

0 0

3
5
2
4 i

j

3
5+

2
4 0

0

3
5
1
A , and

B[j+1][0] = B

0
@
2
4 0 1

0 0

3
5
2
4 i

j

3
5+

2
4 1

0

3
5
1
A .

Given this representation, temporal reuse occurs between iterations~{ 1 and~{ 2 wheneverH~{ 1+

~c =H~{ 2 +~c, i.e. whenH(~{ 1 �~{ 2) = ~0. Rather than worrying about individual values of~{ 1

and~{ 2, we say that reuse occurs along the direction vector~r when H(~r) = ~0. The solution

to this equation is thenullspaceof H, which is a vector space inR n (i.e. each vector hasn

components).

To make this analysis more concrete, consider theB[j+1][0] reference from our example

in Figure 2.1. This reference accesses the same location in iterations(i1; j1) and(i2; j2) whenever

2
4 0 1

0 0

3
5
2
4 i1

j1

3
5+

2
4 1

0

3
5 =

2
4 0 1

0 0

3
5
2
4 i2

j2

3
5+

2
4 1

0

3
5 ; or

2
4 0 1

0 0

3
5
2
4 i1 �i 2

j1 �j 2

3
5 =

2
4 0

0

3
5 :

This equation is true wheneverj1 =j 2, and regardless of the difference betweeni1 andi2. In our

vector space representation, we would say that temporal reuse occurs whenever the difference

Figure 2.2: Example of a more complicated access pattern that can be handled by reuse analysis.

between the two iterations lies in the nullspace of

2
4 0 1

0 0

3
5, that is, spanf(1; 0)g. We refer

to this vector space as the temporal reuse vector space. This mathematical approach succinctly

captures the intuitive concept that the direction of reuse ofB[j][0] lies along the outer loop.

This approach can also handle more complicated access patterns such asC[i+j][0] in

Figure 2.2. Intuitively, reuse does not occur along a single loop in this case, but rather along a

“diagonal” across loopsi and j , since the same data is accessed whenever the sum ofi plus j

is equivalent. Using similar notation as before,C[i+j][0] accesses the same data in iterations

(i1; j1) and(i2; j2) whenever

2
4 1 1

0 0

3
5
2
4 i1

j1

3
5+

2
4 0

0

3
5 =

2
4 1 1

0 0

3
5
2
4 i2

j2

3
5+

2
4 0

0

3
5 ; or

2
4 1 1

0 0

3
5
2
4 i1 �i 2

j1 �j 2

3
5 =

2
4 0

0

3
5 :

28 Chapter 2. Core Compiler Algorithm for Prefetching

This equation is true wheneveri1�i 2 =j 2�j 1. With reuse analysis, we can compute this result

directly by solving the nullspace of

2
4 1 1

0 0

3
5, which is spanf(1;�1)g. This diagonal reuse

vector space agrees with our intuition of when reuse occurs, as illustrated in Figure 2.2(b). Thus

we see that this vector space representation allows us to efficiently capture the reuse in a broad

range of affine access patterns.

Spatial Reuse

Computing spatial reuse requires a slight variation on how we compute temporal reuse. Assuming

the data are stored in row major order (an assumption we make without loss of generality),

accesses to the same cache line will only occur when the same row is accessed.3 In addition, the

row index expressions must be different, but still fall within the size of a cache line. We can test

for all of these conditions as follows.

Two different iterations access the same row whenever all but the row index are equivalent.

This is in contrast with temporal reuse, whereall indices, including the row, must be equivalent.

To extract thisspatial reuse vector space, we simply replace the last row inHwith zeros to

createHS, and solve for the nullspace ofHS. For example, consider theA[i][j] reference

in Figure 2.1, whereH=

2
4 1 0

0 1

3
5, and thereforeHS =

2
4 1 0

0 0

3
5. The resulting nullspace of

2
4 1 0

0 0

3
5 is spanf(0; 1)g, which indicates that the same row ofA[i][j] is accessed along the

inner loop.

To check whetherdifferentelements are being accessed within the same row, we compare

whether the temporal and spatial reuse vector spaces are identical. This can occur since reusing

the same data item is a degenerate case of reusing the same cache line (i.e. the nullspace of

His a subset of the nullspace ofH S:). If the temporal and spatial reuse vector spacesare

identical, then there is strictly temporal reuse—if they differ, then there is spatial reuse along the

vectors that are unique to the spatial reuse vector space. For example, theA[i][j] reference

in Figure 2.1 has a temporal reuse vector space of spanfg (i.e. there is no temporal reuse), and a

spatial reuse vector space of spanf(0; 1)g; therefore unique elements within the row are accessed

along spanf(0; 1)g (i.e. the inner loop). For theB[j][0] reference, however, the temporal and

spatial reuse vector spaces are both spanf(1; 0)g, and therefore there is only temporal reuse.

3If the data are stored incolumnmajor order, then accesses to the same cache line can only occur when the same
columnis accessed.

Chapter 2. Core Compiler Algorithm for Prefetching 29

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

foo(C[i],C[j]);

Figure 2.3: Example of non-uniformly generated references.

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

foo(C[2i][j],C[2i+1][j]);

Figure 2.4: Example of uniformly generated references that do not have reuse.

Once we identify accesses to different elements within the same row, the final step is to check

whether the stride is less than the cache line size. If so, then the reference has spatial reuse.

Group Reuse

For reuse among different array references, Gannonet al. observe that data reuse is exploitable

only if the references areuniformly generated; that is, references whose array index expressions

differ in at most the constant term [24]. For example, referencesB[j][0] andB[j+1][0] in

Figure 2.1 are uniformly generated, while referencesC[i] andC[j] in Figure 2.3 are not. In

the former case,B[j][0] is accessing data brought into the cache byB[j+1][0] during the

previousj iteration, making it very likely that this reuse will result in locality. In the latter case,

only iterations near the diagonal (i.e. wheni =j) are likely to have exploitable reuse. Thus we

will only consider group reuse among sets of uniformly generated references.

Although uniformly generated references are the likely candidates for group reuse, it is still

possible that they never access the same data. For example, theC[2i][j] andC[2i+1][j]

references in Figure 2.4 are uniformly generated, but never overlap sinceC[2i][j] only access-

es even rows whileC[2i+1][j] only accesses odd rows of matrixC. To exclude such cases,

we check whether aparticular solutionto the common transformation matrixHexists that yields

the constant difference between the two array index functions. We express this mathematically

by saying that two distinct referencesA[H~{+~c 1] andA[H~{+~c 2] access the same data if and

30 Chapter 2. Core Compiler Algorithm for Prefetching

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

foo(C[i][2j],C[i][2j+1]);

Figure 2.5: Example of references that access the same cache lines despite never accessing the
same data items.

only if

9~r : H~r=~c 1�~c 2: (2:1)

For example, the two references in Figure 2.4 would be represented as

C[2i][j] = C

0
@
2
4 2 0

0 1

3
5
2
4 i

j

3
5+

2
4 0

0

3
5
1
A , and

C[2i+1][j] = C

0
@
2
4 2 0

0 1

3
5
2
4 i

j

3
5+

2
4 1

0

3
5
1
A .

These two references access the same data if an integer solution(ir; jr) exists to

2
4 2 0

0 1

3
5
2
4 ir

jr

3
5 =

2
4 1

0

3
5 .

However, there is no integer solution in this case, since there is no integerir such that 2ir =1.

In contrast, theB[j][0] andB[j+1][0] references in Figure 2.1 access the same data since

(ir; jr) =(0; 1) is one particular solution to

2
4 0 1

0 0

3
5
2
4 ir

jr

3
5 =

2
4 1

0

3
5 .

While equation (2.1) specifies cases where distinct references access the samedata item, we

are interested in cases where distinct references access the samecache line. In Wolf and Lam’s

terminology, the former case isgroup-temporalreuse, and the latter case isgroup-spatialreuse.

We refer to group-spatial reuse simply asgroup reuse, since it is a superset of group-temporal

reuse and we have no need to distinguish the two cases.

Figure 2.5 shows an example of two references that access the same cache lines, although

never the same data items. Similar to our earlier example in Figure 2.4,C[i][2j] and

Chapter 2. Core Compiler Algorithm for Prefetching 31

C[i][2j+1] never overlap since they only access even and odd columns ofC, respective-

ly. However, since they access adjacent elements within the same row on each iteration, they

will reuse the same cache lines, provided the lines are long enough to hold at least two array

elements.

To detect all of these group reuse cases (includinggroup-spatial, we modify equation (2.1)

slightly by replacing the last rows inH, ~c 1, and~c 2 with zeros to formHS, ~c S;1, and~c S; 2,

respectively. We therefore say that two distinct referencesA[H~{+~c 1] and A[H~{+~c 2] have

group reuse if and only if

9~r : H S~r=~c S; 1�~c S; 2, (2:2)

and also provided that the constant difference between the last rows of~c 1 and~c 2 is less than the

cache line size divided by the element size.4 For theC[i][2j] andC[i][2j+1] references

in Figure 2.5, whereH=

2
4 1 0

0 2

3
5, ~c 1 =

2
4 0

0

3
5, and~c 2 =

2
4 0

1

3
5, and henceHS =

2
4 1 0

0 0

3
5,

~c S; 1=

2
4 0

0

3
5, and~c S; 2=

2
4 0

0

3
5, group reuse only occurs if an integer solution(ir; jr) exists to

2
4 1 0

0 0

3
5
2
4 ir

jr

3
5 =

2
4 0

0

3
5 .

Since(ir; jr) =(0; 0) is a particular solution to this equation, and given a cache line size of at

least two array elements, group reuse does occur for this case.

Now that we have demonstrated how the various types of reuse can be computed, the next

step in our algorithm is determining when reuse actually results in a locality benefit, given that

we have afinite rather than aninfinite cache. To make this distinction, we use the concept of a

localized iteration space, which is described in the following subsection.

2.3.3 Localized Iteration Space

As we mentioned at the outset of Section 2.3, reuse only translates to locality if the subsequent

use of data occurs before the data are displaced from the cache. The likelihood of displacement

depends on (i) the amount of data brought into the cache between reuses, which is influenced by

4In reality, the alignment of the two references with respect to the cache line boundaries may also be a concern.
In the worst case, adjacent references may always straddle cache line boundaries, potentially never reusing the same
cache lines. In our implementation, we account for this probabilistically by assuming that two references within half
a cache line width of each other probably fall within the same cache line.

Figure 2.6: Example of how loop iteration counts and cache size affect locality.

factors such as loop iteration counts, and (ii) the ability of the cache to retain data, which depends

on factors such as the cache size. In this subsection, we describe how our algorithm takes such

factors into account to compute locality through the notion of alocalized iteration space.

We begin with the example in Figure 2.6 which illustrates how loop iteration counts and cache

size affect locality. The code in Figures 2.6(a) and 2.6(b) is similar to our original example in

Figure 2.1(a), except that the upper bound of thej loop is small in Figure 2.6(a) (8 iterations) and

large in Figure 2.6(b) (10,000 iterations). TheB[j+1][0] reference in both cases has temporal

reuse along the outer loop (as discussed earlier in Section 2.3.2). In Figure 2.6(a), this reuse is

likely to result in temporal locality since the eightj iterations bring only 192 bytes into the 8

Chapter 2. Core Compiler Algorithm for Prefetching 33

Kbyte cache between reuses of the sameB[j+1][0] locations. In Figure 2.6(b), however, the

temporal reuse does not result in locality since the 10,000j iterations will sweep 240 Kbytes of

data through the 8 Kbyte cache, flushing a givenB[j+1][0] location before it can be reused.

Predicting accurately whether data will remain in the cache is infeasible for the compiler,

due to factors such as symbolic loop iteration counts, cache mapping conflicts, etc. Rather than

trying to represent exactly which reuses would result in cache hits, we adopt Wolf and Lam’s

approach of capturing only thedimensionalityof the iteration space that has data locality [87].

We define thelocalized iteration spaceto be the set of loops that can exploit reuse. For example,

the localized iteration space includes both loops in Figure 2.6(a), and only the innermost loop in

Figure 2.6(b). In the latter case, data fetched in the loop body will be available to subsequent

iterations within the same innermost loop, but not to subsequent iterations of the outer loop.

Computing the Localized Iteration Space

The localized iteration space is simply the set of innermost loops whose volume of data accessed

in a single iteration does not exceed the cache size. Figure 2.7 shows our algorithm for computing

the localized iteration space, which consists of two major substeps. First, we use our reuse vector

information to estimate the amount of data accessed by each loop (i.e.Tally Loop Traffic

in Figure 2.7). This involves visiting each array reference and projecting the amount of data it

references onto the surrounding loops. We associate a running total of data accessed with each

array reference, and this running total is potentially multiplied by the number of iterations of

each surrounding loop, depending on the type of reuse the reference has with respect to that

loop. This first substep is a simplified version of algorithms proposed previously [21, 24, 64].

Once the amount of data accessed by each loop has been estimated, the second substep is

comparing these amounts with the expected cache capacity to decide which loops are localized

(i.e. Is Localized in Figure 2.7). This second substep is a separate top-down and then bottom-

up pass over the loops, which allows us to decide that (i) a loop is definitely localized if any

surrounding loops are definitely localized (perhaps because they have been actively “blocked” or

“tiled” by the locality optimizer), and (ii) a loop is definitelynot localized if any internal loops

are definitely not localized (perhaps because they reference too much data). Such information

is particularly helpful when the amount of data referenced by a loop is a symbolic range, and

therefore cannot be compared directly against a constant cache size.

Two complications that arise in this algorithm are (i) estimating the amount of data accessed

in the presence of symbolic loop bounds, and (ii) modeling cache capacity given the potential for

34 Chapter 2. Core Compiler Algorithm for Prefetching

algorithm Compute Localized Iteration Space
(A: set of affine array references,
L: set of loops)

return ();

(singleT , totalT) := Tally Loop Traffic(A);
foreach l 2 L, wherel is an outermost loopdo

Is Localized(l , singleT, totalT, False);
end foreach;
/* Now all loops have been marked, indicating whether they are in the localized iteration space.*/

end algorithm;

algorithm Tally Loop Traffic
(A: set of affine array references)

return
(singleT: array of ranges, /* data traffic for single iteration of each loop*/
totalT: array of ranges); /* data traffic for total iterations of each loop*/

/* In this algorithm: */
/* Reuse(a,l) returns the reuse of reference a with respect to loop l. Possible values*/
/* are “Temporal”, “Spatial”, and “None”. */
/* Iterations(l) returns the total iterations of loop l expressed as a symbolic range.*/

singleT; totalT: array of ranges = 0;

/* For each array reference, project the data traffic onto the surrounding loops.*/
foreach a2 A do

/* Ignore references with group reuse, unless they are the leading references.*/
if (a is the leading reference in its group) then

/* Keep a running total of data traffic as it grows from inner to outer loops.*/
runningTotal: range := cacheLineSize;
for l := innermost to outermost loop surroundinga do
singleT[l] := singleT[l] + runningTotal;
if (Reuse(a, l) = None) then

runningTotal := runningTotal*Iterations(l);
else if (Reuse(a, l) = Spatial) then

spatialSavings: int := max(1, cacheLineSize/(sizeof(a)*Stride(a)));
runningTotal := runningTotal*Iterations(l)/spatialSavings;

end if;
if (runningTotal contains the index of loopl) then

substitute forl in runningTotal; /* (e.g., l = n+1
2 , wheren= Iterations(l)) */

end if
totalT[l] := totalT[l] + runningTotal;

end for;
end if;

end foreach;
return (singleT; totalT);

end algorithm;

Figure 2.7: Algorithm for computing the localized iteration space. (Continued on next page.)

Chapter 2. Core Compiler Algorithm for Prefetching 35

algorithm Is Localized
(L: loop, /* loop to be checked*/
singleT; totalT: array of ranges, /* data traffic for single and total iterations of loops*/
outerLocalized: boolean) /* true if surrounding loop is localized*/

return
(localized: boolean); /* true if this loop is within the localized iteration space.*/

definitelyLocalized: boolean := ((Fits In Cache(singleT[L]) = Yes) or
(Fits In Cache(totalT[L]) = Yes) or withinTile(L) or outerLocalized);

innerNotLocalized: boolean := False;
localized: boolean;

/* First descend over loops insideLto determine whether they are localized.*/
/* Note that this does not assume perfectly-nested loops.*/
foreach l 2 (loops at next nesting level insideL) do

if (not Is Localized(l , singleT, totalT,definitelyLocalized)) then
innerNotLocalized := True;

end if;
end foreach;
if (innerNotLocalized or (Fits In Cache(singleT[L]) = No)) then
localized := False;

else if definitelyLocalized then
localized := True;

else if (default policy on unknown loop bounds is to assume large loops) then
localized := False;

else /* default policy is to assume small loops*/
localized := True;

end if;
Record whetherLis localized or not;
return (localized);

end algorithm;

/* Compute the certainty that the given range of data traffic fits in the cache.*/
/* The “certainty” data type has three values: “Yes”, “No”, and “Maybe”. */
algorithm Fits In Cache

(T: range) /* Range of data traffic, which may include symbolic expressions.*/
return (fits: certainty);

fits: certainty := Maybe; /* we are only absolutely certain in the two cases below*/
if (isConstant(T:minimum) and (T:minimum> cacheCapacity)) then
fits := No;

else if (isConstant(T:maximum) and (T:maximum< cacheCapacity)) then
fits := Y es;

end if;
return (fits);

end algorithm;

Figure 2.7: Algorithm for computing the localized iteration space. (Continued from previous
page.)

36 Chapter 2. Core Compiler Algorithm for Prefetching

(a) Example Code

for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)

A[i][j] = B[j][0] + B[j+1][0];

(b) Volume of Data Accessed

j loop (100 iterations) i loop (3 iterations)
Data Accessed Data Accessed

Single Total Single Total
Iteration Iterations Iteration Iterations

Reference Type of Reuse (bytes) (bytes) Type of Reuse (bytes) (bytes)

A[i][j] Spatial 16 800 None 800 2400
B[j+1][0] None 16 1600 Temporal 1600 1600

B[j][0] (Group with 0 0 (Group with 0 0
B[j+1][0]) B[j+1][0])

Total N/A 32 2400 N/A 2400 4000

Figure 2.8: Example of algorithm for estimating volume of data accessed by each loop.

mapping conflicts in direct-mapped or set-associative caches. To address the symbolic loop bound

problem, we do three things. First, we use interprocedural constant propagation to eliminate as

many symbolic loop bounds as possible. Second, we represent the loop iterations and subsequent

data traffic as symbolic ranges, which can include simple linear expressions of symbolic variables.

In some cases we can reason about these symbolic values, such as when they are indices of

surrounding loops (an example of this will be shown later in Figure 2.9). Third, when all else

fails, we use a default policy of assuming loop iteration counts to be either large or small to

resolve such cases. (A fourth option which we explore later in Section 5.2.1 is usingcontrol-flow

feedbackin such cases.) To address cache mapping conflicts, we approximate this effect simply

by setting the “effective” cache size to be a fraction of the actual cache size. We will discuss the

robustness of these approximations later in Section 3.3, and will suggest further improvements

in Section 5.2.1.

Figure 2.8 illustrates how our algorithm computes the localized iteration space for the example

code introduced earlier in Section 2.3.1. We begin with theA[i][j] reference, which has

spatial reuse along the inner loop and no reuse along the outer loop. During a singlej iteration,

Chapter 2. Core Compiler Algorithm for Prefetching 37

A[i][j] will bring (at most) a single line into the cache (16 bytes). To compute the total data

accessed by a single pass through thej loop, we multiply the current “running total” (16 bytes)

by the total number ofj iterations (100), and divide by the savings factor due to spatial reuse

(2), yielding a total of 800 bytes. This is also the amount of data accessed by theA[i][j]

reference during a single iteration of thei loop. SinceA[i][j] hasno reuse along thei

loop, we simply multiply the running total (800 bytes) by the number ofi iterations (3) to get

a total of 2400 bytes accessed byA[i][j] in the entire loop nest. Next, we consider the

B[j+1][0] reference, which has no reuse along thej loop and temporal reuse along thei

loop. The data accessed during a singlej iteration is again a single cache line (16 bytes), and

because there is no reuse alongj , we multiply by the totalj iterations (100) to get 1600 bytes

accessed during a singlei iteration. SinceB[j+1][0] has temporal reuse alongi , the running

total is not increased any further, and the total data accessed byB[j+1][0] during the loop

nest is therefore 1600 bytes. We can ignore theB[j][0] reference, since it has group reuse

with B[j+1][0] , and B[j+1][0] is the leading reference. After tallying each reference’s

contribution to total data traffic, we see that a single iteration ofj accesses only 32 bytes (and

therefore is definitely localized), and a single iteration ofi accesses 2400 bytes, which is also

likely to fit in an 8 Kbyte cache. Therefore our algorithm would conclude that both loops are

within the localized iteration space.

Figure 2.9 presents a more complex example, where the upper bound of the inner loop is

a symbolic variable (i). In this case, the amount of data accessed during a singlei iteration

is a symbolic expression (8i bytes), which cannot readily be compared against a fixed cache

size. However, since the compiler understands how thei variable behaves, it recognizes that a

triangular region within theA matrix is being accessed, and thati can be substituted with

14X
i=0

i=
14(14+1)

2
=105

to compute a total of 840 bytes being accessed by theA[i][j] reference in this loop nest.

Since 840 bytes is likely to fit in the 8 Kbyte cache, the compiler would again conclude that both

loops are within the localized iteration space.

We represent the localized iteration space as a vector space, so that it can be directly compared

with our vector space representation of data reuse. For example, if both loops in a two-level loop

nest are within the localized iteration space (as in Figures 2.6(a), 2.8, and 2.9), the corresponding

localized vector spacewould be represented as spanf(1; 0); (0;1)g. If only the innermost loop

is localized (as in Figure 2.6(b)), then the localize vector space would be spanf(0; 1)g. We will

38 Chapter 2. Core Compiler Algorithm for Prefetching

(a) Example Code

for (i = 0; i < 15; i++)
for (j = 0; j < i; j++)

sum = sum + A[i][j];

(b) Volume of Data Accessed

j loop (i iterations) i loop (15 iterations)
Data Accessed Data Accessed

Single Total Single Total
Iteration Iterations Iteration Iterations

Reference Type of Reuse (bytes) (bytes) Type of Reuse (bytes) (bytes)

A[i][j] Spatial 16 8i None 8i 840

Total N/A 16 8i N/A 8i 840

Figure 2.9: Example of how symbolic values can be useful when computing volume of data
accessed by each loop.

now describe how the intrinsic data reuse and the localized iteration space can be combined to

compute data locality.

Computing Locality

Intuitively, a data access has locality (i.e. hits in the cache) if it is reusing a cache line that was

referenced sometime in the pastand this previous reference occurred recently enough that the

data is still in the cache. We can isolate these instances by intersecting thereuse vector space

with the localized vector space, i.e.

Reuse Vector Space\ Localized Vector Space)Locality Vector Space.

For example, theB[j+1][0] reference in Figure 2.1(a) has a temporal reuse vector space

of spanf(1; 0)g (i.e. there is temporal reuse along the outer loop), as described earlier in Sec-

tion 2.3.2. If both loops in the nest are localized (as in Figure 2.6(a)), then the temporal locality

vector space is

Temporal Reuse\ Localized Iteration Space) Temporal Locality

spanf(1; 0)g \ spanf(1; 0); (0; 1)g) spanf(1; 0)g ,

Chapter 2. Core Compiler Algorithm for Prefetching 39

for (i = 0; i < 100; i++)
for (j = 0; j < 10000; j++)

foo(A[i+1][j],A[i][j]);

Figure 2.10: Example of references with group reuse but not group locality.

i.e. the temporal reusedoesresult in temporal locality.

However, if only the innermost loop is localized (as in Figure 2.6(b)), then the temporal

locality vector space is

Temporal Reuse\ Localized Iteration Space) Temporal Locality

spanf(1; 0)g \ spanf(0; 1)g) spanfg ,

i.e. there is no temporal locality.

Similar mathematical treatment determines whether spatial reuse translates into spatial locality

(i.e. Spatial Reuse\Localized Iteration Space)Spatial Locality).

For group reuse, the localized iteration space is used to partition the references that share

group reuse intoequivalence classes. An equivalence class is a set of references for which

group locality exists, and therefore can be treated as a single reference. Equivalence classes are

computed by finding aparticular solutionto the difference between the array index equations of

two references. If a particular solution exists, and if it is within the localized iteration space, then

the references belong in the same equivalence class. In addition, the particular solution result is

used to determine theleading referencewithin an equivalence class, which is the reference within

the set that will actually suffer the cache miss. The compiler only has to schedule prefetches for

leading references.

For example,~r p =(0; 1) is a particular solution to the difference between theB[j+1][0]

and B[j][0] references in Figure 2.1. Even if the localized iteration space includes only the

innermost loop, these two references will be within the same equivalence class since

~r p 2 Localized Iteration Space

(0; 1) 2 spanf(0; 1)g .

Also, since the first non-zero element in~r p is positive, this indicates thatB[j+1][0] is the

leading reference, since it accesses the data during an earlier iteration thanB[j][0] .

As a counterexample, referencesA[i+1][j] and A[i][j] in Figure 2.10 sharegroup

reusebut notgroup locality. In this case, the particular solution is~r p =(1; 0), and the localized

40 Chapter 2. Core Compiler Algorithm for Prefetching

Table 2.2: Prefetch predicates for the different types of locality.

Type of Locality Miss Instances Prefetch Predicate

None Every Iteration True
Temporal First Iteration i =0
Spatial Every l Iterations (i mod l) = 0

(l = cache line size)
Group (and not Essentially Never False

leading reference)

iteration space contains only the innermost loop. Therefore, since

(1; 0) 62spanf(0; 1)g ,

A[i+1][j] and A[i][j] do not share group locality, and will be partitioned into separate

equivalence classes.

After computing the localized iteration space and intersecting it with the reuse vector space,

we now have a precise description of data locality expressed as alocality vector space. The

final step in our locality analysis algorithm is converting this vector space representation of data

locality into prefetch predicates, as described in the next subsection.

2.3.4 The Prefetch Predicate

Although vector space representations are attractive when we compute data locality, a more con-

venient representation for the purpose of scheduling prefetches is to associate a logical predicate

with each reference such that the predicate is true during each dynamic instance when the refer-

ence is expected to suffer a cache miss. These miss instances are precisely the cases we want to

prefetch, and therefore we refer to these predicates asprefetch predicates. In this subsection we

describe how the prefetch predicates are constructed based on the locality vector spaces.

The expected dynamic miss instances vary according to the different types of locality. If an

access has no locality, it will miss on every iteration. If an access has temporal locality within a

loop nest, only the first access will possibly incur a cache miss. If an access has spatial locality,

only the first access to the same cache line will incur a miss. If an access has group locality and

is not the leading reference, it will hardly ever suffer cache misses.

Table 2.2 shows the prefetch predicates corresponding to each type of locality. To simplify

this exposition (and without loss of generality), we assume here that the iteration count starts at

Chapter 2. Core Compiler Algorithm for Prefetching 41

(a)
for (i = 0; i < 3; i++)

for (j = 0; j < 100; j++)
A[i][j] = B[j][0] + B[j+1][0];

(b)

Reference Locality Prefetch Predicate

A[i][j]

"
i

j

#
=

"
none

spatial

#
(j mod 2) = 0

B[j+1][0]

"
i

j

#
=

"
temporal

none

#
i = 0

B[j][0]

Group with

B[j+1][0]

!
False

Figure 2.11: Example of how prefetch predicates are constructed.

0, and that the data arrays are aligned to start on a cache line boundary.5 As we see in Table 2.2,

the prefetch predicate for a reference with no locality is simply “True”, since misses are expected

to occur on every iteration. For an access with temporal locality, the prefetch predicate is only

true during the first loop iteration (i.e. when “i = 0”). With spatial locality, the prefetch predicate

contains a modulo function such that it is true each time a cache line boundary is crossed (i.e.

when “i mod l = 0”, where l is the number of accesses per cache line). Finally, for references

with group locality that are not leading references, the prefetch predicate is “False”, since they

are not expected to suffer a significant number of misses and hence should not be prefetched.

The prefetch predicate of a reference within a multi-level loop nest is simply the conjunction

of all the predicates imposed by each form of locality within the loop nest. For example, the

A[i][j] reference in Figure 2.11 has no locality with respect to thei loop, which corresponds

to a predicate of “True”, and spatial locality along thej loop, which corresponds to a predicate

of “(j mod 2) = 0”; therefore the overall prefetch predicate forA[i][j] is

True ^ ((j mod 2) = 0)) ((j mod 2) = 0).

Similarly, the B[j+1][0] reference in this example has temporal locality along thei loop,

which corresponds to a predicate of “i = 0”, and no locality along thej loop, which corresponds

5In the general case, 0 would be replaced by the lower bound of the loop, and a constant offset would be added to
the modulo prefetch predicate for spatial locality in Table 2.2.

42 Chapter 2. Core Compiler Algorithm for Prefetching

to a predicate of “True”; hence the overall prefetch predicate forB[j+1][0] is

(i = 0) ^ True) (i = 0).

The B[j][0] reference in Figure 2.11 has a prefetch predicate of “False”, since it has group

locality with B[j+1][0] .

Once these prefetch predicates have been constructed, our algorithm has answered the question

of “what to prefetch”; the answer is each reference should be prefetched whenever its prefetch

predicate is true. Now that the analysis phase of our algorithm is complete, the next step is to

schedule the prefetches, as we describe in the next section.

2.4 Scheduling Prefetches

Our algorithm for scheduling prefetches has two goals. First, we would like to minimize the

amount of overhead that results from inserting prefetches. Second, we would like the prefetches

to be as effective as possible at eliminating cache misses. To address this first goal, we use

loop splitting techniques such aspeelingand unrolling to isolate only those dynamic instances

when the prefetch predicates are true. To address the second goal, we usesoftware pipeliningto

schedule the prefetches so that they arrive in the cache just before they are needed. We discuss

both of these steps in our scheduling algorithm in this section.

2.4.1 Loop Splitting

Ideally, only iterations satisfying the prefetch predicate should issue prefetch instructions. A

naive way to implement this is to enclose the prefetch instructions inside anIF statement with

the prefetch predicate as the condition. However, such a statement in the innermost loop can

be costly (probably at least as expensive as issuing prefetches all the time), and thus defeats the

purpose of reducing the prefetch overhead. We can eliminate this overhead by decomposing the

loops into different sections so that the predicates for all instances for the same section evaluate

to the same value. This process is known asloop splitting.

Table 2.3 shows the loop splitting transformations for the various prefetch predicates. If

the prefetch predicate is either “True” or “ False”, then no transformation is necessary since we

either prefetch all the time or not at all. An “i = 0” predicate resulting from temporal locality

requires the first iteration of the loop to be isolated throughpeeling. The generic schema for

peeling a loop is illustrated in Figure 2.12. Finally, the “(i mod l) = 0” predicate resulting from

Chapter 2. Core Compiler Algorithm for Prefetching 43

Table 2.3: Loop splitting transformations for the various types of locality.

Loop Splitting
Type of Locality Prefetch Predicate Transformation

None True None
Temporal i =0 Peel first iteration

from loop i
Unroll loop i by l

Spatial (i mod l) = 0 (or if l is too large,
strip-mine loopi by l)

Group (and not False None
leading reference)

(a) Code Before Peeling

for (i = 0; i < n; i++) f

if (i == 0)
f(i);

g(i);
g

(b) Code After Peeling

f(0);
g(0);
for (i = 1; i < n; i++) f

g(i);
g

Figure 2.12: Generic schema for peeling a loop.

spatial locality requires the loop to be eitherunrolledor strip-mined[64] to isolate one in every

l iterations. Figures 2.13 and 2.14 show the generic schemas for unrolling and strip-mining a

loop, respectively. In general, the unrolling transformation is preferable for small or moderate

values ofl. However, asl becomes large, perhaps due to large cache line sizes, the overhead

of replicating the loop body will eventually become more expensive than the extra loop control

overhead involved in strip-mining. For the implementation of the compiler algorithm used in this

dissertation, however, only the unrolling transformation was considered for spatial locality, since

our cache lines are moderately sized (16 and 32 bytes).

For nested loops, these loop splitting transformations can be applied recursively to handle

44 Chapter 2. Core Compiler Algorithm for Prefetching

(a) Code Before Unrolling

for (i = 0; i < n; i++) f

if ((i mod 4) == 0)
f(i);

g(i);
g

(b) Code After Unrolling

for (i = 0; i < n; i+=4) f

f(i);
g(i);
g(i+1);
g(i+2);
g(i+3);

g

Figure 2.13: Generic schema for unrolling a loop.

(a) Code Before Strip-Mining

for (i = 0; i < n; i++) f

if ((i mod 64) == 0)
f(i);

g(i);
g

(b) Code After Strip-Mining

for (j = 0; j < n; j+=64) f

f(j);
for (i = j; i < j+64; i++)

g(i);
g

Figure 2.14: Generic schema for strip-mining a loop.

each prefetch predicate. However, peeling and unrolling multiple levels of loops can potentially

expand the code by a significant amount. This may reduce the effectiveness of the instruction

cache; also, existing optimizing compilers are often ineffective for large procedure bodies. Our

algorithm keeps track of how large a loop is growing. We suppress peeling or unrolling when

the loop becomes too large. For temporal locality, if the loop is too large to peel, we simply

drop the prefetches. For spatial locality, when the loop becomes too large to unroll, we introduce

Chapter 2. Core Compiler Algorithm for Prefetching 45

a conditional statement. This is a reasonable choice because when the loop body becomes this

large, the cost of a conditional statement is relatively small.

Now that our compiler knows what to prefetch and has isolated those instances in the code

with minimal overhead, the final step is to schedule the prefetches the proper amount of time in

advance to hide the memory latency throughsoftware pipelining.

2.4.2 Software Pipelining

Software pipelining [48, 65] is a technique that allows us to hide memory latency by overlapping

the prefetches for a future iteration with the computation of the current iteration. While this

transformation is straightforward, the key parameter is how far in advance the prefetches should

be scheduled. On the one hand, prefetches must be issued early enough to hide memory latency.

But on the other hand, if prefetches are issuedtoo early, the data may be flushed from the cache

before they can be used.

We choose the number of iterations to be the unit of time scheduling in our algorithm. The

number of iterations to prefetch ahead is �
l

s

�
(2:3)

wherel is the expected memory latency ands is the length of the shortest path through the loop

body. In our algorithm,l is a parameter given to the compiler, which we set to be the largest

expected memory latency, including contention. Thes parameter is computed by the compiler

for each loop nest, using theShortest Path algorithm shown in Figure 2.15. The interesting

cases in this algorithm are: (i) conditional statements, where we choose the shorter of the “then”

and “else” paths; (ii) loops, where we use the iteration count if it is known—otherwise, we

assume at least a single iteration is executed; and (iii) procedure calls, where we use the length

of the procedure body, unless there is recursion. We take the ceiling of the ratio to ensure that

all of the latency is hidden.

Figure 2.16 shows a simple example of how software pipelining would be used to schedule

prefetches. Assuming equation (2.3) yields that 5 iterations are sufficient to hide the memory

latency for the loop in Figure 2.16(a), we begin in Figure 2.16(b) with aprolog that issues the first

several prefetches. Next, asteady stateloop is executed where both prefetches and computation

occur. Finally, anepilog loop completes the last several iterations of computation.

Since our scheduling quantum is an iteration, this scheme prefetches a data item at least

one iteration before it is used. If a single iteration of the loop can fetch so much data that

46 Chapter 2. Core Compiler Algorithm for Prefetching

/* This algorithm is called initially with the loop body as the argument.*/
algorithm Shortest Path

(I: list of instructions) /* Instructions at a given control-graph level.*/
return (shortestLength: integer);

shortestLength: integer := 0;

foreach i 2 I do
if (i is a conditional statement) then
shortestLength := shortestLength +

min(Shortest Path(i. thenpart),Shortest Path(i. elsepart));
else if (i is a loop) then

if (isConstant(i. num iterations)) then
shortestLength := shortestLength +

i. num iterations*Shortest Path(i. loop body);
else /* Assume at least one iteration when iteration count is unknown.*/
shortestLength := shortestLength + Shortest Path(i. loop body);

end if;
else if (i is a non-recursive procedure call) then
shortestLength := shortestLength + Shortest Path(i. procedure.body);

end if;
shortestLength := shortestLength + 1;

end foreach;
return (shortestLength);

end algorithm;

Figure 2.15: Algorithm for computing the shortest path through a loop body.

the prefetched data may be replaced (i.e. the loop is outside the localized iteration space), we

suppress issuing the prefetch.

2.5 Putting It All Together

Having described all of the components of our core compiler algorithm, we now return to our

original example to tie all the pieces together, and also discuss some issues that arose while

implementing this algorithm.

2.5.1 Example Revisited

Figure 2.17 summarizes the major steps of our prefetching algorithm. The example code and

resulting data locality are shown in Figures 2.17(a) and 2.17(b), respectively. Figure 2.17(c)

Chapter 2. Core Compiler Algorithm for Prefetching 47

(a) Original Loop
for (i = 0; i < 100; i++)

A[i][0] = 0;

(b) Software Pipelined Loop

for (i = 0; i < 5; i++) /* Prolog */
prefetch(&A[i][0]);

for (i = 0; i < 95; i++) f /* Steady State*/
prefetch(&A[i+5][0]);
A[i][0] = 0;

g

for (i = 95; i < 100; i++) /* Epilog */
A[i][0] = 0;

Figure 2.16: Example of how software pipelining is used to schedule prefetches the proper amount
of time in advance. For this example, assume that 5 iterations are enough to hide memory latency.

shows the result of the analysis phase of our algorithm, where we have constructed predicates

indicating when all three array references should be prefetched. Finally, Figure 2.17(d) shows

the resulting code with prefetching, which is generated by the scheduling phase of our algorithm

as follows.

First, our algorithm performs loop splitting based on the prefetch predicates. The “i = 0”

predicate resulting from the temporal locality of theB[j+1][0] reference causes the compiler

to peel thei loop. As we see in Figure 2.17(d), the prefetches for theB matrix occur only in the

peel of i . Also, to isolate the spatial locality of theA[i][j] reference, the “(j mod 2) = 0”

predicate causes thej loop to be unrolled by a factor of 2—both in the peel and in the main

iterations of thei loop. As a result, Figure 2.17(d) shows that there is only one prefetch of the

A matrix for every two copies of the loop body.

Once the miss instances have been isolated through loop splitting, the compiler then software

pipelines the prefetches as follows. Using the algorithm in Figure 2.15, our compiler determines

that the shortest path through the loop body is 36 instructions long. Given that memory latency

is 100 cycles for this example, equation (2.3) yields that
l

100
36

m
=3 iterations are sufficient to

hide the latency. Once this iteration count is determined, the code transformation is mechanical.

In Figure 2.17(d) we see the resultingprolog, steady state, and epilog loops in both the peel

and the main iterations of thei loop. Thus the code in Figure 2.17(d) issues all of the useful

(c) Result of Locality Analysis

Reference Locality Prefetch Predicate

A[i][j]

"
i

j

#
=

"
none

spatial

#
(j mod 2) = 0

B[j+1][0]

"
i

j

#
=

"
temporal

none

#
i = 0

B[j][0]

Group with

B[j+1][0]

!
False

Figure 2.17: Example of selective prefetching algorithm. (Continued on next page.)

Chapter 2. Core Compiler Algorithm for Prefetching 49

(d) Code with Prefetching

prefetch(&A[0][0]); /* Peel of i loop (i = 0) ... */
for (j = 0; j<6; j += 2) f /* prolog */

prefetch(&B[j+1][0]);
prefetch(&B[j+2][0]);
prefetch(&A[0][j+1]);

g

for (j = 0; j<94; j += 2) f /* steady state */
prefetch(&B[j+7][0]);
prefetch(&B[j+8][0]);
prefetch(&A[0][j+7]);
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

g

for (j = 94; j<100; j += 2) f /* epilog */
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

g /* ... end of peel of i loop */
for (i = 1; i<3; i++) f /* Main i loop iterations (i> 0) ... */

prefetch(&A[i][0]);
for (j = 0; j<6; j += 2) /* prolog */

prefetch(&A[i][j+1]);
for (j = 0; j<94; j += 2) f /* steady state */

prefetch(&A[i][j+7]);
A[i][j] = B[j][0]+B[j+1][0];
A[i][j+1] = B[j+1][0]+B[j+2][0];

g

for (j = 94; j<100; j += 2) f /* epilog */
A[i][j] = B[j][0]+B[j+1][0];
A[i][j+1] = B[j+1][0]+B[j+2][0];

g

g /* ... end of main i loop iterations */

Figure 2.17: Example of selective prefetching algorithm. (Continued from previous page.)

50 Chapter 2. Core Compiler Algorithm for Prefetching

prefetches early enough to overlap the memory accesses with computation on other data. (This

is a source-level representation of the actual code generated by our compiler for this case).

2.5.2 Implementation Experience

We implemented our prefetching algorithm in the SUIF (Stanford University Intermediate Form)

compiler, which includes many of the standard optimizations and generates code competitive

with the MIPS 2.10 compiler [80]. The experience of actually implementing our algorithm raised

some interesting issues.

The first issue is when prefetching should occur relative to the other optimizations performed

by the compiler. In particular, should prefetch insertion occur before or after the bulk of s-

calar optimization? Inserting prefetchesbeforescalar optimization has the disadvantage that the

code seen by the prefetching pass may change significantly once optimization takes place; these

changes may make it difficult to schedule prefetches the proper amount of time in advance.

For example, if the optimizer eliminates a significant fraction of instructions in a loop body,

the software pipelining algorithm may underestimate the number of loop iterations necessary

to provide enough computation to hide memory latency (i.e. thes parameter in equation (2.3)

may be overestimated). On the other hand, inserting prefetchesafter scalar optimization has the

following two disadvantages: (i) much of the high-level representation of arrays and loops may

be unrecognizable, making it difficult to perform locality analysis; and (ii) the compiler must be

extremely careful only to insert highly efficient prefetching code, since scalar optimization will

not be run again.6

In our experience, the advantages of inserting prefetchesbeforescalar optimization far out-

weigh the disadvantages. First, the ability to recognize high-level structures such as arrays and

“for” loops is essential for our analysis, and becomes prohibitively difficult once scalar optimiza-

tion has radically altered the code. Second, the fact that scalar optimization is performed on the

prefetching code itself has two strong advantages: (i) it greatly simplifies the task of inserting

prefetches, since code transformations such as loop unrolling and software pipelining can be

done in a straightforward manner without undo concern for minimizing overhead; and (ii) scalar

optimization appears to do a very good job of minimizing prefetching instruction overhead. The

overhead is often less than 2 or 3 instructions per prefetch (as we will see later in Chapter 3),

and we believe these results are much better than if the entire burden of minimizing overhead

6Since scalar optimization is the most time-consuming part of compilation, we assume that running full scalar
optimization twice is not a viable option.

Chapter 2. Core Compiler Algorithm for Prefetching 51

Table 2.4: Order in which the optimization passes occur in the SUIF compiler, including prefetch-
ing.

SUIF Pass Description

cpp C preprocessor
snout C front end
ipa interprocedural analysis
prom register promotion
expander -F forward propagate register computation into the

lower and upper bounds of “for” loops
oynk -Pconst constant propagation
oynk -Pdstore dead store elimination
icp interprocedural constant propagation
oynk -Pconst constant propagation
oynk -Pivard detect induction variables and rewrite in terms of

the loop induction variable (i.e. “strength increasing”)
xp -C dismantle “if” statements that are always taken or

untaken; dismantle “for” loops that are never executed
pf perform prefetching analysis and insert prefetches
expander afosa expand “high level” SUIF constructs (e.g., “for” loops)

into “low level” SUIF (e.g., branch instructions)
oynk -Pconst constant propagation
oynk general scalar optimization
oynk -Psr strength reduction
oynk -Pconst constant propagation
oynk -Pdstore dead store elimination
mexp massage SUIF constructs to MIPS-palatable form
oynk -Preg register allocation
mgen generate MIPS assembly code

was placed on the prefetch code-generating pass itself. Regarding the disadvantage of inserting

prefetches before scalar optimization, we found that in practice the impact of reduced loop body

sizes could be taken into account by simply increasing the target memory latency parameter (i.e.

l in equation (2.3)) by a small factor (less than two). Although this may result in prefetches

being issued unnecessarily early (e.g., if scalar optimization does not eliminate any instructions

from the loop body), it does not appear to have a noticeable negative impact on performance.

There are some optimizations, however, that should be performedbeforeprefetching, since

they greatly improve the analysis. One such example is interprocedural constant propagation,

which helps eliminate symbolic loop bounds and therefore makes it easier to compute the localized

iteration spaces. Table 2.4 shows the order in which our compiler performs its optimizations.

52 Chapter 2. Core Compiler Algorithm for Prefetching

The optimizations performed before prefetching in Table 2.4 tend to improve the information

content of the loop and array constructs. After prefetches are inserted, these high-level SUIF

constructs (such as hierarchical abstract representations of “for” loops) are deconstructed into

simpler low-level constructs (such as branch instructions) which more closely match traditional

RISC instruction sets. The bulk of scalar optimization (e.g., common subexpression elimination,

etc.) is then performed on this low-level representation. In general, we were quite happy with

this approach.

We did experience one surprising problem with the scalar optimizer, however, during our

early experiments with the compiler. Our initial code with prefetching had very large instruction

overheads—often more than 6 instructions per prefetch. We discovered the problem was that

our scalar optimizer did not take full advantage of the “base-plus-offset” addressing mode in

the MIPS instruction set by reusing the same base register and simply having different constant

offsets when two addresses differed by a constant amount. Instead, the optimizer would use a

separate base register to compute each address. While this optimization may not have been a

high priority for normal code, it was crucial for our prefetching code, since each prefetch tends

to differ by a constant amount from a load or store, and loop unrolling creates many copies of

array references that differ by constant amounts. Without this optimization, the compiler quickly

ran out of registers, and suffered the large overheads of spilling values to memory. Once this

optimization was implemented, we saw dramatic reductions in prefetch instruction overhead.

Chapter 3

Prefetching for Uniprocessors

In this chapter, we evaluate the performance benefits of prefetching for array-based uniprocessor

applications. Section 3.1 describes the experimental framework used throughout this chapter,

including our architectural assumptions, benchmarks, compile-time parameters, and simulation

environment. The results of these experiments are presented in four major subsections. First,

Section 3.2 contains a detailed evaluation of the algorithm described in the previous chapter

for prefetching affine array references. We observe that each component of this core compiler

algorithm is effective at achieving its goal, thereby improving overall execution time by as much

as twofold. Second, Section 3.3 evaluates the robustness of this algorithm by varying the compile-

time parameters that are determined heuristically rather than precisely for a specific architecture

(i.e. the effective cache size, the target memory latency, and the policy on unknown loop bounds).

The results show that these parameter variations affect only a small subset of the applications,

and the performance impact in those cases is generally small; therefore the algorithm appears

to be robust. Third, having already examined prefetching in isolation, Section 3.4 evaluates the

interaction between prefetching and another powerful latency-hiding technique for dense-matrix

codes: locality optimizations. The results illustrate that prefetching and locality optimizations

are complementary, and therefore should be combined. Finally, having focused thus far only on

affine array references, we extend our core algorithm in Section 3.5 to handle indirect references,

which allows us to prefetch sparse-matrix codes. The results demonstrate that this relatively

straightforward extension improves performance by as much as an additional 20%. Finally, we

conclude the chapter in Section 3.6 with a summary of the important results.

53

54 Chapter 3. Prefetching for Uniprocessors

3.1 Experimental Framework

This section presents the architectural assumptions we make, the benchmark applications, the

compile-time parameters to our prefetching algorithm, and the simulation environment used to

obtain performance results.

3.1.1 Architectural Assumptions

Our uniprocessor architecture consists of a base workstation architecture that has been extended

to support prefetching.

Base Architecture

For the sake of concreteness, we pattern the memory subsystem of our base architecture after

a typical MIPS R4000-based workstation. The architecture consists of a single-issue processor

running at a 100 MHz internal clock. The processor has an on-chip primary data cache of

8 Kbytes, and a secondary cache of 256 Kbytes. Both caches are direct-mapped, “write-back

write-allocate”, and use 32 byte lines. The penalty of a primary cache miss that hits in the

secondary cache is 12 cycles, and the total penalty of a miss that goes all the way to memory is

75 cycles. To limit the complexity of the simulation, we assume that all instructions execute in

a single cycle and that all instructions hit in the primary instruction cache.

Extensions for Prefetching

To experiment with prefetching, we extend our base architecture as follows. We augment the

instruction set to include a prefetch instruction that uses a base-plus-offset addressing format

and is defined not to take any memory exceptions. The advantages of these properties will be

discussed in more detail later in Section 5.1.1, but the basic idea is that base-plus-offset addressing

minimizes register usage to avoid spilling, and the non-excepting property allows considerable

flexibility in scheduling prefetches (e.g., it is acceptable to prefetch off the end of an array if a

proper epilog cannot be constructed). Both levels of the cache are lockup-free [45] in the sense

that multiple prefetches can be outstanding along with either a single load or store miss.1 The

primary cache is checked in the cycle the prefetch instruction is executed. If the line is already

in the cache, the prefetch is discarded. Otherwise, the prefetch is sent to aprefetch issue buffer,

1Multiple store misses cannot be outstanding because the processor stalls on a store miss.

Chapter 3. Prefetching for Uniprocessors 55

which is a structure that maintains the state of outstanding prefetches. For our study, we assume

a rather aggressive design of a prefetch issue buffer that contains 16 entries. If the prefetch issue

buffer is already full, the processor is stalled until there is an available entry. (Later, in Section

5.1.2, we compare this with an architecture where prefetches are simply dropped if the buffer

is full.) The secondary cache is also checked before the prefetch goes to memory. We model

contention for the memory bus by assuming a maximum pipelining rate of one access every 20

cycles. Once the prefetched line returns, it is placed in both levels of the cache hierarchy. Filling

the primary cache requires 4 cycles of exclusive access to the cache tags—during this time, the

processor cannot execute any loads or stores; if it attempts to do so, it is stalled.

Since regular cache misses stall the processor, they are given priority over prefetch accesses

both for the memory bus and the cache tags. We assume, however, that an ongoing prefetch

access cannot be interrupted. As a result, a secondary cache miss may be delayed by as many

as 20 cycles (memory pipeline occupancy time) when it tries to access memory. Similarly the

processor may be stalled for up to 4 cycles (cache-tag busy time) when it executes a load or

store. If a cache miss occurs for a line for which there is an outstanding prefetch waiting in the

issue buffer, the miss is given immediate priority and the prefetch request is removed from the

buffer. If the prefetch has already been issued to the memory system, any partial latency hiding

that might have occurred is taken into account.

3.1.2 Applications

The benchmarks evaluated in this study are all scientific and engineering applications drawn

from several benchmark suites. This collection includes NASA7 and TOMCATV from the SPEC

benchmarks [77], OCEAN–a uniprocessor version of a SPLASH benchmark [72], and CG (con-

jugate gradient), EP (“embarassingly parallel”—a Monte Carlo simulation), IS (integer sort), MG

(multigrid) from the NAS Parallel Benchmarks [8]. Since the NASA7 benchmark really consists

of 7 independent kernels, we study each kernel separately (MXM, CFFT2D, CHOLSKY, BTRIX,

GMTRY, EMIT and VPENTA). In addition, for our study in Section 3.5 on prefetching indirect

references, we also evaluate MP3D (another uniprocessor version of a SPLASH benchmark) and

SPARSPAK [25] (a sparse matrix application), since these applications contain many indirect

references. Table 3.1 provides a brief summary of the applications, including their input data

sets, and Table 3.2 shows some general characteristics of the applications.

For four of the applications (MXM, CFFT2D, VPENTA and TOMCATV), the mapping con-

flicts in the direct-mapped cache occurred so frequently that we manually changed the alignment

56 Chapter 3. Prefetching for Uniprocessors

Table 3.1: Description of uniprocessor applications.

Application Description Input Data Set

MXM matrix multiply 256x128 matrix multiplied
by a 128x64 matrix

CFFT2D complex radix-2 FFT on a 2D array 128x256 matrix
CHOLSKY Cholesky decomposition in parallel on a set of of input 250 4x40 matrices

matrices
BTRIX block tridiagonal matrix solution along one dimension of 5x5x30x30 matrix

a four dimensional array
GMTRY sets up arrays for a vortex method solution and performs 100x5 matrix

Gausian elimination on the resulting arrays
EMIT creates new vortices according to certain boundary 100x5 matrix

conditions
VPENTA inverts 3 matrix pentadiagonals in a highly parallel 128x128 matrices

fashion
TOMCATV vectorized mesh generation with Thompson’s solver 257x257 matrices

OCEAN simulates eddy currents in an ocean basin 98x98 grid
IS integer bucket sort algorithm 2 million integers
CG solves unstructured sparse linear system using the 5000x5000 sparse matrix

conjugate gradient method with 451,002 nonzeros
EP monte-carlo simulation 128K random numbers
MG multigrid solver 34x34x34 matrix

MP3D simulates rarified hypersonic flow 500 K mols., cylinder.geom
(6144 cells), 5 steps

SPARSPAK sparse Cholesky factorization graph7 (7 sparse matrices,
each with> 5000 nonzeros)

of some of the matrices to help reduce these conflicts. These problematic matrices tend to have

dimensions that are powers of two, which causes the cache size (also a power of two) to evenly

divide into the size of a row or possibly the entire matrix. Therefore adjacent elements in the

same column—and sometimes elements with similar access functions in adjacent matrices—often

mapped into the same cache entry, thus resulting in large numbers of conflicts within inner loops.

We manually fixed this problem by adding 13 (an arbitrary prime number) to the size of each

dimension for these problematic matrices, while being careful that these changes affected only the

data layout and not the actual computation. Later, in Section 5.2.2, we will examine these map-

ping conflicts in more detail, and will evaluate possible architectural enhancements to minimize

their performance impact.

Chapter 3. Prefetching for Uniprocessors 57

Table 3.2: General statistics for the uniprocessor applications. Primary data cache miss counts
are for an 8 Kbyte direct-mapped cache.

Primary Data
Instructions Reads Writes Cache Misses

Application (millions) (millions) (millions) (millions)

MXM 220 116 11 4.3
CFFT2D 278 77 76 8.4

CHOLSKY 202 64 26 17.7
BTRIX 189 85 20 12.9

GMTRY 912 337 93 82.8
EMIT 114 52 11 1.4

VPENTA 155 64 17 13.4
TOMCATV 2638 989 287 86.9

OCEAN 78 28 8 1.7
IS 3236 669 355 68.6
CG 3411 952 407 30.3
EP 9761 1628 515 22.2
MG 113 55 12 1.4

MP3D 1851 268 104 10.5
SPARSPAK 204 28 23 3.3

3.1.3 Compiler Parameters

The prefetching algorithm has a few compile-time parameters, which we consistently set as

follows: cache line size= 32 bytes,effective cache size= 500 bytes,prefetch latency= 300

cycles, andpolicy on unknown loop bounds= assume a small number of iterations. The cache

line size precisely matches the architecture, while the other parameters are more heuristic in

nature. As discussed in Section 2.3.3, we choose an effective cache size to be a fraction of

the actual size (8 Kbytes) as a first approximation to the effects of cache conflicts. Theprefetch

latencyindicates to the compiler how many cycles in advance it should try to prefetch a reference

(i.e. parameterl in equation(2.3)). The prefetch latency is larger than 75 cycles, the minimum

miss-to-memory penalty, to account for bandwidth-related delays. For cases where loop bounds

cannot be resolved at compile-time, we assume the number of iterations to be small, which tends

to overestimate what remains in the cache. Later, in Section 3.3, we will consider the effects of

varying these parameters.

58 Chapter 3. Prefetching for Uniprocessors

3.1.4 Simulation Environment

To simulate the performance of our applications, we first use the SUIF compiler to generate

fully-functional MIPS object code with prefetching. Since the MIPS-I instruction set does not

contain a prefetch instruction, our compiler encodes prefetches as loads toR0.2 This encoding is

attractive for the purpose of simulation since it has the same addressing mode (base-plus-offset)

and register usage (a single source register and no real target register) as an actual prefetch

instruction, and therefore produces accurate instruction counts.

The performance of the resulting object code is simulated by using the MIPSpixie utility [74]

to generate an instrumented version of the code, and then piping the resulting trace into our

detailed cache simulator. Our simulator makes the simplifying assumption that all instructions

execute in a single cycle and that all instructions hit in the primary instruction cache. Otherwise,

the cache tag state and all forms of contention described in Section 3.1.1 (e.g., primary cache

tags, memory bus) are modeled in detail.

3.2 Evaluation of Core Compiler Algorithm

In this section we evaluate the effectiveness of our core prefetching algorithm, which was de-

scribed earlier in Chapter 2. We start with a brief, high-level evaluation of the overall performance

of the compiler algorithm. We then focus in greater detail on each of the three key aspects of the

compiler algorithm—locality analysis, loop splitting and software pipelining—in Sections 3.2.1,

3.2.2, and 3.2.3, respectively.

The results of our first set of experiments are shown in Figure 3.1 and Table 3.3. Figure 3.1

shows the overall performance improvement achieved through our selective prefetching algorithm.

For each benchmark, the two bars correspond to the cases with no prefetching (N) and with

selective prefetching (S). In each bar, the bottom section is the amount of time spent executing

instructions (including instruction overhead of prefetching), and the section above that is the

memory stall time. For the prefetching cases, there is also a third component—stall time due

to memory overheads caused by prefetching. Specifically, the stall time corresponds to two

situations: (1) when the processor attempts to issue a prefetch but the prefetch issue buffer is

already full, and (2) when the processor attempts to execute a load or store when the cache tags

are already busy with a prefetch fill.

2R0 is a reserved register that returns the value 0 when used as a source operand. A load toR0 is essentially a
NOP, and therefore this code sequence is not normally generated by the compiler.

Chapter 3. Prefetching for Uniprocessors 59

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 81

 100

 58

 100

 61

 100

 69

 100

 48

 100 95 100

 50

 100

 84

 100
 88

 100

 85

 100

 55

 100
 89

 100
 89

N S N S N S N S N S N S N S N S N S N S N S N S N S
MXM

CFFT2D
CHOLSKY

BTRIX
GMTRY

EMIT
VPENTA

TOMCATV
OCEAN

IS
CG

EP
MG

memory access stalls
instructions

Figure 3.1: Overall performance of the selective prefetching algorithm (N = no prefetching, and
S = selective prefetching).

Table 3.3: Memory performance improvement for the selective prefetching algorithm.

No Prefetch Selective Prefetch
Average Average Memory

Refs Miss Miss Miss Miss Stall
per Rate Penalty Rate Penalty Reduction

Benchmark Inst (%) (cycles) (%) (cycles) (%)

MXM 0.58 3.35 15.6 1.26 14.0 66.2
CFFT2D 0.55 5.53 53.2 1.29 53.4 76.5

CHOLSKY 0.45 19.69 24.8 6.09 12.3 83.9
BTRIX 0.55 12.29 21.3 3.20 17.0 76.5
GMTRY 0.47 19.29 21.7 3.65 12.3 90.2
EMIT 0.56 2.26 18.7 1.26 13.7 58.4

VPENTA 0.53 16.52 26.4 1.91 12.5 93.0
TOMCATV 0.48 7.06 36.6 4.21 12.5 71.8

OCEAN 0.43 5.07 52.3 2.20 48.6 54.6
IS 0.32 6.70 28.5 4.34 28.9 34.4
CG 0.40 12.57 38.3 8.33 17.5 69.2
EP 0.23 1.05 59.5 0.31 13.8 93.3
MG 0.60 2.09 33.0 1.54 15.7 71.4

As shown in Figure 3.1, the overall speedup ranges from 5% to 100%, with 6 of the 13

benchmarks improving by over 45%. The memory stall time is significantly reduced in all the

cases. Table 3.3 indicates that this is accomplished by reducing both the primary miss-rate and

the average primary-miss penalty. The miss penalty is reduced because even if a prefetched line

is replaced from the primary cache before it can be referenced, it is still likely to be present in

60 Chapter 3. Prefetching for Uniprocessors

the secondary cache. Also, the miss latency may be partially hidden if the miss occurs while the

prefetch access is still in progress. Overall, 33% to 90% of the original memory stall cycles are

eliminated.

Having established the benefits of prefetching, we now focus on the costs. Figure 3.1 shows

that the instruction overhead of prefetching causes less than a 15% increase in instruction count

in over half of the benchmarks. In fact, in two of those cases (MXM and IS) the number of

instructions actually decreased due to savings through loop unrolling. In other cases (CHOLSKY,

BTRIX, VPENTA, TOMCATV, OCEAN), the number of instructions increased by 25% to 50%.

Finally, the stalls due to prefetching memory overhead are typically small—never more than 15%

of original execution time. In each case, we observe that the overheads of prefetching are low

enough compared to the gains that the net improvement remains large.

These high-level results suggest that our prefetching algorithm is successful at improving

performance. To evaluate the algorithm in greater depth, the following three subsections focus

specifically on each key aspect of the selective prefetching algorithm. We begin with the first

step in our algorithm, which is usinglocality analysisto determine which references should be

prefetched.

3.2.1 Locality Analysis

The goal of using locality analysis is to reduce overhead by prefetching only those references

that cause cache misses. To evaluate whether locality analysis is successful, we performed

the following experiment. We modified our compiler to prefetchall instances of affine array

references, which corresponds to setting theprefetch predicatefor each reference to “True” (see

Section 2.3.4). We refer to this algorithm asindiscriminate(as opposed toselective) prefetching.

To isolate the impact of locality analysis, we kept all other components of the two algorithms the

same. For example, the indiscriminate algorithm uses the same software pipelining technique as

selective prefetching to schedule prefetches far enough in advance. However, it has no need for

locality analysis or loop splitting.

Ideally the selective prefetch algorithm will achieve the same level of memory stall reduction

as indiscriminate prefetching, while decreasing the overheads associated with issuing unnecessary

prefetches. The results of this experiment are shown in Figure 3.2 and Table 3.4.

Figure 3.2 shows that the speedup offered by prefetching selectively rather than indiscrim-

inately ranges from 1% to 100%. In 6 of the 13 cases, the speedup is greater than 20%. As

we see in both Figure 3.2 and Table 3.4, most of the benchmarks sacrifice very little in terms

Chapter 3. Prefetching for Uniprocessors 61

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 101

 81

 117

 58
 68

 61

 78
 69

 59
 48

 97 95

 68

 50

 95
 84

 94
 88

 94
 85

 98

 55

 90 89

 113

 89

I S I S I S I S I S I S I S I S I S I S I S I S I S
MXM

CFFT2D
CHOLSKY

BTRIX
GMTRY

EMIT
VPENTA

TOMCATV
OCEAN

IS
CG

EP
MG

memory access stalls
instructions

Figure 3.2: Overall performance comparison between the indiscriminate and selective prefetching
algorithms (I = indiscriminate prefetching, andS = selective prefetching).

of memory stall reduction by prefetching selectively. On the other hand, Figure 3.2 shows that

indiscriminate prefetching suffers more from both increased instruction overhead and stress on

the memory subsystem. Overall, selective prefetching is effective. In some cases (CFFT2D and

MG), selectiveness even turns prefetching from a performance loss into a performance gain.

We evaluate the selective algorithm in more detail by using the following two concepts. The

coverage factoris the fraction of original misses that are prefetched. A prefetch isunnecessaryif

the line is already in the cache or is currently being fetched. An ideal prefetching scheme would

provide a coverage factor of 100% and would generate no unnecessary prefetches.

Figure 3.3 shows the fraction of unnecessary prefetches and the coverage factor for the

two prefetching algorithms. In general, we see the encouraging result that selective prefetching

reduces the number of unnecessary prefetches without sacrificing much in terms of coverage

factor. Let us consider these numbers in more detail.

The coverage factor of the indiscriminate case is interesting, since it represents the fraction of

cache misses that are within the domain of our analysis in most cases. Looking at Figure 3.3(b),

we notice that in 5 of the 13 cases (CFFT2D, CHOLSKY, BTRIX, GMTRY, and VPENTA) the

coverage factor is well over 90%, but in 5 of the other cases (TOMCATV, OCEAN, IS, CG, and

MG) it is 50% or lower. In the case of CG, the coverage is only 38% because it is a sparse

matrix algorithm and we are only prefetching the dense references. The same is true for IS

(integer sort), which contains many indirect array references, despite not being a sparse matrix

algorithm. (We will improve the coverage for both of these cases later in Section 3.5 when we

62 Chapter 3. Prefetching for Uniprocessors

Table 3.4: Memory performance improvement for the indiscriminate and selective prefetching
algorithms.

Indiscriminate Prefetch Selective Prefetch
Average Memory Average Memory

Miss Miss Stall Miss Miss Stall
Rate Penalty Reduction Rate Penalty Reduction

Benchmark (%) (cycles) (%) (%) (cycles) (%)

MXM 1.37 13.0 66.0 1.26 14.0 66.2
CFFT2D 0.34 16.6 98.1 1.29 53.4 76.5

CHOLSKY 6.27 12.2 84.1 6.09 12.3 83.9
BTRIX 2.10 13.7 87.1 3.20 17.0 76.5
GMTRY 3.22 12.4 89.4 3.65 12.3 90.2

EMIT 1.01 14.2 65.7 1.26 13.7 58.4
VPENTA 2.48 12.5 90.2 1.91 12.5 93.0

TOMCATV 3.25 12.4 73.5 4.21 12.5 71.8
OCEAN 2.38 49.8 45.0 2.20 48.6 54.6

IS 4.21 29.3 34.1 4.34 28.9 34.4
CG 7.20 14.1 75.9 8.33 17.5 69.2
EP 0.35 13.8 92.3 0.31 13.8 93.3
MG 1.03 15.5 72.7 1.54 15.7 71.4

also prefetch indirect references.) MXM (a blocked matrix multiplication kernel) is a surprising

case, since all of the important references are obviously affine, yet the coverage factor is only

65%. This is a result of the way we account for prefetches in our experiment; we associate

a prefetch only with the very next reference to the same cache line. Suppose the algorithm

issues two prefetches for the same line (a likely scenario without locality analysis) followed by

references to two consecutive words in that cache line; we say that the first reference is prefetched

but not the second. In the case of MXM, cache conflicts between accesses to different arrays

can cause the second access to the same cache line to miss. Similar behavior also occurs in

TOMCATV, OCEAN, and MG. Finally, in the cases of EMIT and EP, many of the remaining

cache misses occur in library routines (which are not compiled by our prefetching compiler)

rather than the programs themselves. Furthermore, library routines present a difficult challenge

because the surrounding contexts of the call sites (e.g., surrounding loop nests) are not known in

advance. Later, in Section 5.2.1, we will suggest how profiling feedback or dynamically-adaptive

code may help in such cases.

Figure 3.3(a) shows that a large fraction of prefetches issued under the indiscriminate scheme

are unnecessary. In all but one case, this fraction ranged from 60% to 95%. These unnecessary

prefetches can lead to large instruction overheads (MG) or significant delays due to a saturated

Chapter 3. Prefetching for Uniprocessors 63

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e 91

 60

 88

 6

 61

 9

 69

 54

 36

 4

 87

 37

 58

 29

 92
 81

 92

 42

 93

 7

 89

 25

 76

 0

 95

 18

I S I S I S I S I S I S I S I S I S I S I S I S I S
MXM

CFFT2D
CHOLSKY

BTRIX
GMTRY

EMIT
VPENTA

TOMCATV
OCEAN

IS
CG

EP
MG

(a) Unnecessary Prefetches

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e

 65 68

 95

 78

 96 97 95
 85

 97 98

 59

 47

 97
 90

 40 38
 49 52

 14 17

 38 38

 70 71

 49
 42

I S I S I S I S I S I S I S I S I S I S I S I S I S
MXM

CFFT2D
CHOLSKY

BTRIX
GMTRY

EMIT
VPENTA

TOMCATV
OCEAN

IS
CG

EP
MG

(b) Coverage Factor

Figure 3.3: Statistics for evaluating locality analysis for the uniprocessor applications (I = in-
discriminate prefetching, andS = selective prefetching). Note that the unnecessary prefetch
percentages are computed with respect to the number of prefetches issued, which changes be-
tween the two cases.

memory subsystem (CFFT2D and CG).

A selective algorithm is successful if it can maintain a similar coverage while lowering the

number of unnecessary prefetches. Figure 3.3(a) shows that in 11 of the 13 cases, the coverage

is reduced by less than 10%. Table 3.4 also supports this by showing that the miss rates have

not increased substantially, and the reduction in memory stall cycles is comparable. In the

cases where the coverage did go down, the problem is typically due to the presence of cache

conflicts. Comparing the percentages of unnecessary prefetches in Figure 3.3(a), we see that the

improvement from selective prefetching is dramatic in many cases (CFFT2D, CHOLSKY, IS, EP,

MG).

The advantage of selective prefetching is summarized by the ratio of indiscriminate to selective

64 Chapter 3. Prefetching for Uniprocessors

Table 3.5: Ratio of prefetches issued under the indiscriminate and selective algorithms.

Indiscriminate
to Selective

Benchmark PF Ratio

MXM 4.7
CFFT2D 9.4

CHOLSKY 2.3
BTRIX 1.7
GMTRY 1.5
EMIT 6.2

VPENTA 1.8
TOMCATV 2.3

OCEAN 6.6
IS 15.3
CG 6.7
EP 4.1
MG 20.9

prefetches in Table 3.5. Prefetching selectively can reduce the number of prefetches by as much

as a factor of 21. At the same time, the coverage factor remains competitive. Overall, this

selection process appears to be quite successful.

Once we have used locality analysis to predict which dynamic data references should be

prefetched, the next step in our algorithm is to isolate those cases throughloop splitting.

3.2.2 Loop Splitting

The goal of loop splitting is to isolate the cache miss instances while introducing as little instruc-

tion overhead as possible. To quantify the advantage of loop splitting, we implemented the naive

alternative for isolating cache miss instances—placing conditional statements inside the loops.

Figure 3.4 shows that for 5 of the 13 benchmarks (MXM,BTRIX,VPENTA,CG and MG), the

performance advantage of loop splitting is greater than 25%.

A good measure of the success of loop splitting is the instruction overhead per prefetch

issued. Ideally, isolating the cache miss instances will not increase the instruction overhead. One

of the advantages of having implemented the prefetching schemes in the compiler is that we can

quantify this instruction overhead. Previous studies have only been able to estimate instruction

overhead [9].

Chapter 3. Prefetching for Uniprocessors 65

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 109

 81

 62 58
 68

 61

 89

 69

 50 48

 95 95

 63
 50

 83 84
 94

 88
 95

 85
 76

 55

 89 89

 113

 89

C S C S C S C S C S C S C S C S C S C S C S C S C S
MXM

CFFT2D
CHOLSKY

BTRIX
GMTRY

EMIT
VPENTA

TOMCATV
OCEAN

IS
CG

EP
MG

memory access stalls
instructions

Figure 3.4: Loop splitting effectiveness (N = no prefetching,C = selective prefetching with
conditional statements, andS = selective prefetching with loop splitting).

Table 3.6: Average instruction overhead per prefetch.

Selective Algorithm
Indiscriminate wrt wrt Code After

Benchmark Algorithm Original Code Loop Splitting

MXM 1.3 -2.7 3.9
CFFT2D 1.4 3.5 3.5

CHOLSKY 2.0 4.9 5.8
BTRIX 1.8 1.8 2.1
GMTRY 1.9 0.8 0.8
EMIT 1.6 5.8 5.8

VPENTA 2.5 2.5 2.9
TOMCATV 4.0 7.0 7.0

OCEAN 2.5 17.5 18.4
IS 1.9 -7.9 2.1
CG 2.5 -0.1 7.2
EP 1.8 2.4 2.4
MG 3.4 20.2 20.2

Table 3.6 shows the number of instructions required to issue each prefetch. For the indiscrim-

inate prefetching scheme, the overhead per prefetch ranges from 1 to 4 instructions. This is well

within the bounds of what one would intuitively expect. One of the instructions is the prefetch

itself, and the rest are for address calculation. For the selective prefetching scheme, we show

overhead both with respect to the original code and with respect to code where the loop splitting

transformations have been performed but no prefetch instructions are inserted. Loop splitting

66 Chapter 3. Prefetching for Uniprocessors

generally increases the overhead per prefetch. In a few cases, the overhead with respect to the

original code is actually negative, due to the savings through loop unrolling (MXM, IS and CG).

In two cases (OCEAN and MG), the overhead has become quite large—more than 17 instructions

per prefetch. In the case of OCEAN, the loop bodies are quite large, and the combination of

loop unrolling and software pipelining makes it necessary for the compiler to spill registers. The

penalty for register spills is averaged over just the prefetches, and this penalty can become quite

high. In the case of MG, the number of prefetches has been drastically reduced (by a factor of

21). Averaging all the loop and transformation overheads over only a small number of prefetches

results in a high instruction-per-prefetch overhead. In most of the cases, however, the overhead

per prefetch remains low—5 or fewer instructions with respect to the original code for 9 of the

13 benchmarks.

Finally, after predicting and isolating the dynamic miss instances, the last step in our algorithm

is to schedule prefetches ahead of the references usingsoftware pipelining.

3.2.3 Software Pipelining

The goal of software pipelining is to issue prefetches the proper amount of time in advance, such

that the data will be found in the cache when it is actually needed. The number of iterations to

prefetch ahead must be carefully chosen (see equation (2.3)), since too few iterations will not

provide enough time to hide the latency, but too many iterations may cause the data item to be

replaced from the cache before it can be referenced.

To evaluate the effectiveness of our software pipelining algorithm, Figure 3.5 shows a break-

down of the impact of prefetching on the original primary cache misses. This breakdown contains

three categories: (i) those that are prefetched and subsequently hit in the primary cache (pf-hit),

(ii) those that are prefetched but remain primary misses (pf-miss), and (iii) those that are not

prefetched (nopf-miss). The effectiveness of the software pipelining algorithm is reflected by the

size of thepf-misscategory. A large value means that the prefetches are either not issued early

enough, in which case the line does not return to the primary cache by the time it is referenced,

or are issued too early, in which case the line has already been replaced in the cache before it is

referenced.

The results in Figure 3.5 indicate that the scheduling algorithm is generally effective. The

exceptions are CHOLSKY and TOMCATV, where over a third of the prefetched references are

not found in the cache. The problem in these cases is that cache conflicts remove prefetched data

from the primary cache before they can be referenced. To adjust for this, one might consider

Chapter 3. Prefetching for Uniprocessors 67

|0

|20

|40

|60

|80

|100

|120

|140
 P

er
ce

n
ta

g
e nopf-miss

MXM
CFFT2D

CHOLSKY
BTRIX

GMTRY
EMIT

VPENTA
TOMCATV

OCEAN
IS

CG
EP

MG

pf-miss
pf-hit

Figure 3.5: Breakdown of the impact of prefetching on the original primary cache misses for the
uniprocessor applications.

decreasing theprefetch latencycompile-time parameter (i.e. parameterl in equation (2.3)), which

was set to 300 cycles for these experiments. We will evaluate this possibility later in Section 3.3.

However, we observe that when cache conflicts are the problem, they often occur frequently

enough that they cannot be avoided by simply adjusting the software pipelining parameters.

Later, in Section 5.2.2, we examine these cases in more detail and evaluate whether increasing

the cache associativity can help.

Even in cases where prefetched data is replaced from the primary cache before it can be

referenced, there is still a performance advantage since the data tends to remain in the secondary

cache. Therefore although the miss latency is not eliminated, it is often reduced from a main

memory access to a secondary cache access. This was shown earlier in Table 3.3, where selective

prefetching reduces the average miss penalty from 24.8 to 12.3 cycles for CHOLSKY, and from

36.6 to 12.5 cycles for TOMCATV.

3.2.4 Summary

To summarize, we have seen that in most cases the selective prefetching scheme performs no-

ticeably better than the indiscriminate scheme. The advantage comes primarily from a reduction

in prefetching overhead while still maintaining a comparable savings in memory stall time.

Now that we demonstrated the success of the algorithm, the next question is whether these

speedups can only be achieved by carefully tuning the compile-time parameters that describe the

68 Chapter 3. Prefetching for Uniprocessors

memory hierarchy (several of them being rather heuristic in nature), or whether the algorithm is

fairly robust at achieving good performance. We address this question in the following section.

3.3 Sensitivity to Compile-Time Parameters

The selective prefetching algorithm uses several compile-time parameters to model the behavior

of the memory subsystem. Specifically these parameters include: (i) cache line size, (ii) whether

unknown loop bounds are assumed to be large or small, (iii) effective cache size, and (iv) prefetch

latency. The most concrete of these parameters is the cache line size, which is fixed given a

specific architecture, and can be set precisely. The other parameters, however, are more heuristic

in nature. For example, with a direct-mapped cache, the effective cache size is set to some value

less than the actual cache size to model the effects of conflicts, but there is no precise method

for determining this value. Similarly, the prefetch latency is set to some value larger than the

latency of a memory access to model bandwidth-related delays, but this value is also somewhat

arbitrary. To evaluate the robustness of our algorithm, we measured the effects of varying these

less obvious parameters.

3.3.1 Policy on Unknown Loop Bounds

The SUIF compiler performs interprocedural constant propagation to statically determine as many

loop bounds as possible. The loop bounds are often needed to determine the volume of data

accessed by each loop, which in turn is used to decide whether a loop is within thelocalized

iteration space(see the algorithm in Figure 2.7). When the loop bounds remain unknown, the

compiler may be faced with deciding whether an unknown volume of data fits within the cache.

To resolve such cases, our algorithm uses one of two policies: either (i) unknown loop counts are

assumed small, and hence the data would tend to fit in the cache; or (ii) unknown loop counts are

assumed large, and therefore the data would tend not to fit. For our experiments in the previous

section, we consistently used the former policy of assuming unknown loop counts to be small,

which tends to overestimate what remains in the cache. We now compare this with the latter

policy of assuming unknown loop counts to be large.

When the compiler assumes unknown iteration counts to be large rather than small, it produces

identical code for 11 of the 13 benchmarks—the two benchmarks that change are OCEAN and

MG. For OCEAN, the difference in performance is negligible. However, MG performs 4%

worse with the large-loop policy, as shown in Figure 3.6(a). In this case, the benefit of the

Chapter 3. Prefetching for Uniprocessors 69

|0

|20

|40

|60

|80

|100

|120
 N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e prefetch memory overhead

 100
 93 89

Loop Policy:
N S S

LargeSmall
MG

memory access stalls
instructions

|0

|20

|40

|60

|80

|100

|120

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 71
 58

Eff Cache Size:
N S S

8 KB 500 B
CFFT2D

memory access stalls
instructions

|0

|20

|40
|60

|80

|100

|120

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 53
 61

 76

PF Latency:
N S S S

100 300 1000
CHOLSKY

memory access stalls
instructions

(a) Loop Policy (b) Effective Cache Size (c) Prefetch Latency

Figure 3.6: Sensitivity of results to compile-time parameters (N = no prefetching,S = selective
prefetching variations).

extra prefetches is more than offset by increased instruction overhead. Although assuming small

loop counts happens to be better in this case, the opposite could easily be true in programs

where unknown iteration counts are actually large. One solution may be to resolve loop counts

through profiling feedback or to generate adaptive code, as we will discuss later in Section 5.2.1.

However, the more interesting result of this experiment is how rarely loop bound uncertainty

affects performance. We observe that while nearly half the benchmarks contain loops with

unknown bounds, in most cases this has no impact on locality, due to the patterns of data reuse

within those loops.

3.3.2 Effective Cache Size

For our experiments so far, the effective cache size has been set to 500 bytes, which is only a

small fraction of the actual cache size (8 Kbytes). Recall that the reason for this is to approximate

the effects of cache conflicts in a direct-mapped cache. When the effective cache size is set to

the full 8 Kbytes, our compiler generates identical code for 7 of the 13 benchmarks. For 5 of

the 6 benchmarks that do change, the difference in performance is negligible. The one case that

changes significantly is CFFT2D, as shown in Figure 3.6(b). In this case, fewer prefetches are

issued with the larger effective cache size. However, the prefetches that are eliminated happen to

be useful, since they fetch data that is replaced due to cache conflicts. As a result, the performance

suffers, as we see Figure 3.6(b). (Note that this is in contrast with the effect we see in Figure

3.6(a), where issuing more prefetches hurts performance.) In the case of CFFT2D, many critical

70 Chapter 3. Prefetching for Uniprocessors

loops reference 2 Kbytes of data, and these loops happen to suffer from cache conflicts. An

effective cache size of 500 bytes produces the desired result in this case.

In general, we observe that the volume of data accessed by a single iteration of a loop tends

to fall into one of three categories: (i) a small constant amount (often less than 256 bytes), which

is particularly common in inner loops; (ii) a very large constant amount (much larger than 8

Kbytes), which is common when the loop contains an inner loop with constant loop bounds; or

(iii) an unknown amount. In all three cases, variations within the reasonable range of effective

cache sizes have no effect, since in the first case the loop is definitely localized, in the second

case the loop is definitely not localized, and in the third case only the policy on unknown loop

bounds matters. Overall, the results appear to be robust with respect to effective cache size.

3.3.3 Prefetch Latency

Finally, for our experiments in Section 3.2, we set the prefetch latency to 300 cycles. We chose

a value greater than 75 cycles to account for bandwidth-related delays. To evaluate whether this

value was a good choice, we compiled each benchmark again using prefetch latencies of 100

and 1000 cycles. In nearly all the cases, the impact on performance is small. In many cases, the

100-cycle case is slightly worse than the 300-cycle case due to bandwidth-related delays. The

most interesting case is CHOLSKY, as shown in Figure 3.6(c). In this case, prefetched data tends

to be replaced from the cache shortly after it arrives, so ideally it should arrive “just in time”.

Therefore, the lowest prefetch latency (100 cycles) offers the best the performance, as we see in

Figure 3.6(c). However, in such cases the best approach may be to eliminate the cache conflicts

that cause this behavior [49].

In general, we observe that it is better to be conservative with the prefetch latency parameter.

Clearly if the value is not large enough to hide latency, it will always hurt performance. If we

specify more latency than is actually experienced, it hurts performanceonly if data gets displaced.

As caches become larger, this should become less and less of a problem. Besides which, only a

relatively small number of new lines can be fetched into the cache in 300-500 cycles. If cache

conflicts are a problem within this relatively small window of time, chances are that the conflicts

will occur even if the prefetch latency is set to the smallest value that can hide the latency. These

chronic cache conflicts must be dealt with in another way, as we will discuss later in Section 5.2.2.

Chapter 3. Prefetching for Uniprocessors 71

3.3.4 Summary

In summary, the performance of our selective algorithm was affected noticeably in only one of

the 13 benchmarks for each parameter we varied. Overall, the algorithm appears to be quite

robust.

Now that we have studied our core prefetching algorithm, it is time to “pop up” a level

conceptually, and examine its interaction with another important technique for coping with the

latency of affine array references:locality optimizations.

3.4 Interaction with Locality Optimizations

Since prefetchinghidesrather thanreduceslatency, it can only improve performance if additional

memory bandwidth is available. This is because prefetching does not decrease the number of

memory accesses—it simply tries to perform them over a shorter period of time. Therefore,

if a program is already memory-bandwidth limited, it is impossible for prefetching to increase

performance. Locality optimizations such as cache blocking, however, actuallydecreasethe

number of accesses to main memory, thereby reducing both latency and required bandwidth.

Therefore, the best approach for coping with memory latency is to firstreduce it as much as

possible, and thenhidewhatever latency remains. Our compiler can do both things automatically

by first applying locality optimizations and then inserting prefetches.

We compiled each of the benchmarks with the locality optimizer enabled [87]. In two of

the cases (GMTRY and VPENTA), there was a significant improvement in locality, and thus

performance. Both of these cases are presented in Figure 3.7. For each case, we show two

sets of three performance bars—the three on the left arewithout locality optimizations, and the

three on the right arewith locality optimizations enabled. These latter three bars show locality

optimization by itself (N) and in combination with the two prefetching schemes (I andS).

3.4.1 GMTRY: Cache Blocking

In the case of GMTRY, the locality optimizer is able to “block” the critical loop nest. In other

words, rather than iterating over large matrices that are too large to fit in the cache, the code is

restructured to iterate over smaller “blocks” within the matrices, such that each block does fit

in the cache. As the data within in each block is reused many times before proceeding to the

next block, these reuses will result in cache hits (i.e. locality) since the reused data can now be

72 Chapter 3. Prefetching for Uniprocessors

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead 100

 59
 48

 41 44 41

N I S N I S
Original Locality-Optimized

GMTRY

memory access stalls
instructions

|0
|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead 100

 68

 50

 79

 61

 40

N I S N I S
Original Locality-Optimized

VPENTA

memory access stalls
instructions

Figure 3.7: Results with locality optimization (N = no prefetching,I = indiscriminate prefetching,
andS = selective prefetching).

retained by the cache.

With this locality optimization alone, 90% of the original memory stall time is eliminated.

Comparing blocking with prefetching, we see that blocking had better overall performance than

prefetching in this case. Although prefetching reduces more of the memory stall cycles, blocking

has the advantage of not suffering any of the instruction or memory overhead of prefetching.

Comparing the prefetching schemes before and after blocking, we see that blocking has improved

the performance of both of the prefetching schemes. One reason is that memory overheads

associated with prefetching have been eliminated with blocking since less memory bandwidth

is consumed. Also, the selective prefetching scheme reduces its overhead by recognizing that

blocking has occurred and thereby issuing fewer prefetches.

The best performance overall occurs with the blocking optimization alone. When blocking is

combined withindiscriminateprefetching, the performance gets worse due to the instruction over-

head of issuing large numbers of unnecessary prefetches. However, when blocking is combined

with selectiveprefetching, the selective algorithm is clever enough to avoid these unnecessary

prefetches and therefore does not hurt performance.

3.4.2 VPENTA: Loop Interchange

For VPENTA, the locality optimizer introduces spatial locality for every reference in the inner

loop by interchanging two of the surrounding loops. In other words, rather than iterating along

Chapter 3. Prefetching for Uniprocessors 73

thecolumnsof the matrices, which results in misses on every iteration since the data are stored in

row major order, the code has been restructured to iterate along therowsof the matrices instead.

Therefore references will only miss when they cross cache line boundaries, which happens once

every four iterations in this case.

With this locality optimization alone, the performance improves significantly. However, the

selective prefetching scheme without this optimization performs better, since it manages to elim-

inate almost all memory stall cycles. Comparing the prefetching schemes before and after the

loop interchange, we see that the indiscriminate prefetching scheme improves by only 11% while

the selective prefetching scheme improves by 25%. The selective scheme improves more because

it recognizes that after loop interchange it only has to issue one fourth as many prefetches. Con-

sequently it is able to reduce its instruction overhead accordingly. However, the indiscriminate

scheme does not realize that many of its prefetches are now unnecessary, and therefore continues

to suffer from large instruction overhead.

The best overall performance, by a substantial margin, comes only through the combination

of both locality optimization and selective prefetching.

3.4.3 Summary

It is interesting to compare prefetching with locality optimizations since both techniques rely on

essentially the samelocality analysisto predict cache misses. Despite this commonality, the two

techniques differ in many ways. Locality optimizationsreducelatency, unlike prefetching which

tolerateslatency; from this perspective, locality optimizations appear to be more desirable since

they can also reduce bandwidth consumption. However, locality optimizations appear to be more

limited in their applicability, as evidenced by the fact that they improved only two of our 13

benchmarks. Intuitively, this is because not only must the locality optimizing algorithm recognize

a better way to structure the code (which is not always possible), it must also belegal to perform

this restructuring. Prefetching, on the other hand, is never restricted by such correctness issues,

and therefore appears to have wider applicability.

These results have demonstrated the complementary interactions that can occur between lo-

cality optimizations and prefetching. Locality optimizations help prefetching by reducing the

amount of data that needs to be prefetched, and prefetching further increases performance by

hiding any latency that could not be eliminated.

74 Chapter 3. Prefetching for Uniprocessors

for (i = 0; i < n; i++)
sum += A[index[i]];

Figure 3.8: Example of an indirect array reference.

3.5 Prefetching Indirect References

So far in this chapter, we have focused entirely on prefetchingaffinearray references—i.e. where

the access pattern is a linear function of the surrounding loop variables. These affine references

were a good starting point for our compiler algorithm, since they are an important source of

memory latency, and because their regular and predictable access patterns make them amenable

to prefetching.

In this section, we extend our core algorithm to handle another important array access pattern:

indirect references. Figure 3.8 shows an example of such a pattern, where the index of theA

array is itself an array reference (index[i]). Indirect references commonly occur in scientific

and engineering applications such as sparse-matrix algorithms (to look up the sparse element

in a dense storage array), particle-in-windtunnel simulations (to look up the cell containing the

particle), etc. We begin in Section 3.5.1 by describing the modifications to our prefetching

algorithm that are necessary for handling indirect references. Then in Section 3.5.2, we present

experimental results to evaluate the success of our extended algorithm.

3.5.1 Modifications to Compiler Algorithm

Recall from Chapter 2 that there are two phases to a prefetching compiler algorithm: (i) an

analysisphase, where the compiler determines which references to prefetch, and (ii) ascheduling

phase, where prefetches are inserted into the code. In this subsection, we describe how both

phases are modified to prefetch not only the affineindex[i] reference in Figure 3.8, but also

the indirectA reference.

Analysis Phase

Interestingly enough, the locality analysis that we used to predict the caching behavior of affine

references (see Section 2.3) cannot work for indirect references, since there is no way to predict

at compile-time which data are being accessed. At one extreme, all of the index values may

Chapter 3. Prefetching for Uniprocessors 75

be identical, and the reference would behave as though it had temporal locality. At the other

extreme, each reference may point to a unique cache line, and the reference would behave as

though it had no locality. Since we are unable to accurately predict data locality for this case, the

two choices are to prefetch all the time or not at all (i.e. there is no such thing as “loop splitting”

for this case). For these experiments, we decided to prefetch indirect references all the time. To

improve this decision-making process further, profiling feedback or hardware miss counters may

prove useful, as we will discuss later in Section 5.2.1.

Scheduling Phase

To schedule the prefetches for indirect references, a minor modification of the software pipelining

algorithm is needed. Figure 3.9 shows how software pipelining would work for the example in

Figure 3.8. The important thing to focus on is the steady-state code. Assuming that five iterations

are needed to hide the memory latency, you can see that in the steady state, the index array is

prefetchedten iterations ahead. Five iterations after that, the index is dereferenced to compute

the indirect array address. This leaves another five iterations to hide the latency of fetching this

reference. Therefore, no cache misses will occur. To generate this code, extra prolog and epilog

loops are needed. Note that this same technique can be generalized to prefetch an arbitrary

number of indirections ahead of time.

One complication with prefetching indirect references is that if the index array is modified

within the loop, then the index value might not be valid at the time of prefetch, which can

potentially result in a prefetch being issued for an illegal address (e.g., unallocated memory in

the virtual address space of the process). With only a single level of indirection, as in Figure 3.9,

this will not cause a problem since at worst only the prefetch address may be invalid, and

prefetches are defined not to take memory exceptions. However, with two or more levels of

indirection, not only may prefetch addresses be invalid, butload addresses during dereferences

may be invalid as well. Unlike prefetches, load instructionsdo take memory exceptions on invalid

addresses, which will prove either costly or fatal for the application.

For example, consider the loop in Figure 3.10(a), where the value ofindex1[i] is only set

within the bounds of theindex2 array during the same iterationA[index2[index1[i]]]

is referenced. Figure 3.10(b) shows the steady state loop for code that prefetches theindex1 ,

index2 , andA arrays far enough in advance to hide memory latency (a straightforward derivation

from the code in Figure 3.9(b)). However, since these prefetches are issued beforeindex1[i] is

valid, the prefetch of&index2[index1[i+10]] may be to an invalid address (which simply

76 Chapter 3. Prefetching for Uniprocessors

(a) Original Loop

for (i = 0; i < 100; i++)
sum += A[index[i]];

(b) Software Pipelined Loop

for (i = 0; i<5; i++) /* Prolog 1 */
prefetch(&index[i]);

for (i = 0; i<5; i++) f /* Prolog 2 */
prefetch(&index[i+5]);
prefetch(&A[index[i]]);

g

for (i = 0; i<90; i++) f /* Steady State */
prefetch(&index[i+10]); /* prefetch theindex early enough... */
prefetch(&A[index[i+5]]); /* ... so it is ready for computing theA address */
sum += A[index[i]];

g

for (i = 90; i<95; i++) f /* Epilog 1 */
prefetch(&A[index[i+5]]);
sum += A[index[i]];

g

for (i = 95; i<100; i++) /* Epilog 2 */
sum += A[index[i]];

Figure 3.9: Example of how software pipelining is used to prefetch indirect references. For this
example, assume that 5 iterations are enough to hide memory latency.

means that the prefetch will be dropped), and the subsequent load ofindex2[index1[i+5]]

when computing&A[index2[index1[i+5]]] may also be invalid, which would result in a

load exception.

To avoid suffering load exceptions with two or more levels of indirection, there are two

choices. First, if the compiler can determine that there is no possibility that the index values will

be modified within the loop nest, then it is safe to schedule the prefetches as normal. Factors that

will make this difficult include memory aliasing and procedure calls. If the compiler is uncertain

about whether the index values may be modified, then it must be conservative and prefetch no

Chapter 3. Prefetching for Uniprocessors 77

(a) Original Loop

/* Initial values in theindex1 array are outside the bounds of theindex2 array. */
for (i = 0; i < 100; i++) f

index1[i] = foo(); /* index1[i] only becomes valid during iterationi */
sum += A[index2[index1[i]]];

g

(b) Software Pipelined Loop (Steady State Only)

for (i = 0; i<85; i++) f

prefetch(&index1[i+15]);
prefetch(&index2[index1[i+10]]); /* prefetch address may be invalid */
prefetch(&A[index2[index1[i+5]]]); /* possible load exception */
index1[i] = foo();
sum += A[index2[index1[i]]];

g

Figure 3.10: Example of how prefetching multiple levels of indirection may result in invalid
addresses and possibly a load exception. Assume that 5 iterations are sufficient to hide memory
latency.

more than the first level of indirection (e.g., it is safe to prefetch&index2[index1[i+10]]

but not&A[index2[index1[i+5]]] in Figure 3.10(b)). Second, rather than using normal

load instructions when computing the indirect prefetch addresses, specialnon-exceptingloads

could be used instead. For example, rather than suffering a costly memory exception on an

invalid address, a non-excepting load might simply return a value of zero. This way, although

the prefetch addresses would still be incorrect, at least the only overhead would be wasted

instructions, rather than costly (or potentially fatal) exceptions.

In our experiments, we avoid these memory exception problems by only scheduling prefetches

for up to a single level of indirection. For array-based codes, a single level of indirection appears

to be the most common case (and is the only case we observe in our benchmarks). With linked

lists, however, one could imagine arbitrarily large numbers of indirections.

3.5.2 Experimental Results

In this subsection, we evaluate the performance of our algorithm on several applications that

contain indirect array references. Two of these cases (CG and SPARSPAK) are sparse-matrix

78 Chapter 3. Prefetching for Uniprocessors

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 85

 70

 100

 55 50

 100
 92 91

 100

 65 65

N D B N D B N D B N D B
BS CG MP3D SPARSPAK

memory access stalls
instructions

Figure 3.11: Prefetching indirect references in the uniprocessor applications (N = no prefetching,
D = dense-only prefetching, andB = both dense and indirect prefetching).

codes, where the indirect references occur while mapping between the sparse matrix and the dense

storage array. IS is an integer sort program that uses the “bucket sort” algorithm; in this case,

the indirect references occur while computing the the number of occurrences of each integer in a

dense histogram-style array. Finally, MP3D is a rarified-air particle simulator, where the indirect

references occur when the(x,y,z)coordinates of a particle are used to look up the matching “space

cell” in a 3-dimensional matrix.

Figure 3.11 shows the results of our experiment. For each application, we show three per-

formance bars: (i) the original case without prefetching (N), (ii) the case where we only attempt

to prefetch dense (i.e. affine) references (D), and (iii) the case where we prefetch both dense and

indirect references (B).

We see in Figure 3.11 that prefetching significantly improves the performance of each appli-

cation, with over two thirds of memory stall time eliminated, and speedups ranging from 10%

to 100%. The interesting question, however, is how much of this gain came from prefetching

indirect references. The answer to this varies across the applications. In the case of IS, roughly

half of the benefit was from prefetching the indirect references. At the other extreme, SPARSPAK

Chapter 3. Prefetching for Uniprocessors 79

Table 3.7: Average instruction overhead per prefetch of indirect reference.

Instruction
Benchmark Overhead

IS 6.3
CG 4.2

MP3D 25.0
SPARSPAK 4.0

saw no additional benefit from prefetching indirect references. This may seem a bit surprising,

given that SPARSPAK is a sparse-matrix application. However, in SPARSPAK the elements of

the sparse matrix are actually stored in adense matrix, and the indirect references are to pointers

into the appropriate rows or columns of the matrix. Therefore the data set size of the indirect

references is relatively small, and tends to fit into the primary cache.

Another interesting issue with prefetching indirect references is instruction overhead. In

Table 3.7, we isolate the average instruction overhead for prefetching only the indirect references.

Notice that these numbers are generally larger than the numbers we saw earlier in Table 3.6. The

reason for this is that prefetching an affine reference can take as little as a single instruction (the

prefetch instruction itself), since the prefetch address can often be generated by simply changing

the constant offset with respect to another load or store. However, computing the prefetch address

for an indirect reference requires a minimum of four instructions: (1) aload, to load the index

value; (2) ashift, to convert the index to the number of bytes in an array element; (3) anadd, to

add the byte offset to the starting address of the array; and (4) theprefetchinstruction itself. In

the case of SPARSPAK, our compiler achieved this bare minimum. For IS and CG, the numbers

are also respectable. The case that stands out is MP3D, where generating an indirection prefetch

address requires an average of 25 instructions. The reason for this is that MP3D must dereference

three index arrays (x, y, andz) to compute each indirect reference, and in addition these index

values must be converted from floating-point to integer values.

In theory, it may be possible to reduce the prefetching instruction overheads further bysaving

the indirection address in a register between the time it is computed for the prefetch and the time

it is used for the load or store. However, there are two complications with this optimization. First,

the compiler must be absolutely certain that the index value will not change during this interval.

Otherwise, not only will the wrong location be prefetched (which only hurts performance), but

more importantly the wrong location will be used by the load or store, and therefore the program

80 Chapter 3. Prefetching for Uniprocessors

will produce incorrect results. Second, storing the address values between the prefetch and the

load or store will consume additional registers, which may result in the large overheads of register

spilling. To avoid both of these problems, we chose to simply re-compute the indirect addresses

each time they are needed in our compiler implementation.

Overall, the gains in reduced memory stalls were large enough to outweigh the increased

instruction count in all cases. Although the performance gains for MP3D are small in the

uniprocessor case, we will see later in Section 4.3.3 that the gains are large in the multiprocessor

case. The bottom line is that through a simple extension of the core algorithm, our compiler is

now able to prefetch both affine and indirect array references, which covers a large fraction of

array-based scientific and engineering applications.

3.6 Chapter Summary

Our study of compiler-based prefetching for array-based uniprocessor applications has produced

the following results:

1. The selective prefetching algorithm presented in Chapter 2 is successful at hiding memory

latency while minimizing prefetching overhead, thus improving overall performance by as

much as twofold.

2. Our prefetching algorithm is robust with respect to the compile-time parameters that de-

scribe the memory hierarchy.

3. Prefetching and locality optimizations are complementary and therefore should be com-

bined. Locality optimizations reduce the number of accesses to main memory, and prefetch-

ing tolerates the latency of the remaining misses.

4. Through a minor extension of our software pipelining algorithm, our compiler can auto-

matically prefetch indirect array references.

Chapter 4

Prefetching for Multiprocessors

In this chapter, we turn our attention from uniprocessors to multiprocessors. Multiprocessor

architectures are promising because they have the potential of achieving very high computation

rates. However, these machines tend to suffer from memory latency even more than uniprocessors,

since they have the additional complication of communicating shared data among processors.

Also, the physical dimensions of large-scale multiprocessors result in large latencies to remote

memory locations. Therefore latency-hiding techniques such as prefetching are essential to exploit

the full potential of multiprocessors.

For this study, we focus on a class of machine with the following properties: (i) physically-

distributed main memory, (ii) a single address space, and (iii) hardware-coherent caches. These

properties are important for achieving high performance while providing ease of programmability

for the following reasons. First, main memory is physically distributed across the machine so that

each processor continues to have high bandwidth and low latency to its local memory, even as the

size of the machine is scaled up. Second, a single address space simplifies the naming of shared

objects, and provides an intuitive programming model for the user (the “shared memory” model).

Finally, hardware-coherent caches help reduce memory latency by allowing shared writable data

to be cached and replicated. Examples of such machines include Kendall Square Research’s

KSR1 [41], Stanford’s DASH [54], and MIT’s Alewife [3].

One of the keys to achieving high utilization of a multiprocessor is effectively overlapping

communication and computation. Message-passing machines allow the programmer to do this

by sending explicit non-blocking messages. However, under the shared-memory abstraction,

communication occurs when a processor reads a memory location that has been written by

another processor. Since processors typically stall on reads, this means that communication is

81

82 Chapter 4. Prefetching for Multiprocessors

not overlapped with computation. Prefetching, however, provides a mechanism by which shared-

memory applications can overlap communication (i.e. memory accesses) with computation.

This chapter is organized as follows. We begin in Section 4.1 by discussing the prefetching

issues that are unique to multiprocessing, and how they affect our compiler algorithm. Next,

we describe our framework for performing multiprocessor experiments in Section 4.2. Then

in Section 4.3 we present the results of these experiments, including a detailed evaluation of

each major component of the compiler algorithm. In Section 4.4, we vary the cache size to build

additional confidence in our results, and to evaluate the effectiveness of the compiler algorithm in

handling different mixtures of replacement misses and coherence misses. Section 4.5 compares

compiler-inserted prefetching with programmer-inserted prefetching, both for cases where the

compiler succeeded in inserting prefetches and for cases where it failed to do so. Finally, in

Section 4.6 we summarize the major results of these multiprocessor experiments.

4.1 Multiprocessor Issues and Modifications to Compiler Algorithm

There are three new issues that arise when prefetching for multiprocessors. They are (i) whether

binding or non-bindingprefetches are used, (ii) prefetching the additional cache misses due to

coherence activity, and (iii) usingexclusive-modeprefetches to gain ownership of lines that are

to be modified. In this section, we discuss each of these issues in detail, and describe how they

affect our compiler algorithm.

4.1.1 Binding vs. Non-Binding Prefetches

The first issue we examine is the distinction betweenbindingandnon-bindingprefetches. With

a bindingprefetch, the data value is “bound” at the time the prefetch is performed by placing it

in either a buffer or a register such that that is the actual value that will be seen by a subsequent

access. The problem with a binding prefetch is that if another processor modifies that location

during the interval between when the prefetch is issued and the data value is used, the value

delivered will be stale. This places significant restrictions on when binding prefetches can be

issued.

With a non-bindingprefetch, however, the data value is not bound until it is referenced by a

subsequent load operation. This is implemented by placing the prefetched data in the hardware-

coherent cache, rather than a register or separate buffer. Therefore the prefetched data will remain

visible to the coherence mechanism, which ensures that later accesses will always see the correct

Chapter 4. Prefetching for Multiprocessors 83

prefetch(&x); /* prefetch shared variable outside critical section */
...

LOCK (&L); /* enter critical section */
x = x + 1; /* modify shared variable */
UNLOCK (&L); /* exit critical section */

Figure 4.1: Example of when a binding prefetch would be illegal.

value (albeit at the potential expense of not finding the data in the cache if an invalidation occurs).

To illustrate the difference between binding and non-binding prefetches, consider the code

fragment in Figure 4.1. Here a shared variable (x) is modified within a critical section. Since

there obviously is not enough time within the critical section to hide the latency of prefetching

x , we would like to move the prefetch ofx outsidethe critical section to schedule it far enough

in advance. However, with abindingprefetch, this would be illegal, since another processor may

succeed in entering the critical section first, thus modifyingx . If this occurred, then the value

bound at the time of prefetch would be too small, since it would not reflect the more recent

increment, and therefore the program would behave incorrectly. With anon-bindingprefetch,

however, this code sequence would be perfectly legal, since the correct value ofx would always

be observed inside the critical section.

Thus the key advantage of non-binding prefetching is that it frees the compiler from the burden

of preserving correctness, and instead allows it to focus on the real issue, which isimproving

performance. Preserving correctness under binding prefetching is a difficult challenge for the

compiler, since it requires a full understanding of the communication behavior and any explicit

or implicit synchronization that occurs. As a result, compiler algorithms that insert binding

prefetches spend most of their effort worrying about whether prefetching islegal [31], and are

often forced to be conservative due to complications such as imperfect memory disambiguation

and explicitly-parallelized code.

To make significant headway in prefetching for multiprocessors, we must move beyond the

distractions of correctness and focus instead on the deeper performance issues. For example,

even for the relatively simple code in Figure 4.1, it is not clear whether prefetching should be

used. On the one hand, if there is significant contention for the lock (e.g., ifx is the current

bound in a branch-and-bound algorithm), then it is unlikely that the prefetched line will remain

in the cache, since another processor is likely to enter the critical section first, thus invalidating

the line when it is written. On the other hand, if there is little contention for the lock (e.g., ifx

84 Chapter 4. Prefetching for Multiprocessors

is a migratory object such as a circuit element in a logic simulator), then prefetching outside the

critical section may result in large performance gains.

Since latencies in multiprocessors can easily be quite large (e.g., over 100 cycles in DASH),

the compiler will need all of the flexibility it can get to move prefetches far enough in advance of

the references. Therefore the advantages of non-binding prefetches are essential when compiling

for multiprocessors.

How does non-binding prefetching affect our compiler algorithm? The good news is that it

does not affect it at all. If we wanted to, we could use exactly the same prefetching algorithm we

used for the uniprocessor code, ignoring the fact that we are compiling for a multiprocessor, and

the code would still get the correct answer. Therefore our uniprocessor algorithm will serve as

the starting point for our multiprocessor prefetching algorithm. In the following two subsections,

we discuss the two changes that we do make to the algorithm to optimize it for multiprocessor

performance.

4.1.2 Coherence Misses

Although non-binding prefetching allows the compiler to ignore the fact that it is compiling

for a multiprocessor from acorrectnessstandpoint, there are someperformancereasons why it

should take multiprocessing into account. In this subsection, we discuss the first of these reasons,

which is that communication between processors can potentially increase the miss rate by causing

morecoherencemisses (e.g., misses due to invalidations when using an invalidation-based cache

coherence protocol).

As an example of how communication affects the miss rate, consider the example in Fig-

ure 4.2. In this example, two processors are both accessing locationA, and both processors

initially have copies ofA in their caches in a “shared” state.Processor 1loadsA twice. Assume

that during the interval between these loads, no other locations are accessed byProcessor 1that

would interfere withA in the cache. If this access pattern occurred on a uniprocessor, it would

be reasonable to expect the second load ofA to hit in the cache, sinceA has not been replaced by

other accesses since it was first loaded. However, in the multiprocessor scenario in Figure 4.2,

Processor 2stores to locationA during this interval, thus invalidatingA from Processor 1’s

cache, and resulting in a cache miss the second timeProcessor 1loadsA. Such coherence misses

should be taken into account by the compiler during its analysis phase when it is predicting which

references to prefetch.

Figure 4.2: Example of how coherence activity can cause cache misses.

Predicting Coherence Misses

Ideally, we would like to incorporate the notion of coherence misses into our framework of

locality analysis, so that a single model could predict all forms of misses. How can this be

accomplished? As you may recall from Section 2.3, data locality occurs whenever a cache

line is reused, provided that the line has not been ejected from the cache since it was last

used. In a uniprocessor architecture, a cache line will only be ejected from the cache if it is

replaced by another reference that maps into the same cache entry. Our algorithm predicts that

such replacements will occur whenever the volume of data accessed between reuses exceeds the

effective size of the cache. In a multiprocessor architecture, a cache line can also be ejected from

the cache if the line ismodified by another processorduring the interval between reuses, hence

invalidating it from the given processor’s cache (we assume an invalidation-based coherence

protocol). Under locality analysis, the ejection of data from the cache is modeled through the

localized iteration space, which is the set of loops that can carry data locality. Therefore, to

predict coherence misses, we extend the concept of the localized iteration space to include not

only the volume of data accessed, but also whether lines are being modified by other processors.

Accurately predicting when another processor modifies a given data line is a very difficult

problem for the compiler, and requires a complete understanding of the communication and

synchronization patterns of an application, as well the data addresses being accessed. In cases

86 Chapter 4. Prefetching for Multiprocessors

where the application has been parallelized by the compiler, this may be feasible since presumably

the compiler must understand the communication patterns very well to perform the parallelization.

However, even in such cases, factors such as dynamic scheduling may make it difficult to predict

exactly when the modifications occur relative to other processors, andwhich lines are being

modified. In addition, while it may be tractable to understand when particular data items are

shared among processors (i.e.true sharing), it is more difficult to predict the coherence misses

that only occur becauseseparateitems fall within the same cache line (i.e.false sharing) [19, 81].

Finally, when the compiler is dealing with explicitly-parallelized programs, as is the case in our

experiments1, it is difficult (if not impossible) for the compiler to extract the communication

patterns, since much of this semantic information is contained only in the programmer’s head.

Although the compiler cannot precisely understand the communication patterns in the explicitly-

parallelized codes used in our experiments, one thing that serves as a useful hint is the explicit

synchronizationstatements inserted by the programmer to ensure that shared data are accessed

safely. Assuming that a program is “properly labeled” [27] or “data-race-free” [2], synchroniza-

tion statements should exist between the time when one processor modifies data and a second

processor reads that data. Therefore, the compiler interprets explicit synchronization as a hint

that data communication may be taking place. Ideally, it would be nice to know the data be-

ing protected by any given synchronization variable, since such information would allow the

compiler to reason more precisely about which particular variables may have been modified.

However, since such semantic information is kept only in the programmer’s head, our approach

is to conservatively assume the worst, which is that all shared objects may have been modified,

and therefore no locality is carried across explicit synchronization. We incorporate this notion

into our localized iteration spacemodel by saying that a loop is not localized if it either (i)

accesses too much data (to model replacement misses, as described earlier in Section 2.3.3), or

(ii) contains explicit synchronization (to model coherence misses).

An Example

To make our approach more concrete, consider the example code in Figure 4.3. MatrixA is

partitioned such that each processor modifies its own row based on a value (myVal) which is

computed over the entireA matrix. This computation is repeated over several timesteps. Barriers

1We chose explicitly-parallelized applications because we wanted to use highly-optimized, “real” applications
for our study, and therefore did not want to be constrained by the limitations of today’s automatic parallelizing
compiler technology. The explicitly-parallelized cases are also interesting because the compiler has the least amount
of information to work with, which makes getting good performance more challenging for the prefetching algorithm.

Chapter 4. Prefetching for Multiprocessors 87

/* NumProcs = total number of processors */
/* MyProcNum = this processor’s ID number */

/* shared matrix A, where each processor owns a row */
shared double A[NumProcs][100];

for (t = 0; t < t max; t++) f

local double myVal = 0.0;
for (p = 0; p < NumProcs; p++) f

for (i = 0; i < 100; i++)
/* compute myVal as a function of each element in A */
myVal += foo(A[p][i],MyProcNum);

g

barrier (B,NumProcs);
for (i = 0; i < 100; i++)

A[MyProcNum][i] += myVal; /* add myVal to this processor’s row */
barrier (B,NumProcs);

g

Figure 4.3: Example containing explicit synchronization.

are used to synchronize the processors between computing their copy ofmyVal and applying it

to the row they own.

If the compiler did not take communication into account, then ifNumProcs was a small

enough constant that the entireA matrix fit in the cache, locality analysis would predict that

the A matrix references would have temporal locality along the outert loop. However, this is

incorrect, because modifying the owned rows in the second inner loop will cause them to be

invalidated from the other processor’s caches, and therefore the temporalreuseof the entireA

matrix in the first inner loop does not result in temporallocality.

Our compiler algorithm takes this communication into account by deciding that thet loop

is outside the localized iteration space, since it contains a barrier statement, and therefore is not

likely to carry locality. As a result, the compiler would decide to prefetch the entireA matrix each

time it enters the first inner loop nesting (i.e. thep loop). Note that this is somewhat conservative

since the row owned by the processordoesremain in the cache since it is not modified by other

processors. The compiler could take advantage of this if it had a better understanding of the

actual communication patterns. However, given that the latency of coherence misses is likely to

be large (since the data may be contained far away in another processor’s cache), the instruction

88 Chapter 4. Prefetching for Multiprocessors

overhead of conservatively issuing some unnecessary prefetches may be acceptable given the

potential improvement in coverage of coherence misses. We could also improve upon this further

through the use of profiling feedback information, as we will discuss later in Section 5.2.1.

4.1.3 Exclusive-Mode Prefetching

In this subsection, we discuss an issue that arises under invalidation-based coherence schemes

(the model we assume for the remainder of this section), which is the use ofexclusive-mode

prefetching. Under the invalidation-based coherence model, a processor wishing to read a location

receives asharablecopy of the line, which allows the line to be replicated in other caches as

long as each processor is only reading the line. To write to a line, however, a processor must

first acquire anexclusivecopy of the line byinvalidating the line from other processors’ caches.

This prevents the replicated copies from becoming stale, thus preserving coherence.

Just as normal memory accesses have two variations (sharedaccesses for reads, andexclusive

accesses for writes), it also makes sense to have two types of prefetches: one that fetches ashared

copy of a line, and one that fetches anexclusivecopy. If a processor only intends to read a line,

it will use the shared-mode prefetch. However, if the processor intends to modify the line—even

if the line will be read first and modified shortly thereafter—an exclusive-mode prefetch should

be issued to not only fetch a copy of the line, but also to gain ownership.

Proper use of exclusive-mode prefetching can provide two performance benefits. First, it can

reduce the latency of the subsequent write since exclusive ownership of the line has already been

obtained. This may or may not have a direct impact on execution time, depending on whether

writes can be buffered.

The second benefit occurs in the common case where a value is read before it is written.

Intuitively, these cases occur frequently because it is more common toupdatea shared variable

(e.g., incrementing a shared counter, updating the position of a particle in a wind tunnel), than

to simply overwrite it without reading it first. In such “read-modify-write” cases, what normally

occurs is that the processor first requests asharablecopy of the line, and then immediately

afterward requests anexclusivecopy of the same line to perform the write. Rather than issuing

two separate requests, a better approach is to issue a singleexclusive-mode prefetch, as illustrated

in Figure 4.4. Therefore exclusive-mode prefetches can potentially eliminate up to half of the

total memory traffic, which can improve the performance ofall references (both reads and writes)

by reducing the amount of contention in the memory subsystem.

Figure 4.4: Illustration of how exclusive-mode prefetching improves performance.

We modify our compiler algorithm to exploit exclusive-mode prefetching as follows. Af-

ter performing locality analysis, the references have been partitioned intoequivalence classes

(see Section 2.3.3), which are sets of references that can be treated as a single reference. An

equivalence class may contain multiple references if they share group locality. We insert an

exclusive-mode prefetch rather than a shared-mode prefetch for a given equivalence class if at

least one member of the equivalence class is a write. For example, for the code in Figure 4.4(a),

locality analysis would determine that both the read and write ofA[i] are in the same equiva-

lence class. Therefore, despite the fact that theleading referenceto A[i] (i.e. the reference first

accessing the data) is a read, our algorithm would schedule a singleexclusive-modeprefetch of

A[i] , thus achieving the desired effect illustrated in Figure 4.4(b).

4.1.4 Summary

We have seen how three issues unique to multiprocessing have affected our prefetching algo-

rithm. First, by usingnon-bindingrather thanbindingprefetches, our algorithm is not burdened

with concerns over violating correctness, and consequently the original uniprocessor algorithm

90 Chapter 4. Prefetching for Multiprocessors

serves as a viable starting point. Second, to account for thecoherence missesthat result from

multiprocessor communication, we extended our analysis to use explicit synchronization as a hint

that communication may be taking place. Finally, we exploitexclusive-mode prefetchingwhen-

ever data are written, both to hide the latency of gaining ownership of a line, and to eliminate

unnecessary bandwidth consumption in read-modify-write situations.

4.2 Experimental Framework

This section presents the architectural assumptions we make, the benchmark applications, and the

simulation environment used to obtain performance results.

4.2.1 Architectural Assumptions

For this study, we have chosen an architecture that resembles the DASH multiprocessor [54], a

large-scale cache-coherent machine that has been built at Stanford. Figure 4.5 shows the high-

level organization of the simulated architecture. The architecture consists of several processing

nodes connected through a low-latency scalable interconnection network. Physical memory is

distributed among the nodes. Cache coherence is maintained using an invalidating, distributed

directory-based protocol. For each memory block, the directory keeps track of remote nodes

caching it. When a write occurs, point-to-point messages are sent to invalidate remote copies of

the block. Acknowledgment messages are used to inform the originating processing node when

an invalidation has been completed.

We use the actual parameters from the DASH prototype wherever possible, but have removed

some of the limitations that were imposed on the DASH prototype due to design effort constraints.

Figure 4.5 also shows the organization of the processor environment we assume for this study.

Each node in the system contains a 33MHz MIPS R3000/R3010 processor connected to a 64 Kbyte

write-through primary data cache. The write-through cache enables processors to do single-cycle

write operations. The first-level data cache interfaces to a 256 Kbyte second-level write-back

cache. The interface includes read and write buffers. The write buffer is 16 entries deep. Reads

can bypass writes in the write buffer if the memory consistency model allows this. Both the

first and second level caches are lockup-free [45], direct-mapped, and use 16 byte lines. The bus

bandwidth of the node bus is 133 Mbytes/sec, and the peak network bandwidth is approximately

120 Mbytes/sec into and 120 Mbytes/sec out of each node.

The latency of a memory access in the simulated architecture depends on where in the memory

Chapter 4. Prefetching for Multiprocessors 91

Directory
Memory

&
Controller

Processor

Cache

Memory

In
te

rc
o

n
n

e
ct

io
n

 N
e

tw
o

rk

Directory
Memory

&
Controller

Processor

Cache

Memory

Architecture

Processor

Cache
Primary

Secondary
Cache

Write
Buffer

STORESLOADS

Processor Environment

Figure 4.5: Architecture and processor environment.

hierarchy the access is serviced. Table 4.1 shows the latency for servicing an access at different

levels of the hierarchy, in the absence of contention (the simulations done in this study do model

contention, however). The following naming convention is used for describing the memory

hierarchy. Thelocal node is the node that contains the processor originating a given request,

while the home nodeis the node that contains the main memory and directory for the given

physical memory address. Aremote nodeis any other node. The latency shown for writes is the

time for retiring the request from the write buffer. This latency is the time for acquiring exclusive

ownership of the line, which does not necessarily include the time for receiving acknowledgment

messages from invalidations, since the release consistency model is used [27].

4.2.2 Applications

In this subsection we describe the computational structure of the parallel applications used in this

chapter. This information is useful in later sections for understanding the performance results. The

parallel applications we use consist of the entire SPLASH suite [72] plus the LU-decomposition

application that we used in earlier studies [33, 61]. These applications are representative of

92 Chapter 4. Prefetching for Multiprocessors

Table 4.1: Latency for various memory system operations in processor clock cycles (1 pclock =
30 ns).

Read Operations
Hit in Primary Cache 1 pclock
Fill from Secondary Cache 15 pclock
Fill from Local Node 29 pclock
Fill from Remote Node 101 pclock
Fill from Dirty Remote, Remote Home 132 pclock

Write Operations
Owned by Secondary Cache 4 pclock
Owned by Local Node 17 pclock
Owned in Remote Node 89 pclock
Owned in Dirty Remote, Remote Home120 pclock

Table 4.2: Description of multiprocessor applications.

Application Description Input Data Set

OCEAN simulates eddy currents 98x98 grid
in an ocean basin

LU dense LU decomposition with pivoting 200x200 matrix
MP3D simulates rarified hypersonic flow 100 K mols., cylinder.geom

(6144 cells), 5 steps
CHOLESKY sparse Cholesky factorization bcsstk15

LOCUS routes wires for VLSI Primary2
standard cell designs (25.8 K cells, 3817 wires)

WATER simulates water molecule interaction 512 mols., 2 steps
PTHOR simulates a digital circuit at RISC (5 K elements),

the gate level 5 steps
BARNES performs a hierarchical N-body 8192 bodies, 3 steps

gravitation simulation

algorithms used today in scientific and engineering computing environments. One application

(OCEAN) is written in Fortran, and the others are written in C. The Argonne National Laboratory

macro package [57] is used to provide synchronization and sharing primitives. Table 4.2 provides

a brief summary of the applications, along with their input data sets, and Table 4.3 shows some

general characteristics of the applications when 16 processors are used (as is the case throughout

this chapter).

OCEAN [71] simulates the role of eddy and boundary currents in influencing large-scale

ocean movements. It uses Successive Over Relaxation (SOR) to solve two-dimensional grids

Chapter 4. Prefetching for Multiprocessors 93

Table 4.3: General statistics for the multiprocessor applications.

Instructions Shared Shared Shared
Executed Reads Writes Data Size

Application (millions) (millions) (millions) Locks Barriers (KBytes)

OCEAN 121 12.3 4.3 352 2400 2972
LU 50 5.5 2.7 3,184 29 640

MP3D 209 17.0 5.5 2,176 384 4028
CHOLESKY 1247 181.8 24.0 90,229 16 6856

LOCUS 897 117.3 12.8 46,239 16 5156
WATER 2134 146.4 48.9 302,272 208 484
PTHOR 76 12.9 1.3 98,514 3984 2760

BARNES 337 34.1 10.8 16,530 96 1528

of partial differential equations over a number of time-steps. These time-steps continue until

the eddies and mean ocean flow attain a mutual balance. The principal data structures are 25

two-dimensional matrices containing the various values associated with the model’s equations.

Equal numbers of adjacent columns are statically assigned to each processor. During each time

step, the processors iterate over their columns from left to right, performing nearest-neighbor

computations with both 5-point and 9-point stencils. Communication occurs when processing the

boundary columns since their nearest-neighbors include columns owned by other processors. For

our experiments we ran OCEAN with 98x98 grids.

LU performs LU-decomposition for dense matrices. The primary data structure in LU is the

matrix being decomposed. Working from left to right, a column is used to modify all columns

to its right. Once all columns to the left of a column have modified that column, it can be

used to modify the remaining columns. Columns are statically assigned to the processors in

an interleaved fashion. Each processor waits until a column has been produced, and then that

column is used to modify all columns that the processor owns. Once a processor completes a

column, it releases any processors waiting for that column. For our experiments we performed

LU-decomposition on a 200x200 matrix.

MP3D [59] is a 3-dimensional particle simulator. It is used to study the pressure and tem-

perature profiles created as an object flies at high speed through the upper atmosphere. The

primary data objects in MP3D are the particles (representing the air molecules), and the space

cells (representing the physical space, the boundary conditions, and the flying object). The over-

all computation of MP3D consists of evaluating the positions and velocities of particles over a

94 Chapter 4. Prefetching for Multiprocessors

sequence of time steps. During each time step, the particles are picked up one at a time and

moved according to their velocity vectors. If two particles come close to each other, they may

undergo a collision based on a probabilistic model. Collisions with the object and the boundaries

are also modeled. The simulator is well suited to parallelization because each particle can be

treated independently at each time step. The program is parallelized by statically dividing the

particles equally among the processors. The main synchronization consists of barriers between

each time step. For our experiments we ran MP3D with 100,000 particles, a 32x6x32 space

array, and simulated 5 time steps.

CHOLESKY [69] performs sparse Cholesky factorization using a dynamic version of the

supernodal fan-out method. The matrix is divided into supernodes (sets of columns with identical

non-zero structures), which are further divided into conveniently-sized chunks called panels. A

panel receives updates from other panels to its left, and when all updates have been received, the

panel is placed on a task queue. The processors remove panels from this task queue and perform

all of their associated modifications, which in turn causes other panels to be placed on the task

queue. The principal data structure is the sparse matrix itself, which is stored in a compressed

format similar to that of SPARSPAK [25]. The primary operation that is performed repeatedly is

adding a multiple of one column to another column. Contention occurs for the task queue and

the modified columns, which are protected by locks. For our experiments we ranbcsstk15

which is a 3948-by-3948 matrix with 56,934 non-zeroes in the matrix and 647,274 non-zeroes in

the factor.

LOCUS (our abbreviation for “LocusRoute”) [68] is a high-quality global router for VLSI

standard cells that has been used to design real integrated circuits. The parallelism in LOCUS

comes from routing multiple wires concurrently. Each processor continuously picks up a new wire

from the task queue, explores alternative routes, and places the wire along the best route. The

principal data structure is a grid of cells called thecost array, which is used to record the presence

of wires and therefore guides the placement of new wires. The cost array is not protected by

locks, although it is accessed and updated concurrently by several processors, since the resulting

distortions are considered acceptable. Contention for the task queue is not a problem since each

routing task is fairly large-grain. For our experiments we run the largest circuit provided with

the application,Primary2.grin , which contains 3817 wires and a 1290-by-20 cost array.

WATER is adapted from the Perfect Club Benchmarks [20] and performs N-body molecular

dynamics simulation of the forces and potentials in a system of water molecules to predict some

physical properties of water in a liquid state. The primary data structure is a large array of

Chapter 4. Prefetching for Multiprocessors 95

records which contains the state of each molecule. Molecules are statically allocated to the

processors. During each time step, the processors calculate the interaction of the atoms within

each molecule, and of the molecules with each other. Due to symmetry, each processor only

computes the interaction between a molecule it owns and half the other molecules. We run

WATER with 512 molecules through 2 time steps.

PTHOR [76] is a parallel logic simulator based on the Chandy-Misra simulation algorithm.

Unlike centralized-time algorithms, this algorithm does not rely on a single global time during

simulation. The primary data structures associated with the simulator are the logic elements (e.g.

AND-gates, flip-flops), the nets (wires linking the elements), and the task queues which contain

activated elements. Each processor executes the following loop. It removes an activated element

from one of its task queues and determines the changes on that element’s outputs. It then looks

up the net data structure to determine which elements are affected by the output change and

schedules the newly activated elements on to task queues. For our experiments we simulated

several clock cycles for a small RISC processor consisting of about 5000 elements.

BARNES (the full name is “Barnes-Hut”) is a hierarchical N-body gravitational simulation

where each body is modeled as a point mass and exerts forces on all other bodies in the system. To

speed up the inter-body force calculations, a set of bodies that is sufficiently far away is abstracted

as a simple point mass. To facilitate this clustering, physical space is divided recursively to form

an octree, until each cell contains at most one body. This tree structure must be traversed on

each time step to account for the movement of bodies. The principal data structure is the octree,

which is implemented as an array of bodies and an array of cells that are linked together to

form a tree. Bodies are statically assigned to processors for the duration of a time-step. During

each time-step, each processor calculates the forces of all bodies on its subset of bodies, and the

bodies are then moved according to those forces. Finally, the tree is regenerated for the next

time step. A set of distributed locks provides exclusive access to the tree when needed. For our

experiments, we run BARNES with 8192 bodies through 3 time steps.

4.2.3 Simulation Environment

As in the uniprocessor experiments, the SUIF compiler is used to generate fully-functional object

code with prefetching. The performance of this object code is simulated using an event-driven

simulator which models the architecture at the behavioral level. For example, the caches and the

coherence protocol, contention, and arbitration for buses are all modeled in detail. The simulations

are based on a 16 processor configuration. The architecture simulator is tightly coupled to the

96 Chapter 4. Prefetching for Multiprocessors

Tango-Lite reference generator (the threads-based successor to the process-based Tango reference

generator) [29] to assure a correct interleaving of accesses. For example, a process doing a

read operation is blocked until that read completes, where the latency of the read is determined

by the architecture simulator. Operating system references are not modeled. Unless specific

directives are given by an application, main memory is distributed uniformly across all nodes

using a round-robin page allocation scheme.

We now arrive at a difficult methodological problem that occurs when simulating large mul-

tiprocessors. Given that detailed simulators are enormously slower than the real machines being

simulated, one can only afford to simulate much smaller problems/applications than those that

would be run on the real machine. However, running small problems on a full-sized machine

may result in unrealistic caching behavior, since, for example, the entire working set may fit in

the cache. Therefore the question is how to scale the machine parameters so as to get realistic

performance estimates.

A thorough examination of this question has been presented by Weber [84]. Weber uses

variational analysis (i.e. observing the effects of varying cache size and problem size parameters

on performance) and application-specific knowledge to choose appropriate cache sizes given

“smaller-than-real” problem sizes for the SPLASH applications. This analysis provides the basis

for our own decisions on how to scale the caches. Taking various factors into account regarding

the differences between the two studies (e.g., 16 vs. 64 processors, two-level vs. single-level

cache hierarchies, and the fact that we generally run larger problem sizes), we scale down the

original DASH cache hierarchy from a 64 Kbyte primary and 256 Kbyte secondary cache to

an 8 Kbyte primary and 64 Kbyte secondary cache for seven of the eight applications. The

exception is PTHOR, where given the small problem size, we use a 2 Kbyte primary cache and

4 Kbyte secondary cache. (However, since prefetches can only be added to PTHOR by hand,

performance results are only presented for PTHOR in Section 4.5.) To evaluate the impact of

the scaled caches, we present results where the cache size is varied in Section 4.4.

4.3 Experimental Results

In this section, we present experimental results to evaluate the performance of our multiproces-

sor prefetching algorithm. We begin with a high-level overview of the performance improve-

ments. We then focus in greater detail on several key aspects of the algorithm—locality analysis,

scheduling prefetching, prefetching indirect references, and using exclusive-mode prefetches—in

Chapter 4. Prefetching for Multiprocessors 97

|0

|20

|40

|60

|80

|100

|120

|140
 N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e synchronization

 9 6 1
 16 9 10 4

 58 65
 47

 50

 41
 8

 59

 39

 32 28
 52

 34
 59

 83

 31
 58

OCEAN
LU

MP3D
CHOLESKY

LOCUS
WATER

PTHOR
BARNES

memory access stalls
instructions

Figure 4.6: Performance of multiprocessor applications without prefetching.

Sections 4.3.1, 4.3.2, 4.3.3, and 4.3.4, respectively. We looked at several of these same aspects

of the algorithm earlier in Chapter 3, but only within the context of a uniprocessor environment;

many of these issues change or deserve a closer look under a multiprocessor environment. We

start now with a brief performance overview.

The performance of the original code (i.e.without prefetching) for the eight multiprocessor

applications is shown in Figure 4.6. Notice that there is a new component of execution time:

time spent stalled forsynchronization. These synchronization operations include events such

as acquiring locks, waiting for other processors to reach barriers (i.e. poor load balancing),

and instructions spent spinning on empty task queues. The prefetching compiler algorithm was

applicable to five of the eight multiprocessor applications (OCEAN, LU, MP3D, CHOLESKY,

and LOCUS). We examine those five applications in this section, and will discuss the other three

applications (WATER, PTHOR, and BARNES) later in Section 4.5. The overall performance of

the five cases that did improve is shown in Figure 4.7.

The speedups of the applications in Figure 4.7 range from 6% to 113%, with three of the five

speeding up by 45% or more. The memory stall times have been reduced by 31% to 88% through

a combination of lower miss rates and lower average miss penalties, as shown in Table 4.4. In

two cases (OCEAN and LU), more than half of the synchronization latency was eliminated. This

was due to improved load balancing, since prefetching helps to reduce the variability between

task sizes. However, prefetching did not reduce the synchronization latency of CHOLESKY,

98 Chapter 4. Prefetching for Multiprocessors

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 61

 100

 47

 100

 69

 100
 94

 100
 92

N S N S N S N S N S
OCEAN LU MP3D CHOLESKY LOCUS

synchronization
memory access stalls
instructions

Figure 4.7: Overall performance of the selective prefetching algorithm for the multiprocessor
applications (N = no prefetching, andS = selective prefetching).

where most of the synchronization time is spent in explicit spin loops waiting for more tasks

to be produced. Figure 4.7 also shows that the overheads of prefetching (both instruction and

memory stall overheads) are relatively small, therefore translating much of the memory stall

reduction into actual performance benefit. In the following subsections, we examine each aspect

of the multiprocessor prefetching algorithm in greater detail.

4.3.1 Locality Analysis

As in the uniprocessor prefetching algorithm, the goal of locality analysis is to determine which

references will hit in the cache so as to reduce prefetching overhead. Locality analysis is slightly

different for multiprocessors because it takes explicit synchronization into account when com-

puting the localized iteration space, as we described earlier in Section 4.1.2. To evaluate the

effectiveness of locality analysis, we perform an experiment similar to that in Section 3.2.1 by

comparingindiscriminateprefetching (where array references are prefetched all the time) with

selectiveprefetching (which uses locality analysis). The results of this experiment are shown in

Figures 4.8 and 4.9.

Chapter 4. Prefetching for Multiprocessors 99

Table 4.4: Reduction in memory stall times for the multiprocessor applications.

No Prefetch Selective Prefetch
Shared Load Average Load Average Memory
Loads Miss Load Miss Miss Load Miss Stall

per Rate Penalty Rate Penalty Reduction
Benchmark Inst (%) (cycles) (%) (cycles) (%)

OCEAN 0.10 23.11 76.2 9.11 28.2 85.4
LU 0.11 27.07 77.3 13.52 18.8 87.9

MP3D 0.08 12.49 90.1 2.32 83.0 81.7
CHOLESKY 0.15 26.38 29.6 24.66 22.3 31.2

LOCUS 0.13 13.54 39.2 10.97 26.1 45.7

Figure 4.8 shows that prefetching selectively rather than indiscriminately offers speedup-

s ranging from 23% to 39%. As we saw earlier in the uniprocessor results, the reduction in

memory stall time is comparable between the two schemes, but the real difference is that se-

lective prefetching has significantly less overhead than indiscriminate prefetching. In two cases

(CHOLESKY and LOCUS), prefetching selectively makes the difference between a performance

loss and a performance gain.

Figure 4.9 presents two useful metrics for evaluating locality analysis: the percentage of

unnecessary prefetches, and thecoverage factor. Comparing both of these metrics between the

two schemes, we see that once again selective prefetching eliminates a significant fraction of

unnecessary prefetches, while giving up very little in terms of coverage factor. The reduction in

total prefetches ranges from a factor of 2.2 to a factor of 7.7.

Looking at the magnitude of unnecessary prefetches remaining after selective prefetching in

Figure 4.9(a), we see that three applications are below 25% (OCEAN, MP3D, and CHOLESKY),

while the other two are above 45% (LU and LOCUS). The problem in both of these latter cases is

that they contain references to important data structures which tend to fit in the cache, but which

are occassionally modified by other processors, thus resulting in coherence misses. While it is

difficult to predict which dynamic references to these structures will suffer misses, it is even more

difficult to isolate those miss instances—i.e. techniques such as loop splitting are not applicable

in these cases. Since our algorithm is conservative about coherence misses, it prefetches these

references all the time, thus resulting in a relatively large fraction of prefetches being unnecessary.

We now describe these two cases in more detail.

In LU, the important data structure is the pivot column. A pivot column is produced by

100 Chapter 4. Prefetching for Multiprocessors

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 85

 61 62

 47

 86

 69

 116

 94

 128

 92

I S I S I S I S I S
OCEAN LU MP3D CHOLESKY LOCUS

synchronization
memory access stalls
instructions

Figure 4.8: Overall performance comparison between the indiscriminate and selective prefetching
algorithms for the multiprocessor applications (I = indiscriminate prefetching, andS = selective
prefetching).

a single processor, and is then used repeatedly by the other processors to modify their local

columns. This process of applying a pivot column to a local column occurs inside a procedure,

which is called once for each local column. The first time a given pivot column is applied to a local

column, the pivot column will miss in the cache, since it still resides in the cache of the processor

that produced the pivot column. However, on subsequent calls of the same procedure with the

same pivot column, the column will hit since it is retained in the cache. Since our prefetching

algorithm does not look across procedure boundaries, it cannot recognize the temporal locality of

the pivot column, and therefore prefetches it each time the procedure is called. Overcoming this

limitation statically would require not only interprocedural analysis, but also the ability to either

inline or clone[15] the procedure body so that prefetches can be scheduled for only the first use

of a pivot column. Another possibility is to usedynamic informationin the form of hardware

miss counters, thus allowing the procedure to adapt dynamically to whether the pivot column is

in the cache. As we will see later in Section 5.2.1, this latter method is effective at eliminating

unnecessary prefetches in LU. However, even without any of these improvements, we observe

Chapter 4. Prefetching for Multiprocessors 101

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e

 78

 21

 82

 47

 89

 21

 65

 15

 86

 72

I S I S I S I S I S
OCEAN

LU
MP3D

CHOLESKY
LOCUS

|0
|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e 98 96 97 96
 90 89 85 85

 76 75

I S I S I S I S I S
OCEAN

LU
MP3D

CHOLESKY
LOCUS

(a) Unnecessary Prefetches (b) Coverage Factor

Figure 4.9: Statistics for evaluating locality analysis for multiprocessor applications (I = indis-
criminate prefetching, andS = selective prefetching).

that despite the unnecessary prefetching overhead in LU, it achieves the greatest speedup of all

the applications (more than twofold) since the advantage of prefetching the pivot columns when

they do miss is quite large.

In the case of LOCUS, the important data structure is thecost array, which represents the

current placement of wires. Each processor’s portion of the cost array tends to fit in its cache,

but parts of it are occassionally invalidated as other processors rip up or put down new wires.

Since these modifications occur erratically, the compiler cannot predict when they will occur and

simply prefetches the cost array each time it is traversed. Therefore a significant fraction of the

prefetches are unnecessary, but this is the only way to cover these coherence misses, and it does

account for the bulk of the reduction in memory stalls.

LOCUS has the distinction of not only having the highest fraction of unnecessary prefetches,

but also of having the lowest coverage factor (75%), as we see in Figure 4.9(b). The reason

why the coverage factor is not higher (which is also true for CHOLESKY) is that many of the

important array references are insidewhile loops rather thanfor loops. Since awhile loop has no

induction variable (either explicit or implicit), neither locality analysis nor software pipelining is

applicable.

Finally, we observe that locality analysis is successful at reducing unnecessary prefetches

while maintaining a respectable coverage factor despite our conservative assumption that shared

data does not remain in the cache across synchronization statements. In LU and LOCUS, the

remaining unnecessary prefetches werenot caused by adjusting the localized iteration space due

102 Chapter 4. Prefetching for Multiprocessors

to explicit synchronization (as described in Section 4.1.2). The problem in LU is procedure

boundaries, and there is no synchronization in the loops for LOCUS, since the cost array is not

protected by locks. In fact, when we recompiled each application and didnot take explicit syn-

chronization into account, we got precisely the same performance for each application. In other

words, explicit synchronization never changed our locality predictions in significant ways. This

occurred for two reasons. First, programmers realize that synchronization is costly and therefore

avoid putting it in inner loops. Instead, synchronization tends to happen in outer loops and be-

tween loop nests, which makes it less likely to affect loop-level data locality. Second, in some

cases the programmers decide that the performance advantage of not locking data structures is

worth whatever distortion it causes in the result, as is the case in both MP3D and LOCUS. There-

fore although communication takes place, there is no explicit synchronization for our algorithm

to use as a hint. However, even if the compiler did realize that coherence misses were occurring

in these cases, the only choice it has is to prefetch all the time, since the misses occur erratically.

Therefore the desired effect was achieved in our experiments despite the lack of sophisticated

analysis of communication patterns.

Overall, prefetching selectively through the use of locality analysis appears to be quite suc-

cessful both for uniprocessors and multiprocessors. Once locality analysis has predicted which

references to prefetch, the next step in our algorithm isschedulingthose prefetches so that they

are effective at hiding latency.

4.3.2 Scheduling Algorithm

As in the uniprocessor study, the effectiveness of the scheduling algorithm can be evaluated

based on how often prefetched misses result in primary cache hits. Figure 4.10 breaks down

what happened to the original primary cache misses, similar to Figure 3.5 in the uniprocessor

study. However, since there are more explanations for ineffective prefetches in the multiprocessor

architecture, we have broken the misses down into several more specific categories.

The topmost section of the bars in Figure 4.10 (labelednopf-miss) is still the cases that are

not prefetched and obviously remain cache misses. These are the misses that are not part of the

coverage factor, which was discussed in the previous subsection. The bottom section of the bars

(labeledpf-hit) includes the original misses that are prefetched and subsequently become primary

hits, which corresponds to effective scheduling. The remaining four cases in the middle of the

bars (labeledpf-miss) are the ones where prefetches are not effective. We will discuss each of

these cases in detail.

Chapter 4. Prefetching for Multiprocessors 103

|0

|20

|40

|60

|80

|100
 P

er
ce

n
ta

g
e nopf-miss

OCEAN
LU

MP3D
CHOLESKY

LOCUS

pf-miss: too late
pf-miss: invalidated
pf-miss: replaced
pf-miss: in s-cache
pf-hit

Figure 4.10: Breakdown of the impact of prefetching on the original primary cache misses for
the multiprocessor applications.

The “pf-miss: too late” category includes cases where the prefetches were not issued early

enough to hide the latency, and therefore the data item had not returned to the cache before it

was referenced. This case was only noticeable in one application: LU. The problem in LU is

that prefetches are delayed due to “hot-spotting” in the network. The hot-spotting occurs because

several processors are often waiting for the same column to be produced by a single processor.

Once that processor signals that the column is ready, the other processors simultaneously send

numerous prefetches to that processor, requesting the data. The prefetches subsequently exceed

the bandwidth capabilities of that particular network node, resulting in queueing delays. This

problem isnot remedied by simply scheduling the software pipeline to hide a larger latency,

since the prefetches cannot be issued before the synchronization point, and after that point the

request rate simply exceeds the bandwidth capacity of the network node. In fact, when LU was

recompiled for twice the normal target memory latency (i.e. 600 rather than 300 cycles), the

performance was considerably worse. So to some extent these delays are unavoidable.2

The “pf-miss: invalidated” category includes the cases where the prefetched data item is

2One technique that may help in this case is a “producer prefetch”, as implemented in the DASH prototype. With
a producer prefetch, the processor that generates the column would send it out to the processors waiting for it. This
technique has the advantage that it has better hot-spotting performance than “consumer prefetch” (which is what we
normally use), since only a single message is sent out from the hotspot, rather than having large numbers of request
messages backing up at the hotspot, and then sending out the responses.

104 Chapter 4. Prefetching for Multiprocessors

brought into the cache but is invalidated before it can be referenced. This situation arises because

we usenon-bindingprefetches, and therefore sometimes the data must be invalidated to preserve

correctness. This category was most prominent in MP3D, where it accounted for roughly half of

the pf-misscases. In MP3D, some of the objects that are prefetched (the “space cells”) are very

actively shared and modified amongst the processors. Therefore in many cases another processor

wants to modify a location between the time it is prefetched and referenced. This effect is

magnified to some extent by the fact that we useexclusive-modeprefetches, which means that

a processor can invalidate other copies of the line when it expects to write the line in the near

future, not only when it is actually modifying the line. The misses in the “pf-miss: invalidated”

category tend to be expensive, since the data is typically found far from the processor (i.e. rather

than being in the home memory, it is usually in a remote processor’s cache). We see that this

is true in Table 4.4, where the average read miss latency for MP3D is only reduced from 90.1

to 83.0 cycles, which is a meager reduction compared to the other applications. Although these

invalidations are an interesting effect, the prefetches that are successful still manage to eliminate

82% of the miss stall time in MP3D. The fact that the invalidations allow the prefetches to be

non-binding is a benefit that far outweighs the cost of prefetches that are occasionally unsuccessful

due to invalidations.

The “pf-miss: replaced” category includes cases where the prefetched data is brought into the

primary cache but is subsequently replaced from both the primary and secondary caches before

it can be referenced. This case did not occur often for any of the applications.

Finally, the “pf-miss: in-scache” category includes cases where prefetched data is replaced

from the primary cache before it can be referenced, but the data is still found in the secondary

cache. Fortunately this is the dominant case for all the applications, as it was in the uniprocessor

study. This is the least harmful of thepf-misscategories since the latency of a miss to the

secondary cache is small relative to other types of misses, and in many cases the latency of an

expensive miss has been reduced to a relatively cheap miss (i.e. it representspartial latency-

hiding). For example, the majority of misses in this category for MP3D were formerly “dirty

remote” misses, which have latencies of at least 132 cycles. Therefore the latency is reduced by

roughly an order of magnitude when the data are found in the secondary cache.

Although the “pf-miss: in-scache” category is the least harmful of thepf-misscategories, it

is still obviously less desirable than thepf-hit category. In the case of CHOLESKY, only 10% of

the prefetched primary misses became primary hits—the other 90% are found in the secondary

cache. Unfortunately, in this case nearly all of those latter misses were in the secondary cache to

Chapter 4. Prefetching for Multiprocessors 105

begin with, so there is no partial latency-hiding benefit. On the other hand, most of the misses

that became primary hits were originally expensive remote misses. All of these prefetches are

for the same structures: thepanels. Once a panel is “ready”, it is repeatedly applied to other

panels through a procedure call. When a panel is first used, the prefetches within the procedure

succeed in fetching it from a remote location into the primary cache. However, on subsequent

calls to this procedure, the prefetches for that same panel fail to bring it from the secondary to

the primary cache due to conflicts with other references. These conflicts are with other panel

references in the key loop, where eight separate columns within the panel are referenced on each

iteration. To some extent, the conflict problem is also aggravated because we schedule for the

worst-case latency—although this allows prefetching to work for the expensive misses (which is

important), it causes the data to arrive in the primary cache unnecessarily early when found in the

secondary cache. Treating these cases differently is difficult since they are simply different calls

to the same procedure. It is unfortunate that scheduling is not more effective for CHOLESKY,

considering how well locality analysis performs: only 15% of the prefetches are unnecessary and

the coverage factor is 85%. The performance of LOCUS is also hindered by a similar conflict

problem, but to a lesser extent.

To summarize, we have seen that the scheduling algorithm is often quite successful, which

results in substantial speedups for OCEAN, LU, and MP3D. However, there is room for further

improvement in CHOLESKY and LOCUS by reducing cache conflicts, which we will address

later in Section 5.2.2. Despite these conflicts, which replace data from the primary to the sec-

ondary cache, the benefit of hiding remote latencies resulted in the elimination of at least 30%

of memory stall cycles in all cases.

4.3.3 Prefetching Indirect References

The prefetching algorithm used so far in this chapter attempts to prefetch bothdenseand indirect

array references. Indirect references are prefetched as described in Section 3.5.1. Only one of the

multiprocessor applications contained a significant number of indirect array references: MP3D.

Figure 4.11 breaks down how much of the prefetching benefit came from the dense versus the

indirect prefetches.

As we see in Figure 4.11, the overwhelming majority of the benefit was from prefetching

the indirect references. This is in contrast with the results we saw earlier in Figure 3.11 for the

uniprocessor version of MP3D, where there was very little advantage to prefetching the indirect

references. The difference between these two cases is that the indirect references are to objects

106 Chapter 4. Prefetching for Multiprocessors

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100 95

 69

N D B
MP3D

synchronization
memory access stalls
instructions

Figure 4.11: Prefetching indirect references in the multiprocessor version of MP3D (N = no
prefetching,D = dense-only prefetching, andB = both dense and indirect prefetching).

that are very actively shared and modified amongst the processors (the “space cells”), whereas

the dense references are to objects that are rarely shared and reside in a processor’s local memory

(the “particles”). Therefore the miss latency tends to be substantially larger for the indirect

references, since they are often found dirty in a remote processor’s cache, in contrast with the

dense references, which are found locally.

This application illustrates several aspects of our prefetching compiler algorithm: (i) locality

analysis to reduce the overhead of prefetching dense matrix references (as shown in Figure 4.8),

(ii) prefetching indirect references (as shown in Figure 4.11), and (iii) non-binding prefetching

for multiprocessors (as evidenced by the size of the “pf-miss: invalidated” category in Figure

4.10). We now consider the final aspect of our multiprocessor prefetching algorithm, which is

usingexclusive-modeprefetches.

4.3.4 Exclusive-Mode Prefetching

In this section, we evaluate the benefits of exclusive-mode prefetching, which helps to reduce

both the miss latencies and the message traffic associated with writes. Unlike read misses,

Chapter 4. Prefetching for Multiprocessors 107

Table 4.5: Statistics on exclusive-mode prefetching.

Fraction of Prefetches Reduction in
Benchmark that are Exclusive-mode (%) Message Traffic (%)

OCEAN 38 23
LU 50 9

MP3D 100 27
CHOLESKY 16 15

LOCUS 2 3

which directly stall the processor for their entire duration, write misses affect performance more

indirectly, since writes can be buffered. A processor stalls while waiting for writes to complete

in two situations: (i) when executing a write instruction if the write buffer is full, and (ii) during

a read miss if previous writes must complete before the read miss can proceed. The impact of

the former effect can be reduced through larger write buffers. Throughout this study, we use

16-entry write buffers, which we have found to be large enough to make the full-buffer effect

negligible. The impact of the latter effect depends on whether reads are permitted to bypass

writes (as allowed by the release consistency model), and whether the cache permits multiple

outstanding accesses (as allowed by a lockup-free cache).

As we described earlier in Section 4.1.3, our compiler uses an exclusive-mode (rather than

a shared-mode) prefetch whenever any member of anequivalence class(i.e. a set of references

that share group locality) is a write. This catches the importantread-modify-writecases, and

potentially eliminates as much as half of the message traffic. Table 4.5 shows the fraction of

prefetches that were exclusive-mode for each of the applications. To evaluate the case where

exclusive-mode prefetches are not available, we replace each exclusive-mode prefetch with a

normal “shared-mode” prefetch of the same address. Since the multiprocessor architecture we

have used so far includes bothrelease consistency(which allows writes to be buffered and

reads to bypass pending writes) andlockup-free caches, write latency has no direct impact on

performance. Consequently exclusive-mode prefetching has a negligible performance impact on

this architecture. It does, however, reduce the amount of message traffic, as shown in Table 4.5.

If the architecture was bandwidth-limited (which in our case it is not), then this reduction in

message traffic could have a direct payoff in improved performance.

To evaluate the benefit of exclusive-mode prefetching in an architecture where write latency

is not already completely hidden, we performed the same experiment on an architecture that

108 Chapter 4. Prefetching for Multiprocessors

|0

|20

|40

|60

|80

|100

|120

|140

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e prefetch memory overhead

 123

 71

 54 52

 110

 80

 114
 104

 113 110

S X S X S X S X S X
OCEAN LU MP3D CHOLESKY LOCUS

synchronization
write stalls
read stalls
instructions

Figure 4.12: Performance with and without exclusive-mode prefetching givensequential con-
sistencyrather than release consistency (S = shared-mode prefetching only,X = exclusive-mode
prefetching available). Performance is normalized to release consistency without prefetching.

usessequential consistencyrather than release consistency. With this stricter consistency model,

the processor must stall after every shared access until that access completes. (We will discuss

consistency models in greater detail later in Section 5.3.2.) The results of this experiment are

shown in Figure 4.12. Notice that the memory stall time in Figure 4.12 has been broken down

further intowrite stall timeand read stall time(under the release consistency model assumed so

far in this chapter, nearly all of the memory stall time is read stall time).

Figure 4.12 shows that exclusive-mode prefetching can result in dramatic performance im-

provements in an architecture using sequential consistency: OCEAN and MP3D achieved speedup-

s of 73% and 37%, respectively. The speedups for CHOLESKY and LOCUS were understandably

smaller (10% and 3%) since they make less use of exclusive-mode prefetching, as shown in Table

4.5. In the case of LU, the write latency is small to begin with since the processors only write

to their local columns, which tend to fit in the secondary caches.

In summary, exclusive-mode prefetching can provide significant performance benefits in ar-

chitectures that have not already eliminated write stall times through aggressive implementations

Chapter 4. Prefetching for Multiprocessors 109

of weaker consistency models with lockup-free caches. Even if write stall times cannot be further

reduced, exclusive-mode prefetching can improve performance somewhat by reducing the traffic

associated with cache coherency.

4.4 Cache Size Variations

In this section, we study the effects of varying the cache size. Our motivation is twofold. First,

we would like to build additional confidence in our results, given our cache scaling methodology.

Recall from Section 4.2.3 that in order to achieve realistic problem-size to cache-size ratios, the

results presented so far in this chapter are based on an 8K/64K cache hierarchy, which is scaled

down from the full 64K/256K caches in DASH. By varying the cache size, we can explore the

effects of cache scaling on performance. Second, by running the same problem on varying cache

sizes, we effectively change the mixture of misses due toreplacements(because of the finite

cache size) versus misses due tocoherence(because of the communication of shared data). This

allows us to evaluate how well our compiler algorithm prefetches both types of misses.

The results of our experiments are presented in Figure 4.13, where the performance of each

application is shown on three different sets of cache sizes. The middle pair of bars are for the

scaled cache sizes of 8K/64K that we used throughout this chapter. The rightmost pair of bars are

for the full-sized 64K/256K caches in DASH. The leftmost pair of bars are for a smaller cache

hierarchy of 2K/8K. We begin by focusing on how the code without prefetching performs across

the different cache sizes, and then later compare this to the behavior of the code with prefetching.

If we focus our attention first on the codewithout prefetching, we see a variety of different

behaviors in Figure 4.13. At one extreme is MP3D, where varying the cache size has virtually

no impact on performance. This is because MP3D sweeps through a very large data set on each

time step, and even the 64K/256K caches are not large enough to retain the data (each processor’s

particles are 200 Kbytes, and the space cell array is 288 Kbytes). This region, where the the data

set is much larger than the cache size, is expected to be the case in real-life runs of MP3D, so our

results are indicative of the performance on real machines. At the other extreme are applications

like LU, CHOLESKY, and LOCUS, where there is a noticeable knee in performance once a key

data structure fits in the cache. For LU, this knee occurs between the 8K/64K and 64K/256K

cache sizes, and corresponds to when the columns owned by a processor (roughly 20 Kbytes) fit

in the primary cache. For both CHOLESKY and LOCUS, the knee occurs between the 2K/8K

and 8K/64K cache sizes. In the case of CHOLESKY, this corresponds to an entire panel fitting

110 Chapter 4. Prefetching for Multiprocessors

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 61

 124

 65

 86

 58

N SN S N S
2K/8K 8K/64K 64K/256K

synchronization
memory access stalls
instructions

|0
|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 47

 126

 53 55
 44

N SN S N S
2K/8K 8K/64K 64K/256K

synchronization
memory access stalls
instructions

(a) OCEAN (b) LU

|0
|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 69

 100

 72

 99

 69

N SN S N S
2K/8K 8K/64K 64K/256K

synchronization
memory access stalls
instructions

|0

|40

|80

|120

|160

|200

|240

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100 94

 256

 107

 67 67

N SN S N S
2K/8K 8K/64K 64K/256K

synchronization
memory access stalls
instructions

(c) MP3D (d) CHOLESKY

|0

|40

|80

|120

|160

|200

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100
 92

 185

 126

 80 77

N SN S N S
2K/8K 8K/64K 64K/256K

synchronization
memory access stalls
instructions

(e) LOCUS

Figure 4.13: Performance of multiprocessor applications with varying cache sizes (N = no
prefetching, andS = selective prefetching).

Chapter 4. Prefetching for Multiprocessors 111

in the primary cache. For LOCUS, it corresponds to the portion of the cost array where a wire

is being routed fitting in the cache. Therefore we see dramatic performance swings (more than

80% improvement) as the knee is crossed in three of the five cases without prefetching.

In contrast, the performance of the codewith prefetching varies more gradually over the range

of cache sizes. For example, while the performance of LU without prefetching improves by 82%

when the cache sizes increase from 8K/64K to 64K/256K, the performance with prefetching

changes by only 7%. Similarly, the performance improvement as the cache sizes are increased

from 2K/8K to 8K/64K is 156% without prefetching vs. 14% with prefetching for CHOLESKY,

and 85% without prefetching vs. 37% with prefetching for LOCUS. Why is the prefetching

performance less sensitive to cache size? As the cache size is reduced, we see more replacement

misses in the code without prefetching. However, since our algorithm is effective at prefetching

replacement misses (as demonstrated already in Chapter 3), the resulting latency is therefore

hidden, thus making the code with prefetching less sensitive to cache size. In fact, in three of

the five cases (OCEAN, LU, and MP3D), the performance of code with prefetching on 2K/8K

caches was better than code without prefetching on 64K/256K caches.

We now consider how cache size variations affect the relative performance improvement

offered by prefetching. In general, Figure 4.13 shows that prefetching improves performance

more with smaller cache sizes. The obvious reason for this is that smaller caches have more

latency to hide due to replacement misses, and thus there is more room for improvement. For

example, prefetching offers only modest speedups for CHOLESKY and LOCUS on 8K/64K

caches, but provides dramatic speedups on 2K/8K caches (139% and 48%, respectively). With

these smaller caches, the prefetches for the panels in CHOLESKY and the cost array in LOCUS

are almost always useful; with larger caches, these structures only miss during communication,

and therefore the prefetches are not as beneficial. As evidence of this reduced benefit, the

instruction overhead offsets much of the reduction in memory stalls for both CHOLESKY and

LOCUS with 64K/256K caches.

Can these instruction overheads with large caches be reduced by prefetching only the coher-

ence misses? For CHOLESKY, the answer is yes, but only if special techniques for handling

procedures are used. The difficulty in CHOLESKY is that each access to a panel occurs as

a separate call to the same procedure. To isolate only the coherence misses, we would like

to prefetch a panel only the first time it is accessed by a given processor. This cannot occur

normally, but would be possible with either inlining or procedure cloning [15]. (Note that a

very similar situation occurs in LU.) For LOCUS, however, the answer is no, coherence misses

112 Chapter 4. Prefetching for Multiprocessors

cannot be isolated. The reason why is that coherence misses in LOCUS only occur when another

processor routes a wire in the same portion of the cost array as the given processor. Since these

misses are unpredictable and occur sporadically, they cannot be isolated, and therefore we must

conservatively prefetch the cost array all the time.

In summary, we have seen that the performance advantages of prefetching often remain

significant even as the cache size is varied. This robustness occurs despite the fact that we

conservatively assume that data does not remain in the cache across synchronization statements

(see Section 4.1.2). Since our algorithm effectively handles replacement misses, the performance

with prefetching is relatively insensitive to the cache size, unlike code without prefetching,

where performance can suffer greatly once key data structures no longer fit in the cache. Once

the caches are large enough that little latency remains, it becomes increasingly important to

minimize instruction overhead by prefetching only the coherence misses. However, in some

cases it is impossible to isolate only the coherence misses, since they cannot be predicted, and

therefore the compiler is forced to be conservative. In such cases, profiling feedback information

may potentially be useful, as we will discuss later in Section 5.2.1.

4.5 Programmer-Inserted Prefetching

Software-controlled prefetching relies upon some form of support for inserting prefetches into

the code. While having the compiler insert the prefetches automatically is the preferred ap-

proach, another possibility is for the programmer to insert the prefetches by hand. Comparing

compiler-based prefetching with hand-inserted prefetching is a useful exercise because hand-

inserted prefetching is not constrained by the limitations of the compiler technology; it provides

a rough “upper bound” on the performance we might expect from the compiler. In this section,

we examine applications with hand-inserted prefetching, discussing cases where the compiler was

successful (Section 4.5.1), and also cases where the compiler failed (Section 4.5.2).

4.5.1 Cases Where the Compiler Succeeded

In an earlier study, we inserted prefetches by hand into MP3D, LU, and PTHOR [61]. In the

case of PTHOR, the access patterns are irregular and difficult to prefetch even by hand—we will

discuss that case later in Section 4.5.2. In contrast, the other two cases (MP3D and LU) have

regular and predictable access patterns. Therefore inserting prefetches by hand was relatively easy,

and we saw large performance gains. Our compiler algorithm is also successful at prefetching

Chapter 4. Prefetching for Multiprocessors 113

these two cases, which we examine in more detail in this subsection.

MP3D

The MP3D application spends most of its time executing a loop where each processor takes a

particle and moves it through one time step. The overwhelming majority of cache misses are

caused by references to two structures within this loop: (i) the particle which is being moved

(36% of misses), and (ii) the space cell where the particle resides (53% of misses). Particles

are statically assigned to processors and are allocated from the shared memory local to each

processor, while the memory for the space cells is distributed uniformly among the processors.

We inserted prefetches into MP3D by hand as follows. Since a particle must be referenced

to determine the space cell it occupies, we prefetch a particle record two iterations before its

turn to be moved. In the iteration following the prefetch, the particle is read, and the associated

space cell is determined and prefetched. As a result, when it is time for the particle to be moved,

both the particle and space cell records are available in the cache. We also prefetch several other

references that occur at time step boundaries. The end result is a coverage factor of 90% for

our hand-insertion scheme. Exclusive-mode prefetches are used since the objects are modified

during each iteration. Introducing these prefetches required adding 16 lines to the source code.

When our compiler inserted prefetches into MP3D, it recognized that the address of a space

cell is computed based on thex, y, andzfields in a particle record (which represent the coordinates

of the space cell). Since this is an indirect reference, the compiler used the algorithm described in

Section 3.5.1 to prefetch the particles two iterations ahead, and the space cells one iteration ahead.

The scheduler determined that only a single iteration is needed to hide the memory latency, since

the loop body is rather large. Therefore the compiler duplicated the hand-inserted approach to

prefetching particles and space cells, resulting in a coverage factor of 89%. The compiler also

prefetched a few other references at time step boundaries, but they turned out to be insignificant.

Figure 4.14(a) shows the performance of both the compiler-based and the hand-inserted

prefetching schemes for MP3D. As we see in this figure, they both do quite well. The hand-

inserted case performs slightly better simply because the scalar optimizer was able to eliminate

a few more instructions in that case, but this difference is basically in the “noise”. Therefore the

compiler-based scheme appears to be living up to its potential in this case.

114 Chapter 4. Prefetching for Multiprocessors

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 69 65

N A H

synchronization
memory access stalls
instructions

|0

|20

|40
|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 47
 53

N A H

synchronization
memory access stalls
instructions

(a) MP3D (b) LU

Figure 4.14: Comparison of compiler-based and hand-inserted prefetching for the cases where
the compiler succeeded (N = no prefetching,A = prefetches inserted automatically by compiler,
H = hand-inserted prefetching).

LU

In LU, the matrix columns are statically assigned to the processors in an interleaved manner. The

main computation done by each processor consists of reading a pivot column once it is produced,

and applying the pivot column to each column to its right that the processor owns. There are

three primary sources of misses in LU: (i) the pivot column when it is read for the first time

(9%); (ii) the pivot column when it is replaced by a column it is applied to and needs to be

refetched (12%); and (iii) the owned columns that the pivot column is applied to (75%). This

last set of misses occurs because the combined size of the owned columns is larger than the size

of the cache.

Our strategy for prefetching LU by hand was the following. Each time the pivot column

is applied to an owned column, we prefetch the pivot column in shared mode and the owned

column in exclusive mode. Although prefetching the pivot column each time causes redundant

prefetches, it reduces the misses when the pivot column is replaced from the processor’s cache,

resulting in a total coverage factor of 96%. We found that it is better to evenly distribute the

issue of prefetches throughout the computation rather than prefetching an entire column in a

single burst, in order to avoid hot-spotting problems. We also unrolled the loop to minimize

Chapter 4. Prefetching for Multiprocessors 115

instruction overhead, since there is spatial locality. A total of 8 lines were added to the source

code.

Our compiler chose an identical approach for inserting prefetches. It also prefetches the pivot

column and owned columns each time they are used. Since the key inner loop is inside a separate

procedure, the compiler does not recognize that the pivot column may have temporal locality,

and therefore might not need to be prefetched each time. However, it turns out that prefetching

the pivot column all the time is the appropriate strategy, and therefore both schemes perform

quite well, as we see in Figure 4.14(b). The small difference in instruction count was because

the scalar optimizer did a slightly better job of optimizing the compiler-generated code than it

did on the hand-inserted code. Both schemes eliminated roughly 90% of the memory stalls, and

increased overall performance by more than 85%. Therefore the compiler clearly lives up to the

potential of hand-inserted prefetching for both MP3D and LU.

4.5.2 Cases Where the Compiler Failed

As we mentioned at the beginning of Section 4.3, the compiler was only successful at prefetching

five of our eight original multiprocessor applications. We will now consider the other three cases

(WATER, BARNES, and PTHOR) to see what went wrong.

WATER

As we saw earlier in Figure 4.6, WATER suffers the least from memory latency of all the

SPLASH applications, spending only 7% of its time stalled for memory. Although there is little

need for prefetching in this case, we discovered nonetheless that our algorithm is unable to

cover the misses. The reason why is because the key loop body is not in the same file as its

surrounding loop. Since our prefetching algorithm does not perform interprocedural analysis—

particularly not across separate files, which becomes very tricky given separate compilation—it

fails to recognize the affine access patterns, and therefore does not insert any prefetches at all.

With either interprocedural analysis or inlining across separate files, the compiler could easily

prefetch the references and hide the memory latency. Since the solution to this problem is well-

understood, and since there is little performance gain to be had, we did not bother to insert

the prefetches by hand for this case. WATER is an example of a case where strengthening the

implementation of the existing algorithm would solve the problem.

116 Chapter 4. Prefetching for Multiprocessors

BARNES

In contrast with WATER, BARNES spends 38% of its time stalled for memory; therefore hiding

latency can potentially result in significant performance improvements. However, since BARNES

contains mainly pointers and recursive data structures, our compiler does not insert any prefetches

since such references are beyond the scope of our algorithm. To evaluate how much the compiler

might be able to improve performance if it could handle such cases, we inserted prefetches into

BARNES by hand. We begin with a quick overview of BARNES and a description of how we

inserted prefetches, followed by our experimental results.

In BARNES, the main computation consists of traversing the octree structure to compute the

gravitational force exerted by the given body on all other bodies in the tree. This is repeated for

each body in the system, and the bodies are statically assigned to processors for the duration of

each time step. Cache misses occur whenever a processor visits a part of the octree that is not

already in its cache, either due to replacements or communication.

We inserted prefetches into BARNES by hand as follows. The octree structure is traversed

depth-first, and each internal node can have up to eight children. When we first arrive at a node,

we issue prefetches for all immediate children before descending depth-first into the first child.

By doing so, we succeeded in covering 78% of the misses, with only 21% of the prefetches being

unnecessary. Roughly half of the prefetched primary misses became primary hits—the other half

were found in the secondary cache. These prefetches turned out to be moderately expensive

in terms of instruction overhead (on average 12 instructions per prefetch) because of the loop

overhead and conditional tests at each node. Overall, we achieved a speedup of 9%, as shown

in Figure 4.15.

Despite the many pointers in BARNES, it was relatively straightforward to pinpoint the cause

of the misses. Through the profiling information provided by our simulator, we discovered that

81% of the miss latency was caused by only six references. In addition, the author of BARNES

was readily able to predict these important references without the benefit of profiling information,

which indicates that these misses are intuitively obvious to someone familiar with the algorithm.

Only five lines of code were added to BARNES to insert the prefetches. The greater challenge in

BARNES was scheduling the prefetches early enough to hide the latency, since the control flow

consists of recursive procedure calls rather than loops. We were largely successful toward this

goal because we understood the structure of the tree and the order in which it was traversed.

Could the compiler insert these same prefetches automatically? With the help of sophisticated

pointer analysis to recognize the tree structures and the order in which they are traversed [37],

Chapter 4. Prefetching for Multiprocessors 117

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100
 92

 100

 81

N H N H
BARNES PTHOR

synchronization
memory access stalls
instructions

Figure 4.15: Cases where the compiler failed to improve prefetching (N = no prefetching,H =
hand-inserted prefetching).

and perhaps with profiling feedback information to indicate which pointer dereferences suffer

misses (see Section 5.2.1), it may be possible. It certainly will not be easy, since pointer analysis

is a difficult problem, but it may be possible.

PTHOR

PTHOR is an interesting case because it is second only to LU in the amount of time lost to memory

latency (59%), and yet our compiler algorithm fails to insert any prefetches. The problem (as in

BARNES) is that PTHOR is an irregular computation containing mainly pointers to linked lists,

which are beyond the scope of our algorithm. The approach we take to inserting prefetches by

hand was described in detail in an earlier study [61], and we briefly summarize that strategy here.

One of the main data structures in PTHOR is theelement record, which stores all information

about the type and state of a logic element. Several fields in the record are pointers to linked

lists, or are pointers to arrays that in turn point to linked lists. During the main computational

loop, each processor picks up an activated logic element, computes any changes to the element’s

outputs, and schedules new input events for elements that are affected by the changes. Prefetching

118 Chapter 4. Prefetching for Multiprocessors

is complicated by the presence of the linked lists, since to prefetch a list it is necessary to

dereference each pointer along the way.

To insert prefetches by hand, we first reorganized the element record and grouped entries

based on whether they were likely to be modified, likely to be read but not modified, or likely

not to be referenced. Whenever a processor picks an element from a task queue, we prefetch the

element record entries accordingly. In addition, we prefetch the first several levels of the more

important linked lists. Due to the complex control structure of the application, it is difficult to

determine where the misses occur. Despite the aid of profiling information that helped determine

which sections of code were generating misses, we were only able to increase the coverage

factor to 36%. A total of 29 lines were added to the source code, resulting in a performance

improvement of 23%, as shown in Figure 4.15.

Adding prefetching to PTHOR was a qualitatively different experience from adding prefetch-

ing to MP3D, LU, and even BARNES. While the process of inserting prefetches took considerably

more time, the resulting coverage was much lower. Unlike BARNES, it was very difficult to iso-

late the misses in PTHOR, even with the help of profiling information, since they are spread across

so many different references and often occur only sporadically. Even the author of PTHOR had

a difficult time predicting which references should be prefetched. This is partly because PTHOR

is a significantly more complicated program, both in terms of its data structures and its control

flow. In many cases, although we knew from profiling information that a particular reference

was suffering from cache misses, we could find no way to schedule the prefetches that would

improve performance. Therefore, of the programs we have studied, PTHOR appears to be the

most difficult challenge for the compiler. Given that we did achieve a speedup of 23%, it appears

to be a challenge worth pursuing.

4.5.3 Summary

By comparing hand-inserted prefetching with compiler-inserted prefetching, we saw that in cases

where the access patterns are regular and predictable (MP3D and LU), the compiler is able to

match the performance of hand-inserted prefetching. In the cases where our compiler failed to

insert prefetches, the difficulty of fixing the problem ranged from challenging but straightfor-

ward to extremely difficult. For WATER, it is a matter of engineering the compiler to handle

interprocedural analysis across separate files—a nontrivial task, but one that is feasible. For

BARNES, the compiler needs to recognize tree structures and understand how to prefetch them.

For PTHOR, however, the data structures, access patterns, control flow, and sources of misses

Chapter 4. Prefetching for Multiprocessors 119

are complicated enough that it is unclear whether the compiler can be successful. We note that

these problems in PTHOR occur even in the uniprocessor version of the code, and are not unique

to multiprocessing.

Strengthening the existing algorithm to handle cases such as WATER, and extending it to

recognize and prefetch simple recursive data structures such as trees, as in BARNES, would

appear to be the next logical steps in enhancing the compiler algorithm.

4.6 Chapter Summary

In this chapter, we extended our uniprocessor prefetching algorithm to handle multiprocessor

applications as follows. Through the use ofnon-bindingprefetching, our algorithm is freed

from concerns over violating multiprocessor correctness, and can focus instead on improving

performance. To account for the additional cache misses due tocommunication, we modify our

original algorithm to conservatively assume that shared data does not remain in the cache across

synchronization statements. Finally, to hide the latency of gaining ownership of a line, and

to reduce the bandwidth consumed in read-modify-write sequences, we exploitexclusive-mode

prefetching.

Our experiments with prefetching for multiprocessors produced the following results:

1. Similar to our uniprocessor results, the compiler algorithm is successful at hiding memory

latency while minimizing prefetching overhead, and again improves performance by as

much as twofold. These encouraging results occur despite our algorithm’s conservative

assumptions about the effect of communication on miss rates.

2. Exclusive-mode prefetching eliminated as much as 27% of the total message traffic in our

architecture. While this had little direct impact on the performance of our base architecture,

we demonstrated that it could improve performance by as much as 73% for an architecture

that has not already hidden write latency through relaxed consistency models. In addition,

the reduction in message traffic could translate directly into improved performance on a

bandwidth-limited architecture (e.g., a bus-based multiprocessor).

3. Our algorithm is generally robust with respect to variations in the cache size. Since our

algorithm is effective at prefetching replacement misses, it does not suffer sudden drops in

performance as the cache size is decreased, as we sometimes see in code without prefetch-

ing. With larger cache sizes, where sharing misses dominate, we still see significant benefits

120 Chapter 4. Prefetching for Multiprocessors

from prefetching in most cases.

4. When our compiler algorithm succeeds at inserting prefetches, it lives up to the performance

potential of hand-inserted prefetching.

5. To further increase the coverage of our algorithm, techniques such as interprocedural anal-

ysis and recognizing recursive data structures may be useful.

Overall, these results are quite encouraging, and they demonstrate that automatic compiler-

inserted prefetching is an attractive technique for tolerating latency in large-scale multiprocessors.

Chapter 5

Architectural Issues

The success of software-controlled prefetching relies on the combined support of both hardware

and software. While part of the attractiveness of this technique is thesimplicity of the hardware

support, that support is nonetheless crucial. This chapter addresses these architectural issues

associated with software-controlled prefetching.

We begin in Section 5.1 with a detailed examination of the basic architectural support that

was assumed in Chapters 3 and 4. During this examination, we will justify each aspect of

the architecture, and will quantify the relevant tradeoffs whenever possible. Next, we look to

the future, considering additional ways to improve prefetching performance which involve some

amount of architectural support. For example, we will look at using dynamic information to

improve the analysis of what to prefetch, and increasing cache associativity to make prefetches

more effective. Finally, in Section 5.3, we compare software-controlled prefetching with other

latency-hiding techniques that require hardware support, such as relaxed consistency models and

multithreading.

5.1 Basic Architectural Support for Prefetching

Chapters 3 and 4 assumed a “base” model for prefetching, including a prefetch instruction,

lockup-free caches, etc. In this section, we will examine that model in more detail and discuss

some important tradeoffs. We begin in Section 5.1.1 by discussing key properties of prefetch

instructions and how to incorporate them into a processor’sinstruction set architecture. Given

that prefetches are performance hints, and therefore can be dropped, in Section 5.1.2 we evaluate

when it is appropriate to drop prefetches. In Section 5.1.3 we discuss how prefetches that are

121

122 Chapter 5. Architectural Issues

not dropped should proceed through the memory hierarchy, and where the resulting data should

be placed (e.g., should it go directly into the primary cache). We conclude in Section 5.1.4 by

discussing the more significant hardware modifications needed to support prefetching, such as

providing lockup-free caches.

5.1.1 Instruction Set Architecture

The instruction set architectureof a processor serves as the interface between hardware and

software. Although prefetches closely resembleload instructions, the desired semantics and

actions are quite different. This section discusses these semantic and functional issues.

Behavioral Properties

There are three key behavioral distinctions between prefetches and loads; prefetches are (i)non-

binding, (ii) non-blocking, and (iii) non-excepting. The non-bindingproperty gives prefetches

the flexibility to be issued far in advance of the actual references, without worrying about the

impact on correctness. Thenon-blockingproperty allows prefetches to be overlapped with other

references and with computation. Thenon-exceptingproperty allows speculative prefetching of

addresses which may potentially be invalid. In this subsection, we discuss the importance of

each of these properties in more detail.

The non-bindingaspect of prefetching is implemented by fetching data into the cache rather

than a register. As we discussed earlier in Section 4.1.1, non-binding prefetches are essential

in multiprocessors since they allow the compiler to prefetch a location without worrying about

whether the value may have been modified by another processor in the meantime. Even in a

uniprocessor, the non-binding property is important since it avoids the correctness problems that

can arise when using registers for temporary storage given imperfect memory disambiguation.

For example, if prefetches fetched data into registers, it would beillegal to move a prefetch

ahead of a store unless it was certain that the store was to a different location (otherwise the

prefetched value would be stale). Proving that addresses do not coincide is extremely difficult

because of complications such as aliasing, pointers, etc. Therefore, the non-binding property

frees the compiler from correctness problems that can occur bothacrossthreads andwithin a

single thread.

An additional advantage of prefetching into the cache rather than the register file is that

otherwise the limited size of the register file can be a significant constraint on how far ahead

Chapter 5. Architectural Issues 123

PREF const offset(base reg) (e.g.,PREF 20(r7))

Figure 5.1: Format of prefetch instructions, using “base-plus-offset” addressing mode.

one can prefetch. This is crucial since extendingregister lifetimesto hundreds of cycles (in

order to hide large latencies) is almost guaranteed to cause significant register spilling, which

can hurt performance considerably. The register lifetime problem is most important in scientific

code, where common techniques such as loop unrolling, software-pipelining and register blocking

result in very high register pressures even without prefetching. The cache, on the other hand, is

substantially larger than the register file, and therefore is not expected to constrain the amount

one would reasonably want to prefetch ahead.

The non-blockingaspect of prefetching is essential since the very essence of this latency-

hiding mechanism is overlapping memory accesses with computation. Normal loads could also

potentially be non-blocking, but this would require a mechanism for interlocking and forwarding

the data whenever the load result was used before the access completed. (Because of this hardware

complexity, few commercial microprocessors have implemented non-blocking loads.) In contrast,

it is easy to make prefetches non-blocking since they produce no result value, and therefore no

instructions can depend upon their completion.

Finally, thenon-exceptingaspect of prefetching (i.e. prefetches do not take memory exceptions

on invalid addresses) is important since it allows data-dependent addresses (e.g., pointers) to be

prefetched without being absolutely certain that the address is valid. We have already discussed

in Section 3.5.1 how this is important when prefetching indirect references, such as in sparse-

matrix code. Even in dense-matrix code, this property is useful by making it safe to prefetch off

the end of an array whenever generating a proper epilog would be too expensive (i.e. when it

would result in a code size explosion). Therefore the non-excepting property offers considerable

flexibility to the compiler since it is much easier to generate valid prefetch addressesmostof the

time rather thanall of the time.

Format

The format of a prefetch instruction resembles that of a normal load instruction, except that there

is no need to specify a destination register. Therefore addressing modes that are appropriate for

normal loads are also appropriate for prefetches. The addressing mode used in these experi-

ments was “base-plus-offset”, as shown in Figure 5.1. This addressing mode is attractive because

124 Chapter 5. Architectural Issues

Loop: LOAD r2,0(r7) /* load A[i] */
PREF 20(r7) /* prefetch A[i+5] */
ADD r3,r3,r2 /* sum += A[i] */
ADD r7,r7,4 /* i++ */
BRANCH r7 < r8, Loop /* loop test */

Figure 5.2: Example of how prefetches can reuse load/store base registers (in this caser7).

prefetch address can typically be generated by using the same base register as the load or store

being prefetched and simply adjusting the constant offset to reflect the software pipelining dis-

tance. An example of this is shown in Figure 5.2, where the prefetch instruction is fetching data

five iterations ahead of the load instruction, and both instructions use the same base register (r7).

This is important in order to avoid spilling registers once prefetches are inserted.1 Addressing

modes which cannot take advantage of such register reuse should be avoided.

Encoding

One interesting question is whether a prefetch should be encoded with its own uniqueopcode, or

whether it should simply be a variation on a normal load instruction. A load instruction could be

modified to encode a prefetch in the following two ways. First, some RISC architectures (such as

the HP Precision Architecture) allow user-specifiedhintson loads, and one type of hint could be

interpreted as a prefetch. Second, many RISC architectures set aside one register which always

sources the value zero. Performing a loadto this reserved register does not change its contents,

so such operations could be interpreted as prefetches.

Although a prefetch can be encoded as a form of a load, it is preferable to designate a

unique opcode for prefetches (assuming one can be spared) for the following two reasons. First,

since prefetches and loads behave quite differently (i.e. prefetches are non-binding, non-blocking,

and non-excepting), it may be important to distinguish them early on during decoding, which is

presumably easier with distinct opcodes. Second, with distinct opcodes, the bits normally used

to specify the destination register of a load can be used instead as “hint bits” to describe various

flavors of prefetching. For example, we have already seen in Section 4.3.4 the advantages of

1We observed this in practice. At first, our scalar optimizer was not taking advantage of the constant offset
difference. The performance impact was devastating in many cases, once register spilling occurred.

Figure 5.3: Possible encoding of prefetch instruction.

having bothshared-modeandexclusive-modeprefetches in multiprocessors under an invalidation-

based cache coherence scheme. Other prefetching variations which will be described later in this

chapter include: (i) prefetchingmultiple cache lines rather than a single cache line (which may

help reduce instruction overhead, as described in Section 5.2.3); (ii) prefetching data that is to

remainuncachedrather than being placed in the cache (which may help reduce cache conflicts, as

described in Section 5.2.2); and (iii) whether or not a prefetch should be dropped on a TLB miss

(as described in Section 5.1.2). Figure 5.3 shows a possible encoding of the prefetch instruction,

based on the MIPS instruction set, including these prefetching hints.

126 Chapter 5. Architectural Issues

5.1.2 Dropping Prefetches

In this subsection, we examine cases where the overhead of processing a prefetch may potentially

be large enough that one might consider dropping the prefetch instead. Since prefetches are

performance hints, and have noside-effectson user-visible program state, the processor can

safely ignore them without violating correctness. In fact, if code with prefetching is run on

a processor whose memory system does not support prefetching, the prefetches can simply be

treated as NOPs. Presumably the software will be effective at issuing prefetches that improve

performance, and we have already seen evidence of this in Chapters 3 and 4. However, there

may be cases where the hardware can determine that a prefetch should bedroppedbecause the

penalty of processing it is too large. For example, what if the prefetch takes a TLB exception, or

what if the prefetch issue buffer is already full? We will focus on such issues in this subsection.

TLB Miss

The first step in executing a prefetch is translating the virtual data address to a physical address.

Address translation is accelerated in modern RISC processors through a “translation lookaside

buffer” (TLB), which is simply a cache of recent virtual-to-physical address mappings. Hence

the first question is whether a prefetch should be dropped if its virtual address does not match an

entry in the TLB—otherwise a TLB fault handler must be run, which is a relatively expensive

operation.

The answer to this question is complicated by two conflicting goals. On the one hand, we

would like to hide the latency in situations where we are legitimately suffering frequent TLB

misses, and this cannot occur if the prefetch is dropped.2 An example would be code that iterates

across the outer dimensions of large matrices, in which case each reference may be to a unique

page. On the other hand, one of the desirable properties of prefetch instructions (as mentioned

earlier in Section 5.1.1) is that they are free to reference invalid addresses, in which case we

would like to drop the prefetch with minimal performance loss. Since TLBs do not contain invalid

address mappings, an invalid address can only be detected by performing full address translation,

hence suffering the cost of a TLB miss (which can potentially be hundreds of cycles). This

second scenario may occur frequently in code containing pointers and other indirect references,

in which case this TLB miss overhead may be prohibitively expensive.

2If TLB refills (i.e. address translation) are handled by hardware, then the prefetch can potentially hide the latency of
both the TLB refill and the memory access. On the other hand, if TLB refills are handled through software exceptions
(as in the MIPS architecture), then only the memory latency can be hidden.

Chapter 5. Architectural Issues 127

Although choosing between these two goals is difficult, since each is important given its own

scenario, we can start by comparing their expected frequencies. The case where legitimate TLB

misses are occurring frequently is somewhat unlikely for the following reasons. First, it can only

be a sustained problem for applications having bothvery large data sizes and very large (at least a

page) strides. Although both of these may occur in some scientific codes, it is far more common

to see smaller strides as the code iterates through inner dimensions of matrices. Smaller strides

are advantageous since they can exploitspatial locality by reusing cache lines, and we would

expect locality optimizations suchloop interchange(as demonstrated in Section 3.4) to continue

enhancing this in the future. Second, since legitimate TLB misses would occur even without

prefetching, then presumably processor designers have already dealt with this problem by making

the TLB sufficiently large. In contrast, invalid prefetch addresses may occur frequently in any

code containing indirect references (hopefully not, but it is a possibility). This is independent of

both data size and the number of TLB entries. Also, given the inherent difficulty in prefetching

code containing recursive data structures (as we encountered with PTHOR and BARNES in

Section 4.5.2), the additional burden of TLB miss penalties on invalid addresses is likely to make

the task hopelessly frustrating. Therefore if a default policy must be chosen, it is probably better

to drop prefetches on TLB misses.

An alternative to choosing a fixed policy is to allow the software to select the more appropriate

policy by making use of the prefetch hint bits described earlier in Section 5.1.1. For example,

there could be two types of prefetches: “speculative” prefetches, which should be dropped on

TLB misses since the address may be invalid, and “non-speculative” prefetches, where it is better

to suffer the TLB miss for the sake of hiding the latency. This approach satisfies both goals, and

may lead to the best overall performance.

Once a valid physical addresses has been computed for a prefetch, it is ready to be issued

to the memory subsystem. The mechanics of how a prefetch normally proceeds through the

memory subsystem will be discussed later in Section 5.1.3. However, even after a prefetch has

been issued to the memory subsystem, it is still possible to abort it before it completes. The

scenario where this might make sense is when the memory subsystem queues are already full,

and the prefetch cannot proceed without stalling the processor, as we will discuss next.

Full Prefetch Issue Buffer

For our experiments in Chapter 3, we assume that if the processor attempts to issue a prefetch

while the prefetch issue buffer is full, the processor stalls until an entry becomes available. We

128 Chapter 5. Architectural Issues

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 60

 117

 63
 68 70

 78

 51
 59 58

 68

 91
 95

 78

 98

D S D S D S D S D S D S D S
CFFT2D CHOLSKY BTRIX GMTRY VPENTA TOMCATV CG

memory access stalls
instructions

|0

|10
|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 68
 61

 72 69

 49 48

D S D S D S
CHOLSKY BTRIX GMTRY

memory access stalls
instructions

(a) Indiscriminate Algorithm (b) Selective Algorithm

Figure 5.4: Dropping vs. stalling on full prefetch issue buffer (D = drop,S = stall).

now consider what happens if prefetches are instead dropped on a full prefetch issue buffer.

In the architectural model presented so far, the memory subsystem has a finite (16-entry)

prefetch issue buffer to hold outstanding prefetch requests. In our model, a prefetch is inserted

into the buffer only if it misses in the primary cache and there is not already an outstanding

prefetch for the same cache line. Also, a prefetch is removed from the issue buffer as soon as it

completes (i.e. the buffer is not a FIFO queue); reordering may occur due to variations in miss

latencies. Despite some of these optimizations, the buffer may still fill up if the processor issues

prefetches faster than the memory subsystem can service them.

Once the prefetch issue buffer is full, the processor is unable to issue further prefetches. At

that point the choices are either to stall the processor until a buffer entry becomes available, or

else drop the prefetch and continue executing. Intuitive arguments might be presented to support

either approach. On one hand, if the data is needed in the future and is not presently in the cache

(since only prefetches that miss go into the buffer), it may appear to be cheaper to stall now until

a single entry is free rather than to suffer an entire cache miss sometime in the future. On the

other hand, since a prefetch is only a performance hint, perhaps it is better to continue executing

useful instructions.

To understand this issue, we ran each of our uniprocessor benchmarks again using a model

where prefetches are dropped rather than stalling the processor when the prefetch issue buffer is

full. We ran this model for both the indiscriminate and selective prefetching algorithms. Figure

5.4 shows the cases where this affected performance. We begin by focusing on the indiscriminate

algorithm, and then later focus on the selective algorithm.

Chapter 5. Architectural Issues 129

For all seven cases where the performance of the indiscriminate algorithm changed (shown in

Figure 5.4(a)), the performanceimprovedby dropping prefetches. The improvement is dramatic

in the two cases that had previously stalled the most due to full buffers (CFFT2D and CG). There

are two reasons why the performance improves substantially for the indiscriminate prefetching

algorithm. The first reason is that dropping prefetches increases the chances that future prefetches

will find open slots in the prefetch issue buffer. The second is that since the indiscriminate

algorithm has a larger number of redundant (i.e. unnecessary) prefetches, dropping a prefetch

does not necessarily lead to a cache miss. It is possible that the algorithm will issue a prefetch

of the same line before the line is referenced. Dropping prefetches has the effect of sacrificing

some amount of coverage (and therefore memory stall reduction) for the sake of reducing prefetch

issue overhead. This effect is most clearly illustrated in the case of CG (see Figure 3.2(a)), where

memory stall time doubles for the indiscriminate algorithm once prefetches are dropped.

The selective prefetch algorithm, in contrast, didnot improve from dropping prefetches since

it suffered very little from full prefetch issue buffers in the first place. In fact, in the three

cases shown in Figure 5.4(b), the selective algorithm performed slightly worse when prefetches

are dropped. The reason why is that since selective prefetching has eliminated many of the

redundant prefetches, it is more likely that dropping a prefetch would translate into a subsequent

cache miss. However, as we have already seen in Figure 3.2, the selective algorithm tends to

suffer very little from full issue buffers, and therefore performs well in either case.

Summary

To summarize, deciding when to drop prefetches is a complex issue. The one clear-cut case where

prefetches should be dropped is when they reference invalid addresses. Because of our desire to

minimize the performance overhead for this case (which can arise frequently when speculatively

prefetching pointers), we would lean toward dropping prefetches as soon as a TLB miss is

detected, even though this means giving up the ability to hide latency during legitimate TLB

misses. A better solution may be to distinguish “speculative” and “non-speculative” prefetches,

to give software control over this policy. Finally, given that prefetches are issuedselectively, it

makes little difference whether they are dropped once the prefetch issue buffer fills up, since this

rarely happens.

Once a prefetch has been issued to the memory subsystem, it is simply a matter of finding the

data and then moving it close to the processor. Both halves of this mechanism will be discussed

in the next section.

130 Chapter 5. Architectural Issues

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 91 88

 45 44

 66
 57

 117

 84

 68
 53

 95 95
 86

 61

 96 90

 71
 59

 91 91 96 95

M C M C M C M C M C M C M C M C M C M C M C
MXM

CFFT2D
CHOLSKY

BTRIX
GMTRY

EMIT
VPENTA

IS
CG

EP
MG

memory access stalls
instructions

Figure 5.5: Performance when prefetches do not check either caches before going to memory
(M = go straight to memory,C = check caches).

5.1.3 Performing the Prefetch Memory Access

In this section we consider three issues related to performing a prefetch memory access. First,

is it important to check the caches while searching for the prefetched data, or can one skip the

caches and go straight to main memory? Second, should prefetched data be placed directly into

the primary data cache, or somewhere further down in the cache hierarchy? Finally, we will

briefly discuss why placing prefetched data in a separate target buffer rather than the normal

cache hierarchy is not a good idea in general.

Checking Caches While Searching for the Data

During a normal cache miss, the levels of the memory hierarchy closer to the processor are

always checked before proceeding to subsequent levels. For example, the secondary cache is

only checked if the data is not found in the primary cache. With prefetching, however, one might

argue that since the prefetches are scheduled early enough to hide the worst-case miss latency, it

is no longer necessary to check each level of the cache while searching for the data. To evaluate

this, we modified the uniprocessor architecture such that prefetches proceed directly to memory

without checking either level of the cache. The results of this experiment are shown in Figure 5.5.

As we see in Figure 5.5, it is still important to check levels of the cache close to the processor

for the prefetched data.3 The primary reason for this is to minimizebandwidth consumption, not

3The two cases that are not shown are TOMCATV and OCEAN. These two applications suffered more from
memory latency when the caches are not checked than any of the other applications—so much so that the simulations

Chapter 5. Architectural Issues 131

latency. The deeper levels of the memory hierarchy are slower, and have less bandwidth to offer.

Therefore the prefetches tend to congest the memory system, causing delays both in issuing

other prefetches and in servicing normal cache misses. So we see that checking the cache helps

alleviate bandwidth-related delays caused by prefetches that can be serviced close to the processor

(includingunnecessaryprefetches).

Once the prefetched data has been found, the next step is moving it close to the processor.

Just how close is the next question we address.

Prefetching into the Primary Data Cache

On a normal load miss, the data line is brought into all levels of the cache hierarchy, including

the primary cache, which makes sense because the processor stalls waiting for the data. On a

prefetch miss, however, it is not as obvious that the data should be placed in the primary cache for

two reasons. First, the prefetched data may displace other data that will be referencedbeforethe

prefetched data, thereby causing anadditional miss rather thaneliminatinga miss. The second

problem is that a new source of contention is added since the processor cannot execute loads

or stores at the same time that the primary cache is being filled with prefetched data. In our

experiments so far, we modeled this effect by assuming that four cycles of exclusive access are

needed for each prefetch fill. Therefore a load or store may be delayed by up to four cycles.

Although we have just discussed two potential downsides of prefetching into the primary

cache, the upside, of course, is that the latency of a primary-to-secondary miss can be hidden.

Note that these downsides are not as applicable to prefetching into the secondary cache, since (i)

the secondary cache is quite large (and therefore the chance of displacing important data is small),

and (ii) the processor does not actively contend for the secondary cache tags. Therefore there is

little argument that prefetched data should be placed in the secondary cache. Consequently, the

key question is whether or not to place the data in the primary cache.

To answer this question, we will use both analytical and experimental approaches. Let us

begin with an analytical approach of comparing expected costs and benefits. The benefit of

prefetching into the primary cache is that for eachsuccessfulprefetch (ps), the latency of a

primary-to-secondary miss (ls) is eliminated:

Benefit= psls (5:1)

This includes both cases where the prefetched data is found in the secondary cache (in which case

never ran to completion.

132 Chapter 5. Architectural Issues

ls represents theentire miss latency), and cases where the prefetched data is found in memory

(in which casels is only a fraction of the total primary-to-memory miss latency).

The cost of prefetching into the primary cache includes the effects of both increasedconflicts

andcontention:

Cost= pcls + pf lf (5:2)

Additional conflicts occur whenever prefetches displace useful data, wherepc is the number of

such conflicts, and each conflict results in an extra primary-to-secondary miss (ls) to later fetch

the displaced data. Additional primary cache tag contention can occur during prefetch fills, where

pf is the number of prefetch fills, andlf is the average number of cycles that a prefetch fill stalls

the processor. In practice,lf should be less than the total fill time, since the processor only stalls

if it attempts to execute loads or stores during the fill.

To simplify the algebra in order to directly compare the costs and benefits, we will make

the following substitutions into equations (5.1) and (5.2). First, we will express the number

of successful prefetches (ps) in equation (5.1) as the difference between the cases where the

prefetched data is brought into the cache early enough (pt) and the cases where that data is

displaced before it can be referenced (pd), henceps = pt � pd. Next, we will conservatively

represent the number of cases where useful data is displaced from the cache (pc) in equation (5.2)

as the number of cases where prefetches are displaced (pd), since in the worst case, each displaced

prefetch will also displace useful data.4 Finally, we replace the number of prefetch fills (pf) in

equation (5.2) withpt, the total number of prefetches that arrive early enough in the cache.

After making these substitutions, we note that prefetching into the primary cache is worthwhile

whenever the following inequality holds:

Benefits > Costs

(pt � pd) ls > p dls + ptlf (5.3)

By rewriting equation (5.3), we can express the maximum value oflf (the average processor

stall on a prefetch fill) at which prefetching into the primary cache is advantageous:

lf <

�
1�

2pd
pt

�
ls (5:4)

Equation (5.4) shows that in the absence of primary cacheconflictsdue to prefetches (i.e.pd = 0),

it is worthwhile to prefetch into the primary cache as long as the average stall time due to primary

4Note that this is a conservative approximation because a prefetch may have been displaced byanotherprefetch,
in which case the displaced prefetch has no benefit, but also does notincreasethe number of misses by displacing
data that would not have otherwise missed.

Chapter 5. Architectural Issues 133

cache tag contention (lf) is less than the primary-to-secondary miss latency (ls). This condition

should normally be satisfied since filling the primary cache is almost always a subset of the time

it takes to service a primary-to-secondary miss. As the number of primary cache conflicts induced

by prefetching (pd) increases, the maximum acceptable value oflf will decrease.

Since primary cache conflicts are an important concern, we rewrite equation (5.3) once again,

this time solving forpd:

pd <
1
2

�
1�

lf

ls

�
pt (5:5)

Notice from equation (5.5) that in the absence of primary cache tagcontention(i.e. lf = 0), the

break-even point occurs whenhalf of the prefetches arriving in the cache early enough (pt) cause

cache conflicts. In this case, half of the prefetches would be successful (thereby eliminating a

cache miss), while the other half would displace useful data (thereby adding a new cache miss),

and both effects would exactly cancel each other out. As the amount of contention (lf) increases,

it decreases the acceptable number of conflicts (pd).

To predict whether prefetching into the primary cache is worthwhile for the uniprocessor

architecture used in Chapter 3, we can solve equation (5.5) given the parameter values of that

architecture:ls = 12 cycles, andlf = 4 cycles. (Note that this is an upper bound onlf since the

processor does not necessarily stall for the entire duration of a primary prefetch fill, which is 4

cycles in this case.) Substituting these values into equation (5.5), we get the following:

pd <
1
3
pt (5:6)

Therefore we would expect prefetching into the primary cache to be worthwhile as long

as fewer than a third of the prefetches suffer primary cache conflicts. The actual values oflf

and pd
pt

are shown for each application in Table 5.1. We see that the values oflf ranges from

1.2 to 2.5 cycles, which is about half of the full primary fill time of four cycles. This makes

sense since loads and stores typically occur at most once every other instruction. We also see

from Table 5.1 that the only application where cache conflicts potentially occur too often is

CHOLSKY, where 37% of prefetches placed in the primary cache are displaced before they can

be referenced. However, since CHOLSKY also happens to suffer less than average from primary

cache contention (lf = 1:50), the number of displaced prefetches is below the maximum for

breaking even (which happens to be 44% for this case). Also, the number of additional misses

caused by conflicting prefetches is overstated in this case, since only about half of the displaced

prefetches were displaced by data references (the other half were displaced by other prefetches,

and therefore did not incur additional misses)—i.e.pc �
1
2pd for CHOLSKY. Hence the analytical

134 Chapter 5. Architectural Issues

Table 5.1: Average processor stall on a primary prefetch fill (lf) and the fraction of prefetches
that suffer primary cache conflicts (pd

pt
) for each uniprocessor application.

Benchmark lf
pd
pt

MXM 2.00 0.102
CFFT2D 2.36 0.008

CHOLSKY 1.50 0.374
BTRIX 1.95 0.095

GMTRY 2.54 0.097
EMIT 2.36 0.075

VPENTA 2.01 0.013
TOMCATV 2.02 0.261

OCEAN 1.25 0.000
IS 1.17 0.180
CG 1.34 0.190
EP 2.37 0.045
MG 1.82 0.000

|0
|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 98
 88

 55
 44

 70
 57

 104

 84
 77

 53

 98 95
 84

 61

 82 79 83 77

 94 90

 70
 59

 92 91
 99 95

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
MXM

CFFT2D
CHOLSKY

BTRIX
GMTRY

EMIT
VPENTA

TOMCATV
OCEAN

IS
CG

EP
MG

memory access stalls
instructions

Figure 5.6: Performance when prefetching into the primary cache (1) versus prefetching only
into the secondary cache (2).

model predicts that for the given architecture, prefetching into the primary cache should be a

performance win for each of these applications.

To evaluate whether this is true in practice, we simulated the performance of each uniprocessor

application, this time only prefetching into the secondary cache. The results of that experiment

are shown in Figure 5.6. As we see in this figure, prefetching into the primary cache is in fact a

performance win in all cases. In seven of the thirteen cases, there is a speedup of at least 19%

due to prefetching into the primary cache rather than just the secondary cache.

Chapter 5. Architectural Issues 135

Table 5.2: Distribution of where data was found both by prefetch and by subsequent reference.
“X) Y” means prefetch found data atX, subsequent reference found data atY, whereX,Y =
C1 (primary cache),C2 (secondary cache), andM (memory).

Miss Latency is Improved Miss Latency is Unchanged Miss Latency is Worse
Benchmark C2) C1 M) C1 M) C2 C1) C1 C2) C2 M) M C1) C2 C1) M C2) M

MXM 41.0 3.0 0.1 51.1 3.9 0.1 0.9 0.0 0.0
CFFT2D 32.3 66.4 0.4 0.1 0.4 0.4 0.0 0.0 0.0

CHOLSKY 44.4 15.9 0.7 3.4 32.5 0.0 3.2 0.0 0.0
BTRIX 39.7 7.6 0.3 47.1 4.5 0.1 0.8 0.0 0.0
GMTRY 73.5 14.0 1.3 3.1 7.8 0.0 0.3 0.0 0.0

EMIT 56.9 22.4 1.5 14.3 4.5 0.1 0.3 0.0 0.0
VPENTA 48.1 22.6 0.2 27.9 0.8 0.0 0.2 0.0 0.0

TOMCATV 13.1 16.4 11.0 50.7 3.7 0.1 5.0 0.0 0.0
OCEAN 21.9 40.3 0.2 36.9 0.5 0.1 0.0 0.0 0.0

IS 16.6 12.1 1.6 65.0 3.3 0.1 1.2 0.1 0.0
CG 30.9 20.6 3.3 36.2 5.9 0.2 2.8 0.1 0.0
EP 0.0 95.5 4.3 0.0 0.0 0.1 0.0 0.0 0.0
MG 13.3 59.3 1.9 23.5 1.3 0.4 0.3 0.0 0.0

The marginal improvement of prefetching into the primary cache depends on the relative

frequency and cost of primary misses that are found in the secondary cache versus misses that

go all the way to memory. If the data tends to fit in the secondary cache, then the entire benefit

of prefetching will come from prefetching into the primary cache.5 In the other extreme, if none

of the primary misses are found in the secondary cache, then the marginal improvement will

be roughly the ratio of the primary-to-secondary and primary-to-memory miss latencies (which

would be 12/75 = 16% for this architecture).

To help characterize where the data is being found, Table 5.2 presents a breakdown of exactly

where the data is found both by the prefetch and by the subsequent reference. When the value of

the “C2) C1” category (i.e. cases where the data are successfully prefetched from the secondary

to the primary cache) is large relative to the sum of the “M) C1” and “M) C2” categories (i.e.

cases where data are prefetched from memory, and are found in either the primary and secondary

cache, respectively), we would expect prefetching into the primary cache to account for most

of the gains. This agrees with the data in Figure 5.6. For example, GMTRY has the largest

value in the “C2) C1” column (73.5%), and also shows the largest marginal speedup (45%). In

contrast, the prefetched misses in TOMCATV are twice as likely to be found in memory rather

than the secondary cache, and therefore the marginal speedup for TOMCATV is considerably

5In an architecture that prefetches only into the secondary cache, prefetches would have a cost and no benefit in
cases where the data is found in the secondary cache.

136 Chapter 5. Architectural Issues

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 94 98

 75

 55

 77
 70

 119
 104

 77 77

 97 98

 80 84 85 82 79 83
 94 94

 75 70

 89 92
 100 99

R O R O R O R O R O R O R O R O R O R O R O R O R O
MXM

CFFT2D
CHOLSKY

BTRIX
GMTRY

EMIT
VPENTA

TOMCATV
OCEAN

IS
CG

EP
MG

memory access stalls
instructions

Figure 5.7: Performance when prefetching into the secondary cache, both when compiled for the
primary cache size (O), and when recompiled for the secondary cache size (R).

smaller (4%).

For the experiments in Figure 5.6, we did not recompile the code to take into account the

larger size of the secondary cache relative to the primary cache (256K vs. 8K). Compiling for

the larger cache size might help reduce instruction overhead by eliminating prefetches of data

that reside in the secondary but not the primary cache. However, notice that there are only a few

cases in Figure 5.6 where the instruction overhead could potentially offset the marginal difference

in reduced memory stalls. To see whether this would make a difference, we recompiled each

program, this time increasing theeffective cache sizeparameter to 256 Kbytes. The results of

this experiment are shown in Figure 5.7.

As we see from Figure 5.7, the results of recompiling the code to take into account the

larger cache size were mixed. In five of the cases (MXM, EMIT, VPENTA, OCEAN, and

EP) the performance improved, while in six of the other cases (CFFT2D, CHOLSKY, BTRIX,

TOMCATV, CG, and MG) the performance was worse. Of the cases that did improve, the benefit

was typically small (never more than 5%). In six of the cases the instruction overhead actually

increased (due to the overheads of peeling loops to account for temporal locality), despite the fact

that fewer prefetches were issued. Of the four cases where there was a significant potential to

reduce instruction overhead (BTRIX, VPENTA, TOMCATV and MG), only one case improved:

VPENTA. However, even in this case, much of the gain in reduced instruction overhead was

offset by larger memory stall times, since a number of the prefetches that were eliminated were

in fact useful for reducing latency. In the case of BTRIX, we see that compiling for a larger

cache size does not reduce the instruction overhead (it merely eliminates some useful prefetches),

and given that these prefetches are being issued, it is clearly preferable that they do something

Chapter 5. Architectural Issues 137

useful (i.e. prefetch data into the primary cache).

Part of the reason for these mixed results is that it is more difficult to analyze locality in a

very large cache, since the approximations inherent in using a fully-associative cache model in the

locality analysis become more exaggerated. Also, in many cases the loop bounds are symbolic,

and in these cases it does not matter how large the finite cache parameter is—all that matters is the

policy for dealing with unknown loop bounds. Since it is unlikely that the compiler will be able

to avoid prefetching data already in the secondary cache, we may as well get some performance

benefit from these prefetches by moving the data into the primary cache. As secondary caches

continue to grow, this should be even more true. Ultimately, however, it is the difference in

memory stall reduction, not overheads, that shows that prefetching into the primary cache is the

right thing to do.

Although the results presented in this section are specific to this architecture, we would expect

the conclusions to remain applicable in the future for the following reasons. First, the average

stall due to primary cache tag contention (lf) should remain smaller than the primary-to-secondary

miss latency (ls). Also, as cache sizes continue to increase, there may be fewer primary cache

conflicts (pd), and more of the data set may be captured by the secondary cache, making it more

important to prefetch primary-to-secondary cache misses. Therefore it is likely that prefetching

into the primary cache will remain a performance win.

Prefetching into a Separate Prefetch Target Buffer

An alternative approach to moving data close to the processor is to place it outside the normal

cache hierarchy in a separateprefetch target buffer. We will discuss this approach qualitatively

in this subsection. The motivation presented in previous proposals for a prefetch target buffer is

that by keeping the prefetched data separate, it cannot interfere with data in the normal cache

(which is referred to as the cache “pollution” problem) [13, 42]. While this may be true, this

approach has a number of drawbacks.

First, a prefetch target buffer only addresses the problem of conflicts between prefetches

and references—it does nothing to help the cases when references conflict with other references,

or when prefetches conflict with other prefetches; these latter cases are just as important. As

evidence of how important reference-to-reference conflicts are, they were so bad in the original

versions of four of the uniprocessor applications that we manually changed the alignment of

some matrices to help alleviate these conflicts (as described earlier in Section 3.1). Therefore a

more general solution that can address all different types of conflicts would be preferable to a

138 Chapter 5. Architectural Issues

prefetch target buffer, which only addresses a subset of the conflicts. We will discuss general

solutions to cache conflicts later in Section 5.2.2. Second, building a large prefetch target buffer

will require sacrificing a significant amount of cache area, thereby reducing the hit rate of normal

references. This will be particularly undesirable for applications that do not contain prefetches

(either because they have not been recompiled or because they do not benefit from prefetching).

Finally, prefetching into a special target buffer makes it difficult for prefetches to benon-binding

in a multiprocessor environment, since the target buffer must also be kept coherent. In general,

treating prefetch accesses as special cases will be more complicated than handling them through

the normal cache miss mechanism.

For the types of applications considered in this study, the compiler rarely prefetches data that

is not needed in the immediate future, and therefore the problem is not accurately characterized

as cachepollution. Cacheconflicts, on the other hand, can be a problem betweenany types of

references. Therefore the best approach is to prefetch directly into the primary cache and find

othergeneraltechniques for coping with cache conflicts.

5.1.4 Hardware Modifications to Support Prefetching

We now discuss some specific changes to the hardware that are necessary to support prefetching.

First, the processor obviously must be able to decode and process the new prefetch instructions,

as described in Section 5.1.1. The main complications of doing so are ensuring that they are

non-blocking and are harmlessly dropped whenever the prefetch address is invalid.

It is important to realize, however, thathardware support for prefetching does not end with

just adding prefetch instructions to the instruction set. It is essential that the bandwidth of

the memory hierarchy be increased to support the extra demand imposed by prefetching. An

important step toward increasing memory hierarchy bandwidth is allowing multiple outstanding

cache misses, which is referred to as having alockup-freecache [45].6 This added bandwidth

makes it possible to hide latency by overlapping memory accesses withother memory accesses,

not just computation.

This subsection is organized as follows. We begin by discussing issues associated with

implementing a lockup-free cache, and relate them to our uniprocessor architecture. We then

evaluate the performance tradeoffs for two key parameters in the lockup-free cache design: the

number of outstanding misses, and the number of prefetch issue buffer entries. Finally, we

6Note that there is even more to providing memory subsystem bandwidth than having a lockup-free cache. In
addition, main memory must have sufficient bandwidth to service these multiple outstanding misses.

Chapter 5. Architectural Issues 139

compare the performance of separate write and prefetch issue buffers with the performance of a

combined buffer.

Lockup-Free Cache

A lockup-free cache is a common requirement for most latency-hiding techniques, including

prefetching, relaxed consistency models, non-blocking loads, and multithreading. The complexity

of implementing a lockup-free cache depends on which of these techniques it is intended to

support (as described in detail by Laudon [52]). For example, if the goal is simply to support

multiple outstanding prefetches, then it is not strictly necessary for the processor to maintain

state on outstanding transactions, as long as the cache is prepared to receive prefetch responses

from outside the processor while the processor may be simultaneously issuing new requests. In

contrast, supporting multiple outstanding stores (as with relaxed consistency models) or loads (if

they are non-blocking)doesrequire that special state be maintained for each outstanding access.

For stores, the stored data must be merged into the cache line when it returns. For loads, the

requested data must be forwarded directly to a register—thus requiring state to associate each

outstanding access with the register(s) waiting for the value—and any future uses of that register

must interlock if the value has not returned yet.

Kroft [45] presented the original lockup-free cache design, which adds structures called “miss

information/status handling registers” (MSHRs) to keep track of outstanding misses. Each MSHR

contains enough state to handle one or more accesses of any type to a single memory line. Due

to the generality of the MSHR mechanism, the amount of state involved is non-trivial, including

the address, pointers to the cache entry and destination register, written data, and various other

pieces of state. The majority of subsequent lockup-free cache proposals have been a variation of

this original MSHR scheme [63, 70, 79, 46]. An alternative approach is to maintain the state of

outstanding misses in the cache tag array itself [17, 52], thereby permitting a larger number of

outstanding misses.

For the uniprocessor architecture used in Chapter 3, the lockup-free cache supports a single

load or store miss (since loads and stores7 directly stall the processor) and up to sixteen prefetch

misses. The state of outstanding prefetch misses is maintained in a sixteen-entryprefetch issue

buffer. This structure is simpler than a normal MSHR because it contains only the prefetch

addresses and any state necessary to track or control outstanding misses. It doesnot contain any

7Stores stall the processor since the R4000 (the processor on which we base our uniprocessor architecture) has a
write-back cache and no write buffer.

140 Chapter 5. Architectural Issues

data, since the prefetched data is placed directly into the cache hierarchy.

To illustrate how the prefetch issue buffer is used, we will walk through the steps of processing

a prefetch. When the processor executes a prefetch instruction, the primary data cache is checked

during that cycle. If the data is already present in the cache, then the prefetch is considered

completed at that point. Otherwise, the prefetch addresses is then compared against the addresses

already in the prefetch issue buffer. If there is a match, then the prefetch is dropped. Otherwise,

a new entry is allocated in the prefetch issue buffer for the new prefetch.8 At this point, the

prefetch will proceed through the memory hierarchy to first find the data and then place it in

the primary cache, as was discussed in Section 5.1.3. An entry in the prefetch issue buffer is

deallocated as soon as the prefetch completes (as opposed to waiting for the data to actually be

referenced).

Although a prefetch issue buffer is not strictly necessary, it offers the following performance

advantages. First, in cases where the prefetch miss cannot be serviced immediately (perhaps

because of a limited number of MSHRs), it allows the processor to continue executing by buffering

the prefetch request. Second, by keeping track of the prefetches that are already outstanding,

it provides a mechanism formergingsubsequent prefetch and memory references to matching

cache lines. Merging a prefetch with a previous prefetch simply means dropping the subsequent

prefetch.9 This helps to avoid unnecessary bandwidth consumption further down the memory

hierarchy, similar to the benefit of checking the primary cache when searching for the prefetched

data (as discussed earlier in Section 5.1.3). However, withselectiveprefetching, the compiler is

generally good at avoiding back-to-back redundant prefetches (at least for these scientific codes).

The more important benefit occurs when a load is merged with a previous prefetch that was

partially completed, since this allows the load to benefit from whatever partial latency-hiding

the prefetch has been able to accomplish. This is especially important for cases where data or

control-flow dependencies make it impossible to issue prefetches early enough to hide the entire

memory latency, which can occur frequently in pointer-based codes such as PTHOR (e.g., when

attempting to prefetch a linked list).

8If the prefetch issue buffer is already full, then either the processor must stall until an entry becomes available
or else drop the prefetch. The tradeoff between these two choices was described earlier in Section 5.1.2, and for this
study we will stall until an entry becomes available.

9The one possible exception is when a read-exclusive prefetch follows a read-shared prefetch of the same line.
In this case, if the read-shared prefetch has not been issued to the memory system yet, it should be converted to a
read-exclusive prefetch. Otherwise, the options are to either drop the read-exclusive prefetch or else issue it separately.
We chose the latter for our simulations, but it made little difference because our selective prefetching algorithm is
good at avoiding such redundancies.

Figure 5.8: Prefetch issue buffer in the uniprocessor architecture. Note that for prefetches, the
fetched data goes directly into the cache, rather than being held in an MSHR. Therefore an MSHR
is simply a resource forcontrolling an outstanding miss under this model.

Figure 5.8 shows how the prefetch issue buffer is incorporated into our uniprocessor archi-

tecture. In this figure, we have shown distinct MSHRs to allow for the possibility that misses are

handled separately from the buffering of prefetch requests. Note that in our model, a prefetch

remains in the prefetch issue buffer until it is completed by its MSHR. In our experiments so

far, we have assumed a sixteen-entry deep prefetch buffer and seventeen MSHRs (one for each

prefetch and one for either a load or store). We chose these large parameters to minimize their

effect on performance. We will now examine how many prefetch issue buffer entries and MSHRs

are actually needed for our benchmarks.

Before running these experiments with reduced prefetch buffering and MSHR capacities, we

can gain insight into what to expect by examining the number of outstanding prefetches in the

original “full-capacity” architecture. Figure 5.9 plots the distribution of prefetch misses already

outstanding during each prefetch miss for the original architecture. As we see in Figure 5.9,

142 Chapter 5. Architectural Issues

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 D
is

tr
ib

u
ti

o
n

 (
%

)

01234567891111111 01234567891111111 01234567891111111 01234567891111111 01234567891111111 01234567891111111 01234567891111111
0123456 0123456 0123456 0123456 0123456 0123456 0123456

MXM CFFT2D CHOLSKY BTRIX GMTRY EMIT VPENTA

|0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 D
is

tr
ib

u
ti

o
n

 (
%

)

0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

TOMCATV OCEAN IS CG EP MG

Figure 5.9: Distribution of previously outstanding prefetch misses upon each prefetch miss for
the original uniprocessor architecture (which supports up to seventeen outstanding misses).

the distributions vary considerably across applications. On the one extreme is EP, where there

is almost never more than one outstanding prefetch. On the other hand there are programs like

CHOLSKY, where the distribution is spread out over larger numbers of previously outstanding

prefetches (i.e. the distribution has a significant tail). We would expect these latter types of

applications to benefit from having multiple MSHRs and deep prefetch buffers.

To measure the actual impact on performance, we first varied the number of MSHRs while

holding the depth of the prefetch issue buffer fixed at sixteen entries. Figure 5.10 shows the

Chapter 5. Architectural Issues 143

|0

|20

|40

|60

|80

|100

|120

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 91 89 88 88

 72

 47 45 44

 94

 67

 59 57

 105

 89
 85 84 84

 61
 53 53

 97 95 95 95 94

 70
 63 61

 105

 85
 80 78

 88

 79 77 77

 94 91 90 90
 84

 64
 59 59

 91 91 91 91

 99
 96 95 95

1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17 1 2 4 17
MXM CFFT2D CHOLSKY BTRIX GMTRY EMIT VPENTA TOMCATV OCEAN IS CG EP MG

memory access stalls
instructions

Figure 5.10: Performance when the number of MSHRs is varied.

results of these experiments. A single MSHR corresponds to a “blocking” cache (i.e. one that

is not lockup-free), while seventeen MSHRs corresponds to the original architecture. Note that

with fewer than seventeen MSHRs, there may potentially be more outstanding miss requests (up

to seventeen) than can be serviced at a given time, in which case prefetch misses must compete

with load and store misses for the MSHRs. We resolved such cases by giving load or store misses

(which directly stall the processor) priority for the next available MSHR—otherwise, the oldest

unserviced prefetch will be awarded the next available MSHR.

As we see in Figure 5.10, the benefits of a lockup-free cache are often substantial. Seven of the

thirteen applications showed at least an 15% performance improvement by going from one to two

MSHRs. In six of those seven cases, there was at least a 5% additional improvement from having

four MSHRs. The benefits of moving from four to seventeen MSHRs were typically quite small.

These performance improvements correspond to what we would expect from the distributions

shown in Figure 5.9. In particular, the largest improvements occur in the benchmarks with the

largest tails in their distributions (e.g., CHOLSKY, GMTRY, VPENTA, and CG). Therefore we

see that it is important to have a lockup-free cache, and that four outstanding misses are sufficient

to capture most of the benefits for these applications.

Given that four MSHRs are sufficient, the next question is whether buffering additional

prefetch requests beyond that is advantageous, or whether the prefetch issue buffer should also

be reduced to four entries. To evaluate this, we simulated the performance when the number of

prefetch issue buffer entries is reduced, while holding the number of MSHRs fixed at four. Figure

5.11 shows the two cases (CHOLSKY and VPENTA) where this caused a noticeable difference in

performance (in six of the other cases, there was less than a 2% difference between four and eight

buffer entries, and no difference between eight and sixteen buffer entries). CHOLSKY showed

144 Chapter 5. Architectural Issues

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 66 62 59
 67 64 63

4 8 16 4 8 16
CHOLSKY VPENTA

memory access stalls
instructions

Figure 5.11: Performance when the size of the prefetch issue buffer size is varied between four,
eight, and sixteen entries, given four MSHRs.

the largest improvement, with a 6% speedup when going from four to eight buffer entries, and

5% speedup beyond that for having sixteen entries. VPENTA showed a 5% speedup between

four and eight entries, and 1% additional speedup with sixteen entries. Therefore we see that

additional prefetch buffering is beneficial in a small number of cases. However, given that this

benefit is relatively small and infrequent, the hardware cost would also have to be quite small

for it to be justified.

Separate Write and Prefetch Issue Buffers

The final hardware-related issue we will discuss is whether it is useful to have a separate prefetch

issue buffer in an architecture that already contains a buffer for writes, or whether both writes and

prefetches should be placed in the same buffer. One possible performance disadvantage of using

a combined buffer is that prefetches may be delayed behind writes. From an implementation

perspective, a buffer that only handles prefetch requests would be smaller, since it does not

contain written data. However, it may be simpler to build just a single buffer.

The uniprocessor architecture we have been using does not contain a write buffer, but the

Chapter 5. Architectural Issues 145

multiprocessor architecture does, since it has a write-through primary data cache (versus the copy-

back cache of the uniprocessor architecture).10 In our experiments so far, the multiprocessor

architecture has included both a sixteen-entry write buffer and a sixteen-entry prefetch issue

buffer. To evaluate the performance impact of having a common buffer, we ran an experiment

where both writes and prefetches were placed in a combined sixteen-entry buffer. Our results

showed absolutely no difference in performance. This is partly because the lockup-free cache

(which allows up to eight outstanding misses for the multiprocessor architecture) handles requests

quickly enough that prefetches are rarely delayed behind writes. In an earlier study where we

did not use a lockup-free cache [61], the performance advantage of having a separate prefetch

issue buffer was also rather small. Therefore the choice of separate or combined buffers should

be dictated by whichever is easier to implement, since both schemes offer similar performance.

Summary

Providing a lockup-free cache is essential to obtain the benefits of prefetching. For the architecture

and applications we studied, most of the performance benefit was captured by allowing up to

four outstanding misses. In some cases there is a performance advantage to providing additional

prefetch request buffering beyond these four misses. Finally, combining prefetches and writes in

the same buffer showed no significant loss in performance for our multiprocessor architecture.

5.2 Achieving Larger Gains through Prefetching

Having described the basic architectural support for prefetching in the previous section, we

now consider techniques which may further improve the performance offered by prefetching.

Although many of these techniques involve compiler support as well as architectural support, we

have included them in this chapter because of their relevance to the architecture.

To provide a framework for examining all aspects of prefetching performance, let us briefly

review the key performance issues. To begin with, since prefetching involves acostas well as a

benefit, maximizing overall performance requires both maximizing the latency-hiding benefit and

minimizing the cost. Maximizing the latency-hiding benefit involves maximizing thecoverage

factorand maximizing theeffectivenessof prefetches that are issued. Minimizing the cost involves

avoidingunnecessary prefetchesand minimizing the overheads of prefetches that are issued.

10The reason for this difference is that our uniprocessor architecture is based on the MIPS R4000 processor, while
the multiprocessor architecture is patterned after DASH, which contains R3000 processors.

146 Chapter 5. Architectural Issues

The goal of theanalysisphase of the compiler algorithm is to maximize coverage and mini-

mize unnecessary prefetches by predicting which dynamic references should be prefetched. We

will consider ways to improve this decision-making process in Section 5.2.1. The other two goals

of maximizing prefetching effectiveness and minimizing prefetching overheads are handled by

theschedulingphase of the compiler. We will discuss ways to improve prefetching effectiveness

in Section 5.2.2, and ways to minimize overheads in Section 5.2.3.

5.2.1 Improving Analysis

The analysis techniques presented so far have relied strictly uponstatic informationthat is avail-

able during compilation. This static analysis could be further improved in the following ways.

First, the basic concept of locality analysis, i.e.

Intrinsic Data Reuse\ Localized Execution Space)Data Locality

can be generalized to handle other types of reference patterns, such as scalars, pointers, lists,

etc. For example, two pointer dereferences would have intrinsic data reuse if the compiler can

determine that they point to the same address. The localized execution space for a given reference

would be the set of paths in the control-flow graph that can lead to that reference without accessing

enough data to flush the cache. If a given reference reuses data from an earlier reference, and

that earlier reference falls within the localized execution space of the given reference, then there

is data locality. Second, the analysis could be performed on aglobal level rather than a loop-nest

level. The largest gains from improving static analysis are likely to come from prefetching large

recursive data structures, such as the trees and linked lists we saw in BARNES and PTHOR in

Section 4.5.2, and from performing interprocedural analysis, which was important for WATER

(as also described in Section 4.5.2). However, analyzing recursive data structures may be quite

difficult since it usually requires pointer analysis, which is a difficult problem for the compiler

in general [37, 51].

Rather than relying strictly upon static information, another possibility is to make use of

dynamic information. Dynamic information could be used either at compile-time, through the

use of feedback information, or at run-time, by generating adaptive code. We will discuss both

possibilities in this subsection.

Chapter 5. Architectural Issues 147

Incorporating Feedback into Compilation

Dynamic information can be used at compile-time through feedback from earlier runs. The

two types of feedback that may be useful for prefetching arecontrol-flowfeedback andmemory

behaviorfeedback, which we will briefly discuss.

Control-flow feedback (also known as “branch profiling”) records how frequently each control

path in the program is executed, thereby measuring branch outcome frequencies. Such information

is often used in aggressive instruction-scheduling algorithms where it is important to schedule

code beyond branches [75]. Control-flow feedback would be useful in our prefetching compiler

algorithm (described in Chapter 2) when computing thelocalized iteration spacefor loop nests that

include symbolic loop bounds. In these cases, the number of loop iterations is not a compile-time

constant, and therefore it is difficult to predict whether the volume of data referenced by a loop

exceeds the effective cache size. Using control-flow feedback, the compiler can take into account

the average number of loop iterations of previous runs when making this decision. Control-flow

feedback might also be useful for loops that contain conditional statements. For example, the

number of iterations to software-pipeline prefetches ahead depends upon the expected number

of instructions in a single loop iteration (see Section 2.4.2). If the loop contains a conditional

statement, we currently schedule for the worst case (i.e. the shortest path). However, if the branch

outcome almost always favors a much longer path, the compiler algorithm may want to schedule

for this longer path instead. Control-flow information is relatively inexpensive to collect, since

it simply involves instrumenting the code to count basic blocks.11

Feedback onmemory behaviorhelps identify which references in the code are suffering the

most from memory latency. This information can be collected at various levels of granularity. For

example, the Mtool utility [28] collects information at the granularity of a single loop nesting.

This is useful for identifying which loop nests suffer the most from latency, and which loop

nests are insignificant. At the more fine-grained end of the spectrum, the feedback information

might consist of precise miss rates for each reference in the program. One of the challenges of

collecting any type of memory behavior information is that the behavior of the memory subsystem

is usually hidden from the software. Mtool collects its information through either fine-grain timers

or by sampling the program counter. Because of the potential distortion introduced by the large

overheads of these techniques, it is only possible to collect information at the level of a loop

nest. In order to collect individual miss rates in a program, it is necessary to eithersimulatethe

11An example of this is thepixie utility provided by MIPS Computer Systems, Inc.Pixified code generally runs
roughly half as fast as the original code.

148 Chapter 5. Architectural Issues

memory system (which is rather costly), or else make use of user-visible hardware miss counters.

However, few commercial microprocessors currently provide support for such miss counters, and

therefore collecting individual miss rates remains a non-trivial task.

Memory behavior feedback may be useful in a number of different situations. First, it may be

useful when the localized iteration space (LIS) concept would work, but the LIS has been chosen

improperly—perhaps because the loop bounds are unknown, or because the effective cache size

is incorrect. In this case, the LIS can be adjusted to better match the observed behavior. Second,

memory behavior feedback can help detect cases where cache conflicts result in more misses than

locality analysis predicts. Similarly, in a multiprocessor environment, it can help detect cases

where coherence activity causes additional misses beyond those predicted by locality analysis.

Finally, it will be useful for determining whether to prefetch references outside the scope of

locality analysis, such as indirect references.

To experiment with feedback, we used our simulator to collect both control-flow and fine-grain

memory behavior feedback information. This information was incorporated into the compiler

algorithm as follows. The control-flow information was used to compute the average number of

iterations for each loop (also known as the “trip count”). As we described earlier in this subsection,

this count was used by the compiler to compute the localized iteration space whenever the loop

bounds were unknown at compile-time.

The memory feedback information was used to annotate each load and store with both the

number of times the reference was executed and the number of times it missed in the primary

data cache—hence giving the precise miss rate. After performing locality analysis, we compare

the predictedmiss rate with theobservedmiss rate. If they agree within a certain acceptable

margin, we schedule the code as usual. If they disagree, then we first try to find an explanation

for the miss rate that is consistent with the intrinsic data reuse. This is important because to

schedule the prefetches properly, we need to knowwhenthe misses occur.

For example, consider the two loop nests in Figure 5.12, and assume that from memory

feedback we know the miss rate for loadingA[j][k] to be 25% in both cases. Since the

intrinsic data reuse forA[j][k] is quite different between the two cases, the interpretation of

the miss rate also differs. For the code in Figure 5.12(a), whereA[j][[k] has temporal reuse

along thei loop (k is loop-invariant), a 25% miss rate corresponds to each load ofA[j][k]

missing on the first iteration ofi and hitting on the remaining three iterations. Therefore the

compiler would peel thei loop to schedule prefetches as normal for temporal locality. In contrast,

theA[j][k] reference in Figure 5.12(b) has spatial rather than temporal reuse, and therefore we

Chapter 5. Architectural Issues 149

(a)
for (i = 0; i < 4; i++)

for (j = 0; j < 500; j++)
A[j][k] = A[j][k] + foo(i); /* A[j][k] has temporal reuse */

(b)
for (j = 0; j < 4; j++)

for (k = 0; k < 500; k++)
A[j][k] = A[j][k] + foo(i); /* A[j][k] has spatial reuse */

Figure 5.12: Example of why intrinsic data reuse matters when scheduling prefetches even when
miss rates are precisely known.

would not expect the same dynamic miss behavior. Assuming there are fourA[j][k] elements

per cache line, the 25% miss rate would correspond to missing on every fourth iteration of the

inner loop (k) as cache line boundaries are crossed. So rather than peeling the outer loop, in this

case the compiler would unroll the inner loop by a factor of four to schedule the prefetches.

This example in Figure 5.12 illustrates that the miss rate alone does not necessarily provide

enough information to schedule prefetches properly, since fractional miss rates (i.e. between 0%

and 100%) are ambiguous in terms of which dynamic references are hits and which are misses.

This ambiguity arises because the information relating individual misses to when they occur is

lost in the course of summarizing them as a single miss rate. Even after examining the data reuse

within a loop nest, the dynamic misses may still be unclear. For example, the 25% miss rate for

loadingA[j][k] in Figure 5.12(a) may correspond to at least two different miss patterns. First,

if the A[j][k] references are not already in the cache when the loop is executed, then all of

the misses would occur during the first iteration of thei loop, as we described earlier. However,

if the A[j][k] references were already in the cache (perhaps because they were referenced in

an earlier loop nest), then the misses may have occurred sporadically acrossall of the i loop

iterations, perhaps due to occasional cache conflicts with other references. Prefetches scheduled

for the former case would not cover the misses of this latter case. Therefore the compiler is faced

with choosing the most likely explanation for the observed miss rates.

The approach we take is to first look for explanations consistent with locality analysis by

adjusting the LIS and repartitioning equivalence classes as necessary. For example, if the actual

miss rate is lower than expected, the compiler checks whether increasing the size of the LIS

(thereby increasing the expected locality) would explain the miss rate. Similarly, it considers

150 Chapter 5. Architectural Issues

decreasing the LIS to explain higher-than-expected miss rates. This is particularly useful when

the size of the LIS is unclear from static analysis alone. For example, given an 8 Kbyte primary

data cache with 16 byte lines, it would be difficult to predict whether the LIS in Figure 5.12(a)

included both surrounding loops since the amount of data referenced in a single iteration of the

outer loop is very close to the cache capacity. With only static information, the compiler might

normally predict that only the inner loop was within the LIS, and hence the expected miss rate

of loading A[j][k] would be 100%. However, given the observed miss rate of 25% from

feedback, the compiler would increase the LIS to include both loops. Therefore theA[j][k]

reference would be predicted to have temporal locality, and its predicted miss rate would match

the observed rate of 25%.

The compiler adjusts the partitioning of equivalence classes (sets of references predicted to

have group locality) based on feedback as follows. First the compiler checks that theleading

reference(i.e. the reference predicted to actually suffer the misses) of each equivalence class is

the only one with a significant miss rate. If multiple references in the same equivalence class

have significant miss rates, then the equivalence class is divided accordingly. If none of the

references in the equivalence class has a significant miss rate (including the leading reference),

then that equivalence class is marked as one that should not be prefetched. To determine which

references should not be prefetched, the compiler ranks all references in descending order based

on their contribution to total misses. A reference is not prefetched if it has a small miss rate

and is ranked lower than the references accounting for the first 95% of the misses. This is a

better approach than simply using a miss rate threshold, since it takes thefrequency of reference

into account. In other words, if a reference has a low miss rate but is executed so often that it

accounts for most of the total misses, we still want to prefetch it. On the other hand, a reference

with a higher miss rate that is rarely executed and therefore makes a negligible contribution to

total misses can safely be ignored.

To evaluate the benefit of using feedback, we modified our compiler to automatically make

use of control-flow and fine-grain memory feedback information. We simulated each application

once without prefetching, using our simulator to automatically collect the feedback information.

We then compiled each application a second time, this time using the feedback information.

Figure 5.13 shows the performance of the one case that improved significantly using feedback:

OCEAN.

The difficulty for static analysis in OCEAN is that the critical two-level loop nesting is split

across separate files—the outer loop is in one file, and the inner loop is inside a procedure call

Chapter 5. Architectural Issues 151

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 77

 57

N S F
OCEAN

memory access stalls
instructions

Figure 5.13: Results using feedback (N = no prefetching,S = prefetching with static analysis
only, F = prefetching with feedback).

in another file. This loop performs a nearest-neighbor SOR computation, so there is a significant

amount of group locality among the references. However, since our compiler does not perform

interprocedural analysis across separate files, the prefetching algorithm does not recognize the

group locality due to the outer loop, and therefore issues too many prefetches. Once feedback

information is available, the compiler immediately recognizes the group locality, thus avoiding

the unnecessary prefetches. Interestingly enough, eliminating prefetches actually reduces the

memory stall time in this case by eliminating register spilling, since the spilled references were

often conflicting with other data references. OCEAN illustrates how feedback may help the

compiler overcome the fact that some types of analysis may be too expensive to implement in

the compiler.

The main reason why feedback did not improve the other benchmarks is that static analysis

alone was already quite successful for these types of codes. Profiling feedback is likely to be

more useful in codes that are more difficult to analyze, such as ones containing pointers and

recursive data structures. For the scientific codes we studied, however, the benefits of feedback

do not appear to be large.

152 Chapter 5. Architectural Issues

Adapting at Run-time

Although incorporating dynamic feedback information into the compilation process gives the

compiler more information to reason with, it has a few shortcomings. First, the feedback process

itself is a bit cumbersome, since it requires that the program be compiled twice. Also, depending

on the level of detail of the information being collected, the process of executing the code to

collect the information may be quite slow. Another difficulty is whether the dynamic profile that

was captured is representative of all input data sets. This is a concern because optimizations

tailored to one particular input data set may actually hurt performance on other data sets. In

some cases it may not be possible to find a single “representative” data set, especially if the

cache behavior depends critically upon whether the data set does or does not fit in the cache.

This is particularly problematic when the problem size is determined at run-time, in which case

it may be impossible to generate a single static piece of code that is appropriate for all input data

sets. A similar problem arises in procedures such as library routines where it is impossible to

analyze the calling arguments in all situations.

Rather than generating a single static piece of code that contains prefetching, another possi-

bility is to generate code that adapts dynamically at run-time. This involves “specialization” of

the prefetching code. The good news is that there are typically only a small number of different

cases to specialize for—usually the data either should or should not be prefetched. Therefore

when the compiler is uncertain about which case to generate, it could generate both cases, and

choose the appropriate one to execute at run-time. The decision of which version to execute

might be based on several different things: (1) the problem size (e.g., loop bounds defined at

run-time), (2) data alignment in order to detect pathological cache conflict cases, or (3) hardware

miss counters.

For example, Figure 5.14 shows a case where checking the problem size is useful. The

temporal reuse of theA[j] reference in Figure 5.14(a) may or may not result in temporal

locality, depending on how largen is relative to the cache size. Figure 5.14(b) illustrates how the

value ofn can be checked at run-time to select the appropriate strategy for prefetchingA[j] .

Another problem that can potentially be detected dynamically is pathological cache inter-

ference between array references. When this occurs, the associated prefetches may also be

ineffective, so it may be best to avoid the instruction overhead of issuing these useless prefetch-

es. This situation can occur when two array references have similar affine access functions, such

as referencesA[i] andB[i] in Figure 5.15(a), and when the difference in base addresses is a

multiple of the cache size. Figure 5.15(b) illustrates code that adapts to this situation at run-time.

Chapter 5. Architectural Issues 153

(a) Original Code

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

A[j] = A[j] + foo(i); /* does A[j] have temporal locality? */

(b) Adaptive Code

if (n < THRESHOLDSIZE) f /* test if problem size is small */
for (j = 0; j < 8; j += 2) /* if so, A[j] has temporal locality... */

prefetch(&A[j]); f /* ... so only prefetch in the peel of i */
for (j = 0; j < n-8; j += 2)

prefetch(&A[j+8]);
A[j] = A[j] + foo(0);
A[j+1] = A[j+1] + foo(0);

g

for (j = n-8; i < n; i++)
A[j] = A[j] + foo(0);

for (i = 1; i < n; i++) /* no prefetching in remaining iterations of i loop */
for (j = 0; j < n; j++)

A[j] = A[j] + foo(i);
g

else f /* no temporal locality for large problem size... */
for (i = 0; i < n; i++) f /* ... so prefetch A[j] on each iteration of i loop */

for (j = 0; j < 8; j += 2)
prefetch(&A[j]);

for (j = 0; j < n-8; j += 2) f

prefetch(&A[j+8]);
A[j] = A[j] + foo(i);
A[j+1] = A[j+1] + foo(i);

g

for (j = n-8; i < n; i++)
A[j] = A[j] + foo(i);

g

g

Figure 5.14: Example of adapting at runtime by checking problem size.

154 Chapter 5. Architectural Issues

(a) Original Code

for (i = 0; i < 1000; i++)
A[i] = B[i]; /* do A[i] and B[i] conflict in the cache? */

(b) Adaptive Code

diff = (&A[0] - &B[0]) % CACHESIZE;
/* test if A[i] and B[i] fall within the same cache line */
if ((diff > -LINESIZE) && (diff < LINESIZE)) f

if ((diff > 0) f /* if so, test if A[i] leads B[i] */
for (i = 0; i < 8; i += 2) f /* if so, prefetch A[i] only... */

prefetch(&A[i]); /* ... since it will be used first */
g

for (i = 0; i < 992; i += 2) f

prefetch(&A[i+8]);
A[i] = B[i];
A[i+1] = B[i+1];

g

for (i = 992; i < 1000; i++)
A[i] = B[i];

g else f /* prefetch B[i] only, since it will be used first */
for (i = 0; i < 8; i += 2) f

prefetch(&B[i]);
g

for (i = 0; i < 992; i += 2) f

prefetch(&B[i+8]);
A[i] = B[i];
A[i+1] = B[i+1];

g

for (i = 992; i < 1000; i++)
A[i] = B[i];

g

g else f /* prefetch both A[i] and B[i] if they do not conflict */
for (i = 0; i < 8; i += 2) f

prefetch(&A[i]);
prefetch(&B[i]);

g

for (i = 0; i < 992; i += 2) f

prefetch(&A[i+8]);
prefetch(&B[i+8]);
A[i] = B[i];
A[i+1] = B[i+1];

g

for (i = 992; i < 1000; i++)
A[i] = B[i];

g

Figure 5.15: Example of adapting at runtime by checking for data alignment conflicts.

Chapter 5. Architectural Issues 155

(a) Original Code

for (i = 0; i < 1000; i++)
sum = sum + A[i]; /* is A[i] already in the cache? */

(b) Adaptive Code

RESETMISS COUNTERS(); /* first reset hardware miss counters */
for (i = 0; i < 8; i += 2) /* issue the first several prefetches */

prefetch(&A[i]);
/* test whether the prefetches of A[i] have been hitting in the cache so far */
if (PREFETCHMISS COUNT() < SMALLNUMBER) f

for (i = 0; i < 1000; i++) /* if so, stop prefetching */
sum = sum + A[i];

g else f /* otherwise, continue prefetching throughout remainder of loop */
for (i = 0; i < 992; i += 2) f

prefetch(&A[i+8]);
sum = sum + A[i];
sum = sum + A[i+1];

g

for (i = 992; i < 1000; i++)
sum = sum + A[i];

g

Figure 5.16: Example of adapting at runtime by checking hardware miss counters.

Finally, Figure 5.16 illustrates how hardware miss counters can be used to dynamically detect

whether data is already in the cache. These miss counters keep a running total of primary

cache misses. It may be useful to have four miss counters, with each one devoted to counting

one of the following types of misses: (i) loads, (ii) stores, (iii) prefetches, and (iv) exclusive-

mode prefetches. Keeping separate counts is useful because it provides more information to the

software. Also, there is a significant difference between seeing loads and stores hit in the cache

(which is a good thing), and seeing prefetches hit in the cache (which is a bad thing). Miss

counters should not be too expensive to implement since they only consume a small amount of

chip area and should not affect cycle time.

As we see in Figure 5.16, the run-time overhead of using miss counters can be minimized

as follows. First reset the counter before executing a loop. Then after executing some number

156 Chapter 5. Architectural Issues

of loop iterations, stop and check the counter to see if the data has been in the cache so far. If

so, do not prefetch the data for the remaining loop iterations. Otherwise, continue prefetching.

Assuming there are a reasonable number of loop iterations (the software can also test for this),

the relative overhead of this check should be quite small. One way to detect misses is to start

off the first several iterations without prefetching, and then check to see how many load or store

misses occur. The drawback of this approach is that it does not eliminate the miss latency of

those first several iterations. Perhaps a better approach, as illustrated in Figure 5.16(b), is to start

off issuing prefetches for the first several iterations, and then test to see whether theprefetches

have been hitting in the cache. If they have, assume the data is already in the cache and do not

issue further prefetches.

While Figure 5.16 shows how miss counters can be used within a single-level loop nest,

their run-time overhead can be reduced even further by using them across outer loop iterations

in multi-level loop nests. For example, Figure 5.17 demonstrates how miss counters can be used

to adapt to temporal locality along an outer loop.

Having described how hardware miss counters can be used, we will now show experimental

results for two different benchmarks: BCOPY, and LU. We start with BCOPY, which is a “block

copy” library routine for copying a block of data from one location to another. Although BCOPY

is a very simple routine, it is interesting for two reasons. First, since it is a library routine, the

compiler cannot make any assumptions about the input parameters and cannot analyze the call

sites for locality. Second, since BCOPY is frequently called by the operating system to move

data around, improving BCOPY may have a significant impact on system performance. We

rewrote BCOPY by hand to take advantage of hardware miss counters, similar to the code in

Figure 5.16. We added hardware miss counters to our simulator, and made them visible to the

software through special function calls. We used a simple workload to drive BCOPY, since we

were mainly interested in testing the ends of spectrum. The workload consisted of a loop which

repeatedly called BCOPY with two distinct arrays and a given block size as arguments. Since

identical block copies are performed on subsequent iterations, there can potentially be a temporal

locality benefit if the block can remain in the cache. Figure 5.18 shows the performance of

BCOPY using various block sizes and loop iteration counts.

As we see in the “500x10” case (where BCOPY is called ten times with 500 byte blocks) in

Figure 5.18, the original code without prefetching suffers a significant amount of miss latency.

These misses occur the first time the routine is called, since the data remains in the cache for

subsequent calls. As we see from the middle bar, the code which statically prefetches the blocks

Chapter 5. Architectural Issues 157

(a) Original Code

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

A[j] = A[j] + foo(i); /* does A[j] have temporal locality? */

(b) Adaptive Code

for (j = 0; j < 8; j += 2) /* perform the first i loop iteration normally */
prefetch(&A[j]);

for (j = 0; j < n-8; j += 2) f

prefetch(&A[j+8]);
A[j] = A[j] + foo(0);
A[j+1] = A[j+1] + foo(0);

g

for (j = n-8; i < n; i++)
A[j] = A[j] + foo(0);

RESETMISS COUNTERS(); /* reset the miss counters before the second i loop iteration */
for (j = 0; j < 8; j += 2) /* perform the second i loop iteration normally */

prefetch(&A[j]);
for (j = 0; j < n-8; j += 2) f

prefetch(&A[j+8]);
A[j] = A[j] + foo(1);
A[j+1] = A[j+1] + foo(1);

g

for (j = n-8; i < n; i++)
A[j] = A[j] + foo(1);

/* check whether A[j] remained in the cache during second i loop iteration */
if (PREFETCHMISS COUNT() < SMALLNUMBER)f

for (i = 2; i < n; i++) /* if so, stop prefetching */
for (j = 0; j < n; j++)

A[j] = A[j] + foo(i);
g

else f /* otherwise, continue prefetching */
for (i = 2; i < n; i++) f

for (j = 0; j < 8; j += 2)
prefetch(&A[j]);

for (j = 0; j < n-8; j += 2) f

prefetch(&A[j+8]);
A[j] = A[j] + foo(i);
A[j+1] = A[j+1] + foo(i);

g

for (j = n-8; i < n; i++)
A[j] = A[j] + foo(i);

g

g

Figure 5.17: Example of adapting at runtime to temporal locality along an outer loop by checking
hardware miss counters.

158 Chapter 5. Architectural Issues

|0

|20

|40

|60

|80

|100

|120

|140
 N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e prefetch memory overhead

 100

 116

 74

 100

 58 58

 100

 32 32

N S D N S D N S D
500x10 10000x10 100000x3

memory access stalls
instructions

Figure 5.18: Results with adaptive version of BCOPY (N = no prefetching,S = statically prefetch
all the time,D = adapt prefetching dynamically). “BxT” means the sameB-byte block is copied
to the same destinationT times. Performance is renormalized for each case.

all the time actually performs worse than the original case, due to the large instruction overhead

of the many unnecessary prefetches. The dynamically adaptive code (shown as the righthand

bar) performs the best, since it recognizes that the data should be prefetched the first time, but

not on subsequent calls. The other two cases in Figure 5.18 show larger block sizes that do

not fit in the cache. In these cases it is best to prefetch all the time, so stopping to check the

miss counters is pure overhead. However, we see that this overhead is small enough that it

has no noticeable impact on performance. Therefore the adaptive code provides the benefit of

eliminating unnecessary prefetch overhead without introducing any significant cost.

The other application we modified to exploit hardware miss counters was LU, which performs

parallel LU-decomposition on dense matrices. In LU, the same procedure is called repeatedly to

apply a pivot column to other columns. If the columns are large relative to the cache size, then

it is best to prefetch the pivot column each time it is referenced. On the other hand, if a column

can fit in the cache, then the pivot column will only suffer misses the first time it is referenced.

However, since this code is in a separate procedure, and since our compiler does not perform

procedurecloning [15], the only static option is to prefetch the column all the time. Once again,

Chapter 5. Architectural Issues 159

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100 101
 89

 100

 44 43

N S D N S D
64K/256K 2K/4K

synchronization
memory access stalls
instructions

Figure 5.19: Results with adaptive version of LU (N = no prefetching,S = statically prefetch all
the time,D = adapt prefetching dynamically). Performance is re-normalized for each cache size.

we modified this procedure by hand, similar to BCOPY, to use hardware miss counters. The

results of our experiments with LU are shown in Figure 5.19.

We ran LU with both large and small problem-size to cache-size ratios. The lefthand side of

Figure 5.19 shows the small ratio, meaning that columns tend to fit in the cache. In this case,

the static approach of prefetching the columns all the time suffers from a significant amount of

instruction overhead. In contrast, the adaptive code eliminates much of this unnecessary overhead

while still hiding much of the memory latency, thereby resulting in the best overall performance.

Looking at the righthand side of Figure 5.19, where the data size is large relative to the cache, we

see the interesting result that the adaptive code still offers the best performance. This is because

LU performs a triangular matrix solve, and therefore the last several columns always tend to fit

in the cache. The savings of not issuing unnecessary prefetches for these last several columns

more than offsets the instruction overhead of the dynamic test in this case. Therefore the adaptive

code is clearly the best choice for LU.

160 Chapter 5. Architectural Issues

Summary

We have demonstrated that profiling feedback can potentially help the compiler generate more

effective prefetching code by giving it more information about the dynamic behavior of the ap-

plication. However, using feedback in the compilation process can be somewhat time-consuming

and clumsy, and also raises the issue of finding representative input data sets. Perhaps a better

alternative for using dynamic information is to generate code that adapts at runtime. We have

demonstrated that by exploiting user-visible hardware miss counters, the software can dynami-

cally adapt to the cache behavior to achieve the best overall performance. Based on the success

of using such miss counters in BCOPY and LU, it would appear that processor designers should

seriously consider adding user-visible miss counters to their processor architectures. In addition

to their benefit in adaptive code, these counters will also make it possible to collect detailed mem-

ory feedback information with very little overhead. From our own experience, this information

is quite valuable for debugging memory performance, and is very useful when inserting prefetch-

es into irregular codes (e.g., BARNES and PTHOR) where static locality analysis is extremely

difficult.

5.2.2 Improving Effectiveness

Choosing the right references to prefetch is only one part of maximizing the prefetching benefit—

making those prefetches effective at eliminating cache misses is also critical. The measure

of success for effective prefetching is that all prefetched references should find their data in

the cache. The first step toward this goal is timing the arrival of the prefetched data in the

cache to maximize the likelihood of it being found there by the subsequent reference. Ideally,

prefetches should arrive in the cache “just in time” to be referenced, since prefetches arriving too

late obviously cannot prevent misses, and prefetches arriving too early are susceptible to being

replaced by other references. The second step toward effective prefetching is avoiding excessive

cache conflict problems that can render ineffective even prefetches that are scheduled the proper

amount of time in advance.

The prefetching algorithm described so far addresses only the first of these two goals, and

it does so by computing the proper number of iterations to software-pipeline prefetches ahead

(see Section 2.4.2). This task is made difficult only by the variability in both memory access

times and path lengths through the loop body. To be conservative, the compiler schedules for the

largest expected memory latency (300 cycles in our experiments) and the shortest loop body path.

Chapter 5. Architectural Issues 161

Therefore the prefetched data can potentially arrive quite early in the cache if it is found close

to the processor. However, despite being conservative, the compiler is usually quite successful

at scheduling prefetches effectively.12 In the cases where prefetches are ineffective, the problem

is caused more by excessive cache conflicts than by the timing of the prefetches. The intuitive

explanation for this is that although prefetches may arrive early, the number of other lines that are

brought into the cache during this interval is relatively small compared to the cache size. Therefore

it is only likely that prefetched data will be displaced if the frequency of cache mapping conflicts

is unusually high. To address this problem, we will now focus on techniques for coping with

these cache conflicts.

Dealing with Cache Conflicts

Many commercial RISC microprocessors have direct-mapped primary caches. This is because

direct-mapped caches have faster access times than set-associative caches, and the difference in

speed often outweighs the difference in miss rate for general-purpose codes. General-purpose

codes (e.g., the C compiler) have relatively few mapping conflicts on direct-mapped caches

because their access patterns tend to be randomly distributed throughout the cache. In contrast,

scientific codes that stride through matrices (particularly ones dimensioned to powers of two)

can have pathologically bad mapping conflicts. In four of the applications we studied (MXM,

CFFT2D, VPENTA, and TOMCATV), the cache conflicts in the original code were so bad that

we manually realigned the data to help alleviate these problems.

The cache conflict problem can be addressed either in hardware or in software. One software-

based approach is to place the burden of avoiding conflicts on the programmer. Once the pro-

grammer is aware that conflicts are a problem, the solution to the problem is often quite obvious.

In the applications where we fixed conflicts by hand, we simply added thirteen (an arbitrary

prime number) to the size of each matrix dimension that was a power of two. This was enough

to prevent elements with similar access functions in adjacent rows or matrices from mapping to

the same cache entries. Although this is fairly straightforward, ideally the programmer should not

have to worry about this. A more appealing software-based approach would be for the compiler

to automatically realign data to fix mapping problems. However, the difficulty here is that once

the data are moved, every possible reference to the data must also be adjusted appropriately. This

12Scheduling prefetches the right amount of time in advance becomes much more difficult when software pipelining
cannot be used (e.g., when traversing a linked list). In such cases, dependencies may make it quite difficult to move
prefetches sufficiently far in advance to hide the latency.

162 Chapter 5. Architectural Issues

may be particularly difficult given explicit address arithmetic, pointers, aliasing, or compilation

across separate files. So although eliminating the problem in software may sound like the ideal

approach, it is unclear whether this is a practical solution.

Cache conflicts can be addressed in the hardware through associativity of some form. While

associativity has the advantage of reducing conflicts by allowing locations to map to multiple

cache entries, it has the disadvantage of slowing down cache access rates due to added complexity.

Therefore minimizing the degree of associativity is an important concern. One option is to have

a set-associative primary cache, where addresses are mapped to N-way associative sets. Another

approach is to keep the cache direct-mapped but also add a “victim cache” [40] off to the side.

A victim cache is a small buffer containing the last several lines replaced from the cache. While

set-associative caches are the most common approach for adding associativity, the victim cache

approach is appealing because it is tailored to cases where data are reused shortly after being

displaced—this is precisely what happens with prefetching conflicts.

We evaluate both of these techniques in this subsection by incorporating them into our unipro-

cessor architecture. The applications we consider are the ones that suffered most noticeably from

conflicts, including two cases where prefetches were often ineffective due to conflicts (CHOLSKY

and TOMCATV, as discussed in Section 3.2.3), and the four original codes before we manually

realigned data (MXM, CFFT2D, VPENTA, and TOMCATV). The results of these experiments

are shown in Figures 5.20 through 5.28.

Each graph shows curves both with and without prefetching (PF andNOPF, respectively) for

victim caches ranging from one to 256 entries, and for set-associative caches ranging from 2-way

to 8-way associativity. Two curves are shown for the set-associative cases: one with random

replacement (Random), and one with a least-recently-used (LRU) replacement policy. The LRU

policy is slightly more effective, but is typically more expensive to implement.

The success of victim caching and set-associativity varied across the applications, and we

discuss each case individually below.

CHOLSKY: We begin with CHOLSKY (the uniprocessor NASA7 SPEC benchmark), as shown

in Figure 5.20. CHOLSKY is an interesting case because cache conflicts only occur once

prefetching is added. The conflicts occur in two similar loop nests, one of which is shown

in Figure 5.21. The referencesB(I,L,K+JJ) andB(I,L,K) are separated by 8032(JJ)

bytes (JJ is a loop index, and therefore its value changes). SinceJJ is always greater than

zero, theB references never directly conflict in an 8 Kbyte cache, and hence the original

code does not have a cache conflict problem. As we see in Figure 5.20, theNOPF cases

Chapter 5. Architectural Issues 163

� � NOPF
� � PF

| | | | | | | | | ||0

|20

|40

|60

|80

|100

 Victim Cache Entries

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0 1 2 4 8 16 32 64 128 256

� � � � � � � � �

� � � � �
�

� � �

� � NOPF-Random

 NOPF-LRU
� � PF-Random
� � PF-LRU

|
1

|
2

|
4

|
8

|0

|20
|40

|60

|80

|100

 Set Associativity

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e � � � �

�

�
� �

�

� � �

Figure 5.20: Performance of CHOLSKY with victim caches and set-associative primary caches.

do I = 0, NRHS
do K = 0, N

do JJ = 1, MIN(M, N-K)
do L = 0, NMAT

B(I,L,K+JJ) = B(I,L,K+JJ) - A(L,M-JJ,K+JJ) * B(I,L,K)

Figure 5.21: Loop that suffers cache conflicts in CHOLSKY.

show little improvement with associativity or victim caching.

To insert prefetches, the compiler unrolls loopL in Figure 5.21 four times for the spatial

locality of the A reference, and prefetches are software-pipelined three iterations ahead.

Therefore theB references are being prefetched twelve references ahead, which spans

384 bytes (i.e. twelve separate 32-byte cache lines). This region is large enough that the

B references overlap when they are close enough together. What happens then is that

the prefetch ofB(I,L,K+JJ) displaces the prefetch ofB(I,L,K) , and the load of

B(I,L,K) displaces the prefetch ofB(I,L,K+JJ) , thereby rendering both prefetches

ineffective. These conflicts only occur for certain values of JJ, and they happen about 25%

of the time.

As we see in Figure 5.20, a 2-way set-associative cache (with LRU replacement) is enough

to eliminate this conflict problem. A victim cache only eliminates the problem when it is

32 entries deep. This is because we prefetch each reference twelve iterations ahead, and

164 Chapter 5. Architectural Issues

� � NOPF
� � PF

| | | | | | | | | ||0

|20

|40

|60

|80

|100

 Victim Cache Entries

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0 1 2 4 8 16 32 64 128 256

�

�

�

�

�
� � �

�

�

�
�

� �
� �

� � NOPF-Random

 NOPF-LRU
� � PF-Random
� � PF-LRU

|
1

|
2

|
4

|
8

|0
|20

|40

|60

|80

|100

 Set Associativity

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e �

�

�

�

� �

�

�

�
�

�

�

Figure 5.22: Performance of the original TOMCATV code with victim caches and set-associative
primary caches. The performance of TOMCATV on the original direct-mapped architecture
after arrays are manually realigned is shown by the dotted (no prefetching) and dashed (with
prefetching) horizontal lines.

� � NOPF
� � PF

| | | | | | | | | ||0

|20

|40
|60

|80

|100

 Victim Cache Entries

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0 1 2 4 8 16 32 64 128 256

�
� �

� � � � �

�
�

� �
� � � �

� � NOPF-Random

 NOPF-LRU
� � PF-Random
� � PF-LRU

|
1

|
2

|
4

|
8

|0

|20

|40

|60

|80

|100

 Set Associativity

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e �

� � �

�

� � �

�

� � �

Figure 5.23: Performance of the realigned version of TOMCATV with victim caches and set-
associative primary caches. Note that performance is normalized to the speed of this realigned
code.

up to 24 conflicting misses must be captured. This type of conflict pattern is better suited

to associativity.

TOMCATV: TOMCATV is a much more complicated case. The key loop in TOMCATV con-

tains seven distinct references that conflict with each other at various times. References are

Chapter 5. Architectural Issues 165

prefetched only three iterations ahead since the loop body is fairly large, and the conflict

patterns are rather complex.

We begin by focusing on the original TOMCATV code, as shown in Figure 5.22. For each

of these cases where we show original code before the arrays are manually realigned (i.e.

TOMCATV, MXM, CFFT2D, and VPENTA), we also indicate the performance of the code

after realignment using dashed and dotted horizontal lines, which correspond to the cases

with and without prefetching, respectively, on the original direct-mapped architecture. We

observe that either eight victim cache entries or an 8-way set-associative cache are needed

to match the performance of simply realigning the arrays. Once the arrays are realigned,

as shown in Figure 5.23, a 2-way set-associative cache is quite helpful, and there is steady

improvement from increasing the victim cache size up to sixteen entries. Large degrees of

both victim caching and set-associativity fare well in the case of TOMCATV, but clearly

realigning the arrays is the most important optimization.

MXM: The original MXM code is a very interesting case, and the resulting performance is

shown in Figure 5.24. This is a partially-blocked matrix multiply, and the key loop is

shown in Figure 5.25. The conflicts in this code occur between theA andC matrices. For

both matrices, the size of the inner dimension is 2 Kbytes (256 double-precision elements).

In a single pass through theI loop, each of the fourA references will sweep through their

own quarter of the cache, never conflicting with each other. However, theC reference will

line up directly with one of theA references (it rotates between each of them). Without

these conflicts, theA andC references would suffer misses once every four references, as

they cross cache line boundaries. These conflicts will cause theC reference and one of the

A references to miss on each iteration. Increasing the associativity to 2- or 4-ways does

not improve performance, since theC and the fourA references will always map into the

same set. In fact, the performance is dramaticallyworsewith a 4-way LRU cache because

the code cycles repeatedly through 5 references, so the least recently used reference is the

worst one to throw out. The code finally improves with 8-way set-associativity since all

five conflicting references can fit in the same set.

Unlike associativity, victim caching performs very well in this case, as we see in Figure 5.24.

A single victim entry allows all five references to remain in the cache, thereby dramatically

improving theNOPF case. The prefetching case is fetching data two iterations ahead, and

does somewhat worse thanNOPF with a single victim entry because it replaces the crucial

166 Chapter 5. Architectural Issues

� � NOPF
� � PF

| | | | | | | | | ||0

|20

|40

|60

|80

|100

|120

 Victim Cache Entries

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0 1 2 4 8 16 32 64 128 256

�

� � � � � � �

�

�

� �

� � � �

� � NOPF-Random

 NOPF-LRU
� � PF-Random
� � PF-LRU

|
1

|
2

|
4

|
8

|0
|20

|40

|60

|80

|100

|120

 Set Associativity

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

� �
�

�

� � �

�

� �

�

�

Figure 5.24: Performance of the original MXM code with victim caches and set-associative
primary caches. The performance of MXM on the original direct-mapped architecture after arrays
are manually realigned is shown by the dotted (no prefetching) and dashed (with prefetching)
horizontal lines.

do J = 1, M, 4
do K = 1, N

do I = 1, L
C(I,K) = C(I,K) + A(I,J)*B(J,K) + A(I,J+1)*B(J+1,K)

+ A(I,J+2)*B(J+2,K) + A(I,J+3)*B(J+3,K)

Figure 5.25: Loop that suffers cache conflicts in MXM.

victim entry with data displaced by prefetching. With eight or more victim cache entries,

we finally see the full prefetching benefit, since both the current and the prefetched data

sets can be captured. We also see that by restructuring the code by hand, cache conflicts

can be avoided altogether, and this matches theNOPF performance with a single victim

cache entry. The performance of the restructured code with prefetching is only exceeded

by eight or more victim entries, where it is possible to avoid occasional conflicts with other

references.

CFFT2D: In the original CFFT2D code, the conflicts occur between references of theX matrix in

two separate loop nests, shown in Figure 5.27. The inner dimension of theX matrix contains

128 complex numbers, which is 2 Kbytes of data. In the code without prefetching, conflicts

occur only in the second loop nest (Figure 5.27(b)) whenever the difference betweenII

Chapter 5. Architectural Issues 167

� � NOPF
� � PF

| | | | | | | | | ||0

|20

|40

|60

|80

|100

 Victim Cache Entries

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0 1 2 4 8 16 32 64 128 256

�

� � � � � � �

�

� �
�

� � � �

� � NOPF-Random

 NOPF-LRU
� � PF-Random
� � PF-LRU

|
1

|
2

|
4

|
8

|0

|20
|40

|60

|80

|100

 Set Associativity

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e �

� � �

�

� � �

�

� � �

Figure 5.26: Performance of the original CFFT2D code with victim caches and set-associative
primary caches. The performance of CFFT2D on the original direct-mapped architecture after ar-
rays are manually realigned is shown by the dotted (no prefetching) and dashed (with prefetching)
horizontal lines.

(a)

do K = 1, N
CT = X(II,K) - X(IM,K)
X(II,K) = X(II,K) + X(IM,K)
X(IM,K) = CT * CX

(b)

do K = 1, N
CT = X(K,II) - X(K,IM)
X(K,II) = X(K,II) + X(K,IM)
X(K,IM) = CT * CX

Figure 5.27: Loops that suffer cache conflicts in CFFT2D.

and IM is a multiple of four (which occurs more than 50% of the time). Either a single

victim cache entry or a 2-way set-associative cache fixes this problem, as we see at the top

of Figure 5.26. This does not match the performance of the restructured code, because it

still suffers from conflicts in the direct-mapped secondary cache (a 2-way set-associative

secondary cache should fix this).

168 Chapter 5. Architectural Issues

In the prefetching case, this second loop is unrolled by a factor of two and we prefetch

three iterations ahead. When the references line up, obviously the prefetches will also

interfere with each other. Consequently the prefetch ofX(K,IM) was often replaced

by the prefetch and reference ofX(K,II) before it could be used. However, the more

important conflict cases with prefetching are in the first loop nest (Figure 5.27(a)). Here

we prefetch six iterations ahead along the outer dimension. Since each of these accesses is

separated by 2 Kbytes, they map into only four entries in the 8 Kbyte direct-mapped cache,

so each reference ends up displacing its own prefetches. Six or more victim cache entries

are enough to capture these conflicts, and we see a noticeable performance improvement

in Figure 5.26 with eight entries. An eight entry victim cache does better than 8-way

set-associativity in this case because all of the prefetches map into the same set, and the

replacement policy is not perfect. The manually-realigned code with a direct-mapped cache

performs better than an 8-way set-associative cache and as well as a victim cache with eight

or more entries.

VPENTA: Finally, there is the VPENTA code shown in Figure 5.28. The critical loop nest for

this application contains eight matrices which line up directly on top of each other in a

direct-mapped cache, as shown in Figure 5.29. Each 2-D matrix is 128 Kbytes large, and

the 3-D F matrix behaves like three large 2-D matrices. So ten unique references line

up in the same entry of the cache on each loop iteration. Consequently the performance

of this code is limited almost entirely by the degree of associativity, up to an 8-way set-

associative cache or an 8-entry victim cache. Prefetching offers little improvement for

these configurations because there is nowhere for the prefetched data to go. Finally, with a

victim cache of sixteen or more entries, some of the prefetched data is retained, and we see

a widening performance gap. The performance levels off at 64 entries because we prefetch

two iterations ahead, so the working set is slightly larger than 32 lines, including the

various stack references in the loop. Even with a 256 entry victim cache, the original code

with prefetching does not match the restructured code without prefetching. This is because

of the large number of secondary cache conflicts (the 256 Kbyte secondary cache would

need to be at least 5-way set-associative to avoid conflict misses). By simply increasing

the values of the matrix dimension parameters from 128 to 141, the original code without

prefetching runs nearly three times faster. When this is combined with prefetching, the

code runs five times faster on this direct-mapped cache architecture.

Chapter 5. Architectural Issues 169

� � NOPF
� � PF

| | | | | | | | | ||0

|20

|40

|60

|80

|100

 Victim Cache Entries

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0 1 2 4 8 16 32 64 128 256

�

� �

�
� � � � �

�

�
�

�
�

�

�

� �

� � NOPF-Random

 NOPF-LRU
� � PF-Random
� � PF-LRU

|
1

|
2

|
4

|
8

|0

|20
|40

|60

|80

|100

 Set Associativity

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e �

�

�
�

�

�
�

�

�

�

�
�

Figure 5.28: Performance of the original VPENTA code with victim caches and set-associative
primary caches. The performance of VPENTA on the original direct-mapped architecture after ar-
rays are manually realigned is shown by the dotted (no prefetching) and dashed (with prefetching)
horizontal lines.

do J = JL+2, JU-2
do K = KL, KU

RLD2 = A(J,K)
RLD1 = B(J,K) - RLD2*X(J-2,K)
RLD = C(J,K) - (RLD2*Y(J-2,K) + RLD1*X(J-1,K))
RLDI = 1.D0/RLD
F(J,K,1) = (F(J,K,1) - RLD2*F(J-2,K,1) - RLD1*F(J-1,K,1))*RLDI
F(J,K,2) = (F(J,K,2) - RLD2*F(J-2,K,2) - RLD1*F(J-1,K,2))*RLDI
F(J,K,3) = (F(J,K,3) - RLD2*F(J-2,K,3) - RLD1*F(J-1,K,3))*RLDI
X(J,K) = (D(J,K) - RLD1*Y(J-1,K))*RLDI
Y(J,K) = E(J,K)*RLDI

Figure 5.29: Loop that suffers cache conflicts in VPENTA.

To summarize these results, we have seen a mixture of effects. In cases like CHOLSKY

where a small number of references conflict only because their prefetched data sets overlap, a

small amount of set-associativity is the best approach. Victim caches do not perform as well

in these cases where the depth of software pipelining is large, since the replaced data must be

held across that many iterations (i.e. there is a multiplicative effect of degree of conflict times

pipelining distance). In other cases such as MXM where the conflicting data maps into the same

sets in a set-associative cache, victim caching is better suited to the problem. In other cases, the

170 Chapter 5. Architectural Issues

same degree of associativity (either N-way set-associativity or an N-entry victim cache) works

equally well.

In a few cases we noticed two dips in the performance curves. The first dip corresponds to

holding the “active” working set in either the primary cache or the victim cache (e.g., two victim

entries in MXM and CFFT2D), and the second dip occurs when the prefetched active set can

also be held at the primary cache level (e.g., eight victim entries in MXM and CFFT2D). When

conflicts already occur (e.g., the original VPENTA code), prefetching may be doomed since the

prefetched data will also conflict. However, prefetching may cause new conflicts, especially when

striding through arrays that are only slightly separated in the cache.

Since prefetch-specific conflicts occur within a certain window of time, the victim cache

approach sounds appealing, since it is tailored to capturing recently displaced data. However,

with latencies of over a hundred cycles, more than sixteen victim cache entries may be needed,

which is probably too large for an associative lookup.

In all cases, the software-based restructuring approach did quite well. Our restructuring

algorithm was simply to add a prime number (thirteen) to the size of array dimensions that were

a power of two. While care must be taken with this approach, it worked quite well and has the

added benefit of reducing conflicts in the secondary cache. In one case (VPENTA), no reasonable

amount of hardware could solve the cache conflict problems.

Prefetching into a Separate Target Buffer

Earlier in Section 5.1.3, we discussed the possibility of placing prefetched data in a separate

target buffer, rather than the normal cache hierarchy. We suggested that as a general policy, this

was not a good idea. However, there is one case where this may make sense, which is when

prefetched data is only used once (i.e. it hasno locality). When data has no locality, it will not

be reused after it is brought into the cache. If a large amount of data with no locality is placed in

the cache, it may displace other data that would have a locality benefit. Therefore one possibility

is to issueuncached prefetcheswhenever the compiler determines that a reference has no locality.

Using uncached prefetches has several complications. First, if the compiler incorrectly pre-

dicts that a reference has no locality when it does in fact have locality, the performance will

suffer as a result. For example, theA[j][0] reference in Figure 5.30 may or may not have

temporal locality, depending on the size ofn. If the compiler assumesn is large and therefore

A[j][0] has no locality, it should realize that using uncached prefetches forA[j][0] will

hurt performance ifn turns out to be small. Therefore uncached prefetches should only be used

Chapter 5. Architectural Issues 171

for (i = 0; i < 1000; i++)
for (j = 0; j < n; j++)

A[j][0] = A[j][0] + foo(i);

Figure 5.30: Example where it is not clear whether to use uncached prefetches.

when the compiler is certain that a reference has no locality.

The second complication, as we mentioned earlier in Section 5.1.3, is the hardware complexity

of building the separate target buffer. Given this complexity, it is unclear whether it would be

worth building such a structure even to support uncached prefetches.

Prefetching Set Hints

In architectures with set-associative caches, a more attractive technique for preventing data that

streams through the cache from displacing other useful data may be a prefetching “set hint” that

specifies the set in which prefetched data should be placed. For example, in blocked matrix

algorithms, it is desirable for the blocked data to remain in the cache, and not be displaced by

the non-blocked data. This could be accomplished by prefetching the blocked data into set 0 of

a two-way set-associative cache, and the non-blocked data into set 1. Similarly, if the operating

system wished to perform a large block copy operation that would normally flush the entire cache,

it could instead prefetch the data only into set 1, thus leaving set 0 intact.

These new prefetching hints might be referred to as “retained” and “streamed” prefetches,

which would correspond to placing data in particular subsets of a set-associative cache (e.g.,

“retained” prefetches go into set 0, and “streamed” prefetches go into set 1). Normal prefetches

(i.e. without either of these hints) and loads and stores would use the normal set replacement

algorithm to decide where data should be placed.

One advantage of prefetching set hints is that they require no complexity beyond a normal

set-associative cache. Therefore the clock rate will not be affected, and the normal coherence

mechanism will ensure that prefetches are non-binding in a multiprocessor environment. Another

important advantage is that in the default case, the entire cache area can be utilized by any types

of references. This is contrast with having a special prefetch target buffer, where normal loads

and stores can never utilize the cache area devoted to the target buffer. Thus prefetching set hints

provide the flexibility to partition the cache storage area only in cases where the programmer or

172 Chapter 5. Architectural Issues

compiler has a strong reason to believe that doing so is beneficial.

5.2.3 Reducing Overheads

Since software-controlled prefetching has a cost as well as a benefit, care must be taken when

inserting prefetches that the cost does not offset much of the latency-hiding benefit. The first

step toward minimizing cost is prefetchingselectivelyto avoid the pure overhead of unnecessary

prefetches. Our results in Sections 3.2.1 and 4.3.1 demonstrate that selective prefetching can

reduce much of the prefetching overhead, and we discussed ways to improve this analysis further

in Section 5.2.1. While the remaining overhead after selective prefetching is typically quite

small in comparison with the reduction in memory stall time, there are still a few cases where

additional speedups of at least 10% could be achieved if it was possible to eliminate the remaining

instruction overhead. In this section we will address the second step toward reducing prefetching

cost, which is minimizing the instruction overhead of the prefetches that are issued.

Before we begin this discussion, let us consider how future trends are likely to affect the

relative importance of prefetching instruction overhead. The first relevant trend is that the gap

between processor and memory speeds will continue to grow. As this occurs, the cost of even the

current level of instruction overhead will diminish relative to the latency-hiding benefit of each

useful prefetch. The second important trend is continued improvements in the ability of processors

to exploit instruction-level parallelism through techniques such assuperscalarprocessing [75].

Since prefetch instructions can always be executed in parallel with other operations (because no

other operations depend upon their completion), they should benefit well from the exploitation of

instruction-level parallelism. Therefore the absolute overhead of processing prefetch instructions

is likely to decrease. The combined effect of both of these trends is that prefetch instruction

overhead should become less significant in the future.

Given these trends, why do we care about prefetch instruction overhead at all? The first

reason is that although prefetch instructions can theoretically be executed in parallel with other

operations, this will only result in no overhead if there are resources available for executing

the prefetches that are normally idle. However, the functional units needed to compute prefetch

addresses and issue prefetches will also be busy handling normal loads and stores. Due to

competition for these critical resources, it is unlikely that prefetch instruction overhead will be

completely hidden. The second reason is that prefetch instruction overhead is an inherent problem

in applications where there are few instructions between cache misses. For these applications,

the difference of only a single instruction per prefetch can result in a large fractional increase in

Chapter 5. Architectural Issues 173

total instructions. For example, consider CHOLSKY in Figure 3.1, where selective prefetching

increases the instruction count by roughly 50%. In this case the analysis is nearly perfect—only

9% of prefetches are unnecessary, and the miss coverage is 97%. The large instruction overhead

is because cache misses occur rather frequently (once every 11 instructions), and issuing each

prefetch requires several instructions (5, on average). Eliminating only a single instruction per

prefetch would decrease the instruction count by roughly 10% in this case.

Therefore, since the instruction overhead of useful prefetches may be a concern in some cases

but is probably not a major hindrance in general, we will discuss techniques for reducing this

overhead only briefly in this section.

Avoid Spilling Registers

The total instruction overhead depends not only on how frequently prefetches are issued, but also

on how many instructions are necessary to issue each prefetch. Ideally only a single instruction

would be needed for each prefetch—the prefetch instruction itself. However, Table 3.6 shows that

several additional instructions are often needed to generate prefetch addresses. In some cases, as

many as 20 extra instructions were added for each prefetch. From our experience with the SUIF

compiler, the primary cause for these large overheads isregister spilling. Register spilling occurs

whenever the register allocator runs out of registers, and therefore must “spill” values by saving

and restoring them from memory. Once register spilling occurs, the instruction count within a

loop body can increase dramatically.

One of the keys to avoiding register spilling is to reuse addressing registers between prefetches

and loads and stores whenever possible. This works because prefetch addresses are often separated

by a constant distance from load or store addresses. This difference can be folded into the

constant offset field in the “base-plus-offset” addressing mode. Therefore the prefetch can be

issued without consuming any additional registers, as we illustrated earlier in Figure 5.2. The

importance of this optimization was demonstrated during our early experience with the compiler,

when the scalar optimizer had not yet implemented this optimization. The instruction overhead

was quite large in this early code because of the large amount of register spilling. Once the

scalar optimizer began to exploit these common base registers, the overheads were dramatically

reduced in many cases.

The second potential cause of register spilling is the loop unrolling which our algorithm

performs to exploit spatial locality. Once a loop is unrolled, the compiler can optimize across

the several replicated copies of the loop body. In most cases this allows the compiler to reduce

174 Chapter 5. Architectural Issues

the overall instruction count for the following reasons: (i) branch instructions can be eliminated

between unrolled iterations; (ii) it is more likely that “hazard” slots after multi-cycle operations

can be filled with independent instructions; and (iii) register allocation can be optimized across

the unrolled iterations, possibly eliminating loads and stores. One such example is MXM, where

the savings through loop unrolling resulted in fewer instructions in the code with prefetching than

in the original code (see Figure 3.1). On the other hand, the potential downside of loop unrolling

is creating too many intermediate values for the register allocator to handle, thus resulting in

register spilling. This occurred in the uniprocessor version of OCEAN, where each prefetch

ended up costing 18 instructions. This number is so high because register spilling occurs for a

large number of values in the loop, and these additional instructions are averaged over only the

small number of prefetches. The result of this spilling is that OCEAN’s instruction overhead is

noticeably large despite the fact that misses occur infrequently (only once every 46 instructions).

One way for the compiler to avoid these register-spilling problems is to perform loop unrolling

with a greater awareness of its effect on register pressure. In our algorithm, we only suppressed

loop unrolling to avoid code explosion, and did not take register pressure into consideration.

Although these techniques for avoiding register spilling are strictly compiler-based, we will

now discuss ways to further reduce instruction overhead which also require architectural support.

Block Prefetches

Given that each prefetch brings a single line of data into the cache, the minimum amount of

prefetch overhead (assuming perfect miss coverage) is one additional instruction for each cache

miss. To reduce the overhead below this, the prefetch instructions must specify larger amounts

of data to be fetched. For example, a prefetch could be defined to fetch multiple consecutive

cache lines, rather than just a single cache line. We will refer to these multi-line prefetches as

“block prefetches”.

Block prefetching is advantageous when there is spatial locality. In such cases a single

block prefetch supplants the multiple prefetches for the individual cache lines. For example, if

a block prefetch fetches four cache lines, it can potentially eliminate up to 75% of the prefetch

instruction overhead. Although block prefetches may be helpful when there is spatial locality,

they may hurt performance in the absence of spatial locality by displacing useful data and wasting

memory bandwidth. This negative effect has been observed in previous studies where additional

consecutive cache lines were automatically prefetched by the hardware [64]. Another potential

downside is that bringing the additional lines into the cache earlier increases their chance of being

Chapter 5. Architectural Issues 175

displaced before use.

Therefore, rather than defining all prefetches to be block prefetches, a more attractive ap-

proach is for the compiler to intelligently select between usingsingle-lineprefetches andblock

prefetches based on whether the associated references enjoy spatial locality. Figure 5.3 illustrated

how both types of prefetches could be encoded in the instruction set architecture through the

prefetching hint field. Incorporating block prefetches into the compiler algorithm in this manner

is straightforward—block prefetches are used whenever there is spatial locality, and single-line

prefetches are used otherwise. The compiler adjusts the line size parameter to match the block

size when it schedules block prefetches, hence modifying the modulo factors in prefetch predi-

cates involving spatial locality accordingly. Note that as block prefetching increases the number

of iterations between prefetches, it will eventually become more attractive to usestrip mining

[64] (as described earlier in Section 2.4.1) rather thanunrolling to do the loop splitting, since the

negative effects of loop unrolling dominate once they are unrolled too many times.

Block prefetching is a straightforward extension of normal prefetching. The main hardware

complexity of supporting it is that the cache controller must handle single requests which fetch

multiple lines. While block prefetches may help to reduce instruction overhead, it will only do

so by at most the ratio of the larger prefetch block size to the normal cache line size. Given that

large block sizes may hurt performance by causing additional primary cache conflicts, this ratio

is likely to be relatively small.

Programmable Streams

To surpass the overhead reduction offered by block prefetches, the final step would be eliminating

the “per iteration” instruction overhead altogether. The two previous proposals which accomplish

this are (i) issuing large block prefetches for the entire data structure outside the loop (as illus-

trated in Figure 5.31, or (ii) using strictly hardware-based prefetching. However, both of these

approaches have drawbacks, which we will briefly discuss.

The large block prefetch approach was studied by Gornishet al. [31, 32] in the context of a

software-coherent shared-memory multiprocessor with binding prefetches. The potential problem

of large block prefetches is that data may arrive in the cachetoo early, thereby exposing it to

possible replacement before it can be used. In addition, the bursts in network traffic caused by

large block requests can lead to queueing delays. We observed these negative effects when using

large block prefetches in LU during an earlier study [61]. While hardware-based prefetching

schemes can stream data into the cache more evenly, they suffer from a number of disadvantages

176 Chapter 5. Architectural Issues

(a) Original Code

for (i = 0; i < 10000; i++)
sum += A[i];

(b) Code with Large Block Prefetch

block prefetch(&A[0],10000); /* prefetch entire A array */
for (i = 0; i < 10000; i++)

sum += A[i];

Figure 5.31: Example of how instruction overhead can be eliminated by issuing large block
prefetches outside the main loop.

which we will describe in detail later in Section 5.3.1.

To improve upon both of these techniques, we introduce the notion ofprogrammable streams.

With programmable streams, the software decides what to prefetch and when the prefetches should

be issued. Similar to the “large block prefetch” approach, this information is provided only once

outside the loop, so there is no per-iteration instruction overhead. However, in contrast to the

“large block prefetch” approach, where all data is fetched at once, programmable streams provide

a mechanism for “flow control” so that data can be streamed into the cache at a rate matching

the computation. This flow control is accomplished by associating a “trigger instruction” address

with each stream. A trigger instruction can be any normal instruction in the loop, provided that

it is executed once per loop iteration. Once a programmable stream has been initialized by the

software, the hardware issues the next prefetch in the stream each time the trigger instruction is

executed. Therefore the data arrives in the cache in the same manner as with software pipelining,

but with essentially no instruction overhead.

To initialize a programmable stream, the software must specify at least the following: (i) a

starting prefetch data address, (ii) the difference between consecutive prefetch data addresses, and

(iii) a trigger instruction address. The values are stored in a hardware structure representing the

stream. The only value which changes is the “current prefetch data address”, which is initially

the starting prefetch address, but is updated after each new prefetch is issued upon a matching

trigger instruction. Once the loop completes, the software may choose to deallocate the stream

to free the corresponding hardware entry for later use.

Further refinements of this basic approach may be achieved by having the software provide

more information to the hardware. For example, the prefetch block size may be specified to make

Chapter 5. Architectural Issues 177

the software more portable across different cache configurations. Also, to optimize for cases with

spatial locality, the software could specify the number of iterations between prefetches, and the

hardware could account for this by maintaining a modulo counter with each stream. Finally, given

that the hardware knows the size of memory latency, the hardware could compute the number of

iterations to pipeline ahead and automatically issue the prolog prefetches if the software specifies

the number of instructions in the loop body.

Summary

In general, instruction overhead is not likely to be a significant problem. To prevent it from

becoming a problem, the compiler should be careful to avoid register spilling problems. For

codes that benefit from spatial locality, block prefetches may help reduce instruction overhead.

Almost all of the instruction overhead of dense-matrix prefetches could be eliminated through

programmable streams, although the corresponding hardware support is much more significant.

5.3 Alternative Latency-Hiding Techniques

Software-controlled prefetching is only one of several different approaches for coping with laten-

cy. We discussed a number of these techniques in Section 1.2, and in Section 3.4 we demonstrated

that locality optimizationsand prefetching are complementary. While locality optimizations are

strictly a compiler-based technique, we will now consider several other techniques that require

architectural support to see how they compare and interact with software-controlled prefetching.

We begin in Section 5.3.1 by comparinghardware-controlledprefetching withsoftware-controlled

prefetching. Next, we will discussrelaxed memory consistency modelsin Section 5.3.2, which are

primarily useful for hiding write latency in multiprocessors. Finally, we evaluatemultithreading

in Section 5.3.3, which is a technique for hiding latency by exploiting parallelism across multiple

threads of execution.

5.3.1 Hardware-Controlled Prefetching

While software-controlled prefetching requires support from both hardware and software, several

schemes have been proposed that are strictly hardware-based. Porterfield [64] evaluated several

cacheline-based hardware prefetching schemes. In some cases they were quite effective at reduc-

ing miss rates, but at the same time they often increased memory traffic substantially. Lee [53]

proposed an elaborate lookahead scheme for prefetching in a multiprocessor where all shared data

178 Chapter 5. Architectural Issues

is uncacheable. He found that the effectiveness of the scheme was limited by branch prediction

and by synchronization. Baer and Chen [7] proposed a scheme that uses a history buffer to detect

constant-stride access patterns. In their scheme, a “lookahead PC” speculatively walks through

the program ahead of the normal PC using branch prediction. When the lookahead PC finds a

matching stride entry in the table, it issues a prefetch. They evaluated the scheme in a memory

system with a 30 cycle miss latency and found encouraging results.

To compare hardware-controlled prefetching with software-controlled prefetching, we will

discuss how hardware-controlled prefetching addresses the three goals introduced in Section 5.2—

namely performing analysis, maximizing effectiveness and minimizing overheads associated with

prefetching.

Analysis

The goal of theanalysisphase of prefetching is to decide which references should be prefetched.

With the software-based approach, this analysis is performed by considering all references in the

code and deciding whether or not they need to be prefetched. If so, the prefetches are scheduled

by moving them back in time within the code. The hardware, however, does not have the luxury

of examining the entire program and then moving prefetches back in time. The main challenge of

deciding what to prefetch in hardware is predicting what locations will be referenced in the future.

In the various hardware-based prefetching schemes that have been proposed, this prediction is

achieved in one of three ways: (i) assume that there is abundant spatial locality (as in the schemes

Porterfield studied [64]); (ii) decode ahead in the instruction stream (as in Lee’s proposal [53]);

or (iii) maintain a history of past access patterns (as in Baer and Chen’s proposal [7]). The idea

behind the first technique is that whenever a cache line is accessed, neighboring cache lines will

be accessed in the near future, so they should also be brought into the cache. The problem,

of course, is that this is not always true, and fetching lines unnecessarily can hurt performance

both by displacing useful data and by causing memory queueing delays. The second technique

attempts to predict access patterns by simply “getting ahead” in the instruction stream. However,

the limitations of buffering capacity and branch prediction accuracy make it difficult to decode far

enough ahead to hide large latencies. Finally, by maintaining history information, the hardware

attempts to recognize constant-stride access patterns and prefetches ahead whenever those same

instructions are executed. This last scheme appears to be the best of the three hardware-based

schemes since it can prefetch constant-stride access patterns with arbitrary stride lengths (unlike

the “long cache line” schemes which only exploit unit-stride patterns) without the expense of

Chapter 5. Architectural Issues 179

decoding ahead in the instruction stream (as in Lee’s scheme). However, the analysis capability

of a history-based scheme has the following limitations: (i) it can only recognize constant-strides

accesses (unlike our compiler which can prefetch indirect references); (ii) it can only react to

historical behavior (unlike the compiler, which can anticipate future misses); and (iii) the detection

scheme depends upon the history table being large enough to contain the entire working set of

references, which may not be possible (particularly given that this structure iscontent-addressable

in order to look up the address of the lookahead PC).

So far we have described how the hardware predicts which locations will bereferencedin the

future. In contrast with the software-based approaches, the hardware typically does not bother to

predict whether or not the data is already in the cache.13 Instead, for each reference the hardware

predicts will be referenced in the future, it simply checks the primary cache to see whether the

data is already present. The obvious advantage of always probing the cache is that the hardware

will never be fooled into predicting that data is in the cache (thereby not issuing a prefetch) when

it actually is not. For example, if the operating system swaps out the process and later restarts it,

a software-based scheme would have no idea that the entire working set had been flushed from

the cache, but a hardware-based scheme would still prefetch the data correctly. Part of the reason

why the hardware always probes the cache is that doing so involves no instruction overhead.

However, it may cause cache contention overheads, as we will discuss later in this subsection.

In general, the primary disadvantage of performing the analysis in the hardware is that it cannot

detect complex access patterns such as indirect references.

Effectiveness

Prefetching data the proper amount of time in advance of when it is used is tricky for the

hardware, since it has difficulty knowing where the instruction stream will be a hundred or so

cycles in the future. Whereas the compiler uses software pipelining, the hardware must rely on

branch prediction and possibly instruction lookahead buffering in order to issue the prefetches

at the right time. This can be quite difficult, for example, when a loop contains a conditional

statement whose outcome varies erratically. For example, if the outcome of functionfoo(i) in

Figure 5.32 is unpredictable, the lookahead mechanism will be ineffective since it must back up

and start over each time the branch is mispredicted. With software-pipelining, however, the data

would still be prefetched properly, since the compiler realizes that subsequent loop iterations are

executed regardless of the outcome of the conditional statement.

13The exception would be if the stride detection hardware only looked at references that suffered cache misses.

180 Chapter 5. Architectural Issues

for (i = 0; i < n; i++) f

A[i] = x;
if (foo(i)) x++;

g

Figure 5.32: Example where imperfect branch prediction makes it difficult to look far enough
ahead in the instruction stream.

The second challenge of making prefetches effective is avoiding cache conflicts, which is

a problem common to both hardware-based and software-based techniques. Therefore the tech-

niques discussed earlier in Section 5.2.2 are also applicable to hardware-controlled prefetching.

Overhead

For software-controlled prefetching, the overheads include both instruction and memory con-

tention overheads. Hardware-based techniques obviously do not suffer from instruction overhead,

which is one of their advantages. However, they should suffer at least as much (if not more) from

memory hierarchy contention, since the hardware probes the cache foreachpredicted reference,

rather than only for references predicted to suffer cache misses (as software does). Consequently

the primary cache tag contention may be quite high for hardware-based approaches. In addition,

hardware-based techniques may suffer from TLB contention, since they must somehow deal with

virtual addresses in order to follow the access patterns across physical pages. The TLB may

need to be accessed either every reference or once every time a page is crossed, and this may

contend with normal instructions that access the TLB. For the software-controlled case, access

to the TLB is simplified since this is a normal part of processing an instruction that references

memory.

Summary

Hardware-controlled prefetching primarily offers two advantages over software-controlled prefetch-

ing. First, old code does not need to be recompiled to take advantage of prefetching. Howev-

er, this dissertation has demonstrated that the compiler technology for automatically inserting

prefetches can be quite successful and is straightforward to implement. Therefore since prefetch-

ing compilers should be readily available in the future, this does not appear to be a compelling

argument. In particular, scientific programmers usually care enough about performance that they

Chapter 5. Architectural Issues 181

are willing to recompile their code. The second advantage of hardware-controlled prefetching is

that it adds no instruction overhead. However, as we have already seen in Chapters 3 and 4,

the instruction overhead of software-controlled prefetching is typically quite small, so this also

appears not to be much of an advantage.

Hardware-controlled prefetching has some important disadvantages compared to software-

controlled prefetching. First, it is limited only to constant-stride access patterns, and therefore

cannot prefetch the indirect references which our compiler can handle (as demonstrated in Sec-

tion 3.5). Since the compiler is also quite successful at prefetching the constant-stride cases (as

we have demonstrated), software-controlled prefetching is likely to offer bettercoveragethan

hardware-controlled prefetching. We would expect this trend to continue in the future as the

compiler becomes more sophisticated. Second, although hardware-based schemes have no soft-

ware cost, they may have a significanthardware cost, consuming chip area and possibly affecting

cycle time. Therefore since software-controlled prefetching has been shown to be quite effective,

offers a broader coverage of misses, and ismuchsimpler to implement in the processor, it appears

to be a better solution than hardware-controlled prefetching.

5.3.2 Relaxed Memory Consistency Models

One way to cope with the latency of cache misses suffered by loads and stores is to buffer and

pipeline their accesses. However, due to features of large-scale multiprocessors such as caches,

distributed memory, and general interconnection networks, it is likely that multiple accesses issued

by a processor will be performed out of order. This may lead to incorrect program behavior if

the program depends upon accesses completing in a certain order. Therefore it may be necessary

to restrict the types of buffering and pipelining that are permitted. These restrictions are dictated

by thememory consistency modelsupported by the multiprocessor.

Several memory consistency models have been proposed. The strictest model is that of

sequential consistency(SC) [50]. It requires the execution of a parallel program to appear as

some interleaving of the execution of the parallel processes on a sequential machine. While

conceptually intuitive, this model imposes severe restrictions on the buffering and pipelining of

memory accesses. One of the least strict models is therelease consistencymodel (RC) [27].

It requires that synchronization accesses in the program be identified and classified as either

acquires(e.g., locks) orreleases(e.g., unlocks). An acquire is a read operation (which can be

part of a read-modify-write) that gains permission to access a set of data, while a release is a write

operation that gives away such permission. This information is used to provide flexibility in the

182 Chapter 5. Architectural Issues

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e prefetch memory overhead

 100

 61

 175

 71

 100

 47

 158

 52

 100

 69

 142

 80

 100 94

 123
 104 100

 92

 123
 110

 100
 83

 134

 110
 100

 84

 112
 96

N SN S N SN S N SN S N SN S N SN S N SN S N SN S
SC RC SC RC SC RC SC RC SC RC SC RC SC RC

OCEAN LU MP3D CHOLESKY LOCUS PTHOR BARNES

synchronization
write stalls
read stalls
instructions

Figure 5.33: Performance with sequential consistency (SC) versus release consistency (RC),
normalized to RC without prefetching (N = no prefetching,S = selective prefetching).

buffering and pipelining of accesses between synchronization points. The main advantage of the

relaxed models is the potential for increased performance. The main disadvantage is increased

hardware complexity and a more complex programming model. In this section we will evaluate

the benefits of relaxed consistency models and explore their interaction with prefetching.

The multiprocessor architecture we have been using so far uses RC. The writes are buffered

and the reads are allowed to bypass pending writes. With the lockup-free cache, a single read miss

and an arbitrary number of write misses (limited only by the write buffer size) may be processed

simultaneously.14 Therefore the latency of writes should have no direct impact on performance

under our implementation of RC. The SC implementation that we evaluate is satisfied by ensuring

that the memory accesses from each process complete in the order that they appear in the program.

This is achieved by delaying the issue of an access until the previous access completes. Since the

processor already stalls on reads until they complete, the only modification necessary to satisfy

SC is to explicitly stall after every write until the write access completes.

Figure 5.33 shows the performance of the multiprocessor applications under the SC and RC

models. The memory stall time in these bars has been broken down further into bothread

stallsandwrite stalls. Comparing the cases without prefetching under the two models, the main

performance impact of RC is to eliminate the time spent stalled for writes. In several cases (e.g.,

OCEAN, LU, and MP3D) this resulted in dramatic performance improvements (more than 40%).

The pipelining of writes under RC also reduced synchronization stall times somewhat by allowing

release operations (e.g., unlocks) to be propagated faster. While relaxing the consistency model

14The RC model would even allow multiple read misses to occur simultaneously, but this does not occur in our
architecture since it does not supportnon-blocking loads.

Chapter 5. Architectural Issues 183

effectively hides the latency of write accesses, the latency of read misses still remains.

Overall, the speedup due to prefetching under SC is typically at least as large as it is under

RC. The reduction in read stall time is similar under both SC and RC. However, the reduction

in write stall time varies depending on how effectively exclusive-mode prefetching is used. In

three cases (OCEAN, LU, and MP3D) exclusive-mode prefetching eliminates most of the write

latency, and therefore the speedup due to prefetching under SC is larger than under RC.

Comparing the cases with prefetching under the two models, the SC case approaches the

absolute performance of the RC case when either (i) exclusive-mode prefetching effectively

hides write latency (e.g., LU) or (ii) there is little write latency under SC to begin with (e.g.,

CHOLESKY). The case with the largest performance gap is PTHOR, where there is a significant

amount of write latency, and little of it is hidden by prefetching. However, even when prefetching

is relatively successful at reducing write latency under SC, enough remains that the best overall

performance always comes through the combination of both prefetching and RC.

Hence, we see that prefetching and relaxed consistency models are complementary. Relaxed

consistency models eliminate write latency in shared-memory multiprocessors, and prefetching

reduces the remaining read latency.

5.3.3 Multithreading

Although relaxed consistency models are effective at eliminating write latency, they do not address

the problem of read latency. While prefetching is one technique for hiding read latency, another

technique is for the processor to support multiple hardware contexts [3, 36, 39, 73, 85] (also

known asmultithreading). As we mentioned earlier in Section 1.2.5, multithreading has two

advantages over prefetching. First, it can handle arbitrarily complex access patterns—even cases

where it is impossible to predict the accesses ahead of time (and therefore prefetching cannot

succeed). This is because multithreading simply reacts to misses once they occur, rather than

attempting to predict them. Multithreading tolerates latency by attempting to overlap the latency

of one context with the computation of other concurrent contexts. The second advantage of

multithreading is that it requires no software support (assuming the code is already parallelized),

which as we mentioned in the previous section is only an advantage if the user is unwilling or

unable to recompile old code. Multithreading has three limitations: (i) it relies on additional

concurrency within an application, which may not exist; (ii) some amount of time is lost when

switching between contexts; and (iii) to minimize context-switching overheads, a significant

amount of hardware support is necessary. In this section, we will evaluate multithreading and

184 Chapter 5. Architectural Issues

explore its interactions with software-controlled prefetching.

The performance improvement offered by multithreading depends on several factors. First,

there is the number of contexts. With more contexts available, the processor is less likely to be

out of ready-to-run contexts. However, the number of contexts is constrained by hardware costs

and available parallelism in the application. Previous studies have shown that given processor

caches, the interval between long-latency operations (i.e. cache misses) becomes fairly large,

allowing just a handful of contexts to hide most of the latency [85]. The second factor is the

context switch overhead. If the overhead is a sizable fraction of the typical run lengths (time

between misses), a significant fraction of time may be wasted switching contexts. Shorter context

switch times, however, require a more complex processor. Thirdly, the performance depends on

the application behavior. Applications with clustered misses and irregular miss latencies will

make it difficult to completely overlap computation of one context with memory accesses of

other contexts. Multithreading processors will thus achieve a lower processor utilization on

these programs than on applications with more regular miss behavior. Lastly, multiple contexts

themselves affect the performance of the memory subsystem. The different contexts share a single

processor cache and can interfere with each other, bothconstructively(by effectively prefetching

another context’s working set) anddestructively(by displacing another context’s working set).

Also, as is the case with release consistency and prefetching, the memory system is more heavily

loaded by multithreading, and thus latencies may increase.

In this study, we use processors with two and four contexts. We do not consider more

contexts per processor because 16 4-context processors require 64 parallel threads and some of

our applications do not achieve very good speedup with that many threads. We use two different

context switch overheads: 4 and 16 cycles.15 A four-cycle context switch overhead corresponds

to flushing/loading a short RISC pipeline when switching to the new instruction stream. An

overhead of sixteen cycles corresponds to a less aggressive implementation. In our study, we

include additional buffers to avoid thrashing and deadlock when two contexts try to read distinct

memory lines that map to the same cache line. All of these experiments assume an RC model.

Results with Multithreading Alone

We begin our investigation by evaluating multithreading in its own right. Later we will examine

the benefits of combining multithreading with prefetching.

15We show OCEAN with only two contexts because the problem size we use cannot be run with 64 processes.

Chapter 5. Architectural Issues 185

|0

|20

|40

|60

|80

|100

|120

|140

|160

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e idle - no switch

 100

 84 81

 100

 60
 51

 58

 41

 100

 67 63 64
 57

 100

 118

 153

 96

 115

Ctxts:

Switch Latency:

1 2 2 1 2 4 2 4 1 2 4 2 4 1 2 4 2 4
16 4 16 4 16 4 16 4

OCEAN LU MP3D CHOLESKY

idle - all idle
switching
instructions

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e idle - no switch

 100
 93

 99

 82 77

 100 99

 148

 93

 126

 100

 84
 78 78

 68

Ctxts:

Switch Latency:

1 2 4 2 4 1 2 4 2 4 1 2 4 2 4
16 4 16 4 16 4

LOCUS PTHOR BARNES

idle - all idle
switching
instructions

Figure 5.34: Performance of multithreading with 1, 2 and 4 contexts and switch latencies of 4
and 16 cycles.

Figure 5.34 shows performance results for 1, 2, and 4-context processors with context switch-

ing penalties of 4 and 16 cycles. Each bar in the graphs is broken down into the following com-

ponents: time spent executinginstructions,16 time spentswitchingbetween contexts, and time

when the processor isidle. The idle time is broken down further intoall idle time which is when

all contexts are idle waiting for a reference to complete, andno switchtime which represents

time when the current context is idle but is not switched out. Most of the latter idle time is due

to the fact that the processor is locked out of the primary cache while fill operations of other

contexts complete.

16The instructionscategory includes both “useful” instructions and instructions wasted while spinning on idle work
queues. For our previous experiments, these latter instructions were included in thesynchronizationrather than the
instructioncategory.

186 Chapter 5. Architectural Issues

Table 5.3: Statistics on multithreading behavior.

Median Average Primary
Benchmark Run Length Miss Latency

OCEAN 24 77
LU 36 75

MP3D 55 90
CHOLESKY 23 42

LOCUS 14 41
PTHOR 23 85

BARNES 30 58

Most of the applications benefited from multithreading. The noteworthy exceptions are

CHOLESKY and PTHOR, where the performance is worse with four contexts than with a s-

ingle context. The reason for this is that these two applications do not scale well to 64 processes,

and therefore the processes spend too much time spinning waiting for work. This extra spinning

time can be seen as the increase in theinstructioncategory in Figure 5.34.

To provide some insight into these results, Table 5.3 shows the medianrun lengthand average

primary miss latency for each application. A rough estimate of the number of contexts necessary

to hide memory latency is the miss latency divided by the run length. For example, MP3D has

one of the more favorable ratios (roughly two-to-one), which helps explain why two contexts

eliminate a large fraction of the idle time. In contrast, OCEAN has a ratio of more than three-

to-one, which helps explain why two contexts eliminate only part of the idle time.

However, a favorable run-length-to-miss-latency ratio does not ensure good performance. For

example, in BARNES this ratio would suggest that two contexts would be sufficient to hide the

latency, but in fact only about half of theall-idle time is eliminated. The reason for this is the

clustering of cache misses. Also the cache miss rates can deteriorate as the different contexts

compete for the same cache; we observe this effect in LOCUS, where the primary data miss rate

more than doubles from 14% to 30% as we go from one to four contexts.

The importance of minimizing the context switch latency varies depending on whether there

is frequently another ready-to-run context during a context switch. On the one hand, when some

of the applications are run with only 2 contexts (e.g., OCEAN, LU, and PTHOR), there typically

is not a ready-to-run context during a context switch, and therefore reducing the switch penalty

from 16 to 4 cycles has little impact on performance. On the other hand, the switch penalty

Chapter 5. Architectural Issues 187

does affect performance significantly in most cases with 4 contexts, and even in some cases with

2 contexts (e.g., CHOLESKY and LOCUS). Therefore, given that there are enough contexts to

hide the latency, it is important to minimize the context switch latency.

To summarize, we see that multithreading can increase performance significantly when the

run length to latency ratio is favorable. However, enough parallelism must be available in the

application to keep the additional contexts busy. We further observe that destructive interference

of the contexts in the processor cache can undo any gains achieved. Interference is more of a

problem with multithreading than with prefetching because multiple working sets interfere with

each other in the same cache. The smaller the number of cycles required for context switching,

the lower the total overhead due to multithreading. A context switch cost of 16 cycles introduces

significant overhead, whereas the overhead is much more reasonable with a 4-cycle switch penalty.

Combining Multithreading with Prefetching

Finally, let us consider the combined effect of multithreading and prefetching. The main benefit

of combining the two, of course, is that each scheme can compensate for the other scheme’s

weaknesses. For example, prefetching can increase the hit rate, thus increasing the run lengths

and ensuring that a small number of contexts suffice. Similarly, multithreading can ensure that

the processor does not remain idle for misses where prefetching was not effective. However,

the two schemes can also have negative interactions. First, both prefetching and multithreading

add overhead. So if the latency of a reference could be totally hidden by one scheme alone,

the second one only contributes overhead. Secondly, the two techniques may interfere with each

other. For example, when multiple contexts are used, the time between issue and use of a prefetch

may increase substantially, thus increasing the chance of the prefetched data being invalidated or

replaced from the cache before being referenced. Depending on the relative magnitudes of the

above effects, the performance of an application may increase or decrease when both schemes

are used.

Figure 5.35 shows the performance of multithreading, both with and without prefetching (all

of these results are for the four cycle switch penalty). As we see in this figure, the results are

mixed. In some cases the best overall performance is with four contexts and no prefetching

(LU, MP3D, LOCUS, and BARNES), in other cases it is with prefetching and a single context

(OCEAN, PTHOR), and in one case it is through the combination of prefetching and two contexts

(CHOLESKY). With four contexts, the negative effects of combining prefetching and multithread-

ing appear to dominate. When only two contexts are used, the addition of prefetching nearly

188 Chapter 5. Architectural Issues

|0

|20

|40

|60

|80

|100

|120

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e idle - no switch

 100

 81

 61
 70

 100

 58

 41
 47 45 44

 100

 64
 57

 69
 63 62

 100 96

 115

 94
 82

 101

Ctxts: 1 2 1 2 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4
NOPF PF NOPF PF NOPF PF NOPF PF

OCEAN LU MP3D CHOLESKY

idle - all idle
switching
instructions

|0

|20

|40

|60

|80

|100

|120

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e idle - no switch

 100

 82
 77

 92
 79 79

 100
 93

 126

 83 88

 121

 100

 78
 68

 84 80 76

Ctxts: 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4
NOPF PF NOPF PF NOPF PF

LOCUS PTHOR BARNES

idle - all idle
switching
instructions

Figure 5.35: Effect of combining multithreading with prefetching (multithreading schemes have
a 4-cycle switch latency).

always improves performance. In fact, with only two contexts, the best overall performance

in four of the seven cases (LU, MP3D, CHOLESKY, and LOCUS) is achieved by combining

prefetching and multithreading.

In our study, when we added prefetching to the applications, we did not have multithreading

in mind. In some cases this may have had a negative impact on the results for combining

prefetching and multithreading. For example, for a single-context processor, it is reasonable to

be quite aggressive and add prefetches in situations where we expect only a small portion of the

latency to be hidden. This occurred most frequently in PTHOR and BARNES, where control

dependencies make it difficult to move prefetches back far enough. However, for a multiple-

context processor, this may be a bad decision. If the multithreading processor would have hidden

Chapter 5. Architectural Issues 189

the latency anyway, prefetch overhead has been added without any benefit.

Summary

In contrast with locality optimizations and relaxed consistency models, which are clearly comple-

mentary to prefetching, the interaction between multithreading and prefetching is more complex.

In part this is because both techniques attempt to achieve the same goal, which is hiding read

latency. Therefore if either technique is highly successful, there is little benefit of adding the sec-

ond technique. For example, we observed that with four contexts (which are usually sufficient to

hide most of the latency), there is little benefit of adding prefetching, and in fact the performance

is often worse. On the other hand, we saw cases where prefetching outperforms multithreading

because the applications do not scale well to large numbers of processes. Perhaps the most sur-

prising of these latter cases is PTHOR, where although we had great difficulty inserting prefetches

due to its highly irregular access patterns, it performs even worse with multithreading since it

contains little additional task-level parallelism.

Prefetching and multithreading appear to be complementary when there are only two contexts—

in all but two cases, prefetching improved by adding a second context, and in all but one case,

two contexts improved by adding prefetching. In such cases, prefetching boosts the effectiveness

of the smaller number of contexts by increasing the hit rate and thus the interval between con-

text switches. At the same time, multithreading improves prefetching performance by hiding the

latency of misses that are not prefetched. Therefore, if hardware costs dictate that only a very

small number of contexts can be supported (too few to fully hide memory latency), the most

attractive solution may be to combine multithreading and prefetching.

5.4 Chapter Summary

In this chapter, we explored three major sets of architectural issues related to prefetching: basic

architectural support for prefetching, possible enhancements to achieve even larger gains through

prefetching, and alternative latency-hiding techniques that require hardware support. We now

briefly summarize each section below.

The key issues in providing basic architectural support for prefetching are the following:

1. Unlike normal loads, prefetches arenon-binding, non-blocking, and non-excepting. By

giving prefetch instructions unique opcodes, the bits normally used to specify a destination

190 Chapter 5. Architectural Issues

register can be used instead for prefetching hints (e.g.,exclusive-modevs. shared-mode

prefetches).

2. While dropping prefetches is a complex issue, the best approach appears to be dropping

prefetches on TLB misses, and not dropping them on full prefetch issue buffers (given

selective prefetching).

3. When performing a prefetch access, the caches should be checked while searching for the

data, and the data should be placed directly in the primary cache.

4. The main hardware support necessary for prefetching is a lockup-free cache. Supporting

up to four outstanding misses is useful, and buffering more than four outstanding prefetch

requests offers only a limited advantage.

The following are the major issues in achieving even larger gains through prefetching:

1. Profiling feedback can potentially improve performance, but has some important drawbacks.

A more attractive technique for exploiting dynamic information may be to generate adaptive

code. Both of these techniques will benefit from user-visible hardware miss counters.

2. Providing associativity through either set-associative caches or victim caches is an important

step toward dealing with cache conflicts. Neither of these solutions is as attractive as

eliminating the problem in software.

3. To avoid excessive prefetching overhead, the compiler must be careful to avoid register

spilling. To reduce overheads further,block prefetchesmay be useful when spatial locality

exists.

Finally, prefetching compares with other latency-hiding techniques as follows:

1. Software-controlled prefetching appears to be superior to hardware-controlled prefetching,

since the software approach results in better coverage and requires less hardware support.

2. Prefetching and relaxed consistency models are complementary. Relaxed consistency mod-

els eliminate write latency, and prefetching addresses the remaining read latency.

3. The interaction between prefetching and multithreading is complex, and appears to be

complementary only with very small numbers of contexts.

Chapter 6

Conclusions

Techniques for coping with memory latency are essential to achieve high processor utilization.

Such techniques will become increasingly important in the future as the gap between processor

and memory speeds continues to widen. As we discussed in Chapter 1, the best approach to

dealing with latency is to firstreduceit as much as possible, through techniques such as caching

and locality optimizations, and thentolerate whatever latency remains. The latency of writes

can be hidden by buffering and pipelining the write accesses, which is accomplished in shared-

memory multiprocessors through relaxed consistency models. However, read latency is only

addressed effectively through either prefetching or multithreading. Of these two techniques,

software-controlled prefetching appears to be more attractive because it can speed up a single

thread of execution, and because it requires much simpler hardware than multithreading. This

dissertation has addressed the open question of how effective software-controlled prefetching can

be in practice. We have addressed this question by proposing and implementing a new algorithm

for inserting prefetches into array-based scientific and engineering codes.

The key results of this dissertation are the following:

1. Software-controlled prefetching can be quite effective at tolerating memory latency in

scientific and engineering applications on both uniprocessor and large-scale multiprocessor

architectures. In all but a few cases, 50% to 90% of the original memory stall time is

eliminated, which translates into improvements in overall performance of over 45% for a

majority of the applications we studied. In several cases, overall performance improved by

a factor of two.

2. The compiler can do a very good job of inserting prefetches into code automatically, and

191

192 Chapter 6. Conclusions

it can cover a wide domain of scientific and engineering applications.Locality analysis

is successful at predicting exactly which references should be prefetched,loop splitting

techniques help minimize prefetching overhead, andsoftware pipeliningis effective at

scheduling prefetches to hide memory latency. We demonstrated the effectiveness of our

algorithm through a full compiler implementation and detailed performance studies. The

success of the compiler algorithm is encouraging, since it relieves the programmer from

the burden of inserting prefetches manually.

3. Prefetching is complementary to other latency-hiding techniques, including locality opti-

mizations and relaxed consistency models. Locality optimizations complement prefetching

by reducing the number of cache misses (thus reducing the resulting prefetching overhead),

and prefetching hides much of the remaining latency. Similarly, relaxed consistency models

complement prefetching by completely hiding write latency, and prefetching addresses the

remaining read latency.

4. Latency-hiding techniques requiring expensive hardware support (e.g., hardware-controlled

prefetching, multithreading) do not appear to be necessary for the classes of applications

considered in this study.

5. Since prefetching can only improve performance if additional bandwidth is available in

the memory subsystem, it is essential that the hardware provide this additional bandwidth

through techniques such as lockup-free caches. We observed that supporting up to four out-

standing cache misses can improve performance substantially. Providing sufficient memory

bandwidth should be the focus of hardware design.

6.1 Future Work

The goals of our compiler research were twofold: to cover a wide range of applications, and

to maximize the performance benefit for the cases that are covered. In this section, we briefly

discuss how our research can be extended along both of these dimensions.

The scope of our algorithm was limited to array-based scientific and engineering applications.

While such applications represented an important first step for prefetching, clearly there are other

types of applications and reference patterns that also deserve attention. Perhaps the most obvious

next step is to address applications containing large recursive data structures, such as the trees

and linked-lists that accounted for so much of the memory latency in BARNES and PTHOR.

Chapter 6. Conclusions 193

To handle such cases, the compiler will need powerful pointer analysis techniques to recognize

these recursive structures and to understand the manner in which they are being traversed.

To achieve larger benefits from prefetching in the cases that are covered, a number of the

techniques discussed in Section 5.2 deserve further exploration. In particular, the use of dynamic

information through either profiling feedback or adaptive code is likely to become more important

as the compiler increases its scope to include access patterns such as pointers, where it is difficult

if not impossible to predict locality based on static information alone. In addition, we have seen

how chronic cache conflicts can potentially render prefetching ineffective, and that often the most

desirable solution is fix the problem in software rather than hardware. Techniques that allow the

software to automatically detect and prevent such conflicts would be very desirable, and would

improve the performance of code even without prefetching.

Finally, this research has focused only the latency of accessing main memory. The general

concept of prefetching can potentially be extended to handle other important forms of latency,

such as accessing file systems and communicating across networks.

Bibliography

[1] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. Automatic program transformations for virtual

memory computers.Proc. of the 1979 National Computer Conference, pages 969–974, June

1979.

[2] S. Adve and M. Hill. Weak ordering - A new definition. InProceedings of the 17th Annual

International Symposium on Computer Architecture, pages 2–14, May 1990.

[3] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April: A processor architecture for

multiprocessing. InProceedings of the 17th Annual International Symposium on Computer

Architecture, pages 104–114, May 1990.

[4] S. P. Amarasinghe and M. S. Lam. Communication optimization and code generation

for distributed memory machines. InProceedings of the SIGPLAN ’93 Conference on

Programming Language Design and Implementation, pages 126–138, June 1993.

[5] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on

scalable parallel machines. InProceedings of the SIGPLAN ’93 Conference on Programming

Language Design and Implementation, pages 112–125, June 1993.

[6] J. Archibald and J.-L. Baer. Cache coherence protocols: Evaluation using a multiprocessor

simulation model.ACM Transactions on Computer Systems, 4(4):273–298, 1986.

[7] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to reduce data access

penalty. InProceedings of Supercomputing ’91, 1991.

[8] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS Parallel Benchmarks. Technical

Report RNR-91-002, NASA Ames Research Center, August 1991.

194

Bibliography 195

[9] D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. InProceedings of the

Fourth International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 40–52, April 1991.

[10] A. Carle, K. Kennedy, U. Kremer, and J. Mellor-Crummey. Automatic data layout for

distributed-memory machines in the D programming environment. InProceedings of AP’93

International Workshop on Automatic Distributed Memory Parallelization, Automatic Data

Distribution and Automatic Parallel Performance Prediction, Saarbr¨ucken, Germany, March

1993.

[11] B. Chapman, P. Hehrota, and H. Zima. Programming in vienna fortran. InThird Workshop

on Compilers for Parallel Computers, pages 121–160, July 1992.

[12] S. Chatterjee, J. Gilbert, R. Schreiber, and S. Teng. Automatic array alignment in data-

parallel programs. InProceedings of the Twentieth Annual ACM Symposium on the Princi-

ples of Programming Languages, January 1993.

[13] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. W. Hwu. Data access microarchitec-

tures for superscalar processors with compiler-assisted data prefetching. InProceedings of

Microcomputing 24, 1991.

[14] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K. Rodman. A vliw

architecture for a trace scheduling compiler. InProc. Second Intl. Conf. on Architectural

Support for Programming Languages and Operating Systems, pages 180–192, Oct. 1987.

[15] K.D. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure cloning.Computer

Languages, 19(2), April 1993.

[16] J. C. Dehnert, P. Y.-T. Hsu, and J. P. Bratt. Overlapped loop support in the cydra 5. In

Third International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS III), pages 26–38, April 1989.

[17] M. Dubois, L. Barroso, Y.-S. Chen, and K. Oner. Scalability problems in multiprocessors

with private caches. InProceedings of Parallel Architecture and Languages Europe ’92,

pages 211–230, June 1992.

[18] M. Dubois, C. Scheurich, and F. A. Briggs. Synchronization, coherence, and event ordering

in multiprocessors.Computer, 21(2):9–21, February 1988.

196 Bibliography

[19] S. J. Eggers and T. E. Jeremiassen. Eliminating false sharing. InProceedings of the 1991

International Conference on Parallel Processing, volume I, pages 377–381, August 1991.

[20] M. Berry et al. The perfect club benchmarks: Effective performance evaluation of supercom-

puters. Technical Report CSRD 827, Center for Supercomputing Research and Development,

Illinois, May 1989.

[21] J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhancing cache effectiveness. In

Fourth Workshop on Languages and Compilers for Parallel Computing, Aug 1991.

[22] K. Gallivan, W. Jalby, U. Meier, and A. Sameh. The impact of hierarchical memory systems

on linear algebra algorithm design. Technical Report UIUCSRD 625, University of Illinios,

1987.

[23] D. Gannon and W. Jalby. The influence of memory hierarchy on algorithm organization:

Programming FFTs on a vector multiprocessor. InThe Characteristics of Parallel Algo-

rithms. MIT Press, 1987.

[24] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory management

by global program transformation.Journal of Parallel and Distributed Computing, 5:587–

616, 1988.

[25] A. George, J. Liu, and E. Ng. User’s guide for SPARSPAK: Waterloo sparse linear equations

package. Technical Report CS-78-30, Department of Computer Science, University of

Waterloo, 1980.

[26] K. Gharachorloo, A. Gupta, and J. Hennessy. Performance evaluation of memory consis-

tency models for shared-memory multiprocessors. InFourth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 245–257,

April 1991.

[27] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory

consistency and event ordering in scalable shared-memory multiprocessors. InProceedings

of the 17th Annual International Symposium on Computer Architecture, pages 15–26, May

1990.

[28] A. J. Goldberg. Multiprocessor Performance Debugging and Memory Bottlenecks. PhD

thesis, Stanford University, August 1992.

Bibliography 197

[29] S. R. Goldschmidt and H. Davis. Tango introduction and tutorial. Technical Report CSL-

TR-90-410, Stanford University, 1990.

[30] G. H. Golub and C. F. Van Loan.Matrix Computations. Johns Hopkins University Press,

1989.

[31] E. Gornish, E. Granston, and A. Veidenbaum. Compiler-Directed Data Prefetching in Mul-

tiprocessors with Memory Hierarchies. InInternational Conference on Supercomputing,

1990.

[32] E. H. Gornish. Compile time analysis for data prefetching. Master’s thesis, University of

Illinois at Urbana-Champaign, December 1989.

[33] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber. Comparative eval-

uation of latency reducing and tolerating techniques. InProceedings of the 18th Annual

International Symposium on Computer Architecture, pages 254–263, May 1991.

[34] M. Gupta.Automatic Data Partitioning on Distributed Memory Multicomputers. PhD thesis,

College of Engineering, University of Illinois at Urbana-Champaign, September 1992.

[35] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques for

parallelizing compilers on multicomputers.IEEE Transactions on Parallel and Distributed

Systems, 3(2):179–193, March 1992.

[36] R. H. Halstead, Jr. and T. Fujita. MASA: A multithreaded processor architecture for par-

allel symbolic computing. InProceedings of the 15th Annual International Symposium on

Computer Architecture, pages 443–451, June 1988.

[37] L. J. Hendren.Parallelizing Programs with Recursive Data Structures. PhD thesis, Cornell

University, January 1990.

[38] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling fortran d for mimd distributed-

memory machines.Communications of the ACM, 35(8):66–80, August 1992.

[39] R. A. Iannucci. Toward a dataflow/von Neumann hybrid architecture. InProc. Int. Symp.

Comput. Arch., pages 131–140, June 1988.

[40] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers. InProceedings of the 17th Annual International

Symposium on Computer Architecture, pages 364–373, May 1990.

198 Bibliography

[41] Kendall Square Research.Kendall Square Research 1 (KSR1) Technical Summary, 1992.

[42] A. C. Klaiber and H. M. Levy. Architecture for software-controlled data prefetching. In

Proceedings of the 18th Annual International Symposium on Computer Architecture, pages

43–63, May 1991.

[43] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on dis-

tributed memory machines. InProceedings of the Second ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, March 1990.

[44] J. S. Kowalik, editor. Parallel MIMD Computation : The HEP Supercomputer and Its

Applications. MIT Press, 1985.

[45] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. InProceedings of the

8th Annual International Symposium on Computer Architecture, pages 81–85, 1981.

[46] J. Kubiatowicz, D. Chaiken, and A. Agarwal. Closing the window of vulnerability in

multiphase memory transactions. InProceedings of the Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 274–284,

October 1992.

[47] D. J. Kuck, E. S. Davidson, D. H. Lawrie, and A. H. Sameh.Experimental Parallel

Computing Architectures: Volume 1 – Special Topics in Supercomputing, chapter Parallel

Supercomputing Today and the Cedar Approach, pages 1–23. North-Holland, New York,

1987.

[48] M. S. Lam. Software pipelining: An effective scheduling technique for vliw machines. In

Proc. ACM SIGPLAN 88 Conference on Programming Language Design and Implementa-

tion, pages 318–328, June 1988.

[49] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of

blocked algorithms. InProceedings of the Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 63–74, April 1991.

[50] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs.IEEE Transactions on Computers, C-28(9):241–248, September 1979.

Bibliography 199

[51] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification side effect analysis

with pointer aliasing. InProceedings of the SIGPLAN ’93 Conference on Programming

Language Design and Implementation, pages 56–67, June 1993.

[52] J. P. Laudon.Architectural and Implementation Tradeoffs for Multiple-Context Processors.

PhD thesis, Stanford University, Stanford, California, 1994. In preparation.

[53] R. L. Lee. The Effectiveness of Caches and Data Prefetch Buffers in Large-Scale Shared

Memory Multiprocessors. PhD thesis, Department of Computer Science, University of

Illinois at Urbana-Champaign, May 1987.

[54] D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. Hennessy, M. Horowitz, and M. Lam.

The Stanford DASH multiprocessor.IEEE Computer, 25(3):63–79, March 1992.

[55] D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. Hennessy, Mark Horowitz, and

Monica Lam. Design of Scalable Shared-Memory Multiprocessors: The DASH Approach.

In Proceedings of COMPCON’90, pages 62–67, 1990.

[56] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-memory

machines.Journal of Parallel and Distributed Computing, 13(2):213–221, October 1991.

[57] E. Lusk, R. Overbeek, et al.Portable Programs for Parallel Processors. Holt, Rinehart and

Winston, Inc., 1987.

[58] D. E. Maydan. Accurate Analysis of Array References. PhD thesis, Stanford University,

September 1992.

[59] J. D. McDonald and D. Baganoff. Vectorization of a particle simulation method for hy-

personic rarified flow. InAIAA Thermodynamics, Plasmadynamics and Lasers Conference,

June 1988.

[60] A. C. McKeller and E. G. Coffman. The organization of matrices and matrix operations in

a paged multiprogramming environment.CACM, 12(3):153–165, 1969.

[61] T. Mowry and A. Gupta. Tolerating latency through software-controlled prefetching in

shared-memory multiprocessors.Journal of Parallel and Distributed Computing, 12(2):87–

106, 1991.

200 Bibliography

[62] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for

prefetching. InProceedings of the Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, volume 27, pages 62–73, October

1992.

[63] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe,

E. A. Melton, V. A. Norton, and J. Weiss. The IBM research parallel processor prototype

(RP3): Introduction and architecture. InProceedings of the 1985 International Conference

on Parallel Processing, pages 764–771, 1985.

[64] A. K. Porterfield.Software Methods for Improvement of Cache Performance on Supercom-

puter Applications. PhD thesis, Department of Computer Science, Rice University, May

1989.

[65] B. R. Rau and C. D. Glaeser. Some Scheduling Techniques and an Easily Schedulable

Horizontal Architecture for High Performance Scientific Computing. InProceedings of the

14th Annual Workshop on Microprogramming, pages 183–198, October 1981.

[66] A. Rogers and K. Li. Software support for speculative loads. InProceedings of the Fifth

International Conference on Architectural Support for Programming Languages and Oper-

ating Systems, volume 27, pages 38–50, October 1992.

[67] A. Rogers and K. Pingali. Process decomposition through locality of reference. InProceed-

ings of the SIGPLAN ’89 Conference on Program Language Design and Implementation,

June 1989.

[68] J. Rose. Locusroute: A parallel global router for standard cells. InDesign Automation

Conference, pages 189–195, June 1988.

[69] E. Rothberg and A. Gupta. Techniques for improving the performance of sparse factorization

on multiprocessor workstations. InProceedings of Supercomputing ’90, November 1990.

[70] C. Scheurich and M. Dubois. Lockup-free caches in high-performance multiprocessors.

Journal of Parallel and Distributed Computing, 11(1):25–36, January 1991.

[71] J. P. Singh and J. L. Hennessy. Finding and exploiting parallelism in an ocean simula-

tion program: Experience, results and implications.Journal of Parallel and Distributed

Computing, 15(1):27–48, 1992.

Bibliography 201

[72] J. P. Singh, W.-D. Weber, and A. Gupta. Splash: Stanford parallel applications for shared

memory. Technical Report CSL-TR-91-469, Stanford University, April 1991.

[73] B. J. Smith. Architecture and applications of the HEP multiprocessor computer system.

SPIE, 298:241–248, 1981.

[74] M. D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Stanford University,

November 1991.

[75] M. D. Smith. Support for Speculative Execution in High-Performance Processors. PhD

thesis, Stanford University, November 1992.

[76] L. Soule and A. Gupta. Parallel Distributed-Time Logic Simulation.IEEE Design and Test

of Computers, 6(6):32–48, December 1989.

[77] SPEC.The SPEC Benchmark Report. Waterside Associates, Fremont, CA, January 1990.

[78] G. L. Steele. Proposal for alignment and distribution directives in HPF. Draft presented at

HPF Forum meeting, June 1992.

[79] P. Stenstrom, F. Dahlgren, and L. Lundberg. A lockup-free multiprocessor cache design. In

Proceedings of the 1991 International Conference on Parallel Processing, volume I, pages

246–250, 1991.

[80] S. W. K. Tjiang and J. L. Hennessy. Sharlit: A tool for building optimizers. InSIGPLAN

Conference on Programming Language Design and Implementation, 1992.

[81] J. Torrellas, M. S. Lam, and J. L. Hennessy. Shared data placement optimizations to reduce

multiprocessor cache miss rates. InProceedings of the 1990 International Conference on

Parallel Processing, volume II, pages 266–270, August 1990.

[82] P.-S. Tseng.A Parallelizing Compiler for Distributed Memory Parallel Computers. PhD

thesis, School of Computer Science, Carnegie Mellon University, May 1989.

[83] D. M. Tullsen and S. J. Eggers. Limitations of cache prefetching on a bus-based multiproces-

sor. InProceedings of the 20th Annual International Symposium on Computer Architecture,

pages 278–288, May 1993.

[84] W.-D. Weber. Scalable Directories for Cache-Coherent Shared-Memory Multiprocessors.

PhD thesis, Stanford University, January 1993.

202 Bibliography

[85] W.-D. Weber and A. Gupta. Exploring the benefits of multiple hardware contexts in a multi-

processor architecture: Preliminary results. InProceedings of the 16th Annual International

Symposium on Computer Architecture, pages 273–280, June 1989.

[86] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Stanford

University, August 1992.

[87] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. InProceedings of the

SIGPLAN ’91 Conference on Programming Language Design and Implementation, pages

30–44, June 1991.

[88] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD

parallelization.Parallel Computing, 6:1–18, 1988.

