
Center for
Reliable
Computing

TECHNICAL
REPORT

Testing Digital Circuits for Timing Failures by Output Waveform Analysis

Piero Franc0

94-9 Center for Reliable Computing
ERL 460

(CSL TR # 94-637)
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

September 1994
Stanford University

Stanford, California 943054055

Abstract:
This technical report contains the text of Piero France’s thesis “Testing Digital Circuits for

Timing Failures by Output Waveform Analysis”. The thesis appendices have appeared as CRC
Technical Reports 94-4 and 94-5, and are not included here. 1

Funding:

This work was supported in part by the Chamber of Mines of South Africa, in part by the
Innovative Science and Technology Office of the Strategic Defense Initiative Organization and
administered through the Office of Naval Research under Contracts No. NOOO14-85-K-0600 and
N00014-92-J-1782, in part by the National Science Foundation under Grants No. MIP-8709128 and
No. MIP-9107760, and in part by Hughes Aircraft Co.

Copyright 0 1994 by the Center for Reliable Computing, Stanford University.
All rights reserved, including the right to reproduce this report, or portions thereof, in any form.

.

ABSTRACT

Delay testing is done to ensure that a digital circuit functions at the designed speed.
Delay testing is complicated by test invalidation and fault detection size. Furthermore, we
show that simple delay models are not sufficient to provoke the longest delay through a
circuit. Even if all paths are robustly tested, path delay testing cannot guarantee that the
circuit functions at the desired speed.

Output Waveform Analysis is a new approach for detecting timing failures in digital
circuits. Unlike conventional testing where the circuit outputs are sampled, the waveform
between samples is analyzed. The motivation is that delay changes affect the shape of the
output waveform, and information can be extracted from the waveform to detect timing
failures. This is especially useful as a Design-for-Testability technique for Built-In Self-
Test or pseudo-random testing environments, where delay tests are difficult to apply and
test invalidation is a problem.

Stability Checking is a simple form of Output Waveform Analysis. In a fault-free
circuit, the outputs are expected to have reached the desired logic values by the time they
are sampled, so delay faults can be detected by observing the outputs for any changes after
the sampling time. Apart from traditional delay testing, Stability Checking is also useful
for on-line or concurrent testing under certain timing restrictions. A padding algorithm was
implemented to show that circuits can be efficiently modified to meet the required timing
constraints.

By analyzing the output wavefoml before the sampling time, circuits with timing

flaws can be detected even before the circuit fails. This is useful in high reliability
applications as a screenin g technique that does not stress the circuit, and for wear-out
prediction.

A symbolic waveform simulator has been implemented to show the benefits of the
proposed Output Waveform Analysis techniques. Practical test architectures have been
designed, and various waveform analyzers have been manufactured and tested. These
include circuits implemented using the Stanford BiCMOS process, and a design
implemented in a 25k gate Test Evaluation Chip Experiment.

i

.

ACKNOWLEDGMENTS

This dissertation describes a new approach for detecting timing failures in digital
circuits performed at Stanford University. I am deeply grateful to my advisor, Prof.
Edward J. McCluskey, without whose guidance and support this work would not have
been possible. I am also grateful to Prof. Giovanni De Micheli, my associate advisor, and
Prof. Dwight. G. Nishimura, my committee chairman, for reading my dissertation, and
Prof. Oyekunle Olukotun for being the final member of my committee.

I would like to thank my colleagues at the Center for Reliable computing for their
help: LaNae Avra, Hong Hao, Siyad Ma, Samy Makar, Samiha Mourad, Rob Norwood,
Nirmal Saxena, Alice Tokamia, and Nur Touba. I also thank Siegrid Munda for her
administrative support, and often “helping me catch the DHL truck.”

I would like to thank Dr. E. Eichelberger for helpful discussions in the early phase
of this work.

I thank the Center for Reliable and High-Performance Computing, University of
Illinois at Urbana-Champaign, for their hospitality during my stay.

I would like to thank the many people who contributed to the Test Evaluation Chip
Experiment. In particular, I would like to thank Robert Stokes for his work on the
architectural and detailed design of the Test Chip, and Mike Sarvian for his help in writing
and debugging the test program.

I wish to thank Mamma, Pap%, Laura, Nonna and Pamela for their love, support,
encouragement, understanding, and patience. I dedicate this dissertation to them.

I am grateful to the Chamber of Mines of South Africa for making it possible for me
to come to Stanford, and supporting me for the first year.

This work was also supported in part by the Innovative Science and Technology
Office of the Strategic Defense Initiative Organization and administered through the Office
of Naval Research under Contracts No. NO0014-85-K-0600 and N00014-92-J-1782, in
part by the National Science Foundation under Grants No. MIP-8709128 and No. MIP-
9107760, and in part by Hughes Aircraft Co.

Major funding and support for the Test Evaluation Chip Experiment has been
provided by Hughes Aircraft Co., LSI Logic, and Digital Testing Services.

.

TABLE OF CONTENTS

Abstract . i

Acknowledgments . ii

Table of Contents
. . .

. 111

List of Tables . vi

List of Illustrations . vii

Chapter 1. Introduction
1.1 Background .. 1

1.2 Output Waveform Analysis ... 2

1.3 Overview of Dissertation ... 4

Chapter 2. Testing for Delay Faults
2.1 Early Work in Delay Fault Testing .. 5

2.2 Delay Fault Definitions .. 9

2.3 Review of Delay Fault Testing .. 12

2.3.1 Direct Approaches ... 12
2.3.2 Indirect Approaches ... 15

2.4 Inaccurate Delay Modeling .. 16
2.4.1 Modeling Gate Delay ... 16
2.4.2 Three-Pattern Delay Tests ... 17

2.4.3 Need For Three-Pattern Tests .. 20
2.4.4 Experiment ... 21

2.4.5 Possible Solutions .. 23
2.5 Output Waveform Analysis ... 24

Chapter 3. Post-Sampling Waveform Analysis
3.1 Description ... 26
3.2 Implementation .. 29

3.2.1 Design Considerations ... 29
3.2.2 Timing Diagrams ... 30
3.2.3 Architecture for Stability Checking ... 32
3.2.4 Stability Checker Implementations .. 33

3.2.4.1 Intuitive Designs ... 34
3.2.4.2 Formal Design -- Level Output ... 34

. . .
111

3.2.4.3 Formal Design -- Pulse Obtput ... 36

3.2.4.4 Ad-hoc Designs ... 36

3.2.4.5 Switching (Short-Circuit) Current Design 38

3.2.4.6 Bridging Current Design ... 38

3.3 Compatibility With Sampling And Bist ... 39

3.3.1 Combined Stability Checking and BIST ... 39

3.3.2 Aliasing .. 41

3.4 Testing Stability Checkers ... 41

3.5 Results .. 42

3.6 Conclusion ... 45

Chapter 4. On-Line Delay Testing
4.1 Introduction .. 46

4.2 On-Line Stability Checking ... 47

4.2.1 Off-line Delay Testing by Stability Checking ... 47

4.2.2 Reduced On-Line Checking Period ... 48

4.3 Implementing On-Line Stability Checking .. 49
4.3.1 Architecture for Stability Checking ... 50
4.3.2 Stability Checker Design ... 51

4.4 Performance Evaluation ... 55

4.4.1 Limitations ... 55

4.4.2 Common Failure Modes .. 55
4.4.3 Performance Comparison with Other Techniques 57

4.5 Padding Short Paths ... 58

4.5.1 Timing-Optimized Circuits .. 59

4.5.2 Custom Cells for Padding Short Paths ... 59

4.5.3 Padding Example Using Logic Synthesis Tool 61

4.5.4 Algorithm for Padding Short Paths .. 64

4.6 Extensions .. 67

4.6.1 Stability Checking versus Final-Value Checking 67
4.6.2 Multiple Checking Periods .. 67

4.6.3 Self-Timed Clock Frequency ... 68

4.6.4 Software Stability Checkinb .. 68

4.6.5 VHDL Synthesis .. 69

4.7 Conclusion ... 70

iv

Chapter 5. Pre-Sampling Wavefdrm Analysis
5.1

5.2

5.3

5.4

Description ... 71

5.1.1 Delay Flaws ... 72

5.1.2 Delay Faults ... 72

5.1.3 Waveform Analysis Functions .. 73

Integration .. 74

5.2.1 Integration Over Whole Cycle ... 74

5.2.2 Integration Over Part of Cycle ... 77

5.2.3 Enhanced Integration ... 78

5.2.4 Fault Coverage Examples .. 79

Implementation .. 82

5.3.1 Design Considerations ... 82

5.3.2 Parallel Implementation ... 83

5.4.3 Serial Implementation .. 84

Conclusion ... 86

Chapter 6. Test Chip Experiment
6.1 Overview of Experiment .. 87

6.1.2 Tests Applied ... 87

6.1.2 Test Chip .. 88

6.2 Experimental Results ... 89

6.2.1 Test Comparisons .. 89

6.2.2 Chip Speed Measurement .. 89

6.2.3 “ROB” CUT Propagation Delay Measurements 90

6.2.4 “MULT6SQ” CUT Propagation Delay Measurements 93

Chapter 7. Concluding Remarks
7.1 Contributions .. 95

7.2 Future ... 96

References ... 98

V

Table Title
2.1. Delay Fault Models ... 17
2.2. 3-input NAND3 Delays .. 20
2.3. Percentage of Gates with Equal Longest Paths for Two Inputs21
3.1. Functional Description of Stability Checker .. 28

3.2. Average Number of Transitions per Node per Vector 43

4.1. Comparison of Transistor Counts ... 55

4.2. Synopsys Results for ALU 18 i ... 63

4.3. Greedy Padding Algorithm ... 65

4.4. Results for Greedy Padding Algorithm .. 66
4.5. VHDL Process Statements ... 69
6.1. Tests Applied to Robust CUT ... 91
6.2. Tests Applied to 6x6 Multiplier .. 93

.

LIST OF TABLES

vi

LIST OF ILLUSTRATIONS
Figure

1.1.
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.
2.11.
2.12.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.

Title
Output Waveform Analysis Cl
Hardware Model .
Waveforms for Delay Testing
Test Invalidation by Hazards.

asses . 3
.. 6

.. 7

.. 8
Delay Fault Detection can Depend on Size .. 8

Short and Long Path Delay Faults .. 9
Relation Between Delay Fault Models ... 12

NAND2 Gate Simulated ... 18

Simulation of (A,B) .. 19
Delay of INV and NAND2 as a Function of Shift in Input Transitions..2O
Graph of Maximum Propagation Delay of All Tests and Robust Tests..22
Path Under Test .. 24

Output Waveform Analysis .. 25

Waveforms with Delay Faults .. 26
Stability Checking Waveforms ... 27
Timing Waveforms for Flip-Flop Designs ... 30
Block Diagram for Two-Phase Double Latch Designs 31
Test Mode Timing Waveforms for Two-phase Designs 32
Generating Checkin g Period for Two-phase Designs 32
Block Diagram of Stability Checking Architecture .. 33
Conceptual Implementation of Stability Checker ... 34
(a) Intuitive Design, (b) 1 s Detector Implementation 34
Gate-Level Stability Checker Design ... 35

Master-Slave D Flip-Flop (FDl [LSI 911) .. 35
NAND Layout of Stability Checker Design in Fig. 3.10 36
Pulse Output Stability Checker Design .. 36
Dynamic Stability Checker ... 37
Layout for Dynamic Stability Checker in Fig. 3.14 ... 37
Efficient XOR Checker Design .. 37
Switching Current-Type Stability Checker .. 38
Timing Waveforms for Flip-Flop Designs ... 39
Modified BILBO Cell ... 40
Hazards in 74LS 18 1 ... 42
Hazards in C6288 Outputs .. 43
Distribution of Number of Output Transitions ... 44

vii

Figure
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

Title
.

Off-Line Stability Checking (similar to Fig. 3.2) ... 48
Checking Period Restriction ... 49
Block Diagram of On-Line Stability Checking Architecture 50
Timing Waveforms for On-Line Stability Checking .. 50
Cascaded ERROR Signal Collection .. 51
Master-Slave D Flip-Flop (FDl [LSI 911) .. 52
Modified Master of Flip-Flop with Stability Checking 52
Spice Simulations for Modified Stability Checking Flip-Flop.. 53
Combined Scan and Stability Checking Flip-flop Master 54
Delay versus Area for LSI Standard Cells .. 59
Two Types of Padding Elements .. 60
(a) CMOS3 Buffer and Derivatives, (b) CMOS3 NAND2 and Derivatives .. .60
The CMOS3 Buffer, and 3 Derivatives .. 61
DELAY Cell in CMOS3 Library .. 62
Graphical Representation of Path Lengths in ALU 18 1 63
Output Waveform Analysis .. 71
Fault Coverage for ALU 18 1 for Sampling and Counting Transitions74
Slow-to-Fall Fault at Input P .. 75
Inverter Delay ... 76
Fault Coverage for ALU 18 1 Integrating Over Last Part of Cycle78
Fault Coverage for ALU 18 1 ... 79
Fault Coverage for ~432 ... 80
Fault Coverage for ~499 ... 81
Distribution of Number of Patterns that Detect a Fault 81
Conceptual Integrator Design ... 82
Parallel Integrator ... 83
Serial Integrator .. 84
Layout for Integrator in Fig. 5.13I ... 85
Measuring Serial Integral Using Counter ... 85
Measuring Serial Integral Using Scan Chain .. 85
Test Chip Architecture .. 88
Delay Line Measurements .. 90
Test Setup ... 90
Robust Circuit Results for 1 Die ... 92
Robust Circuit Results for 10 Die ... 93
Multiplier Circuit Results ... 94

. . .
Vlll

.

Chapter 1

Introduction

7.1 BACKGROUND

The lessons learned from the US automotive industry in the 80s are clear. It has
taken the industry one decade to recover from losses caused by failing to meet increased
consumer product quality expectations. Similarly, increasingly higher quality is required

for complex, high speed, digital systems. Not only does the cost of repair grow

exponentially for each stage in the manufacturing cycle faulty components go undetected,
but the use of systems in critical applications makes high quality and reliability essential.

Since manufacturing yields are typically much lower than the shipped product
quality required, testing is done to detect failed components. Traditionally, testing digital

circuits has consisted of generating tests to verify that signal nodes are not permanently
stuck at one of the logic levels. This is known as stuck-at fault testing. Vectors are applied
to the circuit under test, and the circuit outputs are sampled at the appropriate time and
compared to the expected fault-free response.

Experience has shown that even complete coverage of the classic single stuck-at
fault model is often not sufficient to achieve the required quality levels. This has resulted in
the investigation of other fault models, including bridging, stuck-open, stuck-on, and
timing faults. Timing problems, in particular, cannot be modeled as stuck-at faults. These
defects are modeled as AC faults or deZay faults. Which model is “best” is an open

question, but it appears that to approach “zero defects” a combination of techniques will be
most effective. Some form of timing-based testing is necessary to achieve high quality, as
it is impossible to know if a circuit functions at the desired speed unless the longest delays
are exercised. It is now standard practice in large high-performance computer companies to
do some kind of delay fault testing.

Timing problems occur for two reasons. There are physical failure mechanisms

that affect the performance of a system without changing the logic function, that need to be
detected in order to achieve high quality. Another reason is that aggressive, statistical
timing philosophies are often adopted to increase performance. Worst-case timing
philosophy assumes that each component in a path has the worst-case delay, which can be

1

very pessimistic and lead to slow designs. Using a statistical timing philosophy, most
circuits will operate at the chosen speed, but a few will not even though they have no
defects. Speed binning of components is often done, as a significant premium is paid for
faster parts (microprocessors are a common example). Since these components do not
have any defects that could be detected by other testing techniques, timing-based testing is
necessary.

Delay testing is significantly more complex than stuck-at testing due to the added
dimension of time, and a vast literature exists on detecting timing failures. Techniques for
detecting timing failures are classified as “direct” or “indirect” in Chapter 2. Direct
approaches include “at-speed testing”, where design verification or other vectors are
applied at system speed, or “delay fault testing”, where vectors specifically targeted for the
detection of delay faults are generated. Test invalidation by hazards is an important
problem in delay testing.

Due to difficulties with detecting delay faults directly, indirect testing approaches
have also been suggested. The defect cause rather than the resulting fault is targeted in the
indirect testing approaches. One distinguishing characteristic of the indirect approaches is
that the emphasis is generally shifted to the observation of the circuit response, rather than
the application of patterns. The most well-known technique is quiescent current
monitoring, or IDDQ testing. The indirect approaches are useful, but none can guarantee
that a circuit functions at the specified speed since the longest delay through the circuit is
not tested.

Although much research on delay testing has been done both at universities and in
industry, there is not as yet a general solution used in practice for dealing with timing
failures.

1.2 OUTPUT WAVEFORM ANALYSIS

This dissertation investigates a new approach for detecting timing failures in digital
circuits. Output Waveform AnaZysis was first presented at the 1991 International Test
Conference [France 9 1 b].

Most work on delay testing has concentrated either on the choice of input test
patterns to apply (test pattern generation), or modifying the circuit itself in order to make it
easier to test (logic synthesis). Output Waveform Analysis, on the other hand, involves
analyzing the output waveforms of the circuit under test to improve the delay fault
coverage.

The motivation for Output Waveform Analysis is that, unlike catastrophic failures
that simply have incorrect steady-state logic values at the circuit outputs, delay faults

2

change the shape of the output waveform’s of the circuit by moving the signal transitions in
time. Therefore, since the output waveforms contain information about the circuit delays,
instead of only latching the outputs at the sampling time, the output waveforms between
samples are analyzed as well. Test patterns are applied as in conventional delay testing,
with the addition of circuits that observe the output waveforms between samples. The
waveform analyzers can be thought of as “mini-watchdogs” that check individual circuit
outputs between samples.

Output Waveform Analysis is a combination of the direct and indirect delay testing
approaches. It is direct in that delay faults are explicitly considered, yet is similar to the
indirect approaches in that the focus is on the observation of the circuit output response.
Output Waveform Analysis is a Design-for-Testability (DFT) technique, where extra
resources are added to reduce the difficulty and improve the effectiveness of delay testing,
and is suitable for Built-In Self-Test (BIST). Compatibility with BIST was considered
important, as it is particularly difficult to detect timing failures in the field without access to
complex automatic test equipment.

Although there are many waveform analysis functions of differing complexity and
accuracy, they can be classified as shown in Fig. 1.1. The waveform before the sample is
observed in Pre-Sampling Waveform Analysis, whereas the waveform after the sample is
observed in Post-Sampling Waveform Analysis. Sampling (latching) the output waveform
can be considered to be a special case of Output Waveform Analysis, where only a single
point of the waveform is observed.

Output Waveform Analysis

Pre-Sampling Sampling .

(Conventional)
P YSa y ng

Off-Line On-Line

Figure 1.1. Output Waveform Analysis Classes

Applications of Output Waveform Analysis include:
1. Delay testing at various levels, e.g., wafer sort, final testing, or repair test.
2. On-line or concurrent checking.
3. Measuring propagation delays, process variations, and component wear-out.
4. Shortening or eliminating environmental stress screening (burn-in).

1.3 OVERVIEW OF DISSERTATION ’

This dissertation consists of the design and evaluation of various Design-for-
Testability (DFT) techniques based on Output Waveform Analysis. Efficient practical
implementations are described, and the benefits in terms of increased quality are shown.

Chapter 2 provides an overview of techniques for detecting timing failures. Early
work on delay testing and the issues involved are discussed, before describing the newer
delay testing approaches. Problems with currently-proposed approaches are shown,
including inaccuracies in delay modeling that can limit the effectiveness of delay testing.
For example, although it is generally agreed that two-pattern tests are necessary for delay
testing, it is shown that three-pattern tests are actually needed for CMOS circuits. Chapter
2 concludes with a description of Output Waveform Analysis, and shows how it differs
from the other approaches.

Different forms of Output Waveform Analysis are then described in more detail in
separate chapters. Post-Sampling Waveform Analysis is described first in Chapter 3 as it is
the simplest case. One important application of Post-sampling Waveform Analysis, on-line
checking, is described in Chapter 4. Chapter 5 covers Pre-Sampling Waveform Analysis.
The feasibility of each technique is shown by presenting efficient test architectures, circuit
implementations of the waveform analyzers (including a few designs manufactured and
tested using the Stanford BiCMOS process), and simulation results.

Chapter 6 provides a brief description of a Test Evaluation Chip Experiment
currently underway, with the results so far. The purpose of this experiment is to compare
the effectiveness of many different test techniques, and includes Post-Sampling Waveform
Analysis. The Test Chip has also been used to estimate the severity of inaccurate delay
modeling described in Chapter 2. The Test Chip is a 25k gate CMOS gate array.

Chapter 7 concludes the dissertation.
Evaluation of Output Waveform Analysis requires an accurate representation of the

actual waveforms at the circuit outputs for different delay fault values. Existing timing
simulators were found to be inconvenient, so an experimental symbolic waveform
simulator was implemented. The delay of the faulty element is treated as a variable in the
generation of the output waveform. The simulator, WSIM, is described in a Stanford CRC
Technical Report [France 94~1, which is included as Appendix I. The simulation results
presented in this dissertation were derived using WSIM.

Appendix II is also a CRC Technical Report [France 94d], and contains a more
complete description of the Test Evaluation Chip Experiment, including the design of the
Test Chip and the test sets applied.

(Note: The Appendices are not included in this Technical Report.)

.

Chapter 2

Testing For Delay Faults

Early work on testing for delay faults is described in this chapter, followed by
definitions and currently proposed approaches for detecting delay faults. Limitations of the
different methods are noted, showing that the delay testing problem is not solved. It is
shown that certain basic assumptions generally used in delay fault testing are not
completely correct. Output Waveform Analysis is then described.

2.1 EARLY WORK IN DELAY FAULT TESTING

Some of the early developments related to delay fault testing are summarized in this
section for a historical perspective, and to introduce the classic problems.

Digital circuits were originally tested with vectors designed to verify that the circuit
performed the correct logic function. These vectors are often called functional or design

verification vectors. However, primarily because of the difficulty in measuring the
effectiveness of a functional test, [Eldred 591 proposed a structural test technique, which is
now known as the classic stuck-at fault model.

From a synthesis perspective, [McCluskey 621 studied transients (hazards) in
combinational circuits. An algorithm was presented based on a labeling that distinguishes
between variables that reconverge after traveling different paths. These ideas were later
used for work on robust path delay fault testability. Delays were modeled as propagation
delay of gates and interconnect. The delay for a transition to propagate from the input to

the output of a gate can (i) be different for different inputs, (ii) differ for rising and falling
transitions, and (iii) depend on signals which are present at the other gate inputs. An
algorithm is given in [Eichelberger 651 for the detection of hazards in combinational and
sequential circuits.

One of the earliest papers to deal with delay faults is [Breuer 74b]. It was observed
that there are physical failure mechanisms that change the circuit parameters and the timing
of a circuit without causing stuck-at faults. These faults were termed deZay faults. An
element was considered to have a delay fault if its actual delay parameters are different from
the designed parameters. Several parameters for gate delay were used. Transport delay is
the time taken for a transition to propagate from the input to the output of a gate. Pulses

5

smaller than the inertia2 delay [Breuer 761 of a gate are not propagated to the gate output. A
range of possible delays was used to take ambiguity into account.

The main interest in [Breuer 74b] was that delay faults could cause hazards that

invalidate tests for asynchronous circuits. Fundamental mode operation was assumed,

where the input cannot change until the circuit stabilizes. Techniques for considering or
eliminating hazards in test generation and fault simulation were presented (also [Breuer
74a]). The concept of test invalidation due to hazards was important from the start of delay
fault testing.

One of the first papers to treat delay testing the way it is currently done is [Hsieh
771, which is one of six papers describing an LSI test system developed at IBM. It is
pointed out that restrictions must be placed on a design, LSSD synchronous logic in this
case. The hardware model assumed is shown in Fig. 2.1, with the combinational circuit-
under-test (CUT) surrounded by registers. Output Waveform Analysis will be described
within this framework, although it can be used in any application where useful information
can be extracted from the shape of the waveform. Separate input and output clocks are
shown in Fig. 2.1, but the system being checked could have a single clock or multiple
clocks.

Input Register Output Register

Combinational
Circuit-Under-Test

Input Clock Output Clock

Figure 2.1. Hardware Model

The CUT inputs are either connected to register outputs or primary inputs, and the
CUT outputs are either connected to register inputs or primary outputs. The longest
propagation delay through the CUT in a fault-free circuit is less than the cycZe time or clock
period, Tc. The maximum clock rate is determined by timing analysis or timing verification

[Hitchcock 821.
A single localized timing defect is assumed in [Hsieh 771, which causes one gate to

operate slower than expected. This is now called the gate delay fault model. A delay test is
performed by first initiating a transition at an input of the combinational logic, called the
first timed action. The transition is propagated to one of the outputs, and the second timed

6

action is the strobe that latches the CUT’output at the specified time. The first work on
delay fault simulation was reported in a companion paper [Storey 771. Only delay faults
greater than a certain size can be detected, unlike stuck-at faults that are simply detected or
undetected.

Two vectors are needed to initiate the transitions necessary for detecting delay
faults; the first vector is the value before the transition, and the second vector is the value
after the transition. (Dynamic logic is an exception, as the precharge step acts as the first
vector). Figure 2.2 shows a typical timing diagram for a delay test pattern pair <Vl,Vz>.
The initializing vector <Vi> is applied and the transients in the circuit are allowed to settle,
and then the test vector <V2> is applied. After a timed interval equal to the cycle time Tc of

the circuit, the CUT outputs are sampled and compared to the expected fault-free response
to determine if the circuit is functioning correctly.

APPlY
cv, >

APPlY
<if,>

Sample
44 94 ’

i i
Input Clock I

I I II
IOutput Clock :

I
iI I

t=o t= T,

Figure 2.2. Waveforms for Delay Testing

The use of a “statistical” timing philosophy rather than a “worst-case” timing

philosophy is explored in [Lesser 801. The more aggressive timing philosophy takes
advantage of statistical timing variations, and speeds up a circuit by using typical delays
instead of worst-case delays to set the clock rate. Using statistical timing there are cases
where the delay of every gate on a path is within specifications (i.e. no localized or gate

delay fault), yet the cumulative delay along the path exceeds the cycle time. Since the
objective of delay testing is to guarantee that the delay of the circuit falls within
specification, distributed delay faults along paths through the circuit need to be considered.
These timing defects are called path delay faults.

Test invalidation by hazards is a major consideration in delay fault testing.
Essentially, a test for a delay fault can be invalidated by delays in other parts of the circuit.
In general, a test that detects a delay fault of a certain size can miss faults that are both
smaller or larger. For example, if a signal changes from 0 to 1 and back to 0 as shown in

7

Fig. 2.3(a), but is sampled before the pulse, the circuit will appear to be functioning
correctly. Tests for delay faults can be invalidated by both function and logic hazards in the
CUT. Although logic hazards can be removed by proper design, function hazards do not
depend on the circuit implementation, and cannot be removed.

Sample Say ple

I
I

0 Fault-Free A i
,

1 Fault Detected B!I

Increasing Delay

k Test Invalidated Ci

Fault Detected D:

Fault Size time .
(a) Static Hazard (b) Dynamic Hazard

Figure 2.3. Test Invalidation by Hazards

A more concrete example of test invalidation is given below. Consider testing for a
delay fault of size d at input P in the circuit in Fig. 2.4. The longest path through input P in
the fault-free circuit is through the OR gate to output X, and has a propagation delay of 6
units. Assuming the cycle time Tc = 7, delay faults at P less than 1 unit are undetectable.

For the given test pattern pair in Fig. 2.4, delay faults at input P between 1 and 3 units are
detected at output X, while larger delay faults are undetected.

Test
1-o P
l-l Q

X

I I I I I I II I I I I I I c
1 2 3 4 5 6 7 Delay at Input P

Figure 2.4. Delay Fault Detection can Depend on Size

8

Due to the possibility of test invalidation by hazards in stuck-open fault testing, the
concept of “robust tests” was introduced by [Reddy 841. Robust tests are tests that cannot
be invalidated by delays in other parts of the circuit.

A six-valued algebra was presented in [Smith 851 for determining the path delay
faults detected by an input vector pair. Faults were only considered detected if they are

detected independent of the delays in the rest of the circuit. These tests were later called
robust tests for delay faults [Lin 861 &in 871.

2.2 DELAY FAULT DEFINITIONS

Currently used definitions for delay faults are discussed in this section. Various
definitions of delay faults have been used. Some of the differences are purely notational,
while others depend on the assumptions made about the testing process. A timing failure is
defined, followed by various definitions of delay faults.

Definition 1: Timing Failure
A component has a timing failure if the delay of the manufactured component is

different from the designed delay.

The delay of a manufactured circuit could be either too long or too short. If the
CUT output is not stable by the setup time of the latching element, then a long path delay
fault has occurred. If the CUT output starts changing before the hold time of the latching
element, then a short path delay fault has occurred. This is shown graphically in Fig. 2.5.

Clock

CUT
output

-0r qpre 2.5. Short and Long Path Delay Faults

9

Although short paths are important and-must be checked, most current work on
delay testing focuses on long paths. Delay testing for long paths is be considered in this
dissertation, although the techniques can be modified to detect short paths. Chapter 4 is the
exception, where short paths need to be precisely controlled.

Delay faults can affect the propagation delay of both rising and falling transitions,
or only single transitions. Slow-to-rise faults affect the rising transition, and slow-to-fall

faults affect the falling transition.

Definition 2: Delay Fault
A circuit has a delay fault if it does not work at the cycle time Tc, but works at a

slower speed. The goal of delay testing, then, is to guarantee that the circuit works at the
designed speed (and lower speeds).

Definition 2 is too general to be practical, since it does not suggest a way to
quantify the thoroughness of a particular test set. One approach would be to apply all
possible input transitions to a circuit, and use that as a “reference test” for delay faults. A
reference test is a test that would guarantee that the circuit was free of the faults under
consideration. An exhaustive test where all input combinations are applied, for example, is
a reference test for faults that change the logic function without causing sequential behavior
(e.g. stuck-at faults). However, as shown in Section 2.4, some delay faults might need
more than two patterns to be detected, so even applying all possible transitions might not be
sufficient to fully test a circuit for delay faults.

Since definition 2 is not useful, two other definitions of delay faults are commonly
used: the path delay model and the gate delay model. Before these definitions, false paths
and timing slack are defined.

Definition 3: False Path
A path from the input to the output of a combinational circuit is a false path if it does

not affect the operation of the circuit. This means that the path is not sensitizable under any
timing conditions.

Definition 4: Slack
The slack of a path in a circuit is the difference between the cycle time and the

propagation delay of the path [Hitchcock 821. Similarly, the slack at a node is the
difference between the cycle time and the propagation delay of the longest sensitizable path
(i.e. excluding false paths) through the node.

10

Definition 5: P a t h D e l a y F a u l t ’
A circuit has a path delay fault if the propagation delay of at least one sensitizable

path through the circuit exceeds the specified cycle time Tc.

Path delay faults can be either localized or distributed delay faults. The assumption
is generally made that if the propagation of all paths is within specification, then the circuit
is free of delay faults and will work at the designed speed. It is shown in Section 2.4,
however, that path delay faults (as commonly defined) are only a subset of all delay faults.

Gate delay faults refer to localized timing failures in a circuit. These faults are
usually modeled at gate inputs or outputs. Two distinct definitions are currently in use for
gate delay faults, depending on the point of view taken. If a gate is considered
individually, then there is a gate delay fault if the propagation delay of the gate exceeds its
specifications. The problem with this definition is that it can be very difficult to perform
this test when the gate is embedded in a circuit. The reason is that if there is slack at a

node, then the sampling time will need to be changed to detect gate delay faults.
For example, assume that a gate has a specified delay of 1 ns and an actual delay of

4 ns, but the slack at the gate is 5 ns. It is not possible to determine that the gate has a
timing problem without sampling the output early. Whether it is important to detect this
failure, depends on the application. For high reliability applications it may be desirable to
detect these failures, as they can be reliability detractors. Non-cycle time testing is
sometimes done, where the pattern application is delayed [Iyengar 921, or the output is
sampled early [Pramanick 891 [Mao 90a].

The definition for gate delay faults used in this dissertation is now more common,
and is based on circuit operation at the specified speed. The term deZay flaw is used to
describe gates with excessive delays in circuits that work.

Definition 6: Gate Delay Fault
A circuit has a gate delay fault if a localized timing failure causes the propagation

delay of at least one path through the circuit to exceed the specified cycle time Tc.

Definition 7: Transition Fault
A transition fault [Barzilai 831 or gross delay fauZt is a gate delay fault that is large

enough to be tested using any path in the circuit through the fault site.

11

Definition 8: Delay Flaw
.

A circuit has a delay flaw if there is a timing failure but the circuit continues to work
at the designed speed.

The notion offault detection size [Pramanick 881 is used to quantify the size of gate
delay .faults that are detected by a test. The fault detection size of a fault is the smallest
delay, such that all larger delays are detected. The smallest possible fault detection size for
a gate delay fault is the slack at the fault site, which occurs when the fault is detected
through the longest sensitizable path through the fault site.

One advantage of using Definition 6 for gate delay faults is that the term “fault” is
associated with circuits that do not perform the intended function. Therefore gate delay
faults are a subset of path delay faults, because only localized timing failures are
considered.

Figure 2.6 shows the relationship between the different fault models. A complete
test for transition faults is guaranteed to detect all stuck-at faults, for example. The reason
is that the second vector in the transition fault test is a stuck-at vector for the corresponding
node [Barzilai 831.

Stuck-At Transition
F a u l t c Fault

(Gate Delay (Path Delay (Delay
Fault Fault Fault

Figure 2.6. Relation Between Delay Fault Models

The relationship between path delay faults and gate delay faults is similar to the
relationship between multiple and single stuck-at faults. One difference is that multiple
stuck-at faults are usually considered independent, whereas multiple timing changes are
usually correlated as process variations tend to track across a chip.

2.3 REVIEW OF DELAY FAULT TESTING

Techniques for detecting delay faults are classified as either “direct” or “indirect” in
this dissertation. Generally, direct techniques are explicitly based on delay faults, whereas
indirect techniques target the underlying defect mechanisms.

2.3.1 Direct Approaches

Several alternatives have been proposed for modeling and testing for delay faults,
ranging from simplified transition fault models, to synthesizing the circuit for delay fault
testability. However all the methods involve tradeoffs, and many of the methods are not as

12

yet used in practice due to their complexity. Some of the limitations of current delay testing
methods that lead to this work are noted below.

A simple form of delay testing is to apply patterns to the CUT at system speed.
This is called at-speed testing, and is usually only possible on fast ATE or using Built-In
Self-Test. Although any vectors can be used, design verification vectors, pseudo-random,
or weighted random vectors are probably most common. Pseudo-random testing has been

successful for detecting transition faults [Waicukauski 871, but very long test lengths are
needed to achieve high fault coverage of small delay faults [Savir 881. The reason is that
small delay faults need to be sensitized through long paths, and tests can be invalidated by
delays in other parts of the circuit. Detecting each transition fault more than once has been
suggested as a practical approach for improving the thoroughness of transition fault testing.

There are some subtle differences between at-speed testing and delay testing. The
biggest difference is that for delay testing, after the initialization vector is applied, the circuit
is assumed to have stabilized before the test vector is applied. Therefore “slow” and “fast”
clocks are used for the test, which is not true in the case of at-speed testing. The
disadvantage of at-speed testing is that certain initialization conditions cannot be assumed.
For example, if a rising transition is propagated through a node that was expected to be
low, but the node has not yet discharged fully, the transition will propagate faster than
expected. On the other hand, dynamic issues such as ground bounce and capacitive
coupling are better represented in at-speed testing than conventional delay testing. Some
work has recently been done on at-speed delay tests [Pomeranz 921.

Process variations usually track across a die, and could cause distributed timing
failures. This type of failure can be detected by using a ring oscillator as a process monitor
to measure the overall speed of the die.

Algorithms have been developed for generating tests for both gate delay and path
delay faults. Path delay testing is more thorough than gate delay testing, but the number of
paths in a circuit can grow exponentially with the number of gates. There are non-
enumerative techniques to estimate the path delay fault coverage [Pomeranz 941. If
distributed timing problems are expected to occur, testing using the gate delay fault model
is not sufficient to determine if the circuit functions correctly, as the sum of distributed
delays could exceed the cycle time on some paths through the circuit.

As noted earlier, test invalidation by delays in other parts of the circuit is a major
concern in delay fault testing, and provided the motivation for the work in robust delay
tests. This is particularly true for path delay fault testing where distributed delays are
assumed, although non-robust tests are important for gate delay fault testing where only a
single fault is assumed.

13

Hazard-free path delay tests cannot be invalidated by delays in other parts of the
circuit, but these are only a subset of robust tests that cannot be invalidated [Lin 861 [Lin
871 [Park 871 [Savir 881. A taxonomy of robust delay tests has been presented by [Reddy
871. A general robust test can either contain hazards or be hazard-free, be single-path-
propagating or multiple-path-propagating, and be single-input-changing or multiple-input-
changing. (There can be paths in multi-level circuits that do not contain single-path-
propagating robust tests, yet are robustly testable.)

Robust tests are desirable, but unlike the case for stuck-at faults, irredundancy does
not guarantee robust delay fault testability. In fact, it has been found that robust tests do

not exist for most faults in the multi-level ISCAS’85 [Brglez 851 combinational circuits
tested [Kundu 88a]. Techniques have been presented for synthesizing robustly delay-fault-
testable multi-level logic circuits [Kundu 88a] [Roy 891 [Devadas 90a,b] [Pramanick
90a,b]. The first method for guaranteeing 100% hazard-free robust fault coverage was
based on repeated Shannon Decomposition [Kundu 88a], which resulted in a high area
overhead. Algebraic factorization-based synthesis techniques have been proposed
[Devadas 90a,b] [Pramanick 90a,b], since algebraic factorization preserves robust path
delay fault testability.

In order to reduce the area required to make a circuit completely robustly path delay
fault testable, validatable non-robust tests have been proposed [Reddy 871 [Devadas 921.
Essentially, under certain simplifying assumptions, a non-robust test can be considered
robust if the delays in other parts of the circuit that could invalidate the test have already
been robustly tested.

“Non-robust” tests can be generated for paths that do not have robust tests.
However, it has been shown that there are non-redundant paths that may affect the circuit’s
timing, for which no non-robust tests exist either. These paths have been called “non-

robust untestable” [Cheng 931. A path that is statically sensitizable is non-robust testable,
whereas a path that is only functionally sensitizable is non-robust untestable.

It was assumed in the above discussion that any sequence of two vectors could be
applied to the combinational CUT. For sequential circuits, however, this is not necessarily
the case. For stuck-at faults, scan design is used to reduce the sequential testing problem to
a combinational testing problem, by making all CUT inputs controllable and CUT outputs
observable. However, there are scan-path correlations that place restrictions on
consecutive vectors, so not all two-pattern tests can be applied.

One solution to this problem is to used an “enhanced” scan chain that can store two
values, but this is very expensive. Another solution is to use a “skewed-load” test [Savir
921, where the second pattern is shifted one bit from the first. It has been found that

14

arranging latches to improve the input ordering can make a significant difference in the
attainable fault coverage [Mao 90b] [Patil92]. Synthesis of delay fault testable sequential
circuits has been explored, using partial enhanced scan [Cheng 911, or state encoding
[Pramanick 931, for example.

2.3.2 Indirect Approaches

The above approaches for detecting delay faults can be considered direct
approaches, as delay faults are tested explicitly. There are also indirect testing approaches,
which target the underlying defects. Indirect methods generally try to provoke faults by
changing the testing environment, or increase observability by using alternative observation
strategies. While these methods were not necessarily developed for delay fault testing,
their ability to detect delay faults has been investigated due to difficulties with the direct
delay testing approaches.

The most common indirect testing approach is quiescent current monitoring, or
IDDQ testing [Hawkins 891 [Levi 811. CMOS circuits draw very little static power, so any
defect that causes a current path in the circuit can be detected by monitoring the quiescent
current. Common examples are defects such as bridges and gate oxide shorts. Some delay
faults can be detected, since certain defects that cause delay faults also increase the
quiescent current.

Although TDDQ testing is a very successful technique for detecting shorts, it is not a
complete method, since only some of the failure mechanisms that cause delay faults are
detected. For example, RC interconnect delay, which can be significant in CMOS, cannot
be detected. IDDQ testing is also more difficult in technologies (e.g., TI’L, ECL) where
the quiescent supply current is inherently high.

Other, more exotic, indirect techniques have also been proposed. Embedded testing
provides massive observability [Gheewala 891. Very-Low-Voltage Testing [Hao 931 tries
to provoke weak parts to fail. Transient current testing is similar to IDDQ testing, but the
dynamic current is measured [Dorey 901. Static or transient current noise testing has also
been proposed, based on the assumption that faulty parts will have more noise [Dorey 901.

All the indirect methods provide some measure of delay fault coverage; this might
be sufficient for certain applications, but the coverage in incomplete, as parts that pass the
tests cannot be guaranteed to operate at the designed speed. Speed binning, for example is
difficult to do accurately with the indirect approaches since the longest delays through the
circuit are not tested.

15

2.4 INACCURATE DELAY MODELING

This section focuses on the effect of inaccurate delay modeling on delay fault
testing. This work was presented at the 1994 VLSI Test Symposium Franc0 94b].

The delay properties of gates have been greatly simplified in delay test generation.
As fault models become more realistic, their complexity increases. It is clear that simple
delay models do not accurately represent the delay properties of gates -- after all, the
purpose of models is to hide the circuit complexity. The important question is not how
accurate the models are, but whether the models are adequare for generating tests that detect
defective circuits with reasonable cost.

It is shown that accurate delay models are needed for effective delay fault testing.
This is particularly important for large timing-optimized circuits with many paths. The
reason is that there are too many paths to test in general, so only the longest or critical paths
are often tested. Therefore it becomes important to choose the actual longest paths.

Limitations of the path delay fault model are shown. Even the assumption that two-
pattern tests are sufficient for delay testing is shown to have limitations.

Modeling gate delay is described first, and the problem with using a simple delay
model is then shown by simulating a 2-input gate. An experiment is described and possible
solutions to the problem are discussed.

2.4.1 Modeling Gate Delay

Stuck-open and bridging fault models are more complex than stuck-at fault models.
Furthermore, work has been reported on making these models more accurate. Tests for
stuck-open faults have been extended to take into account both hazards [Reddy 841 and
charge sharing [Barzilai 861. Similarly, wired AND or OR bridging faults have been
extended by the voting-model [Aiken 881 and biased voting [Maxwell 931. Complex
behavior such as “pattern dependence” has been described [Hao 911.

Work on delay fault testing has concentrated on the generation of delay tests and
making circuits robustly path delay fault testable, but the underlying model assumed in test
generation, however, is fairly simple. The normal assumption is that the propagation delay
of a gate can be different for each input, rising and falling delays can be different, and is
affected by output loading due to interconnect and input capacitance of the following gates.

In reality, the propagation delay also depends on parasitic capacitance and dynamic
factors such as capacitive coupling and ground bounce. A classification of propagation
delay models of increasing accuracy is presented in Table 2.1, for a transition at an input of
the gate to propagate to the gate output. This classification is an extension of the list
presented in [McCluskey 623.

16

.

Table 2.1. Delay Fault Models

I Level II Propagation delay dependence I

. _,&I . . -.vel2 & rising or falling transition at input

l-4-i Level 2 & input
Level 2 & innut. transition at input, loadinp

I 5 II Level 4 & state of other inputs I
I 6 II Level 5 & transitions at other inputs I
I 7 II Level 6 & state of gate I
I 8+ I I M o r e comnlex... I

The three Level 3 models are of the same complexity and grouped together. The
commonly used model for delay testing corresponds to Level 4. It is shown below that
Level 7 behavior exists even in simple 2-input gates.

There are generally too many paths to test, so the longest paths are chosen for path
delay testing. Testing multiple paths together was proposed in [Pramanick 911, and recent
results show that, on average, five paths can be tested per vector [Bose 931 [Saxena 931.
This reduction helps, but is not enough to make testing all paths feasible for many large
circuits. For example, there are 9.89x1019 structural paths in the C6288 circuit in the

ISCAS’85 benchmark suite. In fact, for one of the outputs, there are 6.44~1010 paths with
the maximum delay (using the Level 1 delay model).

In timing-optimized circuits, there will be many paths close to the maximum delay
[Williams 9 11 [Park 9 11. This means that even if there is a small error in the delay
modeling, it could turn out that few of the actual longest paths are tested, reducing the
effectiveness of the test. After going to the expense of path delay testing, it is a waste to
then test the wrong paths! The situation is even worse for gate delay testing, as only one of
the many paths through each gate is tested.

2.4.2 Three-Pattern Delay Tests

It is generally agreed that for static logic, delay testing requires a two-pattern test
<V 1 ,V2>. The initializing vector <VI> is applied, and enough time is allowed for the

transients in the circuit to settle. Then the test vector <V2> is applied, and after a timed
period equal to the clock cycle, Tc, the circuit outputs are sampled. These two-pattern tests

do not provoke the longest delay, however, as the example below shows.

17

The simplest 2-input gate is used as the ‘first example. Since realistic values are
needed for parasitic capacitance, the 2-input NAND2 gate was laid out using MAGIC,
based on the cell design in the CMOS3 standard cell library [Heinbuch 881. The circuit
was extracted and simulated using SPICE. Figure 2.7 shows the simulation setup; the
inverters were also laid out.

IN1

IN2

OUT

Figure 2.7. NAND2 Gate Simulated

The delay for a rising transition at the NAND2 output depends on whether one or
both pull-up transistors are active. The worst-case delay occurs when only one transistor is
on. However, to avoid test invalidation, only one transistor is turned on at a time in delay
testing (need the non-controlling value on the other input), so there are no problems for
rising transitions. The output falling transition (2: l+O) is more complex, however.

Consider input rising transitions at the NAND2 gate inputs A and B. Based on the SPICE
simulations, the delays are:

Delay of rising transition in A: (A,B): (0,l) + (1,l) = 0.796 ns

Delay of rising transition in B: (A,B): (1,O) -+ (1,l) = 0.808 ns

Delay of rising transitions in A and B: (A,B): (0,O) --+ (1 ,l) > 1 ns

This simple example shows that double input changes must be considered; the
worst-case delay gate delay is almost 32% greater than the worst single-input-change delay.
This is of importance for pseudo-exhaustive adjacency testing [Craig 851, for example,
where vectors with single input changes are produced.

With both inputs changing, the gate has state. When the both A and B are 0, node
X in Fig. 2.7 could be either high or low. Therefore there are two possibilities:

Precharge X low:
(A,B): (0,l) + (0,O) + (1 ,l): Delay of transition (0,O) + (1,l) = 1.003 ns

Precharge X high:
(A,B): (1,O) -+ (0,Oj -+ (1 ,l): Delay of transition (0,O) -+ (1,l) = 1.065 ns

18

The example shows that the state of the gate before the test must be taken into
account (Level 7 delay model), as one of the possibilities has a 6.2% greater delay than the
other. This difference might seem small, but this is for a simple gate, and every gate in the
circuit can exhibit this type of behavior. In timing-optimized circuits with many paths, it is
possible that only paths close to the length of the longest path are tested, so a 6.2%
inaccuracy is significant. Three-pattern deZay tests are required to set up the state of the

gate and then launch an input transition.
The physical causes for complex delay behavior are based on parasitic capacitance,

and include charge sharing, body effect, and bootstrapping [Weste 851. The behavior
observed above is due to charge sharing between the output node of the NAND2 and node
X. It is not possible to eliminate this behavior, although it becomes relatively less severe if
there is a large capacitance connected to the output node. Figure 2.8 shows another
phenomenon observed in the 2-input NAND2 gate. The voltage at node X drops below

ground due to bootstrapping, then rises to 1V before settling at OV. This behavior is
common in more complex gates with a number of internal nodes.

4 :

. .
5 --- ----------- ‘-4,

8, .a
.C .-.---me.-. ; FLU------*-s

:4 f

Ii

: i, Node Z
: I
: I
: i
:
*/

\

0 x 1 o’y 4 6 8 10 12 14

time (s)

Figure 2.8. Simulation of (A,B): (0,l) + (0,O) + (1,l)

0 IEEE [France 94b]

The SPICE simulations described above were repeated for a 3-input NAND gate.
Once again, the NAND3 from the CMOS3 library was laid out and the circuit parameters
were extracted. A summary is presented in Table 2.2. The 3-input NAND has a 7.2%
propagation delay difference between having the two internal nodes charged or discharged.

19

Table 2.2. 3-input NAND3 Delays

Transitions

@,W + (LW

(LW) + UJJ) 2.67 1

(LLO) + (LW t-i2.864

A complete path delay test for the NAND2 gate, for example, will not necessarily
include the sequence (1,O) + (0,O) + (1 J), or even the pair (0,O) + (1 ,l). This means

that the longest propagation delay through the gate will not be exercised by using the path
delay model. Therefore path delay faults are only a subset of all delay faults, and even if all
paths in a circuit are tested for delay faults, the circuit might still not operate at the desired
speed.

2.4.3 Need For Three-Pattern Tests

The significance of the behavior described above depends on how common it is,
since it is not always possible to change both inputs at exactly the same time for gates
embedded in a circuit. In this section, it is first shown that the inputs do not have to change
at exactly the same time, and then it is shown that multiple input changes are possible for a
large fraction of the gates in the combinational benchmark circuits investigated.

Figure 2.9 shows that the inputs don’t have to change at exactly the same time to
cause an increase in the propagation delay of the gate. The vertical axis is the combined

delay of the input inverters and NAND2 gate. This was done as the inverter delay also
changes slightly depending on the state of the NAND2 gate.

Node X Precharged to 5V

Node X Precharged to OV

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

A (ns)

Figure 2.9. Delay of INV and NAND2 as a Function of Shift in Input Transitions

20

The horizontal axis is the difference between the fall time of inputs IN1 and IN2 to
the circuit. The latest transition at the circuit inputs is at time 0. Node X is charged to 5V
in the top curve, and discharged in the bottom curve. The dynamic effect of multiple input

transitions is still visible even if there is one gate delay (approx. 1 ns) between transitions.
In order to estimate the likelihood of having both inputs to a gate changing together,

the ISCAS’85 circuits were analyzed. For every multi-input gate in a circuit, the longest
path to each input was computed, and the fraction of gates with the same longest path for
two inputs was recorded. This is useful because when testing the longest path through a
gate, it is desirable to have a transition at the other gate inputs. This analysis is only an
approximation, as false paths are not considered, and the two long paths might not be
sensitizable together. Table 2.3 shows that up to half the gates can have the same longest
path for two inputs. The Level 2 delay model was used.

Table 2.3. Percentage of Gates with Equal Longest Paths for Two Inputs

/ Circuit 11 Multialn;ut 1 P;cenen;fe 1

I
53 50.94% ’

120 5.00%
162 45.68%

24 85%
m’ 9”:: 18:10% ’

0 IEEE [France 94b]

2.4.4 Experiment

The problem of determining the modeling accuracy required for delay fault testing
can also be approached experimentally. Ideally, the following experiment would be

performed: Choose a combinational circuit that is robustly path-delay-fault testable, and
apply two test sets to the circuit, measuring the propagation delay for each delay test vector
pair applied. The fist test set is a complete robust path delay fault test set generated using
the Level 4 delay model, and the second test set is a reference delay test. The reference test
should be very thorough; at least a super-exhaustive (2n(2n-1)) test if possible. By
comparing the maximum propagation delay through the circuit by both the robust test and
the reference test, it can be seen whether the Level 4 modeling of delay is adequate to

21

I

provoke the longest path through the circuit. If not, then a more accurate delay model
might be necessary.

Unfortunately, such an experiment is difficult to do and has not been reported in the
literature. There is some data from an experiment on the effect of high IDDQ on circuit
reliability [Hao 931. This data is not conclusive, but does give some indication of the
problem. More conclusive data is presented in Chapter 6, based on measurements taken
from the Test Evaluation Chip Experiment.

The circuits used in [Hao 931 were 148, 74AC138 static CMOS 3-bit decoders
(with 3 select inputs) from National Semiconductor, that passed all production tests except
the IDDQ test. This is a mature process, and the data below was taken after 168 hours of
burn-in.

The delay test set consisted of 232 two-pattern tests. A subset of 68 two-pattern
tests was selected which is a complete robust path delay test for the decoder. (Most of the
robust tests were single-input-changing, and the Level 4 model was used.) The
propagation delay for each test pair was measured on a Sentry 21 tester. Figure 2.10
shows the maximum delay for the complete delay test set (“All Tests”) and the robust
subset of the test (“Robust Tests”).

Robust Tests

Average difference = 2.53%

07 I I I I I I
0 25 50 75 100 125 150

Chip Number
Figure 2.10. Graph of Maximum Propagation Delay of All Tests and Robust Tests

0 IEEE [France 94b]

The robust delay tests underestimate the maximum delay by 2.53% on average for
this experiment. This seems significant, given that the circuit is only 2-level with no
reconvergent fanout, and the I/O buffers probably account for a substantial fraction of the

22

delay. Furthermore, the reference test was only 232 two-pattern tests, whereas it should
have been at least 4,032 to test every transition, or longer for three-pattern tests.

The worst-case possible accuracy of the tester must be taken into account. One of
the chips was tested three times at the beginning and end of the test to check the
repeatability of the tester. Results of the average difference in delay between the fast and
second, and second and third tests are shown below. (There is also warming of the chip to
consider, as the IDDQ portion of the test is fairly long). The tester repeatability was within
0.2% except for one case where it was 1.1%.

, fromlto2 from2to3
beginning 0.23% 0.16%

end 1.10% -0.04%

24.5 Possible Solutions

There are several approaches for dealing with the limitations of currently-used delay
models. The simplest approach is to try to avoid the problem by estimating the worst-case
error introduced by the simple delay model. Extra tolerance is then added between the test
speed and actual system operating speed, beyond the normal tolerance allowed for
variations in operating conditions and processing factors.

Another approach is to use many patterns that provoke high node activity in the
circuit (e.g. weighted-random) in an attempt to sensitize the longest delay through the
circuit.

A more direct approach is to test multiple paths together. Testing multiple paths is
useful as a first step since by increasing the activity in the circuit, it is more likely to excite
the longest delay through the circuit. Delay test pattern generators can be constrained to try
to generate multiple input changes for all gates along a path, and only relax the constraints
if the conditions cannot be met. Figure 2.11 shows part of a CUT being tested. The side
inputs to the path-under-test must change for the maximum possible delay. In general, it is
not possible to change all the side inputs, so the number of side inputs that change at the
same time as the path-under-test must be maximized. The previous patterns applied can
also be inspected to determine the state of the gates along the selected paths.

23

1111111--111-1111--1---------------------------------------

Other Inputs

Figure 2.11. Path Under Test

As shown below, Output Waveform Analysis can be used in conjunction with the
improved test sets suggested.

2.5 OUTPUT WAVEFORM ANALYSIS

Both direct and indirect techniques for detecting delay faults were summarized in
Section 2.3, and limitations were discussed. In general, the direct approaches focus on the
application of particular patterns and timing, whereas the indirect approaches are more
focused on the observation of the response of the circuit. It has been shown in the
previous section that even in a best-case scenario where there are not too many paths to
test, and all paths are robustly path delay fault testable, modeling inaccuracies can still limit
the effectiveness of a delay test. In practice, the situation is worse since not all paths will
be tested, robust tests might not exist, and there are often restrictions on the patterns
applied (e.g., pseudo-random patterns during BIST).

Output Waveform Analysis, the technique proposed in this dissertation, is a
combination of direct and indirect approaches. As noted in Chapter 1, it is direct in that
delay faults are explicitly considered, yet is similar to the indirect approaches in that the
focus is on the observation of the circuit output response.

Conventional delay testing is complicated by the fact that only a single sample of the
output waveform is taken. Instead of only sampling the output waveform, we propose to
look at the output waveform between samples, so any changes can be used to detect delay
faults. The premise is that there is significant information in the output waveform between
samples to justify the added complexity of looking at the waveform.

The justification for the method is that, unlike catastrophic failures that simply have
incorrect steady-state logic values at the circuit outputs, delay faults change the shape of the
output waveforms of the circuit by moving the signal transitions in time. Therefore, since
the output waveforms contain information about the circuit delays, instead of only latching
the outputs at the sampling time, the output waveforms between samples are analyzed as
well.

24

We propose to perform delay testing by analyzing the output response
“continuously”. Test patterns are applied with the same timing as conventional delay
testing, and the CUT output is sampled as in conventional delay testing. Circuits are added
to monitor the output waveform between samples. It is not feasible to store the entire

waveform between samples, so some scheme for compacting the information between
cycles is necessary. There are two classes of waveform analysis functions, depending on
whether the output waveform before or after the sampling time is analyzed. These are
illustrated in Fig. 2.12, and will be called Pre-Sampling Waveform Analysis and Post-
Sampling Waveform Analysis respectively.

APPlY APPlY
<V*>

Sample
<v,,v, >

Input Clock

Pre-Sampling Post-Sampling

Figure 2.12. Output Waveform Analysis

Output Waveform Analysis attempts to overcome some of the limitations and
difficulties of traditional delay fault testing, particularly for BIST and on-line delay testing
applications. Post-Sampling Waveform Analysis is the simpler method, and reduces

invalidation of tests for delay faults due to hazards. Pre-Sampling Waveform Analysis is
more complex, but the method can also be used to detect delay flaws and screen weak parts
that do not yet have delay faults. This is useful for environmental stress screening and

predicting component wear-out in the field.
The rest of this dissertation will describe different forms of Output Waveform

Analysis, and show that the techniques are useful and practical. Post-Sampling Waveform
Analysis is described in Chapter 3, and its feasibility for on-line checking is discussed in
Chapter 4. Pre-Sampling Waveform Analysis is covered in Chapter 5.

25

Chapter 3

Post-Sampling Waveform Analysis

Delay testing by Post-Sampling Waveform Analysis is described in this chapter.

The test mode architecture and circuits for performing the waveform analysis are presented
to show that the method is feasible, and examples are given. Combining Post-Sampling
Waveform Analysis and conventional Built-In Self-Test (BIST) is also discussed. Chapter
4 covers on-line delay testing, an important application of Post-Sampling Waveform
Analysis.

3. I DESCRIPTION

Output Waveform Analysis is based on the premise that the waveforms at the circuit
outputs are different for faulty and fault-free circuits, and this information can be used to
detect timing failures. In Post-Sampling Waveform Analysis, the output waveform after

the sampling time is observed.
If the CUT is operating as designed, all pathlengths are shorter than the cycle time,

so the outputs will be stable by the time they are sampled and latched. If the CUT has an
error due to a delay fault, however, then at least one output must not have settled at the
correct logic value by the sampling time (waveforms B-F in Fig. 3.1). This faulty output
then changes to the correct value after the sampling time. Therefore, delay faults are
detected in Post-Sampling Waveform Analysis by continuously observing the CUT outputs
for any changes after the sampling time.

Sample

f
Y

II
Fault-Free

Delay
Faults

I
I time :

Figure 3.1. Waveforms with Delay Faults

26

Note that if the output waveform is unstable at the sampling time, the sampled value
may or may not be correct. If the sampled value is incorrect (waveforms B, C, and F in

Fig. 3.1), then the delay fault can be detected from the sample alone, whereas if the sample
is correct, the conventional delay test has been invalidated (waveforms D and E in Fig.
3.1).

Observing the output waveform for any changes after the sampling time will be
called StabiZity Checking. It is the “best” Post-Sampling Waveform Analysis technique in
some sense, since no information in the output waveform is lost. Final-Value Checking is
another technique that can be useful for on-line delay testing described in the next chapter.
Pre-Sampling Waveform Analysis is more complex, on the other hand, and there are many
useful waveform analysis techniques.

Figure 3.2 shows the timing diagram for Stability Checking. The initializing vector
<VI> and test vector cV2> are applied as in conventional testing. The interval from t=Tc
to t=Tc+Tslab during which signals are checked for stability, is the checking period. The

vector <V3> following <V2> is not applied during the checking period for <V&>, since

the output of a good circuit must remain stable after the sampling time, and changes due to
<VJ> would be erroneously flagged as delay faults.

I I
I : I II

CUT
output

Fault CUT
OuYput

Figure 3.2. Stability Checking Waveforms

A faulty CUT output where the propagation
cycle time is shown in Fig. 3.2. Changes during
stability checkers that observe the output waveform.

delay of the longest path exceeds the
the checking period are detected by

The duration of the checking period depends on the largest delay fault under
consideration, as delay faults longer than the duration of the checking period are not

27

guaranteed to be detected using Stability Checking. For example, if the fault-free delay of a
path is close to the cycle time TC, and the path has a delay fault larger than the checking

period, then the output will only start changing after the end of the checking period and
thus not be detected. (Gross delay faults [Savir 881 larger than the clock cycle might be
detected during the next checking period, but one cannot rely on this.)

Digital automatic test equipment (ATE) can be used for stability checking by using

window strobe or window comparison [Parker 873, but only the chip I/O pins can be
checked in this way. Since Built-In Self-Test is an important application of Stability
Checking, and many internal signals need to be checked, the focus here will be on efficient
stability checker designs that can be incorporated on-chip.

The function of the stability checkers is described in Table 3.1. If any change
occurs in the circuit outputs during the checking period, an ERROR signal is set. The
checkers need to be reset on startup, and after every cycle if dynamic logic is used or the
test is retried.

Table 3.1. Functional Description of Stability Checker
For each output of CUT, Di:

if (any change in Di)
AND (Checking Period = 1)

then set ERRORi := 1

Before Start of Next Checking Period:
set ERRORi := 0

The rest of this chapter covers the implementation of Stability Checking, including

the test mode architecture and design of several stability checkers. Some experimental
results concerning hazards are then given.

Some of the main features of Stability Checking are:
1. Stability Checking is independent of the test vectors used, and can improve the

delay fault coverage for any set of vectors. The greatest improvement over traditional

testing is in situations where the input patterns cannot be controlled and test invalidation by
hazards is a problem, such as pseudo-random testing.

2. Since multiple transitions at the outputs are detected, tests that were originally not
robust for delay faults cannot be invalidated by pulses appearing in the output waveform.

3. There is no latency in detecting faults, because as soon as a change is observed
during the checking period, it is known that the circuit is faulty. This is usually not

possible in conventional BIST techniques, where the actual circuit response is compacted
and compared to the expected response at the end of the test.

28

3 . 2 I M P L E M E N T A T I O N ’

This section is not intended to cover all possible implementations of Stability
Checking, but rather to show that it is practical to implement Stability Checking, even for
BIST applications.

Design considerations are discussed first, followed by test architectures that provide
the correct clocks and control signals to perform the Stability Checking, and the design of
the stability checkers themselves. Integrating Stability Checking with other BIST testing is
described in Section 3.3.

3.2. I Design Considerations
Implementing Stability Checking involves applying vectors with the correct timing,

providing a signal to mark the checking period, and collecting the error response from the
individual stability checkers. It is also necessary to reset the stability checkers, and in some
implementations, provide a Test Mode signal.

Clocking: The clocking needs to be modified to ensure that new vectors are not

applied to the CUT during the checking period. This is easily achieved in two-phase

double latch designs [McCluskey 861, since the input and output clocks shown in Fig. 2.1
in the previous chapter can be independently controlled. In single clock designs, the same
clock is used for applying vectors and observing the response. Either the test vector source
is modified to hold <V2> or produce the sequence <Vl,V2,V2>, or the clock itself is
slowed down.

Checking Period: The checking period signal must be precisely controlled with
respect to the clock. One solution is to distribute the Checking Period signal as another
clock. A better solution is to define the Checking Period as a function of the clock.

Test Mode Signal: Depending on the design of the checkers and the clocking
scheme used, a signal might be necessary to put the circuit in delay-test mode. If BILBO-
type registers are used in a design, then an unused control combination can be used.

ERROR Signal: The ERRORi output of the stability checker signals the

detection of a delay fault. Depending on the design of the checkers, it could be a pulse or
latched output. The individual ERRORi signals need to be combined to produce a global

ERROR signal. Depending on the diagnostic resolution desired, a single ERROR signal
can be generated by ORing all the ERRORi signals, or only certain ERRORi signals are
grouped together. The extreme is to latch each individual ERRORi signal.

29

Reset Signal: It is necessary to reset the analyzer during startup, and if the test is
to be continued after a fault has been detected. It might be desirable to repeat the test after
an error to determine if the error is temporary or permanent. Dynamic stability checkers
need to be reset before every vector to ensure that voltages are not degraded.

3.2.2 Timing Diagrams

It is now shown how the above requirements can be met without significant
hardware overhead for the two most common clocking schemes for synchronous sequential
circuits. The first is single-phase edge triggered flip-flop design, and the second is two-
phase double latch design [McCluskey 861.
Flip-flop Designs

In this test architecture, the system clock has been slowed down rather than
modifying the pattern generator. During testing, the system clock is used to define the
checking period, as well as to apply patterns and sample outputs. The system clock is held
high for Tc, and is held low for the duration of the checking period, Tstab. This

implementation is only possible in cases where the system clock can be controlled.
The duration of the checking period can be chosen to simplify the clock

modifications needed. One solution is to make the checking period equal to the normal
cycle time, i.e. TSlab=Tc. Now the system clock just needs to be divided by two during

testing. This can be done either on-chip or off-chip with a simple circuit.
The timing diagram for stability checking with a single phase clock is shown in Fig.

3.3. The first vector <VI> in the test pair is applied at the rising edge of the system clock
at time A, and the second vector <V2> is applied at time B. The checking period is defined
by the system clock being low, and starts at time C and ends at time D. No new inputs are
applied to the CUT during the checking period, as required.

APPlY
cv, >

II

APPlY
<v* >

I
I

APPlY
<Vp

II

Figure 3.3. Timing Waveforms for Flip-Flop Designs

30

Note that the second vector in the ‘test, <V2>, is the initialization vector for the next
pair of patterns. The tests are pipelined by overlapping the checking period for one test
with the application of the first pattern of the following test. For example, the checking
period CPI is overlapped with the application of the two-pattern test <Vl,V2>.

No changes in the clocking of the registers are required during testing. Using the
clock to define the checking period both reduces the cost of stability checking since no extra
checking period signal is necessary, and reduces skew in the checking period since the
clock distribution is well controlled. If there is clock skew, the checking period is also
skewed, so that stability checking starts at the right time relative to the sampled output. The
beginning of the checking period needs to be accurately synchronized with the flip-flip
setup time for effective Stability Checking (as we found out from the Test Evaluation Chip
Experiment described in Chapter 6).
Two-phase Double Latch Designs

The timing requirement is easy to implement in two-phase double latch designs,
since there are already two independent clocks in the circuit that control the application of
patterns (C2, with L2 latch), and the sampling of CUT outputs (Cl, with Ll latch). The
block diagram is shown in Fig. 3.4, and the relative timing of the clocks in test mode is
shown in Fig. 3.5. During testing, the desired checking period is achieved by delaying the
application of C2.

4

02

INPUT LATCHES
Ll L2

- l D 0 1D Q-

-1D 0 1D O-

1D Q -

CUT

OUTPUT LATCHES
Ll

- l D Q-1D

L2

System C2
Clocks Cl

Ql

Q 2

- Qm

Figure 3.4. Block Diagram for Two-Phase Double Latch Designs

31

APPlY
<v, >

Ap’plY Sample APPlY
<v2 > <v, ,v,> <vs >

Checking
Period

Figure 3.5. Test Mode Timing Waveforms for Two-phase Designs

The checking period for double latch designs is not simply one of the clocks as in
the flip-flop design, but it can be derived from Cl and C2 using the fundamental mode
circuit shown in Fig. 3.6. The checking period starts at the falling edge of Cl, and ends at
the rising edge of C2.

Checking
Period

Figure 3.6. Generating Checking Period for Two-phase Designs
0 IEEE [France 9 1 b]

3.2.3 Architecture for Stability Checking

The block diagram for Stability Checking is shown in Fig. 3.7. Single clock
designs will be used in the following discussions, as there are fewer constraints if the
application of patterns and the output sampling can be controlled separately, making the
implementation of Stability Checking simpler. The CUT output is named D, and the

sampled CUT output is named Q, due to their relation to the system flip-flop. The
checking period is denoted by CP.

32

S jstem

System

--1D -
,lD -
-1D -

- l D -

CUT

Flip-Flop
Dim-lQI

Clock

Flop-Flop Output
(Sampled Value)

-Q
D Stability ERRoRi

Checker - + ERROR
-CP

Figure 3.7. Block Diagram of Stability Checking Architecture

3.2.4 Stability Checker Implementations

Various stability checker designs are presented in this section. The designs have
been simulated using SPICE, and two of the designs have been manufactured using the
Stanford BiCMOS process. One design has been used in the Test Evaluation Chip

Experiment described in Chapter 6. Each Test Chip contains 216 Stability Checkers.
Since stability checkers could be added to every flip-flop in a design, it is important

to minimize their implementation cost. CMOS circuits are considered in this work. There
are three main considerations in the design of stability checkers:

1. Static or Dynamic Checkers. Since delay testing is intrinsically based on timing,
dynamic checkers can be designed. The advantage is that dynamic checkers have a lower
hardware overhead than static checkers, but operation is more sensitive to circuit
parameters.

2. Pulse or Level Error Signal. Checkers that produce a pulse when a stability

error occurs are simpler than level output checkers, but the pulse must be latched
eventually.

3. Independent or Combined with system flip-flop. It is possible to design
checkers that share logic with the system flip-flop. The main advantage of this is the
reduced area overhead. One of the disadvantages of sharing logic is that the flip-flop value
can be corrupted if dynamic logic is used. The flip-flop can get corrupted during delay

testing, but not during normal operation.
Intuitive stability checker designs are presented first, followed by designs using

formal methods, and finally other designs. The checkers were simulated to find the

smallest pulses that could be detected. All designs were found to have roughly the same
performance, but the smaller dynamic designs were more sensitive to circuit parameters.
Optimization of transistor sizes to improve performance was not done.

33

3.2.4.7 Intuitive Designs
.

An intuitive stability checker design is to compare the value of the CUT output D
during the checking period, to its value at the beginning of the checking period, which is
the sampled value Q. This is shown in Fig. 3.8, and involves XORing D and Q, and
setting a latch if the signals differ during the checking period. The checker is reset at the
end of the checking period. It is not necessary to have an SR latch for every signal being
checked, reducing the area overhead.

CUT Output D

Sampled Output Q

Checking Period CP

Figure 3.8. Conceptual Implementation of Stability Checker

One difficulty with this approach is that the propagation delay of the system flip-
flop must be taken into account. D and Q can only be compared once Q is valid, so small
delay faults will not be detected using the XOR. In fact, to check for setup violations, D
should be checked for any changes starting one setup time before the rising edge of the
system clock to ensure that the correct value is latched.

Figure 3.9 shows another intuitive design. If D is both 0 and 1 during the checking
period, then there must have been a stability checking error. An efficient design of a 1s
detector is shown in Fig. 3.8(b). Node 2 is low if D=l during the checking period. This
design was used in [van Brake1 921. The OS detector is similar.

D

CP
D

CP

LO
IfD=lANDCP=l

Figure 3.9. (a) Intuitive Design, (b) 1s Detector Implementation

3.2.4.2 Forma/ Design -- Level Output
Figure 3.10 shows a fundamental mode static logic stability checker design. This

circuit was designed directly from the flow table [McCluskey 861 describing the circuit
functionality. The output ERROR signal is driven high if there is any change in D while
the checking period CP=l. The operation of the circuit is as follows. Assume D=O when
the checking period is inactive, CP=O. We have YI=O and Y2=1, so ERROR=O. Now the

34

checking period starts, CP+ 1. If D rises, then Y 1* 1 and ERROR+ 1. The circuit is

symmetrical for detecting falling edges in D.

CP

D
+ -’

Yl
+- & -

+ -'
&J ' Y2

r+ \

ERRORi

Figure 3.10. Gate-Level Stability Checker Design

Note that in this design, as in others that need the complement of the CUT output,
D’ can often be taken from the system flip-flop, reducing the area overhead. For example,
inverters 11, 12 or 13 in the flip-flop shown in Fig. 3.11 could be used. This also reduces
loading on the CUT output.

C Q’

Master Slave

Figure 3.11. Master-Slave D Flip-Flop (FDl [LSI 911)

The stability checker design shown in Fig 3.10 was implemented with CMOS

NAND gates using the Stanford BiCMOS process. The layout is shown in Fig. 3.12.
This is also the stability checker design used in the Test Evaluation Chip Experiment
described in Chapter 6. Both implementations have been tested and operate correctly.

35

I

Figure 3.12. NAND Layout of Stability Checker Design in Fig. 3.10

3.2.4.3 Formal Design -- Pulse Output
The flow table approach can also be used to design a pulse-mode circuit. In this

case, there is a pulse at the output of the stability checker if D changes during the checking
period. This circuit has two states, and the state variable Y1 is a delayed copy of the CUT
output D. Stability errors are found by XORing D with Y 1, as shown in Fig. 3.13. Note
that the implementation is very similar to the conceptual design in Fig. 3.8.

Figure 3.13. Pulse Output Stability Checker Design

3.2.4.4 Ad-hoc Designs
A dynamic logic ad-hoc stability checker design is shown in Fig. 3.14. Assume

that D=l before the beginning of the checking period. Node X is precharged to 5V. When
CP=l, node Cl is discharged to OV. Now if D goes to 0 during the checking period, then
the voltage at Node X is reduced due to charge sharing with Node Cl. As long as the
resultant voltage is lower than the threshold of the output inverter, the error is detected.

36

CP
ERROR

D

Figure 3.14. Dynamic StTbility Checker

This design is very sensitive to the circuit parameters, particularly the parasitic
capacitance at nodes Cl and C2. Figure 3.15 shows the circuit layout that was

manufactured using the Stanford BiCMOS process, including the extra capacitance needed
for the circuit to function correctly.

Figure 3.15. Layout for Dynamic Stability Checker in Fig. 3.14

Figure 3.16 shows a similar design using fewer transistors. Voltage levels are
degraded in this design since one-transistor pass gates are used.

CP

D

ERROR

Figure 3.16. Efficient XOR Checker Design

37

.

3.2.4.5 Switching (Short-Circuit) Current Design
Figure 3.17 shows a design of a stability checker that uses the transient switching

current in CMOS inverters to detect signal changes. While the checking period is inactive,
node Y in Fig. 3.17 is kept at V~D by the precharging transistor, so the inverter operates
normally. Once the checking period signal rises, the bus is left floating at a little above V&)
(due to bootstrapping -- the gate-to-drain capacitor pulls the Precharged node high when
CP=l [Weste 851). If the output of the CUT, D, does not change, the inverter will draw
negligible static current and node Y will remain high. If D changes, the current flow while
the inverter changes state will partially discharge the bus, which can be detected with a
sense amplifier. SPICE simulations were performed to verify the operation of the circuit.

Sense
Amplifier

Figure 3.17. Switch&g Current-Type Stability Checker

The inverter switching current is small, so a sense amplifier is needed to detect the
small voltage swing on node Y. A possibly better design is charge node Y to just a little
above the threshold of the sense amplifier (leaving enough noise immunity), so that small
voltage drops can be detected. In this way, an ordinary inverter can be used as the sense
amplifier, and it might be possible to connect more than one CUT output to node Y.

3.2.4.6 Bridging Current Design
The previous design used the transient switching current in CMOS circuits to

discharge a node and detect the error. It is also possible to design a circuit which bridges
two nodes together. As long as D does not change, the two nodes have the same value, but
of D changes, then the nodes will have opposite values, shorting the precharged node to
ground. This approach is used in a stability checker design presented in the next chapter.

38

3.3 COMPATIBILITY WITH SAMPLING AND BIST

Stability checking needs to be integrated with other BIST techniques since stuck-
type faults are not detected. For example, if a CUT output is always low, the stability

checker will never produce an error. The other BIST techniques provide stuck-at coverage,
while Stability Checking improves the coverage of delay faults.

The Stability Checking test can be done at the same time as the conventional BIST
test to reduce test time. If the tests are done separately, then test logic can be shared. For
example, the system flip-flops can be used to store stability errors, which can be scanned
out for improved diagnosis.

Designs combining Stability Checking and BIST are shown, followed by a brief
discussion of error masking due to aliasing in BIST designs.

3.3.1 Combined Stability Checking and B/ST

The normal clock waveforms were modified significantly for implementing Stability
Checking, so it needs to be determined if it is still possible to latch the CUT outputs and do
Stability Checking together.

The timing waveform in Fig. 3.3 for flip-flop designs is repeated in Fig. 3.18.
Note that the CUT outputs cannot be latched one cycle time after the application of the input
vector. For example, after the vector <V2> is applied, the CUT outputs are normally
latched at time C. There are two problems with doing this. First, added logic is needed as
the flip-flops are assumed to be positive edge-triggered during normal operation. Second,
if the flip-flop is clocked, then new inputs will be applied to the combinational logic
following the flip-flop. If this combinational logic is also being tested, new inputs must
not be applied during the checking period, otherwise output changes due to those inputs
would be flagged as delay faults erroneously. In fact, the flip-flop at the output of the CUT
could feed one of the inputs of the same CUT; this is known as “self-adjacency”.

APPlY
cv, >

II

APPlY
cvp

II

APPlY
cvp

II

Figure 3.18. Timing Waveforms for Flip-Flop Designs

39

It is possible to do Stability Checking-and latch the output at the same time,
however, by taking advantage of the fact that the sampled value at the end of the checking
period is the same as the sampled value at the beginning of the checking period, if there are
no delay faults. Therefore, although the value at C, should be latched, the value at D can
be used. If there are stuck-type faults present, then the values at C and D are the same, so
there is no error loss. If C and D are not the same, the stability checker will detect the
difference.

Several BIST techniques have been proposed. Built-in Logic Block Observer
(BILBO) and Circular BIST are two examples. Each BILBO register can function as a
normal register, a scan chain, a pseudo-random test pattern generator, or signature analyzer
[Benowitz 751. All the registers are connected into one large combined test pattern
generator and signature analyzer in Circular BIST.

The stability checker outputs can be ORed independently of the BIST technique
used, or logic can be shared. Figure 3.19 shows a modified BILBO cell. BILBO registers
usually have an extra reset Test Mode that is not necessary. Four modes are possible using
two Test Mode signals, but the reset can also be performed using the scan mode, so this
mode can be used to load the output of the stability checkers directly into the system flip-
flops. No new Test Mode signals are needed. The stability checking results can then be
scanned out in the usual way.

L-lCUT

r”““““““““‘-~----,-----,,-----.
I

I MUX
1D I ,,c

Flip-Flop 1
I 0 1D II

----$a i
- 1
& 32

I
t

-3
-fCl I

I
:
I

cp I
I

I :---------------sm -..------------------9,

Mode

Figure 3.19. Modified BILBO Cell

The above approach is useful if diagnosis of the Stability Checking error is
necessary, but increases test time. Another approach is to XOR the output of the stability
checker with the output of the circuit, and collect the stability checking errors together with
the normal signature.

40

3.3.2 Aliasing
.

The biggest uncertainty in BIST is the error masking in the response compaction.
There is a certain probability that the compacted faulty response will be equal to the fault-
free compacted response. This phenomenon is called aliasing. Extensive fault simulations
can give an idea of the aliasing probability for particular fault models, and probabilistic
approaches to computing the aliasing probability have been presented. I did some work
with Dr. Nix-ma1 Saxena on simple upper bounds on the aliasing probability for serial
signature analysis [Saxena 9 1 b] [Saxena 9 1 c] [Saxena 921, but this will not be reported
here. The motivation for this work was choosing test lengths and linear feedback shift
register (LFSR) feedback polynomials to minimize the aliasing probability. The conclusion
was that although the aliasing probability approaches the well-known asymptotic value of
2-k for a k bit signature register, for short test lengths L, the aliasing probability is
essentially bounded by l/L.

There is one result presented in [France 91a] that is of interest for delay testing.

This work investigated the aliasing probability for faults with very low fault detection
probabilities. Delay faults are harder to detect than stuck-at faults, and can have very low
fault detection probabilities [Savir 881. The fault detection probability of a delay fault is the
probability that a randomly-selected vector pair will detect the fault. The main result is that
for certain non-primitive polynomials and faults with low detectabilities, the asymptotic
aliasing probability of 2-k is not reached even for very long test lengths. The notion of
“practically infinite” test lengths was used to resolve the apparent contradiction between this
result and the asymptotic result.

For example, consider a 100 bit signature analyzer with a test length of 106, and a

fault with a very low fault detection probability. The asymptotic aliasing probability is
miniscule. However, the aliasing probability could be as high as 1% if a simple feedback
connection is used where the last stage is fed back into the first stage of the signature
analyzer.

3.4 TESTING STABILITY CHECKERS

The stability checking circuits need to be tested after manufacture. If the CUT is
free of delay faults and is operated at system speed, the checkers will never signal errors so
they cannot be tested. Test signals can be added to test the stability checkers; this was done
for the Test Evaluation Chip Experiment described in Chapter 6. Another possible testing
strategy is to induce delay “faults” by increasing the clock frequency above the maximum
specified operating speed of the CUT, so the outputs will be unstable during the checking
period. This is sufficient if the outputs of individual stability checkers can be observed, but

41

care must be taken if the stability checker outputs are ORed together, otherwise error
masking can occur. Test pattern generation is needed to find input vector pairs such that
only one output is unstable at a time, so the corresponding stability checker can be tested.
These are called single-path-propagating delay tests, using the classification presented in
Chapter 2. Test generation time should not be an issue, as tests are only needed for CUT
outputs, and not all internal nodes.

3.5 RESULTS

Examples have been given to show the advantages of delay testing by Stability
Checking, and circuits for the analyzers have been designed to show that the technique is
feasible. Experimental results are now given to show the benefit of using Stability
Checking for delay testing.

The benefit of Stability Checking for delay testing depends on the presence of
hazards in the CUT response: if all the outputs have single transitions, the technique will
only detect faults that are also detected by sampling the output. Even if outputs have single
transitions, Stability Checking can still be useful in cases where low latency is required, as
one does not have to wait until the end of the test to know if there were delay faults.

To determine the number of hazard pulses in typical designs, the ALU18 1 and
ISCAS’85 [Brglez 851 benchmark combinational circuits were simulated with pseudo-
random input patterns, and the output waveforms were analyzed.

For the ALU 18 1, the test patterns were also applied to a 74LS 181 chip using a
Tektronix DAS9200 ATE, and the response was observed on a high speed oscilloscope. A
high correlation between the actual circuit hazard transitions and the simulation results was
found, despite the fact that the actual gate delays were not known for the chip. A typical
waveform is shown in Fig. 3.20. The 1 -hazards at clock cycles 1, 3 and 4 were observed
both on the ATE and the Verilog simulations.

Output F3

Clock

1 2 3 4 1 2

Figure 3.20. Hazards in 74LS181
0 IEEE [France 91 b]

42

The waveform simulator described in [France 94c] was used to find the distribution
of the number of transitions at the outputs of the ISCAS’85 circuits. Table 3.2 shows the
average number of transitions per output node per input vector.

Table 3.2. Average Number o Transitions ner Not le per Vector

I Circuit Output Transitions
0.613
1.131
0.526
0.527
0.53k
0.886
0.513
1.370
0.634
31.666
1.081

Multiple transitions were observed for most circuits. The C6288 benchmark circuit
has particularly many transitions due to its rich reconvergent fanout structure. Figure 3.21.
shows some output waveforms for the C6288, for a single vector pair at the inputs.

The distribution of the number of transitions at the outputs of the ISCAS’85
circuits are shown in Fig. 3.22. The distributions are based on counting the number of
output transitions at each output for 120 random vectors. Some of the circuits have
multiple transitions a small fraction of the time, while other have a reasonable fraction of
multiple output transitions. C6288 is very different from the rest; there was even one
output with 80 transitions. Zero transitions means that the output was stable, one transition
means that there was a single change in the output, and higher numbers indicate the
presence of hazards pulses.

Input n

Figure 3.21. Hazards in C6288 Outputs

43

i

3.6 CONCLUSION
.

A new technique for delay fault testing was introduced in this chapter. Delay faults
are detected in Stability Checking by observing the output waveforms of the CUT for any
changes after the sampling time. Test architectures and efficient stability checker
implementations have been shown. Two design were manufactured using the Stanford
BiCMOS process, and work correctly. The design in Set 3.2.4.2 was included in the Test
Evaluation Chip Experiment, and also works correctly.

Stability Checking is suitable for BIST, where delay testing is particularly difficult
due to test invalidation by hazards. Simulations were performed to determine the expected
number of hazard pulses at circuit outputs with pseudo-random inputs applied. For the
ALU 18 1, the simulations were verified on an ATE.

Multiple transitions were found at the circuit outputs, but it should be noted that
even if there are only single transitions, Stability Checking can still be useful. If there are
only single transitions, then delay faults will also be detected by the sampled value, but in
Stability Checking there is no latency or possibility or aliasing.

Although the Stability Checking has been described as an off-line testing technique,
it can also be used for on-line delay testing. This is the subject of the next chapter.

45

i

.

Chapter 4

On-Line Delay Testing

This chapter describes how Stability Checking can be used for on-line checking.
This work was presented as a CRC Technical Report [France 931, and at the 1994 VLSI
Test Symposium [France 94a].

4. I INTRODUCTION
Circuits are tested after manufacture to determine if they operate as designed. Due

to environmental influences and finite reliability, testing also needs to be done to verify that
a circuit that worked when manufactured continues to work correctly. To ensure data
integrity in critical applications, the circuit needs to be constantly monitored to ensure that
correct outputs are produced. In these cases, testing is done concurrently with normal
system operation, and is called on-line or concurrent checking.

Sources of error include circuit reliability failures, as well as external transient
disturbances such as capacitive coupling, radiation, supply voltage changes, and
environmental changes such as temperature and humidity. Some form of redundancy is
used to detect these errors.

Hardware redundancy is a widely used technique for on-line checking. Two
common approaches are duplication, where two copies of the circuit are compared, and
parity checking, where an overall parity bit is generated [Johnson 891. The overhead for
parity checking is much smaller than for duplication if the relationship between outputs is
simple (e.g., bus), but it can be as high as for duplication for general circuits. Other
approaches using Berger codes and groups of parity bits have been explored [Jha 911 [De
921, and result in lower hardware overhead than duplication for some circuits.

A new general technique for on-line checking of digital systems is proposed in this
chapter. Unlike other techniques which are generally totally self-checking with respect to
stuck-at faults (which are known to have limitations for CMOS circuits), the proposed
technique targets the expected failures in CMOS circuits. It is shown that, under certain
conditions, Stability Checking can be used for on-line checking. Stability Checking was
described in Chapter 3, and is based on the fact that in a fault-free circuit, the outputs are
expected to have reached the desired logic values by the time they are sampled, so delay

46

faults can be detected by observing the outputs for any changes after the sampling time.
The stability checkers are “mini-watchdogs” that check if a computation completes in the
specified time within each clock cycle, analogous to system-level watchdog timers [Connet
721 that check if a task completes within a specified time interval.

The advantage is lower hardware overhead than duplication while detecting most
common CMOS reliability failures [Woods 861, as well as many transient failures.

Some errors will not be detected by on-line Stability Checking, but this is a
limitation of all checking techniques. Different approaches trade off the class of errors

detected for area or speed overhead. Parity checking, for example, does not detect many
classes of errors but is still useful in many applications. On-line Stability Checking detects
errors caused by most common reliability failures and transients, assuming the circuit is
initially free of functional faults, at a fraction of the cost of duplication. A functional fault
is a fault that changes the logic function of the circuit. Most CMOS reliability failure

mechanisms are not instantaneous, but rather “wear out” and degrade performance before
causing functional faults. Sudden functional faults are not guaranteed to be detected, but
these are expected to be rare.

On-line Stability Checking is also suitable for aggressively clocked systems that
could have marginal timing problems in certain environmental conditions, for example.

This chapter is divided into three parts. First, it will be shown that on-line Stability
Checking is feasible, by showing timing diagrams and stability checker designs. Next, on-
line Stability Checking is shown to be useful, by evaluating its performance and comparing
it to other on-line checking techniques. It is then shown that on-line Stability Checking is
practical by presenting an algorithm for modifying circuits to meet timing constraints.
Experimental results for benchmark circuits are given, and extensions, including software
run-time checking and VHDL synthesis, are described in Sec. 4.6.

4.2 ON-LINE STABILITY CHECKING
The requirement for using Stability Checking on-line is given in this section. The

hardware model used is fully synchronous design, with the combinational circuit-under-test
(CUT) surrounded by edge-tri,,moered registers, as used in Chapter 3. On-line Stability
Checking is also possible for other clocking schemes.

4.2.1 Off-line Delay Testing by Stability Checking
Stability Checking was proposed as a different way of improving the thoroughness

of delay fault testing. The greatest improvement over traditional testing is achieved in
situations where the input patterns cannot be controlled, such as pseudo-random testing,

47

for example. This is also the case for on-line-checking, as the signals during normal
operation are used as the test vectors.

Figure 4.1 shows a typical timing diagram for off-line Stability Checking. In off-
line testing, the vector <V3> following <V2> is not applied during the checking period for
cVl,V2>, since output changes due to <V3> would be erroneously flagged as delay faults.

I

Output Clock ;

CUT
output

t:Tc %a6 t =T; + Tstab

Figure 4.1. Off-Line Stability Checking (similar to Fig. 3.2)
0 IEEE [France 94a]

Delay faults shorter than the duration of the checking period are detected when they
cause errors using Stability Checking. The reason is that the fault free value will be

available by the end of checking period, so if there are no changes during the checking
period (stability errors), then the sampled value must be correct. This property makes on-
line Stability Checking possible, since the CUT output need not be compared to another

signal to determine if it is correct.

4.2.2 Reduced On-Line Checking Period
The difficulty in implementing Stability Checking on-line is that the vector <V3>

following <V2> cannot be delayed without impacting the performance of the circuit. This
is resolved by making the duration of the checking period duration less than the
propagation delay of the shortest path in the circuit, Tshort. This often requires
modifications to the CUT, as discussed in Sec. 4.5. In this case, although vector <V3> is
applied at time t = Tc in Fig. 4.1, it will not affect the output until after the end of the

checking period. Reducing the checking period is the only restriction necessary for
implementing on-line Stability Checking, i.e.:

Tslab < Tshort (Bestcase) (4.1)

48

The restriction in equation (4.1) is shown graphically in Fig. 4.2. The worst-case
longest path in the circuit must be shorter than the cycle time less the worst setup time for
the flip-flop, D to Q propagation delay for the flip-flip, and clock skew [Weste 931.

Long Path

,: Period

Figure 4.2. Checking Period Restriction

Different operating conditions and timing skew must be taken into account in
computing the best-case short path through the circuit. For example, typical values for

delay dependence are a 6% speed increase for a 0.25V supply increase, and an 8% speed
increase per 25°C junction temperature decrease [LSI 911. Delay ranges due to process
variations can be large for different wafers. Process variations within one chip, however,
are small. (It would be very difficult to control clock skew if this were not the case.)
Therefore if speed binning is done, process variations are taken care of. Another approach
is to generate the checking period signal on chip, so that it tracks process variations.

Note that, unlike off-line Stability Checking, hazards are not a factor in on-line
Stability Checking. Whether the output has a hazard-free transition or multiple transitions,
any change in the output waveform when the waveform should be stable is detected.

4.3 IMPLEMENTING ON-LINE STABILITY CHECKING
The requirements for implementing on-line Stability Checking are similar to

implementing off-line Stability Checking:
l Providing a signal to mark the checking period,
l Collecting the error signals from the different flip-flops,
l Implementation of the stability checker itself.
The architecture will be discussed first, followed by possible stability checker

implementations.

49

4.3. I Architecture for Stability Checking
Figure 4.3 shows a block diagram of the on-line Stability Checking architecture,

with a stability checker added to each CUT output in a design that will be checked. The
problem of distributing the checking period signals is resolved by using the system clock to
mark the checking period as in off-line Stability Checking, except that the checking period
is now when the clock is high. Using the clock as the checking period both reduces the
cost of Stability Checking since no extra signals are required to indicate when the CUT
outputs should be checked, and reduces skew in the checking period since the clock signal
distribution is typically well controlled. The duty cycle of the system clock is adjusted so
that the time, T,yld, the system clock remains high defines the checking period.

System
Clock

I 1
1D

--1”
t7

Stability
*ERROR i

0 Checker - +
-

Sampled., .value

ERROR

Figure 4.3. Block Diagram of On-Line Stability Checking Architecture

The timing diagram for a single-clock, edge-triggered design is shown in Fig. 4.4.
The checking period CP1 for vector <Vi> starts after the application of <V2>, and ends
before the CUT outputs can be affected by input <V2>.

<Vi> %
cv2 >

Tc
<v3>

Tc
cv4 >I I I

Normal I I II I I

s ii%?;! I I
d-1
I b,,, b

L--A

Delay Fault ’
Detected

Figure 4.4. Timing Waveforms for On-Line Stability Checking
0 IEEE [France 94a]

50

The duty cycle of the system clock determines the checking period, but the duty
cycle of the system clock cannot usually be adjusted arbitrarily. Very small or very large
duty cycles are undesirable, due to minimum clock pulsewidth restrictions. This is not
expected to be a problem here, as the target checking period duration is roughly half the
clock cycle. The problem of generating a clock with the required duty cycle remains,
however. This problem is also encountered in off-line Stability Checking if the clock and
checking period signals are shared, but off-line, there are two separate modes for normal
operation and delay testing. On-line, there is only the normal operating mode.

The duty cycle of the clock can either be set externally, by delay elements, by
dividing a higher frequency, or by an on-chip phase-locked loop (PLL) [Weste 931. For
the frequency divider or PLL, only ratios of small integers are practical for the duty cycle
(e.g. l/3,2/5, l/2, etc.). The fraction closest to the desired checking period can be selected
for the circuit.

There are many ways to collect the individual ERRORi signals, depending on the
level of diagnosability required. For many applications it is sufficient to localize the error
board or chip, and a global error indication can be produced by ORing all the individual
ERRORi signals. Figure 4.5 shows one implementation, where the ERROR signals for
different registers are cascaded, minimizing the wiring overhead, depending on the layout
of the registers. More detailed information might be useful, however, for failure mode
analysis of No Trouble Found boards [Cortner 871. The extreme case is to latch each
ERRORi signal and scan the result.

Reg. 1
C Cl

nl&DQ
nl nl

E
+

Reg. 2 Reg. 3
c-@-J

ERROR

Figure 4.5. Cascaded ERROR Signal Collection

4.3.2 Stability Checker Design
The function of a stability checker is to produce an error if there are any changes in

the CUT output during the checking period. The stability checkers designed in Chapter 3
can be used for on-line Stability Checking. Another design is shown below that combines
the stability checker and flip-flop and is actually smaller than the original flip-flop. A
combined stability checker and scan flip-flop is then shown.

51

Dynamic Stability Checker Design Combined with Flip Flop
A dynamic CMOS [Weste 851 combined flip-flop and stability checker is shown

below. This design exploits the fact that CMOS circuits draw very little static power.
Instead of supplying power directly to inverters in the flip-flop master, power is supplied
by precharging and then floating an internal node during the checking period. If the CUT
output D does not change during the checking period, the precharged node will remain
high. The transient short-circuit current from changes in D will discharge the monitored
precharged node.

Figure 4.6 shows a typical CMOS master-slave flip-flop [LSI 911. The function of
transmission gate Pl is to decouple D’ and q when the clock is high. While the clock is
low, transmission gate Pl conducts, and the value at D’ propagates to the input, q’, of
transmission gate P2. Transmission gate P2 is turned on, latching q’. The critical

observation is that since the checking period is defined by the system clock, D does not
change in a fault-free circuit while the clock is high, and so Pl can be removed.

D Q

C Q’
.------------------------- I_----------------_-_____(

Master Slave

Figure 4.6. Master-Slave D Flip-Flop (FDl [LSI 911)

In the presence of a delay fault, D will change while the clock is high. The

modified flip-flop master is shown in Fig. 4.7. Transmission gate Pl is removed, and
inverters 11,12 and 13 are powered by the precharged node ERROR;‘.

ERROR

Figure 4.7. Modified Master of Flip-Flop with Stability Checking
0 IEEE [France 94a]

52

ERRORi’ is kept at VDD by transistor T while the system clock is low, so inverters
11, 12 and 13 operate normally. When the system clock rises, ERRORi’ is left floating

close to VDD. If D does not change, 11, 12 and 13 draw negligible static current and
ERRORi’ remains high. If D changes, there are two types of current paths that will
discharge ERRORi’, detecting the fault. The first component is the transient short-circuit

switching current of the inverters (this was used in the stability checker design in Sec.
3.2.4.5). The second component is due to the finite propagation delay of inverters 12 and
13 in the loop. When D changes, the outputs of 11 and 13 will have opposite values and be
tied together, momentarily discharging ERRORi’. For a O+l (1 -+O) transition in D, there
is a path from ERRORi’ through the P channel of 13 (11) and the N channel of 11 (13), to

ground.
SPICE simulations show that the modified flip-flop functions as described. The

waveforms in Fig. 4.8 show that erroneous rising (time 90) and falling (time 170)
transitions in D during the checking period are detected. Single transitions were simulated
for D, since if a single transition is detected, then multiple transitions will also be detected.
Several transitions in D while the clock is low don’t affect the ERROR output.

C (Clock)5 _ . . _. _ _ _ _ _. . _. . _. . _ . , .-.--.."‘-.'-..-..*

4 - \
a
:
% 3 - i i

' 2- i
;

l - ;

0 ‘r I I I I I I I I I 1n
0 x lo-= 40 60 80 100 120 140 160 180 200

Time

5

4
D=3
s

2

0

Checker Reset . Error Detected Error Detected::---.--r, .---; s :f---“-“-.----“-c-...-....-...----- ,)

7

~“---.,.~~--~--,: .‘~-~‘~‘-~-“‘-., ,.--.. #.A (,..... r’ . ,,.....-..-.--.--..r :; : : : : :’: $: I :: !. :: : ;
i ;

ERm :-..-..-..I.......:
Signal l3m'

_ __._.__..____.___. 2

oxlo-y 40 60 80 100 120 140 160 180 200
Time

Figure 4.8. Spice Simulations for Modified Stability Checking Flip-Flop

53

Another benefit of the modified flip-flop is that, since a transmission gate is
removed, the setup time is reduced. The setup time for the simulated circuit was about 2/3
of the setup time of the original flip-flop. Sharing logic between the flip-flop and stability
checker also makes it is easier to synchronize the start of the checking period with the flip-
flop setup time, by using internal signals in the flip-flop.
Stability Checker Design Combined with Scan Flip Flop

Since scan design is common, a scan-compatible flip-flop based on the design in
Fig. 4.7 is shown in Fig. 4.9. Inverters 11, 12 and 13 are powered by precharged node
ERROR;’ as in Fig. 4.7.

Two modifications are necessary to the flip-flop. Transmission gate Pl could only
be removed from the D input of the flip flop, because it satisfied the restriction in equation
(4.1). The scan input (TI), however, could be a very short path from the previous flip-
flop, so the input transmission gate is necessary. Furthermore, in scan mode, the short TI
input will toggle the flip-flop while the clock is high (during the checking period).
Therefore an extra transistor is needed to keep the precharged node high, to keep the flip-
flop operating correctly during scan.

D
TE
TI

C

ERRORi’

(a) Conventional Scan (b) Combined Scan and Stability Checking
Figure 4.9. Combined Scan and Stability Checking Flip-flop Master

0 IEEE [France 94aJ

Typical transistor counts for different flip-flops are given in Table 4.1. The
combined flip-flop and stability checker is smaller than the original flip-flop since a
transmission gate was removed (this flip-flop cannot be used in designs that do not satisfy
equation (4.1)). The routing overhead for Stability Checking should be lower than for full
scan because no extra scan clock or scan-mode signal is needed. The combined scan flip-
flip and stability checker is only 6.25% larger than the scan flip-flop.

54

Table 4.1. Comparison of Transistor Counts

I FliD-FlOD

4.4 PERFORMANCE EVALUATION
In this section, the error detecting capability of on-line Stability Checking is

evaluated. Limitations are noted, followed by a description of common failure modes and
transient errors. The performance is then compared to other on-line checking techniques.

4.4. I Limitations
The biggest limitation of on-line Stability Checking is that functional faults are not

guaranteed to be detected. Output stuck-at faults, for example, will not be detected since
the output is always stable. (Off-line, this is not a problem as the fault-free sampled value
is known.) If a sudden functional failure does occur, it will only be detected if one of the
CUT outputs changes during the checking period. The probability of detection can be
small, as it depends on when the defect occurs, and the number of outputs to which it
propagates. The probability of detection is bounded by the fraction of the clock cycle
covered by the checking period, i.e.:

T
Pr(detect sudden functional failure} 29 (4.2)c

For a delay fault of size d, the fault-free output is available by time T, + d at the
latest. Therefore, any resulting error is guaranteed to be detected if the output is checked
for stability between Tc and T, + d. Therefore, errors due to delay faults smaller than the
checking period are always detected:

Pr{ detect error due to delay fault d c T,gab} =1 (4.3)

4.4.2 Common Failure Modes
Although functional faults are not guaranteed to be detected, most common

reliability failures in CMOS VLSI circuits first manifest themselves as small delay faults,
which become progressively larger over a period of time, until a functional fault results.

55

The rate at which the delay increases is such that the transition to functional fault occurs
over many clock cycles. Therefore, if periodic off-line testing is performed to ensure that
no functional faults exist at the start of operation, most new defects are expected to be
detected before they cause functional faults. Therefore, it is appropriate to detect reliability
failures as delay changes.

The properties of the most common reliability failure mechanisms in CMOS VLSI
[Woods 861 are briefly described below.
Gate Oxide Shorts

Gate oxide shorts can be the dominant failure mechanism in some CMOS processes
[Hawkins 85][Hawkins 861. Pin-holes in the oxide form a resistive path between the gate
and the source, channel or drain of a transistor. Leakage current can cause time-dependent
breakdown of the oxide [Hawkins 861 [Yamabe 851, and increased propagation delay is
common, as observed in [Hawkins 861 and as
[Hao 911.
Hot Carrier Effects

Some of the carriers in the channel of an
be injected and remain trapped in the gate oxide,

predicted by the circuit-level analysis in

MOS transistor can gain enough energy to
changing the transistor’s threshold voltage

and transconductance. As more carriers become trapped over time, the propagation delay
of the logic gate continues to increase [Hu 851. Propagation delay versus time graphs are
shown in [Hu 891.
Elec tromigra tion

As atoms are moved along a wire or a contact, either voids or hillocks can occur.
The current density is greater in the constricted portion, so accelerated electromigration will
cause further narrowing. Electromigration causing voids increases the wire resistance and
RC time constant, resulting in an increasingly larger delay before an open circuit occurs.
Hillocks can cause a bridging fault. During build-up, the change in coupling capacitance
and eventual resistance between bridging lines will affect the timing of the CUT.
Transients

Temporary external disturbances such as power supply variations or
electromagnetic interference can cause transient errors in the CUT signals, and need to be
considered for on-line testing. If the duration of the transient is less than the checking
period, then it will be detected by the stability checker if it caused an error. The reason is
that if the sampled value is incorrect, the CUT output will switch back to the correct output
within the checking period.

Pr{ detect error due to transient shorter than T,g& = 1

56

(4.4)

If the duration of the transient is greater than the checking period, errors might not
be detected, depending on how the output waveform is affected. Increasing the duration of
the checking period increases the probability that a transient will be detected. The
probability of detecting a long transient is approximately T,QJT~ at each affected output.

Assuming that the CUT output is forced to a constant value for the duration of the transient
(worst case), then the probability of detecting a long transient at each affected output is
approximately:

Pr{ detect start of transient longer than T,gd} TStab= T Pr{ Output at opposite level}
C

TStab
=2T,

I?-(detect transient longer than Ts&,} = Pr{ Detect start or end of transient}
TStab + TStab TStabTStab- -

=x 2T, 2T, 2T,

(4.5)

Single event upsets (e.g. high energy particles) that cause state changes can be
detected either directly in the flip-flop that toggles, or if the transition propagates through
the combinational logic and causes a stability checking error in another flip-flop.

4.4.3 Performance Comparison with Other Techniques
In the same way that parity schemes rely on single errors being much more

common than multiple errors, on-line Stability Checking relies on reliability failures
appearing as delay changes first. As long as this is the case, it has almost the same
performance as duplication with a significantly lower hardware cost.

Hardware duplication [Johnson 891 does not detect some common-mode problems
that could be detected by Stability Checking. Temperature or power supply variations, for
example, might affect both copies of the CUT in the same way, whereas excessive path
delays due to the variations would be detectable by on-line Stability Checking.

Stability Checking can also be combined with duplication. Two copies of the
circuit are compared, and when they differ, the circuit without stability checking errors is
assumed to have the correct response. Once the failed circuit is removed, the remaining
circuit still has Stability Checking. This approach seems to provide a level of fault

tolerance similar to triple modular redundancy (TMR).

57

A simple form of time redundancy is to repeat a computation and compare results.
Transient errors are detected by this technique, but unless precautions are taken, the same
permanent error will appear in both computations. (One solution is recomputing with

shifted operands [Johnson 891, but this only works for certain data-paths.) In comparison,
on-line Stability Checking does not have the performance overhead, and there is no
masking due to repeated errors.

The main benefit over parity checkers is that on-line Stability Checking can be used
with any design, whereas parity prediction can be as expensive as duplication in general.
(Circuits with a single output are a simple example.) A further benefit is that since each
output is checked independently, there is no masking of multiple errors such as can occur
in parity schemes. This makes it possible to diagnose the incorrect output if necessary.

4.5 PADDING SHORT PATHS
The performance of on-line Stability Checking depends on the duration of the

checking period, and consequently the shortest path in the CUT. There is a tradeoff
between longer checking periods that guarantee the detection of larger delay faults and
increase the probability of detecting untargeted faults, and placing more severe restrictions
on the CUT pathlengths. Most benchmark circuits investigated did not meet pathlength
restrictions, so techniques for increasing the delay of short paths are presented in this
section.

Since some paths are too fast, ideally, smaller gates with less drive can be used.
Unfortunately this is not possible in all cases, since often there will be short and long paths
through a gate, so a slower gate cannot be used. In general, extra padding elements are
needed to increase the delay of short paths. Padding refers to the addition of extra delay in
short paths in a circuit to meet timing requirements.

Eliminating short paths is more complicated for CMOS than for other technologies,
due to the severity of CMOS pattern dependent delays. When there are parallel transistors,
the drive strength of the gate depends on how many transistors are conducting. The delay
for the 111 l+l 110 transition in a 4-input NAND gate, for example, could be about four
times the delay for the 111 l-+0000 transition. Pattern dependent delays are used in the
exampl es below.

It is shown that the hardware overhead to achieve reasonable checking periods (say
-$$) is generally small compared to duplication. The reasons are:

l Timing optimized designs have few short paths,

l Gate delay is a strong function of area.

58

These points are discussed below, before describing a simple algorithm for padding
short paths and presenting experimental results in Sec. 4.5.4.

4.5. I Timing-Optimized Circuits
The cost of padding short paths depends on the distribution of pathlengths in the

CUT. The focus will be on timing optimized designs, as the emphasis is now often on
performance over minimizing area. It has been shown that timing-optimized circuits

approach the condition where all paths have the same maximum delay pUilliams 911 lpark
911, reducing the need for padding elements. Shortening the longest path affects the
padding of short paths in two ways. The timing optimizations tend to equalize path delays,
increasing the length of short paths. Furthermore, short paths need less padding to reach a
given fraction of a reduced longest path. (In fact, even for the ISCAS’85 circuits, it has

been found that there are few very short paths [Cheng 921.)

4.5.2 Custom Cells for Padding Short Paths
For circuits where padding is necessary, the overhead for eliminating short paths

can be reduced if customized gates are designed. A custom or standard cell design is
assumed; the cost for a gate array design will probably be larger since the transistor
geometries are fixed. The area of padding elements grows slowly as a function of delay
because the delay depends on the active transistor area, which covers a small fraction of the
cell area. As an example, the delay and area of various buffers in a LSI Logic standard celI
library [LSI 911 is shown in Fig. 4.10. A cell five times the size of the LSI inverter has 34
times the delay.

35J

30- LSI 1OOk Library

0 1 2 3 4 5

Relatwe Area

Figure 4.10. Delay versus Area for LSI Standard Cells

The cells in Fig. 4.10 are useful when large delays are needed for padding, but it
was found that cells with many intermediate values of delay were also necessary. The idea
is to have multiple cells with slightly different delays, and then choose the optimal one to
tune pathlengths. Designing multiple cells with similar footprints also simplifies post-
routing replacement of cells to further improve pathlength tuning. There are two kinds of

59

padding elements, shown in Fig. 4.11. If there is’ timing slack at a gate, then a slower gate
can be used. If only some of the fanout branches have slack, then a separate padding
element must be inserted.

Pad Fanout

Figure 4.11. Two Types of Padding Elements

As examples of both types of padding elements, the buffer and 2-input NAND gate
in the CMOS3 standard cell library [Heinbuch 881 were modified. The CMOS3 library
was used, as the cell layouts are available. The cells were modified using MAGIC, and
SPICE simulations were performed on the extracted layouts. The input capacitance and
drive strength of the cells remained virtually the same. Figure 4.12 shows that a buffer
with 2.8 times the delay of the original buffer is only 14% larger, and a NAND gate 2.4
times the delay of the original NAND is only 17% larger. (Incidentally, the pattern
dependent delay for both inputs falling is 56% of the maximum delay for the NAND2
gate.) There is a limit to the delay of cells designed by resizing transistors, as the signals
eventually change very slowly and are prone to noise. These cells are used in the examples

in the next sections.

3.0

z 2.0.-=
fi[I 1.5

1.0 r’

2.6

$ 1.8.-
z
z 1.4

1.0

1.00 1.05 1.10 1.15 1.00 1.04 1.08 1.12 1.16
Relative Area Relative Area

(a> (b)

Figure 4.12. (a) CMOS3 Buffer and Derivatives, (b) CMOS3 NAND2 and Derivatives
0 lEEE [France 94a]

The MAGIC layout of the buffers is shown in Fig. 4.13 below. The new buffers

are formed by increasing the length of the transistors in the first inverter.

60

BUFFERS (600X Mag)

BUF BUFl

UT

BUF3 BUFS
Figure 4.13. The CMOS3 Buffer, and 3 Derivatives

For cases where large buffers are required, the DELAY cell in the CMOS3 library
can be efficiently tuned. The circuit diagram and layout of the DELAY cell are shown in
Fig. 4.14, and it can be seen that there is scope for resizing the transistors without
increasing the area of the cell.

4.5.3 Padding Example Using Logic Synthesis Tool
All circuits need to meet minimum pathlength restrictions to prevent flip-flop hold

time violations, so in principle, logic synthesis tools could be used for padding short paths
by specifying long hold times for flip-flops. In this section, the short paths in the ALU18 1
are padded using the logic synthesis tool Synopsys [Synopsys 911 as an example. Unlike
MIS [Brayton 871 where the synthesis steps are controlled by a script, Synopsys has a
compile function that does both logic synthesis and technology mapping. Multiple
iterations of the compile function were performed with Boolean optimization turned on and
the mapping effort set to “high”, to get a highly optimized design.

61

Day& (600x)
I” OUT

“11

4 /a

OUT

Circuit
Figure 4.14. DELAY Ce

Layout
11 in CMOS3 Library

The ALU181 was first synthesized for minimum delay, and mapped to a subset of
the CMOS3 library consisting of 2 and 3-input NAND and NOR gates, buffers and
inverters. NAND and NOR gates were used for a worst-case analysis, since they have

more severe pattern dependent delay characteristics than either AND or OR gates (these
gates have an output inverter that does not have pattern dependent delay). The results are
shown in Table 4.2. There are two short path columns: Tshor[* was computed without
taking CMOS pattern dependent delays into account, and is significantly longer than the
conservative worst-case minimum path, Tshort.

Iteration 4 was selected as the “best” timing-optimized circuit, as it is significantly
smaller than Iteration 5, and only a little slower. The circuit in Iteration 4 was then

synthesized with both maximum and minimum pathlength constraints. The maximum
delay was kept the same to avoid any performance penalty, and the target minimum delay
was 32 units. The target library was extended to include the modified gates discussed in
the previous section, and shown in Fig. 4.12. (The modified gates would have no effect
on the minimum delay circuits, since they are both slower and larger than the original
gates.)

62

Table 4.2. Synodsys Results for ALU1 8 1

Constraint

Iter. 1
Min. Iter. 2
Delay Iter. 3

Iter. 4
Iter. 5

Padded (32,56) 1 4461 1 1070 1 5731 155.99 153.6% 141.4% 1

For this example, the area overhead for increasing the minimum delay from 9.4% to
41.4% of the longest path is 19%. The path lengths in the minimum-delay timing-
optimized (Iteration 4) and padded implementations of the ALU18 1 are shown graphically
in Fig. 4.15. There is a vertical bar starting from the minimum delay and ending at the
maximum delay for each of the eight outputs.

4
:
4 4 4

4

4 Dotted Line: Min Delay Cmx

0-j
Solid Line: Padded Circut

I I I I I I I I
1 2 3 4 5 6 7 8

outputs

Figure 4.15. Graphical Representation of Path Lengths in ALU 181

The minimum delay could not be increased beyond 41% without affecting the
longest path in the circuit (Output 8). This limitation was even more severe for some of the
other benchmark circuits investigated.

It seems that Synopsys did not make full use of the modified cells for padding. For
example, it was found that the slower gates shown in Fig. 4.12 were not included in the
final netlist, even though they would reduce the area overhead. The solution adopted was
to use a target library with incorrect areas for these gates, in order to guide the logic
synthesis. By specifying the slower gates to have less area than the faster gates, and then

63

optimizing for minimum delay, the slower gates were always used whenever possible. The
circuit was then linked to the correct library to compute the actual circuit area.

Even though it appears as though Synopsys cannot be used in its present form to
pad short paths enough for on-line stability checking, the example illustrates a few points:

l CMOS pattern dependent delays should be used in the timing analysis since they alter
the short path delays significantly,

l Timing-optimizations tend to increase the ratio of shortest to longest paths,
l The total area overhead is less than gate area overhead since wiring is relatively

constant.

4.5.4 Algorithm for Padding Short Paths
Since synthesis tools are not optimized for very long minimum path constraints,

and sufficient padding was not possible for some of the benchmark circuits investigated
without affecting the longest path in the circuit, an algorithm specifically for padding short
paths is presented in this section. .

Padding algorithms to meet minimum path constraints have been implemented for
wave pipelining, where all paths are required to have the same length [Wong 891 [Shenoy
933. Considerations specific to equalizing path lengths in CMOS circuits for wave
pipelining are described in [Klass 901 [Klass 921 [Gray 911. Typically, buffers are first
inserted using either graph-based techniques [Wong 891, or circuit levelization [Klass 901.
The number of padding elements is then minimized using linear programming, or non-
linear programming if loadin,u is taken into account. It should be noted that padding of

short paths is always possible, as long as buffers with suitable delays can be inserted
[Shenoy 931.

Since non-linear programming problems are computationally expensive to solve, a
simpler algorithm is presented in Table 4.3. This algorithm does not affect the longest path
in the circuit. The simplifying assumption made is that the maximum allowable delay is
added to each chosen node. This means that Pad Short Paths is a greedy algorithm,- -
as each node is padded at most once.

A figure of merit is computed for each node, based on the slack at the node and the
desired added delay necessary to eliminate short path problems. The node with the highest
figure of merit is then padded, and the process is repeated until the shortest-path is the
desired fraction of the longest path. The performance of the algorithm depends on the
choice of nodes to pad. After experimenting, the following three figures of merit were
used for the benchmark circuits below. (The absolute value is used in merit 2 as-
desiredi is negative if there is extra delay at the node.)

64

merit-l = slacki *' desiredi

merit 2 = slacki * desiredi * ldesiredii-
merit 3 = min(slacki, desiredi)-

Table 4.3. Greedy Padding Algorithm

Procedure Pad-Short Paths;
Add-fanout pseudo:gates;
Repeat until Tshort 2 Target Short Path {- -
For each node i do {

slacki = Tc - (longest path from inputs to node)
- (longest path from node to outputs);

desiredi = Target-Short-Path
- (shortest path from inputs to node)
- (shortest path from node to outputs);

meriti = f (desiredi, slacki, gate-typei);

Choose i to maximize meriti;
Pad node i by min(desiredi, slacki);

1
1

The algorithm also has the following refinements:
l Different rising and falling delays, gate strengths, and fanout loading are taken into

account.
l CMOS pattern dependent delays are used. The delay used for the 1111+1110

transition in a 4-input NAND gate, for example, is four times the 111 l+OOOO delay.

The longest and shortest delay are used to compute the longest and shortest

pathlengths respectively.
l A scaling factor is used to distinguish real gates from fanout pseudo-gates. The

reason is that it is more efficient to pad real gate outputs rather than fanout branches
whenever possible. The figure of merit is divided by an experimentally derived
heuristic value h for fanout pseudo-gates.

l Added delays on the different fanout branches of a stem are combined whenever
possible.

l After the padding, some nodes have too much added delay. The extra delay was
removed using the heuristic:

merit remove- = max (-desiredi,added-delayi)

This reduced the area overhead figures by 2-3% for the benchmarks tried.
Table 4.4 shows some benchmark results using Pad-Short-Paths. The “s”

circuits are from the ISCAS’89 sequential benchmark suite. The target is to ensure that the

65

shortest path, Tshorl, is at least 60% of the longest path, Tlong. The area overhead is

estimated based the cells designed in Sec. 4.5.2. Interpolation is used to approximate the
area for cells that have not been designed. SIS [Brayton 901 was used for both logic

optimizations and technology mapping. The standard script for minimizing delay improved
the performance of 6 benchmark circuits.

Table 4.4. Results for Greedy Padding Algorithm 0 IEEE [France 94a]

r Initial Circuit Parameters

i5#Yes 4 4.s?h4 iiYes / 15
Area overhead for Tshort 2 60% Tlonn

merit-2 merit-3 Total Area
(sate area) (gatearea) (gatearea) Overhead

11.9% 10.5% 11.9%
51.2% 45.1% 41.7%
22.8% 23.7% 21.8%
48.7% 44.6% 37.8%
48.7% 44.6% 37.8%
30.1% 27.7% 25.4%

! I

.3% 1 16.5% 1 17.3% im

The first three area overhead figures in Table 4.4 are the gate overhead to meet the
timing requirements for the different heuristics. The Total Area Overhead column is based
on the best heuristic for each circuit, and takes into account both the combined flip-flops
and stability checkers, as well as the cost of ORing the outputs of the stability checkers.
The overhead is low for most circuits, except for ~420 which is close to duplication (100%
+ checker). This is the slowest circuit by far. The results represent a conservative upper
bound since the algorithm is not optimal, and wiring area is considered. The example in
Sec. 4.5.3 shows that estimated wiring area increased more slowly than gate area.

Short path problems can also be reduced as an integral part of logic synthesis by
placing constraints on the different steps of the synthesis process. Promising optimizations
seem to be factoring and decomposition of Boolean functions [Brayton 871 [Brayton 901.
The aim is to factor the function F as F = GH + R. Restricting the sizes of the different
factors would eliminate a potential short path problem that occurs if R is much simpler than
GH. Similar restrictions can be placed on candidate nodes for resubstitution. Developing
such an algorithm is beyond the scope of this work.

Other CAD tools such as routing tools can also be used to increase delays of short
paths, since slower interconnect lines with more vias can be assigned to these paths.

66

4.6 EXTENSIONS .

On-line Stability Checking is also possible for other clocking schemes, such as
two-phase double latch designs [McCluskey 861, for example. The biggest difference is
that the checking period must be derived from both clock phases, as discussed in Sec.
3.2.2.

Other extensions of on-line Stability Checking are described in this section.
Applications in other areas such as software checking and VHDL synthesis are also
discussed.

4.6. I Stability Checking versus Final- Value Checking
Consider a CUT output that is correct at the sampling time, then has transitions,

before settling to the correct value again. This situation would be detected as an error by
Stability Checking, and could be considered a “false alarm”. If one is only concerned with
errors due to small delay faults, then false alarms can be reduced by comparing the sampled
value at the beginning of the checking period to the value at the end of the checking period,
instead of looking for changes in the output throughout the checking period. This will be
calledfinal-value checking. Final-value checking is similar to time redundancy, except that
instead of a performance penalty, consecutive operations are overlapped in time. This is
only possible because of the timing restrictions placed on the CUT. (This is the same
concept as wave pipelining.)

Stability Checking detects at least as many errors as final-value checking, since if
the values at the start and end of the checking period are different, there must have been at
least one transition during the checking period. Stability Checking also has a greater
probability of false alarm, as the sampled value could be correct, and yet be followed by
transitions.

The reliability requirements and operating environment of the system will determine
which method is more suitable, depending on whether the increased probability of detecting
untargeted faults by Stability Checking outweigh the effect of increased false alarms.

The checkers for final-value checking are similar to those for Stability Checking.

4.6.2 Multiple Checking Periods
A single checking period has been used in the above discussions. In principle,

however, a different duration checking period could be used for each output, although it is
probably not practical to have more than a few distinct checking periods. In this way,
much larger checking periods could be used for some outputs, since they are not limited by
the global shortest path. All the checking periods start at the same time, so could be

67

generated using clock choppers [Wagner 881 near the corresponding CUT. For example, a
longer checking period could be used for an ALU than a barrel shifter.

If all paths to an output are short, it is possible to start the checking period before

the clock edge. This increases the probability of detecting untargeted faults, but will detect
delay changes before they produce system errors. Delay changes that don’t affect the

operation of the circuit are called delay flaws, and are generally not tested. This can be
used as a process monitor to predict system degradation before failure, or help in detecting
intermittent faults.

4.6.3 Self-Timed Clock Frequency
There are two ways to test the stability checkers without adding extra signals. The

clock frequency can be increased to induce delay “faults”, or the duty cycle of the clock can
be increased to violate equation (4.1) and cause “short path” faults. This can also be used
to optimize the performance of a design, by tuning the clock frequency and duty cycle to
match individual CUT characteristics. It is conceivable that for applications where repair is
not possible, the clock frequency can be dynamically reduced when timing errors occur, in
an attempt to “fall back” to a reduced performance state before failing completely.

4.6.4 Software Stability Checking
An interesting application of Stability Checking seems to be run-time software

checking. The software equivalent of checking a signal for stability is checking if a
variable is modified. Variables are tagged to indicate when their values can be changed.
Compiler analysis tools (reachability, liveness) can be used to determine when variable
assignments are possible. If a runtime error occurs and a write is attempted in the incorrect
sequence, the error can be detected. Note that this is more than just scoping [Aho 851,

since scoping rules are checked at compile time and only offer protection for error-free
program execution. A simple mechanism for detecting errors is to cause a system trap or
access violation, by considering the variable to belong to another process when it cannot be
modified.

This is similar to using watchdog processors for control flow checking [Mahmood
881, but it can be implemented entirely in software on any system. Control flow errors are
detected when a write is attempted on a variable unexpectedly. Bus errors that corrupt the
write address can also be detected.

Not every variable needs to be checked, although increasing the number of checked
variables increases the error coverage at the expense of performance overhead. It is likely
that only state variables will be checked, and not all local variables.

68

For example, if a variable is going to be modified in a certain block after a branch,
writing could be activated for that variable just before the branch. If there is a control flow
error, and the variable assignment is not reached from the correct branch, writing to the
variable would cause an error. Writing to a variable could automatically disable further
writing to that variable. In cases where a variable is assigned in many places in the
program, temporary variables can be used, and each checked individually.

4.6.5 VHDL Synthesis
Stability Checking has been described in the context of detecting delay faults in this

dissertation. There are other applications, however, where stability checkers can be used,
as signal changes are sometimes used to trigger actions during normal system operation.
An unclocked memory, for example, can be built such that when there is a change in one of
the address lines, the new output value is produced. Another interesting application of on-
line Stability Checking appears to be VHDL synthesis.

Although VHDL was originally intended as a simulation language, synthesis from
VHDL descriptions has drawn increased attention. Process statements are one of the basic

building blocks of VHDL descriptions. A process is activated whenever any of the signals
in its sensitivity list changes [IEEE 881, which is conceptually similar to Stability
Checking. The actual implementation depends on the body of the process statement, as
shown by the examples in Table 4.5. Assuming A and B are input signals, and 2 is an
output signal, Process-l corresponds to an AND gate, and Process-2 corresponds to a
positive edge-triggered flip-flop. Process-3 is more complicated, however, and cannot be
implemented using a standard logic element.

Table 4.5. VHDL Process Statements
Process-l (A,B) Process-2 (A) Process-3 (A)

begin begin begin
Z <= A AND B; if A = 1 then z <= A AND B;

end process; Z <= B; end process;
end if;

end process;

Complex VHDL descriptions consist of multiple processes that are synchronized by
signal changes. One proposed technique for synthesizing multi-process descriptions is to
synthesize each process independently, and then synthesize the control and synchronization
logic. Stability checkers could be used to detect any changes in signals during system
operation to determine when processes need to be activated.

69

4.7 CONCLUSION
.

A new technique for on-line checking of digital systems has been proposed. By
targeting the expected failure modes in CMOS VLSI, on-line Stability Checking achieves
high coverage of most common wear-out failure mechanisms and transient errors in CMOS
circuits at a fraction of the cost of duplication. On-line stability checkers behave like “mini-
watchdogs” that detect signal changes at unexpected times.

The main limitation of on-line Stability Checking is that catastrophic functional
faults are not guaranteed to be detected. As in all testing, there is only a certain probability
of detecting real defects. Parity checking, for example, does not detect many classes of
errors, yet it is widely used. In the same way, there are classes of applications where on-
line Stability Checking provides the best cost/performance tradeoff.

Typical applications are aggressively clocked, optimized, high speed systems,
which are becoming increasingly common. The aggressive clocking makes marginal
timing problems more important, and the optimized, pipelined designs help to equalize path
delays and reduce the cost of Stability Checking.

A large cell library is necessary for meeting pathlength restrictions efficiently.
However, this places no burden on the designer, as the padding can be automated as part of
logic synthesis or technology mapping.

70

Chapter 5

Pre-Sampling Waveform Analysis

This chapter describes Pre-Sampling Waveform Analysis, the second class of

Output Waveform Analysis techniques. The advantages of Pre-Sampling Waveform

Analysis are discussed, and different waveform analysis techniques are mentioned. One
waveform analysis technique is then described in detail in the rest of the chapter. Examples
are given, and circuits for performing the waveform analysis are shown.

5. I DESCRIPTION
As shown in Fig. 5.1, the output waveform of the CUT between the application of

the second pattern in the test pair <V2>, and the sampling time, is analyzed in Pre-
Sampling Waveform Analysis. The objective of Pre-Sampling waveform analysis is to use
the information in this part of the waveform to infer the delays in the circuit.

t\PlJ APPlY Sample
1 <v* >

Input Clock

Pre-Sampling Post-Sampling

Figure 5.1. Output Waveform Analysis

The biggest difference between Pre-Sampling Waveform Analysis and Post-
Sampling Waveform Analysis described in the previous chapters, is that in Pre-Sampling
Waveform Analysis both the faulty and fault-free waveforms can have transitions.
Therefore waveform analysis techniques must be found that distinguish the two responses,
rather than only detecting transitions. Information is extracted from the output waveform

71

of the CUT, which must be compared to the corresponding information from the fault-free
response. This makes Pre-Sampling Waveform Analysis more complex than Post-
Sampling Waveform Analysis. This complexity is offset against the capability to detect
delay flaws, as well as delay faults.

5.1. I Delay Flaws
One of the main benefits of Pre-Sampling Waveform Analysis is that, by analyzing

the output waveform before the sampling time, timing failures that do not cause delay faults
can be detected. These timing failures were called deZayj7aws in Chapter 2.

Delay flaws do not affect the output waveform after the sampling time, so cannot be
detected from the sampled value or by Post-Sampling Waveform Analysis.

At first, it might seem that there is no need to detect delay flaws that do not cause
incorrect operation. This is true in many applications. However, if the delay of a part is
different from the expected value, this is an indication that the part has not been
manufactured correctly or it has degraded, and the part might not have the required
reliability for certain applications. As a simple example, consider a pace-maker circuit. If
the delay of an inverter in the circuit should be 10 ns but is actually 70 ns, and the pace-
maker still works correctly, would you want that circuit?

Pre-Sampling Waveform Analysis can be used as a reliability screen both during
manufacturing test and in the field. During manufacturing test, costly environmental stress
screening can be reduced by first weeding out weak parts that have delay flaws, or by
detecting parts with abnormal delay characteristics before the part fails during burn-in test.

As discussed in the previous chapter, most common CMOS reliability failure
mechanisms change the delays in a circuit before causing catastrophic (stuck-type) faults.
Therefore, by periodically monitoring a system in the field, potential reliability failures can
be discovered before the system fails. This can be used for preventative maintenance, for
example.

5.7.2 Delay Faults
Pre-Sampling Waveform Analysis can also be used to detect delay faults. One

benefit of Pre-Sampling Waveform Analysis is that delay faults do not have to be sensitized
through the longest path to be detected. This makes detecting small delay faults much
easier, especially for pseudo-random tests.

Throughout this chapter, different Pre-Sampling Waveform Analysis techniques are
compared to conventional delay testing. Localized or gate delay faults were used, and the
fault simulations were done with the waveform simulator described in [France 94~1.

72

For gate delay faults, the fault coverage depends on both the location of the delay
fault, and the magnitude of the delay fault detected [Park 881. If the distribution of delay
faults is known, then a statistical fault coverage measure has been proposed [Park 881.

No assumption is made about the delay fault distribution in the fault coverages
computed below. Usually five delay faults with different values were injected at each gate
output. All the delay faults injected were greater than the slack (structural) at each node,
otherwise the added delay would not be detectable by conventional delay testing, making
the comparison more difficult.

5.1.3 Waveform Analysis Functions
Stability Checking and Final-Value Checking were the most useful Post-Sampling

Waveform Analysis techniques, but there are many techniques for analyzing the output
waveform of the CUT before the sampling time.

One extreme is to try to store as much of the waveform as possible. This can be
done by sampling the waveform many times during the clock period. As long as the
waveform is sampled at more than twice the highest frequency component in the
waveform, the original waveform can be recovered. This technique is generally only
feasible on a very high speed ATE.

The other extreme is to narrow the area of interest to a single point, and sample the
output waveform once before the normal sampling time. Moving the sampling time has
been described in [Pramanick 891 [Mao 90a], where the sampling time is adjusted for each
vector. One problem with this approach is that it is difficult to precisely control the
sampling time for each vector.

Counting the number of transitions in the output waveform was considered as
another possible waveform analysis function. In the presence of a delay fault, the
transitions in the output waveform will move in time. Therefore it is reasonable to expect
that the number of transitions between <V2> and the sampling time will change. Figure
5.2 shows the fault coverage for both sampling the output (conventional testing) and
counting the number of transitions in the output waveform. The smallest delay fault
injected at each node was the slack at the node plus one gate delay, and the largest was the
slack plus five gate delays. The number of transitions for each vector and output was
compared to the fault-free circuit. The simulation shows that counting transitions does

detect delay faults, although the benefit does not justify the complexity of the method,
Circuits for counting multiple transitions between cycles are complex, and are usually not
practical, particularly for BIST applications.

73

80

0 40 80 120
Test Length

160 200

Figure 5.2. Fault Coverage for ALU181 for Sampling and Counting Transitions

The waveform analysis technique that was eventually chosen is the analog integral
of the output waveform. Unlike the other techniques mentioned above, this technique is
feasible even for Built-in Self-Test environments. Integration is described using examples
in the next section, and implementations are shown in Section 5.3.

There is a loss of information in any waveform analysis function that compacts the
information in the output waveform, so masking can occur. This means that although the
faulty and fault-free waveforms may be different, the computed waveform analysis
functions can be the same. Techniques for reducing the masking or aliasing probability for
integration are mentioned below.

5.2 INTEGRATION
Different forms of integration are discussed below with examples.

5.2.1 Integration Over Whole Cycle
The simplest integration function is to integrate the output waveform of the CUT

x(t) from the application of <V2> to the sampling time when the output is latched:

/ = I,” x(t)dt
(5.1)

Note that the integral in equation (5.1) is equivalent to the average value of the
waveform over the interval. (The average value of the waveform is actually 1/T,, so the
two measures only differ by a scaling factor.)

74

A fault is considered detected if the fault-free integral I,, and the faulty integral
IF, differ by more than a certain amount, as shown in equation (5.2). This amount

depends on RES, the resolution of the integrator and quantizing effects, as integral values
that are very close cannot be distinguished. There is a tradeoff between the resolution of
the integrator, and the complexity of the integrator or the time taken to compute the integral.
Circuit tolerances also need to be taken into account unless relative integrals are compared.
This is discussed in the implementation section.

(5.2)

The usefulness of integration as a pre-sampling waveform analysis function is best
shown by example. The circuit in [Pramanick 891 is used for the two examples below.
Fault detection size is considered in the first example, and delay flaws are considered in the
second example.
Example 1: Input P Slow-to-Fall

Consider a pair of test patterns with a 1 to 0 transition at P, and Q=R=S=l, which
produce a hazard-free 0 to 1 transition at the CUT output X, for the circuit in Fig. 5.3. In
[Pramanick 891 it was shown that although the slack at input P is 1 unit, the fault detection
size is 2 units for robust delay tests. It was also proposed to move the sampling time from
7 to 6, in order to reduce the fault detection size to the slack. Using the integral of the
output, the same result can be achieved without moving the sampling time.

l-1

l-l

tpd = Gate Delay

Figure 5.3. Slow-to-Fall Fault at Input P

Output waveforms for both the fault-free circuit and a 1.5 unit slow-to-fall fault at
node P are shown in Fig. 5.3. The fault-free integral is 3 units, and the faulty integral is

75

1.5 units. Therefore not only is the delay fault detected by this pair of patterns, but one can
infer precisely when the transition in the output occurred. The integral at output X is 3-d
for a slow-to-fall fault of size d at node P. Note that the delay fault was detected even
though it was not sensitized through the longest path.

All 64 pairs of patterns for inputs Q, R and S were simulated for the same fault, and
the results are shown below. Therefore even if integral differences of 0.5 cannot be
detected due to the resolution of the integrator, almost half the possible pattern pairs detect
the fault.

Pattern Pairs 28 8 4 24

Diff. in Integral 0.0 0.5 1.0 1.5

Example 2: Inverter Delay
The delay in the inverter in Fig. 5.4 is considered as a second example. Since the

slack at the inverter is 3 units, delay faults less than 3 units in the inverter will not cause
circuit malfunction and will not be detected with conventional delay testing (no delay
faults). Here we show that using integration, delays less than the slack of a node can be
detected.

1-o P
l-1 Q

fpd = Gate Delay

Figure 5.4. Inverter

Consider the waveform at output X shown in Fig. 5.4 for delays of 1 and 2 units in
the inverter, for a 1 to 0 transition at P and Q=l, R=S=O. The integral value at the output is
2 and 1 respectively, so the change in the inverter delay can be detected at the output. For
inverter delays td less than 3 units, the integral at X is 3 - t@ for the given test pattern pair.

All 256 possible pattern pairs were simulated for the fault-free circuit and the faulty
circuit with a delay of 2 units in the inverter. The delay flaw was detected by 37.5% of the
pattern pairs using integration, even though there is no delay fault.

76

These examples show that the-output waveform between samples contains
information about the delay of the circuit. Therefore using integration as a R-e-Sampling
Waveform Analysis function, delay flaws undetectable with conventional delay testing
schemes can be observed if desired.

Although somewhat simplified, the above examples indicate what is achievable with
integration as a waveform analysis function. Both examples are cases that are difficult to

deal with using conventional delay testing, but have high detectabilities using Pre-Sampling
Waveform Analysis.

5.2.2 Integration Over Part of Cycle
The output waveform was integrated over the complete cycle in the above

examples, but more generally, the output waveform can be integrated over any part of the
cycle, as shown in equation (5.3). The advantage of reducing the integrating period is that
small delay changes can be detected without increasing the resolution of the integrator.
This helps to reduce aliasing of faulty and fault-free integrals. The disadvantage is that
delay changes that only affect the output waveform beyond the integrating period are not
detected. The most useful integrating period depends on the CUT. For example, if the
cycle time is much longer than the longest path, then it is better to integrate the output
waveforms in the first part of the cycle. In most cases, however, it is better to integrate in
the last part of the cycle when the outputs have started changing.

I(Q) = J+x(t)dta (5.3)

Assuming that the waveform over a fraction f of the cycle is integrated, the

modified condition for detecting the fault is given in equation (5.4).

(5.4)

The benefit of integrating over part of the cycle is shown in Fig. 5.5. Five
detectable delay faults were injected at each gate output. The size of the delay faults was
slack plus 5 to slack plus 25. (The two-input NAND delay is 20.)

77

80

0

Test Length = 30

Test Length = 10
Test Length = 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Last Fraction of Cycle f

Figure 5.5. Fault Coverage for ALU 18 1 Integrating Over Last Part of Cycle

Figure 5.5 shows the fault coverage for various test lengths as a function of the
fraction of the cycle that is integrated. The last part of the cycle was integrated, as the cycle
time was chosen close to the maximum delay through the circuit. The resolution of the
integral was RES = 10.

As expected, the coverage starts at 0 if the integrating period is very small. For this
circuit, an integrating period of half the cycle is best, and increasing the integrating period
further results in loss of coverage since the smallest delay faults do not meet the minimum
detectability criterion in equation (5.4).

5.2.3 Enhanced Integration
The integrand in the above cases has always been the output waveform x(t),

although any function g(x(t),t) can be used. For example, by integrating tx(t), changes in

the later part of the cycle are weighted more heavily that changes in the early part of the
cycle. This places more importance on changes near the sampling time.

Using an enhanced integrating function is another way of reducing the possibility of
aliasing. For example, consider a 1 -pulse starting at A and ending at B, during the
checking period. This is represented as x(t) = (A II), using the waveform notation in

[France 94~1. The integral value, given by equation (5.5), depends only on the thickness
of the pulse, B-A. Therefore, delay changes that move the pulse without changing the
width of the pulse are not detected.

J
‘(AB)dt=B-A i f alASB<pa (5.5)

78

Equation (5.6) shows the integral-if the integ-rand is tx(t). In this case, the integral
depends on the pulsewidth, as well as the position of the pulse, making abasing more
difficult.

J
‘(A B)tdt = (B-A)
a

i f alAIBS/? (5.6)

5.2.4 Fault Coverage Examples
Three fault coverage examples are given in this section. The resolution was

RES=lO and MS=20 when integrating over the complete cycle, and RES=lO when
integrating over the last half of the cycle. Faults of size slack plus one gate delay to slack
plus five gate delays were injected at each gate output.

Figure 5.6 shows the fault coverage for the ALU1 81. Integration reached 100%
fault coverage with 28 pseudo-random vectors, whereas sampling the output reached about
90% after 200 vectors. For this circuit, there was no increase in coverage by using the
higher value of RES or integrating over the last half of the cycle. The reason is that the
cycle time is 180 units, and the smallest injected fault was 20 units, so there were no fault
coverage losses due to aliasing. This is not true for the larger circuits simulated below.

100

80

4
,--

,““““““‘-.-“‘----.---------------------.-----------.-------------

.i

l �

:
:

#�
:I Integration

- : RES=lO:
7, Sampling

ALU1 81
I

I
8 I I I I I 1

40 80 120
Test Length

160

Figure 5.6. Fault Coverage for ALU1 8 1

200

The second and third examples are from the ISCAS’85 combinational benchmarks.
The fault coverage for ~432 is shown in Fig. 5.7. For this circuit, the coverage using
sampling increases slowly, and is less than 70% after 200 pseudo-random vectors.

79

There is a difference in fault coverage betbeen the different integration simulations
in this case. The fault coverage reaches 100% after 67 vectors using a resolution of 20, but
does not reach 100% within 200 vectors for the other two integrals. Integrating over the
last half of the cycle with a resolution of 10 is almost as effective as integrating over the
whole cycle with a resolution of 20.

Sampling

C432

40 80 120
Test Length

Figure 5.7. Fault Coverage for ~432

The fault coverage for ~499 is shown in Fig. 5.8. Sampling and integration seem
to track each other for this circuit. After 200 patterns, the fault coverage by sampling the
output is 5% lower than integration with a resolution of 10, which is in turn 7% lower than
the other two integrations.

80

80
c----.-----.----.---------_____-.--._

c 4 9 9
I I I I i I I I I

40 80 120
Test Length

Fault Coverage for ~499

160 200

Figure 5.8.

Detecting delay faults more than once has been suggested as a heuristic try to
minimize the possibility of test invalidation by hazards [Waicukauski 871. The distribution
of the number of times faults were detected were computed in [France 91b] for the
ALU 18 1. The test length was 25 pseudo-random vectors, and faults of sizes ranging from
the slack plus 20 to slack plus 40 were injected. The distributions in Fig. 5.9 show that
faults are detected significantly more times using integration than sampling. (Note that the
areas of the two graphs are not the same, since the fault coverage is different.)

100

80

g 60

2
40

20

Sampling
L=25

80.52% Cover

0 I
0 5 10 15

Times Detected

20 0 5 10 15
Times Detected

20

Figure 5.9. Distribution of Number of Patterns that Detect a Fault
0 IEEE 1991 [Franco91b]

81

.
5.3 IMPLEMENTATION

Design considerations and integrator implementations that are simple enough to be
used on-chip is described in this section.

5.3. I Design Considerations
The design considerations for implementing integration are similar to those

discussed for implementing Stability Checking. In both cases the period when the

waveform must be analyzed needs to be defined, the waveform analyzers need to be reset,

and the results must be collected.
Since Pre-Sampling Waveform Analysis is more complex than Post-Sampling

Waveform Analysis, it is generally not be possible to place integrators wherever needed in
a design. It might be better to have fewer, higher resolution, integrators on a chip, and
multiplex the signals that need to be checked to the integrators.

An alternative solution multiplexing signals is to use a grid structure as in
Crosscheck [Gheewala 891 to access the required nodes. (It should be noted that one of
the claimed advantages of Crosscheck is its ability to test for realistic CMOS faults such as
stuck-open, shorts, noise margins etc., since analog measurements can be made of the

internal nodes.) Only the CUT outputs need to be observed, unlike Crosscheck where
internal nodes in the CUTS are also observed. The delay of the testing interconnect is a
constant, and is taken into account in the integral value.

It is also possible to multiplex signals to the chip’s primary outputs, so that external
integrators can be used. The advantage of having the integration performed externally (on
the ATE, for example) is that high precision integrators can be used which can be calibrated
for absolute measurements.

This solution is not suitable for BIST applications, however, so on-chip integrator
designs were investigated. Figure 5.10 shows a conceptual integrator design. An

operational amplifier can be used to compute the analog integral, which is then digitized by
an analog-to-digital (A/D) converter.

CUT Output

+P lMegra’
RESET -

Figure 5.10. Conceptual lntegrator Design

It is not practical, however, to put operational amplifiers and A/D converters on
chip since these are analog components and most digital fabrication processes would not be

82

suitable, apart from the area overhead. The increasing use of mixed-signal devices could
change this in the future. The designs below use only conventional N and P channel
transistors.

It is expected to be difficult to calibrate the on-chip integrators for absolute
measurements, but relative measurements can still be made. If periodic measurements are
made, for example, the integral values for the same test at different times can be compared,
so only a relative measurement is required.

For a test set, the relationships between the integrals for different patterns are
known, and this can be used to determine if the integrator is in error or there is a delay fault
in the circuit. If the integrator is functioning correctly, it should produce the minimum
integral if the CUT output is kept at 0, and the maximum integral if the CUT output is kept
at 1.

The integration function is performed by charging a node using RC delays, with the
final value on the node dependent on the fraction of the integrating period that the CUT
output was high. There are different ways to quantize the integral value, depending on the
overhead and performance requirements. This is also the case for conventional A/D’s, with
fast “flash” A/D’s or slower, smaller, successive approximation A/D’s. Both parallel and
serial implementations are discussed below.

5.3.2 Parallel lmplementa tion
Figure 5.11 shows an example of a parallel integrator and analog-to-digital

converter. Circuits with different RC constants are fed by the CUT output. The circuit
with the longest RC constant that gets charged determines the integral. A priority encoder
can be used if a binary representation of the integral is needed.

CUT Output +-

:
0

Shortest Y

Integral
Approximation

RESET

Figure 5.11. Parallel Integrator

83

5.4.3 Serial lmplemen ta tion
.

Serial integrators can be designed by using the CUT output to charge a node, and
then measuring the discharge time of the node. Figure 5.12 shows a possible

implementation. Node INT is charged during the integrating period whenever the CUT

output is high. The final voltage at node INT is proportional to the average value of the
output waveform. Note that node INT is reset to approximately 2.5 volts by the RESET
signal. This is necessary otherwise small
beyond the threshold of the output inverter.

integral values will not charge node INT to

INTEGRATE

CUT Output

RESET -Fr+
Figure 5.12. Serial Integrator

INT’

The design in Fig. 5.12 was manufactured using the Stanford BiCMOS process,
and the layout is shown in Fig. 5.13. This circuit was tested, and the operation was

partially verified. The reason that only a partial evaluation was possible is that the speed of
the ATE used (Tektronix DAS9200) was not high enough to generate pulses that covered

only a fraction of the intended cycle time for the designed circuit.

84

Figure 5.13. Layout for Integrator in Fig. 5.12

The resolution of the serial integrator can be increased by discharging node INV
over multiple cycles. The integral value is computed by counting the number of cycles it
takes for node INV to discharge. The discharging transistor in the layout in Fig 5.13, for
example, is very weak.

Two ways measure the time it takes discharge node INV are shown in Figs. 5.14
and 5.15. The output of the integrator can be used to enable a counter. The counter is then
clocked a sufficient number of times (for the maximum integral), but it stops counting once
the node INV drops to below the input threshold of the inverter. Another approach is to
connect the integrator output to the first flip-flop in a scan chain. As the scan out operation
is performed, 1s will be scanned out until the node discharges.

Integrator
output

Counter

Figure 5.14. Measuring Serial Integral Using Counter

Scan Chain
Integrator

output -D-J-tgp-7..

t

I

Figure 5.15. Measuring Serial Integral Using Scan Chain

85

.
5.4 CONCLUSION

One of the main advantages of Pre-Sampling Waveform Analysis is that it is
possible to detect delay flaws, although the hardware overhead is significantly greater than
for Post-Sampling Waveform Analysis, and the response compaction is more difficult.
The two methods represent different tradeoffs, and Pre-Sampling Waveform Analysis is
useful for high reliability systems, where delay flaws can be reliability detractors and must
be detected, even if there are no delay faults.

Different Pre-Sampling Waveform Analysis techniques were discussed, and the
analog integral of the output waveform was found to be useful, and feasible to implement
on-chip. Different forms of integration were presented. The simplest form is equivalent to
computing the average value of the waveform. Enhanced integration functions can reduce
the probability of aliasing and increase the effective resolution of the integral.

Fault simulation results show that integration is also effective for detecting small
delay faults, as the faults do not have to be sensitized through the longest paths to be
detected.

86

Chapter 6

Test Chip Experiment

6.1 OVERVIEW OF EXPERIMENT
The Center for Reliable Computing has participated in a Test Evaluation Chip

Experiment over the last two years. A Test Chip has been designed and manufactured to

compare different testing techniques for combinational or full-scan circuits. The motivation
is that it is difficult to determine the effectiveness of the many test techniques that have been
proposed without experimental data.

This experiment is a collaboration with several industrial partners. The Test Chip

architecture was designed in conjunction with Hughes Aircraft Corporation, where most of
the detailed design was done. Over 5,000 Test Chips have been fabricated at LSI Logic,
and the wafers are being tested at Digital Testing Services. We are also thankful to many
others who have provided test sets or expertise to this project. Our involvement has been
in the architectural design, the generation and collection of test sets, writing the ATE test
program, and analyzing the experimental results.

This is an on-going experiment, and production testing has just started. The
experiment is briefly reviewed in this chapter, and the current experimental results are

presented. A more detailed description of the Test Chip and the test sets applied is included
in CRC Technical Report 94-5 [France 94d]. The final results will also be presented as a
CRC Technical Report.

6.1.2 Tests Applied
One of the main distinguishin g features of this experiment, is that many different

test techniques are being investigated. Generally, previous experiments have only
compared few test techniques (recent experiments are summarized in Table 1 in [France
94d]). The test sets applied include design verification, exhaustive, pseudo-random,
weighted random and deterministically-generated vectors. Tests have been generated for
stuck-at faults, transition faults, delay faults and IDDQ testing. The Test Chip is also being
tested using the Crosscheck methodology [Gheewala 891, and includes an investigation of
the aliasing behavior in both serial and parallel signature analysis. Delay testing by
Stability Checking and Very-Low-Voltage Testing [Hao 931 are also investigated.

87

Apart from investigating Stability Checking, the experiment is also been used to
validate the delay modeling issues described in Chapter 2.

6.1.2 Test Chip
The Test Chip is a 25k gate CMOS gate array, manufactured using LSI Logic’s

LFIXOK FasTest array series, and has 96 I/O pins. The Test Chip includes five types of
combinational circuits-under-test (CUT), as well as support circuitry for applying patterns
to the CUTS, and analyzing the CUT response. There are four copies of each of the five

CUTS. The support circuitry takes up approximately half of the Test Chip area.
The basic Test Chip architecture is shown in Fig. 6.1. Both external vectors from

the ATE and pseudo-random vectors can be applied to the CUTS through the common data
source. External and internally generated clocks are used to investigate different timing
modes.

Common
Data Source CUT #I Response Analysis Circuitry

Data In

. / .
saEf$ffg First:

Sampling
/

Sample & '1
1 Error

Stability Errol
Compare

Total:
Samdina

Stability Error; -
Check , I Stability

'1 Srrors
Stability Only

Errors
/ ,

1

I
Counters

i 4 Other CUT Types
Figure 6.1. Test Chip Architecture

The CUTS are representative of data-path and control logic, as well as different
design styles. There are two multipliers and three control logic circuits. The three control
logic circuits perform the same function, but have been designed with different constraints.
There is a “standard” implementation, which uses the complete cell library, an

implementation that uses only elementary gates, and a robustly path-delay-fault testable
implementation.

The corresponding outputs of the four copies of each CUT are compared on-chip to
determine if any errors have occurred. All CUT outputs have stability checkers. There are
216 Stability Checkers per Test Chip, using the 5 gate NAND design described in Sec.
3.2.4.2. For each test, counters in the response analysis circuitry record the total number
of sampling and stability checking errors, as well as the first-fail vector for each case.

88

6.2 EXPERIMENTAL RESULTS’
As described in [France 94d], only die that pass the gross parametric tests and

support circuitry tests will be used for this experiment. Thus far, the CUTS on 207 die
have been tested. The tests described in Sec. 6.2.3 and 6.2.4 are not part of the main
experiment, and were done to investigate the delay modeling issued brought up in Chapter
2.

6.2. I Test Comparisons
The number of CUTS that have been tested is only a small fraction of the total

number that will be tested, and clear trends have not yet emerged. It was found, however,
that many die had Stability Checking errors for the aggressive clocking rate for one of the
CUTS. The clock rate was increased slowly to find the first sampling and Stability
Checking error, and it was found that the Stability Checkers started checking the output
waveform too early. This verified that the Stability Checker design implemented works
correctly, but unfortunately makes direct comparison between the different techniques more
difficult. These Stability Checkers are prone to “false alarms” if the CUT outputs change
just before the sampling time.

Excluding the Stability errors discussed above, thus far, 10 die have failed at least
some of the tests applied. Of the 10 die, there are five with “interesting” behavior. For
example: one die failed the boolean and IDDQ tests, but passed the Crosscheck tests;
another die failed the Crosscheck tests and boolean tests, but passed the IDDQ test; one die
failed the Crosscheck and IDDQ tests, but only failed the Very-Low-Voltage boolean and
Stability Checking tests.

6.2.2 Chip Speed Measurement
The Test Chip includes a ring oscillator and five delay lines in different parts of the

die. These delay can be used as a process monitor to measure the overall speed of each die.
Figure 6.2 shows the result for the six delay measurements on the 207 die. It can be seen
that there is not much variation between die, and delays on each die tend to track each
other.

89

z 3 0
c-

25. 2 0
cl

1 0

4 0 8 0 1 2 0 1 6 0

Chip Number

Figure 6.2. Delay Line Measurements

This data is encouraging for both on-line Stability Checking and Pre-Sampling
Waveform Analysis by integration. For on-line Stability Checking, the smaller the process
variation, the larger the checking period can be made. For integration, small process
variations mean that the integrators can be fairly accurate, even though they are not
calibrated.

6.2.3 “ROB” CUT Propagation Delay Measurements
Modeling of delay was discussed in Chapter 2, and limitations of the path delay

fault model were suggested. Accurate propagation delay measurements have been taken for
the robustly path-delay-fault testable CUT and one of the multipliers, to investigate the
effect of inaccurate modeling of gate delay in practice. Figure 6.2 shows the response
analysis circuitry and clocking mode for this test.

Inputs

Clock

Error

Figure 6.3. Test Setup

90

.

Patterns are applied to the CUT on the rising edge of the clock, and the CUT
outputs are sampled on the falling edge of the clock. The advantage of this type of clocking
is that the only timing-critical pin on the ATE is the clock, so that skew between tester pins

does not have to be taken into account.
The duty cycle of the clock was decreased in 25 ps steps until the CUT started

failing. The tests applied to the robustly path-delay-fault testable CUT are shown in Table
6.1. These tests are a subset of the tests applied when testing each die, but take much
longer than the main test suite, since the tests are repeated many times.

Table 6.1. Tests Applied to Robust CUT

Test
Single-Stuck-Fault
Critical Path
Critical Path-R
Critical Path-R2
Gate Delay
Gate Delay-R
Robust
Robust-R
Robust-R2
Non-Robust-a
Non-Robust-b
Exhaustive

The critical path test only tested the 100 longest paths for rising and falling
transitions. The paths were chosen using an inaccurate gate delay model. The robust test
tested every path in the CUT robustly. For the critical path, gate delay, and robust tests,
the test generators left unused inputs at X. The tests were repeated with OS assigned to the
X’s, as well as 0 of 1 randomly assigned to the X’s. All vectors were sampled, as well as
every second vector as is normally done for delay testing.

Figure 6.4 shows the results for one die, for the robustly path-delay-fault testable
circuit. The Exhaustive test fails at the slowest cycle time, which means that the other test
sets do not provoke the longest delay through the circuit. (The actual longest delay could
be worst than determined by the exhaustive test.) In particular, the longest delay through
the circuit is not exercised using the robust test.

(Approximately 100 measurements were remade to check the repeatability of the
ATE, and all measurements were within 25 ps, except one that differed by 50 ps, so there
were no ATE consistency problems.)

91

SSF
Crit

Crit-R
Crit-R2

Gate Del
Gate Del-R

Robust
Robust-R

Robust-R2
Non-Rob-a
Non-Rob-b
Exhaustive

4 6 8
Failing Cycle Time (ns)

Figure 6.4. Robust Circuit Results for 1 Die

Figure 6.5 shows the average results for the 10 die tested. For each die, the test
sets were measured relative to the exhaustive test set, and the percentage difference relative
to the exhaustive test was plotted. For example, the single-stuck-fault test needed to be run
between 6% and 7.2% faster than the exhaustive test to fail the 10 die tested. The critical
path test was the worst. This shows the danger in testing only a small fraction of the paths
in the circuit, and using an inaccurate model to choose the paths.

For both the gate delay test and the robust test, there was a noticeable improvement
by replacing X’s randomly with 0 or 1 rather than only 0. The longest delays through none
of the 10 die were exercised with any of the tests.

92

i n

9

8

7

6

5

4

3

2

1

0

Max ---

Min ---

Figure 6.5. Robust Circuit Results for 10 Die

6.2.4 “MULTGSQ” CUT Propagation Delay Measurements
A similar test was done for one of the multipliers. This CUT consists of two

cascaded multipliers, and only has 12 inputs, making the super-exhaustive test possible.
There are 7x10*5 structural paths in this circuit, and test pattern generation for all paths was
not possible. The tests applied are shown in Table 6.2.

Table 6.2. Tests Annlied to 6x6 Multinlier

Test
Single-Stuck-Fault
Transition Fault
Critical Path
Critical Path-R
Critical Path-R2
Gate Delay
Gate Delay-R
Ex h-pr
Exh-gray
Exh-max. Trans.
Super Exhaustive

Condition I Length 1 Output Strobes
22 22

304 152
x+0 1,692 846

X--+ran 1,692 846
X-ran, Sample all 1,692 1,692

x-30 976 488
X+ran 976 516

From LFSR 4,096 4,096
Single Trans. 4,096 4,096

Maximal Trans. 4,096 4,096
16.8M 16.8M

93

Figure 6.6 shows the experimental results for the multiplier circuit. The
propagation delays on four die were measured, and the maximum and minimum values
relative to the “super-exhaustive” test were plotted.

As in Fig. 6.5, the longest delay is not exercised by any of the shorter tests. For
this circuit, the single-stuck, transition, and critical path tests were very similar. Three
exhaustive tests were also applied. The first was generated with a primitive polynomial,
the second is a gray code with single bit transitions between vectors, and the third test
maximizes the number of transitions between vectors (either n or n-l, for an n-bit vector).
The gray code performs very poorly, and the circuit must be clocked at least 22% faster
than the worst-case delay to detect the delay fault. The waveform simulator described in
[France 94~1 was used to compute the node activity for the three exhaustive tests, and as
expected, the activity for the gray code was significantly lower than for the other two tests
(12% compared to 24% for the pseudo-random, and 33% for the maximal-transition test).

Figure 6.6. Multiplier Circuit Results

The propagation delay measurements in this Chapter show that the longest delays in
circuit are not exercised by using test sets generated using a simple delay model. Even if all
paths are robustly testable, and there are not too many paths to test, the complete robust test
does not guarantee that the circuit functions at the designed speed.

94

.

Chapter 7

Concluding Remarks

7. I CONTRIBUTIONS
A new approach for detecting timing failures in digital circuits has been described in

this dissertation. Output Waveform Analysis is different from other techniques in that
information is extracted from the output waveforms between samples, instead of just using
the sampled values. Although the circuit-under-test is digital, one is not restricted to digital
techniques for observing the circuit output response. The intuitive justification for Output
Waveform Analysis is that timing failures will change the shape of the output waveform,
and therefore the whole waveform contains information about the delays in the circuit.

Output Waveform Analysis techniques can be classified into Pre-Sampling
Waveform Analysis and Post-Sampling Waveform Analysis, depending on whether the
output waveform is observed before or after the sample.

Post-Sampling Waveform Analysis is very simple to implement, and is suitable for
delay testing at various levels, from wafer sort, to Built-In Self-Test in the field, as well as
for on-line or concurrent checking.

Pre-sampling Waveform Analysis is more complex, and is suited to applications
where delay flaws need to be detected due to reliability considerations. Propagation delays
can be measured with Pre-Sampling Waveform Analysis, which can be used to predict
reliability failures in the field or shorten environmental stress screening.

Output Waveform Analysis is independent of the test patterns applied, and can be
used with any vectors.

Incidentally, there is an interesting connection between the Pre-Sampling and Post-
Sampling Waveform Analysis functions used here. Mathematically, a stable waveform is
described as the derivative equal to zero. So while integration was chosen as the Pre-
Sampling Waveform Analysis function, differentiation was used as the Post-Sampling
Waveform Analysis function.

It was shown that various Output Waveform Analysis techniques are practical by
presenting test architectures, circuit implementations, experimental results. Three

95

waveform analyzers were implemented and tested using the Stanford BiCMOS process,
and one Stability Checker design has been included in a Test Evaluation Chip Experiment.

An algorithm was implemented for padding short paths for on-line Stability
Checking, and it was found to be efficient as long as modified cells were available for
padding. A symbolic waveform simulator was also implemented to investigate different
Output Waveform Analysis techniques.

Work has also been done on the effect of delay modeling of on delay fault testing,
and it was shown that three-pattern delay tests are needed to exercise the longest delays in
CMOS circuits. Path delay faults, as commonly defined, are only a subset of all delay
faults.

7.2 FUTURE

Looking at the future, it seems very likely that timing failures will become even
more important as systems become more complex. The emergence of standards (bus

designs, PC architectures, image and video compression, etc.), for example, means that
systems from different vendors will perform essentially the same function. This will make
aggressive clocking to improve cost/performance very attractive.

The waveform analyzers presented in this dissertation have been designed with
standard digital components. With the recent increase in mixed-signal designs, it is
becoming more common to mix digital and analog functions on a chip. This makes it
possible to design analog waveform analyzers, and implement techniques that are difficult
to do in purely digital systems.

A natural result of timing optimizations is the equalization of long and short paths.
In the limit, all paths in a circuit will have similar delays. In this case, Post-Sampling
Waveform Analysis might be sufficient, as any timing failure will cause a delay fault, and
change the output waveform after the sampling time.

There is scope for future work in several directions. Other Pre-Sampling
Waveform Analysis functions can be investigated, and test pattern generation algorithms
specifically for Output Waveform Analysis could be derived.

Limitations of the path delay fault model, and inaccurate delay modeling in general,
have been discussed. Both spice simulations of extracted circuit layouts, and propagation
delay measurements done on the Test Evaluation Chip Experiment show that the simple
delay models are not sufficient to exercise the longest delays in CMOS circuits. As feature
sizes shrink and short-channel devices are used, it will become more challenging to predict
the timing behavior of circuits.

The waveform simulator described in [France 94c] was implemented to investigate
Output Waveform Analysis, because existing timing simulators were not convenient. The

96

simulator is written in LISP, and no optiinizations were done, so it is perhaps surprising
that its speed was similar to Verilog-XL for the benchmark circuits investigated. The
essential feature was the waveform representation chosen, and it might be worth
investigating this further.

The Test Evaluation Chip Experiment is currently underway, and although less than
5% of the die have been tested, some interesting results have been observed. Once the
experiment is complete, the results might suggest further areas of research.

97

.

REFERENCES

[Acken 881 Acken, J.M., “Deriving Accurate Fault Models,” Technical Report CSL-TR-
88-365, Computer Systems Laboratory, Stanford University, 1988.

[Aho 851 Aho, A.V., R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and
Tools, Addison-Wesley, MA, 1985.

[Barzilai 831 Barzilai, Z., and B.K. Rosen, “Comparison of AC Self-Testing Procedures,”
Proc. 1983 Int. Test Conf., Philadelphia, PA, pp. 89-94, Oct. 18-20, 1983.

[Barzilai 861 Barzilai, Z, et. al., “Efficient Fault Simulation of CMOS Circuits with
Accurate Models,” Proc. I986 Int Test Conf., Washington, DC, pp. 520-529, Sep.
8-11, 1986.

[Benowitz 751 Benowitz, N., D.F. Calhoun, G.E. Alderson, J.E. Bauer, and C.T.
Joeckel, “An Advanced Fault Isolation System for Digital Logic,” IEEE Trans.
Computers, Vol. C-24, No. 5, pp. 489-497, May 1975.

[Bose 931 Bose, S., P. Agrawal, and V.D. Agrawal, “Generation of Compact Delay Tests
by Multiple Path Activation,” Proc. I993 Int. Test Conf., Baltimore, MD, pp. 7 14-
723, Oct. 17-21, 1993.

[Brayton 871 Brayton, R.K., R. Rudell, A.L. Sangiovanni-Vincentelli, and A.R. Wang,
“MIS: A Multiple-Level Logic Optimization System,” IEEE Trans. CAD, Vol. 6, pp.
1062-1081, Nov. 1987.

[Brayton 901 Brayton, R.K., G.D. Hachtel, and A.L. Sangiovanni-Vincentelli, “Multilevel
Logic Synthesis,” Proc. IEEE, Vol. 78, No. 2, pp. 264-300, Feb. 1990.

[Breuer 74a] Breuer, M. A., and R. L. Harrison, “Procedures for Eliminating Static and
Dynamic Hazards in Test Generation,” IEEE Trans. Computers, Vol. C-23, pp.
1069-1078, Oct. 1974.

[Breuer 74bJ Breuer, M. A., “The Effects of Races, Delays, and Delay Faults on Test
Generation,” IEEE Trans. Computers, Vol. C-23, pp. 1078-1092, Oct. 1974.

[Breuer 761 Breuer, M. A., and A. D. Friedman, Diagnosis & Reliable Design of Digital
Systems, Computer Science Press, Woodland Hills, CA, 1976.

[Brglez 851 Brglez, F., and H. Fujiwara, “Neutral Netlist of Ten Combinational
Benchmark Circuits and a Target Translator in FORTRAN,” Proc. Int. Symp. on
Circuits and Systems (Special session on ATPG and fault simulation), June 1985.

[Bula 901 Bula, O., et. al., “Gross delay defect evaluation for a CMOS logic design system
product,” IBM J. Res. Develop., Vol. 34, No. 2/3, pp. 325-338, Mar./May 1990.

[Cheng 91) Cheng, K.-T., S. Devadas, and K. Keutzer, “A Partial Enhanced-Scan
Approach to Robust Delay-Fault Test Generation for Sequential Circuits,” Proc. Int.
Test Conf., Nashville, TN, pp. 403-410, Oct. 29-Nov. 1, 1991.

[Cheng 921 Cheng, S. W., H.-C. Cheng, and D. H. C. Du, “The role of Long and Short
Paths in Circuit Performance Optimization,” Proc. 29th Design Automation Conf.,
Anaheim, CA, pp. 543-548, 1992.

[Cheng 931 Cheng, K.-T., and H.-C. Chen, “Delay Testing For Non-Robust Untestable
Circuits,” Proc. 1993 Int. Test Conf, Baltimore, MD, pp. 954-961, Oct. 17-21,
1993.

98

[Connet 721 Connet, J.R., E.J. Pasternak, and B.D. Wagner, “Software defenses in real
time control systems,” FTCS-2, Newton, MA, pp. 94-99, June 19-21, 1972.

[Cortner 871 Cortner, J.M., Digital Test Engineering, Wiley, New York, NY, 1987.
[Craig 851 Craig, G.L., and C.R. Kime, “Pseudo-Exhaustive Adjacency Testing: A BIST

Approach for Stuck-Open Faults,” Proc. 1995 Int. Test Conf., Philadelphia, PA, pp.
126-137, Nov. 19-21, 1985.

[De 921 De, K., C. Wu, and P. Banerjee, “Reliability Driven Logic Synthesis of Multilevel
Circuits,” Proc. Int. Symposium on Circuits and Systems (ISCAS), pp. 1105-l 108,
1992.

[Devadas 90a] Devadas, S., and K. Keutzer, “Synthesis and Optimization Procedures for
Robustly Delay-Fault Testable Combinational Logic Circuits,” Proc. 27th Design
Automation Conf., pp. 221-227, June 1990.

[Devadas 90b] Devadas, S. and K. Keutzer, “Design of Integrated Circuits Fully Testable
for Delay-Faults and Multifaults,” Proc. 1990 lnt. Test Conf., Washington, DC, pp.
284-293, Sep. lo- 12, 1990.

[Devadas 921 Devadas, S. and K. Keutzer, “Validatable Nonrobust Delay-Fault Testable
Circuits Via Logic Synthesis,” IEEE Trans. CAD, Vol. 11, No. 12, pp. 1559-1573,
Dec. 1992.

[Dorey 901 Dorey, A.P., B.K. Jones, A.M.D. Richardson, and Y.Z. Xu, Rapid Reliability
Assessment of VLSICs, Plenum Press, New York, 1990.

[Eichelberger 651 Eichelberger, E. B., “Hazard detection in combinational and sequential
switching circuits,” IBM .I. Res. Develop., Vol. 9, pp. 90-99, Mar. 1965.

[Eichelberger 771 Eichelbereer, E.B., and T. W. Williams, “A Logic Design Structure for
LSI Testability,” Procr 14th Design Automation Conf., pp. 462-468, June 1977.

[Eldred 591 Eldred, R. D., “Test Routines Based on Symbolic Logical Statements,” J.
Assoc. Comput. Mach., Vol. 28, No. 6, pp. 2-8, 1959.

[France 91a] France, P., N.R. Saxena, and E.J. McCluskey, “Relating Abasing in
Signature Analysis to Test Length and Register Design,” Proc. ISCAS’OZ,
Singapore, pp. 1889-1892, June 11-14, 1991.

[France 91b] France, P., and E.J. McCluskey, “Delay Testing of Digital Circuits by
Output Waveform Analysis,” Proc. 1991 Int. Test Con., Nashville, TN, pp, 798-
807, Oct. 26-30, 1991.

[France 931 France, P., and E.J. McCluskey, “On-Line Delay Testing of Digital Circuits,”
Center for Reliable Computing Technicul Report, No. 93-7 Stanford University,
Nov. 1993.

[France 94a] France, P., and E.J. McCluskey, “On-Line Delay Testing of Digital
Circuits,” Proc. 12th IEEE VLSI Test Sym., Cherry Hill, NJ, pp. 167-173, Apr. 25-
28, 1994.

[France 94b] France, P., and E.J. McCluskey, “Three-Pattern Tests for Delay Faults,”
Proc. 12th IEEE VLSI Test Sym., Cherry Hill, NJ, pp. 452-456, Apr. 25-28, 1994.

[France 94~1 France, P., and E.J. McCluskey, “WSIM: A Symbolic Waveform
Simulator,” Center for Reliable Computing Technical Report, No. 94-4, June 1994.

[France 94d) France, P., R.L. Stokes, W.D. Farwell, and E.J. McCluskey, “An
Experimental Chip to Evaluate Test Techniques, Part 1: Description of Experiment,”
Center for Reliable Computing Technical Report, No. 94-5, June 1994.

99

[Gheewala 891 Gheewala, T., “CrossCheck: A ‘Cell Based VLSI Testability Solution,”
Proc. 26th Design Automation Conf., pp. 706-709, June 1989.

[Gray 911 Gray, C.T., et. al., “A High Speed CMOS FIFO Using Wave Pipelining,”
TechnicaZ Report NCSU-VLSI-9 l-01, North Carolina State University, Jan. 199 1.

[Hao 911 Hao, H., and E.J. McCluskey, “‘Resistive Shorts within CMOS Gates,” Proc.
1991 Int. Test Conf., Nashville, TN, pp. 292-301, Oct. 26-30, 1991.

[Hao 931 Hao, H., and E.J. McCluskey, “Very-Low-Voltage Testing for Weak CMOS
Logic ISs,” Proc. 1993 Int. Test Conf., Baltimore, MD, pp. 275-284, Oct. 17-21,
1993.

[Hawkins 851 Hawkins, C.F., and J.M. Soden, “Electrical Characteristics and Testing
Considerations for Gate Oxide Shorts in CMOS ICs,” Proc. 1985 Int. Test Conf ,
Philadelphia, PA, pp. 544-555, Nov. 19-21, 1985.

[Hawkins 861 Hawkins, C.F., and J.M. Soden, “Reliability and Electrical Properties of
Gate Oxide Shorts in CMOS ICs,” Proc. 1986 Int. Test Conf., Washington, DC, pp.
443-451, Sep. 8- 11, 1986.

[Hawkins 891 Hawkins, C.F., J.M. Soden, R.R Fritzemeier, and L.K. Horning,
“Quiescent Power Supply Current measurement for CMOS IC Defect Detection,”
IEEE Trans. on Industrial Electronics, Vol. 36, No. 2, pp. 211-218, May 1989.

[Heinbuch 881 Heinbuch, D.V., Editor, CMOS3 Cell Library, Addison-Wesley, Reading,
MA, 1988.

[Hitchcock 821 Hitchcock, R.B., G.L. Smith, and D.D. Cheng, “Timing Analysis of
Computer Hardware,” IBM J. Res. Develop., Vol. 26, No. 1, pp. 100-105, Jan.
1982.

[Hsieh 771 E.P. Hsieh, R.A. Rasmussen, L.J. Vidunas and W.T. Davis, “Delay Test
Generation,” Proc. 14th Design Automation Conf., pp. 486-491, June 1977.

[Hu 851 Hu, C., et.al., “Hot-Electron-Induced MOSFET Degradation -- Model, Monitor,
and Improvement,” IEEE Trans. on Elec. Dev., Vol. ED-32, No. 2, pp. 375-385,
Feb. 1985.

[Hu 891 Hu, C., “Reliability Issues of MOS and Bipolar ICs,” Proc. IEEE Int. Conf.
Comput. Design, pp. 438-442, 1989.

[IEEE 881 IEEE Standard 1076-1987, “IEEE Standard VHDL Language Reference
Manual,“lEEE Standards Board, 345 East 47th Street, New York, NY 10017, 1988.

[Ishiura 891 Ishiura, N., M. Takahashi, and S. Yajima, “Time-Symbolic Simulation for
Accurate Timing Verification of Asynchronous Behavior of Logic Circuits,” Proc.
26th Design Automation Conf., pp. 397-502, June 1989.

[Ishiura 901 Ishiura, N., Y. Deguchi, and S. Yajima, “Coded Time-Symbolic Simulation
Using Shared Binary Decision Diagram,” Proc. 27th Design Automation Conf., pp.
130-135, June 1990.

[Iyengar 88a] Iyengar, V.S., B.K. Rosen, and I. Spillinger, “Delay Test Generation 1 --
Concepts and Coverage Merrics,” Proc. I988 Int. Test Conf., Washington, DC, pp.
857-866, Sep. 12-14, 1988.

[Iyengar 88b] Iyengar, V.S., B.K. Rosen, and I. Spillinger, “Delay Test Generation 2 --
Algebra and Algorithms,” Proc. 1988 Int. Test Conf., Washington, DC, pp. 867-
876, Sep. 12-14, 1988.

100

[Iyengar 921 Iyengar, V.S., and G. Vijayan, “Optimized Test Application Timing for AC
Test,” IEEE Trans. CAD, Vol. 11, No. 11, pp. 1439-1449, Nov. 1992.

[Jha 9 l] Jha, N.K., and S.-J. Wang, “Design and Synthesis of Self-Checking VLSI
Circuits and Systems,” Proc. ht. Con.. Computer Design (ICCD), pp. 578-581,
1991.

[Johnson 891 Johnson, B.W., Design and Analysis of Fault Tolerant Digital Systems,
Addison-Wesley, MA, 1989.

[Klass 901 Klass, F., and J.M. Mulder, “CMOS Implementation of Wave Pipelining,”
Technical Report: I -68340-44(1990)02, Delft University of Technology, Dec. 1990.

[Klass 921 Klass, F., and J.M. Mulder, “Use of CMOS Technology in Wave Pipelining,”
Proc. 5th IEEE Conf. on VLSI Design, Bangalore, India, pp. 303-306, Jan. 1992.

[Konemann 791 Konemann, B., J. Mucha, and G. Zwiehoff, “Built-in Logic Block
Observation Technique,” Dig. 1979 IEEE Test Conf., pp. 37-41, Oct. 1979.

[Kundu 88a] Kundu, S., and S.M. Reddy, “On The Design of Robust Testable CMOS
Combinational Logic Circuits,” Proc. I8th Int. Fault Tolerant Comp. Symp., Tokyo,
Japan, pp. 220-225, June 27-30, 1988.

[Kundu 88b] Kundu, S., and S.M. Reddy, and N.K. Jha, “On The Design of Robust
Multiple Fault Testable CMOS Combinational Logic Circuits,” Proc. IEEE Znt. Conf.
on CAD., pp. 240-243, Nov. 1988.

[Lesser 801 Lesser, J.D., and J.J Shedletsky, “An Experimental Delay Test Generator for
LSI Logic,” IEEE Trans. Computers, Vol. C-29, No. 3, pp. 235-248, Mar. 1980.

[Levi 811 Levi, M.W., “CMOS Is Most Testable,” Proc. 1981 Int. Test Conf., pp. 217-
220, 1981.

[Lin 861 Lin, C.J., and SM Reddy, “On Delay Fault Testing in Logic Circuits,” Proc.
ICCAD, pp. 148-151, Nov. 1986.

[Lin 871 Lin, C.J., and S.M Reddy, “On Delay Fault Testing in Logic Circuits,” IEEE
Trans. CAD, Vol. CAD-6, No. 5, pp. 694-703, Sep. 1987.

[LSI 901 LSI Logic, 0.7~Micron Array-Based Products Databook, Apr. 1990.
[LSI 911 LSI Logic, IO-Micron Cell-Based Products Databook, LCB007 Cell-Based

ASICs, Feb. 1991.
[Mahmood 881 Mahmood, A., and E.J. McCluskey, “Concurrent Error Detection Using

Watchdog Processors -- A Survey,” IEEE Trans. Comp., Vol. 27, No. 2, pp. 160-
174, Feb. 1988.

[Mao 90a] Mao, W.-W., and M.D. Ciletti, “A Variable Observation Time Method for
Testing Delay Faults,” Proc. 27th Design Automation Conf., pp. 728-73 1, June
1990.

[Mao 90b] Mao, W.-W., and M.D. Ciletti, “Arrangement of Latches in Scan-Path Design
to Improve Delay Fault Coverage,” Proc. 1990 Int. Test Conf., Washington, DC,
pp. 387-393, Sep. 10-12, 1990.

[Maxwell 931 Maxwell, P.C. and R.C. Aitken, “Biased Voting: A Method for Simulating
CMOS Bridging Faults in the Presence of Variable Gate Logic Thresholds,” Proc.
1993 Int. Test Conf., Baltimore, MD, pp. 63-72, Oct. 17-21, 1993.

[McCluskey 621 McCluskey, E.J., “Transients in Combinational Logic Circuits,” in R.H.
Wilcox and W.C. Mann (eds.), Redundancy Techniques for Computing Systems,
Spartan Book, Washington, D.C. pp. 9-46, 1962.

101

[McCluskey 861 McCluskey, E.J., Logic Design Principles with Emphasis on Testable
Semicustom Circuits, Prentice-Hall, 1986.

[Park 871 Park, E.S., and M.R. Mercer, “Robust and Nonrobust Tests for Path Delay
Faults in a Combinational Circuit,” Proc. I987 Int. Test Conf., Washington, DC, pp.
1027-1034, Sep. l-3, 1987.

[Park 881 Park, E.S., M.R. Mercer, and T. W. Williams, “Statistical Delay Fault Coverage
and Defect Level for Delay Faults,” Proc. 1988 Int. Test. Con., Washington, DC,
pp. 492-498, Sep. 12-14, 1988.

[Park 911 Park, E.S., B. Underwood, T. W. Williams, and M.R. Mercer, “Delay Testing
Quality in Timing-Optimized Designs,” Proc. 1991 Int. Test Conf., Nashville, TN,
pp. 897-905, Oct. 26-30, 1991.

[Parker 871 Parker, K.P., Integrating Design and Test: using CAE tools for ATE
programming, IEEE Computer Society Press, 1987.

[Patil 921 Patil, S., and J. Savir, “Skewed-Load Transition Test: Part II, Coverage,” Proc.
1992 Int. Test Conf., Baltimore, MD, pp. 714-722, Sep. 20-24, 1992.

[Pomeranz 911 Pomeranz, I., and S. M. Reddy, “Achieving Complete Delay Fault
Testability by Adding Extra Inputs,” Proc. Int. Test Conf., Nashville, TN, pp. 273-
282, Oct. 29-Nov. 1, 1991.

[Pomeranz 921 Pomeranz, I., and S. M. Reddy, “At-Speed Delay Testing of Synchronous
Sequential Circuits,” Proc. 29th ACMIIEEE Des. Autom. Conf., pp. 177-18 1, 1992.

[Pomeranz 941 Pomeranz, I., and S.M. Reddy, “An Efficient Nonenumerative Method to
Estimate the Path Delay Fault Coverage in Combinational Circuits,” IEEE Trans.
CAD, Vol. 13, No. 2, pp. 240-250, Feb. 1994.

[Pramanick 881 Pramanick, AK., and S.M. Reddy, “On the Detection of Delay Faults,”
Proc. I988 Int. Test Conf., Washington, DC, pp. 845856, Sep. 12-14, 1988.

[Pramanick 891 Pramanick, A.K., and S.M. Reddy, “On the Computation of the Ranges of
Detected Delay Fault Sizes,” Proc. Int. Conf. on Comp. Aided Design, pp. 126-129,
Nov. 1989.

[Pramanick 90a] Pramanick, A.K., S.M. Reddy, and S. Sengupta, “Synthesis of
Combinational Logic Circuits for Path Delay Fault Testability,” Proc. Int. Symp. on
Circuits and Systems, pp. 3 105-3 108, May 1990.

[Pramanick 90b] Pramanick, AK., and S.M. Reddy, “On the Design of Path Delay Fault
Testable Combinational Circuits,” Proc. I990 Int. Fault-Tolerant Computing Symp.,
pp. 374-381, June 1990.

[Pramanick 911 Pramanick, A.K., and S.M. Reddy, “On Multiple Path Propagating Tests
for Path Delay Faults,” Proc. I99I Int. Test Conf., Nashville, TN, pp. 393-402,
Oct. 29-Nov. 1, 1991.

[Pramanick 931 Pramanick, A.K., and S. Kundu, “Design of Scan-Based Path Delay
Testable Sequential Circuits,” Proc. I993 Int. Test Conf., Baltimore, MD, pp. 962-
971, Oct. 17-21, 1993.

[Reddy 841 Reddy, S.M., M.K. Reddy and V.D. Agrawal, “Robust Tests for Stuck-Open
Faults in CMOS Combinational Logic Circuits,” 14th FTCS, pp. 44-49, 1984.

[Reddy 871 Reddy, S.M., C.J. Lin, and S. Patil, “An Automatic Test Pattern Generator for
the Detection of Path Delay Faults,” Proc. Int. Conf. on Comp. Aided Design, pp.
284-287, Nov. 1987. .

102

[Roy 891 Roy, K., J.A. Abraham, K. be, and S. Lusky, “Synthesis of Delay Fault
Testable Combinational Logic,” Proc. Int. Conf. on Camp. Aided Design, pp. 418-
421, Nov. 1989.

[Savir 881 Savir, J, and W.H. McAnney, “Random Pattern Testability of Delay Faults,”
IEEE Trans. Computers, Vol. 37, No. 3, pp. 291-300, Mar. 1988.

[Savir 921 Savir, J, “Skewed-Load Transition Test: Part I, Calculus,” Proc. 1992 Int. Test
Co&, Baltimore, MD, pp. 705713, Sep. 20-24, 1992.

[Saxena 901 Saxena, N.R., E.J. McCluskey, and P. France, “Bounds on Signature
Analysis Aliasing for Random Testing,” Center for Reliable Computing Technical
Report, No. 90- 11, Stanford University, Dec. 1990.

[Saxena 91a] Saxena, N.R., E.J. McCluskey, and P. France, “Refined Bounds on
Signature Analysis Aliasing for Random Testing,” Center for Reliable Computing
Technical Report, No. 9 1-2, Stanford University, Feb. 199 1.

[Saxena 91b] Saxena, N.R., P. France, and E.J. McCluskey, “Bounds on Signature
Analysis Aliasing for Random Testing,” Dig. 21st Annu. Int. Symp. Fault-Tolerant
Comput. (FTCS-21), Montreal, Canada, pp. 104-111, June 25-27, 1991.

[Saxena 91c] Saxena, N.R., P. France, and E.J. McCluskey, “Refined Bounds on
Signature Analysis Aliasing for Random Testing,” Proc. 1991 Int. Test Conf.,
Nashville, TN, pp. 798807, Oct. 26-30, 1991.

[Saxena 921 Saxena, N.R., P. France, and E.J. McCluskey, “Simple Bounds on Signature
Analysis Aliasing for Random Testing,” Special Issue on Fault-Tolerant Computing,
IEEE Trans. Comput., pp. 638-645, May 1992.

[Saxena 931 Saxena, L., and D.K. Pradhan, “A Method to Derive Compact Test Sets for
Path Delay Faults in Combinational Circuits,” Proc. I993 Int. Test Conf., Baltimore,
MD, pp. 724-733, Oct. 17-2 1, 1993.

[Shedletsky 781 Shedletsky, J.J., “Delay Testing LSI Logic,” Dig. 8th Annu. Int. Symp.
Fault-Tolerant Comput. (FTCS-8), pp. 159-164, June 1978.

[Shenoy 931 Shenoy, N.V., R.K. Brayton, and A.L. Sangiovanni-Vincentelli, “Minimum
Padding to Satisfy Short Path Constraints,” Proc. Int. Conf. Computer Aided
Design, Santa Clara, CA, pp. 156-161, Nov. 7-11, 1993.

[Shoji 921 Shoji, M., Theory of CMOS Digital Circuits and Circuit Failures, Princeton,
NJ, Princeton University Press, 1992.

[Smith 851 Smith, G.L., “Model for Delay Faults Based Upon Paths,” Proc. I985 Int.
Test Conf., Philadelphia, PA, pp. 342-349, Nov. 19-21 1985.

[Storey 771 Storey, T.M., and J.W. Barry, “Delay Test Simulation,” Proc. 14th Design
Automation Conf., pp. 492-494, June 1977.

[Synopsys 911 Synopsys, Design Compiler Reference Manual, Version 2.0, May 1991.
[van Brake1 921 van Brakel, G., Y. Xing, and H.G. Kerkhoff, “Scan Cell Design for

Enhanced Delay Fault Testability,” Proc. Fifth Annual IEEE Int. ASIC Conf. and
Exhibit, New York, pp. 372-375, 1992.

[Vierhaus 931 Vierhaus, H.T., W. Meyer, and U. Glaser, “CMOS Bridges and Resistive
Transistor Faults: IDDQ versus Delay Effects,” Proc. I993 Int. Test Conf.,
Baltimore, MD, pp. 83-91, Oct. 17-21, 1993.

[Wagner 881 Wagner, K.D., “Clock System Design,” IEEE Des. & Test of Comp., pp. 9
27, Oct. 1988.

103

[Waicukauski 871 Waicukauski, J.A., E. Lindbloom, B.K. Rosen, and V.S. Iyengar,
“Transition Fault Simulation,” IEEE Design & Test, pp. 32-38, Apr. 1987.

[Weste 851 Weste, N.H.E, and K. Eshraghian, Principles of CMOS VLSI Design,
Addison-Wesley, 1985.

[Weste 931 Weste, N.H.E, and K. Eshraghian, Principles of CMOS VLSI Design A
Systems Perspective, Second Edition, Addison-Wesley, 1993.

[Williams 911 Williams, T.W., B. Underwood, and M.R. Mercer, “The Interdependence
between Delay Optimization of Synthesized Networks and Testing,” Proc. 28th
Design Automation Conf., San Francisco, CA, pp. 87-92, 1991.

[Wong 891 Wong, D., G. De Micheli, and M. Flynn, “Inserting Active Delay Elements to
Achieve Wave Pipelining,” Proc. Int. Conf. Computer Aided Design, Santa Clara,
CA, pp. 270-273, Nov. 6-9, 1989.

[Woods 861 Woods, M.H., “MOS VLSI Reliability and Yield Trends,” Proc. IEEE, Vol.
74, No. 12, Dec. 1986.

[Yamabe 851 Yamabe, K., and K. Taniguchi, “Time-Dependent Dielectric Breakdown of
Thin Thermally Grown SiO;! Films,” IEEE Trans. on Electron Devices, Vol. ED-32,
No. 2, pp. 423-428, Feb. 1985.

104

