
A Performance/Area Workbench for Cache Memory Design

Osamu Okuzawa and Michael J. Flynn

Technical Report: CSL-TR-94-635

August 1994

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305-4055

A b s t r a c t

For high performance processor design, cache memory size is an important

parameter which directly affects performance and the chip area. Modeling

performance and area is required for design tradeoff of cache memory. This

paper describes a tool which calculates cache memory performance and area.

A designer can try variety of cache parameters to complete the specification

of a cache memory. Data examples calculated using this tool are shown.

Key Words and Phrases: Cache memory, Design tradeoff , Memory

modeling, CAD

ii

Copyright © 1994

b y

Osamu Okuzawa and Michael J. Flynn

iii

Contents

1. Introduction 1

2. Related Work 1

3. Performance/Area Workbench 2

3.1 Tool target 2

3.2 Input 2

3.3 Output 3

3.4 Model & Calculation method 3

3.5 Tool Implementation 6

3.6 Using Manual 9

4. Results 10

4.1 Tool Performance 10

4.2 Calculation result examples and analysis 11

5. Conclusions 16

i v

List of Figures

1 CPI and Area Calculation Program Configuration 7

2 Calculation Process 8

3 32KB split cache performance 12

4 32KB split cache area 12

5 Unified cache performance 14

6 Unified cache area 14

7 Unified cache Performance/Area Plots 15

List of Tables

1 Program and size 8

2 Programming time and memory size 10

3 Best 5 Unified CBWA cache configuration under 50mm2 15

v

1

1. Introduction

An efficient memory hierarchy is essential for high performance processor

design. Processor performance has continued to improve relative to memory

speed, with cache memory being the common method to bridge the speed gap.

Indeed, many high performance processors use two level of cache memory,

where the first level cache is usually on the same chip as the processor. As

chip area is growing due to the improvement of chip technology, so is the

amount of the cache memory on a chip.

Designers should consider the tradeoff of performance and cost of cache

memory at the early stage of design. The performance and cost of cache

memory are affected by cache configuration, size and other parameters.

Usually designers predict the area and speed using conventional tabular data.

In this report, a computer aided tool for cache memory design is shown.

2. Related Work

Studies have been done about cache memory performance, especially, the

studies for the relationship between cache specification and cache miss rate

[1][2]. Chip area is usually used for the index of cost. A modeling method is

shown in [3]. The model in [3] is mainly applied for large cache sizes. Mulder

shows a cache model which is based on area analysis of actual processors

using a 'register cell' as a unit[4]. The area calculation in this report is based

on his model. Recently many papers have been published about design

tradeoff for architectural design, including several[5][6] that also use his

model.

For the prediction of the performance, usually one makes a command level

simulator and executes benchmark programs. But to execute benchmark

programs on a simulator requires considerable time. Flynn develops a static

2

calculation method for processor performance[7]. The tool in this report uses

the performance model based on [7]. Fu shows an analysis and the estimation

using the model[8].

3. Performance/Area Workbench

3.1 Tool target

The target of this tool is to calculate cache memory speed and area using

designer cache specifications. As a designer completes the specification of a

cache memory, using this tool he can try variety of cache parameters. To

calculate cache speed and area, this program uses the memory model shown in

[4] and [7]. The model summarized in section 3.4.

3.2 Input

The input data are cache memory and processor specifications.

Detailed items are shown as follows:

(1) Processor specification

architecture - L/S, R/M or R+M

instruction set length

branch probabili ty

chip technology

cycle time

word access time

bus cycle time

memory cycle time

timing template

data access per instruction

(2) Cache memory specification

3

cache kind - unified or split

cache size

line size

associa t iv i ty

replacement policy (random, LRU, FIFO)

write policy (CBWA, WT)

physical word size

3.3 Output

Output data are calculation results of area and performance.

baseline CPI

excess CPI with cache

cache memory area size

3.4 Model & Calculation method

3.4.1 Area calculation[4]

A unit 'rbe' is used for area, which is the area of 1 bit register. Following

variables are used in this section.

line : line length in bit

size : cache size in bit

tags : size/line

transb : band width

tsb : tag bit

tsb = 1 + γline
transb

+ log2(2
30 assoc

size
)

(1) Set associative

Area = PLA + Data + Tag
 =

130 + 0.6(line ⋅assoc + 6)(tags

assoc
+ 6)+ 0.6(tsb ⋅assoc + 6)(tags

assoc
+12) [rbe]

4

(2) Full associative

Area = PLA + Data + Tag
 = 130 + 0.6((1 + γ

transb
)line + 6)(tags + 6)+ 0.6(2 ⋅tags + 6)(2 ⋅(27 − log2(line))+ 6) [rbe]

As 1 rbe equals to 2035 µm 2 for 2um technology empirically, the tool can adjust

the actual area according to the target technology.

3.4.2 CPI calculation[7][8]

Processor speed is represented with CPI (C ycle P er Ins t ruct ion) .

CPI = CPI_base + Miss_penalty * Miss_rate

 (1) CPI_base

CPI_base is CPI without effects of cache memory. This is calculated with the

effect of (i) address and data dependency, and (ii) branch penalty. For (i)

empirical data are used. For (ii), the timing template and branch rate, which

are both given as input, are used.

CPI_base

 = Throughput + data_dependency

 + address_dependency + branch_penalty

(2) Miss penalty

A memory access model is shown as follows;

Ta : Word access time, Tbus : Bus cycle time, Tc : memory cycle time

L : Line size per physical word, M : memory Interleaved mode

w: ratio of dirty line

Tline : Line access time

Tline = Ta +Tc[L

M
−1]+Tbus((L −1)mod M)

Tmmis : Memory processing time for read request

Tcmis : Processor waiting time for read miss

Tbusy = Tmmis - Tcmis

5

Cache Memory Interface Schemes

i) CBWA (Copy Back Write Allocate) policy

<Scheme 1>

When hit miss, write to write buffer, and then read line and processor

executes .

Tmmis = (1+w)Tline, Tcmis = (1+w)Tline, Tbusy = 0

<Scheme 2>

When hit miss, write to write buffer and read line at the same time. Then

processor executes.

Tmmis = (1+w)Tline, Tcmis = Tline, Tbusy = wTline

<Scheme 3>

When hit miss, write to write buffer and read line at the same time. The

processor execute along the word access.

Tmmis = (1+w)Tline, Tcmis = Ta, Tbusy = (1+w)Tline - Ta

Miss penalty is represented by the following equation.

Miss penalty = (Tcmis + Tint)/cycle

Here, Tint is time due to the misses which occur during Tbusy.

T int= (M iss_ rate ⋅ D ata_ reference

I ⋅CPI_base
)⋅ Tbusy

cycle_tim e
⋅Tbusy

2

For split cache,

T int= (I_ M iss_ rate ⋅ Inst_ fetch
I ⋅CPI_base

)⋅ Tbusy _ i

cycle_tim e
⋅Tbusy _ i

2

+(D _ M iss_ rate ⋅ D ata_ fetch
I ⋅CPI_base

)⋅ Tbusy _d

cycle_tim e
⋅Tbusy _d

2

ii) WT(Write Through) policy

<Scheme 1>

When hit miss, read line and then processor executes.

Tmmis = Tline, Tcmis = Tline, Tbusy = 0

6

<Scheme 2>

When hit miss, processor executes during reading words.

Tmmis = Tline, Tcmis = Ta, Tbusy = Tline - Ta

Miss penalty is represented by the following equation.

Miss penalty = (Tcmis + Tint + Twint)/cycle

Here, Tint is the same as in CBWA. Twint is interference due to the write during

Twmem.

Tw int= (1 − (1 − D ata_ reference

I ⋅CPI_base
)

Tw m em

cycle _tim e)⋅Tw m em

2

Here, Twmem = max(Ta, Tc).

(3) Miss rate

Miss rate is calculated by the program developed by Steve Fu. This program

uses DTMR tables and adjusts parameters such as associativity of the cache and

architecture type of the processor.

(4)Instruction/Data contention

In case of unified cache, instruction and data access contention occurs, which

causes an increased CPI.

Contention = (Instruction fetch/I)(Data access/I)/CPI

3.5 Tool implementation

The tool consists of two parts. One is a C program and shell script on UNIX

Workstation. This calculates one set of cache data. Fig.1 shows the

configuration. The other is Excel interface, which enables users to calculate

multiple data concurrently and manipulate data easily. Fig.2 shows the whole

process including Excel interface. Table1 shows the program size.

7

Estimated CPI
& Area

Timing
Template

Data traffic

miss rate calc

cache miss
rate

Data conversion

Cache &
Processor Spec

input data

Cache &
Processor Spec

CPI,Area calc

merge

1

32

31 - : User Input File

 Conventional Program

Fig.1 CPI and Area Calculation Program Configuration

New Program

Data read

Area calculation

CPI_base calculation

Miss penalty
calculation

Excess CPI calculation

Result output

8

Excel data input

Data conversion
Excel to Text file

Data transfer
Mac -> WS

CPI & Area Calculation
Program Execute

Data transfer
WS -> Mac

Data conversion
Text file to Excel

Input data
(Excel)

Input data
(Text)

Input data
(Text)

on Mac

on WS

Output data
(Excel)

Output data
(Text) on Mac

Output data
(Text) on WS

Fig.2 Calculation Process

Excel

Excel Macro

FTP

FTP

Excel Macro

1

2

3

4

No

Data Conversion

Miss rate calculation

CPI & Area calculation

Control, interface

5 Excel interface

Part language No of lines

C

C

C

shell, awk

Excel macro

200

800

50

20

Already developed

Table 1 Program size

9

3.6 Using manual

3.6.1 Operating Environment

 Macintosh connecting with UNIX Workstation

3.6.2 Files or Programs needed

(1) on WS

datacon - program for data conversion

misscal - program for miss rate calculation

trout - program for CPI & area calculation

chexe1 - shell script 1

chexe2 - shell script 2

filediv - shell script 3

exeall - shell script 4

inawk - awk program

(2) on Macintosh

Fetch - application program for ftp

NCSA Telnet - application program for telnet

Microsoft Excel - application program

ex2tx - excel macro for conversion from excel data to text file

tx2ex - excel macro for conversion from text file to excel data

cashdata1 - excel data(template)

3.6.3 Calculation Process

(1) Making input data

Make a copy of "cashdata1". (File name is assumed "newfile")

The limitation of cache configurations which can be processed at the same

time is 72.

1 0

Using Microsoft Excel on Macintosh, make input specifications on

"newfile". After making data sheet, save and close the file.

(2) Convert the input file

Open "ex2tx", modify the input file name("newfile"), and execute it.

The macro create 3 text files: "input1", "input2", "input3"

(3) Data transfer

Execute "Fetch", and send the text files to WS.

(File names are assumed "input1.txt", "input2.txt", "input3.txt")

(4) Program execution(WS operation - using telnet program on Macintosh)

Execute command "exeall".

This command makes result file "out".

(5) Data transfer

Execute "Fetch", and get the text file "out" from WS.

(6) Convert the output file

Open "tx2ex", modify the output file name(assume "result1"), and execute it.

The Excel file "result1" is the final result of cache performance and area.

(7) Arrange data sheet and make graphs.

4. Results

4.1 Tool performance

Table2 shows processing time and required memory size for this tool.

1

2

3

No
Excel data to
text file

Cache calculation

Text file to
Excel data

Table 2 Processing time and memory size

Process Machine

Macintosh IIsi

DEC5000

Processing time* Memory

Macintosh IIsi

2min. 57sec.

3min. 3sec.

15min.10sec.

364KB

* : Total processing time for evaluating 72 cache configurations

1 1

4.2 Calculation result examples and analysis

Using this tool, a designer can try to estimate performance and area for

various kinds of cache data.

(1) Example 1

Fig.3 is the performance results for 32KB split cache. Ex-CPI shows the

excessive CPI due to the cache. Fig.4 shows the area corresponding to Fig.3. It is

categorized by write policy and scheme. Other parameters are as follows:

I-cache 32KB, 4way set associative,

D-cache 32KB, fully associative,

Ta=96ns, Tbus=8ns, Tc=16ns

L/S architecture, chip technology=0.6um

The following observations can be made on Fig.3 and Fig.4.

i) Ex-CPI decreases when the line size increases. Generally, cache miss rate

decreases and miss penalty increases when the line size increases.

ii) At the same line size, Ex-CPI is smaller for lower latency cache memory

interface schemes, which is more effective than the difference between 'Write

through' and 'Copy back'.

iii) Areas required is smaller when the line is larger. For larger line size, the

area is reduced because tag area is less. But when the line size becomes quite

large, the overhead area for drivers and amplifiers is significant.

iv) Since the area for write buffer is not accounted for in the area calculation,

the areas for different cache memory interface scheme are identical.

1 2

Fig.3 32kB Split cache Performance

Line Size

E
x-

C
PI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 8 16 32 64 128

32sp-cbwa-s1

32sp-cbwa-s2

32sp-cbwa-s3

32sp-wt-s1

32sp-wt-s2

Line size

0

50

100

150

200

250

4 8 16 32 64 128

32sp-cbwa-s1

32sp-cbwa-s2

32sp-cbwa-s3

32sp-wt-s1

32sp-wt-s2

Area[mm2]

Fig.4 32kB Split cache Area

1 3

(2) Example 2

Fig.5 and Fig.6 are unified cache performance and area data. This data are

categorized by cache size. associativity and line size.

Write scheme = 2

Ta=96ns, Tbus=8ns, Tc=16ns

L/S architecture, chip technology=0.6um

The following observations can be made on Fig.5 and Fig.6.

i) Ex-CPI is smaller when the associativity is larger. The Ex-CPI's for

associativity 2 and 4 are almost the same.

ii) The area of a fully associative cache is larger than others, while the others

are almost the same regardless of their associativity.

Fig.7 shows the relationship between performance and area for this example.

Among these plots, a designer can select the best cache memory configuration.

For example, if the area constraint is under 50m m 2, best configurations

shown in Table 3 can be selected. It is seen that cache #1 with 0.716 Ex-CPI and

area of 42.3m m 2 is the best in this study.

1 4

Fig.5 Unified cache Performance

Cache spec

E
X

-C
PI

0

1

2

3

4

5

6

7

64k-
full

64k-
ass4

64k-
ass2

64k-
ass1

32k-
full

32k-
ass4

32k-
ass2

32k-
ass1

16k-
full

16k-
ass4

16k-
ass2

16k-
ass1

linesize4 linesize8 linesize16

linesize32 linesize64 linesize128

Fig.6 Unified cache Area

linesize4 linesize8 linesize16

linesize32 linesize64 linesize128

Cache spec

0

50

100

150

200

250

300

64k-
full

64k-
ass4

64k-
ass2

64k-
ass1

32k-
full

32k-
ass4

32k-
ass2

32k-
ass1

16k-
full

16k-
ass4

16k-
ass2

16k-
ass1

Area[mm2]

1 5

Ex-CPI

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

Fig.7 Unified cache Performance/Area Plots

Area[mm2]

1

2

3

4

5

Size(KB) Line
size(B)

associa-
tivity

Ex-CPINo

32

32

32

32

32

128

64

4

2

1

full

full

0.716

0.785

0.917

0.716

0.716

128

128

128

Area
(mm2)

42.3

43.2

45.3

43.8

45.6

Table 3 Best 5 Unified CBWA cache configuration under 50mm 2

1 6

5. Conclusions

A tool for calculating cache memory speed and area has been developed. As the

gap between processor speed and memory speed is expanding, it is very

important for designers to consider tradeoffs for cost and performance of

cache memories. The tool shown in this paper is useful for this tradeoff. Data

examples calculated using this tool are shown. As the data are output to a

spread sheet, the designer can analyze or manage them easily. For future

work, more accurate performance prediction will be possible by combining

this tool with an architectural simulator and cache simulator. In addition to

performance and cost estimation, it is important to estimate the complete

design including other factors such as power consumption in cache memory

des ign .

A c k n o w l e d g m e n t

The authors would like to thank Steve Fu for offering the miss rate calculation

program and valuable discussion about modeling.

R e f e r e n c e s

[1] A.J.Smith, "Cache Memories", ACM Computing Surveys, Vol.14, No.3, 1982,

pp.473-530

[2] J.D.Gee et al., "Cache Performance of the SPEC92 Benchmark Suite", IEEE

Micro, August 1993, pp.17-27

[3] D.B.Alpert and M.J.Flynn, "Performance Trade-offs for Microprocessor

Cache Memories", IEEE Micro, August 1988, pp.44-54

[4] J.M.Mulder et al., "An Area Model for On-Chip Memories and its

Application", IEEE Journal of Solid-State Circuits, vol.26 No.2,1991, pp.98-106

1 7

[5] N.P.Jouppi, "Tradeoffs in Two-Level On-Chip Caching", Proceedings of IEEE

International Symposium on Computer Architecture, 1994, pp.34-45

[6] D. Nagle et al., "Optimal Allocation of On-chip Memory for Multiple-API

Operating Systems", Proceedings of IEEE International Symposium on

Computer Architecture, 1994, pp.358-369

[7] M.J.Flynn, "Computer Architecture: Concurrent and Parallel Processor

Design", Jones and Bartlett, Boston, 1994

[8] S.Fu and M.J.Flynn, "Area and Performance Analysis of Processor

Configurations with Scaling of Technology", Technical Report CSL-TR-94-605,

Stanford University, 1994

[9] J.L.Hennessy and D.A.Patterson, "Computer Architecture: A Quantitative

Approach", Morgan Kaufmann, San Mateo, 1990

