
THE DESIGN, IMPLEMENTATION AND EVALUATION OF
JADE: A PORTABLE, IMPLICITLY PARALLEL

PROGRAMMING LANGUAGE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Martin C. Rinard

August 1994

c Copyright 1994 by Martin C. Rinard
All Rights Reserved

ii

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Monica Lam
(Principal Advisor)

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

John Hennessy

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Anoop Gupta

Approved for the University Committee
on Graduate Studies:

iii

Abstract

Over the last decade, research in parallel computer architecture has led to the development
of many new parallel machines. These machines have the potential to dramatically increase
the resources available for solving important computational problems. The widespread use
of these machines, however, has been limited by the difficulty of developing useful parallel
software. This thesis presents the design, implementation and evaluation of Jade, a new
programming language for parallel computations that exploit task-level concurrency.

Jade is structured as a set of constructs that programmers use to specify how a program
written in a standard sequential, imperative language accesses data. The implementation
dynamically analyzes these specifications to automatically extract the concurrency and map
the computation onto the parallel machine. The resulting parallel execution preserves the
semantics of the original serial program.

We have implemented Jade on a wide variety of parallel computing platforms: shared-
memory multiprocessors such as the Stanford DASH machine, homogeneous message-
passing machines such as the Intel iPSC/860, and on heterogeneous networks of worksta-
tions. Jade programs port without modification between all of these platforms.

We evaluated the design and implementation of Jade by parallelizing several complete
scientific and engineering applications in Jade and executing these applications on both
shared-memory and message-passing computational platforms. Our evaluation focuses on
two properties of Jade: how well it supports the process of developing parallel programs and
how well the resulting programs perform. We found that Jade does not usually impose an
onerous programming burden - the vast majority of the changes required to parallelize the
applications were confined to small, peripheral sections of the code and did not perturb the
overall structure of the program. The coarse-grain applications perform very well,exhibiting
almost linear speedup up to 32 processors on both computational platforms. Several of the
finer-grain applications suffer from some Jade-specific performance problems, but some of
these problems could be eliminated with a more advanced Jade implementation.

iv

Acknowledgments

During the course of this research I benefited enormously from the knowledge, expertise
and commitment of my colleagues. My advisor, Monica Lam, had a profound impact on
my personal and professional development. Her constant refusal to accept anything less
than my absolute best forced me to grow as a researcher and allowed me to experience the
joy of discovering my own hidden abilities and talents. John Hennessy and Anoop Gupta
took an interest in Jade from the beginning. Their support inspired me to explore the basic
concepts and practical impact of my ideas; their feedback helped to keep the project focused
on the important issues.

Dan Scales and Jennifer Anderson played an important role in the development of Jade.
Their insightful contributions in early design meetings helped to elucidate the key principles
on which Jade is based. Dan also made a major contribution to the implementation effort
by building the Jade front end.

Mark van Schaack, Caroline Lambert, Brian Schmidt, Jun Ye, Ray Browning, Jason
Nieh, Ed Rothberg, Dan Scales and Jennifer Anderson all helped to develop the Jade
applications discussed in this thesis. Their efforts enhanced my understanding of the
practical implications of using Jade.

Many people helped me deal with the vagaries of the different computational environ-
ments. Dave Nakahira and Jonathan Chew made sure DASH stayed up; Mark Heinrich
showed me how to use the DASH performance monitor. Dan Yergeau kept the iPSC/860 up
and running. Duane Northcutt and Jim Hanko at Sun Labs made it possible for Jade to run
on the High Resolution Video Machine while David Chenevert, also at Sun Labs, enabled
me to use the Mica multiprocessor.

I would like to thank my colleagues in the DASH and SUIF groups for creating a
wonderful research environment. The energy and ability of the people in these two groups
made my years in graduate school some of the most exciting and stimulating of my life.
I particularly enjoyed my interaction with Saman Amarasinge, Jennifer Anderson, Rohit
Chandra, Kourosh Gharachorloo, Aaron Goldberg, Mary Hall, John Heinlein, Amy Lim,
Margaret Martonosi, Dave Ofelt, Kunle Olukotun, Charlie Orgish, Ed Rothberg, Margaret
Rowland, Dan Scales, J.P. Singh, Vijayaraghavan Soundararajan and Chau-Wen Tseng.
Tom Rokicki, my roomate of many years, and several people who entered graduate school
with me, Craig Chambers, Edith Cohen, Tom Henzinger and Alex Wang, helped to keep

v

my life interesting and rewarding.
Early in my graduate career I wrote several papers with Vijay Saraswat. I am grateful

to Vijay for introducing me to the research and publication process and showing me how
rewarding it can be. When I first came to Stanford I worked with Vaughan Pratt. I admire
Vaughan’s unique understanding of concurrency and am grateful to Vaughan for sharing
it with me. Experiencing Vaughan’s perspective gave me a framework for understanding
concurrency that helped me enormously during the initial design of Jade.

Finally, I would like to thank Ann McLaughlin for her support, companionship and
love. She has been with me throughout the whole process, and I cannot imagine what it
would have been like without her.

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1
1.1 Explicitly Parallel Systems : 2
1.2 High-Level Languages : 2
1.3 Jade : 3

1.3.1 Scope : 4
1.3.2 Advantages : 5

1.4 Evaluation : 6
1.5 Organization : 7

2 The Jade Language 8
2.1 Fundamental Concepts : 8

2.1.1 Shared Objects : 8
2.1.2 Tasks : 9
2.1.3 Access Specifications : 9
2.1.4 Parallel and Serial Execution : : : : : : : : : : : : : : : : : : : 9
2.1.5 Execution Model : 10

2.2 Basic Jade Constructs : 10
2.2.1 Shared Objects : 10
2.2.2 Deallocating Objects : 13
2.2.3 Part Objects : 14
2.2.4 Local Pointers : 15
2.2.5 Private Objects : 16
2.2.6 Summary of the Jade Data Model : : : : : : : : : : : : : : : : : 17
2.2.7 The withonly Construct : 19
2.2.8 The access specification Section : : : : : : : : : : : : : 19
2.2.9 Basic Access Specification Statements : : : : : : : : : : : : : : 19

vii

2.3 A Programming Example : 21
2.3.1 The Serial Algorithm : 21
2.3.2 The Jade Algorithm : 23
2.3.3 Commuting Updates : 24
2.3.4 Dynamic Behavior : 24
2.3.5 Modularity : 26

2.4 Programmer Responsibilities : 27
2.4.1 Data Decomposition : 27
2.4.2 Task Decomposition : 28

2.5 Discussion : 29
2.5.1 Advantages : 29
2.5.2 Limitations : 30

2.6 Advanced Constructs : 31
2.6.1 Task Boundary Synchronization : : : : : : : : : : : : : : : : : : 31
2.6.2 The with Construct : 32
2.6.3 Advanced Access Specifications : : : : : : : : : : : : : : : : : : 33
2.6.4 Deferred Access Specification Statements : : : : : : : : : : : : : 33
2.6.5 Negative Access Specification Statements : : : : : : : : : : : : : 34
2.6.6 Pipelined Concurrency : 34
2.6.7 Hierarchical Objects : 35
2.6.8 The block Construct : 37

2.7 Access Specifications and Concurrency : : : : : : : : : : : : : : : : : : 37
2.8 Language Design Rationale : 40

2.8.1 Implicit Concurrency : 42
2.8.2 Task Model : 42
2.8.3 Access Specifications : 43
2.8.4 Local Pointers : 43
2.8.5 Pointer Restrictions : 43
2.8.6 Shared and Private Data : 44
2.8.7 Commuting Declarations : 44
2.8.8 Allocation Units and Access Specifications : : : : : : : : : : : : 45
2.8.9 Allocation Units and Communication : : : : : : : : : : : : : : : 46

2.9 Summary : 48

3 The Jade Implementation 49
3.1 Overview : 50
3.2 Object Queues : 52

3.2.1 Read and Write Declarations : : : : : : : : : : : : : : : : : : : 52
3.2.2 Evaluation of the Object Queue Mechanism : : : : : : : : : : : : 53
3.2.3 Correctness of Object Queue Mechanism : : : : : : : : : : : : : 53

viii

3.2.4 Extensions for Deallocate Declarations : : : : : : : : : : : : : : 56
3.2.5 Extensions for Commuting Declarations : : : : : : : : : : : : : : 56

3.3 The Shared-Memory Implementation : : : : : : : : : : : : : : : : : : : 57
3.3.1 A Task Lifetime : 57
3.3.2 Locality and Load Balancing : : : : : : : : : : : : : : : : : : : 59
3.3.3 Shared-Memory Systems : 59
3.3.4 The Shared-Memory Scheduler : : : : : : : : : : : : : : : : : : 61
3.3.5 Discussion of the Locality Heuristics : : : : : : : : : : : : : : : 63
3.3.6 Extensions for Incoherent Caches : : : : : : : : : : : : : : : : : 64
3.3.7 Summary : 64

3.4 The Message-Passing Implementation : : : : : : : : : : : : : : : : : : : 64
3.4.1 A Task Lifetime : 65
3.4.2 The Message-Passing Scheduler : : : : : : : : : : : : : : : : : : 67
3.4.3 The Object Queue Protocol : 69
3.4.4 Locating Remote Entities : 71
3.4.5 Communication and Synchronization : : : : : : : : : : : : : : : 72
3.4.6 The Consistency Problem : 73
3.4.7 The Jade Consistency Mechanism : : : : : : : : : : : : : : : : : 74
3.4.8 Evaluation of Consistency Mechanism : : : : : : : : : : : : : : 75
3.4.9 Adaptive Broadcast and Object Piggybacking : : : : : : : : : : : 76
3.4.10 Memory Management : 76
3.4.11 Summary : 77

3.5 Common Aspects : 77
3.5.1 The Front End : 78
3.5.2 Access Checking : 78
3.5.3 Suppressing Excessive Task Creation : : : : : : : : : : : : : : : 78

3.6 Basic Jade Overheads : 80
3.6.1 withonly Time Overhead : 80
3.6.2 Speedup Benchmarks : 83
3.6.3 with Time Overhead : 83
3.6.4 Space Overheads : 83

3.7 Summary : 87

4 Applications Experience 88
4.1 The Application Set : 89
4.2 Application Characteristics : 91
4.3 Performance Measurements : 93

4.3.1 Instrumentation Levels : 95
4.3.2 Optimization Levels : 95
4.3.3 Version Names : 96

ix

4.3.4 Collected Data : 96
4.4 The Water, String and Search Applications : : : : : : : : : : : : : : : : 97

4.4.1 Water : 97
4.4.2 String : 98
4.4.3 Search : 98
4.4.4 The Concurrency Stucture : 99
4.4.5 Parallel Reductions : 100
4.4.6 Expressing the Concurrency in Jade : : : : : : : : : : : : : : : : 103
4.4.7 Water on the iPSC/860 : 105
4.4.8 Water on DASH : 116
4.4.9 String on the iPSC/860 : 120
4.4.10 String on DASH : 126
4.4.11 Search on the iPSC/860 : 129
4.4.12 Search on DASH : 129

4.5 Volume Rendering : 133
4.6 Panel Cholesky : 137

4.6.1 Panel Cholesky on the iPSC/860 : : : : : : : : : : : : : : : : : : 138
4.6.2 Panel Cholesky on DASH : 140

4.7 Ocean : 144
4.7.1 Ocean on the iPSC/860 : 145
4.7.2 Ocean on DASH : 148

4.8 Programming Evaluation : 150
4.9 Performance Evaluation : 152
4.10 Conclusion : 154

5 Parallel Programming Systems 155
5.1 The Major Groups : 156
5.2 Serial Semantics : 157

5.2.1 Data-Parallel Systems : 157
5.2.2 Static Systems : 158
5.2.3 Dynamic Systems : 160
5.2.4 Speculative Systems : 161
5.2.5 Discussion : 161

5.3 Monotonic Systems : 162
5.3.1 Functional Languages : 163
5.3.2 Id : 163
5.3.3 Concurrent Logic Programming Languages : : : : : : : : : : : : 163
5.3.4 Discussion : 164
5.3.5 Mutable Data in a Monotonic Context : : : : : : : : : : : : : : : 166

5.4 Explicitly Parallel Systems : 167

x

5.4.1 Message-Passing Systems : 168
5.4.2 Shared-Memory Systems : 170
5.4.3 Discussion : 178

5.5 Discussion : 179

6 Future Work 181
6.1 Static Optimizations : 181
6.2 Communication Enhancements : 182
6.3 Extensions for Performance and Control : : : : : : : : : : : : : : : : : : 183
6.4 Nondeterministic Applications : 183

7 Conclusion 185
7.1 Viable Concepts from Jade : 186
7.2 Final Remarks : 187

Bibliography 188

A The Jade Front End 200
A.1 The Shared-Memory Front End : 200

A.1.1 The withonly Construct : 200
A.1.2 Access Checks : 202
A.1.3 Allocating Objects : 203
A.1.4 The with Construct : 204
A.1.5 Global Variables : 205
A.1.6 Shared Functions : 205

A.2 The Message-Passing Front End : 206
A.2.1 The withonly Construct : 206
A.2.2 Access Checks : 208
A.2.3 Allocating Objects : 209
A.2.4 The with Construct : 211
A.2.5 Global Objects : 212
A.2.6 Shared Functions : 213

B Benchmark Programs 215
B.1 Benchmark Programs : 215

B.1.1 withonly Overhead : 215
B.1.2 with Overhead : 216
B.1.3 Speedup Benchmark : 216

xi

C Machine Characteristics 223
C.1 The iPSC/860 : 223
C.2 The Stanford DASH Machine : 223

xii

List of Tables

2.1 Induced Serialization Constraints – Part I : : : : : : : : : : : : : : : : : 38
2.2 Induced Serialization Constraints – Part II : : : : : : : : : : : : : : : : : 39
2.3 Enabled Accesses : 40
2.4 Access Specification Rules for the withonly Construct : : : : : : : : : 41
2.5 Access Specification Rules for the with Construct : : : : : : : : : : : : 41

4.1 Static Application Characteristics : 92
4.2 Dynamic Application Characteristics for the iPSC/860 : : : : : : : : : : 93
4.3 Dynamic Application Characteristics for DASH : : : : : : : : : : : : : : 93
4.4 Execution Times for Water on the iPSC/860 (seconds) : : : : : : : : : : : 108
4.5 Execution Times for Water on DASH (seconds) : : : : : : : : : : : : : : 117
4.6 Execution Times for String on the iPSC/860 (seconds) : : : : : : : : : : 120
4.7 Execution Times for String on DASH (seconds) : : : : : : : : : : : : : : 127
4.8 Execution Times for Search on the iPSC/860 (seconds) : : : : : : : : : : 129
4.9 Execution Times for Search on DASH (seconds) : : : : : : : : : : : : : 130
4.10 Execution Times for Volume Rendering on DASH (seconds) : : : : : : : 134
4.11 Execution Times for Panel Cholesky on the iPSC/860 (seconds) : : : : : : 138
4.12 Execution Times for Panel Cholesky on DASH (seconds) : : : : : : : : : 140
4.13 Execution Times for Ocean on the iPSC/860 (seconds) : : : : : : : : : : 146
4.14 Execution Times for Ocean on DASH (seconds) : : : : : : : : : : : : : : 149

xiii

List of Figures

2.1 Jade Shared Object Declarations : 11
2.2 More Jade Shared Object Declarations : : : : : : : : : : : : : : : : : : : 11
2.3 Jade Shared Function Declarations : 12
2.4 Jade Shared Object Creation : 12
2.5 Jade Global Shared Object Declarations : : : : : : : : : : : : : : : : : : 13
2.6 Jade Part Object Declarations : 14
2.7 Jade Part Object Creation : 14
2.8 Jade Local Pointer Declarations : 15
2.9 Local Pointer Usage : 16
2.10 Shared and Local Pointers : 17
2.11 Illegal Declarations : 17
2.12 Legal Declarations : 18
2.13 Data Structure Declarations for Serial Sparse Cholesky Factorization : : : 22
2.14 Data Structures for Serial Sparse Cholesky Factorization : : : : : : : : : 22
2.15 Serial Sparse Cholesky Factorization Algorithm : : : : : : : : : : : : : : 22
2.16 Data Structure Declarations for Jade Sparse Cholesky Factorization : : : : 23
2.17 Data Structures for Jade Sparse Cholesky Factorization : : : : : : : : : : 24
2.18 Jade Sparse Cholesky Factorization Algorithm : : : : : : : : : : : : : : 25
2.19 Task Graph for Jade Sparse Cholesky Factorization : : : : : : : : : : : : 26
2.20 Task Boundary Synchronization Example : : : : : : : : : : : : : : : : : 32
2.21 Pipelined Concurrency Example : 35
2.22 Child Object Creation : 36
2.23 Serialization Constraint Lattice : 38

3.1 Shared-Memory State-Transition Diagram : : : : : : : : : : : : : : : : : 58
3.2 Task Queue Data Structures : 61
3.3 Message-Passing State-Transition Diagram : : : : : : : : : : : : : : : : 65
3.4 Task Overhead on DASH in Microseconds : : : : : : : : : : : : : : : : 81
3.5 Task Overhead on the iPSC/860 in Microseconds : : : : : : : : : : : : : 81
3.6 Task Overhead on DASH in Processor Cycles : : : : : : : : : : : : : : : 82
3.7 Task Overhead on the iPSC/860 in Processor Cycles : : : : : : : : : : : 82

xiv

3.8 Speedup on DASH for 32 Processors (Task Size in Milliseconds) : : : : : 84
3.9 Speedup on the iPSC/860 for 32 Processors (Task Size in Milliseconds) : 84
3.10 Speedup on DASH for 32 Processors (Task Size in Processor Cycles) : : : 85
3.11 Speedup on the iPSC/860 for 32 Processors (Task Size in Processor Cycles) 85
3.12 with Overhead on DASH in Microseconds : : : : : : : : : : : : : : : : 86
3.13 with Overhead on the iPSC/860 in Microseconds : : : : : : : : : : : : 86
3.14 with Overhead on DASH in Processor Cycles : : : : : : : : : : : : : : 86
3.15 with Overhead on the iPSC/860 in Processor Cycles : : : : : : : : : : : 86

4.1 Parallel Reduction : 100
4.2 Serial Code for Parallel Reduction : 101
4.3 Labeled Parallel Reduction : 101
4.4 Serial Code for Parallel Reduction using combine(e,g) : : : : : : : : 102
4.5 Jade Code for Parallel Reduction : 102
4.6 Parallel Schema for Water, String and Search : : : : : : : : : : : : : : : 104
4.7 Accumulator Data Structure : 105
4.8 Accumulator Creation and Initialization : : : : : : : : : : : : : : : : : : 106
4.9 Accumulator Operations : 107
4.10 Speedups for Water on the iPSC/860 : 108
4.11 Activity Trace for Water (fl.lo.ab) on the iPSC/860 : : : : : : : : : : : : 109
4.12 Stacked Activity Traces for Water (fl.lo.ab) on the iPSC/860 : : : : : : : 111
4.13 32 Processor Activity Traces for Water (fl.lo.nb) on the iPSC/860 : : : : : 113
4.14 32 Processor Activity Traces for Water (fl.lo.ab) on the iPSC/860 : : : : : 114
4.15 Task Locality Percentages for Water on the iPSC/860 : : : : : : : : : : : 115
4.16 32 Processor Activity Traces for Water (fl.nl.ab) on the iPSC/860 : : : : : 115
4.17 Speedups for Water on DASH : 117
4.18 32 Processor Activity Traces for Water (fl.lo) on DASH : : : : : : : : : : 118
4.19 Task Locality Percentages for Water on DASH : : : : : : : : : : : : : : 119
4.20 Speedups for String on the iPSC/860 : : : : : : : : : : : : : : : : : : : 121
4.21 32 Processor Activity Traces for String (fl.lo.ab) on the iPSC/860 : : : : : 122
4.22 First Parallel Phase for String (fl.lo.ab) on the iPSC/860 : : : : : : : : : : 123
4.23 Second Parallel Phase for String (fl.lo.ab) on the iPSC/860 : : : : : : : : 124
4.24 Fourth Parallel Phase for String (fl.lo.ab) on the iPSC/860 : : : : : : : : : 125
4.25 Task Locality Percentages for String on the iPSC/860 : : : : : : : : : : : 126
4.26 Speedups for String on DASH : 127
4.27 Task Locality Percentages for String on DASH : : : : : : : : : : : : : : 128
4.28 Speedups for Search on the iPSC/860 : : : : : : : : : : : : : : : : : : : 130
4.29 32 Processor Activity Traces for Search (fl.lo.ab) on the iPSC/860 : : : : 131
4.30 Speedups for Search on DASH : 131
4.31 32 Processor Activity Traces for Search (fl.lo) on DASH : : : : : : : : : 132

xv

4.32 32 Processor Activity Traces for Search (fl.nl) on DASH : : : : : : : : : 132
4.33 Speedups for Volume Rendering on DASH : : : : : : : : : : : : : : : : 135
4.34 32 Processor Activity Traces for Volume Rendering (fl.lo) on DASH : : : 135
4.35 32 Processor Activity Traces for Volume Rendering (fl.at) on DASH : : : 137
4.36 Task Locality Percentages for Panel Cholesky on the iPSC/860 : : : : : : 139
4.37 Mean Communication Volume for Panel Cholesky on the iPSC/860 : : : : 140
4.38 Speedups for Panel Cholesky on DASH : : : : : : : : : : : : : : : : : : 141
4.39 Task Locality Percentages for Panel Cholesky on DASH : : : : : : : : : 142
4.40 Normalized Application Time for Panel Cholesky on DASH : : : : : : : 143
4.41 Ocean Data Decomposition : 145
4.42 Speedups for Ocean on the iPSC/860 : : : : : : : : : : : : : : : : : : : 146
4.43 Waiting Times for Ocean on the iPSC/860 : : : : : : : : : : : : : : : : : 147
4.44 Task Locality Percentages for Ocean on the iPSC/860 : : : : : : : : : : : 148
4.45 Mean Communication Volume for Ocean on the iPSC/860 : : : : : : : : 148
4.46 Speedups for Ocean on DASH : 149
4.47 Task Creation Percentages for the Main Processor – Ocean on DASH : : : 150
4.48 Task Locality Percentages for Ocean on DASH : : : : : : : : : : : : : : 150
4.49 Normalized Application Time for Ocean on DASH : : : : : : : : : : : : 151

A.1 Jade Source for withonly Example : : : : : : : : : : : : : : : : : : : 201
A.2 Generated Code for withonly Example : : : : : : : : : : : : : : : : : 201
A.3 Generated Task Body for withonly Example : : : : : : : : : : : : : : 202
A.4 Jade Source for Access Check Example : : : : : : : : : : : : : : : : : : 203
A.5 Generated Code for Access Check Example : : : : : : : : : : : : : : : : 203
A.6 Jade Source for Object Creation Example : : : : : : : : : : : : : : : : : 204
A.7 Generated Code for with Example : 204
A.8 Jade Source for with Example : 204
A.9 Generated Code for with Example : 205
A.10 Source Code for Shared Function Example : : : : : : : : : : : : : : : : 205
A.11 Generated Code for Shared Function Example : : : : : : : : : : : : : : : 206
A.12 Jade Source for withonly Example : : : : : : : : : : : : : : : : : : : 207
A.13 Generated Packing and Unpacking Routines for withonly Example : : 207
A.14 Generated Code for withonly Example : : : : : : : : : : : : : : : : : 209
A.15 Generated withonly Initialization Functions : : : : : : : : : : : : : : 210
A.16 Source Code for Object Creation Example : : : : : : : : : : : : : : : : : 210
A.17 Pack and Unpack Routines for Object Creation Example : : : : : : : : : 211
A.18 Size and Deallocation Routines for Object Creation Example : : : : : : : 212
A.19 Generated Code for Object Creation Example : : : : : : : : : : : : : : : 212
A.20 Global Object Declaration : 213
A.21 Generated Code for Global Object Declaration : : : : : : : : : : : : : : 213

xvi

A.22 Source Code for Shared Function Example : : : : : : : : : : : : : : : : 214
A.23 Generated Code for Shared Function Example : : : : : : : : : : : : : : : 214

B.1 withonly Overhead Benchmark : 217
B.2 with Overhead Benchmark : 218
B.3 Speedup Benchmark : 219
B.4 wait Procedure for Speedup Benchmark : : : : : : : : : : : : : : : : : 220
B.5 Measured e(t)=256 on DASH : 221
B.6 Measured e(t)=256 on iPSC/860 : 221
B.7 Measured Speedup on DASH : 222
B.8 Measured Speedup on iPSC/860 : 222

xvii

Chapter 1

Introduction

Existing parallel machines present two fundamentally different programming models: the
shared-memory model [83, 52, 73] and the message-passing model [130, 68, 131]. Even
machines that support the same basic model of computation may present interfaces with
significantly different functionality and performance characteristics. Developing the same
computation on different machines may therefore lead to radically different programs
[126, 114], and it can be difficult to port a program written for one machine to a machine
with a substantially different programming interface [89].

Given the rapid development of parallel machines, this lack of portability presents
a significant obstacle to the widespread use of parallel computation. Organizations that
develop or purchase software will be reluctant to invest in parallel software if it will not
easily port to new architectures.

A second problem is that the software must manage many of the low-level aspects
associated with mapping a computation onto the parallel machine. For example, the soft-
ware must decompose the program into parallel tasks and assign the tasks to processors for
execution. For the program to execute correctly, the software must generate the synchro-
nization operations that coordinate the execution of the computation. On message-passing
machines the software must also generate the message-passing operations required to move
data through the machine.

For some parallel programs with simple concurrency patterns the applications pro-
grammer can generate this management code without too much difficulty, and its direct
incorporation into the source code does not significantly damage the structure of the pro-
gram. In general, however, an explicitly parallel programming environment complicates
the programming process and can impair the structure and maintainability of the result-
ing program. To generate correct synchronization code, the programmer must develop a
global mental model of how all the parallel tasks interact and keep that model in mind
when coding each task. The result is a decentralized concurrency management algorithm
scattered throughout the program. To function effectively, a new programmer attempting to

1

2 CHAPTER 1. INTRODUCTION

maintain the program must first reconstruct, then understand both the global synchroniza-
tion algorithm and the underlying mental model behind the algorithm. Explicitly parallel
environments therefore destroy modularity because they force programmers to understand
the dynamic behavior of the entire program, not just the module at hand.

The need for efficient execution compounds the complexity of the program develop-
ment process. Performance degradation may come from the dynamic overhead of the
concurrency management code, excess communication, poor load balancing or a lack of
concurrency. Efficient execution may therefore require elaborate, highly optimized con-
currency management algorithms or complex parallelization strategies that simultaneously
minimize the amount of communication and maximize the amount of exposed concurrency.
For maximum performance the software may have to tailor the computation to the specific
machine at hand. Requiring the applications programmer to generate this software can
dramatically complicate the programming process and impair portability.

Finally, nondeterministic execution exacerbates all of the problems outlined above.
Parallel machines present an inherently nondeterministic model of computation. If the
programming environment exposes this nondeterminism to the programmer, it complicates
the debugging process by making it difficult to reproduce and eliminate programmingerrors.

1.1 Explicitly Parallel Systems

Programmers have traditionally developed software for parallel machines using explicitly
parallel systems [88, 130]. These systems provide constructs that programmers use to create
parallel tasks. On shared-memory machines the programmer synchronizes the tasks using
low-level primitives such as locks, condition variables and barriers. On message-passing
machines the programmer must also manage the communication using explicit message-
passing operations such as send and receive. Explicitly parallel systems are only one step
removed from the hardware, giving programmers maximum control over the parallel exe-
cution. Programmers can exploit this control to generate extremely efficient computations.
The problem is that these systems present a complex programming environment, directly
exposing the programmer to all of the problems outlined in the previous section.

1.2 High-Level Languages

Language designers have responded to the complexity of explicitly parallel programming
by providing high-level languages. Each such language presents a set of abstractions
that simplify and structure the way the programmer thinks about and expresses a parallel
algorithm. These abstractions insulate the programmer from the complexity of directly
controlling the parallel execution and typically offer a safer, more specialized model of
parallel computation.

1.3. JADE 3

The implementation of each language encapsulates a set of algorithms for managing
concurrency. In effect, each implementation is a reusable package encapsulating the knowl-
edge of how to exploit a specific kind of concurrency on a specific machine. Ideally, the
programmer expresses the computation in an abstract, machine-independent way. The
implementation then manages the concurrency and performs the machine-specific opti-
mizations required to map the computation efficiently onto the current hardware platform.
The resulting parallel program is easier to develop and readily ports to new machines.

Existing approaches support restricted computational paradigms. Languages such as
Fortran 90 [105] and C* [111] support the exploitation of regular, data-parallel forms
of concurrency. Programmers using these languages view their program as a sequence of
operations on large aggregate data structures such as sets or arrays. The implementation can
execute each aggregate operation in parallel by performing the operation on the individual
elements concurrently. This approach works well for programs that fit the data-parallel
paradigm. Its success illustrates the utility of having the language implementation, rather
than the programmer, control the parallel execution and data movement.

Parallelizing compilers automatically parallelize serial programs. Because the serial
programming paradigm is significantly simpler than explicitly parallel paradigms, paral-
lelizing compilers liberate programmers from many of the problems associated with writing
explicitly parallel programs. Like the data-parallel approach, this approach works well for
a specific kind of parallelism: the loop-level parallelism present in scientific programs that
manipulate dense matrices. The complexity of the highly tuned, machine-specific code that
parallelizing compilers generate [135] illustrates the need for high-level abstractions that
shield programmers from the low-level details of their computations.

1.3 Jade

Both the parallelizing compiler and the data-parallel approaches are designed to exploit
regular concurrency available within a single operation on aggregate data structures. An
orthogonal source of concurrency also exists between operations on different data structures.
In contrast to data-parallel forms of concurrency, task-level concurrency is often irregular
and may depend on the input data or on the results of previous computation. The tasks’
computations may be heterogeneous, with different tasks executing completely different
computations.

Jade [108, 109, 110] is a high-level, implicitly parallel language designed for exploiting
task-level concurrency. A Jade programmer starts with a program written in a sequential,
imperative language, then uses Jade constructs to describe how the program accesses data.
The Jade implementation analyzes the data access information to automatically exploit
the task-level concurrency present in the computation. The resulting parallel execution
preserves the semantics of the original serial program.

4 CHAPTER 1. INTRODUCTION

The Jade language design is based on an analysis of the respective strengths of the pro-
grammer and implementation. The implementation discovers the concurrency and handles
the low-level details of mapping the computation onto the machine. The programmer helps
the implementation perform these activities by providing high-level, application-specific
granularity and data usage information. Specifically, the programmer provides the following
information.

� A decomposition of the data into the atomic units that the program will access.

� A decomposition of the sequential program into tasks.

� A specification of how each task may access data.

The implementation checks each task’s accesses to ensure that it respects its access speci-
fication.

Almost all other parallel languages that are designed to exploit task-level concurrency
present a control-oriented paradigm. They provide constructs that programmers use to
directly create and control the parallel execution. Jade takes a fundamentally different
approach. It is a declarative language designed to express information about data, not
control. The research presented in this thesis explores the advantages and limitations of
this approach.

1.3.1 Scope

We designed Jade as a focused language tailored for a specific kind of concurrency. Within
its intended domain it provides a safe, effective programming environment that harmonizes
with the programmer’s needs and abilities. Ideally, Jade will become integrated into a
more comprehensive programming system that encompasses all of the different kinds of
concurrency. Each part of the system will specialize in a specific kind of concurrency, and
the parts will work together to allow programmers to easily exploit all of the different kinds
of concurrency present in their applications. We next describe the kind of concurrency that
we designed Jade to exploit.

Because Jade requires the programmer to play a role in the parallelization process, it is
counterproductive to use Jade for forms of parallelism (such as instruction-level parallelism
or loop-level parallelism in programs that manipulate dense matrices) that can be exploited
automatically. Jade is instead appropriate for computations that are beyond the reach of au-
tomatic techniques. Such computations may exploit dynamic, data-dependent concurrency
or concurrently execute pieces of code from widely separated parts of the program. Jade
is especially useful for coarse-grain computations because it provides constructs that allow
programmers to help the system identify large parallel tasks.

Jade’s high-level abstractions hide certain aspects of the underlying parallel computing
environment. While hiding these aspects protects the programmer from much of the

1.3. JADE 5

complexity of explicit concurrency, it also narrows the scope of the language by denying
the programmer control over the corresponding aspects of the parallel computation. It is
therefore inappropriate to use Jade for programs that demand highly optimized, application-
specific synchronization and communication algorithms.

Finally, Jade forces programmers to express the basic computation in a serial language.
It is therefore counterproductive to use Jade for computations that are more naturally
expressed in an explicitly parallel language.

1.3.2 Advantages

Jade is designed to extend the sequential programming paradigm to programs that exploit
task-level concurrency. Within its application domain the Jade approach delivers significant
programming advantages. The first major advantage is portability. We have implemented
Jade as an extension to C on a wide variety of computational environments: unipro-
cessors, shared-memory multiprocessors, distributed-memory multiprocessors, message-
passing machines and heterogeneous collections of workstations. Jade applications port
without modification between all of these environments.

Jade promotes modular parallel programming. Jade programmers only provide local
information about how each task accesses data. There is no code in a Jade program that
manages the interactions between tasks. The programmer can therefore concentrate solely
on the behavior of the task under development, and need not develop a detailed mental
model of the computation’s global concurrency structure. These locality properties allow
programmers to develop the abstractions required for modular parallel programming. For
example, Jade programmers can build abstract data types that completely encapsulate the
Jade constructs required to guide the parallelization process [107].

The Jade implementation encapsulates all of the concurrency management code required
to exploit task-level concurrency. Jade programmers can therefore concentrate on the se-
mantics of the actual computation, rather than struggling with the low-level synchronization
and communication code required to coordinate the parallel execution. Because the pro-
grammer does not directly control the parallel execution, the Jade implementation has the
freedom it needs to apply machine-specific optimizations and implementation strategies.

Jade supports several kinds of access specifications. The most basic access specifica-
tions only allow programmers to describe how tasks will read and write data. Programs that
only use these access specifications are guaranteed to preserve the semantics of the under-
lying serial program. Such programs therefore execute deterministically, which simplifies
debugging.

Jade also allows programmers to provide additional high-level information about the
operations tasks perform. For example, programmers can specify that certain operations
on a given data structure commute (i.e., generate the same result regardless of the order in

6 CHAPTER 1. INTRODUCTION

which they execute). 1 Allowing the programmer to express such information extends the
range of applications that programmers can effectively develop using Jade.

Access specifications help the implementation map computations efficiently onto paral-
lel machines. In message-passing environments access specifications allow the implemen-
tation to preserve the abstraction of a single address space. Because the implementation
knows which pieces of data each task will access, it can automatically transfer the accessed
data to the processor that will execute the task. This functionality frees the programmer
from the complexity of using message-passing operations to route data through the parallel
machine.

Access specifications also allow the implementation to apply communication optimiza-
tions. A priori knowledge of data access patterns enables the implementation to enhance the
locality of the computation by executing tasks on processors with locally available copies
of the accessed data. The implementation also optimizes the execution by concurrently
fetching different pieces of accessed data and using excess concurrency to hide the latency
of accessing remote data.

1.4 Evaluation

The Jade design and implementation is based on an abstract analysis of how the abilities
of parallel programmers, the needs of parallel computations and the functionality of the
implementation may interact to support the effective generation of parallel applications.
While such an analysis may lead to an elegant, internally consistent language, the language
design project remains incomplete without an evaluation of how well the language will
actually work in practice. For a parallel language such an evaluation should explore at least
two aspects of the design and implementation:

� Programmability How well does the language support the development of parallel
applications?

� Performance How well do the resulting applications perform on different hardware
platforms?

We address these questions by developing a set of scientific and engineering applications
in Jade and running the applications on a variety of hardware platforms. This experience
enables us to perform an initial evaluation of how well Jade works in practice and provides
insight into the strengths and weaknesses of the design and implementation.

We believe the field of parallel programming languages suffers from too many paper de-
signs, too few serious implementations and a severe lack of experience developing complete

1It is the programmer’s responsibility to ensure that the operations actually commute - the implementation
does not check this property. See Section 2.2.9.3 for a complete discussion of this issue.

1.5. ORGANIZATION 7

applications. Language designers need feedback from actual applications experience to un-
derstand the application space and to address the practical needs of parallel programmers.
Our applications experience contributes to the field as a whole by providing insight into
the characteristics of the parallel applications and giving specific examples of the problems
that the use of Jade either introduces or eliminates.

1.5 Organization

This rest of thesis is organized as follows. Chapter 2 presents the Jade programming lan-
guage. It outlines the basic concepts of the language, then provides a detailed description
of the language constructs. Chapter 3 describes the implementation of Jade on a variety
of computational platforms. It presents the key concurrency management algorithms en-
capsulated inside the Jade implementation. Chapter 4 presents our experience developing
complete scientific and engineering applications using Jade. We describe the software
development process for each application, then present performance numbers for the appli-
cation running on both shared-memory and message-passing platforms. Chapter 5 presents
a taxonomy of parallel programming systems. Chapter 6 discusses several directions for
future research and Chapter 7 presents the conclusions.

Chapter 2

The Jade Language

The goal of Jade is to preserve the sequential programming paradigm for computations that
exploit task-level concurrency. Jade satisfies this goal by taking a declarative approach to
parallel execution. Jade programmers direct the parallelization process by augmenting a
serial program with granularity and data usage information. The resulting program ports
without modification to a wide range of parallel architectures and preserves the modularity
properties of the original serial program.

This chapter presents a detailed description of Jade. It describes both the fundamental
concepts behind Jade (objects, tasks, and access specifications) and the relationship between
these concepts and concurrent execution. It describes the concrete expression of these
concepts in the constructs of the language. It analyzes the design choices implicit in the
structure of Jade and presents a rationale for the final design.

2.1 Fundamental Concepts

Jade is based on three fundamental concepts: shared objects, tasks and access specifications.
Shared objects and tasks are the mechanisms the programmer uses to specify the granularity
of, respectively, the data and the computation. The programmer uses access specifications
to specify how tasks access data. The implementation analyzes this data usage information
to automatically extract the concurrency, generate the communication and optimize the
parallel execution. The next few sections introduce the three fundamental concepts.

2.1.1 Shared Objects

Jade supports the abstraction of a single mutable memory that all parts of the computation
can access. Each piece of data allocated in this memory is called a shared object. The
programmer therefore implicitly aggregates the individual words of memory into larger

8

2.1. FUNDAMENTAL CONCEPTS 9

granularity objects by allocating data at a certain granularity. Shared objects are atomic:
no piece of memory can be part of more than one object.

2.1.2 Tasks

Jade programmers explicitly decompose the serial computation into tasks by identifying
the blocks of code whose execution generates a task. Programmers can create hierarchi-
cally structured tasks by creating tasks which, in turn, decompose their computation into
child tasks. In many parallel programming languages tasking constructs explicitly generate
parallel computation. Because Jade is an implicitly parallel language with serial seman-
tics, Jade programmers ostensibly use tasks only to specify the granularity of the parallel
computation. The Jade implementation, and not the programmer, then decides which tasks
execute concurrently.

2.1.3 Access Specifications

In Jade, each task has an access specification that declares how it (and its child tasks) will
access individual shared objects. It is the responsibility of the programmer to provide an
initial access specification for each task when that task is created. As the task runs, the
programmer may dynamically update its access specification to more precisely reflect how
the remainder of the task accesses shared objects.

The simplest access specifications declare how a task will read and write shared objects.
Jade also supports more sophisticated access specifications that provide more semantic
information about how tasks access objects. For example, Jade currently supports access
specifications that declare that tasks’ accesses to a given object commute. The Jade paradigm
generalizes to include access specifications that provide an arbitrary amount of information
about how tasks access objects.

2.1.4 Parallel and Serial Execution

The Jade implementation analyzes access specifications to determine which tasks can
execute concurrently. This analysis takes place at the granularity of individual shared
objects. For access specifications that only declare reads and writes, the dynamic data-
dependence constraints determine the concurrency pattern. If one task declares that it will
write an object and another declares that it will access the same object, there is a dynamic
data dependence between the two tasks and they must execute sequentially. The task
that would execute first in the serial execution of the program executes first in all parallel
executions. If there is no dynamic data dependence between two tasks, they can execute
concurrently.

10 CHAPTER 2. THE JADE LANGUAGE

This execution strategy preserves the relative order of reads and writes to each shared
object. If a program only declares read and write accesses, the implementation guarantees
that all parallel executions preserve the semantics of the original serial program and therefore
execute deterministically.

More sophisticated access specifications may allow the implementation to further relax
the sequential execution order. For example, if two tasks declare that their accesses to a
given object commute, the implementation has the freedom to execute the tasks in either
order. In this case the implementation determines the execution order dynamically, with
different orders possible in different executions.

2.1.5 Execution Model

As a task runs, it executes its serial computation. It may also decompose its computation into
a set of subcomputations by serially creating child tasks to execute each subcomputation.
When a task is created, the implementation executes a programmer-provided piece of code
that generates its access specification. As the program runs, the implementation analyzes
tasks’ access specifications to determine when they can legally execute.

When a task can legally execute, the Jade implementation assigns the task to a processor
for execution. In the message-passing implementation, the processor on which the task will
execute issues messages requesting the remote shared objects that the task will access. The
implementation then moves (on a write access) or copies (on a read access) the objects to
that processor. When all of the remote shared objects arrive, the implementation executes
the task. When the task finishes, the implementation may enable other tasks for execution.

The Jade implementation dynamically checks each task’s accesses to ensure that it
respects its access specification. If a task attempts to perform an access that it did not declare,
the implementation will detect the violation and generate a run-time error identifying the
undeclared access.

2.2 Basic Jade Constructs

In this section we describe the basic constructs Jade programmers use to create and manip-
ulate tasks, shared objects and access specifications. We designed Jade to be implemented
as an extension to an existing sequential programming language. This approach preserves
much of the language-specific investment in programmer training and software tools. The
current implementation of Jade is an extension to C.

2.2.1 Shared Objects

The Jade memory model is based on the abstraction of a single global mutable memory.
Programmers access data in Jade programs using the same linguistic mechanism as in the

2.2. BASIC JADE CONSTRUCTS 11

original C program. Jade extends the standard memory model by segregating pieces of data
that multiple tasks may access from data that only one task may access.

The Jade type system uses the shared keyword to identify shared objects. Figure 2.1
shows how to declare a shared double, a shared array of doubles, and a shared structure.
Programmers access objects using pointers. Figure 2.1 also illustrates how to use the
shared keyword to declare a pointer that points to a shared object; the shared is
inserted just before the * in the pointer declaration.

double shared x;
double shared A[10];
struct {

int i, j, k;
double d;

} shared s;

double shared *p;

Figure 2.1: Jade Shared Object Declarations

It is possible for shared objects to, in turn, contain pointers to other shared objects. To
declare pointers to such objects, the programmer may need to use several instances of the
shared keyword in a given declaration. Figure 2.2 contains the declaration of a pointer to
a shared pointer to a shared double and the declaration of a shared structure which contains
an array of pointers to shared vectors of doubles.

double shared * shared *q;

struct {
int n, m;
double shared *data[N];

} shared s;

Figure 2.2: More Jade Shared Object Declarations

It is also possible for shared objects to contain function pointers. Jade enforces the rule
that everything that shared objects point to must be shared. So, Jade also has the concept
of a shared function. Figure 2.3 presents a simple example to illustrate the syntax.

Finally, it is illegal for shared objects to contain union types. The implementation must
know the type of all data in shared objects so it can apply the format translation required in

12 CHAPTER 2. THE JADE LANGUAGE

int shared plus_one(int a) { return(a+1); }

int shared (*f) ();
f = plus_one;

Figure 2.3: Jade Shared Function Declarations

heterogeneous environments. It is impossible for the implementation to determine the type
of data stored in a union.

Programmers can allocate shared objects dynamically using the create object
construct, which takes as parameters the type of data in the object and the number of
elements of that type to allocate. If the number of elements is one the programmer can omit
the parameter. The create object construct returns a pointer to the allocated object.
Figure 2.4 contains a simple example.

Many parallel machines have multiple physical memories. Typically, each processor is
associated with a specific memory, and it takes longer for a processor to access the remote
memories of other processors than to access its own local memory. In such situations the
programmer may wish to control where the implementation allocates shared objects. Jade
supports the concept of an unbounded set of virtual processors; at run time the imple-
mentation maps each virtual processor onto a physical processor. Jade provides an object
allocation construct (the create at object construct) that allows the programmer to
specify that the implementation should allocate the shared object in the memory associated
with a given virtual processor. The first parameter to the create at object construct is
the number of the virtual processor (the virtual processors are indexed by the non-negative
integers). Figure 2.4 contains a simple example.

double shared *p;
p = create_object(double, 10);

double shared *ap;
int vp = 1;
ap = create_at_object(vp, double, 10);

Figure 2.4: Jade Shared Object Creation

The programmer may know that some objects will be accessed by every processor. The
message-passing implementation can take advantage of this information to broadcast the
object to all processors whenever it is updated, rather than serially sending the object to the

2.2. BASIC JADE CONSTRUCTS 13

processors upon request. The programmer can create such an object by passing a virtual
processor number of -1 to create at object.

Programmers can also implicitly allocate a shared object by declaring a global variable
to be shared. While procedure parameters or local variables may point to shared objects,
it is illegal for the parameter or variable itself to be shared. It is therefore impossible to
allocate shared objects on the procedure invocation stack. In Figure 2.5, x, A and s must
be global.

double shared x;
double shared A[N];
struct {

int i, j, k;
double d;

} shared s;

Figure 2.5: Jade Global Shared Object Declarations

Strictly speaking, in Jade every global variable is a shared object and must be declared
using the shared keyword. In practice, this restriction makes it impossible to use the
standard C include files. So, the current implementation generates warnings, not errors, for
non-shared global variables.

2.2.2 Deallocating Objects

The Jade programmer is responsible for informing the Jade implementation when the
computation will no longer access an object. The implementation can then reuse the
object’s memory for other objects or for internal data structures. The programmer uses the
destroy object construct to deallocate an object. The construct takes one parameter:
a pointer to the object.

Any language that allows the programmer to explicitly deallocate memory faces the
potential problem of dangling pointers when the programmers deallocate objects before their
last use. This problem can become especially severe in parallel contexts if the programmer
does not correctly synchronize the deallocation with other potentially concurrent uses. Just
as Jade preserves the serial semantics for reads relative to writes, it preserves the serial
semantics for all accesses relative to deallocations. Jade therefore eliminates the problem
of having one task deallocate an object while another task concurrently accesses it. Of
course, if the serial program accesses an object after its deallocation, the corresponding
Jade program will suffer from the same error.

14 CHAPTER 2. THE JADE LANGUAGE

2.2.3 Part Objects

In some situations the natural allocation granularity of the data may be finer than the desired
shared object granularity in the parallel computation. For example, the Jade sparse Cholesky
factorization algorithm in Section 2.3.2 manipulates a data structure that contains pointers
to several dynamically allocated index arrays. In the parallel computation the desired
shared object granularity is the data structure plus the index arrays. In such situations Jade
allows programmers to aggregate multiple allocation units into a single shared object. The
programmer creates such objects by declaring that some of the objects to which a shared
object points are part of that object. As Figure 2.6 illustrates, the programmer declares such
pointers using the part keyword.

struct {
vector part *column;
int part *row_index;
int part *start_row_index;
int num_columns;

} shared matrix;

Figure 2.6: Jade Part Object Declarations

Programmers dynamically allocate part objects using the create part object
construct. The first parameter is a pointer to the shared object that the part object is part
of. The second and third parameters are the type and number of data items in the part
object. The part object is allocated in the same memory as the shared object of which
it is a part. Figure 2.7 contains an example that illustrates how to allocate part objects.
Programmers are also responsible for deallocating part objects when they are done with
them; Jade provides the destroy part object construct for this purpose.

matrix.row_index = create_part_object(indices, int, N);
matrix.col_index = create_part_object(indices, int, 200);
destroy_part_object(matrix.row_index);

Figure 2.7: Jade Part Object Creation

The part concept nests; it is possible for part objects to in turn contain pointers to other
part objects. The implementation enforces the restriction that if one part or shared object
points to a given part object, no other part or shared object points to the same part object.
The set of all shared and part objects and pointers to part objects from shared and part

2.2. BASIC JADE CONSTRUCTS 15

objects therefore forms a forest of trees. The implementation enforces this property by
requiring that the right hand side of every assignment to a part pointer be either NULL or a
create part object expression.

2.2.4 Local Pointers

The Jade implementation ensures that tasks respect their access specifications by dynami-
cally checking each task’s accesses to shared objects. If the implementation dynamically
checked every access, the overhead would unacceptably degrade the performance of the
application. Jade therefore provides a mechanism in the type system that programmers can
use to make the implementation perform many of the access checks statically rather than
dynamically. The programmer can usually drive the overhead down to one dynamic check
per object per task, which generates negligible amortized dynamic checking overhead.

The mechanism is that the programmer can declare a pointer to a shared object, and
restrict how the program will access data using that pointer. Such a pointer is called a
local pointer; Figure 2.8 contains several examples which demonstrate how to declare local
pointers.

double local rd *rp;
double local wr *wp;
double local rd wr *rwp;

Figure 2.8: Jade Local Pointer Declarations

In Figure 2.8, the program can only read shared objects via rp, write shared objects via
wp and read and/or write objects via rwp. The implementation statically enforces these
access restrictions. It performs a dynamic check when the program sets the local pointer
to point to a shared object. The code fragment in Figure 2.9 illustrates which accesses are
checked statically and which are checked dynamically.

Local pointers introduce a complication into the access checking. If a task changes its
access specification to declare that it will no longer access a shared object, the implemen-
tation should ensure that the task has no local pointers to that object. One way to do this is
to count, for each shared object, the number of outstanding local pointers each task has that
point into that object. In this case implementation could preserve the safety of the parallel
execution by generating an error if a task with outstanding local pointers declared that it
would no longer access the object. This feature is currently unimplemented.

It is impossible for one task to use another task’s local pointer. The implementation
enforces this restriction by forbidding shared objects to contain local pointers and forbidding
a task to pass one of its local pointers as a parameter to a child task (Section 2.2.7 explains
how tasks pass parameters to child tasks).

16 CHAPTER 2. THE JADE LANGUAGE

void proc(double shared *p, int i, int j)
{

double local rd *rp;
double local rd wr *rwp;
double d;

rp = p; /* checked dynamically for read access */
d = *rp; /* checked statically for read access */
d += p[i] /* checked dynamically for read access */

rwp = &(p[j]); /* checked dynamically for read and
write access */

rwp += d; / checked statically for read and
write access */

}

Figure 2.9: Local Pointer Usage

It is important to keep the concepts of shared and local pointers separate. The
create object and create at object constructs return shared pointers. The only
other way to get a shared pointer is to apply the & operator to a shared global variable.
When applied to shared objects (with the exception for global variables noted above), the
& operation yields local pointers. When applied to shared pointers, the pointer arithmetic
operations yield local pointers (the implementation uses the surrounding context to deter-
mine the appropriate access restriction). The code fragment in Figure 2.10 illustrates these
concepts.

A shared pointer always points to the first element of a shared object, but a local
pointer can point to any element of a shared object. Shared pointers can travel across task
boundaries, but no task can access another task’s local pointers. It is illegal to store local
pointers in shared objects.

2.2.5 Private Objects

Jade programs may also manipulate pieces of data that only one task may access. Such
pieces of data are called private objects. All pieces of data allocated on the procedure call
stack are private objects. Jade also provides a memory allocation construct, new mem,
that programmers can use to dynamically allocate private objects. new mem has the same
calling interface as the C malloc routine, taking as a parameter the size of the allocated
private object. There is also the old mem routine for deallocating private data; it has the

2.2. BASIC JADE CONSTRUCTS 17

int shared s;
proc(int shared *p)
{

int shared *lp;
int local rd *rp;
lp = (&s /* shared pointer */);
rp = (&(p[5]) /* local rd pointer */);
lp = &(p[1]); /* illegal - lp is a shared pointer,

&(p[1]) is a local pointer */
(p + 2 / local wr pointer */) = 4;

}

Figure 2.10: Shared and Local Pointers

same calling interface as the C free routine. Programmers declare variables that deal with
private objects using the normal C variable declaration syntax.

The Jade implementation enforces the restriction that no task may access another task’s
private objects. The implementation enforces this restriction in part by requiring that
no shared object contain a pointer to a private object. The declarations in Figure 2.11 are
therefore illegal, because they declare shared objects that contain pointers to private objects.

double * shared *d; /* illegal declaration */
struct {

double *e;
int i, j, k;

} shared s; /* illegal declaration */

Figure 2.11: Illegal Declarations

Of course, it is possible for private objects to contain pointers to shared objects. The
declarations in Figure 2.12 are legal, because they declare private objects that contain
pointers to shared objects.

2.2.6 Summary of the Jade Data Model

Jade classifies data according to the following hierarchy:

18 CHAPTER 2. THE JADE LANGUAGE

double shared *A[N];
struct {

double B[N];
double shared *data;
int i, j, k;

} s;

Figure 2.12: Legal Declarations

� Shared Object An allocation unit that multiple tasks can access. There are two kinds
of shared objects:

– Normal Shared Object A global object or an object created by either the
create object or create at object construct.

– Part Object An object that is part of a normal shared object. All part objects
are created by the create part object construct.

� Private Object An allocation unit that only one task can access. Every piece of data
allocated on the procedure call stack is a private object, as are pieces of data created
by the new mem construct.

Jade classifies pointers according to the following hierarchy:

� Pointer to a Shared Object A pointer which points into the single memory that
multiple tasks can access. There are three kinds of pointers to shared objects:

– Shared Pointer create object and create at object return shared
pointers. The & operation applied to a global identifier generates a shared
pointer, and pointer to a shared function is also a shared pointer. All shared
pointers point to the start of the normal shared object.

– Part Pointer A pointer in a shared object that points to the start of a part object.

– Local Pointer A pointer that points into a shared object. Each local pointer has
an access restriction that limits how the programmer can access data using the
pointer.

� Private Pointer A pointer into a private object.

There is one major restriction associated with how programmers can use the different
kinds of pointers and objects: shared objects cannot contain local or private pointers. This
restriction, along with the restriction that no parent task can pass a local pointer or private

2.2. BASIC JADE CONSTRUCTS 19

pointer to a child task as a parameter, maintains the integrity of each task’s data. It ensures
that no task can access another task’s private objects or use another task’s local pointers or
private pointers.

2.2.7 The withonly Construct

Jade programmers use the withonly construct to identify tasks and to create an initial
access specification for each task. The syntactic form of the withonly construct is as
follows:

withonly { access specification } do (parameters) {
task body

}

The task body section identifies the code that executes when the task runs. The code
in this section cannot contain a return statement that would implicitly transfer control
out of one task to another task. It is also illegal to have goto, break or continue
statements that would transfer control from one task to another task.

Thetask body section executes in a naming environment separate from the enclosing
naming environment. Theparameters section exists to transfer values from the enclosing
environment to the task. The parameters section itself is a list of identifiers separated
by commas. These identifiers must be defined in the enclosing context. Their values are
copied into the task’s context when the task is created. When the task executes it can access
these variables. The only values that can be passed to a task using the parameter mechanism
are base values from C (int, double, char, etc.) and shared pointers. This restriction,
along with the restriction that shared objects contain no pointers to private objects, ensures
that no task can access another task’s private objects.

2.2.8 The access specification Section

Each task has an access specification that declares how that task may access shared objects.
When the implementation creates a task, it executes the access specification sec-
tion, which generates an initial access specification for the task. This section can contain
arbitrary C constructs such as loops, conditionals, indirect addresses and procedure calls,
which gives the programmer a great deal of flexibility when declaring how a task will access
data and makes it easier to specify dynamic parallel computations.

2.2.9 Basic Access Specification Statements

Theaccessspecification section uses access specification statements to build up the
task’s access specification. Each access specification statement declares how the task will
access a single shared object. We next describe the basic access specification statements.

20 CHAPTER 2. THE JADE LANGUAGE

2.2.9.1 rd(o)

The rd(o) (read) access specification statement declares that the task may read the object
o. Tasks can concurrently read the same object. The implementation preserves the serial
execution order between tasks that declare a read access and tasks that declare any other
access to the same object. If a task in the message-passing implementation declares that it
will read an object the implementation ensures that an up-to-date copy of that object exists
on the processor that will execute the task before the task executes.

2.2.9.2 wr(o)

The wr(o) (write) access specification statement declares that the task may write the
object o. The implementation preserves the original serial execution order between tasks
that declare a write access to a given object and all other tasks that declare any access to
the same object. If a task in the message-passing implementation declares that it will write
an object the implementation moves the object to the processor that will execute the task
before the task executes.

2.2.9.3 cm(o)

The cm(o) (commuting) access specification statement declares that the task may read
and write o, and that its access commutes with the accesses of all other tasks that also
declare a commuting access to o. The implementation executes such tasks in some serial
order, but the order may vary from execution to execution. The implementation preserves
the original serial execution order between tasks that declare a commuting access to a
given object and all other tasks that declare any other access to the same object. If a
task in the message-passing implementation declares a commuting access to an object the
implementation moves the object to the processor that will execute the task before the task
executes.

Programmers are intended to conceptually map the commuting declaration to a spe-
cific operation that the program performs. For example, the programmer may assign the
commuting declaration to the increment operation. Whenever a task increments an object
it declares a commuting access. Because increments commute the parallel execution will
generate the same result as the serial execution.

Jade does not currently support multiple commuting operations which do not commute
with each other. This situation could arise, for example, if a program contained tasks
that incremented an object and tasks that multiplied the object by a constant. In this
case the programmer would need a different commuting declaration for each operation.
The implementation would preserve the sequential execution order for tasks that declared
different commuting operations on the same object. Although Jade currently contains only
one commuting access specification statement, the implementation’s algorithms do support

2.3. A PROGRAMMING EXAMPLE 21

multiple commuting declarations. It would be trivial to provide several commuting access
specification statements.

2.2.9.4 de(o)

The de(o) (deallocate) access specification statement declares that the task may deallocate
o. The implementation preserves the original serial execution order between tasks that
declare a deallocate access to a given object and all other tasks that declare any access to
the same object. It is an error for a task to attempt to access an object after it has been
deallocated.

2.2.9.5 Combination Access Specification Statements

For convenience the implementation supports several combination access specification
statements. For example, the rd wr(o) access specification statement declares that the
task may read and write o. The de rd(o) access specification statement declares that the
task may read and deallocate o.

2.3 A Programming Example

In this section we show how to use Jade to parallelize a sparse Cholesky factorization
algorithm. This algorithm factors a sparse, symmetric, positive-definite matrix. The
example illustrates how to use Jade’s object and withonly constructs, and demonstrates
how Jade programs can exploit dynamic concurrency.

2.3.1 The Serial Algorithm

The serial algorithm stores the matrix using the data structures declared in Figure 2.13.
Figure 2.14 shows a sample sparse matrix and the corresponding data structures. Because the
matrix is symmetric, the algorithm only needs to store its lower triangle. The factorization
algorithm repeatedly updates the data structures that represent this lower triangle.

The columns of the matrix are packed contiguously into one long vector of doubles. The
columns global variable points to this vector. The start column global variable tells
where in the vector each column of the matrix starts. The j’th entry of thestart column
array gives the index (in the columns array) of the first element of column j. The
row index global variable stores the row indices of the nonzeros of the matrix. The i’th
element of row index is the row index of the i’th element of the columns array.

Figure 2.15 contains the serial code for this algorithm. The algorithm processes the
columns of the matrix from left to right. It first performs an internal update on the current
column. This update reads and writes the current column, bringing it to its final value in

22 CHAPTER 2. THE JADE LANGUAGE

double *columns;
int *row_index;
int *start_column;
int num_columns;

Figure 2.13: Data Structure Declarations for Serial Sparse Cholesky Factorization

columns

row_index

0 3 5 6 8 9start_column

num_columns 50 1 2 3 4

0 3 4 1 2 32 4 4

Figure 2.14: Data Structures for Serial Sparse Cholesky Factorization

factor()
{

int i, j, first, last;
for (j = 0; j < num_columns; j++) {

/* update column j */
InternalUpdate(j);
first = start_column[j] + 1;
last = start_column[j+1] - 1;
for (i = first; i <= last; j++) {
/* update column row_index[i] with column j */
ExternalUpdate(j, row_index[i]);

}
}

}

Figure 2.15: Serial Sparse Cholesky Factorization Algorithm

2.3. A PROGRAMMING EXAMPLE 23

the computation. The algorithm then uses the current column to update some subset of the
columns to its right. For a dense matrix the algorithm would update all of the columns to
right of the current column. For sparse matrices the algorithm omits some of these updates
because they would not change the updated column.

2.3.2 The Jade Algorithm

The first step in parallelizing a program using Jade is to determine the appropriate data
granularity. In this case the programmer decides that the parallel computation will access
the matrix at the granularity of the individual columns. The programmer must therefore de-
compose the columns array so that each column is stored in a different shared object. The
new matrix is structured as an array of column objects. The programmer also decides that
the parallel computation will access the structuring data (the num columns, row index
and start column data structures) as a unit. Because these data structures are dynam-
ically allocated for the particular matrix at hand, the programmer structures them as part
objects of a single matrix object. Figure 2.16 gives the new data structure declarations,
while Figure 2.17 shows the sample matrix and the new data structures.

typedef double shared *vector;
struct {

vector part *_column;
int part *_row_index;
int part *_start_row_index;
int _num_columns;

} shared matrix;
#define column matrix._column
#define row_index matrix._row_index
#define start_row_index matrix._start_row_index
#define num_columns matrix._num_columns

Figure 2.16: Data Structure Declarations for Jade Sparse Cholesky Factorization

Because the data structures have changed, the programmer must first modify the
InternalUpdate and ExternalUpdate routines to use the new matrix data struc-
ture. The programmer then inserts the withonly constructs that identify each update as
a task and specify how each task accesses data. Figure 2.18 contains the new factor
routine.

24 CHAPTER 2. THE JADE LANGUAGE

matrix

5

0 3 4 1 2 32 4 4

row_index
0 3 5 6 8 9

start_row_index

column

0 1 2 3 4

Figure 2.17: Data Structures for Jade Sparse Cholesky Factorization

2.3.3 Commuting Updates

In the presented factor routine the programmer has only declared that each external
update reads and writes the updated column. In this algorithm, however, all external
updates to the same column commute. The programmer could express this additional
information by changing the rd wr(column[row index[i]]) access specification
statement to cm(column[row index[i]]).

Exposing the fact that external updates commute gives the implementation the freedom
to schedule the updates in any order. This freedom may pay off in increased performance.
With commuting declarations the implementation can schedule an external update from
column i to column j as soon as the internal update to column i finishes and there is
no other update to j in progress. In effect, the commutativity information allows the
implementation to dynamically adjust the external update schedule to take into account the
specific situation in each execution of the program. If the implementation enforced the
serial execution order for updates, the external update could be forced to wait for another
external update to execute. This delay would unnecessarily degrade the performance if the
other external update could not yet execute.

2.3.4 Dynamic Behavior

Conceptually, the execution of the factor routine on our sample matrix generates the
task graph in Figure 2.19. When the program executes, the main task creates the internal
and external update tasks as it executes the body of the factor procedure. When the
implementation creates each task, it first executes the task’s access specification
section to determine how the task will access data. It is this dynamic determination of

2.3. A PROGRAMMING EXAMPLE 25

factor()
{

int i, j, first, last;
for (j = 0; j < num_columns; j++) {

withonly {
rd_wr(column[j]);
rd(&matrix);

} do (j) {
/* update column j */
InternalUpdate(j);

}
first = start_column[j] + 1;
last = start_column[j+1] - 1;
for (i = first; i <= last; j++) {
withonly {
rd_wr(column[row_index[i]]);
rd(column[j]);
rd(&matrix);

} do (i,j) {
/* update column row_index[i] with column j */
ExternalUpdate(j, row_index[i]);

}
}

}
}

Figure 2.18: Jade Sparse Cholesky Factorization Algorithm

tasks’ access specifications that allows programmers to express dynamic, data-dependent
concurrency patterns. Given the access specification, the implementation next determines
if the task can legally execute or if the task must wait for other tasks to complete. The
implementation maintains a pool of executable tasks, and dynamically load balances the
computation by assigning these tasks to processors as they become idle. In a message-
passing environment the implementation also generates the messages required to move or
copy the columns between processors so that each task accesses the correct version of each
column. As tasks complete, other tasks become legally executable and join the pool of
executable tasks. In effect, the Jade implementation dynamically interprets the high-level
task structure of the program to detect and exploit the concurrency.

26 CHAPTER 2. THE JADE LANGUAGE

0 3 3 3 4

1 1 2 2

0 4

0 4

0 1 2 3 4

Figure 2.19: Task Graph for Jade Sparse Cholesky Factorization

2.3.5 Modularity

The sparse Cholesky factorization example illustrates how Jade supports the development of
modular programs that execute concurrently. Each access specification only contains local
information about how its task accesses data - each task is independent of all other tasks in
the program. Even though the tasks must interact with each other to correctly synchronize
the computation, the Jade implementation, and not the programmer, automatically generates
the synchronization using the access specifications and the original serial execution order.

Jade’s modularity properties support standard software engineering activities. Jade
programmers can build abstract data types that completely encapsulate the code required
to exploit concurrency available both within and between operations on the abstract data
type [107]. Each operation contains Jade constructs that specify how it will access the data
structures that implement the state of the abstract data type. The programmer simply writes
a serial program that invokes the appropriate operations in the correct order, and the Jade
implementation automatically relaxes the serial execution order to exploit the available
concurrency. It is possible to exchange serial and parallel implementations of a given
operation or even reimplement the abstract data type from scratch without touching the rest
of the program. The clients of the abstract data type remain oblivious to the presence or
absence of parallel execution.

It is important to realize that explicitly parallel languages do not support the construction
of such seamless abstract data types. The problem is correctly sequencing the executions
of operations on the abstract data type. If the program contains parallel tasks that invoke
operations on the same abstract data type, the programmer must insert synchronization
code to ensure that the operations execute in the correct order. When the correct execution
order depends on both the semantics of the tasks and the semantics of the abstract data
type, it is impossible to encapsulate the synchronization code inside the implementation of
the abstract data type. Tasks that invoke operations on abstract data types must therefore
contain synchronization code that interacts with the synchronization code in other tasks to
help generate the correct order. Even though this synchronization code exists only to mediate

2.4. PROGRAMMER RESPONSIBILITIES 27

access to the abstract data type, it appears outside the abstract data type’s implementation.
Changes to the implementation of the abstract data type may therefore generate widespread
changes across the rest of the program as the synchronization code in the tasks adjusts to
the new implementation.

2.4 Programmer Responsibilities

Programmers and programming language implementations cooperate through the medium
of a programming language to generate computations. To achieve acceptable performance,
programmers must often adjust their programming styles to the capabilities of the language
implementation. Any discussion of programmer responsibilities must therefore assume an
execution model that includes a qualitative indication of the overhead associated with the
use of the different language constructs. This discussion of programmer responsibilities
assumes the dynamic execution model outlined above in Section 2.1.5 in which all of
the concurrency detection and exploitation takes place as the program runs. Substantial
changes to the execution model would change the division of responsibilities between the
programmer and the implementation and alter the basic programming model. For example,
an aggressive implementation of Jade that statically analyzed the code could eliminate
almost all sources of overhead in analyzable programs. Such an implementation would
support the exploitation of finer-grain concurrency.

The most important programming decisions Jade programmers make deal with the data
and task decompositions. In this section we discuss how the decomposition granularities
affect various aspects of the parallel execution and describe what the programmer must do
to ensure that the Jade implementation can successfully parallelize the computation.

2.4.1 Data Decomposition

The decomposition of the data into shared objects is a basic design decision that can
dramatically affect the performance of the Jade program. The current implementation
performs the access specification, concurrency analysis and data transfer at the granularity
of shared objects. Each object is a unit of synchronization. If one task declares that it will
write an object and another task declares that it will read the same object, the implementation
serializes the two tasks even though they may actually access disjoint regions of the object.
In the message-passing implementation, each object is also a unit of communication. If a
task executing on one processor needs to access an object located on another processor, the
implementation transfers the entire object even though the task may only access a small
part of the object.

Several factors drive the granularity at which the programmer allocates shared objects.
Because each object is a unit of synchronization, the programmer must allocate shared

28 CHAPTER 2. THE JADE LANGUAGE

objects at a fine enough granularity to expose an acceptable amount of concurrency. Because
each object is a unit of communication, the programmer must allocate shared objects at a
fine enough granularity to generate an acceptable amount of communication.

There is dynamic access specification overhead for each shared object that the task de-
clares it will access. The programmer must allocate shared objects at a coarse enough gran-
ularity to generate an acceptable amount of access specification overhead. The message-
passing implementation also imposes a fixed time overhead for transferring an object
between two processors (this comes from the fixed time overhead of sending a message),
and a fixed space overhead per object for system data structures. The programmer must al-
locate objects at a coarse enough granularity to profitably amortize both of these per-object
overheads.

There is a natural granularity at which to allocate the data of any program. While
the programmer may need to change this granularity to effectively parallelize the program,
requiring extensive changes may impose an unacceptable programming burden. In practice,
programmers seem to use several standard reallocation strategies. These include decom-
posing large aggregates (typically arrays) for more precise access declaration, grouping
several variables into a large structure to drive down the access specification overhead and
replicating data structures used to hold intermediate results in a given phase of the computa-
tion. While determining which (if any) reallocation strategy to apply requires a fairly deep
understanding of the computation, actually performing the modifications is often a fairly
mechanical process. It may therefore be possible to automate the more tedious aspects of
the modification process.

2.4.2 Task Decomposition

The task decomposition may also significantly affect the eventual performance. The basic
issue is the dynamic task management overhead. The Jade programmer must specify a
task decomposition that is coarse enough to profitably amortize this overhead. But the
issue cuts deeper than a simple comparison of the total Jade overhead relative to the total
useful computation. In the current implementation of Jade, each task creates its child tasks
serially. Serial task creation serializes a significant part of the dynamic task management
overhead. Even if the total Jade overhead is relatively small compared to the total useful
computation, this serial overhead may artificially limit the performance. There are two
things the programmer can do to eliminate a bottleneck caused by serial task creation: 1)
parallelize the task creation overhead by creating tasks hierarchically, or 2) make the task
granularity large enough to profitably amortize the serial task creation overhead. In some
cases the programmer can apply neither of these strategies and must go elsewhere to get
good performance.

2.5. DISCUSSION 29

2.5 Discussion

In any programming language design there is a trade-off between the range of computations
that the language can express and how well the language supports its target programming
paradigm. Jade enforces high-level abstractions that provide a safe, portable programming
model for a focused set of applications. Tailoring the language for this application set limits
the range of applications that Jade supports. In this section we discuss both the advantages
of using Jade in its target application domain and the limitations that supporting this domain
well imposes.

2.5.1 Advantages

The sequential model of computation is in many ways much simpler than explicitly parallel
models. Jade preserves this sequential model and inherits many of its advantages. If
a program’s access specifications only declare reads and writes, it preserves the serial
semantics. Programmers can therefore develop the entire program using a standard serial
language and development environment. When the program works, the programmer can
then parallelize it using Jade, secure in the knowledge that adding Jade constructs cannot
change the semantics of the program.

Preserving the serial semantics also supports the process of developing a Jade program
from scratch. If a Jade program only declares reads and writes, it executes deterministi-
cally. Deterministic execution dramatically simplifies the debugging process by allowing
programmers to reliably reproduce incorrect program behavior. Deterministic execution
also simplifies the programming model. Jade programmers need not struggle with the
complex phenomena such as deadlock, livelock and starvation that characterize explicitly
parallel programming.

Strictly speaking, commuting declarations obviate the guarantee of deterministic ex-
ecution. The implementation cannot check that the actual accesses of tasks that declare
commuting accesses do in fact commute. If the accesses do not commute, different runs
may generate different results as the task execution order varies from run to run. In practice
we expect programmers to use commuting declarations in a deterministic way by mapping
the commuting declaration onto a specific operation (such as an increment operation) that
commutes with itself.

Serial programming languages promote modularity because they allow the programmer
to focus on the dynamic behavior of the current piece of code. Jade preserves the modularity
advantages of serial languages because programmers only provide local information about
how each task accesses data, not global information about how parallel tasks interact. The
concurrency management algorithm is embedded in the Jade implementation, not the Jade
program. New programmers can function effectively with a detailed understanding of
selected pieces of the program; changes are confined to the modified tasks.

30 CHAPTER 2. THE JADE LANGUAGE

Jade preserves the abstraction of single address space. Even in message-passing environ-
ments, Jade programs access data using a single flat address space with the implementation
automatically managing the movement of data. This abstraction frees programmers from
the complexity of managing the flow of data through the machine.

2.5.2 Limitations

Jade’s enforced abstractions maximize the safety and portability of Jade programs but
prevent the programmer from accessing the full functionality of the parallel machine. This
lack of control limits the programmer’s ability to optimize the parallel execution. All Jade
programs must use the general-purpose concurrency management algorithms encapsulated
inside the Jade implementation. Because Jade denies the programmer control over many
aspects of the process of exploiting concurrency, programmers cannot use highly optimized,
application-specific synchronization or communication algorithms. In some cases the
programmer may need to use a lower-level programming system to make the application
perform acceptably.

It is always possible to execute any Jade program serially, in which case all data and
control flow forward in the direction of the sequential execution. Some parallel computa-
tions, however, are most naturally or most efficiently structured as a set of cooperating tasks
that periodically interact to generate a solution. Jade does not support the cyclic flow of
data and control required to structure the computation this way. While it is often possible
to express the computation in Jade, the resulting Jade program usually generates more tasks
(and more task management overhead) than the cyclic computation.

Consider, for example, a standard iterative grid relaxation algorithm such as Successive
Over Relaxation (SOR) [48]. A programmer using an explicitly parallel language could
parallelize the algorithm by subdividing the grid into blocks and assigning one task to each
block. At every iteration each task would communicate with its neighbor tasks to acquire
the latest values of the boundary elements, then recompute the values of the elements in
its block. The tasks would continue their computation, interacting until the algorithm
converged [127].

In this parallel computation data flows cyclically through the tasks - over the course of
the computation each task both generates data that its neighbor tasks read and reads data
generated by its neighbor tasks. Jade’s serial semantics, however, means that if one Jade
task produces data that another Jade task reads, the first task cannot also read data produced
by the other task. To express computations such as the parallel SOR computation described
above in Jade, the programmer must create one Jade task per block at every iteration, instead
of one task per block for the entire computation as in the explicitly parallel program. While
it may be more convenient to express the program in Jade (the Jade program is closer
to the original serial program), the additional task management overhead may impair the
performance of the Jade program if the task size is small relative to the task management

2.6. ADVANCED CONSTRUCTS 31

overhead.
Some parallel algorithms dynamically adjust their behavior to adapt to the varying

relative execution times characteristic of parallel computation. The tasks in a parallel
branch and bound search algorithm, for example, may visit different parts of the search
tree in different executions depending on how fast the bound is updated. Such algorithms
nondeterministically access different pieces of data in different executions. In some cases
the program itself may generate different results. Because Jade’s abstractions are designed
to support deterministic computations, it may be impossible to express such algorithms
in the current version of Jade. Upon further examination, however, one can see that the
nondeterminism often arises from the way the different parts of the computation access
data. It would be possible to support many of these computations by extending Jade to
support the expression of their nondeterministic data access patterns.

2.6 Advanced Constructs

We next present several advanced constructs and concepts that allow the programmer to
exploit more sophisticated concurrency patterns.

2.6.1 Task Boundary Synchronization

In the model of parallel computation described so far, all synchronization takes place at task
boundaries. A task does not start its execution until it can legally perform all of the accesses
that it will ever perform. It does not give up the right to perform any of these accesses
until it completes. This form of synchronization wastes concurrency in two cases: when
a task’s first access to an object occurs long after it starts, and when a task’s last access to
an object occurs long before it finishes. Figure 2.20 contains an example of both kinds of
unnecessary synchronization(assuming that p, q, r and s all point to different objects).

In this example all three tasks execute serially. But the first task should be able to
execute concurrently with the statement *q = g(d) from the second task, since there
is no data dependence between these two pieces of code. Similarly, the statement *r =
h(*q, *p) from the second task should be able to execute concurrently with the third
task.

To allow the programmer to overlap the execution of the parts of tasks that do not conflict,
Jade supports both a more elaborate notion of access specification and several new language
constructs. There is a new construct (the with construct) that programmers can use to
update a task’s access specification, and several new access specification statements. These
constructs allow the programmer to more precisely specify the timing of the individual
accesses to shared objects, which in turn may expose additional concurrency. In the
example in Figure 2.20, the programmer can use these constructs to expose the pipelining
concurrency available between these three tasks.

32 CHAPTER 2. THE JADE LANGUAGE

extern double f(double d);
extern double g(double d);
extern double h(double d, double e);
void proc(double d, double shared *p, double shared *q,

double shared *r, double shared *s)
{

withonly { wr(p); } do (p, d) {
*p = f(d);

}
withonly {

rd(p); wr(q); rd(q); wr(r);
} do (p, q, r, d) {

*q = g(d);
*r = h(*q, *p);

}
withonly { rd(q); wr(s); } do (q, s) {

*s = g(*q);
}

}

Figure 2.20: Task Boundary Synchronization Example

2.6.2 The with Construct

Programmers use the with construct to dynamically update a task’s access specification to
more precisely reflect how the remainder of the task will access data. Here is the syntactic
form of the with construct:

with { access specification } cont;

Like theaccessspecification section in the withonly construct, the access
specification section in the with construct is an arbitrary piece of code containing
access specification statements. The difference between the two is that the access
specification section in the withonly construct establishes a new access specifica-
tion for a new task, while the access specification section in the with construct
modifies the current task’s access specification.

2.6. ADVANCED CONSTRUCTS 33

2.6.3 Advanced Access Specifications

An access specification is a set of access declarations; each declaration declares how a
task will access a given object. Declarations come in two flavors: immediate declarations
and deferred declarations. An immediate declaration gives the task the right to access
the object. The basic access specification statements described in Section 2.2.9 generate
immediate declarations. A deferred declaration does not give the task the right to access the
object. Rather, it gives the task the right to change the deferred declaration to an immediate
declaration, and to then access the object. The deferred access specification statements
described in Section 2.6.4 generate deferred access declarations.

A task’s initial access specification can contain both deferred and immediate declara-
tions. As the task executes, the programmer can use a with construct to update its access
specification.

Deferred declarations may enable a task to overlap an initial segment of its execution
with the execution of an earlier task in cases when the two tasks would execute serially
with immediate declarations. For example, if one task declares that it will immediately
write an object and another task declares that it will immediately read that same object,
the implementation completely serializes the execution of the two tasks. If the second
task (in the sequential execution order) declares a deferred access, it can start executing
before the first task finishes or even performs its access. When the second task needs to
actually perform its access, it uses a with construct to change the deferred declaration to
an immediate declaration. The second task then suspends at the with until the first task
finishes.

Deferred declarations do not allow the programmer to change the order in which tasks
access objects. In the above example the second task must perform its access after the first
task. If the first task declared a deferred access and the second task declared an immediate
access, the second task could not execute until the first task finished.

2.6.4 Deferred Access Specification Statements

There is a deferred version of each basic access specification statement; the programmer
derives the deferred version by prepending df to the original basic statement. Specifically,
Jade provides the following deferred access specification statements.

� df rd(o) Specifies a deferred read declaration.

� df wr(o) Specifies a deferred write declaration.

� df de(o) Specifies a deferred deallocate declaration.

� df cm(o) Specifies a deferred commuting declaration.

34 CHAPTER 2. THE JADE LANGUAGE

If used in a with construct, a deferred access specification statement changes the
corresponding immediate declaration to a deferred declaration. If used in a withonly
construct, it generates a deferred declaration in the access specification.

2.6.5 Negative Access Specification Statements

Jade programmers can use a with construct and negative access specification statements to
eliminate access declarations from a task’s access specification. There is a negative version
of each basic access specification statement; the negative version is derived by prepending
no to the original basic statement. Specifically, Jade provides the following negative access
specification statements.

� no rd(o) Eliminates read declarations.

� no wr(o) Eliminates write declarations.

� no de(o) Eliminates deallocate declarations.

� no cm(o) Eliminates commuting declarations.

Negative access specification statements may allow a task to overlap a final segment
of its execution with the execution of later tasks in cases when the tasks would otherwise
execute sequentially. Consider, for example, a task that performs its last write to an object,
then uses a with construct and a negative access specification statement to declare that it
will no longer access the object. Succeeding tasks that access the object can execute as soon
as the with construct executes, overlapping their execution with the rest of the execution
of the first task. If the first task failed to declare that it would no longer access the object,
the succeeding tasks would suspend until the first task finished.

2.6.6 Pipelined Concurrency

The programmer can use the with construct and the advanced access specification state-
ments to exploit the pipelining concurrency available in the example in Figure 2.20. The
programmer first uses the df rd(p) access specification statement to inform the imple-
mentation that the second task may eventually read p, but that it will not do so immediately.
This gives the implementation the information it needs to overlap the execution of the first
task with the statement *q = g(d) from the second task. When the second task needs to
read p, it uses a with construct and the rd(p) access specification statement to convert
the deferred declaration to an immediate declaration. At the same time, the with construct
uses the no wr(q) statement to declare that the second task will no longer write q. This
gives the implementation the information it needs to overlap the execution of the third task
and the statement *r = h(*q, *p) from the second task. Figure 2.21 contains the final
version of the program.

2.6. ADVANCED CONSTRUCTS 35

extern double f(double d);
extern double g(double d);
extern double h(double d, double e);
void proc(double d, double shared *p, double shared *q,

double shared *r, double shared *s)
{

withonly { wr(p); } do (p, d) {
*p = f(d);

}
withonly {

df_rd(p); wr(q); rd(q); wr(r);
} do (p, q, r, d) {

*q = g(d);
with { rd(p); no_wr(q); } cont;
*r = h(*q, *p);

}
withonly { rd(q); wr(s); } do (q, s) {

*s = g(*q);
}

}

Figure 2.21: Pipelined Concurrency Example

2.6.7 Hierarchical Objects

In the Jade programming model presented so far, the initial access specification must
declare every access that the task will ever perform to existing shared objects. This is, in
general, an unacceptable restriction. Some computations (for example, many computations
that perform tree traversals) contain tasks that determine precisely which objects they will
access only as they execute.

Jade supports these computations by allowing programmers to structure objects hierar-
chically. The programmer can specify that one object is a child of another object. Instead
declaring precisely which objects a task will access, the programmer may specify only that
the task will access some of the child objects of the parent object. When the task deter-
mines precisely which child object it (or a child task) needs to access, it can refine its access
specification to reflect the new information. The hierarchical object mechanism allows
programmers to create tasks whose computations traverse hierarchical data structures.

The programmer specifies the parent/child relationship when the child object is created.
The create child object construct creates a child object. This construct takes three

36 CHAPTER 2. THE JADE LANGUAGE

parameters: a shared pointer to the parent object, the type of the data items in the object,
and the number of items in the object. The programmer can control where the child object
is allocated using the create at child object construct. Figure 2.22 shows how to
create child objects.

int shared *parent;
int shared *child;
int vp;

child = create_child_object(parent, int, N);
child = create_at_child_object(parent, vp, int, N);

Figure 2.22: Child Object Creation

Jade provides additional access specification statements for declaring that tasks may
declare accesses to child objects. For each basic access specification statement there is
a corresponding child access specification statement. The child statement is derived by
prepending ch to the basic statement. Specifically, Jade provides the following child
access specification statements.

� ch rd(o) Declares that the task or its child tasks may declare a read access to a
child object of o.

� ch wr(o) Declares that the task or its child tasks may declare a write access to a
child object of o.

� ch cm(o) Declares that the task or its child tasks may declare a commuting access
to a child object of o.

� ch de(o) Declares that the task or its child tasks may declare that they will deallo-
cate a child object of o.

Immediate declarations also give tasks the right to declare that they will declare an access
to a child object. The difference between immediate and child declarations is that child
declarations do not give the task the right to access the parent object. This extra precision
may allow the Jade implementation to exploit more concurrency available between tasks that
only access child objects. Specifically, if tasks that could otherwise execute concurrently
declare commuting child accesses, they can still execute concurrently. If the tasks declared
immediate commuting accesses they would execute in some serial order.

For pragmatic implementation reasons the current Jade implementation does not allow
a task to declare that it will simultaneously access both a parent object and one of its child

2.7. ACCESS SPECIFICATIONS AND CONCURRENCY 37

objects. This restriction implies that once a task declares that it will access a child object,
it can never again access the parent. Therefore, Jade programs usually create a child task
to perform each new traversal of a hierarchical data structure.

2.6.8 The block Construct

Programmers use all of the constructs presented so far to describe how a program accesses
data. There is one construct, the block construct, that programmers use to directly control
the concurrency. Here is the syntactic format of the block construct:

block {
code

}

If the programmer surrounds a piece of code with a block construct, control does not
proceed past the block until all of the tasks created in the block have finished. Programmers
often use block constructs to separate different phases of the program. This prevents
unwanted interactions between the phases and makes it easier to measure the execution
time of each phase.

2.7 Access Specifications and Concurrency

The current Jade implementation uses a conservative approach to exploiting concurrency.
(see Chapter 5 for a discussion of other approaches). It does not execute a task until it
knows that the task can legally perform all of its declared accesses. This section defines
how the access specifications of tasks interact to generate parallel and serial execution.

Each access specification consists of a set of access declarations. Each access declaration
is generated by an access specification statement and gives the task the right to access a given
object. Access declarations also impose serialization constraints on the parallel execution.
The nature of the constraint depends on the semantics of the declared accesses. The current
Jade implementation supports mutual exclusion constraints and constraints that force tasks
to execute in the same order as in the original serial program.

The set of serialization constraints is a lattice. Table 2.23 shows the serialization
constraint lattice for the current version of Jade. In principle this lattice could expand to
include arbitrary constraints. The serialization constraint between two tasks is the least
upper bound of the set of serialization constraints induced by the cross product of the two
access specifications. The two access declarations must refer to the same shared object to
impose a constraint.

Tables 2.1 and 2.2 present the induced serialization constraints for the current version
of Jade. In these tables the access declaration from the first task (in the sequential execution

38 CHAPTER 2. THE JADE LANGUAGE

!
(serial execution)

$
(mutually exclusive execution)

k

(no constraint – parallel execution)
Figure 2.23: Serialization Constraint Lattice

order) is in the leftmost column of the table, the access declaration from the second task is
on the top row of the table.

rd(o) ch rd(o) wr(o) ch wr(o) de(o) ch de(o)
rd(o) k k ! ! ! !

df rd(o) k k ! ! ! !

ch rd(o) k k ! ! ! !

st(o) ! ! ! ! ! !

df st(o) ! ! ! ! ! !

ch st(o) ! ! ! ! ! !

In this table st 2 fwr,de,cmg.

Table 2.1: Induced Serialization Constraints – Part I

The two tables address different possibilities for the second task’s declaration. Table
2.1 describes the induced constraints when the second task declares an immediate or child
read, write or deallocate access. The region of k entries in the upper left hand corner of the
table says that two read entries (of any kind) impose no serialization constraint. The rest
of table contains! entries, which specify that all of the other possible combinations in the
table serialize the two tasks.

Table 2.2 gives the serialization constraints when the second task declares an immediate
or child commuting declaration or a deferred declaration of any kind. The last column
of the table, which contains all k entries, says that if the second task declares a deferred
access there is no serialization constraint. The upper left hand corner handles the case
when the first task declares any access except a commuting access and the second task

2.7. ACCESS SPECIFICATIONS AND CONCURRENCY 39

cm(o) ch cm(o) df st2(o)
st1(o) ! ! k

df st1(o) ! ! k

ch st1(o) ! ! k

cm(o) $ k k

df cm(o) k k k

ch cm(o) k k k

In this table st1 2 frd,wr,deg and st2 2 frd,wr,de,cmg.

Table 2.2: Induced Serialization Constraints – Part II

declares a commuting access. All of the entries are!, which specifies that the declarations
serialize the tasks. Finally, the lower left corner handles the possibility of two commuting
declarations. These declarations impose no serialization constraint unless both declarations
are immediate declarations. In this case the$ specifies that the tasks must execute serially,
but can execute in either order.

There is one somewhat subtle point about the serialization constraints. There may be
serialization constraints between a child task and its parent task. Because the child task
executes before the remainder of the parent task, in Tables 2.1 and 2.2 the child task’s access
declaration would appear in the leftmost column while the parent task’s access declaration
would appear in the top row. If there is an induced serialization constraint between the
child and parent tasks, the parent task must suspend until the child task finishes or executes
a with construct that eliminates the constraint.

For Jade’s conservative approach to exploiting concurrency to succeed, the implemen-
tation must know ahead of time a conservative approximation of the accesses that each task
and its child tasks will perform. The Jade implementation therefore requires that each task’s
access specification correctly summarize how it (and its child tasks) will access shared ob-
jects. From the programmer’s perspective, this requirement takes the form of several rules
which govern the use of access specifications.

� To access or deallocate a shared object, a task’s access specification must contain an
immediate access declaration that enables the access. Table 2.3 summarizes which
access declarations enable which accesses.

� If a task’s initial access specification contains an access declaration on a given object,
its parent task’s access specification (at the time the task is created) must also contain
one of the following access declarations:

– A corresponding access declaration on the same object. The declaration must
be either a deferred, immediate or child access declaration.

40 CHAPTER 2. THE JADE LANGUAGE

– A corresponding access declaration on the object’s parent object. The declara-
tion must be either an immediate or a child access declaration.

Table 2.4 summarizes the rules.

� A with construct can change a deferred access specification to a corresponding
immediate or child access specification, an immediate to a corresponding deferred or
child access specification, a child to a corresponding deferred or immediate access
specification, or eliminate an access specification. A with construct can also declare
that the task will access a child object if the task’s access specification contains a
corresponding child access declaration on the parent object. In this case the with
construct must also eliminate the access declaration on the parent object. Table 2.5
summarizes the rules.

� When a task creates an object that has no parent object, its access specification is
automatically augmented with deferred read, write, deallocate and commuting access
declarations for that object.

� When a task creates a child object, its access specification does not change.

There are additional restrictions associated with commuting access declarations. To
prevent deadlock, the Jade implementation does not allow a task to execute a with con-
struct that declares an immediate access to any object when the task’s access specification
already contains an immediate commuting declaration. The implementation also prevents
a task from creating any child tasks while its access specification contains an immediate
commuting declaration.

Access Declaration Enabled Accesses
rd(o) read from o
wr(o) write to o
de(o) deallocate o
cm(o) read from o and write to o

Table 2.3: Enabled Accesses

2.8 Language Design Rationale

We designed Jade to test the hypothesis that it is possible to preserve the sequential imper-
ative programming paradigm for computations that exploit task-level concurrency. In this
section we first present the requirements and goals that drove the language design. We then
discuss the specific design decisions that determined the final form of the language.

2.8. LANGUAGE DESIGN RATIONALE 41

If child task declares Parent task must declare one of
st(o) st(o), df st(o), ch st(o), st(po) or ch st(po)

df st(o) st(o), df st(o), ch st(o), st(po) or ch st(po)
ch st(o) st(o), df st(o), ch st(o), st(po) or ch st(po)

In this table po is the parent object of o and st 2 frd,wr,de,cmg.

Table 2.4: Access Specification Rules for the withonly Construct

If a with declares Task must declare one of
st(o) st(o), df st(o), ch st(o), st(po) or ch st(po)

df st(o) st(o), df st(o), ch st(o), st(po) or ch st(po)
ch st(o) st(o), df st(o), ch st(o), st(po) or ch st(po)
no st(o) st(o), df st(o) or ch st(o)

In this table po is the parent object of o and st 2 frd,wr,de,cmg.

Table 2.5: Access Specification Rules for the with Construct

To preserve the sequential imperative programming paradigm, we structured Jade as a
declarative extension to a sequential language. We believed that to adequately test the basic
hypothesis, Jade had to preserve the following key advantages of the sequential paradigm:

� Portability It must be possible to implement Jade on virtually any MIMD computing
environment.

� Safety Jade programs must not exhibit the complex failure modes (such as deadlock
and livelock) that characterize explicitly parallel programming. Jade must preserve
the serial semantics and provide guaranteed deterministic execution.

� Modularity Jade must preserve the modularity benefits of the sequential program-
ming paradigm.

We also wished to maximize the utility of Jade as a parallel programming language.
The following goals structured this aspect of the design process:

� Efficiency Because Jade was designed to exploit coarse-grain, task-level concurrency,
we expected the dynamic task management overhead to be profitably amortized by the
large task size. The important design goal was to minimize (and hopefully eliminate)
any performance overhead imposed on the sequential computation of each task. The
resulting design imposes almost no such overhead.

42 CHAPTER 2. THE JADE LANGUAGE

� Programmability We wished to minimize the amount of programmer effort required
to express a computation in Jade.

� Expressive Power We wished to maximize the range of supported parallel applica-
tions. In particular, the programmer had to be able to express dynamic concurrency.

� Implementability We needed to build prototype implementations of Jade quickly
and with limited manpower. Several of our design decisions support this goal.

In the following sections we discuss how these design goals and requirements drove
specific design decisions.

2.8.1 Implicit Concurrency

Jade is an implicitly parallel language. Rather than using explicitly parallel constructs
to create and manage parallel execution, Jade programmers provide granularity and data
usage information. The Jade implementation, and not the programmer, is responsible for
managing the exploitation of the concurrency.

The implicitly parallel approach enables the implementation to guarantee safety prop-
erties such as freedom from deadlock and, for programs that only declare reads and writes,
deterministic execution. Because the implementation controls the parallel execution, it can
use concurrency management algorithms that preserve the important safety properties.

Encapsulating general-purpose concurrency management algorithms inside the Jade im-
plementation makes it easier to develop parallel applications. These algorithms allow every
Jade programmer to build the parallel program on an existing base of sophisticated software
that understands how to exploit concurrency in the context of the current hardware archi-
tecture. This software relieves programmers of the cognitive and implementation burden
of developing a new concurrency management algorithm for each parallel application.

The implicitly parallel approach also preserves the modularity benefits of the sequential
programming paradigm. Jade programmers only provide local information about how each
task accesses data. There is no need for programmers to deal with or even understand the
global interactions between multiple tasks. This property promotes modularity and makes
it easier to maintain Jade programs.

2.8.2 Task Model

We believe that determining an appropriate task decomposition requires application-specific
knowledge unavailable to the implementation. The final solution, to have the programmer
identify blocks of code whose execution generates a task, gives the implementation the task
decomposition with a minimum of programmer effort. Experience with Jade applications
suggests that the task decomposition follows naturally given the programmer’s high-level,
domain-specific understanding of the problem.

2.8. LANGUAGE DESIGN RATIONALE 43

2.8.3 Access Specifications

Jade requires the programmer to provide a specification of how each task will access data.
The alternative would be to generate the access specification sections of the tasks
automatically. This would have required the construction of sophisticated program analysis
software, which would have significantly complicated the implementation of Jade. Given
the programmer’s high-level, application-specific knowledge, it is reasonable to assume that
in general the programmer could generate more efficient and precise access specifications
than an automatic program analysis tool. Experience with Jade applications demonstrates
that, given an appropriate shared object structure, the programmer can easily generate the
access specifications.

Access specifications give the implementation advance notice of precisely which objects
a task will access. The implementation can exploit this information to apply communication
optimizations such as concurrently fetching multiple remote objects for each task. Many
other parallel systems [85, 15, 19, 44] only discover when tasks will access data as the
tasks actually perform the access, and lack the advance information required to apply
sophisticated communication optimizations.

Having the programmer generate the access specification does complicate one aspect
of the implementation: the implementation cannot assume that the access specifications
are correct, and must detect violations of access specifications. This imposed dynamic
checking overhead, which in turn drove the design of local pointers.

2.8.4 Local Pointers

The current Jade implementation dynamically checks every access that goes through a
shared pointer. It would have been possible to eliminate much of this overhead by develop-
ing a front end that analyzed the program to eliminate redundant checks. The development
of such a front end would have complicated the implementation of the language and ex-
tended the development time. We instead decided to provide the local pointer mechanism.
Although this mechanism requires programmer intervention, it allows all but one dynamic
check per object per task to be performed statically and minimizes the amount of ef-
fort required to construct an effective Jade front end. Experience with Jade applications
suggests that using local pointers effectively is a fairly mechanical process that does not
fundamentally affect the difficulty of writing a Jade program.

2.8.5 Pointer Restrictions

In Jade, shared objects cannot contain local or private pointers. The restriction on private
pointers exists to prevent one task from accessing another task’s private objects. The
restriction on local pointers exists to prevent one task from using another task’s dynamic
access checks. Recall that all references to local pointers are statically checked. Consider

44 CHAPTER 2. THE JADE LANGUAGE

the following scenario. One task aquires a local pointer (generating a dynamic access
check) and stores it in a shared object. Another task comes along, reads the shared object to
get the local pointer and dereferences the local pointer. The access via the local pointer goes
unchecked, and there would be a hole in the access checking mechanism. The restriction
prevents this scenario.

The restrictions that ensure shared pointers always point to the beginning of shared
objects promote portability. The implementation can implement shared pointers using
globally valid identifiers and avoid the problems associated with transferring hard pointers
between machines.

2.8.6 Shared and Private Data

Jade segregates pieces of data that multiple tasks can access from pieces of data that only
one task can access. The alternative would be to eliminate the distinction and have all
data be potentially shared. There are two kinds of private data: local variables allocated
on the procedure call stack and dynamically allocated memory. Allowing local variables
to be shared would significantly complicate the implementation. Consider the following
scenario, which can only happen with shared local variables. A procedure creates a task,
which is given a shared pointer to a local variable. The procedure then returns before
the task runs. For the task to access valid data, the local variable must be allocated on
the heap rather than on the procedure call stack. The implementation would then have
to automatically deallocate the local variable when no outstanding task could access the
variable.

Allocating potentially shared local variables on the heap would complicate the allocation
and deallocation of local variables, which in turn could degrade the serial performance of
the system. Allowing shared local variables would not have eased the implementation of
any existing or envisioned Jade application. We decided the best point in the design space
was to make all local variables private.

The other kind of private data is dynamically allocated data. Making all dynamically
allocated data shared would have much less of an effect on the implementation. Still,
it would involve both unnecessary space overhead (for system data structures used with
shared objects), unnecessary time overhead (for dynamic access checks) and unnecessary
programming overhead (for declaring accesses to private data). Because we wanted to
preserve the serial execution performance of the system, we decided to provide dynamically
allocated private data.

2.8.7 Commuting Declarations

Commuting declarations make it easier to express certain kinds of applications in Jade
and expand the range of potential Jade applications. Many parallel computations contain

2.8. LANGUAGE DESIGN RATIONALE 45

commuting operations that access externally produced data. Exposing the commutativity
allows the implementation to perform each operation as soon as the rest of the computation
produces the required data. In the absence of the commutativity information the computation
would execute the operations in the original serial execution order. This order would waste
concurrency if the computation produced the data required for later operations before the
data required for earlier operations.

Commuting declarations also interact synergistically with hierarchical objects to elimi-
nate certain kinds of sequencing constraints. Consider a program that generates a collection
of tasks, each of which performs a commuting operation on a dynamically determined child
object of a given parent object. Each task would first declare a child access on the parent
object, then refine its access specification after determining which child object to access.
If the tasks only declared read and write accesses, the implementation would prevent each
task from performing its operation until every previous task (in the sequential execution
order) had refined its access specification. This approach wastes concurrency when a task
waits for previous tasks to refine their access specifications, especially if the previous tasks
access different child objects.

When each task declares that the child object operations commute, each operation can
execute as soon as the task refines its access specification and there are no other operations
on that object in progress. Tasks do not have to wait for previous tasks to refine their access
specifications.

In the current implementation it is the programmer’s responsibility to map commuting
declarations to operations that do in fact commute. If the operations do not commute, the
program may execute nondeterministically. In practice we do not expect programmers to
have difficulty using commuting declarations deterministically.

2.8.8 Allocation Units and Access Specifications

Jade access specifications are declared in terms of shared objects; each shared object is
an allocation unit. Unifying the allocation and access declaration granularities makes it
difficult to express algorithms that concurrently read and write different parts of a single
object. In such algorithms the basic access granularity is finer than the allocation granularity.
The programmer may be able to express the algorithm in Jade by reallocating the object so
that the allocation granularity matches the access declaration granularity. The problem is
that the programmer must then change all the code that accesses the object to reflect the new
structure. Programs that access the same data at different granularities in different parts of
the program exacerbate the problem by forcing the programmer to periodically reallocate
the data at the new granularity.

An early version of Jade [80] avoided this problem by decoupling the units of allocation
and synchronization. The units of synchronization (called tokens) were abstract, and their
correspondence with the actual data was completely conceptual. The lack of an enforced

46 CHAPTER 2. THE JADE LANGUAGE

correspondence dramatically increased the flexibility of the language. Programmers started
dynamically modifying the access declaration granularity of particular pieces of data,
using tokens to represent abstract concepts like the right to change the access declaration
granularity.

In some respects using the old version of Jade imposed less of a programming burden
than using the current version because the programmer never had to change the way the
program allocated and accessed data. A major drawback of the old version was that it
did not enforce the access specifications. Because the implementation was not aware
of the correspondence between data and tokens, it could not check the correctness of
the data usage information. Another restriction associated with the lack of an explicit
correspondence between data and tokens was that the implementation could not determine
which pieces of data each task would access just by looking at its access specification. The
implementation could not automatically implement the abstraction of a single address space
on message-passing machines by transferring the data at the access declaration granularity
in response to each task’s access specification.

Ideally, we would be able to combine many of the advantages of the two versions of
Jade by allowing the programmer to create multiple access declaration units per object. The
programmer would still allocate data at the original granularity, but the language would
allow the programmer to partition each object’s data into finer granularity access declaration
units. A problem with such an extension is that it complicates the access checking. Each
access to an object involves a pointer to that object and an index into the object. In the
current scheme only the pointer is checked because all indices are equally valid. In a scheme
that allowed a finer access declaration granularity, the implementation would also have to
check the index against a data structure storing the valid regions of the object.

The problem would get worse for local pointers. In the current scheme accesses via
local pointers involve no access checks and are as efficient as accesses via private pointers.
In the absence of sophisticated static analysis, the alternative scheme would require the
implementation to check the index on all local pointer accesses. This would significantly
degrade the serial performance of tasks that repeatedly accessed shared objects.

2.8.9 Allocation Units and Communication

In the message-passing implementation each object is a unit of communication. Transfer-
ring the entire object wastes bandwidth when a task actually accesses only a small part of
the transferred object. Making each object a unit of communication also requires that each
object be fully resident in the accessing processor’s memory module. Machines without
virtual memory cannot execute programs that access objects bigger than the physical mem-
ory associated with each processor. One of the Jade applications (the Volume Rendering
application) actually fails to run on one platform because of this restriction.

One alternative is to distribute fixed-size pieces of objects across the memory modules

2.8. LANGUAGE DESIGN RATIONALE 47

and transfer pieces of objects on demand. The shared-memory implementation implicitly
does this by using the shared-memory hardware, which distributes pieces of objects across
the caches at the granularity of cache lines. Page-based software shared-memory systems
apply this principle at the level of pages, using the page fault mechanism to detect references
to non-resident parts of objects. Another strategy is to have the front end augment every
access to a shared object with a software check to see if the data is locally available. If not,
the implementation would automatically generate a message to fetch the accessed piece
of the object. All of these strategies allow the system to use the whole memory of the
computing environment to store large objects and can drive down the amount of wasted
bandwidth.

While each of these strategies addresses a fundamental shortcoming of the current
Jade communication strategy, they all have drawbacks. Page-based approaches require the
implementation to interact with the paging system of the resident operating system. In
many operating systems the implementations of the user-level fault handling primitives are
inefficient [7], and some operating systems do not provide these primitives at all. On the
other hand, using a strategy that dynamically checked each access would impose substantial
overhead on each access to a shared object.

Another alternative is to decompose objects into finer communication units under pro-
gram control and associate an access declaration unit with each communication unit. Each
task would then declare precisely which communication units it would access and the
implementation would move and copy data at the access declaration granularity.

Supporting multiple communication units per object would raise several interesting
memory management issues. The key feature is that the each object would occupy a
contiguous chunk of the address space, but each processor might only access several widely
separated communication units. The simplest way to store the communication units would
be to allocate local storage on the accessing processor for the entire object and then store
each accessed unit into this storage. The data in the accessed units would then be valid,
while the rest of the object would be invalid. The approach has the advantage that it
preserves the object’s original index space. The generated parallel code would access the
parts of the object using the same indices that the serial program uses to access the complete
object.

The disadvantage of this approach is that it wastes parts of the address space. On
machines with no support for sparse address spaces the unaccessed pieces of the object
could occupy a large part of physical memory, causing poor utilization of physical memory.
On systems that support sparse address spaces this is less of a concern because the pages
holding the unaccessed section of the object would remain unmapped and not occupy
physical memory. Even these systems could suffer from internal page fragmentation if the
communication units were significantly smaller than the page size or if the communication
units did not occupy contiguous parts of the object. In a block decomposition of a matrix,
for example, each block occupies a non-contiguous part of the matrix’s index space.

48 CHAPTER 2. THE JADE LANGUAGE

Another way to implement multiple communication units per shared object would be
to allocate a separate piece of memory for each communication unit and store the unit
contiguously in this piece of memory. The pieces of memory could be allocated on demand
as the program accessed communication units. This approach would promote good memory
utilization, but require the implementation to translate accesses from the object’s old index
space to the communication unit’s new index space. In some cases the implementation
could apply sophisticated compiler analysis to perform the translation statically, but in
general the translation would have to take place dynamically. Performing the translations
dynamically would degrade the performance of serial task code.

2.9 Summary

Jade is fundamentally a declarative language that programmers use to specify how parts
of a serial program access data. It is designed to support the exploitation of the task-level
concurrency inherently present in parallel computations that have a serial semantics.

Jade is built on the three concepts of shared objects, tasks and access specifications.
Objects are the units of synchronization and, on message-passing machines, the units of
communication. Tasks are the units of computation. Access specifications bridge the
gap between computation and data by declaring how tasks access objects. The Jade
implementation analyzes the access specifications to automatically extract the concurrency
and manage the communication.

Jade provides a safe, portable programming paradigm for exploiting task-level con-
currency. Jade programs do not exhibit the complex failure modes such as deadlock that
characterize explicitly parallel computing environments. Programs that contain no commut-
ing access specification statements are guaranteed to preserve the semantics of the original
serial program and to execute deterministically.

Chapter 3

The Jade Implementation

The Jade programmer and the Jade implementation each have particular strengths that are
best suited for performing different parts of the process of parallelizing the computation.
The programmer’s strength is providing the high-level, application-specific knowledge re-
quired to determine an effective data and computation granularity. The implementation’s
strength is performing the analysis required to discover parallel tasks, executing the detailed
bookkeeping operations required to correctly synchronize the resulting parallel computa-
tion, and providing the low-level, machine-specific knowledge required to efficiently map
the computation onto the particular parallel machine at hand.

The Jade language design partitions the responsibility for parallelizing a computation
between the programmer and the implementation based on this analysis of their respective
strengths. This division means that the Jade implementation encapsulates algorithms that
automatically perform many important parts of the parallelization process. The programmer
obliviously reuses these algorithms every time he or she writes a Jade program.

We have demonstrated the viability and applicability of these algorithms by implement-
ing Jade on many different computational platforms. Jade implementations currently exist
for shared-memory machines such as the Stanford DASH machine [82] and the Silicon
Graphics 4D/340 [12], for message-passing machines such as the Intel iPSC/860 [16], and
for heterogeneous networks of workstations. While no implementation currently exists
for shared-memory machines with incoherent caches such as the Cray T3D, it would be
possible to implement Jade on such machines.

The performance of many parallel applications depends on their communication behav-
ior. The data usage information in Jade programs gives the implementation the information
it needs to automatically apply communication optimizations. The current Jade imple-
mentation exploits the data usage information to apply a scheduling heuristic designed
to improve the locality of the computation. This heuristic attempts to execute tasks on
processors that have locally available copies of the objects that the task will access. The
message-passing implementation also optimizes the computation by concurrently fetching

49

50 CHAPTER 3. THE JADE IMPLEMENTATION

the remote objects that a task will access, using excess concurrency in the application to
hide the latency of accessing remote objects, and switching to a broadcast protocol for
objects that are accessed by all processors.

Jade presents a restricted model of parallel computation. When appropriate, the im-
plementation uses optimized, special-purpose algorithms tailored for the specific situations
that arise in the context of Jade. There are cases, however, when the implementation
uses general-purpose algorithms suitable for use in other parallel and distributed systems.
Specifically, the implementation contains an algorithm for locating objects in a message-
passing system, an efficient consistency mechanism that avoids some of the performance
overhead associated with invalidate and update protocols, and scheduling algorithms for
use in systems that have advance knowledge about how the computation will access data.
It would be possible to extract these algorithms from the Jade implementation and package
them for reuse in other systems.

3.1 Overview

In this section we describe the functionality and optimizations that the Jade implementation
provides. Strictly speaking, there are two Jade implementations: one for shared-memory
platforms and one for message-passing platforms. While each implementation is tailored
for its own specific computational environment, the implementations do share many basic
responsibilities and mechanisms. Both implementations are completely dynamic,consisting
of a run-time system and a simple preprocessor which emits C code. Both implementations
perform the following activities to correctly execute a Jade program in parallel.

� Concurrency Detection The implementation analyzes access specifications to deter-
mine which tasks can execute concurrently without violating the serial semantics.

� Synchronization The implementation synchronizes the parallel computation.

� Scheduling The implementation assigns tasks to processors for execution.

� Access Checking The implementation dynamically checks each task’s accesses to
ensure that it respects its access specification. If a task violates its access specification,
the implementation generates an error.

� Controlling Excess Concurrency The implementation suppresses excessive task
creation to avoid overwhelming the parallel machine with tasks.

The message-passing implementation has several additional responsibilities associated
with implementing the abstraction of a single address space in a message-passing environ-
ment.

3.1. OVERVIEW 51

� Object Management The message-passing implementation moves or copies objects
between machines as necessary to implement the abstraction of a single address space.

� Naming The message-passing implementation maintains a global name space for
shared objects, including an algorithm that locates remote objects.

� Format Translation In heterogeneous environments the implementation performs
the format conversion required to correctly transfer data between machines with
different data formats. Appendix A describes how the implementation performs the
data format translation.

The scheduling algorithms for both the shared-memory and message-passing implemen-
tations contain several mechanisms which optimize the assignment of tasks to processors.

� Load Balancing The implementation tracks processor use and dynamically balances
the load by scheduling enabled tasks onto idle processors.

� Locality Because the implementation knows which objects each task will access, it
can apply a locality heuristic. This heuristic is designed to enhance the locality of
the computation by executing tasks on processors with locally available copies of
accessed objects.

While shared-memory machines manage the movement of data in hardware, message-
passing machines allow the software to control this movement. The message-passing
implementation exploits this control and its knowledge of how tasks access data to apply
the following communication optimizations.

� Migration The implementation migrates objects for fast local access.

� Replication The implementation replicates objects for concurrent read access.

� Consistency The implementation uses an efficient consistency mechanism that avoids
the overhead of invalidate or update protocols.

� Block Transfer If a task will access a remote object, the implementation generates
one communication operation that transfers the entire object.

� Concurrent Fetches If a task declares that it will access multiple remote objects, the
implementation fetches the objects concurrently.

� Adaptive Broadcast The implementation tracks object usage patterns in the compu-
tation, switching to a broadcast protocol for objects that all processors access.

� Object Piggybacking The implementation eliminates remote access latency and
excess messages by piggybacking objects onto task messages.

52 CHAPTER 3. THE JADE IMPLEMENTATION

� Hiding Latency with Concurrency The implementation uses excess concurrency
to hide latency. It assigns multiple executable tasks to each processor and fetches
remote objects for one while executing another.

The remainder of this chapter is structured as follows. Section 3.2 describes the object
queue mechanism. This is a key mechanism used by both the shared-memory and message-
passing implementations to extract concurrency and synchronize the parallel computation.

Section 3.3 presents an overview of the shared-memory implementation. We devote
the majority of this section to describing the shared-memory scheduling algorithm and its
locality heuristics.

Section 3.4 presents an overview of the message-passing implementation. This section
describes the object migration and replication algorithms, an optimized consistency algo-
rithm based on version numbers, the message-passing scheduling algorithm and its locality
heuristic and several communication protocols that keep replicated implementation infor-
mation consistent. This section also describes a general-purpose entity location algorithm
that could be used in other parallel or distributed systems.

Section 3.5 describes several algorithms that the two implementations share. In particu-
lar, we describe the access checking algorithm and the algorithm used to suppress excessive
task creation.

3.2 Object Queues

In this section we discuss the mechanism that the Jade implementation uses to extract
concurrency and synchronize the computation. We first describe the mechanism that the
implementation uses for read and write declarations, then generalize to include deallocate,
disjoint and commuting declarations.

3.2.1 Read and Write Declarations

There is a queue associated with each object that controls when tasks can access that
object. The implementation uses these queues to detect concurrency and synchronize the
computation. Each task that accesses an object has an entry in the object’s queue declaring
the access. Entries appear in the queue in the same order as the corresponding tasks would
execute in a sequential execution of the program. The implementation initializes a normal
object’s queue with an entry that declares all possible deferred accesses for the task that
created the object. A child object’s queue is initially empty.

Immediate write entries are enabled when they reach the front of the queue. Immediate
read entries are enabled when there are only read entries before them in the queue. Deferred
entries are always enabled. The purpose of deferred entries is to prevent later tasks from

3.2. OBJECT QUEUES 53

executing prematurely. A task is enabled (and can legally execute) when all of its object
queue entries are enabled.

When a task is created, it inserts an entry into the queue of each object that it declares
it will read or write. If the task’s parent task has an entry in the object queue, the new task
inserts its entry just before the parent task’s entry. If the parent task has no entry in the
object queue, the object must be a child object and the parent must have an entry in the
parent object’s queue. In this case the implementation inserts the task’s entry at the end
of the object queue. This insertion strategy ensures that tasks’ entries appear in the object
queues in the sequential execution order.

A task may update its queue entries to reflect the changes in its access specification.
These changes may cause the task to suspend, or they may cause other tasks to become
executable. When a task finishes its execution it removes all of its entries from the object
queues. These removals may cause other tasks to become executable.

The shared-memory implementation keeps each object queue consistent by giving each
queue operation exclusive access to the queue. In the message-passing implementation
queue operations also execute sequentially. The queue migrates as a unit on demand
between processors.

3.2.2 Evaluation of the Object Queue Mechanism

The biggest drawback of the object queue mechanism is its monolithic nature. Performing
object queue operations sequentially may cause serialization that would not be present
with a different synchronization mechanism. Consider a set of tasks that all read the same
object. The object queue will serialize the insertion of their declarations into the object
queue. If the tasks have no inherent data-dependence constraints, the task queue insertions
may artificially limit the parallelism in the computation.

It is possible to break the artificial object queue serialization using a mechanism that
hierarchically numbers object versions. Each task could compute which version of each
object it would access given only the version numbers of the objects in the parent task’s
access declaration. A task would run only when the correct versions of the objects it would
access became available. This mechanism would allow multiple parent tasks to create child
tasks that accessed the same object with no additional synchronization.

3.2.3 Correctness of Object Queue Mechanism

In this section we discuss why the object queue mechanism correctly synchronizes the
computation. There are two aspects to the correctness of a synchronization mechanism
for Jade programs: 1) at every point of the computation there is at least one task that can
execute (i.e. the synchronization mechanism is deadlock free) and 2) no task reads the

54 CHAPTER 3. THE JADE IMPLEMENTATION

wrong value from a shared object. We first consider Jade programs without child objects,
then remove this restriction.

If the program contains no child objects, then tasks’ entries appear in the object queues
in the same order that the tasks would execute in a serial program (the serial entry order
property). This is true of the original state of an object queue, which contains one entry
from the task that created the object. Subsequent object queue operations preserve the
serial entry order property. If a task completes or eliminates an access declaration, the
implementation removes its entries from the object queue. The new sequence of entries is
then a subsequence of the original sequence of entries, and the property holds.

The only other queue operation is the insertion of a new entry. The new entry appears
before the entry of its parent task. In the original sequence all entries which appeared before
the parent task entry belonged to tasks which executed before the parent task. The child
task’s entry appears after all of these entries, which is correct because in the sequential
execution the child task executes after all of these tasks. Similarly, the child task’s entry
appears before all of the entries after its parent task’s entry, and the child task should execute
before all these tasks. Finally, the child task’s entry appears before its parent task’s entry.
This is again correct because the child task should execute before the remainder of its parent
task.

The serial entry order property implies the deadlock freeness of the object queue mech-
anism. The sequential execution order is a total order on the tasks, so at every point in the
computation there is at least one task such that every one of that task’s entries are at the
front of their object queues. This task can execute.

To establish that no task reads the wrong value from a shared object, we establish that
all parallel executions preserve the relative order of reads and writes to the same object. We
establish that if a write occurs before a read to the same object in a sequential execution, the
write will occur before the read in all parallel executions. A similar argument establishes
that the read will take place before any subsequent (in the sequential execution order) writes.
See [108] for a more formal treatment of this argument.

Consider a write that happens before a read in a sequential execution. There are several
cases: 1) the same task performs both the read and the write, 2) the task that performs the
write is an ancestor of the task that performs the read, 3) the task that performs the read is
an ancestor of the task that performs the write, and 4) two different tasks perform the read
and the write, and neither is an ancestor of the other. We show that in all parallel executions
the write occurs before the read.

In case 1 the operations of the task always execute in the same order as in the serial
execution, so the write occurs before the read. In case 2 the parent task performs the write
before it creates the reading task. In case 3 the first task on the ancestor chain of tasks
from the parent task to the writing task is created before the read is performed. This child
task and every task in the ancestor chain inserts a write entry into the object queue. These
entries occur before the parent task’s entry. By the time the parent task attempts to perform

3.2. OBJECT QUEUES 55

the read, either the write will have occurred, or there is and will continue to be a write entry
from the ancestor chain in the queue until the write is performed. This write entry will
prevent the parent task from performing the read before the write.

In case 4 the writing task and the reading task share at least one common ancestor task.
Find the least common ancestor task (the ancestor task with no child task that is also a
common ancestor task). This ancestor task has two child tasks, one of which (the first
task) either performs the write or is an ancestor of the writing task. The second task either
performs the read or is an ancestor of the reading task. The first task inserts a write entry
into the queue and is created before the second task, which inserts a read entry into the
queue. Because the two tasks have the same parent the write entry appears in the queue
before the read entry.

All of the ancestors of the writing task between the writing task and the first task must
insert write entries into the queue. By the time the reading task is created and inserts its
entry into the queue, either the write will have occurred, or there is and will continue to be
a write entry before it in the queue until the write occurs. This write entry will prevent the
read task from performing the read until the write task performs the write.

We now extend the argument to handle child objects. For cases 1 and 2 the argument
is identical to the one above. For cases 3 and 4 the argument is as follows. Find the least
common ancestor task of the writing task and the reading task. There is a chain of tasks
from the ancestor task to the write task. If the ancestor declares that it will both read and
write the object when it creates the first task on the write task chain, the argument above for
normal objects holds. Otherwise the ancestor task declares that it will both read and write
an ancestor of the accessed object. Next consider the chain of tasks from the ancestor task
to the read task. Both this read chain of tasks and the write chain of tasks discussed above
walk down the chain of objects from the ancestor object to the accessed object. At each
step of the object chain each task inserts its entry at the end of the object’s queue. We will
now argue that, for each object queue, the write chain inserts its entry into the queue before
the read chain does.

The program starts walking down the write task chain before it starts walking down the
read task chain, so the write entry is inserted into the first object’s queue before the read
entry. At every step of the object chain the write task chain has a write entry in the current
object’s queue. As the read task chain walks the object chain, it inserts read entries into
the object queues. To take each step from a parent object to a child object, the stepping
read task must have an immediate entry in the parent object’s queue. If the write chain has
yet to take the corresponding step, there will still be a write entry in the parent object’s
queue before the read chain’s read entry. This write entry will prevent the read task from
executing, and the read task chain will never pass the write task chain on the way down the
object chain to the accessed object. The writing task will insert its entry into the accessed
object’s queue before the reading task, and will perform the write before the read.

Given the above argument, it is possible to see why the implementation enforces the

56 CHAPTER 3. THE JADE IMPLEMENTATION

restriction that each task declare that it will access at most one object in a hierarchy of
objects. Without this restriction, the ancestor task could have entries in several of the object
queues, and the entries could get out of order as the task chains walk the object chain.

For child objects we relax the serial entry order property. It is possible for two tasks
that read the same object to get out of order in the object queue. This of course does not
affect when the tasks acquire the right to access the object because Jade allows concurrent
reads, and both tasks will acquire the right to read the object at the same time. So, for child
objects the implementation only preserves the serial entry order property for writes relative
to reads. This is still enough for the deadlock freeness argument presented above to go
through.

3.2.4 Extensions for Deallocate Declarations

Deallocate declarations also insert entries into the object queue. A deallocate entry is
enabled when it is the first entry in the queue. The correctness condition for deallocations
is that all previous tasks that access the object complete their accesses before the object
is deallocated. An argument similar to the one in Section 3.2.3 establishes that the object
queue mechanism preserves the serial execution order for deallocations relative to other
accesses to the same object.

3.2.5 Extensions for Commuting Declarations

Commuting declarations introduce an extra level of complexity into the synchronization
algorithm. There are two kinds of synchronization constraints that apply to commuting
declarations: serialization constraints (the implementation must preserve the serial order
for commuting accesses relative to other accesses) and exclusion constraints (the commuting
accesses must execute in some serial order).

The implementation enforces serialization constraints using the object queue mecha-
nism. Each commuting declaration inserts an entry in the object queue. Child and immediate
commuting entries become enabled when there are only commuting entries before them in
the queue.

The implementation enforces exclusion constraints with an exclusion queue. Associated
with each object is an exclusion queue. If a task declares an immediate commuting access
it will insert an exclusion entry into the corresponding exclusion queue before acquiring the
right to access the object. The entry is enabled when its entry becomes the first entry in the
exclusion queue. The task itself becomes enabled when all of its object queue and exclusion
queue entries are enabled. The task removes its exclusion entry when it completes or uses
a with construct to eliminate the immediate commuting declaration.

The implementation avoids deadlock by properly sequencing the queue insertions.
When a task is created it inserts all of its object queue entries into the object queues

3.3. THE SHARED-MEMORY IMPLEMENTATION 57

according the algorithm in Section 3.2.1. It then waits for all of its object queue entries to
become enabled. It then sorts its immediate commuting entries and progressively inserts
the exclusion entries into the corresponding exclusion queues. It inserts each exclusion
entry only after all previous exclusion entries are enabled.

We first establish that the mechanism outlined above is deadlock free. At any point
in the execution there is a set of tasks whose object queue entries are all enabled. By
the serial entry order property described in Section 3.2.3 this set is not empty. These
tasks are either enabled or in the process of inserting exclusion queue entries and waiting
for them to be enabled. Conversely, if a task has any entries in exclusion queues, all of
its object queue entries are enabled. The Jade implementation ensures this property by
preventing a task from declaring any immediate accesses or creating any child tasks while
its access specification contains an immediate commuting declaration. These are the only
two declarations that can cause one of the task’s enabled entries to become not enabled.

In effect, the exclusion queues implement a mutual exclusion lock on each object, and
the tasks acquire the locks in the sort order. Every task that holds an object lock is either
enabled or will become enabled as soon as it acquires the rest of its locks. Because the
tasks acquire locks in the sort order, one task must eventually acquire all of its locks and
become enabled.

We next address the correctness conditions. The exclusion queue mechanism ensures
that commuting updates to the same object execute in some serial order. An argument
similar to the one in Section 3.2.3 establishes that the object queue mechanism preserves
the serial execution order for commuting accesses relative to other kinds of accesses.

3.3 The Shared-Memory Implementation

In this section we discuss the implementation of Jade for multiprocessors with hardware
support for shared memory. Because the hardware implements the Jade abstraction of a
single address space, the implementation is only responsible for finding the concurrency,
synchronizing the computation, and mapping the tasks efficiently onto the processors.

3.3.1 A Task Lifetime

In this section we summarize the dynamic behavior of the shared-memory implementation
by tracing the lifetime of a task. Figure 3.1 gives a state-transition diagram of a task’s
lifetime. We describe the activities that take place in each state in turn.

3.3.1.1 The Specification State

To execute a withonly construct, the implementation first allocates a task data structure.
This data structure contains a pointer to the task body code, space for the task parameters,

58 CHAPTER 3. THE JADE IMPLEMENTATION

specification

waiting

enabled

executing

suspended

ready

finished

Figure 3.1: Shared-Memory State-Transition Diagram

and an initially empty access specification. The implementation executes the access
specification section to generate the new task’s initial access specification and copies
the parameters into the task data structure. It then inserts the task’s entries into the object
queues according to the algorithm described in Section 3.2. If the task’s access specification
is enabled, it enters the enabled state. Otherwise, it enters the waiting state.

3.3.1.2 The Waiting State

A task in the waiting state cannot execute because its initial access specification has yet to
be enabled. When the access specification is enabled the task enters the enabled state.

3.3.1.3 The Enabled State

A task in the enabled state is ready to execute, but is waiting to be assigned to a processor
for execution. See Section 3.3.4 for a description of the scheduling algorithm.

3.3.1.4 The Executing State

The implementation executes a task by allocating a stack for the task and starting a thread
that runs the task body on this stack. The task may change its access specification, causing
the implementation to update the object queue information. An executing task may suspend
because of excessive task creation, because of a conflicting child task access declaration,
or because it executes a with construct. In these cases the implementation saves the state
of thread executing the task and switches to another enabled or ready task if one exists.

3.3. THE SHARED-MEMORY IMPLEMENTATION 59

3.3.1.5 The Suspended State

A task in the suspended state will eventually become able to execute again, at which point
it enters the ready state.

3.3.1.6 The Ready State

A task in the ready state is ready to resume its execution. In the current implementation the
task will always resume on the processor that first executed it.

3.3.1.7 The Finished State

Eventually the task finishes. The implementation removes the task’s declarations from the
object and exclusion queues. These removals may enable other tasks’ declarations, and
some of the tasks may enter the enabled state. The implementation then deallocates the
task data structure and stack for use by subsequently created tasks.

3.3.2 Locality and Load Balancing

The shared-memory scheduler mediates a trade-off between locality and load balancing.
This trade-off occurs when the scheduler finds itself with an idle processor and an enabled
task that the locality heuristic prefers to execute on a busy processor. In this case it may not
be clear whether it is better to execute the task on the idle processor (where the task may
take longer to run) or wait for the busy processor to finish its current task (and waste the
computational power of the idle processor).

The implementation always chooses load balance over locality. It never refuses to
execute a task on an idle processor because of locality concerns. The scheduler has no
precise information about how much faster a task will execute on a processor that has its
objects available locally, nor does it know how long it will be until a busy processor goes
idle. The benefits of leaving a processor idle are vague and uncertain, while the drawback
is clear: the loss of the processor for the period of time it is idle.

3.3.3 Shared-Memory Systems

Different shared-memory machines have different memory system characteristics. The
implementation adjusts to these different memory system characteristics by adjusting the
locality heuristic to the characteristics of the machine at hand. We therefore motivate the
discussion of the shared-memory locality heuristics by summarizing the locality issues
associated with each of the following kinds of memory systems: 1) bus-based systems with
a single memory module and per-processor caches (like the Silicon Graphics 4D/340), 2)
distributed-memory systems with multiple memory modules and caches (like the Stanford

60 CHAPTER 3. THE JADE IMPLEMENTATION

DASH machine), 3) distributed-memory systems without caches (like the BBN Butterfly
[13]) and 4) cache-only-memory systems (like the KSR1 [73]).

3.3.3.1 Bus-Based Systems

Bus-based systems have a roughly uniform access time from any processor to the main
memory. The access time for cached data is typically significantly lower than the access
time to main memory. Executing tasks on processors with cached copies of the accessed
data enhances the locality of the computation.

3.3.3.2 Distributed-Memory Systems with Caches

Distributed-memory systems may have non-uniform access times from processors to mem-
ory modules. Typically, each processor has a local memory module, and it takes less
time for that processor to access its local memory module than to access remote memory
modules. There are two possible locality effects. As for the bus-based systems described
in Section 3.3.3.1 above, executing tasks on processors with cached copies of the accessed
data enhances the locality of the computation. But it may also enhance the locality of
the computation to execute tasks on processors whose local memory modules contain the
accessed data. In this case accesses that are not satisfied in the cache will be satisfied in
local rather than remote memory, driving down the access time.

3.3.3.3 Distributed-Memory Systems without Caches

For machines that do not cache remote data the only way to enhance the locality of the
computation is to execute tasks on processors whose local memory modules contain the
accessed data.

3.3.3.4 Cache-Only-Memory Systems

The final class of systems we consider is the cache-only-memory systems. These systems
differ from the distributed-memory systems discussed above in that they treat all of memory
as a cache. In effect, each piece of data moves to the memory module closest to the last
processor that accessed it. For these systems an appropriate way to enhance locality is to
execute each task on the processor that last accessed the data that the task will access. The
previous access will have fetched the data to that processor, and the data should be stored
at least as close to that processor as to any other.

3.3. THE SHARED-MEMORY IMPLEMENTATION 61

3.3.4 The Shared-Memory Scheduler

In this section we present the shared-memory scheduling algorithm in detail. The scheduler
can use one of two locality heuristics: the cache locality heuristic and the memory locality
heuristic. The cache locality heuristic is designed for systems in which data tends to be
most quickly accessible from the last processor to access it. This heuristic is therefore
appropriate for bus-based systems and cache-only-memory systems. The memory locality
heuristic is designed for systems in which data tends to be most quickly accessible from
the processor closest to the memory module in which the data is allocated. This heuristic
is therefore appropriate for distributed-memory systems without caches. On distributed-
memory systems with caches data may be most quickly accessible either from the last
processor to access it (if the data is still cached) or from the processor in whose memory
module the data is allocated (if the data is not remotely cached). For reasons explained
below in Section 3.3.5, the current implementation for distributed-memory systems with
caches uses the memory locality heuristic.

The scheduler assigns tasks to processors using a distributed task queue algorithm.
There is one queue associated with each processor. When a task can legally execute, it
is inserted into one of the task queues. The implementation structures the task queue
associated with each processor (called the processor task queue) as a queue of object task
queues. There is one object task queue associated with each object; the object task queue
is in turn a queue of tasks. Figure 3.2 contains a picture of these data structures. There is
one version of these data structures for each processor.

task

object task

processor task

queue

queue

current object
task queue

header for
object task

 queue

Figure 3.2: Task Queue Data Structures

Each object task queue is initially owned by the processor that owns the corresponding
object (i.e. the processor in whose memory module the object was allocated). The main
difference between the cache and memory locality heuristics is that the cache locality
heuristic may occasionally change the ownership relation by moving object task queues

62 CHAPTER 3. THE JADE IMPLEMENTATION

from one processor to another. The memory locality heuristic never changes the ownership
relation.

Each task has a locality object; in the current implementation the locality object is the
first object that the task declared it would access. When the implementation determines
that a task can legally execute, it inserts the task into the object task queue associated with
that task’s locality object. If the object task queue was empty before the task was inserted,
it inserts the object task queue into the processor task queue of the processor that owns that
object task queue.

Each processor maintains a current object task queue. When a processor goes idle, it
needs to choose a new task to execute. It first tries to execute the first task in the current
object task queue. If the current object task queue is empty, the processor tries to make the
first object task queue in the processor task queue the current object task queue. It then
executes the first task in the new current object task queue. If the processor task queue
is empty, it cyclically searches the task queues of other processors. Both heuristics first
search the processor task queues. If the cache locality heuristic finds a non-empty processor
task queue it removes the last object task queue and makes that object task queue the idle
processor’s current object task queue. The idle processor then executes the first task from
the moved object task queue. If the memory locality heuristic finds a non-empty processor
task queue it removes the last task from the last object task queue; the idle processor will
execute this task. In this case the object task queue remains associated with its original
processor.

If all processor task queues are empty the idle processor cyclically searches the current
object task queues of other processors. In both heuristics, if the idle processor finds a non-
empty current object task queue it removes the last task from the current object task queue
and executes it. The idle processor continues cyclically searching both the processor task
queues and the current object task queues until it finds an executable task or the computation
completes.

There is one delicate implementation detail about this dynamic load balancing algo-
rithm. A processor never removes a task from another processor’s task queue if the other
processor is idle. Parallel programs occasionally go through concurrency-poor regions of
the computation in which most of the processors are idle. In this situation most of the
processors are cyclically searching other processors’ task queues for tasks to execute. At
the end of the concurrency-poor region new tasks start appearing in task queues. If each
processor takes the first task it finds, the tasks will get assigned to processors arbitrarily
and the locality heuristic will have no effect. The current algorithm eliminates this effect
if the locality heuristic evenly distributes the new tasks across the processors. In this case
the idle processors will either refuse to take a remote task (because the other processor
is idle) or find the task queue of the other processor empty (because the processor has
removed its task and started executing it). The processor will eventually check its own
task queue and remove and execute the task that the locality heuristic assigned to it. This

3.3. THE SHARED-MEMORY IMPLEMENTATION 63

strategy makes the locality heuristic work well during the transition from concurrency-poor
to concurrency-rich regions of the computation. It also eliminates contention on the lock
that controls access to the task queue.

3.3.5 Discussion of the Locality Heuristics

Both heuristics attempt to enhance the locality of the computation by identifying a locality
object for each task and executing the task on the processor that can most quickly satisfy
references to the locality object. Both heuristics also attempt to execute tasks with the
same locality object consecutively on the same processor. For machines that cache shared
objects, this consecutive execution enhances the probability that references to the locality
object will be satisfied in the cache. The idea is that the first task will fetch the locality
object into the cache. When successive tasks access the locality object the accesses will
then hit in the cache, eliminating expensive memory accesses. If the heuristic allowed
other tasks to execute between tasks with the same locality object, the other tasks would
fetch other objects. These other objects might then eject the locality object from the cache,
destroying the locality of the task execution sequence.

For distributed-memory systems with caches, it is not clear which locality heuristic will
work best. It may be better to assign a task either to the last processor that accessed its
locality object (in hopes that the locality object will still be resident in its cache), or to a
processor whose memory module contains the locality object (so that references that do not
hit in the cache can be satisfied out of the local memory rather than a remote memory). For
such systems the current Jade implementation uses the memory locality heuristic. Remote
processors will only steal individual tasks, and there is a permanent bias towards executing
tasks on the processor whose memory contains the locality object. The rationale is that the
coarse-grain computations for which Jade was designed may tend to access large objects
that never take up lasting residence in the cache.

All of the architectures considered above except distributed-memory machines without
caches replicate data for concurrent read access. The current locality heuristics do not take
this replication into account. They attempt to execute each task on the processor that owns
the locality object’s task queue, rather than attempting to execute the task on any of the
processors with locally available copies of the locality object’s data. Ignoring the fact that
a replicated object’s data may be close to multiple processors could hurt the computation
in the presence of an unbalanced assignment of tasks to processors. In this case the current
dynamic load balancing algorithm will balance the load by transferring tasks arbitrarily to
idle processors, and not attempt to place tasks on processors close to replicated copies of
the locality object.

64 CHAPTER 3. THE JADE IMPLEMENTATION

3.3.6 Extensions for Incoherent Caches

In this section we have assumed that the hardware fully implements the abstraction of a
single shared address space. There are machines, however, that only partially implement
this abstraction. These machines automatically fetch and cache remote memory, but rely
on software to keep the caches consistent. While no Jade implementation currently exists
for such machines, using Jade could substantially improve the programming environment.

The most difficult programming problem with using these machines is determining
when to generate the cache flushes required to preserve consistency. Because the Jade
implementation knows how tasks access data, it can automatically generate these cache
flush operations. The programmer would simply use the Jade abstraction of a coherent
shared address space, and be oblivious to the complexities introduced by the lack of
hardware support for coherent caches.

The Jade implementation could use the following cache flush algorithm to guarantee
the consistency. When a task finished writing an object, the implementation would flush
the cache containing local copies of that object’s data. Before executing a task that reads an
object, the implementation would determine if the object was written since the processor
last read it or flushed its cache. If so, the implementation would flush the processor’s cache
before executing the task.

3.3.7 Summary

The shared-memory implementation extracts the concurrency and schedules the parallel
tasks onto the processors for execution. The scheduling algorithm applies a locality heuristic
that attempts to improve the locality of the computation. Each task has a locality object; the
locality heuristic attempts to schedule the task onto the processor that owns the object. There
are two variants of the locality heuristic. In the cache variant the processor that most recently
wrote the object is the owner. In the memory variant the owner is always the processor
in whose memory the object was allocated. The cache locality heuristic is suitable for
bus-based multiprocessors and cache-only-memory machines, while the memory locality
heuristic is suitable for distributed-memory machines.

3.4 The Message-Passing Implementation

The responsibilities of the message-passing implementation are a superset of the responsibil-
ities of the shared-memory implementation. Like the shared-memory implementation, the
message-passing implementation must discover the concurrency, synchronize the computa-
tion and map the tasks efficiently onto the processors. The message-passing implementation
has the additional responsibility of using low-level message-passing operations to imple-
ment the Jade abstraction of a single address space. The fact that Jade runs in heterogeneous

3.4. THE MESSAGE-PASSING IMPLEMENTATION 65

environments complicates the implementation of this abstraction because the implementa-
tion must perform the data format translation required to maintain a coherent representation
of the data.

3.4.1 A Task Lifetime

In this section we summarize the functionality of the message-passing implementation by
tracing the lifetime of a task. Figure 3.3 gives a state-transition diagram of a task’s lifetime.

executing

suspended ready

finished

activated

specification

waiting

enabled

Figure 3.3: Message-Passing State-Transition Diagram

3.4.1.1 The Specification State

When a task is created, it starts out in the specification state. The implementation executes
its access specification and copies the parameters into the allocated task data structure. It
then inserts the task’s entries into the object queues. See Section 3.4.3 for a description
of the algorithm that inserts access specifications into remote object queues. If the task’s
access specification is enabled, it enters the enabled state. If the task must wait to access
some of the objects, it enters the waiting state.

66 CHAPTER 3. THE JADE IMPLEMENTATION

3.4.1.2 The Waiting State

A task is in the waiting state if its initial access specification has yet to be enabled. Whenever
the object queue enables a task’s access declaration it informs the task by sending it a
message (if the task and object queue are on different processors), or by performing the
operation locally (if the task and object queue are on the same processor). Eventually all
of the task’s access declarations become enabled, at which point the task enters the enabled
state.

3.4.1.3 The Enabled State

A task is in the enabled state if it has yet to execute, but its initial access specification has
been enabled. The scheduler will eventually assign the task to a processor for execution.
See Section 3.4.2 for a description of the scheduling algorithm. When the implementation
assigns a task to a processor for execution, it packs the task data structure into a message
and transfers the task to the executing processor. At this point the task enters the activated
state.

3.4.1.4 The Activated State

An activated task’s synchronization constraints have been enabled and the scheduler has
assigned the task to a processor for execution. The implementation cannot yet execute
the task, however, because the task may need to access some objects that are not locally
available. The implementation therefore fetches the non-local objects by sending request
messages to processors that have locally available copies of the objects. The processors
respond by sending a copy of the object to the requesting processors. When all of the
messages containing remote objects for the task arrive back at the processor, the task enters
the executable state. Section 3.4.7 describes how the implementation determines, for each
object, which processor has a locally available copy of that object. Because the implemen-
tation replicates mutable objects for concurrent read access, the Jade implementation must
solve the consistency problem. Section 3.4.7 presents the details of the Jade consistency
mechanism.

3.4.1.5 The Executable State

Each processor maintains a local queue of executable tasks. When the processor goes idle
it fetches a task from this queue and executes it. The task then enters the executing state.

3.4.1.6 The Executing State

An executing task may change its access specification, causing the implementation to
generate messages that update remote object queue information. An executing task may

3.4. THE MESSAGE-PASSING IMPLEMENTATION 67

suspend because of excessive task creation, because it creates a child with a conflicting
access specification, or because it executes a with construct.

3.4.1.7 The Suspended State

A task in the suspended state will eventually become able to execute again, at which point
it enters the activated state. In the current implementation the task will always resume on
the processor that first executed it.

3.4.1.8 The Finished State

When a task finishes, it must remove all of its access declarations from the object queues.
The implementation sends the completed task back to the processor that created it and
issues the queue operations there. The hope is that the object queues will still be on the
creating processor (the creating processor fetched the queues when it created the task), and
the queue removals will take place locally.

3.4.2 The Message-Passing Scheduler

The message-passing implementation uses a centralized scheduling algorithm. This al-
gorithm dynamically balances the load and employs a locality heuristic which attempts
to minimize the amount of object traffic. It also assigns multiple enabled tasks to each
processor so that the processor can use excess concurrency present in the computation to
hide the latency of remote access. This section presents the scheduling algorithm in detail.

The scheduling algorithm is optimized for the case when the main processor (the proces-
sor running the main thread of control) creates all of the tasks in the computation. Although
the computation will execute correctly if other processors create some of the tasks, the
algorithm may fail to generate a reasonable load balance. We chose to implement a central-
ized algorithm rather than a distributed algorithm because it reduced the implementation
time and because in the current set of Jade applications all tasks are created on the main
processor.

Each task has a locality object; in the current implementation the locality object is
the first object that the task declared it would access. Each object has an owner (the last
processor to write the object). The owner is guaranteed to have a copy of the latest version
of the object. The dynamic load balancing algorithm attempts to execute each task on the
owner of its locality object. This processor is called the task’s preferred processor. If the
task executes on this processor, it can access the local version of the locality object and will
not have to fetch the object from a remote processor.

Like the locality heuristics in the shared-memory implementation, the locality heuristic
in the message-passing implementation ignores replication. When the implementation is

68 CHAPTER 3. THE JADE IMPLEMENTATION

forced to assign a task to a processor that does not own its locality object, it makes no
attempt to assign the task to a processor that has a copy of the locality object.

The main processor (the processor running the main thread of the computation) attempts
to keep each processor supplied with a target number of executable tasks. When a task on
the main processor enters the enabled state, it first checks if any processor wants a task (i.e.
has fewer tasks than the target number). If not, the implementation puts the task into the
pool of unassigned tasks at the main processor. The implementation will eventually send
the task to a processor for execution when the load drops. If any processor has fewer than
the target number of tasks, the implementation will assign the enabled task to one of the
least-loaded processors (i.e. the processors with the fewest tasks) and send the task to the
processor for execution. If the preferred processor is one of the least-loaded processors, the
implementation assigns the task to the preferred processor. Otherwise, the implementation
chooses one of the least-loaded processors arbitrarily. This algorithm eagerly sends newly
enabled tasks to processors for execution until all processors have the target number of
tasks.

When a remote processor finishes a task it got from the main processor, it informs the
main processor. The main processor then checks its pool of unassigned tasks. If the pool
is not empty the implementation will assign one of the tasks in the pool to the remote
processor for execution. If some of the tasks prefer to execute on the remote processor,
the implementation sends one of them to the remote processor for execution. Otherwise, it
gives the processor a task that prefers to execute on another processor.

When the remote processor receives the message containing the enabled task, it sends
out messages requesting the task’s remote objects. The processors that own the objects will
then send back messages containing the requested objects. In the best case the processor
will be executing another task when the new task arrives. The processor can then continue
to execute the old task, hiding the latency of fetching the new task’s remote objects. When
the old task finishes, the remote objects may have arrived and the new task can immediately
execute.

There are several trade-offs between the dynamic load balancing, locality and latency
hiding aspects of this algorithm. There is the standard locality versus load balancing trade-
off. If a task’s locality processor is busy and another processor is idle, it may be faster
to transfer the locality object to the idle processor and execute the task there. On the
other hand, it may be faster to execute the task on its locality processor and waste the idle
processor. The current algorithm always chooses load balance over locality.

There is also a trade-off between latency hiding and dynamic load balancing. Once a
task has been assigned to a processor for execution it will execute on that processor. For
dynamic load balancing purposes, the implementation should delay its assignment of tasks
to processors as much as possible while ensuring that each processor has at least one task
to execute. Giving processors multiple enabled tasks depletes the pool of unassigned tasks,
which limits the implementation’s ability to balance the computational load by assigning

3.4. THE MESSAGE-PASSING IMPLEMENTATION 69

tasks to newly idle processors. The implementation may find itself in the uncomfortable
position of having given away all of its enabled tasks to processors with several enabled
tasks, only to have no enabled tasks for a newly idle processor.

Assigning multiple enabled tasks to each processor directly conflicts with the need to
delay task assignment to enhance the effectiveness of the load balancing algorithm. In
some programs the locality heuristic eliminates this conflict by evenly distributing tasks
to processors. The ultimate solution to this problem, however, would be to implement a
distributed dynamic load balancing algorithm that could redo the task assignment in the
face of an unbalanced load. The implementation could then promote the use of concurrency
to hide latency by aggressively assigning tasks to processors for execution. If the load
became unbalanced the implementation could reassign tasks from loaded processors to idle
processors. The main cost would be the unnecessary communication caused by moving
data to one processor on behalf of a task, only to have the dynamic load balancer reassign
the task to another processor.

The most severe potential drawback of the centralized algorithm is that it does not take
remotely created tasks into account. If a task is created on any processor other than the
main processor, it will execute there regardless of how unbalanced the load may be. The
load balancing algorithm may also assign tasks created on the main processor to a remote
processor even though the remote processor already has an excess of locally created tasks.

3.4.3 The Object Queue Protocol

In the current Jade implementation each object queue resides completely on one processor.
When a processor must perform an operation on a remote queue, the implementation can
either move the queue to the processor and perform the operation locally, or forward the
operation to the processor that owns the queue and perform the operation there. The
implementation currently moves the object queue only when it inserts a new entry into the
queue. The implementation performs the other queue operations remotely. Section 3.4.4
describes the precise algorithm the implementation uses to find a remote queue.

The implementation replicates access declaration information in both the task data
structure and the object queue data structure. The implementation keeps this information
coherent by passing messages between the processors that own the task data structure and
the object queue data structure. Conceptually, the task and object queue send messages to
each other when the information changes. We define the specific protocol below.

When a task eliminates an access declaration, it sends a message to the object queue
informing it of the elimination. The task informs the object queue of no other access
declaration modifications.

When an object queue enables a declaration, it sends a message to the task. The
object queue also sends such a message when the task declares a deferred access and the
object queue enables the corresponding immediate or child access declaration. The object

70 CHAPTER 3. THE JADE IMPLEMENTATION

queue must send these messages because the task does not inform the object queue when it
changes deferred access declarations to immediate or child access declarations. In effect,
the implementation takes advantage of the access declaration semantics to use a relaxed
consistency protocol for the replicated access declaration information.

The object queue protocol must work for networks that reorder object queue messages.
This reordering does not affect messages from tasks to object queues. Once a task has
declared that it will access a given object, its access declaration monotonically decreases
for that object. The effects of messages from tasks to object queues therefore commute.
Because a child task’s access specification can conflict with its parent task’s access specifica-
tion, the parent task can lose an enabled access declaration. This lack of monotonicity forces
the implementation to recognize and compensate for reordered operations or messages from
object queues to tasks.

The potential problem arises with combinations of delayed messages that give a task the
right to perform an access and child task creations that revoke the task’s right to perform
the same access. If the system does not recognize and discard out-of-date messages from
object queues to tasks, it may prematurely execute a task. For example, a task may declare
a deferred write access to an object. A remote object queue may give the task the right
to write the object, so it sends the task a message informing it of the change. The task
may then create a child object which declares that it will write the object. The creation
of this child task revokes the parent task’s right to write the object. The parent task may
next convert its deferred access declaration to an immediate access declaration and suspend
waiting for the child task to finish its write. Sometime later the network may finally deliver
the message granting the task the right to write the object. The implementation must realize
that the message is out of date, and not enable the parent task’s access declaration.

The implementation recognizes out-of-date messages using sequence numbers. Each
object queue contains a counter. The implementation increments this counter every time
it performs an operation on the queue or sends a message from the queue to a task. Each
message from the queue to a task contains the current value of the counter. For each
declaration the task stores the value of the queue counter when the queue last updated that
declaration’s information. When the declaration gets a message from a queue, it compares
the counter in the message to its stored counter value. If the message counter is less
than the declaration counter, the message is out of date and is discarded. In the example
above, the insertion of the child task’s declaration into the object queue would increment
the queue counter. The revocation of the right to write the object caused by the creation of
the child task would store the new counter value into the parent task’s access declaration.
The implementation would recognize the message’s out-of-date counter value and discard
the message.

3.4. THE MESSAGE-PASSING IMPLEMENTATION 71

3.4.4 Locating Remote Entities

The Jade implementation deals with several entities (object queues and tasks) that can move
from processor to processor. When the implementation needs to perform an operation on a
given entity, the entity may reside on a remote processor. In this case the implementation
must locate the remote entity and perform the operation. There are two kinds of operations:
potentially remote operations that the implementation can perform on any processor holding
the entity, and local operations that the implementation must perform on the processor that
issued the operation. When a processor issues an operation on an object that it holds, it
just performs the operation locally. For a potentially remote operation on an entity held
by another processor, the implementation packs the operation into a message and sends
the message to the processor holding the entity. For local operations on an entity held
by another processor, the implementation sends out a request message for the entity. The
processor holding the entity will eventually receive the request and move the entity to the
processor that issued the request. When the entity arrives at the requesting processor it
performs the local operation.

The implementation locates objects using a forwarding pointer scheme. At each proces-
sor the implementation maintains a forwarding pointer for each entity that the processor has
ever held. This forwarding pointer points to the last processor known to have requested the
entity. The implementation locates an entity by following these forwarding pointers until
it finds the processor holding the entity. If a processor with no forwarding pointer needs to
locate an entity, the implementation extracts the number of the processor that created the
entity (this number is encoded in the entity identifier) and forwards the operation or request
to this processor (the entity is initially located on that processor).

We first discuss the request protocol, which is designed to minimize the number of hops
required to locate an object. When a processor receives or issues a request for an object
held by another processor, it checks its forwarding pointer. If the forwarding pointer points
to another processor, it forwards the request to that processor and changes its forwarding
pointer to point to the requesting processor. If the forwarding pointer points to itself, it has
already requested the entity but the entity has yet to arrive. In this case the implementation
appends the request to a local queue of requests for that entity.

When the request arrives at the processor holding the object, several things may happen.
If the processor is performing an operation on the object, the implementation appends the
request to the entity’s request queue. If the processor has no pending operations, it resets
its forwarding pointer to point to the requester and sends the entity to the requester.

When a processor finishes all of the operations that it can perform on an entity (this
includes potentially remote operations and its own local operations), it checks the entity’s
request queue. If it is not empty, it sends the entity and its request queue to the first processor
in the queue and resets its forwarding pointer to point to that processor. If the request queue
is empty the processor continues to hold the object.

72 CHAPTER 3. THE JADE IMPLEMENTATION

When an entity arrives at a processor that requested it, the processor performs all of
its pending potentially remote and local operations. It then appends its request queue to
the entity’s request queue, and either forwards or continues to hold the entity as described
above.

When a processor receives or issues a potentially remote operation on an entity that
it holds, it performs the operation. If it does not hold the entity, it checks its forwarding
pointer. If the forwarding pointer points to another processor, it forwards the operation to
that processor. If the forwarding pointer points to itself, it has already requested the entity
but the entity has yet to arrive. In this case the implementation appends the operation to
a local queue of potentially remote operations. The implementation will perform these
operations when the entity arrives.

The algorithm outlined above is a general-purpose mechanism for locating entities in
a message-passing system. It could be used in other systems any time the system must
locate any piece of migrating state or information in the system. The algorithm above has
the drawback that once a processor has requested an entity, it must maintain a forwarding
pointer for that entity for the rest of the computation. In the worst case each processor may
have one forwarding pointer for each object in the computation and the forwarding pointers
may consume too much memory. It is possible to adjust the algorithm so that processors
may discard forwarding pointers. The system could then discard pointers when memory
becomes tight, or it could devote a fixed amount of space to the forwarding pointer table.

Here is the adjustment. Each entity maintains a counter. Every time the entity moves
from one processor to another, it increments the counter. Each forwarding pointer contains
a copy of the counter value when it forwarded the entity. Whenever a processor wishes to
discard a forwarding pointer, it sends a message to the processor whose number is encoded
in the entity identifier. This message informs the processor that its forwardingpointer should
point to the processor in the discarded forwarding pointer. If the counter value of the home
processor’s forwarding pointer is less than counter value of the forwarding pointer in the
message, the home processor changes its forwarding pointer to the forwarding pointer in the
message and updates its counter. Otherwise, the implementation discards the message. If a
processor receives a request and has no forwarding pointer for the request, it forwards the
message to the home processor. When a processor forwards a request and resets its pointer
to point to the requesting processor, the counter on the pointer stays the same. The only
restriction is that the home processor must always maintain its forwarding pointer. While
this algorithm may lead to transient cycles if the network reorders messages, eventually the
cycles will resolve and all requests will eventually locate the object queue.

3.4.5 Communication and Synchronization

Because the Jade implementation knows ahead of time which remote objects each task
will access, it can fetch the objects concurrently. Fetching objects concurrently is another

3.4. THE MESSAGE-PASSING IMPLEMENTATION 73

example of how the Jade implementation can exploit the data usage information present
in Jade programs to optimize the communication. Many parallel languages provide no
mechanism that programmers can use to express ahead of time which pieces of data a task
will access. The implementations of these languages must therefore serially fetch remote
data as the tasks access that data.

The Jade implementation also separates the satisfaction of synchronization constraints
from the satisfaction of object access requirements. The satisfaction of a task’s synchro-
nization constraints causes the transition from the waiting state or suspended state to the
enabled or activated state. The satisfaction of a task’s object access requirements causes
the transition to the executable state.

Some systems combine the satisfaction of synchronization constraints with satisfaction
of data access requirements. In these systems the message containing the data also gives the
task the right to access the data. This is a potentially more efficient mechanism because it
may generate fewer messages. But using such a system in the current Jade implementation
could easily generate useless and/or premature object movement.

With the current scheduling algorithm, a task typically changes processors when it takes
the transition from the enabled state to the active state. All of the synchronization messages
must go to the processor that owns the task in the enabled state; all of the object messages
must go to the processor that owns the task in the active state. The object messages are
usually much larger than the synchronization messages. If the implementation combined
the data movement and synchronization messages, the large object messages would go to
the processor that owned the task in the enabled state. If the task changed processors on the
transition to the active state, the bandwidth taken up by the large object messages would
be wasted. The current implementation sends object messages only to processors that will
execute tasks declaring an access to the object.

There is a second, more subtle aspect of separating synchronization and object messages.
Because copies of objects occupy memory, the implementation may be able to use memory
more effectively by timing the arrival of objects close to the execution of the task that needs
the objects. A task’s synchronization constraints may be satisfied at temporally distant
points. If the system combines synchronization and data messages, it may be forced to
store objects whose messages satisfy early synchronization constraints. These objects may
be resident for a long time as the task waits for the other synchronization constraints to be
enabled. By separating synchronization and data movement messages, the implementation
does not waste memory on object storage unless it knows that a task will access the object
in the near future.

3.4.6 The Consistency Problem

Any system that replicates mutable data must solve the consistency problem. The consis-
tency problem arises when a processor writes a copy of a replicated object, generating a new

74 CHAPTER 3. THE JADE IMPLEMENTATION

version of the object. The implementation must then ensure that no processor subsequently
reads one of the obsolete copies of the object.1 Systems traditionally solve the consistency
problem using either an invalidate or an update protocol. Systems using invalidate pro-
tocols keep track of all outstanding copies of an object. When a write occurs the system
sends out messages that eliminate all of the obsolete copies. Update protocols work in
a similar way, except that the writing processor generates messages that contain the new
version of the object. These messages then overwrite the obsolete copies. At some point
the writing processor must stall until it knows that all of the invalidates or updates have
been performed. The exact stall point depends on the strength of the consistency protocol.
For a more detailed treatment of consistency protocols see [45].

Update and invalidate protocols impair the performance of the system in several ways.
First, there is the bandwidth cost of the update or invalidate messages. Second, there is the
acknowledgment latency associated with stalling the writing processor until it knows that
all of the invalidates and updates have been performed.

3.4.7 The Jade Consistency Mechanism

The Jade implementation uses an efficient consistency mechanism that eliminates some
of the performance overhead of invalidate and update protocols. It first tags each copy
of an object with a version number. The version number counts the number of times the
program wrote the object before it generated that version of the object. For every task the
implementation keeps track of which version of each object it must access, and the owner
of that version (the processor that generated that version). The first owner of an object is
the processor in whose memory the implementation initially allocated the object.

Before the implementation executes or resumes a task, it checks the objects that the task
will access. If there is no locally available copy of an object, or if the locally available copy
has an obsolete version number, the implementation fetches the correct version from the
owner. If the task will only read the object, the owner sends a copy to the reading processor.
If the task will write the object, the owner moves the object. The writing processor then
becomes the owner of the next version of the object.

The implementation generates no messages if the task will only read the object and the
correct version is available locally. If the task will write the object and the correct version
is available locally, the implementation writes the local copy and sends a message to the
old owner telling it to deallocate its copy. Obviously, this message is not sent if the owner
and executor are the same.

If a system replicates objects, it must be able to deallocate obsolete or unnecessary
copies for good memory utilization. The Jade implementation may deallocate any copy of
an object except the primary copy at the owner. The current implementation has a target

1More precisely, the system must ensure that no processor first observes that the writing processor has
proceeded past the write, then reads the obsolete copy of the object.

3.4. THE MESSAGE-PASSING IMPLEMENTATION 75

amount of memory dedicated to objects, and deallocates object replicas (using a least-
recently-accessed policy) when the amount of memory dedicated to objects rises above the
target.

The implementation computes which version of an object each task should access using
the object queue mechanism. If a task accesses an object its access declaration must go
through the object queue. The object queue can therefore compute the version numbers
and identities of owner processors by keeping track of both how many tasks declared they
would write the object and which processor executed the last writing task. When the object
queue gives a task the right to access an object, it tells the task both which version of the
object it should access and the owner of that version.

There is a delicate implementation detail associated with fetching remote objects. It
is possible for one processor to create an object whose initial owner is another processor.
If a task on a third processor accesses the object, it will send a message to the initial
owner requesting the object. It is possible for the message requesting the object to arrive
at the owner before the message that tells the owner to allocate the object. In this case the
owner knows nothing about the object. The implementation handles this race condition by
maintaining a queue at each processor of requests for unknown objects. When the object
creation message arrives at the owner, the implementation checks this queue and forwards
the object to any processors that need it.

3.4.8 Evaluation of Consistency Mechanism

The first advantage of this consistency mechanism is that it requires no update or invali-
date messages. The implementation is therefore spared the overhead of processing these
messages. The second advantage of this consistency mechanism is that it avoids the la-
tency associated with ensuring that updates or invalidates have been performed at remote
processors. The implementation never has to stall writing processors to ensure that the pro-
gram executes correctly. The third advantage of this mechanism is that the implementation
can move objects to the processors that access them without having to use a complicated
protocol to locate the latest version of each object.

The Jade consistency mechanism can also take advantage of the potential performance
advantages of other consistency protocols. Consider, for example, update protocols. Update
protocols can hide read latency by eagerly replicating data at the processors that will access
it. The Jade implementation can also hide read latency by eagerly sending objects to
processors that will read the objects. But because the Jade implementation uses consistency
mechanism based on version numbers, it has much more flexibility than systems which use
strict update protocols. The Jade implementation can, for example, update only a subset of
the processors which have obsolete copies of the object.

76 CHAPTER 3. THE JADE IMPLEMENTATION

3.4.9 Adaptive Broadcast and Object Piggybacking

The Jade implementation takes advantage of the coherence mechanism’s flexibility to
implement an adaptive broadcast algorithm. The Jade implementation keeps track of which
processors have read the latest version of each object. If all processors ever read the same
version of an object, the implementation eagerly broadcasts all subsequent versions of
the object to all processors. This optimization eliminates read latency and (on machines
with hardware support for broadcast) drives down both the communication overhead at the
owner processor and the total amount of bandwidth consumed to send the object to all of
the processors.

The adaptive broadcast optimization may waste bandwidth and generate useless message
handling overhead if processors do not actually access their copies of broadcasted objects.
It would be possible to ameliorate this effect by eliminating the broadcast if all processors
failed to access a given version of a broadcasted object. Each processor would keep track
of whether it actually accessed its version of each object. If a processor received a new
version of a broadcasted object and it did not access the previous version, it would send a
message to the owner to turn off the broadcast for that object. The implementation would
reinstate the broadcast only when all processors accessed the same version of the object.
It is possible to generalize this approach to develop arbitrarily sophisticated schemes that
attempt to discover and optimize a program’s data transfer pattern.

The implementation can also exploit the data usage information to piggyback objects
onto task messages. When the implementation sends a task to a remote processor for
execution, it also sends (in the same message) any locally available objects that the task will
access that are not replicated on the remote processor. Object piggybacking eliminates both
remote access latency and the number of messages required to perform the computation.

3.4.10 Memory Management

The message-passing implementation has several data structures (object queues, task data
structures and shared objects) that move between processors. The implementation must
allocate memory for these data structures when the data structure arrives at a processor; the
implementation must deallocate this memory for reuse when the data structure leaves the
processor. The implementation uses the same memory management strategy for all data
structures that move between processors.

When a data structure arrives at a processor it is stored in a message buffer. The
implementation allocates memory for the data from the local memory management package,
then copies the data out of the message buffer into the allocated memory. The address of
the memory holding the data structure can therefore be different on different processors.

The implementation or the user program accesses each of these data structures using
globally valid identifiers. The implementation keeps track of the correspondence between
globally valid identifiers and the local addresses of the data structures using a table. There

3.5. COMMON ASPECTS 77

is one such table for each processor and each kind of data structure. Each table maps the
globally valid identifier of each locally resident data structure to the address of the memory
holding that data structure. When the implementation needs to access a locally resident
data structure, it uses the table to find the data structure.

An alternative implementation strategy for homogeneous systems would allocate each
piece of data at the same address in each of the processors. The advantage of this strategy is
that the implementation could use the address of each piece of data as its global identifier,
and could eliminate the global to local translation. This strategy has several drawbacks.
First, the implementation would have to partition the address space among processors and
have each processor allocate memory from a different part of the address space. This would
waste physical memory on systems with no support for sparse address spaces. Even for
systems with such support, this allocation strategy could result in poor memory utilization
caused by internal page fragmentation if the allocated objects were significantly smaller
than the page size. Finally, the implementation would have to come up with a mechanism
for determining if a given data structure was available locally.

For heterogeneous systems the strategy of allocating each data structure at the same
virtual address would require the compilers on all the machines to allocate the same amount
of space for each data type. This is totally impractical, because if one vendor introduced
a new machine that required more space per data type, someone would have to change
the memory layout strategy of the compilers on all of the other machines. This allocation
strategy would also waste memory on machines that represented data more compactly than
other machines.

3.4.11 Summary

Like the shared-memory implementation, the message-passing implementation extracts the
concurrency and schedules the tasks onto processors for execution using a locality heuristic.
The message-passing implementation must also implement the communication required to
execute the program. The implementation exploits its control over the communication to
implement several optimizations. These optimizations include the concurrent fetching of
objects that tasks will access, the overlapping of computation and communication, and the
use of an adaptive broadcast protocol. The implementation also includes a general-purpose
entity location algorithm based on a forwarding pointer scheme.

3.5 Common Aspects

Many of the issues associated with executing Jade programs are the same for both the
shared-memory and the message-passing implementations. The two implementations often
deal with these issues in the same way. In this section we discuss several algorithms that
the two implementations share.

78 CHAPTER 3. THE JADE IMPLEMENTATION

3.5.1 The Front End

Both front ends translate Jade code into C code containing calls to the Jade run-time library.
For each withonly construct, the front ends replace the withonly construct with calls
to Jade library routines, emit code that transfers the parameters from the parent task to
the child task, and generate a separate function containing the task body. For each with
construct the front ends have only to replace the with construct with calls to Jade library
routines. The front ends also insert the dynamic access checks and convert the Jade variable
declaration syntax to legal C declarations. To perform these actions they do a complete
parse of the Jade code, including a complete type analysis.

There are two factors that complicate the construction of the message-passing front
end. First, all communication uses message-passing constructs. The message-passing
front end must therefore generate routines that interface with the message-passing system.
Specifically, it generates routines to pack and unpack objects and task data from message
buffers. The Jade run-time system calls these routines when it transfers data between
machines. Second, Jade programs run in heterogeneous environments. This means that
the implementation must represent all data and programming language constructs that
cross machine boundaries in a machine-independent way. In particular, the front end must
perform program transformations that support the implementation’s use of globally valid
identifiers for pointers to shared objects and shared functions. The routines that the front end
generates must also perform the data format translations required to correctly transfer data
between machines with different data formats. For a detailed, example-driven discussion
of what both front ends do, see Appendix A.

3.5.2 Access Checking

The implementation performs the dynamic access checks using an access declaration table.
To prepare for a task’s execution, the processor inserts each of the task’s access declarations
into a table indexed by the identifiers of the objects that the task declared it would access.
There is one table per processor, and the task’s declarations are inserted into the table
associated with the processor that will execute the task. When the task executes, it performs
the access checks by looking up declarations in the access declaration table and checking
the accesses against the declarations. When programmers use the local pointer mechanism
discussed in section 2.2.4, the implementation amortizes the lookup cost over many accesses
via the local pointer.

3.5.3 Suppressing Excessive Task Creation

An important issue associated with managing dynamic concurrency is the suppression of
excessive task creation [33, 96]. Jade programs may be able to generate an extremely
large number of tasks. Because unexecuted tasks consume memory, excessive task creation

3.5. COMMON ASPECTS 79

stresses the machine’s memory system, degrading performance. In extreme cases the
machine may be unable to successfully execute the program. To successfully execute
programs that can generate huge numbers of tasks, the Jade implementations contain
mechanisms that suppress task creation when the number of outstanding tasks grows too
large.

The shared-memory implementation maintains an approximation to the total number of
outstanding tasks, and suppresses task creation when the total number of outstanding tasks
rises above a maximum threshold. The message-passing implementation uses a similar
mechanism locally on each processor. It counts the number of outstanding tasks stored on
each processor, and suppresses task creation on that processor when the number rises above
a maximum threshold.

When the implementation decides the program is generating too many tasks, it starts
suspending any task that creates a child task. The task does not resume execution until
either the number of outstanding tasks drops below the mimimum threshold (there is a
hysteresis built into the thresholds to prevent excessive suspension and resumption) or all
of the task’s child tasks finish executing.

This mechanism works well for programs with relatively flat task creation hierarchies.
The idea is that there are two kinds of tasks: workers and spawners. Workers perform
most of the useful computation, and usually execute to completion once started. The
primary function of spawners is to create workers. When the program generates too many
tasks, the algorithm attempts to identify and suspend spawners. It can then reduce the
amount of memory dedicated to task data structures by executing workers to completion
and deallocating their task data structures. When the amount of memory dedicated to task
data structures drops below an acceptable amount, the implementation restarts the spawners
to find more concurrency.

For programs with worker-spawner style task creation hierarchies the major drawback of
this algorithm is that it has the potential to waste concurrency. A spawner may need to create
many tasks in a concurrency-poor region before it can reach a concurrency-rich region. If
the suspension threshold is set too low the implementation will suspend the spawner before
it reaches the concurrency-rich region and the computation will unnecessarily suffer from
a lack of concurrency. Given the small size of the task data structure, it is possible to set
the suspension threshold fairly high.

The algorithm described above does not work as well for programs with deep task
creation hierarchies. The problem is that the algorithm will always execute a task if it has
no outstanding child tasks. Consider what happens if the program has a deep task creation
hierarchy. The implementation will repeatedly choose an existing task and execute it until
it creates a new child task. Because the program has a deep task creation hierarchy, almost
every task will create a child task. Because the implementation will give each new task a
new stack, the amount of space allocated to stacks will skyrocket. The amount of space
allocated to task data structures will also go up, but this is not as much of a problem because

80 CHAPTER 3. THE JADE IMPLEMENTATION

task data structures are so much smaller than stacks.
The solution to this problem is to adjust the task execution algorithm when stack space

gets tight. The implementation would run each new child task on the parent task’s stack,
suspending the parent task until the child task finishes. It would be fairly straightforward
to add such an algorithm to the current implementation of Jade.

Potentially excessive task creation is a problem for many parallel programming lan-
guages. The implementations of these languages therefore often attempt to suppress ex-
cessive task creation, using the standard mechanism of finding and suspending tasks that
create child tasks. But the semantics of explicitly parallel languages means that a straight-
forward task suspension algorithm can cause the program to deadlock. In these languages
it is possible for all of the existing tasks to require data produced by some suspended task.
The proposed solution to this problem is to build in a deadlock elimination algorithm that
unsuspends and executes tasks in the presence of deadlock searching for the task that will
generate the piece of data required to get the computation going again. But the deadlock
elimination algorithm may have to unsuspend and execute many tasks before it finds the
task that unlocks the rest of the computation. Because the unsuspended tasks may create an
unbounded number of child tasks before generating the required value, there are programs
for which the algorithm fails to limit the excess task creation.

Jade’s serial semantics, on the other hand, allow the Jade implementation to suspend any
task without risking deadlock as long as that task is not the first (in the sequential execution
order) outstanding task. In particular, it can suspend any task with outstanding child tasks
and not risk deadlock. The Jade implementation can therefore use the straightforward task
suspension algorithms to eliminate excess task creation and can impose a hard limit on the
number of outstanding tasks without introducing the possibility of deadlock.

3.6 Basic Jade Overheads

In this section we present the basic time and space overhead of the Jade constructs.

3.6.1 withonly Time Overhead

To a first approximation, the time to create and execute a task depends on the number of
objects the task declared that it would access and whether a task is executed locally on the
same processor that created it or remotely on a different processor. The implementation
may take longer to execute a task if there is contention for the internal data structures or if
the internal data structures are migrating between processors.

We measured the overhead of task creation using a benchmark program that creates and
executes null tasks. By timing phases of these programs we can measure how long it takes
to execute the different kinds of tasks. In reality the precise overhead in a given application

3.6. BASIC JADE OVERHEADS 81

can depend on complex interactions of different parts of the system. The figures presented
below should therefore be taken as a rough indication of how large the overhead will usually
be in Jade applications.

The benchmark program serially creates and serially executes many null tasks. We
divide the total execution time by the number of tasks to calculate the per-task overhead.
Appendix B contains the benchmark program used to measure the task creation and ex-
ecution overhead. On DASH we measure three cases: 1) the tasks execute on the same
processor as the creator, 2) the tasks execute on a different processor but within the same
cluster as the creator, and 3) the tasks execute on a different cluster from the creator. The
benchmark program generates each case by explicitly placing each tasks on the target
processor. We plot the running times in microseconds for these three different cases in
Figure 3.4. These curves graph the overhead as a function of the number of objects the task
declared that it would access. The differences in the running times are caused by memory
system effects.

� Remote Processor
� Same Cluster
� Same Processor

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|200

|400

|600
|800

|1000

|1200

|1400

|1600

|1800

|2000

|2200

 Number of Declarations

 E
xe

cu
tio

n
T

im
e

(m
ic

ro
se

co
nd

s)

�
�

�
�

�
�

�
�

�
�

� � � � � � � � � �

� � � � � � � � � �

Figure 3.4: Task Overhead on DASH
in Microseconds

� Remote Processor
� Same Processor

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

|2000

|2200

 Number of Declarations

 E
xe

cu
tio

n
T

im
e

(m
ic

ro
se

co
nd

s)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 3.5: Task Overhead on the iPSC/860
in Microseconds

For the iPSC/860 we measure two cases: 1) the tasks execute on the same processor
as the creator and 2) the tasks execute on a remote processor. Figure 3.5 plots the running
times in microseconds for these two cases. The remote overhead is substantially larger than
the local overhead. We attribute this difference to the message composition and transfer
overhead on the iPSC/860.

To facilitate a comparison of the relative efficiency of the DASH and iPSC/860 im-
plementations, we also present the overhead in processor cycles. Figure 3.6 presents the
overhead for DASH in processor cycles. This figure plots the execution times in Figure

82 CHAPTER 3. THE JADE IMPLEMENTATION

� Remote Processor
� Same Cluster
� Same Processor

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|10000

|20000

|30000

|40000

|50000

|60000

|70000

|80000

 Number of Declarations

 E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

�
�

�
�

�
�

�
�

� �

� � � � � � � � � �

� � � � � � � � � �

Figure 3.6: Task Overhead on DASH
in Processor Cycles

� Remote Processor
� Same Processor

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|10000

|20000
|30000

|40000

|50000

|60000

|70000

|80000

 Number of Declarations

 E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 3.7: Task Overhead on the iPSC/860
in Processor Cycles

3.4 multiplied by 33 MHz, the cycle time of the DASH processors. Figure 3.7 presents
the overhead for the iPSC/860 in processor cycles. This figure plots the execution times in
Figure 3.5 multiplied by 40 MHz, the cycle time of the iPSC/860 processors.

3.6. BASIC JADE OVERHEADS 83

3.6.2 Speedup Benchmarks

The task overhead limits the grain size that Jade implementation can support. We created a
benchmark program to measure how the speedup varies with the task size. The program has
a sequence of phases; each phase serially creates and in parallel executes tasks of a given
size. The sequence of phases varies the task size. The program devotes one processor to
creating tasks and the other processors to executing tasks. Figure 3.8 presents the results
of the program running with 32 processors on DASH; Figure 3.9 presents the results of
the program running with 32 processors on the iPSC/860. Each figure plots the measured
speedup as a function of the task size in microseconds. For calibration purposes we also
present the speedups with the task size measured in processor cycles. The DASH speedup
numbers are in Figure 3.10. This figure presents the same data as Figure 3.8 except that
the task sizes have been multiplied by the 33 MHz cycle time of the DASH processors.
Figure 3.11 presents the speedup numbers for the iPSC/860 with the task size measured in
processor cycles. This figure presents the same data as Figure 3.9 except that the task sizes
have been multiplied by the 40 MHz cycle time of the iPSC/860 processors.

In the benchmark program each task declares that it will access three objects. Each
phase serially creates 31 � 256 tasks that execute in parallel. The measured speedup is
the task size times 31 � 256 divided by the measured execution time to create and execute
the tasks. Appendix B contains the benchmark program used to measure the speedups for
various task sizes, and presents an analytic model that explains the shape of the speedup
curves.

3.6.3 with Time Overhead

There is also time overhead associated with executing a with construct; to a first approx-
imation the overhead is a function of the number of access specification statements that
the with construct’s access specification section executes. Figures 3.12 and 3.13
present the overhead in microseconds on DASH and the iPSC/860, respectively. Figures
3.14 and 3.15 present the corresponding graphs with the overhead measured in processor
cycles. Appendix B contains the benchmark program used to measure this overhead.

3.6.4 Space Overheads

Both tasks and objects incur space overhead. In the shared-memory implementation, each
task incurs an overhead of 552 bytes. Each object incurs an overhead of 84 bytes. Each
access declaration incurs an overhead of 28 bytes associated with the task data structure.
The task data structure contains space for 10 initial access declarations, so declarations do
not start taking up additional space until a task declares that it will access more than 10
objects.

84 CHAPTER 3. THE JADE IMPLEMENTATION

|

0
|

5
|

10
|

15
|

20
|

25
|

30
|

35
|

40
|

45
|

50

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Task Size (milliseconds)

 S
pe

ed
up

Figure 3.8: Speedup on DASH for 32 Processors (Task Size in Milliseconds)

|

0
|

5
|

10
|

15
|

20
|

25
|

30
|

35
|

40
|

45
|

50

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Task Size (milliseconds)

 S
pe

ed
up

Figure 3.9: Speedup on the iPSC/860 for 32 Processors (Task Size in Milliseconds)

3.6. BASIC JADE OVERHEADS 85

|

0
|

500
|

1000
|

1500
|

2000

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Task Size (cycles)

 S
pe

ed
up

Figure 3.10: Speedup on DASH for 32 Processors (Task Size in Processor Cycles)

|

0
|

500
|

1000
|

1500
|

2000

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Task Size (cycles)

 S
pe

ed
up

Figure 3.11: Speedup on the iPSC/860 for 32 Processors (Task Size in Processor Cycles)

86 CHAPTER 3. THE JADE IMPLEMENTATION

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10
|

11

|0

|25

|50

|75

|100

|125

|150

|175

|200

|225

|250

 Number of Declarations

 E
xe

cu
tio

n
T

im
e

(m
ic

ro
se

co
nd

s)

�

�

�

�

�

�

�

�

�

�

Figure 3.12: withOverhead on DASH
in Microseconds

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10
|

11

|0

|25

|50

|75

|100
|125

|150

|175

|200

|225

|250

 Number of Declarations

 E
xe

cu
tio

n
T

im
e

(m
ic

ro
se

co
nd

s)

�

�

�

�

�

�

�

�

�

�

Figure 3.13: with Overhead on the iPSC/860
in Microseconds

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10
|

11

|0

|2000

|4000

|6000

|8000

|10000

 Number of Declarations

 E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

�

�

�

�

�

�

�

�

�

�

Figure 3.14: withOverhead on DASH
in Processor Cycles

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10
|

11

|0

|2000

|4000

|6000

|8000

|10000

 Number of Declarations

 E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

�

�

�

�

�

�

�

�

�

�

Figure 3.15: with Overhead on the iPSC/860
in Processor Cycles

3.7. SUMMARY 87

In the message-passing implementation each task incurs an overhead of 800 bytes. Each
object incurs a total overhead of 400 bytes, with the object queue taking up 344 bytes and
an object header taking up 56 bytes. There is one object header for each replica of the
object. Each access declaration takes up 48 bytes associated with the task data structure
and 28 bytes associated with the object queue data structure. Each task and object queue
contains space for 10 initial declarations, so declarations do not start taking up space until
a task declares that it will access more than 10 objects or until more than 10 tasks at a given
point in time declare that they will access one object.

The task space overheads usually have very little impact on Jade computations. Because
the implementation can suppress excess task creation (see Section 3.5.3), it can control the
amount of memory devoted to task data structures. The object space overheads, on the other
hand, can cause poor memory utilization for applications that create many small objects.
In the worst case this poor memory utilization may artificially limit the problem size.

3.7 Summary

The Jade implementation bears the responsibility for bridging the gap between Jade’s
ostensibly sequential model of computation and the desired parallel execution. The imple-
mentation extracts the concurrency and maps the computation onto the parallel machine,
using a heuristic designed to increase the locality of the computation. The message-passing
implementation also exploits its control over the communication to apply several commu-
nication optimizations.

The Jade implementation encapsulates a set of algorithms that automatically manage
much of the process of exploiting concurrency. Encapsulating these algorithms allows Jade
to deliver a high-level interface that simplifies the process of developing parallel software.
Because the implementation also encapsulates the machine-specific code required to execute
a program on the parallel machine at hand, Jade programs port without modification to a
wide variety of computational environments.

Chapter 4

Applications Experience

As part of our evaluation of Jade, we obtained several complete scientific and engineering
applications and parallelized them using Jade. We then executed these applications on
several computational platforms. This experience gave us insight into the Jade programming
process and provided an indication of what may happen when programmers use languages
like Jade to parallelize complete applications.

We use our applications experience to evaluate Jade with respect to two properties:
how well Jade supports the process of writing parallel programs and how well the resulting
programs perform. Given the imprecise and often ambiguous nature of human-computer
interaction, it is difficult to adequately evaluate the Jade programming process. While
we present some numbers that measure application properties such as the number of Jade
constructs in each application, our evaluation tends to be largely qualitative and usually
focuses on phenomena visible in the final Jade version of each application.

Our performance evaluation, on the other hand, is based on hard performance data
collected on parallel machines. While we often attempt to give the reader an understanding
of the qualitative issues underlying the performance, our discussion of these issues is usually
backed by numbers collected during the execution of the application.

As part of our evaluation we also consider the impact of the different Jade optimizations.
We typically evaluate these optimizations by running the same application both with and
without the optimization. The collected performance data often enable us to precisely
characterize how each optimization affects the behavior of the parallel execution.

When possible we also present performance numbers for existing explicitly parallel
versions of the applications. Because these versions typically control the computation at a
low level for efficiency, they yield insight into the level of performance obtainable on the
platform under consideration.

The rest of the chapter is structured as follows. We first describe how we acquired and
developed each of the Jade applications. We then present the experimental methodology
and collected performance data. The majority of the chapter is devoted to a deeper analysis

88

4.1. THE APPLICATION SET 89

of the programming and performance implications of using Jade for each application.

4.1 The Application Set

Choosing a set of benchmark applications to evaluate a language design and implementation
is a tricky business. On the one hand it is important to choose applications that are within the
target application domain. The benchmark set is therefore inevitably filtered as applications
viewed as outside the application domain are rejected. But filtering the applications too
stringently, on the other hand, can yield a sterile evaluation. How well the language deals
with unforeseen application characteristics will be an important factor in its overall success,
and a balanced benchmark set should include some programs that stretch the capabilities
of the language and its implementation.

Several factors influenced our choice of applications. One major factor was availability.
Existing benchmark sets were one source of applications, and three of our applications
originally came from the SPLASH benchmark suite [128]. We also acquired three ap-
plications directly from the research groups that initially developed them. Another factor
was the engineering effort involved in manipulating the application. The engineering effort
required to deal with large programs restricted us to fairly small applications, but we did
invest a substantial amount of time and effort to be sure that we at least developed complete
applications. A final factor was our assessment of how well the application fit the target
Jade application domain. When possible we performed an initial assessment by analyzing
the characteristics of an existing parallel version before deciding to develop a Jade version.
For two of our applications, however, the Jade parallelization was the first (and so far the
only) parallelization to exist.

We next describe each of our applications. For each application we briefly summarize
the computation that it performs, then describe how we acquired and parallelized the
application.

� Water A program that evaluates forces and potentials in a system of water molecules
in the liquid state. Water is derived from the Perfect Club benchmark MDG [21] and
performs the same computation. The SPLASH benchmark suite [128] also contains a
version of Water. I developed the Jade version of Water starting with serial C version
that had been translated from the original Fortran.

� String A program that computes a velocity model of the geology between two oil
wells. I originally obtained a serial version of String [58] written in a combination of
C and Fortran from Jerry Harris (a professor in the Stanford Geophysics Department),
Mark van Schaack (a graduate student in the Stanford Geophysics Department) and
Caroline Lambert (a programmer in the Stanford Geophysics Department) and, with
the help of Brian Schmidt (a graduate student in the Stanford Computer Science

90 CHAPTER 4. APPLICATIONS EXPERIENCE

Department), translated the Fortran parts of the application to C. I then developed the
Jade version starting from that serial C version. The Jade version is the only parallel
version of this application that exists.

� Search A program that simulates the interaction of electron beams with solids [25,
26]. Jun Ye (a graduate student in the Stanford Electrical Engineering Department)
developed an initial serial version of Search in C. I developed the initial Jade version,
then handed the program off to Ray Browning (a researcher in the Stanford Electrical
Engineering Department), who substantially modified the program to generate the
final version of Search. The Jade version is the only parallel version of this application
that exists.

� Volume Rendering A program that renders a three-dimensional volume data set for
graphical display. Jason Nieh (a graduate student in the Stanford Computer Science
Department) developed the Jade version of this application starting from an existing
parallel version that he had developed in C using the ANL macro package. He used
compile-time flags to disable the ANL constructs, then inserted the Jade constructs
required to parallelize the application. The SPLASH application suite contains the
ANL version of the Volume Rendering application.

� Panel Cholesky A program that factors a sparse positive-definite matrix. For Panel
Cholesky I obtained a parallel version written in C by Ed Rothberg (a graduate student
in the Stanford Computer Science Department) using the ANL macro package. I
reconstructed a serial version by removing the ANL constructs and developed the
Jade version starting from this serial C version.

� Ocean A program that simulates the role of eddy and boundary currents in influencing
large-scale ocean movements. Jennifer Anderson (a graduate student in the Stanford
Computer Science Department) parallelized the Ocean application. She started with
the parallel Fortran program from the SPLASH benchmark suite written using the
ANL macro package and reconstructed a serial version by removing ANL constructs.
She then translated the serial Fortran into C and parallelized the serial C version using
Jade.

In any application-driven study the application set has a critical impact on the exper-
imental results and on the assessment of the language and its implementation. We next
describe several applications that did not make it into the application set. This description
provides additional insight into the application selection process and helps to define the
scope of the presented experimental results.

There are two Jade applications on which we did not run complete performance tests.
The first application was a parallel version of the Unix make utility. Dan Scales (a graduate
student in the Stanford Computer Science Department) developed the Jade version starting

4.2. APPLICATION CHARACTERISTICS 91

from a serial version written in C. For parallel compilation the limiting factor on the
performance is the disk bandwidth. Dan Scales also developed a Jade version of the
Barnes-Hut application from the SPLASH benchmark suite as a preliminary step towards
developing a version in SAM [124]. This program did not scale well in the current Jade
implementation because of because of a synchronization bottleneck associated with the
object queue for a key shared object. All of the tasks read this object, and the current
implementation serializes all of the resulting object queue operations. As described in
Section 3.2.2, this artificial serialization generated a bottleneck.

During the course of the project we considered and rejected several other applications.
For a variety of reasons the rest of the applications in the SPLASH benchmark suite fall well
outside the intended Jade application domain. The parallel tasks in LocusRoute and MP3D
asynchronously read and write potentially overlapping sections of a central data structure.
PTHOR exploits concurrency at a granularity much finer than the targeted Jade granularity.

We also decided not to implement several potential applications from the Stanford
scientific and engineering community. The most notable was an application from the
Stanford Operations Research Department for solving stochastic linear programs. We
rejected this application because of the engineering effort involved – we would have had to
translate more than 100,000 lines of code from Fortran into C. The other application was
from the Stanford Mechanical Engineering Department. This application simulated chaotic
fluid-flow problems. We rejected this application because we believed its communication
to computation ratio was too high for the current generation of multiprocessors.

4.2 Application Characteristics

We next present some basic application characteristics and use these characteristics to
discuss several aspects of the Jade programming process. Table 4.1 presents some of their
static characteristics. A comparison of the number of lines of code in the serial version
(when available) with the number of lines of code in the parallel version indicates that using
Jade usually involves a modest increase in the number of lines of code in the application.
The number of Jade constructs required to parallelize the application (and especially the
number of withonly constructs) is usually quite small.

As these numbers suggest, using Jade did not usually impose an onerous programming
burden. For all of our applications the key to a successful parallelization was determining
an appropriate structure for the shared objects. Such a structure was always fairly obvious
given a high-level understanding of the basic source of exploited concurrency. Once the
structure was in place inserting the Jade constructs required to specify the task granularity
and data usage information was a straightforward process with no complications.

For all of the applications implementing the correct object structure for the Jade version

92 CHAPTER 4. APPLICATIONS EXPERIENCE

Object
Application Lines of Code Lines of Code withonly with Creation

Serial Version Jade Version Sites Sites Sites
Water 1219 1471 2 20 7
String 2587 2941 3 37 19
Search - 716 1 9 3

Volume Rendering - 5419 2 8 15
Panel Cholesky 2047 2484 2 15 18

Ocean 1274 3262 27 28 20

Table 4.1: Static Application Characteristics

involved some modification of the original data structures. Except for Ocean, these mod-
ifications were performed without disturbing the vast majority of the code and generated
minimal programming overhead. For Ocean the programmer had to decompose many of the
arrays in the program. This decomposition forced the programmer to change the indexing
algorithm for the arrays over large parts of the program. These changes imposed substantial
programming overhead and dramatically increased the size of the Jade program relative to
the original serial program.

We found that several aspects of the Jade language design supported the development of
these parallel applications. Programmers came to rely on the fact that the Jade implementa-
tion verified the access specification information. They typically developed a working serial
implementation with the data structured appropriately for the Jade version, then inserted the
Jade constructs. Programmers became quite cavalier about this process, typically making
changes quickly and relying on the implementation to catch any bugs in the parallelization.
This stands in stark contrast to the situation with explicitly parallel languages. The possi-
bility of nondeterministic execution masking errors usually makes programmers paranoid
about changing a working program, and the parallelization proceeds much more slowly.

We next discuss the performance of the resulting parallel computations. We collected
extensive performance measurements for each application on a shared-memory platform
(the Stanford DASH machine) and on a message-passing platform (the Intel iPSC/860).
Appendix C describes the basic hardware parameters of the two machines. Table 4.2
presents some basic performance numbers for the iPSC/860 runs, while Table 4.3 presents
the corresponding results for the DASH runs. For reasons described below in Section 4.5,
Volume Rendering did not run on the iPSC/860.

To a first approximation there are two kinds of applications: coarse-grain applications
with mean task sizes ranging from several seconds to well over a minute and finer-grain
applications with a mean task size measured in milliseconds. The coarse-grain applications
scale almost linearly to 32 processors while the finer-grain applications do not scale as well.

4.3. PERFORMANCE MEASUREMENTS 93

Sequential Execution Speedup on Mean Task Size on
Application Time (seconds) 32 Processors 32 Processors (seconds)

Water 2406.72 26.29 4.75
String 19629.42 28.93 74.30
Search 1284.07 27.90 42.61

Panel Cholesky 28.53 0.74 .0020
Ocean 60.99 1.16 .0033

Table 4.2: Dynamic Application Characteristics for the iPSC/860

Sequential Execution Speedup on Mean Task Size on
Application Time (seconds) 32 Processors 32 Processors (seconds)

Water 3285.90 27.50 6.53
String 19314.80 27.36 81.63
Search 1652.91 31.16 51.52

Volume Rendering 32.44 17.16 0.63
Panel Cholesky 28.91 5.02 0.0024

Ocean 100.03 9.34 0.0047

Table 4.3: Dynamic Application Characteristics for DASH

The scaling problem is especially severe on the iPSC/860. On the iPSC/860 the relatively
large message-passing overhead makes it impossible to implement the basic Jade primitives
as efficiently as on DASH, which supports much finer-grain communication.

4.3 Performance Measurements

We next describe how we collected the performance measurements. Both implementations
are heavily instrumented. The instrumentation can be turned on and off under the control
of several compile-time flags. It is possible to automatically collect the following kinds of
data.

� Timers For each processor the implementation records the amount of time spent in
different segments of the program. There are timers for the total time, the time spent
executing application code, the time spent in the Jade implementation and the idle
time. The implementation measures the time by reading a clock when the program
enters and exits the different segments, adding the difference to a running sum upon
exit.

94 CHAPTER 4. APPLICATIONS EXPERIENCE

On DASH the implementation uses the 32 bit 60 nanosecond counter on the DASH
performance monitor chip [82] to implement a high-resolution 64 bit clock. The 60
nanosecond counter is the lower half of this clock; the software increments the 32 bit
upper half every time the counter wraps. The timers may slightly overestimate the
amount of time spent in the different segments because they include time spent in the
operating system.

There is a discrepancy on DASH between times measured using the 60 nanosecond
counter and times measured using the standard Unix gettimeofday system call. Using a
test program and comparing the measured running times of several Jade applications
using the two different clocks we determined that multiplying the 60 nanosecond
counter times by a correction factor of 1.0417 brings the times back into agreement.
All times reported in this thesis that were derived from 60 nanosecond counter
measurements have been multiplied by this correction factor.

On the iPSC/860 the implementation uses the mclock routine in the iPSC/860
programming interface as the clock. The timers may overestimate the amount of
time spent in each section because they fail to take into account the time spent
in the operating system handling messages. This message handling takes place
asynchronously with respect to the Jade program, and parts of this time may be
incorrectly attributed to the parts of the execution described above.

� Event Counts For each processor the implementation counts a variety of events that
dynamically occur. These include task creation, execution and suspension events,
access declaration events, object creation events and object replication or movement
events.

� Message Data In message-passing environments the implementation keeps a running
sum, for each processor, of the number and size of each message that the processor
sent and received. The implementation keeps separate counts for each message type.
The primary use of this segregation is to separate messages carrying shared objects
from control messages.

� Event Logs For each processor the implementation generates a log that records the
time when specific events occurred during the application’s execution. Each log is
stored in memory and written out at the end of the measured phase.

Both the shared-memory and message-passing implementations record events that
deal with the execution of tasks. The implementation records an event when a task
starts to execute, creates a child task, executes a with construct, suspends, resumes
and/or terminates. Each suspension event records the cause of the suspension. It is
therefore possible, for example, to distinguish the suspension events recorded when
a task suspends at a with construct and when a task suspends at the end of a block
construct.

4.3. PERFORMANCE MEASUREMENTS 95

The message-passing implementation also records events that deal with the commu-
nication of shared objects between processors. The sending processor records an
event when a task invokes a message-passing primitive to send or broadcast an object
to another processor. It also records an event when the primitive returns. Each such
event records why the object was transferred. It is therefore possible, for example,
to distinguish messages sent in response to object request messages and messages
containing piggybacked objects (see Section 3.4.9 for a description of how the Jade
implementation piggybacks objects onto task messages). The receiving processor
records an event when it requests an object and when it receives an object.

We use the event logs to analyze the behavior of several applications. We extract
and process the data in a way that is appropriate for each application, introducing the
presentation formats as they are used.

4.3.1 Instrumentation Levels

We run each application at several instrumentation levels. The lower instrumentation levels
perturb the computation less than the higher instrumentation levels, but also provide less
information about the execution. We collect data at the following instrumentation levels.

� Minimum Instrumentation (mi) Measure total time and idle time only.

� Full Instrumentation (fi) Collect all data except event logs.

� Full Log Instrumentation (fl) Collect all data.

4.3.2 Optimization Levels

We next consider communication optimizations. The message-passing implementation al-
ways applies the optimization that replicates data for concurrent read access. Except for
the adaptive broadcast optimization, it also always applies the other communication opti-
mizations discussed in Chapter 3, although turning them off would affect the performance
of none of the applications. We evaluate the impact of the locality and adaptive broadcast
optimizations by running versions of the applications with these optimizations turned on
and off. The shared-memory and message-passing versions provide the following three
different locality optimization levels.

� Explicit Task Placement (at) In Ocean and Panel Cholesky the programmer can
improve the locality of the computation by explicitly controlling the placement of
tasks on processors. We describe the specific placement strategy when we describe
each application.

96 CHAPTER 4. APPLICATIONS EXPERIENCE

� Locality Heuristic (lo) The shared-memory implementation uses the locality heuris-
tic described in Section 3.3.4; the message-passing implementation uses the locality
heuristic described in Section 3.4.2.

� No Locality (nl) The implementation distributes enabled tasks to idle processors in a
first-come, first-served manner. There is no attempt to generate an assignment of tasks
to processors that has good locality properties. The shared-memory implementation
uses a single shared task queue to perform the distribution of tasks to processors.
In the message-passing implementation the main processor (the processor that starts
the execution of the program) maintains a queue of idle processors and distributes
enabled tasks to processors in the order in which they appear in the queue.

The standard locality optimization level is to use the locality heuristic; we run the other
levels for comparison purposes.

The message-passing implementation provides two levels of adaptive broadcast opti-
mizations.

� Adaptive Broadcast (ab) The implementation uses the adaptive broadcast algorithm
described in Section 3.4.9.

� No Adaptive Broadcast (nb) The implementation does not use the adaptive broadcast
algorithm.

The standard locality optimization level is to use the adaptive broadcast optimization; we
run applications without it for comparison purposes.

4.3.3 Version Names

We name each version of an application by its instrumentation and optimization levels.
Shared memory version names consist of two components separated by periods. The first
component identifies the instrumentation level; the second identifies the locality optimiza-
tion level. For example, the version name mi.lo specifies minimum instrumentation and the
use of the locality heuristic. Message passing version names consist of three components
separated by periods. The first component identifies the instrumentation level, the second
identifies the locality optimization level and the third identifies the adaptive broadcast opti-
mization level. For example, the version name mi.lo.ab specifies minimum instrumentation,
the use of the locality heuristic and the adaptive broadcast optimization.

4.3.4 Collected Data

We collect data for several versions of each Jade application running on 1, 2, 4, 8, 12, 16,
20, 24, 28 and 32 processors. In all timing runs the machine was idle except for the Jade

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 97

application. We also run the Jade version with all of the Jade constructs stripped out. The
resulting serial program contains the data structure modifications required to parallelize the
program, but contains no overhead from the Jade implementation. We call this version the
stripped version. We also run the original serial version if it is available. On DASH we
measure the running time for the original serial version using the Unix gettimeofday system
call. For all other versions on DASH we use the synthesized 64 bit 60 nanosecond counter
described in Section 4.3. On the iPSC/860 we use the mclock routine for all versions.

For all applications we provide a table containing the running times for different versions
of the applications. We then present data that explains the performance of application under
the different instrumentation and optimization levels. The goal is to give the reader a clear,
often qualitative understanding of the dynamic behavior of the computation and to isolate
any properties of the Jade implementation that affect the performance. There is no standard
format for this presentation – for each application we select the data and presentation format
that we believe best explains the observed behavior.

The performance measurements characterize the behavior of Jade applications under
the current implementation. In some cases an enhanced implementation would eliminate
certain performance problems. When this is the case we describe the enhancement and the
expected effect on the performance.

4.4 The Water, String and Search Applications

We combine the discussion of the Water, String and Search applications because their
computations share the same basic concurrency structure. We first discuss each specific
application, then describe the general form of concurrency that they all exhibit. We then
discuss how to exploit this kind of concurrency in Jade.

4.4.1 Water

The Water computation consists of a sequence of iterations. Each iteration consists of
severalO(n) phases (wheren is the number of molecules) and twoO(n2) phases. OneO(n2)
phase computes the intermolecular forces acting on each molecule; the other computes the
potential energy of the system of water molecules.

In the force-calculation phase the application computes the total force acting on each
molecule as the sum of the individual forces between that molecule and all other molecules
in the system. The result is stored in a force array indexed by molecule number. This
phase also computes the total energy, storing the result in a single scalar variable. The
potential-energy phase is similar, except that it sums the total potential energy into a single
scalar potential-energy variable. Both phases depend on the positions and momentum of
the molecules, which are computed in the O(n) phases.

98 CHAPTER 4. APPLICATIONS EXPERIENCE

It is easy to see that all of the interactions can be computed concurrently. The only
issue is the accumulation of the results into the final data structure. Because the basic
accumulation operation is addition, the accumulations commute, associate and have an
identity.

4.4.2 String

String [58] uses seismic travel-time inversion to construct a two-dimensional discrete ve-
locity model of the geological medium between two oil wells. Each element of the velocity
model records how fast sound waves travel through the corresponding part of the medium.
The seismic data are collected by firing non-destructive seismic sources in one well and
recording the seismic waves digitally as they arrive at the other well. The travel times of
the waves can be measured from the resulting seismic traces. The application uses the
travel-time data to iteratively compute the velocity model.

The computationally intensive phase of the application traces rays from one well to the
other. The velocity model determines both the path and the simulated travel time of each
ray. The computation records the difference between the simulated and measured travel
times and backprojects the difference linearly along the path of the ray. At the end of the
phase the computation uses the backprojected differences to construct an improved velocity
model. The process continues for a specified number of iterations.

It is easy to see that all of the rays can be traced in parallel. The issue is the accumulation
of the backprojected differences. The serial computation stores the velocity model and the
backprojected differences in two-dimensional arrays. Each element of the difference array
stores the running sum of the backprojected differences for the corresponding element of
the velocity model. As in the Water application, the accumulations commute, associate and
have an identity.

4.4.3 Search

Search [25, 26] is a program from the Stanford Electrical Engineering department. It
simulates the interaction of several electron beams at different energy levels with a variety
of solids. It uses a Monte-Carlo technique to simulate the elastic scattering of each electron
from the electron beam into the solid. The result of this simulation is used to measure how
closely an empirical equation for electron scattering matches a full quantum-mechanical
expansion of the wave equation stored in tables.

For each pair of solids and electron-beam energies the computation counts the number of
electrons that emerge back out of the solid and (implicitly) the number that remain trapped
inside. It is easy to see that the electron paths can be simulated concurrently. The only
issue is managing the array that stores the counts of emerged electrons. Each element of
this array stores the total count for one pair of solids and electron-beam energies. Because

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 99

the result of each electron computation is a potential increment to an element of the array,
the accumulations commute, associate and have an identity.

4.4.4 The Concurrency Stucture

Water and String alternate serial and parallel phases. Each phase reads data produced in the
previous phase and generates data read in the next phase. Search consists of an initialization
phase, a parallel phase and a termination phase that collects and prints out the results.

The parallel phases consist of many small pieces of computation. For convenience we
call each piece of computation a tasklet. In Water each tasklet computes the interaction
of two molecules, in String each tasklet traces one ray through the velocity model and in
Search each tasklet simulates the path of one electron. Each tasklet generates a contribution;
the contributions are combined to produce the final result of the parallel phase. In Water
the final result is either the total force acting on each molecule and the total-energy or
the potential-energy contribution of the interactions, in String the final result is the mean
velocity difference at each element of the velocity model and in Search the final result is
the number of emerged electrons for each pair of solids and electron-beam energies.

The first issue we consider is the management of the data structure used to store
the contributions. The most straightforward management strategy is to accumulate the
contributions into the final result data structure as they are generated. Each accumulation
would then execute with exclusive access to the result data structure. The problem is that
using a single result data structure could cause a sequential bottleneck.

For these applications an effective way to eliminate this bottleneck is to create multiple
copies of the result data structure and distribute the accumulations across the copies. Each
copy is initialized to the identity for the accumulation operation. At the end of the parallel
phase the computation combines all of the copies to generate the final result. There is a
trade-off between the amount of exposed concurrency and the amount of space required for
copies of the result data structure. Each of the applications takes a granularity parameter
that determines the number of copies. This granularity parameter is typically set to the
number of processors executing the parallel application.

The next issue is the aggregation of tasklets into Jade tasks. One strategy exposes
all of the concurrency by generating one task per tasklet. This strategy maximizes both
the amount of task management overhead and the effectiveness of the implementation’s
dynamic load balancing algorithm. Another strategy generates one task per copy of the
result data structure, assigning tasklets to tasks in a round robin fashion. This strategy
generates the least task management overhead but leaves the execution vulnerable to poor
load balance. Intermediate strategies assign different numbers of tasklets to tasks.

Water, String and Search all use the one task per copy of the result data structure strategy.
For these applications the round robin mapping of tasklets to tasks generates an acceptable
load balance.

100 CHAPTER 4. APPLICATIONS EXPERIENCE

4.4.5 Parallel Reductions

All three applications combine intermediate copies of the result data structure to generate
the final result. One way to perform this computation is to use a parallel reduction. This
section shows how to code a parallel reduction in Jade. We introduce parallel reductions by
showing how to compute the sum of a set of doubles. In the eventual Jade version each
doublewill be a shared object, so we represent the set as an array of pointers to doubles.
The parallel reduction is computed in place, so the shared objects hold intermediate values
during the computation. The final value is stored into the shared object that the first array
element points to. Figure 4.1 shows the operations performed in a parallel reduction of a
set of four doubles. Each operation adds two elements then stores the result back into the
first element. Each array element participates in a sequence of such operations.

*a[3]

*a[2]

*a[1]

*a[0]

*a[2] += *a[3]

*a[0] += *a[1]

*a[0] += *a[2]

Figure 4.1: Parallel Reduction

To express the reduction in Jade, we first develop a serial procedure to perform the op-
erations in the reduction. Figure 4.2 contains this serial procedure. It takes two parameters:
a, which is the array pointing to the set of elements to reduce, and g, which tells how
many elements there are in the set. The procedure processes the elements, starting with the
element that the last array entry points to and ending with the first. The procedure brings
each element to its final value before proceeding on to the next. The for loop in line 3
handles each element *a[e] in turn. The computation from lines 4 to 8 generates the
offsets o of the elements to add to element *a[e], with line 6 performing the addition.
Every offset is twice as far away as the last offset, so the next offset o (computed in line 7
of Figure 4.2) is always the next power of two.

The condition in the while loop in line 5 exits when the current element *a[e] has
reached its final value. The first clause in the condition ((e + o) < g) exits when the
offset of the next element to add to *a[e] is outside the range of the array. All succeeding
offsets will be outside the range and *a[e] has reached its final value.

The second clause in the condition (!(e & o)) exits when the bit in the binary
representation of e that corresponds to the current value of o is 1. To provide insight into
why the element has reached its final value when the bit is 1, we label the branches of the
reduction tree with either a 0 or a 1 as demonstrated in Figure 4.3. If you read off the

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 101

1: reduce(double shared * shared *a, int g) {
2: int e, o;
3: for (e = g-1; e >= 0; e--) {
4: o = 1;
5: while (((e + o) < g) && !(e & o)) {
6: *a[e] += *a[e+o];
7: o = o*2;
8: }
9: }
10: }

Figure 4.2: Serial Code for Parallel Reduction

labels along any path from the root to a leaf element, you get the binary representation of
the index of the element at the leaf. At every internal node of the tree the reduction adds
the two elements that contain the sums of the left and right subtrees to generate the total
sum of the subtree rooted at that internal node. It must then write the total sum back into
one of the elements for use in the next level of the reduction. The reduction always uses the
element that corresponds to the branch labeled 0. The code can therefore determine when
the current element will not be used in the next level of the reduction (and has therefore
reached its final value) by detecting the first 1 in its binary representation.

*a[3]

*a[2]

*a[1]

*a[0]

*a[2] += *a[3]

*a[0] += *a[1]

*a[0] += *a[2]

0

1

0

1

0

1

Figure 4.3: Labeled Parallel Reduction

To clarify the presentation of later algorithms we define combine(e,g) to be the
sequence of values that e+o takes on in line 5 of Figure 4.2. We will use combine(e,g)
as an abstraction to hide the details of computing which elements to add with each other in
the reduction. Figure 4.4, which performs the same computation as Figure 4.2, illustrates
how we will use this notation.

102 CHAPTER 4. APPLICATIONS EXPERIENCE

1: reduce(double shared * shared *a, int g) {
2: int e, o;
3: for (e = g-1; e >= 0; e--) {
4: for (j in combine(e, g)) {
5: *a[e] += *a[j];
6: }
7: }
8: }

Figure 4.4: Serial Code for Parallel Reduction using combine(e,g)

To parallelize the reduction in Jade, we generate a task for each element. Each task
adds the correct sequence of other elements to its element. It declares an immediate read
and write access on its element and a deferred read access on all the elements it will add to
its element. As the task reads the elements it uses a with construct to change the deferred
declaration to an immediate declaration. Figure 4.5 contains the Jade code for the reduction.

1: reduce(double shared * shared *a, int g) {
2: int e, j;
3: for (e = g-1; e >= 0; e--) {
4: withonly {
5: rd(a);
6: rd_wr(a[e]);
7: for (j in combine(e, g)) df_rd(a[j]);
8: } do (a, e, g) {
9: for (j in combine(e, g)) {
10: with { rd(a[j]; } cont;
11: *a[e] += *a[j];
12: }
13: }
14: }
15: }

Figure 4.5: Jade Code for Parallel Reduction

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 103

4.4.6 Expressing the Concurrency in Jade

We next show how to express the three applications in Jade. We emphasize the similarity
between the three applications by presenting a general concurrency schema that covers the
specific concurrency pattern in each application. This schema uses a general abstraction
(called the accumulator abstraction) that encapsulates the replication of the result data
structures, the accumulation of the tasklets’ contributions and the parallel reduction. While
it would be possible (and even beneficial) to code the applications using this general
abstraction, each application currently uses less general data structures.

The accumulator abstraction exports several operations. These operations include
create accumulator, which creates an accumulator, the init accumulator op-
eration, which is invoked at the beginning of every parallel phase to initialize the ac-
cumulator, the update accumulator operation, which each task invokes to com-
bine a newly generated contribution into the accumulator, and result accumulator,
which each task invokes at the end of its computation to generate the final result. The
declare update accumulator operation encapsulates the access specification state-
ments required to declare how the update accumulator andresult accumulator
operations access data.

Figure 4.6 contains the Jade psuedo code that illustrates how to use the accumulator.
The code first initializes the accumulator, then creates the tasks that perform the actual
computation. The granularity parameter g controls the granularity of the computation by
determining how many tasks are created. As described in Section 4.4.4, the tasklets are
distributed to tasks in a round-robin fashion.

Each task’saccessspecification section first invokes the operation that declares
how the accumulator will access data, then declares how it will access the global shared
objects and shared objects generated in the previous serial phase to compute its contributions.
In Water each task declares that it will access the molecule positions and momentum data
computed in the previous section and an object that holds some global variables. In String
each task declares that it will access the new velocity model and an object that holds some
data initialized at the start of the computation and read thereafter. In Search each task
declares that it will access several objects that hold input parameters.

When the task runs, it computes its set of tasklets, updating the accumulator with each
contribution as it is generated. When the task finishes with its set of tasklets it invokes the
result accumulator operation to perform its part of the parallel reduction.

We next describe the implementation of the accumulator abstraction. Figure 4.7 contains
the data structure definition for the accumulator object. This object points to the copies of
the result data structure and stores the granularity parameter g. The granularity parameter
determines the number of copies of the result data structure. The accumulator data structure
also stores the function pointers that implement the operations of the specific result data
structure. The client of the abstraction provides these operations when the accumulator is

104 CHAPTER 4. APPLICATIONS EXPERIENCE

accumulator shared *a;

init_accumulator(a);
for (i = g - 1; i >= 0; i--) {
withonly {
declare_update_accumulator(a, i);
/*
The programmer inserts here the application-specific
access specification statements required to declare
how the task reads shared objects. The task typically
reads two kinds of shared objects:
1) Global objects written once in an initialization

phase and read by the rest of the program.
2) Objects computed in the preceding serial phase.

*/
} do (i, g) {

for (every g’th tasklet t starting with tasklet i) {
compute contribution c from tasklet t;
update_accumulator(a, c, i);

}
result_accumulator(a, i);

}
}

Figure 4.6: Parallel Schema for Water, String and Search

created. The accumulator requires operations to create a copy of the result data structure,
copy one result data structure into another result data structure, zero a result data structure,
add one result data structure to another and store the result back into the first data structure,
and an operation to update a result data structure with a tasklet’s contribution.

Actually performing the modifications to integrate the replicated data structures into
the application involved relatively little programming overhead. The vast majority of the
modifications took place on the boundaries of the code that performs the computation of each
tasklet. The core parts of the program remained unchanged. The only other modifications
involved the aggregation of global variables into a single global data structure using an
approach similar to that illustrated in Figure 2.16. The globals are typically written once in
an initialization phase of the computation and only read in the rest of the computation. The
aggregation simplifies the access declarations and has minimal programming impact.

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 105

typedef struct {
/*

result_copy points to the copies of the result data
structure. It must be big enough to hold pointers to
all of the copies.

*/
void shared* result_copy[MAX_NUM_PROC];
/*
These point to the functions that implement the basic
operations of the result data structure.

*/
void shared (*copy)();
void shared (*zero)();
void shared (*add)();
void shared (*update)();
/*

The number of actually allocated copies of the result
data structure is g.

*/
int g;

} accumulator;

Figure 4.7: Accumulator Data Structure

4.4.7 Water on the iPSC/860

Table 4.4 contains the execution times for several versions of Water running on the iPSC/860.
As described in Section 4.3.3, the name of each version specifies the instrumentation and
optimization levels. For example, the mi.lo.ab version specifies the minimum level of
instrumentation (mi), the locality heuristic (lo) and the adaptive broadcast optimization
(ab). The serial version is the original serial program; the stripped version is the Jade
version with all Jade constructs (and therefore all dynamic Jade overhead) stripped out by
the Jade front end. This data is collected using the timers described in Section 4.3. Each
number in the table comes from a single run of the program.

For many of the applications we graphically display the performance data in the form
of speedup curves similar to those presented in Figure 4.10. Each speedup curve plots, as
a function of the number of processors executing the computation, the running time of the
stripped computation divided by the running time of the parallel computation. We chose
the stripped version as the baseline because it is usually has the fastest serial execution time

106 CHAPTER 4. APPLICATIONS EXPERIENCE

create_accumulator(g, create, copy, zero, add, update) {
a = create_object(accumulator);
with { rd_wr(a); } cont;
a->g = g;
a->copy = copy;
a->zero = zero;
a->add = add;
a->update = update;
for (i = 0; i < g; i++) {

a->result_copy[i] = (*create)();
}
with { df_wr(a); } cont;
return a;

}

init_accumulator(a) {
zero = a->zero;
for (i = 0; i < a->g; i++) {

copy = a->result_copy[i];
withonly { rd_wr(copy); } do (copy, zero) {
(*zero)(copy);

}
}

}

Figure 4.8: Accumulator Creation and Initialization

of any of the versions and because for some applications an original serial program does not
exist. Ideally, the speedup for the computation running on p processors is p. Any deviation
from this ideal indicates sources of inefficiency in the parallelization.

Figure 4.10 contains the speedup curves for four versions of Water. The rows of this
figure vary the locality optimization level and keep the adaptive broadcast level constant.
The top row contains the speedup curves with the adaptive broadcast optimization turned
on. The columns of this figure keep the locality optimization level constant and vary the
adaptive broadcast optimization level. The leftmost column contains the speedup curves
with the locality optimization turned on.

The data set for these timing runs consists of 1728 molecules distributed randomly in a
rectangular volume. It executes 8 iterations, with two parallel phases per iteration. These

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 107

declare_update_accumulator(a, i) {
rd(a);
rd_wr(a->result_copy[i]);
for (all j in combine(i, g)) {

df_rd(a->result_copy[j]);
}

}

update_accumulator(a, c, i) {
(*(a->update))(a->result_copy[i], c);

}

result_accumulator(a, i) {
for (all j in combine(i, a->g)) {
with { rd(a->result_copy[i]); } cont;
(*(a->add))(a->result_copy[j], a->result_copy[i]);

}
}

Figure 4.9: Accumulator Operations

performance numbers omit an initial I/O and compution phase. In practice the computation
would run for many iterations and the amortized cost of the initial phase would be negligible.

The performance numbers reveal several properties of this application. The adaptive
broadcast optimization has by far the largest impact on the performance. With this opti-
mization the application scales almost linearly to 32 processors. Without it the performance
starts to tail off after 16 processors. The locality heuristic, on the other hand, has a negligible
performance impact. We explore the reasons for these performance effects using data from
the event logs. We next describe how we analyze and present this data.

4.4.7.1 Activity Traces

For Water, as for several other applications, we present the event log information using a
kind of time series graph called an activity trace. Each activity trace displays, as a function
of time, the number of processors that are performing a given activity. For example, Figure
4.11 contains an activity trace that graphically displays the number of processors executing
application code in a 32 processor run of the fl.lo.ab version of Water. This particular activity
trace highlights the structure of the Water computation, clearly displaying the division into
an interleaved sequence of large parallel phases and small serial phases.

108 CHAPTER 4. APPLICATIONS EXPERIENCE

1 2 4 8 16 24 32
serial 2482.91 - - - - - -

stripped 2406.72 - - - - - -
mi.lo.ab 2452.24 1231.70 622.14 318.00 166.43 118.96 91.86
fl.lo.ab 2435.16 1219.71 617.28 315.69 165.64 118.09 91.53
mi.nl.ab 2357.74 1215.61 615.15 314.93 166.01 118.91 92.39
fl.nl.ab 2454.78 1231.91 623.34 318.34 167.77 119.72 93.11

mi.lo.nb 2418.35 1214.55 615.34 319.26 177.74 139.22 121.87
fl.lo.nb 2459.87 1233.98 625.27 323.84 180.15 140.59 122.74

mi.nl.nb 2454.65 1230.76 623.87 323.82 181.74 143.65 126.90
fl.nl.nb 2442.38 1225.26 621.29 322.00 179.54 140.30 122.64

Table 4.4: Execution Times for Water on the iPSC/860 (seconds)

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo.ab
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl.ab

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo.nb
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl.nb

Figure 4.10: Speedups for Water on the iPSC/860

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 109

32

Application

0

Time (seconds)

10

Time (seconds)

20

Time (seconds)

30

Time (seconds)

40

Time (seconds)

50

Time (seconds)

60

Time (seconds)

70

Time (seconds)

80

Time (seconds)

90

Time (seconds)

Figure 4.11: Activity Trace for Water (fl.lo.ab) on the iPSC/860

We next discuss the format of the activity trace graph. The X dimension corresponds
to increasing time, and the numbers on the X axis give the time range and scale for the
trace. The Y dimension corresponds to the number of processors. The Y axis contains a
bar whose height is the range of the graph. The bottom of the bar is located at the level
corresponding to 0 processors. The top of the bar indicates the upper limit of the graph.
The number in the upper left hand corner gives the number of processors to which the upper
limit corresponds. So, in Figure 4.11 the Y dimension ranges from 0 to 32 processors, with
the bar identifying the upper and lower limits. The label on the right hand side identifies
the specific activity that the graph displays. The label for the graph in Figure 4.11 is
Application, which indicates that the graph displays the number of processors executing
application code. For the iPSC/860 runs we generate traces for the following activities.

� Sending A processor is counted as sending data at a given point in time if the number
of start send events in the log up to that point is larger than the number of stop send
events.

� Broadcasting A processor is counted as broadcasting data at a given point in time
if the number of start broadcast events in the log up to that point is larger than the
number of stop broadcast events. In our application set only the main processor ever
broadcasts an object.

� Creating A processor is counted as creating child tasks at a given point in time if it
meets one of two conditions. The first condition is that the point in time is between
two child task creation events in the log and there are no events between the two

110 CHAPTER 4. APPLICATIONS EXPERIENCE

child task creation events.1 The second condition is that the point in time is between
a child task creation event and a task execution event, a task termination event, a
task resumption event, a task suspension event, a stop broadcasting data event or a
stop sending-piggybacked-object event, there are no events between the two events in
question and the two events in question are within 0.001 seconds of each other. These
conditions convert a sequence of child task creation events into child task creation
intervals. In our application the only tasks that create child objects always execute
on the main processor.

� Application For a processor to be counted as executing application code at a given
point in time the number of task execution and resumption events in the event log up to
that point in time must exceed the number of task termination and suspension events
and the processor must not meet any of the conditions for the Sending, Broadcasting
and Creating activities at that point in time.

� Waiting A processor is counted as waiting for data at a given point in time if the
number of request object events in the log up to that point in time is larger than the
number of receive object events and the processor does not meet the conditions for
any other activity.

To avoid short spurious changes in the recorded activity, the implementation coalesces
adjacent intervals during which a processor engages in the same activity if the difference
between the two intervals is less than 0.001 seconds. So, for example, if a processor finishes
sending one message and immediately starts sending another, it is counted as sending a
message for the short time between the stop event from the first message send and the start
event from the second message send. The exceptions are that adjacent Waiting intervals are
not coalesced and adjacent Application intervals are not coalesced if they come from the
execution of the same task.

We often stack several activity traces on top of each other to show correlations between
the different activities. Figure 4.12 shows such a set of stacked activity traces from a 32
processor Water execution on the iPSC/860. We eliminate the X axes between adjacent
activity traces to reduce visual clutter. We also reduce the size of the Y axis for an
activity if the maximum number of processors engaging in that activity at any one time is
substantially less than the number of processors executing the computation. The Y axis
for the Application trace always corresponds to the number of processors executing the
computation.

1In general this condition overestimates the amount of time spent creating child tasks. If task creates a
child task, executes some application code and then creates another child task, the condition will incorrectly
count the time spent in application code as task creation time. None of our applications, however, executes
any significant amount of application code between adjacent task creation events. The condition is therefore
accurate for our set of applications.

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 111

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

0

Time (seconds)

10

Time (seconds)

20

Time (seconds)

30

Time (seconds)

40

Time (seconds)

50

Time (seconds)

60

Time (seconds)

70

Time (seconds)

80

Time (seconds)

90

Time (seconds)

Figure 4.12: Stacked Activity Traces for Water (fl.lo.ab) on the iPSC/860

4.4.7.2 Water Behavior at the Standard Optimization Level

As described in Section 4.3.2, the standard optimization level uses the locality heuristic and
adaptive broadcast optimizations. We describe the behavior of Water at this optimization
level with the aid of the activity traces in Figure 4.12. Each of the eight iterations consists
of several phases. The iteration starts on the main processor with the main task executing a
serial phase. The rest of the processors are idle. The serial phases show up in the activity
trace as the small sections of the Application trace when only one processor is executing.

When the main processor finishes its serial phase it broadcasts the new molecule posi-
tions and momentum data to all of the other processors. Each broadcast generates a spike
in the Broadcasting activity trace. The application then creates all of the tasks to perform
the parallel phase; this task creation generates a spike in the Creating activity trace.

112 CHAPTER 4. APPLICATIONS EXPERIENCE

In the resulting parallel phase each processor computes its contributions to the total
force acting on each molecule. The Application trace in Figure 4.12 shows that all 32
processors are busy executing application code for the majority of the parallel phase. The
parallel phases in turn dominate the execution time, and most of the processors are busy
executing application code for most of the computation.

As the tasks finish their force computations they participate in a parallel reduction of
the replicated force array and total-energy scalar as described in Section 4.4.5. The parallel
reductions for the force-calculation phases show up in the activity traces as the large spikes
in the Sending and Waiting traces. At the end of the force-calculation reduction, the main
processor executes the serial phase for the second half of the iteration. The second half
has the same basic structure as the first half, but the parallel phase computes the potential
energy, not the intermolecular forces. The spikes at the end of the potential-energy phases
are smaller than the spikes at the end of the force-calculation phases because the messages
in the force-calculation reduction carry the relatively large force arrays while the messages
in the potential-energy reduction only carry the small potential-energy scalars.

4.4.7.3 Effect of the Adaptive Broadcast Optimization

As described in Section 3.4.9, the Jade implementation keeps track of which processors
access each version of each object. When all processors access the same version of each
object, the implementation switches to a broadcast protocol for subsequent versions. For
Water this optimization results in the broadcast, after each serial phase, of the objects
containing the new molecule positions and momentum data.

Without the adaptive broadcast optimization the implementation distributes the molecule
positions and momentum data to the processors using the object piggybacking optimization.
During the task creation phase the objects containing the new molecule positions and
momentum data are piggybacked onto the messages that distribute the tasks from the
main processor to the other processors (see Section 3.4.9 for a description of the object
piggybacking optimization). It therefore takes longer to send each task message from the
main processor to the processor that will execute the task, which delays the creation of
the next task. Figure 4.13, which displays part of the activity traces from a run without
the adaptive broadcast optimization, shows how these delays stagger the initiation and
completion of the parallel phases. The stagger in turn lengthens the time required to
perform the parallel phases and degrades the performance. For comparison purposes we
show, in Figure 4.14, the corresponding activity traces from the fl.lo.ab version, which
uses the adaptive broadcast optimization. These traces show how the adaptive broadcast
optimization eliminates the stagger in the initiation and completion of the parallel phases.

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 113

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

28.0

Time (seconds)

28.5

Time (seconds)

29.0

Time (seconds)

29.5

Time (seconds)

30.0

Time (seconds)

30.5

Time (seconds)

31.0

Time (seconds)

31.5

Time (seconds)

32.0

Time (seconds)

32.5

Time (seconds)

33.0

Time (seconds)

33.5

Time (seconds)

34.0

Time (seconds)

Figure 4.13: 32 Processor Activity Traces for Water (fl.lo.nb) on the iPSC/860

4.4.7.4 Effect of the Locality Heuristic

We next discuss the impact of the locality heuristic on the parallel execution. As described
in Section 3.4.2, the locality heuristic chooses a locality object for each task and attempts to
execute each task on the processor that owns the latest version of the locality object. This
processor is called the target processor for the task. In the Water application the locality
object for each task is the replica of the force array or potential-energy scalar into which
the task will accumulate its contributions.

Our first measure of the effectiveness of the locality heuristic is how well it succeeds
in placing each task on its target processor. We display this data using graphs, like those
in Figure 4.15, that plot task locality percentages. Each graph plots, for a given version
of the application, the percentage of tasks that execute on their target processors. More

114 CHAPTER 4. APPLICATIONS EXPERIENCE

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

21.0

Time (seconds)

21.5

Time (seconds)

22.0

Time (seconds)

22.5

Time (seconds)

23.0

Time (seconds)

23.5

Time (seconds)

24.0

Time (seconds)

24.5

Time (seconds)

25.0

Time (seconds)

25.5

Time (seconds)

26.0

Time (seconds)

26.5

Time (seconds)

27.0

Time (seconds)

Figure 4.14: 32 Processor Activity Traces for Water (fl.lo.ab) on the iPSC/860

precisely, each point on the curve plots, as a function of the number of processors executing
the computation, the number of tasks that executed on their target processor divided by the
total number of executed tasks times 100. We generate this data using the event counts
described in Section 4.3.

Figure 4.15 displays the task locality percentages for the fl.lo.ab and fl.nl.ab versions
of Water. These graphs show that, for the Water computation, the locality heuristic is
very effective at executing tasks on the target processor – every task executes on its target
processor. Without the locality heuristic the percentage of tasks executed on their target
processors drops quickly as the number of processors increases.

We continue our evaluation of the locality heuristic by considering its effect on the
communication. If a task executes on a processor that does not contain the latest version
of the replica of the force array, total-energy scalar or or potential-energy scalar that it will

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 115

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fl.lo.ab

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fl.nl.ab

Figure 4.15: Task Locality Percentages for Water on the iPSC/860

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

21.0

Time (seconds)

21.5

Time (seconds)

22.0

Time (seconds)

22.5

Time (seconds)

23.0

Time (seconds)

23.5

Time (seconds)

24.0

Time (seconds)

24.5

Time (seconds)

25.0

Time (seconds)

25.5

Time (seconds)

26.0

Time (seconds)

26.5

Time (seconds)

27.0

Time (seconds)

Figure 4.16: 32 Processor Activity Traces for Water (fl.nl.ab) on the iPSC/860

116 CHAPTER 4. APPLICATIONS EXPERIENCE

access, it fetches the latest version from the owner processor before it executes. Without the
locality heuristic many tasks must fetch replicas from remote processors before executing.
These fetches generate a flurry of communication at the beginning of each parallel phase
as the replicas migrate to the accessing processors. The activity traces in Figure 4.16
highlight the effect by displaying the interval between a parallel potential-energy phase and
parallel force-calculation phase. The Sending and Waiting traces clearly show the burst of
communication at the start of the force-calculation phase. The size of this communication
burst depends on the size of the transferred replicas. The burst is much smaller at the start
of the potential-energy phases because the transferred potential-energy scalars are much
smaller than the force arrays. Figure 4.14, which presents the corresponding activity traces
for a version that uses the locality heuristic, shows how the use of the locality heuristic
eliminates the communication burst at the the beginning of each parallel phase.

Each task that accesses a remote replica of the force array or potential-energy scalar
must delay its execution until the replica arrives. The maximum size of the delay is the
time required to request, transfer and receive the replica. The performance numbers show
that this delay has a negligible impact on the performance. Part of the reason for this lack
of impact is that the extra communication tends not to occur along the critical path. For
this computation the critical path goes through the task and reduction operations executed
on the main processor. Even without the locality heuristic the main processor always owns
the locality object for the parallel task that it executes.2 So, this task is never delayed by
the need to fetch a remote piece of data. The only other way the extra communication can
extend the critical path is by delaying a reduction operation on the main processor. The fact
that the task on the main processor is the last to be created and start executing minimizes
the impact of delaying the other tasks.

4.4.8 Water on DASH

Table 4.5 contains the execution times for several versions of Water running on DASH. As for
the iPSC/860 performance numbers, the name of each version specifies the instrumentation
and optimization levels. For example, the mi.lo version specifies the minimum level of
instrumentation and the use of the locality heuristic. The ANL version is the explicitly
parallel version from the SPLASH benchmark suite written using the ANL macro package
[88]. Figure 4.17 contains the corresponding speedup curves for two versions of the
application. As for the iPSC/860 speedup curves, the baseline for these speedup curves is
the stripped version. The data set is the same as for the iPSC/860 runs. The computation
scales almost linearly to 32 processors.

One anomaly in the performance numbers is the difference in execution time between
the serial, stripped and ANL versions. Further investigation reveals that the difference

2This task is the last task that the main processor creates, so it is likely to be the task left when the main
processor finishes creating tasks and looks for another task to execute.

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 117

between the three versions is not caused by significant differences in the computation that
they perform. We used the pixie instrumentation utility [129] to generate cycle counts for
the three versions on DASH assuming a perfect memory system. The cycle counts for the
serial and stripped versions were within 1 percent of each other, with four of the top five
procedures in the profile consuming identical numbers of cycles. The cycle count for the
ANL version was less than 4 percent more than the cycle counts for the other two versions.
We therefore attribute the running time differences to memory system effects.

Another anomaly is that the Jade versions perform better than the ANL version. The
major functionality difference between the two versions is that the ANL version only uses
one copy of the final result data structure. The parallel tasks update this data structure every
time they generate a contribution to the final result, using a lock to ensure the atomicity of
the update. This strategy may generate more locking overhead and contention for access to
the final result data structure.

1 2 4 8 16 24 32
serial 3628.29 - - - - - -

stripped 3285.90 - - - - - -
mi.lo 3283.92 1655.66 835.88 425.40 223.13 152.83 118.54
fl.lo 3270.71 1648.96 833.19 423.14 220.63 153.03 119.48

mi.nl 3283.82 1651.12 844.58 434.32 228.81 168.04 125.16
fl.nl 3290.47 1648.60 832.91 434.36 229.84 160.82 124.74
ANL 3677.57 1834.83 927.96 501.00 254.04 175.85 144.10

Table 4.5: Execution Times for Water on DASH (seconds)

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl

Figure 4.17: Speedups for Water on DASH

As for the iPSC/860 versions, we explore the dynamic behavior of the Jade DASH

118 CHAPTER 4. APPLICATIONS EXPERIENCE

versions using event log data presented in the form of activity traces. Because all commu-
nication on DASH takes place implicitly as the program accesses remote data, the event
logs from the DASH runs contain no events that deal with communication. There are
therefore no Sending, Waiting and Broadcasting traces for DASH activity traces. Figure
4.18 contains the complete Creating and Application activity traces for a 32 processor fl.lo
(full log instrumentation with locality heuristic) DASH run. Like the iPSC/860 runs, the
parallel phases dominate the execution and all 32 processors are busy executing application
code for the majority of the computation.

32

Application

1 Creating

0

Time (seconds)

10

Time (seconds)

20

Time (seconds)

30

Time (seconds)

40

Time (seconds)

50

Time (seconds)

60

Time (seconds)

70

Time (seconds)

80

Time (seconds)

90

Time (seconds)

100

Time (seconds)

110

Time (seconds)

Figure 4.18: 32 Processor Activity Traces for Water (fl.lo) on DASH

4.4.8.1 Effect of the Locality Heuristic

The DASH locality heuristic, like the iPSC/860 locality heuristic, attempts to increase the
locality of the computation by executing each task on the processor that owns its locality
object. Figure 4.19, which displays the task locality percentages for two DASH runs,
demonstrates that the locality heuristic is very effective at executing tasks on their target
processors. Without the locality heuristic the percentage of tasks executed on their target
processors drops quickly as the number of processors increases. Despite this dramatic
difference in the assignment of tasks to their target processors, the use of the locality
heuristic has very small impact on the overall performance. At 32 processors, for example,
the fl.lo version, which uses the locality heuristic, runs only 124:75 � 119:48 = 5:27
seconds faster than the fl.nl version, which does not use the heuristic.

The goal of the locality heuristic is to optimize the execution by reducing the number
of remote accesses to shared objects. On DASH the time required to perform the remote

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 119

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fl.lo

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fl.nl

Figure 4.19: Task Locality Percentages for Water on DASH

accesses is counted as part of the task execution time. An improvement in the locality will
therefore show up as a reduction in the task execution times. For this application reducing
the task execution times may in turn improve the overall performance of the application by
reducing the length of the parallel phases. The length of each parallel phase is determined
by the length of the longest task. We therefore measure the effect of the locality heuristic by
comparing the mean length of the longest task in each parallel phase for the two versions.
For the fl.lo version running on 32 processors the mean longest task length is 6.73 seconds;
for the fl.nl version it is 6.89 seconds.3 The similar task execution times directly translate
into similar overall execution times for the complete computation.

4.4.8.2 Differences Between the DASH and the iPSC/860 Versions

The major performance difference between the iPSC/860 and the DASH versions comes
from the different communication mechanisms for shared objects. Without the adaptive
broadcast optimization the serial transfer of the molecule positions and momentum data
from the main processor to all of the other processors significantly degrades the performance
of the iPSC/860 versions. On DASH every processor fetches all of the molecule positions
and momentum data from the main processor, so there is at least as much data transferred
out of the main processor for the DASH runs as for the iPSC/860 runs without the adaptive
broadcast optimization. The relative performance of the DASH versions, however, is much
better.

There are several reasons for the lack of performance degradation on DASH. First,
on the iPSC/860 the main processor must manage the communication, so communication
preempts any computation that would otherwise execute. In the iPSC/860 runs the execution
of the task on the main processor is therefore delayed by the time required to transfer the
molecule positions and momentum data to all of the other processors. On DASH, on

3We generate these numbers by processing the event log data.

120 CHAPTER 4. APPLICATIONS EXPERIENCE

the other hand, the remote requests for the molecule positions and momentum data are
handled by the shared-memory hardware, not the main processor. The main processor can
start its task’s execution immediately and continue the execution while other processors
concurrently fetch the molecule positions and momentum data from its memory.

Second, on DASH the communication is interleaved with the computation. This has
the effect of spreading the communication out over a larger period of time, which tends
to reduce contention at the main processor. On the iPSC/860 no task can start executing
until its processor has received all of the remote data from the main processor. All of the
communication therefore takes place at the very beginning of the parallel phase. One of
the processors must wait until all of the other processors have received the new molecule
positions and momentum data before its transfer begins. Its execution is therefore delayed
both by the time required to transfer the data from the main processor to it and by the
time required transfer the data from the main processor to all the other processors. A final
difference is that the DASH communication hardware is somewhat more efficient than the
iPSC/860 communication hardware.

4.4.9 String on the iPSC/860

Table 4.6 contains the execution times for String on the iPSC/860. Section 4.3.3 tells
how the different version names identify the instrumentation and optimization levels for
each run. Figure 4.20 contains the corresponding speedup curves for four versions of the
application.

1 2 4 8 16 24 32
serial 20270.45 - - - - - -

stripped 19629.42 - - - - - -
mi.lo.ab 18876.92 9496.70 4764.54 2415.14 1248.62 865.97 676.48
fl.lo.ab 17382.07 9473.24 4773.02 2418.75 1249.69 873.14 678.55
mi.nl.ab 18870.01 9504.86 4762.60 2431.85 1261.22 875.46 687.36
fl.nl.ab 18873.86 9529.52 4765.96 2424.12 - 869.27 680.94

mi.lo.nb 18876.97 9490.92 4758.89 2418.84 1253.26 874.64 690.72
fl.lo.nb 18877.42 9469.36 4765.68 2425.82 1255.29 874.18 689.57

mi.nl.nb 17397.49 9508.54 4764.26 2420.29 1272.67 887.83 709.57
fl.nl.nb 18852.93 9542.78 4774.49 2428.16 1258.48 878.88 699.33

Table 4.6: Execution Times for String on the iPSC/860 (seconds)

The data set is from an oil field in West Texas and discretizes the 185 foot by 450 foot
velocity image at a 1 foot by 1 foot resolution. It executes six iterations, with one parallel

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 121

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo.ab
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl.ab

|

0
|

8
|

16
|

24
|

32
|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo.nb
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl.nb

Figure 4.20: Speedups for String on the iPSC/860

phase per iteration. The performance numbers are for the entire computation, including
initial and final I/O.

For this data set the computation scales almost linearly to 32 processors, with none of
the instrumentation or optimization levels making a substantial difference in the overall
performance. Figure 4.12, which contains the complete activity trace for this application,
illustrates the division into parallel and serial sections and shows that the computation
spends the majority of its time in the parallel sections. We next describe the behavior of the
parallel computation with the aid of several sets of activity traces.

We start our discussion with the first part of the computation. Figure 4.22 contains the
corresponding activity traces. The program first executes an initialization phase, allocating
shared objects and reading in input data. As part of this initialization phase it creates a
set of tasks to perform some of the shared object allocations. These tasks generate the
first spike in the Application trace. The program then proceeds on to the first parallel
phase. Each task in this phase reads the initial velocity model and a set of global shared
objects. These objects are written once in the initialization phase then read in the rest of the
computation. When the child tasks are sent to processors for execution, the global objects
and initial velocity model are piggybacked onto the task messages. The global variables are
together 1,192,264 bytes and the initial velocity model is 383,528 bytes, so each message

122 CHAPTER 4. APPLICATIONS EXPERIENCE

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

0

Time (seconds)

100

Time (seconds)

200

Time (seconds)

300

Time (seconds)

400

Time (seconds)

500

Time (seconds)

600

Time (seconds)

Figure 4.21: 32 Processor Activity Traces for String (fl.lo.ab) on the iPSC/860

is 1,575,792 bytes long plus a few hundred bytes for the task data. The main processor
sends one such message to each of the other processors; when the processor receives the
message it starts executing the task. The Application trace in Figure 4.22 shows how the
time required to transfer the large messages staggers the task startups.

We next discuss the end of the first parallel phase, the next serial phase, and the start
of the second parallel phase. Figure 4.23 contains the activity traces for this part of the
computation. At the end of the first parallel phase the computation performs the parallel
reduction of the arrays used to generate the new velocity model. The staggered terminations
of the tasks in the first parallel phase also stagger the execution of the parallel reduction.
The computation next performs a serial phase to generate the new velocity model, then
creates the tasks for the next parallel phase. Each task reads both the new velocity model
and the global objects. Because copies of the global objects already exist on all of the

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 123

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

0

Time (seconds)

5

Time (seconds)

10

Time (seconds)

15

Time (seconds)

20

Time (seconds)

25

Time (seconds)

30

Time (seconds)

35

Time (seconds)

40

Time (seconds)

Figure 4.22: First Parallel Phase for String (fl.lo.ab) on the iPSC/860

processors, they generate no communication after the first parallel phase. Copies of the
new velocity model are piggybacked on the task messages that start the second parallel
phase, so the second parallel phase also has a staggered startup. As the Application trace in
Figure 4.23 illustrates, the stagger is much less pronounced for the second phase than for
the first phase because the task messages in the second phase do not carry the large global
shared objects.

After the second phase the program performs four more parallel phases. In the second
phase every processor reads the same version of the object containing the velocity model,
so in subsequent phases the implementation broadcasts the new velocity model to all
processors rather than piggybacking it on the task messages. Because the computation
stores the velocity model for the first phase in a different object than for subsequent phases,
the implementation does not apply the adaptive broadcast optimization until the third parallel

124 CHAPTER 4. APPLICATIONS EXPERIENCE

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

110

Time (seconds)

115

Time (seconds)

120

Time (seconds)

125

Time (seconds)

130

Time (seconds)

135

Time (seconds)

140

Time (seconds)

145

Time (seconds)

150

Time (seconds)

Figure 4.23: Second Parallel Phase for String (fl.lo.ab) on the iPSC/860

phase. As Figure 4.24 illustrates, eliminating data from the task messages also eliminates
almost all of the task startup stagger.

4.4.9.1 Effect of the Adaptive Broadcast Optimization

Without the adaptive broadcast optimization all of the parallel phases have a staggered
startup similar to that in Figure 4.23. There are two reasons why the adaptive broadcast
optimization has less effect on the overall performance for String than for Water. First, it is
only used for four of the six iterations. Second, the size of the broadcasted data is smaller
in comparison to the size of the tasks in the parallel phases for String than for Water. For
example, the mean size of the longest task in each parallel phase for the fl.lo.ab version of
String on 32 processors is 98.75 seconds. The size of the broadcasted object is 383,528 bytes

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 125

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

330

Time (seconds)

335

Time (seconds)

340

Time (seconds)

345

Time (seconds)

350

Time (seconds)

355

Time (seconds)

360

Time (seconds)

365

Time (seconds)

370

Time (seconds)

Figure 4.24: Fourth Parallel Phase for String (fl.lo.ab) on the iPSC/860

long. When the implementation starts a parallel phase by first broadcasting the object then
creating the parallel tasks, the broadcast takes approximately 0.70 seconds while the creation
and distribution take approximately 0.018 seconds. When the implementation piggybacks
the object on to the task messages the time required to create and distribute the tasks goes
up to approximately 4.82 seconds. For String the length of the parallel phase with the
adaptive broadcast optimization is therefore approximately 0:70+ 0:018 + 98:75 = 99:46
seconds; without the optimization it is 4:82+98:75 = 103:57 seconds. Each parallel phase
in the version with adaptive broadcast is therefore only about 4 percent faster. For Water
on 32 processors the numbers are 4.87 seconds for the mean longest task in each parallel
phase, 165,888 bytes for the broadcasted object, 0.31 seconds to broadcast the object, 0.018
seconds to create and distribute tasks without the piggybacked object and 2.25 seconds with
the piggybacked object. The parallel phases are about 0:31+ 0:018+ 4:87 = 5:20 seconds

126 CHAPTER 4. APPLICATIONS EXPERIENCE

with adaptive broadcast and 2:25 + 4:87 = 7:12 seconds without adaptive broadcast. The
parallel phases with adaptive broadcast are therefore about 37 percent faster.

4.4.9.2 Effect of the Locality Heuristic

The basic issues associated with the presence or absence of the locality heuristic are the
same for String as for Water (see Section 4.4.7.4 for a discussion of the locality heuristic
effect for Water). As Figure 4.25 illustrates, the locality heuristic always executes tasks on
their target processors. Without the locality heuristic the task locality percentage drops as
the number of processors increases.

|

0
|

8
|

16
|

24
|

32

|0
|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fl.lo.ab

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fl.nl.ab

Figure 4.25: Task Locality Percentages for String on the iPSC/860

Failing to apply the locality heuristic generates a brief flurry at the beginning of each
parallel phase as the processors exchange replicas of the data structures used to hold the
backprojected time differences. As for Water on the iPSC/860, this communication has
very little impact on the overall performance of the application.

4.4.10 String on DASH

Table 4.7 contains the execution times for several versions of String running on DASH.
Figure 4.26 contains the corresponding speedup curves for two versions of the application.
As for the iPSC/860 speedup curves, the baseline for these speedup curves is the stripped
version. The data set is the same as for the iPSC/860 runs. The computation scales almost
linearly to 32 processors. The locality optimization level has a significant impact on the
performance – the versions with the locality heuristic run faster than the versions without
it.

We start our exploration of the locality effects by considering the task locality per-
centages as presented in Figure 4.27. This figure shows that with the locality heuristic,
every task executes on its target processor (the processor that owns its locality object). The

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 127

1 2 4 8 16 24 32
serial 20594.50 - - - - - -

stripped 19314.80 - - - - - -
mi.lo 19280.41 9794.00 4926.22 2502.83 1287.95 886.70 693.26
fl.lo 19621.15 9774.07 5003.69 2534.62 1320.00 903.95 705.84

mi.nl 19458.52 10325.28 4903.36 2538.85 1325.31 937.14 758.76
fl.nl 19396.12 9756.71 5017.82 2559.44 1350.06 948.73 769.21

Table 4.7: Execution Times for String on DASH (seconds)

|

0
|

8
|

16
|

24
|

32
|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl

Figure 4.26: Speedups for String on DASH

locality objects in this computation are the replicas of the data structure used to hold the
backprojected differences between the simulated and measured ray travel times. Without
the locality heuristic the number of tasks that execute on their target processor drops rapidly.
In the absence of the locality heuristic one would expect the tasks to generate more remote
references as they update the backprojected difference data structures.

We explore the effect of the locality heuristic on the tasks in the parallel phases using
an approach similar to that for the Water application presented in Section 4.4.8.1. We
first calculate the mean length of the longest task in the six parallel phases that perform
significant amounts of computation. For the fl.lo version on 32 processors the mean longest
task time is 106.86 seconds; for the fl.nl version it is 107.82 seconds. This translates into
a small difference in the amount of time the reduction steps on the main processor spend
waiting for other reduction steps to finish. The fl.lo version spends 7.78 seconds waiting,
while the fl.nl version spends 9.24 seconds waiting. There are also small differences caused
by the single task queue in the fl.lo version.

None of these factors comes close to accounting for the performance difference between
the two versions. Further investigation reveals that almost all of the difference is caused
by interactions with the operating system’s memory management system. During the

128 CHAPTER 4. APPLICATIONS EXPERIENCE

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fl.lo

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fl.nl

Figure 4.27: Task Locality Percentages for String on DASH

initialization phase the application allocates shared objects for the replicated data structures
used to hold the backprojected differences. Each such data structure is composed of a small
normal shared object that points to two large part objects. In our timing runs each of the
large part objects is 383,528 bytes long.

The application first creates the small shared objects in the main thread, then creates child
tasks that allocate the two part objects for each replica. The shared-memory implementation
of Jade always allocates part objects in the same memory module as the corresponding
normal object. With the locality heuristic the new memory is allocated out of the local
memory module of the processor executing the child task. Without the locality heuristic
many part objects are allocated out of remote memory modules.

Each of the allocations first invokes the Unix sbrk routine to acquire the memory for
the allocated part object. For each of the allocated pages it first accesses the page to fault it
in. It then performs a system call to migrate the page to the desired memory module, then
accesses the page one more time. For multiple parallel memory allocations the memory
management system executes these operations serially.

It turns out that the memory allocation process is much faster for local than for remote
memory modules. In the 32 processor fl.lo run, for example, processors 1 through 32
spend 6.87 seconds in the memory allocation process, for a mean time of 0.11 seconds
per 383,528 byte memory allocation. For the corresponding fl.nl run, the processors spend
58.41 seconds allocating memory, with the mean time per allocation increasing to 0.94
seconds.

Without the locality heuristic, the extra time required for the serialized memory alloca-
tions delays the execution of the rest of the program by approximately 58:41�6:87 = 51:54
seconds. This is by far the largest contributing factor to the difference in performance be-
tween the versions with and without the locality heuristic.

It is difficult to see these interactions with the memory management system as a funda-
mental performance issue – it should be possible to make the operating system interactions

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 129

run much faster than they currently do. It is important to realize, however, that the per-
formance difference is not caused by memory system effects in the parallel computation
phases.

4.4.11 Search on the iPSC/860

Table 4.8 contains the execution times for Search on the iPSC/860. Figure 4.28 contains the
corresponding speedup curves for four versions of the application. The data set simulates
six different solids at 10 initial beam energies. Each solid/energy data point requires the
Monte-Carlo simulation of 5000 electron trajectories. The performance numbers are for the
entire computation. For this data set the computation scales almost linearly to 32 processors.

1 2 4 8 16 24 32
stripped 1284.07 - - - - - -
mi.lo.ab 1420.05 715.49 371.87 181.66 94.33 62.75 47.63
fl.lo.ab 1368.55 689.98 349.26 174.66 89.58 60.50 46.03

mi.nl.ab 1316.17 661.25 350.68 168.37 86.05 58.24 44.30
fl.nl.ab 1402.41 709.91 366.15 179.62 91.46 62.00 47.09

mi.lo.nb 1331.28 665.83 345.08 171.36 92.97 60.35 47.68
fl.lo.nb 1458.11 737.29 383.31 190.50 96.82 64.41 48.88

mi.nl.nb 1486.80 750.25 395.34 191.78 98.33 65.79 49.98
fl.nl.nb 1444.19 731.41 364.41 186.50 95.67 63.68 48.65

Table 4.8: Execution Times for Search on the iPSC/860 (seconds)

The activity traces for a 32 processor run in Figure 4.29 show why the application
performs as well as it does. The computation first executes a short initialization phase, then
one long parallel phase. There is a short communication phase at the end of the parallel
phase as the computation combines the results of the parallel tasks, then a short phase to
print out the results. The load is well balanced during the parallel phase and the parallel
phase is large enough to amortize the very small relative serial overhead.

4.4.12 Search on DASH

Table 4.9 contains the execution times for several versions of Search running on DASH.
Figure 4.30 contains the corresponding speedup curves for two versions of the application.
There are measurable performance differences between the versions with and without the
locality heuristic. This is surprising because the parallel tasks execute with almost no
accesses to shared objects. All of the versions should therefore have almost identical
execution times.

130 CHAPTER 4. APPLICATIONS EXPERIENCE

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo.ab
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl.ab

|

0
|

8
|

16
|

24
|

32
|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo.nb
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl.nb

Figure 4.28: Speedups for Search on the iPSC/860

1 2 4 8 16 24 32
stripped 1652.91 - - - - - -

mi.lo 1813.67 910.70 459.16 242.34 130.46 77.77 61.06
fl.lo 1654.42 829.15 417.51 208.24 116.30 81.88 62.60
mi.nl 1655.87 829.02 417.13 208.40 132.57 77.64 53.52
fl.nl 1657.96 829.15 416.93 209.66 127.63 70.66 53.05

Table 4.9: Execution Times for Search on DASH (seconds)

We start our investigation of the performance differences with the activity traces for
two of the runs. Figure 4.31 shows the activity trace for the 32 processor fl.lo run, while
Figure 4.32 shows the activity trace for the 32 processor fl.nl run. The traces reveal a load
imbalance in the fl.lo version – two of the tasks take about 9 seconds longer to finish than
the other tasks. The fl.nl version suffers from no such load imbalance.

It turns out that, for the fl.lo run, the tasks on processors 16 and 1 are the tasks that
take significantly longer to execute. Further investigation yields data consistent with the
hypothesis that the performance variation is caused by memory system effects.

We used the hardware performance monitor on DASH [82] to count the number of

4.4. THE WATER, STRING AND SEARCH APPLICATIONS 131

32

Application

1 Creating

16

Waiting

16

Sending

1 Broadcasting

0

Time (seconds)

5

Time (seconds)

10

Time (seconds)

15

Time (seconds)

20

Time (seconds)

25

Time (seconds)

30

Time (seconds)

35

Time (seconds)

40

Time (seconds)

45

Time (seconds)

Figure 4.29: 32 Processor Activity Traces for Search (fl.lo.ab) on the iPSC/860

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl

Figure 4.30: Speedups for Search on DASH

132 CHAPTER 4. APPLICATIONS EXPERIENCE

32

Application

1 Creating

0

Time (seconds)

10

Time (seconds)

20

Time (seconds)

30

Time (seconds)

40

Time (seconds)

50

Time (seconds)

60

Time (seconds)

Figure 4.31: 32 Processor Activity Traces for Search (fl.lo) on DASH

32

Application

1 Creating

0

Time (seconds)

10

Time (seconds)

20

Time (seconds)

30

Time (seconds)

40

Time (seconds)

50

Time (seconds)

Figure 4.32: 32 Processor Activity Traces for Search (fl.nl) on DASH

4.5. VOLUME RENDERING 133

cache misses on each processor. The monitor counts local cache misses (misses satisfied
from within the cluster issuing the reference) and remote cache misses (misses satisfied
from of a remote cluster) separately. The performance monitor reveals that the task on
processor 16 has approximately 12.3 million local read misses and the task on processor 1
has approximately 9.8 million local read misses. The next two highest processors have .78
and .056 million local read misses. The number of remote misses is substantially smaller.
For the fl.nl version running on 32 processors (which executes the same instructions in the
application program and exhibits almost perfect speedup) the two highest processors have
.040 and .028 million local read misses.

4.5 Volume Rendering

The Volume Rendering application generates a sequence of images, each corresponding
to a given view of a set of volume data. The application manipulates three major data
structures: the voxel array, which holds the volume data, the image array, which is an array
of pixels holding the rendered image, and a shading-table array. For each view the program
first computes the shading table then renders the image onto the image array.

The computationally intensive section of the Volume Rendering application shoots a ray
from each pixel into the voxel array. The computation associated with this ray determines
the value of the pixel. It is easy to see that the computation can trace all of the rays in
parallel. Each ray only reads part of the voxel array and writes its pixel in the image
array. The basic computational issues are maximizing locality, minimizing overhead and
balancing the load. Because rays from adjacent pixels tend to access similar regions of the
voxel array, shooting rays from contiguous sets of pixels on the same processor enhances
locality. The original developers [100] determined that distributing pixels to processors in
8 by 8 chunks yields acceptable locality.

Because the rays generate different amounts of computation, a static assignment of 8
by 8 chunks to processors has the potential to generate an unbalanced load. Ideally, the
programmer would create one task per chunk and rely on the implementation to dynamically
balance the load by moving chunks to idle processors. With the current implementation this
strategy generates more concurrency management overhead than strategies that aggregate
chunks into larger-grain tasks. Static analysis would eliminate this problem by allowing
the implementation to employ a task management strategy efficient enough to profitably
exploit concurrency at the granularity of the 8 by 8 pixel chunks. In the current version the
programmer minimizes the overhead by maximizing the task size. The application matches
the number of tasks to the number of processors, mapping the 8 by 8 pixel chunks onto
tasks in a round robin fashion.

The image data structure is allocated in one contiguous chunk. Each image task
computes its part of the image into a private data structure, then copies the result into the

134 CHAPTER 4. APPLICATIONS EXPERIENCE

image data structure. This allows all of the tasks to execute concurrently with a serial
copyback phase at the end of the image computation. Because the tasks write disjoint
pieces of the image, providing more precise access declarations would allow the tasks to
concurrently write the image data structure, eliminating the serial copyback phase. Because
the shading table is also allocated in one chunk, the shading-table computation has a similar
copyback phase.

For the timing runs the application rendered the head dataset described in [100]. This
dataset has a 256 by 256 by 226 voxel array and a 416 by 416 image array. Each element of
the voxel array takes up 4 bytes; each element of the image array takes up 1 byte. The voxel
array dominates the storage requirements; it is approximately 58 megabytes long. The size
of the voxel array interacts poorly with the communication mechanism of the message-
passing implementation. In this implementation each object is a unit of communication
and is transferred as a unit between processors. If a processor accesses part of an object
the entire object must fit into the memory associated with the processor. Because the voxel
array is larger than the 16 megabyte per-node memory on the iPSC/860, this application will
not run on this platform. A communication mechanism that allowed the implementation to
store large objects in a distributed fashion across all of the memories would eliminate this
problem.

1 2 4 8 16 24 32
stripped 32.44 - - - - - -

mi.lo 33.06 16.49 8.70 4.58 2.84 2.10 2.01
fl.lo 33.72 18.46 8.89 4.68 2.73 2.21 1.89
mi.nl 33.07 16.52 8.65 4.71 2.67 2.12 2.08
fl.nl 33.23 16.37 9.12 4.62 2.71 2.12 1.96
ANL 31.60 15.00 7.67 3.88 1.97 - 1.01

Table 4.10: Execution Times for Volume Rendering on DASH (seconds)

Table 4.10 presents the execution times for Volume Rendering; Figure 4.33 presents
the corresponding speedup curves. We were able to obtain performance numbers for the
explicitly parallel version described in [100]. This version was written using the ANL
macro package [88]. The Jade performance tails off quickly after 16 processors, while
the explicitly parallel version scales almost linearly to 32 processors. We first explore
the behavior of the Jade versions, then discuss the reasons for the performance difference
between the explicitly parallel version and the Jade versions.

Figure 4.34, which contains the activity traces for the 32 processor fl.lo run, reveals
several sources of inefficiency. These sources include slow task creation and startup, a
load imbalance, and the serial copyback phase. The serial copyback phase lasts about .45
seconds and is visible at the end of the Application trace. The staggered task completions

4.5. VOLUME RENDERING 135

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo
|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl

Figure 4.33: Speedups for Volume Rendering on DASH

in the Application trace at the end of the second parallel phase reveal the load imbalance.

32

Application

1 Creating

0.0

Time (seconds)

0.2

Time (seconds)

0.4

Time (seconds)

0.6

Time (seconds)

0.8

Time (seconds)

1.0

Time (seconds)

1.2

Time (seconds)

1.4

Time (seconds)

1.6

Time (seconds)

1.8

Time (seconds)

Figure 4.34: 32 Processor Activity Traces for Volume Rendering (fl.lo) on DASH

We next explore the slow task creation and startup effects. One can see the slow task
startup in the staggered task creation times for the two parallel phases. The first parallel
phase computes the shading table, and the task startups are so staggered that this phase
never comes close to executing the 32 tasks concurrently. Even though the startups for the
rendering phase are less staggered, the effect is still clearly visible in the Application trace.
The Creating trace highlights the slow task creation effect – it takes almost 0.2 seconds to
create the tasks for the two phases.

We attribute the slow task startup for the first phase to memory system effects as the
processors access data and execute code that they have not recently accessed or executed.

136 CHAPTER 4. APPLICATIONS EXPERIENCE

Measurements of a small benchmark program designed to explore this behavior indicate
that processors suffer substantial delays in very short instruction sequences that remove
tasks from task queues. These delays in turn delay the execution of the tasks. Interactions
with the operating system triggered by memory system effects as the processor executes
stale code and accesses stale data may cause these delays.

The task queue removal delays interact with the fact that all of the tasks have the same
locality object (the voxel array) to generate the slow task creation effect. Because all of the
tasks have the same locality object, they are all inserted into the same task queue. When
the main processor attempts to insert a newly created task into the task queue, it may find
a delayed processor holding the task queue’s lock as it removes a previously created child
task. The main processor must then wait to acquire the lock, which delays the creation of
subsequent child tasks.

We believe that the staggered task startups in the second phase are caused primarily by
contention on the lock that controls access to the task queue. When the second phase starts
all of the processors have recently executed the task queue removal code during the startup
of the first phase. The second phase startup therefore suffers no memory system effects,
leaving lock contention as the only source of task startup delay. The fact that the second
phase starts up much faster than the first phase supports this hypothesis.

To test the hypothesis that the delays in the task queue removal code are caused by
memory system effects, we developed a version of the application that explicitly places the
tasks on the different processors for execution. All of the tasks are therefore inserted into
different task queues, which eliminates any contention for task queue locks. Figure 4.35
contains the activity trace for this version. The Creating trace shows that there is no slow
task creation problem – all of the tasks for the entire execution have been created shortly
after the program begins execution. There is, however, still a slow task startup problem in
the first parallel phase. But the second parallel phase shows absolutely no sign of staggered
task startups. This data is consistent with the hypothesis that each processor suffered from
memory system effects during the startup of the first parallel phase but not during the startup
of the second parallel phase.

Unlike the Jade version, the explicitly parallel version scales almost linearly to 32
processors. We attribute this superior performance to several factors. First, the ANL
version suffers from neither the slow task creation nor the slow task startup effects. All of
the tasks are created once at the beginning of the computation and synchronize using barriers
after every parallel phase. The tasks concurrently write the image data structure, which
eliminates the serial copyback phase. Finally, the program initially distributes the 8 by 8
pixel chunks to tasks in a round robin fashion, but uses an application-specific dynamic load
balancing algorithm to redistribute the chunks to idle tasks if the load becomes unbalanced.
This algorithm eliminates the load imbalance associated with a static assignment of chunks
to tasks.

4.6. PANEL CHOLESKY 137

32

Application

1 Creating

0.0

Time (seconds)

0.2

Time (seconds)

0.4

Time (seconds)

0.6

Time (seconds)

0.8

Time (seconds)

1.0

Time (seconds)

1.2

Time (seconds)

1.4

Time (seconds)

1.6

Time (seconds)

1.8

Time (seconds)

Figure 4.35: 32 Processor Activity Traces for Volume Rendering (fl.at) on DASH

4.6 Panel Cholesky

Panel Cholesky is a version of the sparse Cholesky factorization algorithm presented in
Section 2.3.2. In this version the columns of the matrix have been aggregated into larger-
grain objects called panels. This aggregation increases both the data and task grain sizes.
See Rothberg’s thesis [113] for a comprehensive discussion of parallel sparse Cholesky
factorization algorithms, including this one.

The serial program stores all of the panels contiguously in one long array. In the Jade
version each panel is an object, so the programmer had to change the parts of the code that
allocated and accessed the panels. Because the serial program logically accessed the matrix
at the granularity of panels (even though the panels were allocated contiguously), this data
structure modification did not significantly complicate the development. The programmer
used the create at object construct to explicitly allocate panels to memories in a
round-robin fashion omitting the memory associated with the first processor.4 For the
version with explicit task placement the programmer placed each task on the processor
whose memory contains the updated panel. See Section 2.3.2 for a description of how tasks
access panels.

There was one other data structure modification besides the decomposition of the matrix
into panels. The programmer aggregated multiple global variables into a single shared object

4Panel Cholesky has a small grain size and creates tasks sequentially. For such applications the best
performance is obtained by devoting one processor to creating tasks. Allocating no panels on the first
processor biases the locality heuristic away from executing worker tasks on the processor that creates the
tasks.

138 CHAPTER 4. APPLICATIONS EXPERIENCE

using a technique similar to that illustrated in Figure 2.16. As for other Jade applications,
the global variables are written once at the start of the computation and read by the rest of
the computation. The aggregation simplified the access declarations and drove down the
access declaration overhead.

4.6.1 Panel Cholesky on the iPSC/860

Table 4.12 contains the execution times for the Panel Cholesky factorization on the
iPSC/860. The timing runs factor the BCSSTK15 matrix from the Harwell-Boeing sparse
matrix benchmark set[37]. The performance numbers only measure the actual numerical
factorization, omitting an initial symbolic factorization phase. To a first approximation the
execution times are roughly comparable for all of the runs.

1 2 4 8 16 24 32
serial 27.60 - - - - - -

stripped 28.53 - - - - - -
mi.at.ab 53.30 53.10 31.53 31.81 33.87 35.52 38.43
fi.at.ab 54.56 50.18 31.56 32.50 34.41 36.38 38.17

mi.lo.ab 53.62 34.11 33.91 35.54 43.84 47.77 49.73
fi.lo.ab 54.54 34.17 33.65 35.97 43.73 47.63 50.83
mi.nl.ab 53.35 103.90 100.60 75.82 59.35 55.42 58.97
fi.nl.ab 54.43 107.43 99.39 75.84 59.02 56.41 59.45
mi.at.nb 36.48 52.80 31.41 31.76 33.88 35.78 38.34
fi.at.nb 37.25 49.76 31.29 32.01 34.92 35.87 38.16

mi.lo.nb 36.70 33.65 31.98 35.48 42.87 46.15 49.49
fi.lo.nb 37.28 34.05 33.51 35.35 43.23 46.90 49.88

mi.nl.nb 36.53 102.64 100.94 75.21 59.48 56.13 58.71
fi.nl.nb 37.29 110.00 99.81 75.56 58.65 55.46 59.20

Table 4.11: Execution Times for Panel Cholesky on the iPSC/860 (seconds)

The execution times do not vary dramatically as the number of processors changes
because the mean task execution time is close to the overhead required to execute a remote
task. For all of the executions the mean task execution time is about 2 milliseconds and
the majority of the tasks declare that they will access three objects. As Figure 3.5 shows,
the total overhead on the iPSC/860 for a task that executes remotely and declares that it
will access three objects is about 1.6 milliseconds. From the numbers in Section B.1.1
we can calculate that about 1.2 milliseconds of this overhead is incurred on the creating
processor. The serial task management overhead significantly limits the performance. The

4.6. PANEL CHOLESKY 139

extra communication incurred by the parallel versions further reduces the attractiveness of
parallel execution relative to serial execution for this application.

We next explore several of the variations in the running times. The versions with explicit
task placement run somewhat faster than the versions with the locality heuristic, which in
turn run faster than the versions without the locality heuristic. Figure 4.36 displays the
task locality percentages for these three versions. The version with explicit task placement
has a higher task locality percentage5 than the version with the locality heuristic, which in
turn has a higher percentage than the version without the locality heuristic. The scheduling
algorithm in the version with the locality heuristic executes tasks on non-target processors
in an attempt to balance the load.

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.at.ab

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.lo.ab

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors
 T

as
k

L
oc

al
ity

 P
er

ce
nt

ag
e

fi.nl.ab

Figure 4.36: Task Locality Percentages for Panel Cholesky on the iPSC/860

We next consider the effect of the locality optimization level on the communication
behavior. Figure 4.37 presents the mean amount of data each processor sent and received
during the course of the computation. More precisely, the number plotted for each point on
the curve is the total amount of data sent plus the total amount of data received (in megabytes)
divided by the number of processors in the computation.6 These curves illustrate that the
amount of communication is correlated with the overall execution time of the program,
which supports the hypothesis that communication overhead is the source of the performance
differences between the versions with different locality optimization levels.

5The task locality percentage for the version with explicit task placement is not 100 percent. This is
because the main processor initializes all of the panel objects, so they are all owned by the main processor
at the start of the parallel phase. The first time a panel is accessed by a task in the parallel phase, the main
processor owns the panel, not the processor executing the task.

6These numbers are generated using the message data described in Section 4.3. The mean communication
volume for the 1 processor run is not plotted.

140 CHAPTER 4. APPLICATIONS EXPERIENCE

|

0
|

8
|

16
|

24
|

32

|0

|50

|100

|150

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s)

fi.at.ab

|

0
|

8
|

16
|

24
|

32

|0

|50

|100

|150

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s)

fi.lo.ab

|

0
|

8
|

16
|

24
|

32

|0

|50

|100
|150

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s)

fi.nl.ab

Figure 4.37: Mean Communication Volume for Panel Cholesky on the iPSC/860

4.6.2 Panel Cholesky on DASH

Table 4.12 contains the execution times for Panel Cholesky on DASH. Figure 4.38 contains
the corresponding speedup curves. The input data set is the same as for the iPSC/860
runs. While the computation scales much better on DASH than on the iPSC/860, it still
does not scale very well – the maximum speedup for the standard configuration of the
Jade implementation is 5.4 for the mi.at version on 32 processors. We were also able to
obtain performance numbers for two explicitly parallel versions of this computation: a
version written in COOL [30] and a version written in the ANL macro package [113].
Although both of these versions perform better than the Jade versions, their performance
is not spectacular. The COOL version only achieves a speedup of 8 out of 24 processors,
while the ANL version only achieves a speedup of 9.9 out of 24 processors. The fastest
Jade version achieves a speedup of 4.8 on 24 processors.

1 2 4 8 16 24 32
serial 26.67 - - - - - -

stripped 28.91 - - - - - -
mi.at 35.15 33.33 14.96 7.79 5.85 5.54 5.30
fi.at 35.71 33.64 15.24 7.82 5.95 5.61 5.76

mi.lo 33.84 17.47 11.03 7.21 6.93 7.29 7.36
fi.lo 34.94 17.99 11.77 7.53 7.30 7.43 7.86

mi.nl 34.55 18.76 12.57 9.01 7.80 7.60 8.50
fi.nl 35.09 18.99 12.97 9.29 7.88 8.00 8.48

COOL 34.97 18.63 10.36 6.82 4.10 3.33 -
ANL 29.90 15.27 8.20 4.67 2.98 2.70 -

Table 4.12: Execution Times for Panel Cholesky on DASH (seconds)

4.6. PANEL CHOLESKY 141

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.at

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo

|

0
|

8
|

16
|

24
|

32

|0

|8

|16
|24

|32

 Processors

 S
pe

ed
up

mi.nl

Figure 4.38: Speedups for Panel Cholesky on DASH

The ANL macro package and COOL versions of this application differ substantially from
the Jade version. The ANL macro package and COOL are explicitly parallel programming
systems that allow the programmer to control the computation at a low level. Both the ANL
macro package and COOL versions exploit this control to use a highly tuned, application-
specific concurrency exploitation algorithm. This algorithm first analyzes the structure
of the matrix in a preprocessing phase, then uses the extracted information to drive an
application-specific task queue algorithm that generates the parallel computation. The Jade
version, on the other hand, contains neither a preprocessing phase to extract scheduling
information about the computation nor an application-specific task queue algorithm. It
instead uses the general-purpose concurrency exploitation algorithms embedded in the Jade
implementation. While the Jade approach places less of a burden on the programmer, for
this application it also generated poorer performance than the explicitly parallel approach.

We next analyze the factors that contribute to the poor performance of the Jade versions.
The first factor is an inherent lack of concurrency in the application. Even for the ANL
version the maximum speedup is less than 10 for a 24 processor run, with much of the
performance loss caused by an inherent lack of concurrency [113].

A second performance factor is that the general-purpose object queue and task queue
algorithms in the Jade implementation are less efficient than the special-purpose algorithms
used in hand-coded implementations. The overhead associated with the Jade synchroniza-
tion and scheduling algorithms is especially severe for this application because much of
it is serialized – the Jade version of Panel Cholesky creates tasks sequentially. While the
sequential task creation is not itself the critical path (even for the fastest runs the sequential
task creation time takes only about one half of the total execution time), it may delay the
creation of enabled tasks. This delayed enabled task creation wastes concurrency, poten-
tially hurting the performance if an idle processor could have executed the task sooner. The
mechanism in the Jade implementation that suppresses excess task creation (see Section
3.5.3) may exacerbate this effect. This mechanism suspends any task that creates a child
task when the number of outstanding tasks is above a suspension threshold, preventing the
implementation from searching for parallel tasks beyond a limit imposed by the suspension

142 CHAPTER 4. APPLICATIONS EXPERIENCE

threshold. This wastes concurrency when, in fact, executable tasks exist beyond the limit.
In the current Jade implementation the task suspension threshold is set to 800 tasks, with

the execution of suspended tasks resuming when the number of outstanding tasks drops
below 700. At this threshold the implementation often suspends the main thread (which
creates all of the child tasks) to avoid excess task creation. For example, on 32 processors
the main thread in the fi.at version suspended 27 times to avoid excess task creation. We
explore the effect of the suspension mechanism by raising the task suspension threshold.
We first decrease the default number of declarations per task from 10 to 3. This reduces
the amount of memory per task from 552 bytes to 352 bytes, which in turn reduces the task
data structure impact on the memory system. Reducing the default number of declarations
to 3 while keeping the task suspension threshold at 800 reduces the running time on 32
processors from 5.76 seconds to 4.98 seconds for the fi.at version. Raising the threshold
to 3200 tasks (resuming when the number of outstanding tasks drops below 3100 tasks)
eliminates any task suspension effects. At this threshold no task is ever suspended to avoid
excess task creation, and the running time on 32 processors drops to 4.86 seconds. Our
conclusion is that raising the task suspension threshold above 800 has little effect on the
overall performance of the application.

We next consider locality effects. We start our analysis by presenting the task locality
percentages for the versions with explicit task placement, with the locality heuristic and
without the locality heuristic. As Figure 4.39 illustrates, the version with explicit task
placement always executes tasks on their target processors, while the version with the
locality heuristic sometimes moves tasks off their target processors in an attempt to balance
the load. The version with the locality heuristic still, however, has a much higher task
locality percentage than the version without the locality heuristic.

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.at

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.lo

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.nl

Figure 4.39: Task Locality Percentages for Panel Cholesky on DASH

On DASH, a decrease in the locality of the computation will show up as an increase in
the time spent in the application code – the tasks will spend more time accessing remote
data. We present the impact of the locality optimization level using graphs of the normalized

4.6. PANEL CHOLESKY 143

application time like those in Figure 4.40. Each curve on the graph plots, as a function of the
number of processors executing the computation, the total amount of time spent executing
application code divided by the stripped execution time.7 For example, a normalized
application time of two means that the parallel execution spent twice as long executing
application code as did the stripped version. Because the stripped and parallel versions
execute the same instructions in the application code, any differences between the stripped
time and the total time spent executing application code are caused only by memory system
effects.

|

0
|

8
|

16
|

24
|

32

|0

|1

|2

|3

 Number of Processors

 N
or

m
al

iz
ed

 A
pp

lic
at

io
n

T
im

e

fi.at
|

0
|

8
|

16
|

24
|

32

|0

|1

|2
|3

 Number of Processors

 N
or

m
al

iz
ed

 A
pp

lic
at

io
n

T
im

e

fi.lo
|

0
|

8
|

16
|

24
|

32

|0

|1

|2

|3

 Number of Processors

 N
or

m
al

iz
ed

 A
pp

lic
at

io
n

T
im

e

fi.nl

Figure 4.40: Normalized Application Time for Panel Cholesky on DASH

As Figure 4.40 illustrates, decreases in the task locality percentage are correlated with
increases in the corresponding normalized application times, which in turn are correlated
with increases in the overall execution times. We therefore attribute the differences in
overall execution times between the versions that use different locality optimization levels
to memory system effects that lead to differences in the amount of time spent executing
application code.

7These graphs are generated using the timers described in Section 4.3.

144 CHAPTER 4. APPLICATIONS EXPERIENCE

4.7 Ocean

The computationally intensive part of Ocean uses an iterative method to solve a set of spatial
partial differential equations. It stores the state of the system in several two-dimensional
arrays. On every iteration the solver recomputes each element of the array using a standard
five-point stencil algorithm. The new value of the element depends on its old value and
on the values of the four elements above it, below it, to the left of it and to the right of it.
The solve terminates when the differences between the old values and the new values drop
below a given threshold.

The programmer parallelized this application by assigning contiguous blocks of columns
to different tasks. The tasks recompute the values of the elements in their blocks, concur-
rently writing the new values back into the blocks.

To express this computation in Jade the programmer explicitly decomposed the arrays so
that the concurrent writes go to different shared objects. This decomposition is complicated
by the fact that two tasks must access the boundary elements. The programmer handles
this situation by decomposing the arrays along one dimension into block objects and border
objects as illustrated in Figure 4.41. The decomposition takes place under the control of a
granularity parameter. The number of blocks is typically the same as the number of proces-
sors executing the program minus one. The programmer uses the create at object
construct to explicitly allocate each block and an adjacent border into the same memory
module. Adjacent blocks are allocated in the memories associated with adjacent processors
starting at the second processor.8

The resulting Jade computation behaves as follows. In each iteration of the solve phase,
the main thread generates a new task for each block of the decomposed array. Each task
processes its data from left to right, first accessing the left border, then the interior, then the
right border. The tasks are created from right to left, which exposes the concurrency in the
computation. For the version with explicit task placement the programmer places each task
on the processor in whose memory the task’s block was allocated.

The solve converges when the change in every element in the array is less than a given
tolerance. Each task has its own convergence flag, which is set when the change in all of
the task’s elements is less than the tolerance. The main thread tests for convergence by
testing each convergence flag in turn. If all of the flags are set, the main thread proceeds on
the next phase of the computation. As soon as it finds a flag that is not set, it creates the set
of tasks for the next iteration of the solve.

8Ocean has a small grain size and creates tasks sequentially. For such applications the best performance is
obtained by devoting one processor to creating tasks. Allocating no blocks or boundaries on the first processor
biases the locality heuristic away from executing worker tasks on the processor that creates the tasks.

4.7. OCEAN 145

borders

blocks

Figure 4.41: Ocean Data Decomposition

4.7.1 Ocean on the iPSC/860

Table 4.13 contains the running times for Ocean on the iPSC/860. Figure 4.42 contains
the corresponding speedup curves. The timing runs are for a 192 by 192 grid and omit an
initialization phase. The maximum performance occurs for the mi.at version executing 12
processors with a speedup of 3.4.

On this platform the limiting factor is the management overhead on the main processor.
We show that this is the limiting factor by measuring the amount of time that the main
processor spends waiting for the right to access the convergence flags of tasks executing
on other processors in the version with explicit task placement. In this version none of
the tasks that actually perform useful work from the application program execute on the
main processor. If the main processor spends a lot of time waiting for the right to access
convergence flags, the limiting factor is the task execution time or communication time on
other processors. If it spends no time waiting for the right to access convergence flags, the
rest of the machine can execute tasks faster than the main processor can generate them,
and the management time on the main processor is the limiting factor. Figure 4.43, which
graphs the amount of time that the main processor spends waiting for the right to access
convergence flags as a function of the number of processors executing the application, shows
that above 12 processors the main processor spends no time waiting for the right to access
convergence flags.9 The limiting factor above 12 processors is therefore the management
time on the main processor.

We next consider the effect of the locality optimization level, which substantially affects
the performance for small numbers of processors. The version with explicit task placement

9This graph is generated by extracting the waiting time on the main processor from the event log. The
waiting time for the 1 processor run is not plotted.

146 CHAPTER 4. APPLICATIONS EXPERIENCE

1 2 4 8 16 24 32
serial 54.19 - - - - - -

stripped 60.99 - - - - - -
mi.at.ab 79.46 67.20 29.32 19.01 24.10 37.62 52.80
fi.at.ab 77.84 67.20 28.98 19.57 24.21 37.06 52.37

mi.lo.ab 77.75 92.49 96.38 60.35 39.15 45.21 56.95
fi.lo.ab 77.71 93.74 95.95 57.28 39.50 44.48 55.96
mi.nl.ab 78.29 101.64 115.50 88.11 58.02 56.94 63.65
fi.nl.ab 78.03 101.33 117.17 84.92 58.76 56.98 63.94
mi.at.nb 63.56 66.20 28.85 18.85 24.35 38.07 53.20
fi.at.nb 63.09 117.22 29.10 19.26 24.67 37.44 52.82

mi.lo.nb 63.13 85.49 94.31 58.79 36.35 45.76 57.60
fi.lo.nb 63.26 88.35 86.07 57.09 39.87 44.07 56.04

mi.nl.nb 65.02 88.44 115.50 84.80 58.64 57.47 64.14
fi.nl.nb 63.67 88.05 117.35 83.65 57.64 57.10 64.09

Table 4.13: Execution Times for Ocean on the iPSC/860 (seconds)

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.at.ab

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo.ab

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl.ab

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.at.nb

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo.nb

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl.nb

Figure 4.42: Speedups for Ocean on the iPSC/860

4.7. OCEAN 147

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors W
ai

tin
g

T
im

e
(s

ec
on

ds
)

fl.at.nb

Figure 4.43: Waiting Times for Ocean on the iPSC/860

performs better than the version with the locality heuristic, which in turn performs better
than the version without the locality heuristic. For larger numbers of processors the locality
optimization level has less of an effect, and at 32 processors the times are almost identical
for all of the versions. We first explore the locality effect by presenting, in Figure 4.44,
the task locality percentages. These percentages show that the locality heuristic has trouble
placing tasks on the target processor for small numbers of processors, but does much better
for larger numbers of processors. The graphs of the mean communication volume in Figure
4.45 show the effect of the locality optimization level on the communication. Each graph
plots the sum of the sizes of all messages carrying shared objects divided by the number of
processors performing the computation. The differences in the amount of communication
per processor are correlated with the number of tasks executed on their target processor.
The versions without explicit task placement generate significantly more communication
than the version with explicit task placement.

Our analysis of the amount of time each processor spends waiting for the right to access
convergence flags helps to explain the locality data. At small numbers of processors the
limiting factor in the performance is how fast the tasks complete their execution. If the
execution is delayed by poor locality (which forces the implementation to fetch more remote
objects before executing the task), it shows up in the overall performance. At larger numbers
of processors the limiting factor is the overhead at the main processor. If the execution of
the child tasks is delayed by poor locality, it will have no effect on the overall performance
– even if the task is delayed it will still finish before the main thread needs to access its
convergence flag.

148 CHAPTER 4. APPLICATIONS EXPERIENCE

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.at.ab

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.lo.ab

|

0
|

8
|

16
|

24
|

32

|0

|25

|50
|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.nl.ab

Figure 4.44: Task Locality Percentages for Ocean on the iPSC/860

|

0
|

8
|

16
|

24
|

32

|0

|50

|100

|150

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s)

fi.at.ab

|

0
|

8
|

16
|

24
|

32

|0

|50

|100

|150

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s)

fi.lo.ab

|

0
|

8
|

16
|

24
|

32

|0

|50

|100

|150

 Number of Processors

 C
om

m
un

ic
at

io
n

(M
by

te
s)

fi.nl.ab

Figure 4.45: Mean Communication Volume for Ocean on the iPSC/860

4.7.2 Ocean on DASH

Table 4.14 contains the execution times for Ocean on DASH. Figure 4.46 contains the
corresponding speedup curves. The maximum performance occurs in the mi.at version on
24 processors with a speedup of 12.7. We were also able to obtain performance results for an
explicitly parallel version written in COOL [30]. The COOL version performs significantly
better than the Jade versions for larger numbers of processors. We attribute the performance
difference to serialized task management overhead in the Jade versions.

We next explore the performance of the Jade versions. Like on the iPSC/860, the limiting
factor on the performance of the DASH version with explicit task placement is the task
management overhead on the main processor. But since DASH supports a more efficient
Jade implementation than does the iPSC/860, the DASH performance is substantially better
than the iPSC/860 performance. We can determine how the serialized task management
overhead on the main processor affects the performance by computing the percentage of

4.7. OCEAN 149

1 2 4 8 16 24 32
serial 102.99 - - - - - -

stripped 100.03 - - - - - -
mi.at 104.27 105.44 35.98 16.21 9.18 7.88 9.87
fi.at 105.21 105.36 36.36 16.14 9.24 8.39 10.71

mi.lo 104.13 99.58 37.24 25.00 17.69 14.13 13.21
fi.lo 105.33 99.22 37.79 25.30 17.58 14.52 13.26
mi.nl 104.20 99.41 38.65 31.06 22.31 18.69 16.89
fi.nl 104.51 99.20 38.97 31.21 22.31 18.88 17.31

COOL 104.99 53.56 28.36 14.57 7.54 5.40 4.75

Table 4.14: Execution Times for Ocean on DASH (seconds)

|

0
|

8
|

16
|

24
|

32

|0
|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.at

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.lo

|

0
|

8
|

16
|

24
|

32

|0

|8

|16

|24

|32

 Processors

 S
pe

ed
up

mi.nl

Figure 4.46: Speedups for Ocean on DASH

time that the main processor spends executing code from the Jade implementation.10 Figure
4.47 graphs these percentages as a function of the number of processors for several versions
of Ocean. More precisely, each point in this graph is the amount of time spent in the Jade
implementation for a specific execution divided by the total running time for that execution
times 100. The larger the percentage, the closer the task creation time comes to being the
limiting factor on the performance. In fact, the serialized task management on the main
processor is just barely the limiting factor for the version with explicit task placement. For
the versions with and without the locality heuristic the main processor does not spend the
entire execution time creating tasks, so the longer task execution times hurt the performance.

We next explore the effect of the locality optimization level, which has a significant
impact on the performance. The versions with explicit task placement run significantly faster
than the versions that use the locality heuristic, which in turn run significantly faster than the

10This data comes from the timers described in Section 4.3.

150 CHAPTER 4. APPLICATIONS EXPERIENCE

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
C

re
at

io
n

Pe
rc

en
ta

ge

fi.at
|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
C

re
at

io
n

Pe
rc

en
ta

ge

fi.lo
|

0
|

8
|

16
|

24
|

32

|0

|25

|50
|75

|100

 Number of Processors

 T
as

k
C

re
at

io
n

Pe
rc

en
ta

ge

fi.nl

Figure 4.47: Task Creation Percentages for the Main Processor – Ocean on DASH

versions without the locality heuristic. The task locality percentages presented in Figure
4.48 show that the overall performance is correlated with the task locality percentages;
the normalized application times presented in Figure 4.49 show that the total amount of
time spent executing application code goes up dramatically as the locality decreases. We
therefore attribute the differences in running times to the differing time spent in the user
application due to memory system effects.

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.at

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.lo

|

0
|

8
|

16
|

24
|

32

|0

|25

|50

|75

|100

 Number of Processors

 T
as

k
L

oc
al

ity
 P

er
ce

nt
ag

e

fi.nl

Figure 4.48: Task Locality Percentages for Ocean on DASH

4.8 Programming Evaluation

Our applications experience shows that the key to developing successful Jade applications
is devising and implementing an appropriate structure for the shared objects. Given such a
structure, inserting the with and withonly constructs and the access specifications is a
straightforward process that involves little coding effort.

4.8. PROGRAMMING EVALUATION 151

|

0
|

8
|

16
|

24
|

32

|0

|1

|2

|3

|4

 Number of Processors

 N
or

m
al

iz
ed

 A
pp

lic
at

io
n

T
im

e

fi.at
|

0
|

8
|

16
|

24
|

32

|0

|1

|2

|3

|4

 Number of Processors

 N
or

m
al

iz
ed

 A
pp

lic
at

io
n

T
im

e

fi.lo
|

0
|

8
|

16
|

24
|

32

|0

|1

|2
|3

|4

 Number of Processors

 N
or

m
al

iz
ed

 A
pp

lic
at

io
n

T
im

e

fi.nl

Figure 4.49: Normalized Application Time for Ocean on DASH

In all of our applications the major data structure modifications were designed to enable
concurrent writes. In Water, String and Search the programmer explicitly replicated the
result data structure to enable parallel tasks to concurrently write the replicas instead of
serially writing the original. In Volume Rendering each task allocated private temporary
storage to hold the results of the image pixel calculation. This modification allowed the
computation to replace serialized writes to the original image data structure with concur-
rent writes to the private data structures. In Panel Cholesky and Ocean the programmer
decomposed a central data structure so that the tasks could concurrently write different
parts.

Even though all of the applications substantially modified some of the original data
structures, the programming overhead associated with performing the modifications varied
widely from application to application. For all of the applications except Ocean the
modifications were confined to small, peripheral sections of the code, and there was little
programming overhead associated with the use of Jade. The key to the success of these
applications was the programmer’s ability to preserve the original data indexing algorithm
for the core of the computation.

For Ocean, on the other hand, the array decompositions generated wholesale changes
throughout the entire program. The programmer had to change the basic indexing algorithm
for almost all of the program’s data and the program almost tripled in size. It is interesting
that decomposition does not always generate such a large amount of programmingoverhead.
In Panel Cholesky, for example, the decomposition of the array used to hold the factored
matrix had very little effect on the overall structure of the program. Again, the key
determining factor is whether or not the programmer has to change the indexing algorithm
in the core of the computation.

The preceding discussion focuses on the specific properties of the parallelization visible
in the final Jade version of each application. While we believe such an analysis can provide
useful insight into how the language structures the program, it misses the dynamic nature

152 CHAPTER 4. APPLICATIONS EXPERIENCE

of the interaction between the language, the programmer and the application during the
program development process. Although we only have anecdotal data about this process,
our experience using Jade leads us to believe that several aspects of Jade help programmers
successfully navigate the program parallelization process.

Parallel program development proceeds most smoothly when the development can
proceed via a sequence of small, incremental modifications to a working program, with the
programmer checking the correctness of each modification before proceeding on to the next.
Because the parallelization often requires a major restructuring of some part of the program,
the programmer often reaches a stage where he must make several major modifications
without being able to test any modification until all are performed. If anything goes wrong
with one of the modifications it can be difficult to isolate the resulting bug because it could
have been caused by any one of the multiple changes.

Jade programmers typically develop a program in two stages. In the first stage they start
with a serial program that performs the desired computation, then apply the data structure
modifications required for the Jade parallelization. They then insert the Jade constructs
required to parallelize the program. The major modification stage, if there is one, occurs
when the programmer makes the data structure modifications. It is always possible to
incrementally insert the Jade constructs with no fear of changing the program’s behavior.
Furthermore, deterministic execution ensures that a single run completely characterizes a
program’s behavior on a given input, which supports the incremental development process
by making it easier to verify the correctness of each modification.

An interesting aspect of this program development process is that the potentially trou-
blesome phase takes place before the programmer ever deals with the complication of
parallel execution. The programmer can therefore use all of the existing infrastructure for
the development of serial programs and can count on deterministic execution to simplify
the debugging process. Our experience developing Jade applications combined with our
previous experience developing explicitly parallel applications showed us that this approach
can make it much easier to develop working parallel programs.

4.9 Performance Evaluation

The coarse-grain Jade applications (Water, String and Search) all perform quite well. The
computations are inherently well suited for parallel execution and the use of Jade entails no
significant performance penalty.

The finer-grain computations (Panel Cholesky and Ocean) have significant performance
problems, especially on the iPSC/860 platform. While some of these performance problems
are caused by inherent limitations of the applications and computational platforms, the Jade
overhead has a substantial negative impact on the performance of both applications on both
platforms. In particular, the serialized overhead on the main processor is a Jade-specific

4.9. PERFORMANCE EVALUATION 153

problem that limits the performance of both applications.

For Ocean an improved implementation would eliminate virtually all of the dynamic Jade
overhead. Static analysis would allow the implementation to discover the basic concurrency
pattern of the computation and generate code that is substantially more efficient. The
resulting optimized computation would generate one large task per block for each solve
phase. This task would repeatedly recompute its new values, periodically synchronizing
with the tasks to its left and right. This would eliminate the serial task management
bottleneck and substantially improve the performance of the computation.

Given the dynamic, data-dependent nature of the Panel Cholesky computation, however,
there is very little hope for improvement from static analysis. No existing or envisioned
compiler technique could automatically extract enough information from the program to
substantially reduce the dynamic Jade overhead. A maximally efficient implementation
therefore seems to require the knowledge, insight and programming effort that only a
skilled programmer using an explicitly parallel language can provide.

The Volume Rendering application exposed several limitations of the current Jade imple-
mentation. The most severe limitation was the fact that the message-passing implementation
requires each accessed shared object to fit into the memory of the accessing processor. Be-
cause the voxel array is too large to fit in the per-node memories of the iPSC/860, the
application would not run on that platform. An implementation that distributed the storage
for individual objects across the memories of the machine would eliminate this limitation.
Volume Rendering also illustrated how the inability to express concurrent writes to the same
object can limit the performance. This inability lead to the serial copyback phase, which
substantially impaired the DASH performance.

We next consider the performance impact of the various optimizations. The only com-
munication optimization that has a major impact on all the applications is replicating data
for concurrent read access. Because all of the tasks in all of the applications concurrently
read at least one shared object, eliminating this optimization would serialize the computa-
tion. On the iPSC/860 the adaptive broadcast optimization enhances the performance of
the Water code. For the other applications the optimization has little effect, either positive
or negative.

Only two of the applications (Water and Panel Cholesky) are sensitive to locality
optimizations. While the locality heuristic enhances the performance of these applications,
they perform best with explicit task placement. The performance difference is not caused
by the programmer applying a different locality strategy: the implementation’s locality
heuristic attempts to place tasks on the same processors as the programmer. For these
applications the dynamic load balancing algorithm adversely affects the performance by
prematurely moving tasks away from the processor that owns the locality object. This
suggests that the implementation might be better off using a less aggressive load balancing
algorithm.

154 CHAPTER 4. APPLICATIONS EXPERIENCE

4.10 Conclusion

Our applications experience shows that the current version of Jade is a qualified success.
For all but one application the use of Jade entails limited programming overhead. The
coarse-grain computations perform very well, with the dynamic Jade overhead having no
significant impact on the performance. The finer-grain computations suffer from some
Jade-specific performance problems, but some of these could be eliminated with a more
advanced Jade implementation.

Chapter 5

Parallel Programming Systems

In this chapter we broaden our focus to discuss the design space for parallel programming
systems. We structure the presentation by developing a classification of these systems,
illustrating the strengths and weaknesses inherent in the different design points by discussing
existing representative systems. As the discussion progresses, several recurrent themes
emerge. The first theme is the fundamental design conflict between control and programmer
support.

As described in Chapter 1, parallel machines present a complex execution model. A
parallel programming system simplifies this execution model by enforcing a given pro-
gramming paradigm. The paradigm structures the way the programmer thinks about the
computation and increases the safety of the environment by eliminating certain kinds of er-
rors. It may enhance portability by restricting the programmer to constructs implementable
on a wide range of machines. Finally, it can reduce the programming burden by enabling
the implementation to automatically perform parts of the parallelization process. This
programming support can make it much easier to develop parallel applications.

The simplified paradigm inevitably hides some aspect of the hardware functionality.
The Jade programming paradigm, for example, ostensibly hides the fact that the machine
has multiple processors. Functional languages hide the fact that the machine has mutable
memory. Such restrictions prevent the programmer from directly expressing computations
that control the hidden aspects of the machine. The programmer must therefore rely on
the system to automatically exploit the hidden functionality. But the general-purpose al-
gorithms characteristic of automatic systems can be much less efficient than the highly
optimized, application-specific algorithms that motivated programmers generate. The sup-
portive programming paradigm can quickly become a straightjacket if the needs of the
application do not match the capabilities of the system. Many of the distinctions in our
classification separate systems that take different positions on the division of responsibility
between the programmer and the system.

A second recurring theme is the diverse set of implementation approaches that systems

155

156 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

can apply to a given programming model. For example, it is possible to parallelize a serial
program statically using a parallelizing compiler, dynamically using a system like Jade,
or even optimistically using a speculative system like TimeWarp [70, 69]. The different
approaches often reflect perturbations back into the programming model as the systems
either impose additional restrictions that enable specific implementation techniques or
require the programmer to help by providing extra information about the program. The
finer distinctions in our classification often separate systems that implement the same basic
programming model in different ways.

Before we present our classification, we should inform the reader about the scope of
our discussion. There are many reasons to include parallelism in a programming model.
For example, the programmer may wish to execute parts of a program concurrently for
performance, manage the interaction of autonomous components in a physically distributed
system, or express an event-driven computation in a language with explicit support for
multiple agents that interact via events. These different motivations generate radically
different design trade-offs. An analysis of how well a system works for one purpose
usually has very little relevance for other purposes. In this chapter we only discuss parallel
programming systems that are designed to exploit concurrency for performance, and only
analyze the systems from this perspective.

5.1 The Major Groups

We classify parallel programming systems into three major groups: systems with serial
semantics, monotonic systems and explicitly parallel systems. Systems with serial seman-
tics start with a program written in a serial language. Parallel execution comes either from
executing independent parts of the program concurrently or from within the basic operations
of the language. This group includes serial languages such as Fortran and C implemented
by a parallelizing compiler, Fortran D [42], languages such as Jade and FX-87 [87, 47] that
provide information about how a serial program accesses data, data-parallel languages like
C* [111, 112] and Fortran 90 [92], and speculative systems like Time Warp [70, 69] and
ParaTran [132].

The monotonic group consists of systems whose basic computational model is the
monotonic accumulation of information over the course of the computation. Each operation
may wait for some information to become available, then generate additional information.
Id [101], functional languages such as Haskell [67] and Sisal [38] and concurrent logic
programming languages such as Strand [40] and Parlog [50] are in this group.

The explicitly parallel group includes systems in which the program explicitly generates
parallel tasks. The tasks then synchronize and communicate using mechanisms such as
locks, barriers, message-passing operations and/or shared memory. Packages like PVM

5.2. SERIAL SEMANTICS 157

[130], Presto [17] and the ANL macro package [88] focus on providing very basic, low-
level primitives used to create and coordinate parallel execution. Languages like Occam
[86, 27], CSP [64, 63], CML [106] and Modula-3 [98] integrate concurrency generation
and synchronization primitives into the language. Concurrent object-oriented languages
like COOL [30], Orca [9], POOL-T [5] and ABCL/1 [136] hide such primitives behind
higher-level constructs.

5.2 Serial Semantics

Much of the complexity of parallel execution comes from the fact that parallel tasks can
generate many different interleavings of the basic operations, with each interleaving gen-
erating a potentially different behavior. To understand the program, one must take all of
the different behaviors into account. Expressing the computation in a serial language, how-
ever, imposes a total order on the operations and the program only generates one behavior.
From the programmer’s perspective this dramatic simplification makes it much easier to
reason about what the program may do. From the system’s perspective it imposes the
often considerable challenge of automatically generating parallel execution from a serial
program.

We divide the serial semantics group into two major groups: the data-parallel group
and the imperative group. The data-parallel group contains systems that execute programs
written in data-parallel languages. The imperative group contains systems that automatically
parallelize programs written in standard imperative languages such as Fortran or C. The
system may support language extensions that programmers use to guide the parallelization
process.

Within the imperative group we classify systems based on their implementation ap-
proaches. The first division separates this group into the speculative group and the conser-
vative group. Speculative systems optimistically generate parallel execution, preserving the
serial semantics by undoing the effect of prematurely executed tasks. Conservative systems,
on the other hand, delay each task’s execution until they know the execution will violate
no dependences. The conservative group includes both static and dynamic systems. Static
systems analyze the program before it runs and generate a parallel program that exploits
the concurrency available at compile time. Dynamic systems analyze the program at run
time and exploit concurrency as the program runs.

5.2.1 Data-Parallel Systems

Data-parallel languages such as Fortran 90 [92] and C* [111] provide a useful paradigm
for programs with regular, data-parallel forms of concurrency. Programmers using these
languages view their program as a sequence of operations on large aggregate data structures

158 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

such as sets or arrays. The system can execute each aggregate operation in parallel by
performing the operation on the individual elements concurrently. This approach preserves
the advantages of the sequential programming paradigm while exposing the concurrency
available within operations.

5.2.2 Static Systems

Static systems have been built for a wide range of languages. The most ambitious systems
are parallelizing compilers, which attempt to automatically parallelize programs written in
standard serial languages. More pragmatic systems expect the programmer to guide parts of
the parallelization process. The programmer may help the system analyze the program by
providing information about how the program structures and accesses data, or make policy
decisions about the distribution of tasks and data to processors and memories.

5.2.2.1 Parallelizing Compilers

Parallelizing compilers [10, 78, 79, 4] statically analyze programs to find independent pieces
of code. The compiler then generates a parallel program that executes the independent pieces
of code concurrently. In message-passing environments the compiler also maps the data
onto the processors and generates the communication operations required to transfer remote
data to accessing processors.

Automatically parallelizing serial programs is an extremely challenging task [21]. De-
spite years of research in this area, several important problems remain to be solved before
it is practical to use a compiler to automatically exploit the concurrency in parallelizable
computations. For regular applications the fundamental problem is performing the global
analysis required to generate tasks large enough to amortize the concurrency exploitation
overhead. Experience manually applying automatable techniques across multiple proce-
dure boundaries suggests that it is possible for a compiler to successfully parallelize the
computation if it increases its scope to include large sections of the program [53, 21].

For irregular programs there are problems performing dependence analysis that is precise
enough to expose the concurrency. While compilers can often successfully analyze the
data access patterns of loop nests that manipulate dense matrices [91, 90], automatically
analyzing the access patterns of programs that manipulate dynamically linked data structures
or use indirect array indices remains an open research problem.

Another unsolved problem is determining how to coordinate the mapping of data and
computation to memory modules and processors [6]. For good performance, the compiler
must evenly balance the computational load and avoid uncoordinated mappings that gen-
erate excessive communication as processors repeatedly fetch remote data. The problem
becomes especially complex when different parts of the program access data in different
ways. Fortran D [42] and High Performance Fortan [60] allow programmers to guide

5.2. SERIAL SEMANTICS 159

the mapping process by providing constructs that specify how to distribute arrays across
multiple memory modules. The compiler can then use the data distribution to generate a
mapping of computation to processors via the owner computes rule.

Finally, a fundamental limitation on parallelizing compilers is that there may not be
enough information available at compile time to generate parallel code. If, for example, the
concurrency depends on the input data the compiler will be unable to statically parallelize
the program.

5.2.2.2 Data Usage Extensions

Researchers have also developed languages that allow programmers to provide extra infor-
mation about how the program structures and accesses data. The goal is to expose more
concurrency by improving the precision of the compiler’s dependence analysis.

Refined C [76] and Refined Fortran [75, 36] allow programmers to create sets of variables
that refer to disjoint regions of memory. When pieces of code access disjoint subsets of
such variables, the compiler can statically verify that they can execute concurrently. Typical
operations are creating a set of names that refer to disjoint regions of an array and creating
an array of pointers that point to distinct data structures.

ADDS [59] declarations for data structures containing pointers to dynamically allocated
data allow programmers to describe the set of data structures that can be reached by following
different pointer chains. The compiler combines this information with an analysis of the
pointer-chain paths that different parts of the computation follow to derive a precise estimate
of how the computation will access data. The improved precision of the dependence analysis
can expose additional opportunities for parallel execution.

FX-87 [87, 47] contains constructs that programmers use to specify how procedures
access data. The system statically analyzes the program, using this information to determine
which procedure calls can execute concurrently without violating the serial semantics.
FX-87 programmers partition the program’s data into a finite, statically determined set
of regions. The access specification and concurrency detection take place statically at
the granularity of regions. The fact that regions are a static concept allows the FX-87
implementation to check the correctness of the access specifications at compile time. But
regions also limit the precision of the data usage information. In general, many dynamic
objects must be mapped to the same region, preventing the programmer from expressing
concurrency available between parts of the program that access disjoint sets of such objects.
An analysis of the concurrency in FX-87 programs [56] found that they failed to exploit
important sources of concurrency because they mapped many pieces of data to the same
region. The problem was especially severe for programs in which the main potential source
of concurrency scaled with the size of the input problem. Because the number of regions
was determined by the programs, not the input data, they could not exploit this source of
concurrency.

160 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

5.2.3 Dynamic Systems

Unlike the static systems described above, dynamic systems analyze the program as it runs,
taking into account the specific values that occur in a given execution. Because dynamic
systems have more information about the computation than static systems, they can often
discover more concurrency. The trade-off is that dynamic analysis generates overhead,
which may degrade the performance.

5.2.3.1 Partial Evaluation

A branch of compiler research has attempted to extend techniques from parallelizing compil-
ers to programs with dynamic, data-dependent concurrency patterns [94, 117, 116, 115, 84].
These compilers use a two-phase partial evaluation approach. The first phase partially eval-
uates part of the program on its input data, then generates and schedules the resulting task
graph and communication operations. The second phase actually executes the computa-
tion. In the best case the partial evaluation overhead can be amortized over many identically
structured instances of a given computation. While this approach can often exploit sources
of concurrency unavailable to traditional parallelizing compilers, it has several fundamen-
tal limitations. The partial evaluation overhead limits the available concurrency because
the partial evaluation phase must complete before any tasks execute. This overhead can
become especially severe if the partial evaluation phase must perform a large part of the
total computation to determine the task graph. Another limitation is that the computation
may generate a task graph too large to represent explicitly, in which case it is impossible to
parallelize the program using this technique.

5.2.3.2 Online Systems

Online systems, such as the current Jade implementation, overlap the generation, analysis
and execution of parallel tasks. This overlap allows programs to effectively exploit forms
of concurrency in which the structure of part of the computation depends on data generated
in previous tasks. Online systems can also regulate the amount of storage devoted to
outstanding tasks. If a program starts to consume an excessive amount of task storage,
the implementation can temporarily suspend the part of the computation responsible for
the excessive task generation. Section 3.5.3 describes the algorithm that the current Jade
implementation uses.

Online systems relax an artificial limit that partial evaluation places on the exploited
concurrency. There is no need to complete a partial evaluation phase before starting the
execution of tasks from the computation phase. Even in online systems, however, the need to
discover how the computation accesses data can limit the amount of exploited concurrency.
Before an online system executes a task it dynamically analyzes the preceding computation

5.2. SERIAL SEMANTICS 161

to ensure that the task’s execution will violate no dependence. The time required to perform
this analysis unnecessarily delays the execution if there was, in fact, no dependence.

There is a final problem having to do with the precision of the data access information.
Even at run time the system may be unable to determine exactly which pieces of data each
task will access without actually executing the task. When the system performs the analysis
it must therefore use a conservative approximation of the task’s actual accesses. This lack of
precision can force the system to unnecessarily delay a task’s execution because of potential
dependences that fail to materialize in the actual computation.

5.2.4 Speculative Systems

Speculative systems optimistically assume that tasks can execute concurrently, then use
rollback mechanisms to undo the effect of tasks that violate dependence constraints. In
effect, the dependences are discovered only as the tasks execute, and active enforcement of
the dependences via rollback occurs only when a violation has been detected. Both the Time
Warp system for distributed simulation [70, 69] and the ParaTran system for parallelizing
serial Scheme code [132] use a speculative approach.

Speculative systems can exploit concurrency available in programs that conservative
approaches can not effectively analyze. Speculative systems have no need to analyze the
preceding computation before executing a task, and can execute tasks concurrently even
if they have potential dependences. If most of the dependences fail to materialize in the
actual computation, the speculative approach successfully parallelizes the computation.
The major disadvantage of this approach is the overhead required to detect dependence
violations, to maintain enough information to undo the effect of prematurely executed tasks
and to actually perform the rollbacks. The rollback overhead can become especially severe
if the parallel execution frequently violates the precedence constraints.

5.2.5 Discussion

Systems with serial semantics preserve many of the substantial programming advantages of
serial programming languages. They present a simple, familiar programming model based
on the abstraction of a single thread of control. Unlike programmers using explicitly parallel
systems, programmers that use these systems neither generate concurrency management
code nor struggle with complex phenomena such as deadlock or transient timing-dependent
bugs.

Part of the price for this supportive programming environment is paid in efficiency. To
safely generate parallel execution, the system must know how the different parts of the
program access data. There are three ways to discover this information, each of which can
impose substantial performance loss.

162 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

� Static Analysis The problem with static analysis is that there may not be enough
information available at compile time to determine if is possible to parallelize the
program. If there is any uncertainty the system must conservatively generate serial
code. This serialization wastes concurrency when the computation could actually
execute in parallel.

� Dynamic Analysis Analyzing the program dynamically can dramatically improve
the precision of the data usage information and enable the exploitation of much more
concurrency. But dynamic analysis also generates overhead, which can artificially
limit the performance of the resulting parallel computation.

� Speculation The system can optimistically assume that tasks can execute concur-
rently. The problem with this approach is the dynamic overhead required to detect
and roll back illegal parallel executions.

For a given application a skilled programmer may be able to develop special-purpose
synchronization and concurrency generation algorithms that alleviate the performance prob-
lems. But the system cannot give the programmer the control required to express such
algorithms without destroying the ostensibly serial programming model and forfeiting all
of the advantages that go with it. This situation illustrates the fundamental conflict between
providing a safe programming environment and allowing the programmer to control the
parallel computation at a low level for efficiency.

A final issue is that some parallel algorithms adjust their behavior to the relative exe-
cution times of different parts of the program. For example, the region of the search space
explored by a parallel branch-and-bound algorithm depends on how fast the tasks improve
the bound. As the precise timing of the bound improvement varies from run to run, the
program explores different regions of the search space. Programmers cannot generate such
computations using systems with serial semantics because it is impossible to express the
algorithms in a serial language.

5.3 Monotonic Systems

Systems with serial semantics provide mutable data but simplify the programming model
by eliminating the concept of parallel execution. Monotonic systems, on the other hand,
provide parallel execution but simplify the programming model by eliminating the concept
of mutable data. More specifically, monotonic systems are built on the abstraction of
information. Computation consists of reading information (suspending if it has yet to be
generated) and generating additional information. Information therefore monotonically
accumulates over the course of the computation. Each system has its own information
domain; computations in each system derive part of their meaning from the underlying
domain.

5.3. MONOTONIC SYSTEMS 163

In monotonic systems a variable’s value does not change over the course of the compu-
tation – it only becomes more defined. Computation in monotonic languages is therefore
inherently parallelizable. All operations can execute concurrently without conflict. The
only required synchronization is implicit in the way the operations read information. The
computation proceeds in an information-driven fashion. When one operation generates
information that satisfies a second operation’s information request, the second operation
executes, generating further information or computation. We next present a brief summary
of several different monotonic languages, then summarize the strengths and weaknesses of
the monotonic approach to parallel computation.

5.3.1 Functional Languages

Programmers using functional languages structure their computation as a set of recursively
defined functions. Variables hold values returned from function invocations and are used
to transfer values between invocations. Because each variable holds only one value during
the course of a computation, the execution of a functional program can be seen as the
progressive generation of information about the values of variables.

5.3.2 Id

One important expressiveness restriction associated with functional languages is that the
value of each variable is generated at a single point in time and space: the function invocation
that determines its value. It is often convenient to generate the individual values that together
comprise a large aggregate at different points in the program’s execution. Id [101] provides
for this functionality via I-structures [8, 102]. I-structures contain write-once elements that
are initially undefined. The program can separately define each element; when an operation
attempts to use an undefined element it suspends until it is defined. It is an error to attempt
to define an element twice.

5.3.3 Concurrent Logic Programming Languages

Concurrent logic programming languages such as Strand [40] and Parlog [50] and their
generalization to the family of concurrent constraint-based programming languages [120,
119] present a model of computation based on constraints. The computation consists of a
set of parallel agents that incrementally impose constraints on the values of the variables.
Agents can also create new parallel agents, suspend until a variable’s value satisfies a given
constraint and choose between different behaviors based on the imposed constraints.

164 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

5.3.4 Discussion

The strengths of monotonic systems are their clean semantics and inherently parallel exe-
cution model. They allow programmers to expose the concurrency in their computations
without having to deal with the complexity of an explicitly parallel programming system.
A major barrier to the widespread acceptance of monotonic languages, however, is the
difficulty of implementing these languages efficiently. The main sources of overhead are
scheduling, memory management and excessive copying. These sources of overhead im-
pose an ever-present performance penalty on the basic form of execution. We discuss these
performance problems in Sections 5.3.4.1, 5.3.4.2 and 5.3.4.3.

There are also expressiveness problems associated with monotonic languages. As
described in [11], the lack of mutable data can force programmers to tediously thread state
through multiple layers of function calls. Updating a single variable can force the explicit
regeneration of large linked data structures. The expressiveness and efficiency problems
have led to hybrid designs which integrate mutable data into monotonic programming
languages. For example, the designers of Id augmented the language with M-structures
(see Section 5.4.2.2). PCN and Compositional C++ (see Section 5.3.5) allow the program
to use mutable data in restricted contexts.

5.3.4.1 Scheduling and Partitioning

Monotonic languages typically expose concurrency at the level of the individual operations
in the language. The scheduling overhead associated with exploiting concurrency at such a
fine-grain level has inspired compiler efforts to partition the operations into larger sequential
tasks [134, 121, 122, 123]. For good performance the partition should generate sufficient
concurrency, minimize communication and successfully amortize the scheduling overhead.

Programs written in lazy functional languages, Id and concurrent constraint languages
generate an unordered set of operations that become enabled and execute in an information-
driven way. The lack of a statically derivable sequential execution order complicates the
process of generating tasks large enough to profitably amortize the scheduling overhead.
Research performed in the context of Id [125, 35, 34] attacks this problem with a two-level
scheduling strategy. The compiler first statically partitions the program into threads. The
run-time system then dynamically schedules related threads into larger-grain units called
quanta. Because executing related threads sequentially is more efficient than interleaving
related and unrelated threads, this strategy drives down the scheduling overhead.

A standard depth-first evaluation strategy will correctly execute any program written in
an eager functional language. It is therefore easy for the partitioning algorithm to generate
tasks large enough to amortize any scheduling overhead. But if the partitioner is not careful,
it may generate tasks that are so large that the resulting partition fails to expose enough
concurrency. The partitioning algorithm must therefore negotiate a trade-off between
concurrency and scheduling overhead. Most of the work in this area has taken place in

5.3. MONOTONIC SYSTEMS 165

the context of the eager functional language Sisal. In particular, Sarkar has developed a
partitioning algorithm for Sisal that negotiates the resulting trade-off between concurrency
and scheduling overhead [121].

MultiLisp [54, 55] relies on the programmer to specify a partitioning. The MultiLisp
future construct allows the programmer to explicitly specify the task granularity by declaring
that a given function invocation should be evaluated concurrently with the computation after
the function. The return value is undefined, and subsequent uses of the return value suspend
until the function completes and defines the value. In the absence of futures the program
executes sequentially.

5.3.4.2 Memory Management

The need to manage memory comes from the fact that programs typically generate many
more values than the memory of the machine can hold. The computation must therefore
reuse memory to execute successfully. Programs written in languages that support mutable
data reuse memory efficiently by overwriting old values with new values. Because mono-
tonic languages eliminate the notion of side effects, the implementation is responsible for
generating the memory reuse.

Garbage collection is one common technique for reusing memory. The lack of side
effects in monotonic languages means that each piece of memory goes through the collector
between writes. Many of the problems associated with garbage collection are the same
for parallel monotonic languages and mostly functional languages such as ML [93, 57].
One potential performance problem is the instruction overhead of garbage collection. A
more serious problem, however, is the interaction with the memory hierarchy. Because
the computation must store each generated value into a new memory location, it consumes
memory very quickly. Because the volume of data accessed between collections is typically
larger than the processor cache, the program exhibits poor locality. In fact, the memory
system performance can be so bad that paging, and not poor processor cache locality, is the
dominant memory system effect [32]. We discuss other strategies for eliminating memory
management overhead in Section 5.3.4.3.

5.3.4.3 The Copy Problem

The lack of mutable data means that programs written in monotonic languages typically
generate more copying overhead than programs written in more conventional languages.
To update a component of a data structure, the program cannot simply generate the new
value and store it back into the original structure. It must instead allocate a new structure to
hold the value and copy the unchanged values from the old structure to the new structure. If
the structure is part of a large linked data structure the program must recursively regenerate
all of the data that pointed to the original (and now obsolete) structure.

166 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

The copy problem has attracted the most attention in the context of functional languages
with arrays. In many of these languages the basic array manipulation primitive takes an
old array and produces a copy of the array with one element replaced with a specified
new element. For large arrays the use of such an operation can generate ruinous copying
overhead. The prospect of incurring such overhead has inspired the development of many
techniques for eliminating the copy.

If the original array is not used in the subsequent computation, the system can update
the array in place instead of generating a copy. It is possible to identify the last use of
each array in the computation by compile-time analysis [49], reference counting [46], a
combination of compile-time analysis and reference counting [66], or by language-level
constructs that ensure that every use of a given array is a last use [51]. Such optimizations
also reduce the memory management overhead since they reuse memory without the trip
through the garbage collector.

One interesting aspect of update-in-place optimizations is that their use reintroduces the
key problem of parallelizing programs that use mutable data: correctly sequencing reads
with respect to writes in the parallel execution. Systems that use this optimization can no
longer blindly evaluate expressions in parallel. They must analyze the generated access
patterns and insert synchronization operations that correctly sequence the evaluation of
expressions that access the updated data structure.

5.3.5 Mutable Data in a Monotonic Context

The efficiency and expressiveness problems associated with a monotonic model of compu-
tation prompted the designers of Strand to support a multilingual model of computation. In
this model programmers use Strand to introduce concurrency and provide synchronization
and communication; languages like C and Fortran are used for the actual pieces of sequen-
tial computation. This approach has the advantage that the vast majority of the computation
is performed in a language that suffers from none of the expressiveness or efficiency prob-
lems associated with monotonic languages. In many cases it also allows programmers to
parallelize existing sequential applications without modifying large sections of code.

The multilingual approach works best when it is natural to structure each task as
a functional module that accepts a set of inputs and generates a set of outputs. This
restricted model of computation meshes well with Strand’s monotonic paradigm. Because
the sequential tasks completely encapsulate their use of mutable data, Strand programmers
can reason about their behavior without leaving the basic Strand computational model.

The approach seems less appropriate, however, when the sequential computations use
mutable memory in an externally visible way – when, for example, two tasks access the
same global variables. In this case there is a fundamental mismatch between the two models
of computation. The Strand programmer is put in the position of synchronizing multiple
reads and writes to mutable data with operations designed to coordinate the production and

5.4. EXPLICITLY PARALLEL SYSTEMS 167

use of information in a monotonic context.
PCN [41, 39] and Compositional C++ [31] more fully integrate mutable data into

the monotonic model of parallel computation. These languages provide both sequential
and parallel composition operators and mutable and definitional (write once) data. They
eliminate the complexity of correctly synchronizing multiple concurrent reads and writes to
mutable data by imposing the restriction that parallel tasks interact only via definitional data.
It is illegal for one parallel task to write a piece of mutable data and another parallel task to
access the same piece of data, although this restriction is not currently enforced. A correct
PCN or Compositional C++ program uses the sequential composition operator (in other
words, a barrier) to serialize the executions of such tasks. From the perspective of parallel
execution it is then possible to view each task as monotonically producing information,
although it may use mutable data to do so.

While PCN and Compositional C++ integrate mutable data into a fundamentally mono-
tonic language without compromising the basic model of computation, the barrier syn-
chronization mechanism that enables this integration limits the range of programs that can
effectively use mutable data. Because it is impossible to implement irregular concurrency
patterns with barriers, the tasks in programs with irregular concurrency patterns cannot
interact using mutable memory.

5.4 Explicitly Parallel Systems

Systems with serial semantics and monotonic systems attempt to eliminate the complex-
ity of parallel programming by imposing radical restrictions on the programming model.
Explicitly parallel systems, on the other hand, accept the basic complexity of an execution
model that includes parallel execution and mutable data. The provided constructs allow
programmers to create parallel tasks and control their interaction. While systems may
impose restrictions for portability or to structure the programming model, the basic thrust
is to let the programmer, rather than the system, manage the parallel execution.

There are two broad categories of explicitly parallel systems: message-passing systems
and shared-memory systems. Tasks in message-passing systems interact by sending and
receiving messages. To send a message a task composes a message containing the appro-
priate data and invokes a send construct, which transfers the data to a specified receiver
task. When the receiver task executes a receive construct the system transfers the data into
the specified variables.

Shared memory systems separate the notions of communication and synchronization.
The tasks communicate implicitly by reading and writing the shared memory. They synchro-
nize using constructs such as locks, barriers and condition variables. Some systems provide
a higher-level but less flexible synchronization interface by augmenting the semantics of
data access to implicitly include synchronization.

168 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

5.4.1 Message-Passing Systems

Message-passing systems have been based on both synchronous and asynchronous send
constructs. Asynchronous sends return immediately, with the system invisibly buffering
the data until the corresponding receive comes along. Actor languages [1, 2, 3], PVM [130]
and the NX/2 system from Intel [104] are based on asynchronous sends. Synchronous sends
block until the corresponding receive executes and the data transfer is complete. CML [106],
Occam [86, 27], CSP [64, 63] and Ada [97] are based on synchronous message-passing
constructs.

An apparent weakness of synchronous message passing is the imposed serialization.
Blocking until the message is received eliminates the possibility of overlapping computation
with communication at the sending task and can impose long delays if the receiver executes
the corresponding receive construct long after the sender sends the message. Systems like
CML, however, reduce the impact of this serialization by allowing the programmer to create
lightweight threads. The program can create a new thread to perform the blocking send
while the main thread continues with the computation.

The message-passing paradigm works best for programs in which each process can
predict when every other process will send it a message. In this case the processes invoke a
blocking receive construct whenever they expect a message, and the computation proceeds
in an orderly, message-driven manner. But the paradigm starts to break down when tasks
need to receive and process messages asynchronously with respect to an ongoing main
computation. This can happen, for example, if a task encapsulates a shared data structure
that other tasks access in an unpredictable way.

One option is to periodically poll for message arrival. The drawback is that inserting
the polling calls imposes programming overhead and executing the polling operations can
degrade the performance. Another option is to set up an interrupt message handler that
gets invoked whenever a message arrives. The hrecv construct in the NX/2 message-
passing package supports this functionality [104]. The drawback is the programming
overhead required to synchronize the main computation with the message handlers. The
synchronization is typically performed at a low level by periodically disabling and re-
enabling the message arrival interrupt. A final alternative is to create a lightweight thread
which immediately invokes a receive construct and blocks waiting for a message to arrive.
When the message arrives the thread runs, processes the message, then blocks waiting for
another message. The drawback is again the programming overhead required to synchronize
the message processing code with the main computation. In this case the programmer
performs the synchronization using shared-memory synchronization primitives designed to
manage the interaction of multiple parallel threads.

5.4. EXPLICITLY PARALLEL SYSTEMS 169

5.4.1.1 Programming Implications

Message passing systems can impose substantial programming overhead. The application
must explicitly manage the movement and replication of data. Every time a task accesses
remotely produced data, the producer and consumer must explicitly interact to generate the
data transfer. Either the producer must know all of the potential consumers and deliver the
data eagerly to them upon production, or the programmer must develop naming algorithms
that allow consumers to find the producer of each piece of data. The program must also
manage the memory used to hold remotely generated data. Requiring the programmer
to generate code to perform these activities complicates the programming process. A
comparison of a fairly complex application written for both a message-passing system
[114] and a shared-memory system [126, 89] highlights the programming burden that
message-passing systems can impose.

One clear advantage of message-passing systems is that they present a simple perfor-
mance model. Every remote interaction is cleanly identified in the program and a simple
model accurately predicts the cost of each message transfer [16]. It is possible to understand
the performance of the remaining serial code using a standard uniprocessor performance
model. This simple model makes it much easier to tune the performance of a parallel
computation. It helps the programmer to both understand the current performance and to
predict the performance impact of contemplated modifications.

5.4.1.2 Performance Implications

Superficially, the basic abstractions in asynchronous message-passing systems seem to
match the low-level communication mechanism of the hardware. These systems would
therefore appear to maximize the amount of control the programmer has over the com-
munication, which in turn would maximize the achievable performance. But in practice
message-passing systems have imposed unnecessary overheads at both the hardware and
software levels. Eliminating these overheads requires a careful redesign of the interface
that the message-passing package exports to the programmer. We next analyze the sources
of these overheads, then discuss recent research that addresses some of the problems.

In traditional message-passing systems there is a protection boundary between the
application and the network. The overhead required to cross this boundary imposes system
call and interrupt overhead. When a program sends a message it must perform a system
call to invoke the operating system code that manages the network interface. When the
message arrives at the receiver it generates an interrupt to invoke the operating system code
that takes the message out of the network.

There is also software overhead at the receiver. The receiver must determine which
task should get the message and route the message to that task. If the task has yet to post
the correspond receive the operating system must allocate buffers to temporarily store the
message. When the task finally executes the receive the system copies the message out of

170 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

the buffers into the task’s address space.
The first step towards efficient message passing is a hardware redesign to eliminate the

need for a protection boundary between the sender and the network. The goal of such
a redesign is to eliminate the system call overhead associated with sending a message.
The main issue is supporting direct user-level access to the network without compromising
security. No program should be able to use its network access to interfere with other
programs. The Thinking Machines CM-5 [103] provides this functionality by imposing
a strict gang scheduling regime. Different programs cannot interfere because they cannot
concurrently access the network. More recent systems [65, 22] perform protection checks
in hardware on an attached co-processor, which enables the operating system to schedule
each compute processor independently.

The next step is a redesign of the interface that the message-passing system presents
to the user program. A fundamental problem with current systems is that the sender
does not specify where in the receiver to store the message. The implementation must
therefore temporarily buffer messages, which generates copying and memory management
overhead. The solution is to provide an interface based on remote reads and writes rather
than on sending and receiving messages. Such an interface eliminates buffering by telling
the system the final location of the transferred data before the system actually starts the
transfer.

The final advantage of a remote read and write interface is that it eliminates unnecessary
interrupts at the remote compute processor. With minimal hardware support [65] it is pos-
sible to perform all remote operations on an agile co-processor designed to quickly handle
remote reads and writes. This approach eliminates the substantial overhead associated
with interrupting the compute processor, leaving it free to continue with its main thread of
computation.

5.4.2 Shared-Memory Systems

Shared-memorysystems eliminate the explicit data management burden of message-passing
systems. Since all communication takes place implicitly via the shared memory, the pro-
vided constructs focus on concurrency generation and synchronization. We first consider
how different shared-memory systems structure the programming model. In order of
increasing structure, we first discuss basic synchronization packages, then systems that
combine synchronization with data access and finally concurrent object-oriented program-
ming languages, which augment the object-oriented programming paradigm to include
concurrency and synchronization.

We then discuss the design of systems that implement the abstraction of shared memory
in software on message-passing machines. A key theme that structures this discussion is
how performance concerns from the underlying message-passing substrate have influenced
the interface these systems present to the programmer. The resulting systems minimize the

5.4. EXPLICITLY PARALLEL SYSTEMS 171

number of messages required for synchronized access to blocks of shared data and expose
the inherent asynchrony of the communication in the programming model.

5.4.2.1 Basic Synchronization Packages

Packages such as Presto [17] and the ANL macro package [88] and languages such as
Modula-3 [98] rely on the hardware to implement the shared memory. The software only
provides basic concurrency generation and synchronization primitives such as locks, bar-
riers and condition variables. Such a bare-bones interface minimizes the safety of the
programming model. In shared-memory systems, synchronization operations usually me-
diate access to shared data structures. The systems discussed in this section provide no
support for the resulting association of synchronization and data. The programmer is
completely responsible for developing the association and explicitly inserting synchroniza-
tion operations around each access to shared data. As discussed in succeeding sections,
higher-level systems promote a safer programming model by supporting the association of
synchronization with data.

The low-level nature of the programming model pays off in efficiency and flexibility,
maximizing the amount of control the programmer has over the parallel execution. The
programmer can dynamically change the synchronization algorithm for a given data struc-
ture to adapt to the different access patterns of different parts of the computation. If the
machine supports a particularly efficient synchronization algorithm, these systems do not
interfere with the programmer’s ability to express that algorithm. It is therefore possible to
tightly control the mapping of the application onto the machine for efficiency.

A final advantage of low-level systems is that they minimally perturb the hardware per-
formance model. Because the provided constructs translate directly into simple hardware
operations, the software imposes no mysterious sources of overhead. The resulting perfor-
mance model supports the process of tuning a computation by making it easier to identify
expensive operations and to understand the performance impact of potential modifications.

5.4.2.2 Combining Synchronization and Data Access

Several systems provide a higher-level programming model by augmenting the semantics
of data access to include synchronization. Id’s M-structures [11] allow programmers to
build data structures that are implicitly synchronized at the level of the individual words
of memory. An M-structure is a word of memory augmented with a bit indicating if the
word is empty or full. The program reads an M-structure with the take operation. This
operation waits until the word is full, then reads the contents out, leaving the word empty.
The program writes an M-structure with the put operation. This operation writes a new
value into the word, leaving it full. M-structures support the mutual exclusion constraints
associated with atomically updating a piece of data.

172 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

Linda [44, 28] provides the abstraction of a shared memory consisting of a collection of
tuples. The program can insert, read or remove tuples from the tuple space. The read and
remove operations are associative in that the program provides a partial specification of the
desired tuple and the system reads or removes a tuple that matches the specification. The
synchronization is associated with tuple access; the basic mechanism is that the associative
read and remove operations block until a matching tuple is available. The program can
implement mutual exclusion constraints by inserting and removing a single control tuple;
it is possible to implement precedence constraints by inserting a single tuple when the
constraint is satisfied. Typically, the tuple used to implement the synchronization also
carries the associated data.

Systems that combine synchronization and data access pay synchronization overhead
every time they access shared data. This overhead can become especially severe when a
single synchronization operation is all that is required to synchronize many accesses to
shared data. It is therefore important to use a simple synchronization mechanism that does
not impose excessive overhead. General purpose implementations of Linda’s associative
tuple space operations have been inefficient. Linda compilers therefore use global static
analysis that attempts to recognize common higher-level idioms. They then implement
these idioms using specialized, more efficient algorithms tailored for the specific situation
at hand. This approach leads to a model of parallel programming in which the programmer
encodes the high-level concepts in low-level primitives only to have the compiler attempt
to reconstruct the high-level structure.

In certain circumstances combining synchronization and data access can also eliminate
synchronization overhead. When the program accesses remote data the system can generate
a single remote operation that combines the synchronization and data transfer operation.
Standard shared-memory systems, on the other hand, generate two remote operations for
each synchronized access to remote data: a synchronization operation to acquire the right
to access the data, then a communication operation to actually perform the access [74].

Systems that combine data access and synchronization make it less likely that the
program will suffer from synchronization errors. The programmer cannot create a synchro-
nization error by simply forgetting to insert synchronization operations around a given data
access. While most programs require additional synchronization to execute correctly, aug-
menting the semantics of data access to include basic synchronization operations eliminates
several simple error cases.

5.4.2.3 Concurrent Object-Oriented Languages

Concurrent object-oriented programming languages provide a more structured approach
to parallel programming by integrating support for concurrency into the object-oriented
programming model. These languages augment the semantics of the basic operations in
object-oriented programming languages to include parallel execution and synchronization.

5.4. EXPLICITLY PARALLEL SYSTEMS 173

We first discuss how researchers have augmented the object-oriented model of computa-
tion to include the generation of parallel execution. In languages like POOL-T [5], objects
are given threads of control which execute concurrently. Languages like ABCL/1 [136]
and COOL [30] support the concept of asynchronous methods, which execute concurrently
with the invoking thread. The computation can synchronize for the return value using a
mechanism similar to MultiLisp futures.

The synchronization mechanisms are all oriented around how the program accesses
objects. A basic mechanism is that each method executes with exclusive access to the
receiver object. This implicit form of mutual exclusion synchronization originally ap-
peared in the context of monitors [62], and was used in monitor-based languages such as
Concurrent Pascal [23, 24] and Mesa [81, 95]. Concurrent object-oriented languages also
adopt this synchronization mechanism, in part because it meshes well with the concept of
a method operating on an object. Many languages relax the exclusive execution constraint
to allow the concurrent execution of methods that read the same object. Like monitor
languages, many concurrent object-oriented languages also provide condition variables for
the implementation of precedence constraints.

In a parallel computation an object may reach a state in which it should defer certain
messages. For example, an empty queue should defer a dequeue message until it receives
an enqueue message and can return the enqueued object. The standard way to implement
these precedence constraints in monitor-based languages is for each method to examine the
state of the object and suspend itself on a condition variable if the object should defer the
message. Other methods signal the condition variable when the object becomes able to
respond.

Some concurrent object-oriented languages provide higher-level support for this kind
of synchronization by allowing an object to temporarily disable certain messages. If the
object is sent a disabled message, it will defer the message until the object reenables it.
Tasks that use the result of the message block until it is reenabled, processed and the actual
result is returned. In POOL-T each object’s behavior is determined by a script that the
object executes. When the object is ready to accept a message, it executes a construct that
specifies the set of messages that it will accept at that point in time. The construct blocks
until the object is sent one of the specified messages. The Rosette system [133] allows
programmers to identify a set of object states and specify the set of messages that an object
in a given state will accept. When an object finishes executing a method it specifies its
next state. Capsules [43] allow the programmer to declaratively specify conditions that the
object’s state must meet for it to accept each message.

Ideally, the task of synchronizing the entire computation could be effectively decom-
posed into the task of generating the synchronization required for each object. In practice,
however, concurrent object-oriented programs often require additional synchronization that
cuts across both object and method boundaries. Such a situation can arise, for example,
if a task needs to atomically perform operations on multiple objects or multiple operations

174 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

on the same object. There is no way to make the operations atomic without additional
synchronization. There may also be application-specific precedence constraints on the
order in which objects process messages from different tasks. While it is usually possible
to modify the objects to perform this kind of synchronization, it may be counterproductive
to do so. The modifications may be inappropriate (if the objects are used in other contexts
or applications), inefficient (if the constraints can be implemented with one global syn-
chronization operation instead of multiple synchronization operations distributed across the
objects) or cumbersome (if the objects must be augmented with additional state to perform
the synchronization).

We next consider issues associated with enforcing a pure object model. We say that
an object-oriented language has a pure object model if the only way to access an object
is to invoke a method with the object as the receiver. Orca, for example, enforces a pure
object model [9]. A pure object model increases the security and modularity of programs
by enforcing object encapsulation. It also simplifies the implementation of the language
on message-passing platforms. The implementation first distributes the objects across the
machine. When a task invokes a method on a remote object, the implementation can
either perform a remote procedure call [99] to execute the method remotely as in the
Emerald system [20, 71] or transfer the object to the invoking processor and execute the
method locally. The drawback is that a pure object model can interact with the language’s
synchronization mechanisms to limit its flexibility. Consider, for example, a language
whose synchronization mechanism enforces the mutually exclusive execution of methods
that write the same object. If the language also enforces a pure object model, the programmer
cannot express algorithms that concurrently write pieces of the same object.

We highlight the trade-offs associated with not enforcing a pure object model by consid-
ering the design of COOL, which allows each method to directly access any piece of data it
can address using the underlying C++ language constructs. This separation of the synchro-
nization and data allocation granularities makes the programming model more flexible (it
is, for example, possible to create a program that concurrently writes a given object). It also
makes the programming model less secure by increasing the difficulty of identifying and
correctly synchronizing all accesses to a given object. Finally, allowing methods to access
objects other than the receiver complicates potential message-passing implementations by
making it difficult to implement the shared memory at the granularity of objects. COOL
only runs on machines that implement the shared memory in hardware.

5.4.2.4 Software Shared-Memory Systems

We now shift our focus to consider the issues associated with implementing the abstraction
of shared memory in software on message-passing machines. Software shared-memory
systems typically optimize the implementation of the shared memory by automatically
migrating data to accessing processors and replicating data for concurrent read access.

5.4. EXPLICITLY PARALLEL SYSTEMS 175

These optimizations and the implementation of a global name space for shared data provide
significant software support for programming message-passing machines. We next discuss
three different approaches to implementing the shared memory in software: the page-based
approach, the region-based approach and the object-based approach.

Page-based systems such as Ivy [85], Munin [15, 14, 29] and Treadmarks [72] use the
virtual-to-physical address-translation hardware to implement a cache consistency protocol
at the granularity of pages. The translation hardware is used to detect accesses to remote
pages, and the fault handler generates messages that move or copy the required pages
from remote processors. Because the hardware checks if potentially remote data is cached
locally, accesses to cached potentially remote data are as efficient as accesses to guaranteed
local data. Because page-based systems distribute data across the machine at the granularity
of pages, they can use the entire aggregate memory of the machine to store a single large
object. Each processor only needs to hold the pages that it actually accesses.

A drawback of page-based systems is that the relatively large size of the pages increases
the probability of an application suffering from excessive communication caused by false
sharing (when multiple processors repeatedly access disjoint regions of a single page in
conflicting ways). More recent systems [72, 15] ameliorate this problem by allowing
different processors to concurrently write disjoint regions of the same page. Another
potential performance problem is the substantial exception handling overhead that operating
systems typically impose [7].

Page-based systems also interact with the application at the level of the raw address
space. Each parallel program must have the same address space on all the different machines
on which it executes. Furthermore, because the system has no knowledge of which types
of data are stored on each page, it cannot automatically apply the data format translation
required in heterogeneous environments. These restrictions have so far limited page-based
systems to homogeneous collections of machines. The lone exception (a heterogeneous
prototype described in [137]) requires all of the compilers for the different machines to lay
out data the same way and to store only one kind of data on each page.

The entry consistency protocol of Midway implements the shared address space at the
granularity of program-defined regions [18, 19]. The program can define synchronization
objects and associate regions of the shared memory with these objects. When the program
needs to access part of a region of memory, it acquires a read or write lock on the associated
synchronization object. As part of the lock acquisition the implementation ensures that
an up-to-date copy of the object resides on the accessing processor. To reduce redundant
communication, the Midway implementation divides shared-memory regions into fixed-size
pieces (each piece is, in effect, a software cache line) and maintains a time stamp for each
piece. When the system needs to bring a locally resident version of a region up-to-date it
uses the time stamps to detect the out-of-date pieces and only generates the communication
required to update these pieces. This approach eliminates communication wasted on
transferring up-to-date pieces. Of course, the system may still waste communication

176 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

transferring updated pieces that the task does not actually access.
The main advantages of the Midway’s region-based approach over the page-based

approach are the elimination of traps to detect accessed remote data (Midway programs
provide advance notice of which data they will access) and the potential elimination of
false sharing (Midway programs can divide the shared memory into regions that are not
concurrently written by different tasks). A drawback is the programming overhead required
to declare how the program will access data. The fact that the Midway implementation
does not check the access declarations exacerbates the overhead. Another drawback is the
execution overhead required to maintain the time stamps. Like page-based shared-memory
systems, Midway interacts with the application at the level of the raw address space and
therefore does not run on heterogeneous systems.

SAM [124], like several of the concurrent object-oriented systems described in Section
5.4.2.3, implements the shared address space at the granularity of user defined objects.
The program tells the system when it will access each object and the system automatically
generates a message to fetch a remote copy of the object if it is not available locally. Unlike
page-based systems and Midway, SAM supports heterogeneity. The SAM implementation
uses a globally valid representation for pointers to objects and can relocate objects within
each address space. Because SAM knows the type of each object, it can also automatically
apply the data format translation required for heterogeneous computational environments.
Part of the price of supporting heterogeneity is paid in translation overhead. Whenever the
program accesses a cached object the system must perform a software translation of the
globally valid object identifier to the local address of the cached object.

A common theme that shapes the design of all software shared-memory systems is the
need to transfer significant amounts of data in each message. In Ivy and Munin the unit
of transfer is a page; both Midway and SAM rely on the programmer to aggregate the
words of memory into coarser-granularity communication units. The motivation for larger-
granularity communication is the significant overhead associated with each message [16].
Sending a few large messages instead of many small messages reduces the performance
impact of this overhead.

5.4.2.5 Synchronization Mechanisms

The performance characteristics of message-passing systems have also influenced the design
of the provided synchronization mechanisms. While a standard shared-memory interface
separates synchronization from data access, software shared-memory systems typically
provide an interface that associates synchronization with potential communication. As
described in Section 5.4.2.2, such an interface allows the system to generate fewer messages
for synchronized access to shared data. Midway, for example, provides a programming
model in which the program acquires a read or write lock on a region before accessing the
region. The system combines the messages required to acquire the lock and transfer the

5.4. EXPLICITLY PARALLEL SYSTEMS 177

data.
SAM provides a synchronization mechanism based on version numbers. The program

associates a number with each version of an object. When a task writes an object it provides
a number for the newly generated version of the object. When a task reads an object, it
specifies the number of the version it needs to access and synchronizes on the availability of
that version. The arrival of the single message containing the correct version of the object
satisfies both the communication and synchronization requirements of the computation.

The SAM version number mechanism is similar to the Jade version consistency mech-
anism described in Section 3.4.7, and in fact evolved from this mechanism as part of an
effort designed to give the programmer and/or higher-level systems more control over the
synchronization and communication. As described in Section 3.4.7, using version num-
bers also eliminates coherence traffic. There is no need to update or invalidate out-of-date
versions of objects because each task names the precise version it needs to access.

Exposing the version numbers directly in the programming model imposes a potential
programmability problem. Requiring the programmer to generate code that calculates
the version numbers can impose an onerous programming burden. SAM addresses this
problem by allowing the program to access the latest version of an object (at the cost of
extra communication to find the number of the latest version) and by providing libraries
that encapsulate the version number calculation for common data structures with common
access patterns.

5.4.2.6 Explicit Communication Operations

When a standard shared-memory system accesses remote data, it blocks until the communi-
cation required to perform the access takes place. Given the increasing cost of communica-
tion relative to computation, the resulting idle time is becoming an increasingly important
cause of poor performance. A standard technique for reducing the performance impact of
the communication latency is to overlap the communication with computation. Several re-
cent software shared-memory systems allow programmers to express such optimizations by
augmenting the standard shared-memory programming model with asynchronous remote
read and write operations. These systems provide the functionality required to allow the
programmer to control the communication at a low level for efficiency.

We start our discussion of these systems by considering the design of Split-C [77].
Like the software shared-memory systems discussed in Section 5.4.2.4, Split-C distributes
a single shared address space across the memories of a message-passing machine and layers
a software implementation of shared memory on top of the message-passing substrate. At
every potentially remote memory access the Split-C front end inserts code that checks if the
actual access is local or remote. For remote accesses the system automatically generates
a message that fetches the data from the remote memory. Split-C provides no support for
the migration or replication of data. If the program must migrate or replicate data for good

178 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

performance, the programmer must generate code that performs the memory management
explicitly by copying remote data to local memory.

The main goal of Split-C is to integrate asynchronous remote read and write operations
into a shared-memory programming system. An asynchronous remote write operation sends
a write message containing the new data to the processor that owns the remote memory. The
operation then returns, allowing the computation to proceed while the write message travels
through the network to the remote processor. To coordinate the completion of remote write
operations Split-C provides barrier operations that block until all outstanding remote writes
complete.

An asynchronous remote read operation generates a message requesting the data and
immediately returns, allowing the issuing task to continue with its computation. When the
task actually needs to access the data it performs a synchronization operation that blocks
until the data from all outstanding asynchronous read operations has arrived.

SAM also provides constructs that allow the program to control the communication.
Tasks can prefetch objects, fetch multiple objects in parallel, and eagerly transfer objects
from producers to consumers. These constructs allow the programmer to apply his knowl-
edge of the application’s inherent communication pattern to optimize the execution.

Both SAM and Split-C expose the latency required to access remote memory directly
in the programming model. Programs can apply communication optimizations such as
parallelizing the communication required to access remote data, overlapping computation
with this communication, and eliminating the fetch latency associated with accessing re-
motely produced data. A major difference between SAM and Split-C is that SAM integrates
this functionality into a shared-memory implementation that automatically replicates and
migrates data. In Split-C the data for a given global address is always stored in the same
memory location on the same processor. Not supporting migration and replication simpli-
fies the implementation and enables more efficient access to remote data. There is no need
to perform a check to see if the data is replicated locally, and the system does not have to
maintain naming data structures that track the current location of each piece of memory.
The drawback, of course, is that many programs generate excessive communication if they
do not replicate and migrate data. In this case Split-C forces the program to perform the
replication and migration explicitly.

5.4.3 Discussion

Explicitly parallel systems maximize the amount of control the programmer has over the
parallel execution, enabling the use of highly optimized, application-specific synchroniza-
tion and parallelization algorithms. They impose minimal performance overhead because
the provided constructs translate more or less directly into low-level, efficient operations.
Because the model of computation is so close to the hardware, they impose no artificial
expressiveness limitations in that they typically allow the programmer to express the full

5.5. DISCUSSION 179

range of parallel algorithms.
The potential performance gains come at the price of a significantly more complex

programming model. Explicitly parallel systems leave the programmer directly exposed to
the full range of problems outlined in Chapter 1. They place the responsibility for generating
the synchronization and, in message-passing systems, the communication, directly on the
programmer. Furthermore, the programmer must develop these algorithms in a hostile
programming environment characterized by complicated failure modes such as deadlock
and nondeterministic, timing dependent bugs. As described in Chapter 1, explicitly parallel
systems can also destroy the modularity of the program.

5.5 Discussion

Researchers have explored many possible design points for parallel programming systems.
Despite the diversity of the resulting set of systems, no system completely satisfies the needs
of most parallel programmers. This is partly due to the fact that parallel programming is
an inherently difficult activity, and there is little hope that any system will actually make
it easy to develop every parallel application. We believe, however, that it is possible to
dramatically improve the design of existing systems. The key insight is that the needs of
the programmer change in conflicting ways during the development process, and the system
must adjust to these changes.

In the early part of the development process the focus is on exploring the basic sources
of concurrency in the application. The goal is to quickly develop initial parallelizations that
help the programmer understand the basic characteristics of the application and guide the
search for a successful parallelization. In this phase the system can support the programmer
either by eliminating the possibility of programming errors or by automatically performing
parts of the parallelization process.

As the development progresses, however, the focus shifts to mapping the parallel appli-
cation more efficiently onto the machine. This may involve either developing more efficient
synchronization and concurrency exploitation algorithms or remapping the computation to
more effectively balance the load or minimize communication. For this tuning phase to go
well, the system must provide a tractable performance model and allow the programmer to
control the computation at a fairly low level for performance.

This conflicting set of demands shows why it is difficult to build a system that effectively
supports the complete development process. The enforced abstractions in high-level systems
provide a safe programming environment that promotes the quick development of initial
parallelizations, but deny the programmer the flexibility and control required to effectively
tune the performance. Low-level systems deliver the required control, but complicate initial
development by forcing the programmer to manage many low-level aspects of the parallel
execution.

180 CHAPTER 5. PARALLEL PROGRAMMING SYSTEMS

We believe the ultimate solution will prove to be a layered system. The components
of this system will cooperate to provide an integrated programming model that gracefully
adjusts to the programmer’s changing needs. The higher-level components will enforce
abstractions that provide a safe, supportive programming environment for the initial paral-
lelizations. Successive layers will peel away the abstractions to provide increasing amounts
of flexibility and control, allowing the programmer to effectively tune the performance.
The lowest-level components will directly expose the full functionality of each hardware
platform.

We expect programmers to use the system at whatever level they find appropriate
for the computation at hand. If the program performs acceptably using only the higher-
level components, the programmer can stop there. If parts of the program require extra
optimization, the system will support a gradual migration to lower levels for more control.
The key is for all the components at different levels to work together harmoniously to
provide a continuous development path from the initial computation to an appropriately
optimized parallel program. We expect concepts from Jade to be useful in structuring and
implementing the higher-level components of the system.

Chapter 6

Future Work

Our completed Jade research focuses on exploring how best to structure a language to
support a restricted set of parallel applications. We believe the most fruitful directions for
future research will explore ways to implement Jade more efficiently and to apply concepts
from Jade in new application domains. Researchers may either extend Jade to support these
new domains or transplant ideas and mechanisms from Jade into other software systems.
In this chapter we outline several such research directions.

6.1 Static Optimizations

In the current implementation of Jade all concurrency analysis and task management take
place dynamically using general-purpose algorithms. Static analysis to discover efficiently
implementable special cases could drive down the dynamic overhead, extending the imple-
mentation to support finer-grain parallel computations. Because of Jade’s serial semantics,
it is possible to apply analysis techniques developed for compiling serial languages directly
to Jade programs.

The resulting information would allow the implementation to employ more efficient
synchronization and communication algorithms for analyzable pieces of code. In some
cases the message-passing implementation could use a distributed, data-driven synchro-
nization algorithm. All synchronization would be bundled into the object messages that
satisfied tasks’ data usage requirements. In other situations the implementation could
replace the general-purpose object queue algorithm with a lower-overhead, coarser-grain
synchronization algorithm. For example, the generated parallel algorithm could implement
the series/parallel concurrency patterns characteristic of many parallel algorithms directly
using barriers. The current implementation, of course, implements such concurrency pat-
terns indirectly (and less efficiently) by dynamically analyzing how tasks access individual
shared objects.

Other optimizations would parallelize or even eliminate sequential task creation. The

181

182 CHAPTER 6. FUTURE WORK

implementation could statically discover parallel tasks and generate code that efficiently par-
allelized the task creation overhead. The dynamic implementation would provide special-
purpose task management algorithms for such cases. The implementation could also fuse
a sequence of Jade tasks into one coarser-granularity task that periodically interacted with
the rest of the computation. Again, such a transformation would require support from the
dynamic part of the Jade implementation.

Jade programs should be much easier for compilers to parallelize than programs written
in standard serial languages. A major problem for parallelizing compilers is effectively
partitioning the program into coarse-grain tasks. Jade provides constructs that programmers
can use to guide the partitioning process.

A second major problem for parallelizing compilers is unraveling complex data access
patterns to determine which pieces of data a piece of code actually accesses. In many cases
the compiler is unable to analyze the program with enough precision to exploit important
sources of concurrency. Jade’s access specifications could help the compiler solve this
problem. Access specifications can cleanly summarize how a complex piece of code
accesses data. Analyzing a program at the level of access specifications could therefore
expose more concurrency than analyzing the code that actually performs the computation.

6.2 Communication Enhancements

The message-passing implementation of Jade would benefit from a more flexible commu-
nication mechanism. In the current implementation each object is a unit of communication.
A hybrid protocol that transferred small objects atomically and large objects in fixed-size
pieces upon access would expand the range of supported Jade applications. It would be
possible to implement the protocol for large objects using page-based techniques developed
for software shared-memory systems.

Such a hybrid approach would combine the benefits of current page-based and object-
based communication mechanisms. Using a different protocol for small objects would
ameliorate the false sharing problems that afflict current page-based systems. Using a
page-based communication mechanism for large objects would allow computations to
manipulate objects larger than any one memory module, drive down wasted bandwidth for
computations that only accessed part of each object and allow the implementation to use
the entire memory of the computing environment to store large objects.

Current page-based systems interact with the computation at the level of the virtual
address space. For such systems to correctly implement the abstraction of a single coherent
address space, each machine must use the same virtual address space for the computation.
In heterogeneous systems this restriction imposes unreasonable constraints on the compilers
[137].

The extra structure inherent in the Jade object model would allow the implementation

6.3. EXTENSIONS FOR PERFORMANCE AND CONTROL 183

to extend techniques from page-based systems for use in heterogeneous computing envi-
ronments. The only restriction is that the operating system must support user-level paging
operations similar to those described in [7].

The basic idea is that the Jade object model gives the implementation a machine-
independent index space for each shared object. This index space consists of the object’s
global identifier and the indices of object’s elements. Each processor would map shared
objects into its address space, using the page protection mechanism to identify valid and
invalid pieces of the object.

When a task accessed an invalid part of the object, the implementation would translate
the faulting virtual address into the global index space of the object. It would then use
this index space to request the required remotely stored elements of the object. Individual
processors could map each object into different parts of their address spaces, storing the
object in the appropriate native data format.

6.3 Extensions for Performance and Control

The basic problem with any high-level programming language is that it prevents the pro-
grammer from accessing the full functionality of the hardware. The restrictions may reduce
the achievable performance or limit the range of expressible computations. For some appli-
cations programmers may need to use a lower-level programming system to achieve their
computational goals.

In the long run, if the ideas from Jade are to survive they must become integrated into
a general-purpose programming system that allows programmers to access the complete
hardware functionality of the machine. As described in Section 5.5, such a system could be
structured in layers. The highest layer would provide a safe, portable computational envi-
ronment. Successive layers would progressively expose more of the hardware functionality.
The challenge is to design a coherent sequence of layers that work together to provide an
effective programming environment for the full range of parallel applications.

6.4 Nondeterministic Applications

Jade is designed to support deterministic computations. Even the commuting access dec-
laration, which can generate nondeterministic execution, is intended for deterministic use.
We next describe how to extend Jade to support both synchronous and asynchronous non-
deterministic parallel computations. In each case we describe new access declarations that
would allow programmers to describe the data usage patterns characteristic of each kind
of computation. This approach leads to an integrated paradigm that would support many
different kinds of task-level parallel computation in a single coherent language.

184 CHAPTER 6. FUTURE WORK

Synchronous computations contain parallel tasks that periodically interact through syn-
chronized access to shared data structures. The shared data structures typically require
concurrent-read/exclusive-write synchronization. Programmers cannot currently express
these computations in Jade because the implementation preserves the original serial ex-
ecution order for reads and writes to the same shared object. Jade could support these
computations with commuting read and commuting write access declarations. Like normal
read and write declarations, tasks that declared commuting reads would execute concurrently
while tasks that declared commuting writes would execute serially. But the implementation
would also have the freedom to change the relative execution order between tasks that
declared commuting reads and tasks that declared commuting writes, and could exploit that
freedom to execute the program more efficiently.

Asynchronous computations contain parallel tasks that concurrently read and write
shared data structures without synchronization. These computations typically evolve from
synchronous computations via the opportunistic elimination of synchronization. The pro-
grammer realizes that the synchronization operations generate dynamic overhead and that
the potential interference caused by their elimination will not cause the program to execute
incorrectly. Jade could support these computations with new access declarations that al-
lowed tasks to concurrently read and write overlapping regions of shared objects. A task
that declared a concurrent read access could execute in parallel with a task that declared a
concurrent write access, even if they accessed the same memory.

Chapter 7

Conclusion

Developing programming paradigms that allow programmers to effectively deal with the
many different kinds of concurrency is a fundamental problem in computer science. The
goal of the Jade project was to develop an effective paradigm for a specific purpose: the
exploitation of task-level concurrency for performance. The concrete results of this project
demonstrate that Jade, with its high-level abstractions of serial semantics and a single
address space, satisfies this goal.

We have demonstrated Jade’s portability by implementing it on a diverse set of hardware
platforms. These machines span the range of computational platforms from tightly coupled
shared-memory machines through dedicated homogeneous message-passing multiproces-
sors to loosely coupled heterogeneous collections of workstations. The implementations
explored several key issues associated with supporting a single high-level model of com-
putation on dramatically different hardware platforms. In particular, the implementations
demonstrated how to exploit the programmer-provided data usage information to apply
communication optimizations.

We evaluated the Jade language design by implementing several complete scientific and
engineering applications in Jade. Our experience with these applications indicates that Jade
works well for many applications that exploit task-level concurrency. We obtained excel-
lent performance results for several applications on a variety of hardware platforms with
minimal programming overhead. We also obtained less satisfactory results for programs
that pushed the limits of the Jade language and implementation. Some applications would
work fine given improvements in the implementation; others would be best expressed in
other languages.

Because Jade was designed to support a specific, targeted class of computations, it is,
by itself, unsuitable as a general-purpose parallel programming language. Jade’s enforced
abstractions mean that programmers cannot express certain kinds of parallel algorithms in
Jade and cannot control the machine at a low level for optimal efficiency. The ultimate

185

186 CHAPTER 7. CONCLUSION

impact of the Jade project will come from the integration of basic concepts and implemen-
tation techniques from Jade into other programming systems designed to support a wider
range of applications. The advantage of developing a focused language like Jade is that it
isolates a clear, conceptually elegant definition of the basic paradigm. Using the language
therefore both allows and forces programmers to explore the advantages and disadvantages
of the paradigm. With the Jade project behind us, we can identify what is missing in Jade
and how the basic concepts of Jade are likely to live on in future languages and systems.

7.1 Viable Concepts from Jade

A fundamental idea behind Jade is to have programmers declaratively provide information
about how the program accesses data. This is in harmony with a long-term trend in
computer science to change the focus from control to data. In parallel computing the
need to efficiently manage the memory hierarchy for performance will drive this change of
focus. Future languages and systems will be increasingly organized around the interaction
of data and computation, with various declarative mechanisms such as access specifications
used to express the relevant information. COOL’s locality hints[30], Midway’s object usage
declarations[19], shared region declarations [118] and the CHICO model of consistency[61]
are all examples of this trend.

Access specifications give the implementation enough information to automatically
generate the communication without forcing the implementation to use a specific com-
munication mechanism. It is therefore possible to implement parallel languages based on
access specifications on a wide variety of machines. Each implementation can use the na-
tive communication mechanism to implement the underlying abstraction of a single address
space, and applications will efficiently port to all of the platforms.

Advance notice of how the program will access data gives the implementation the
information it needs to apply locality and communication optimizations appropriate for the
target hardware platform. In an explicitly parallel context the implementation can also use
access specifications to automatically synchronize the computation.

Access specifications build on the programmer’s high-level understanding of the pro-
gram and mesh with the way the programmer thinks about its behavior. They allow the
programmer to express complex parallel computations simply, concisely and in a way that
places minimal demands on the programmer’s cognitive abilities. Because access specifi-
cations provide so many concrete benefits, we expect them to appear increasingly often in
future parallel language designs.

Jade supports the abstraction of a single shared address space with automatically cached
data. The programming benefits of this abstraction ensure that many future languages and
systems will support this approach (as many existing systems do). We expect that many such
systems will use some form of access specifications to support the automatic generation of

7.2. FINAL REMARKS 187

communication operations.
One of the unique features of Jade is its extreme portability. Jade currently runs on

a wide range of hardware platforms and in principle could be implemented on almost
any MIMD computing environment. We designed this portability into the language by
scrupulously eliminating any dependences on specific architectural features. The speed
with which specific computer systems become obsolete and the need to preserve software
investment in parallel programs will drive a trend towards highly portable languages.

7.2 Final Remarks

There is a delicate interaction between the programmer, the computation and and the
language used to express the computation. Jade takes a strong ideological position on
how programmers should express, and ultimately, should think about parallel computation.
Such a strong position will inevitably become diluted and absorbed into a more neutral
mainstream. The value of taking such positions lies in the new perspectives they yield on
the problems at hand, the new paths of research they may open up, and the intellectual
joy of exploring different ways of thinking about a fascinating subject. In many areas of
inquiry only practical experience can generate satisfactory answers to the initial questions
that inspired the research. One of the most satisfying aspects of Jade was experiencing its
evolution from an abstract idea to an implemented system that enabled us to understand
many of the practical implications of the basic paradigm.

Bibliography

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. The
MIT Press, Cambridge, MA, 1986.

[2] G. Agha. Concurrent object oriented programming. Communications of the ACM,
33(9):125–141, September 1990.

[3] G. Agha and C. Hewitt. Concurrent programming using Actors. In A. Yonezawa and
M. Tokoro, editors, Object Oriented Concurrent Programming, pages 37–53. MIT
Press, Cambridge MA, 1987.

[4] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491–542,
October 1987.

[5] P. America. POOL-T: A parallel object-oriented language. In A. Yonezawa and
M. Tokoro, editors, Object Oriented Concurrent Programming, pages 199–220.
MIT Press, Cambridge MA, 1987.

[6] J. Anderson and M. Lam. Global optimizations for parallelism and locality on
scalable parallel machines. In Proceedings of the SIGPLAN ’93 Conference on
Program Language Design and Implementation, Albuquerque, NM, June 1993.

[7] A. Appel and K. Li. Virtual memory primitives for user programs. In Proceedings
of the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, CA, April 1991.

[8] Arvind and R. Thomas. I-structures: An efficient data type for functional languages.
Technical Report MIT/LCS/TM-210, MIT, 1981.

[9] H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A language for parallel programming
of distributed systems. IEEE Transactions on Software Engineering, 18(3), March
1992.

188

BIBLIOGRAPHY 189

[10] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. Automatic program paral-
lelization. Proceedings of the IEEE, 81(2):211–243, February 1993.

[11] P. Barth, R. Nikhil, and Arvind. M-structures: Extending a parallel, non-strict,
functional language with state. In Proceedings of the Fifth ACM Conference on
Functional Programming Languages and Computer Architecture, pages 538–568.
Springer-Verlag, August 1991.

[12] F. Baskett, T. Jermoluk, and D. Solomon. The 4D-MP graphics superworkstation:
Computing + graphics = 40 MIPS + 40 MFLOPS + 100,000 lighted polygons per
second. In Proceedings of COMPCON Spring 88, pages 468–471, 1988.

[13] BBN, Cambridge, MA. Butterfly Parallel Processor Overview, 1985.

[14] J. Bennett, J. Carter, and W. Zwaenepoel. Adaptive software cache management for
distributed shared memory architectures. In Proceedings of the 17th International
Symposium on Computer Architecture, Seattle, WA, May 1990.

[15] J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based
on type-specific memory coherence. In Proceedings of the Second ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Seattle, WA, March
1990.

[16] R. Berrendorf and J. Helin. Evaluating the basic performance of the Intel iPSC/860
parallel computer. Concurrency: Practice & Experience, 4(3):223–240, May 1992.

[17] B. Bershad, E. Lazowska, and H. Levy. Presto: A system for object-oriented parallel
programming. Software – Practice and Experience, 18(8):713–732, August 1988.

[18] B. Bershad and M. Zekauskas. Midway: Shared memory parallel programming
with entry consistency for distributed memory multiprocessors. Technical Report
CMU-CS-91-170, Carnegie-Mellon University, September 1991.

[19] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway distributed shared memory
system. In Proceedings of COMPCON’93, pages 528–537, February 1993.

[20] A. Black, N. Hutchison, E. Jul, and H. Levy. Object structure in the Emerald system.
In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 78–86, 1986.

[21] W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on
the Perfect Benchmarks programs. IEEE Transactions on Parallel and Distributed
Systems, 3(6):643–656, November 1992.

190 BIBLIOGRAPHY

[22] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg. Virtual
memory mapped network interface for the SHRIMP multicomputer. In Proceedings
of the 21th International Symposium on Computer Architecture, Chicago, IL, April
1994.

[23] P. Brinch-Hansen. The programming language Concurrent Pascal. IEEE Transac-
tions on Software Engineering, SE-1(2):199–207, June 1975.

[24] P. Brinch-Hansen. The Architecture of Concurrent Programs. Prentice-Hall, Engle-
wood Cliffs, NJ, 1977.

[25] R. Browning, T. Li, B. Chui, J. Ye, R. Pease, Z. Czyzewski, and D. Joy. Empirical
forms for the electron/atom elastic scattering cross sections from 0.1-30keV. Journal
of Applied Physics, 76(4), August 1994.

[26] R. Browning, T. Li, B. Chui, J. Ye, R. Pease, Z. Czyzewski, and D. Joy. Monte-carlo
calculations of electron/atom elastic scattering from 0.1-30keV. Scanning, 1994. To
appear.

[27] A. Burns. Programming in Occam 2. Addison-Wesley, Reading, MA, 1988.

[28] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, April 1989.

[29] J. Carter, J. Bennett, and W. Zwaenepoel. Implementation and performance of
Munin. In Thirteenth ACM Symposium on Operating Systems Principles, pages
152–164, October 1991.

[30] R. Chandra, A. Gupta, and J. Hennessy. Data locality and load balancing in COOL.
In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, San Diego, CA, May 1993.

[31] K.M. Chandy and C. Kesselman. Compositional C++: Compositional parallel pro-
gramming. Technical Report Caltech-CS-TR-92-13, Computer Science Department,
California Institute of Technology, 1992.

[32] E. Cooper, S. Nettles, and I. Subramanian. Improving the performance of SML
garbage collection using application specific virtual memory management. In Pro-
ceedings of the 1992 ACM Conference on Lisp and Functional Programming, San
Francisco, CA, June 1992.

[33] D. Culler and Arvind. Resource requirements of dataflow programs. In Proceedings
of the 15th International Symposium on Computer Architecture, pages 141–150, May
1988.

BIBLIOGRAPHY 191

[34] D. Culler, S. Goldstein, K. Schauser, and T. von Eicken. TAM – A compiler
controlled threaded abstract machine. Journal of Parallel and Distributed Computing,
18(3):347–370, July 1993.

[35] D. Culler, K. Schauser, and T. von Eicken. Fine-grain parallelism with minimal
hardware support: a compiler-controlled threaded abstract machine. In Proceedings
of the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 164–175, Santa Clara, CA, April 1991.

[36] H. Dietz and D. Klappholz. Refined Fortran: Another sequential language for
parallel programming. In K. Hwang, S. M. Jacobs, and E. E. Swartzlander, editors,
Proceedings of the 1986 International Conference on Parallel Processing, pages
184–189, St. Charles, IL, August 1986.

[37] I. Duff, R. Grimes, and J. Lewis. Sparse matrix problems. ACM Transactions on
Mathematical Software, 15(1):1–14, March 1989.

[38] J. Feo, D. Cann, and R. Oldehoeft. A report on the Sisal language project. Journal
of Parallel and Distributed Computing, 10(4):349–366, December 1990.

[39] I. Foster, R. Olson, and S. Tuecke. Productive parallel programming: The PCN
approach. Scientific Programming, 1(1):51–66, Fall 1992.

[40] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-
Hall, Englewood Cliffs, NJ, 1990.

[41] I. Foster and S. Tuecke. Parallel programming with PCN. Technical Report ANL-
91/32, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, September 1991.

[42] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu.
Fortran D language specification. Technical Report TR90-141, Dept. of Computer
Science, Rice University, December 1990.

[43] N. Gehani. Capsules: A shared memory access mechanism for concurrent C/C++.
IEEE Transactions on Parallel and Distributed Systems, 4(7):795–811, July 1993.

[44] D. Gelernter. Generative communication in Linda. ACM Transactions on Program-
ming Languages and Systems, 7(1):80–112, January 1985.

[45] K. Gharachorloo. Memory Consistency Models for Shared Memory Multiprocessors.
PhD thesis, Stanford, CA, 1994.

192 BIBLIOGRAPHY

[46] K. Gharachorloo, V. Sarkar, and J. Hennessy. A simple and efficient implementation
approach for single assignment languages. In Proceedings of the 1988 ACM Con-
ference on Lisp and Functional Programming, pages 259–268, Snowbird, UT, July
1988.

[47] D. Gifford, P. Jouvelot, J. Lucassen, and M. Sheldon. FX-87 reference manual.
Technical Report MIT/LCS/TR-407, MIT, September 1987.

[48] G. Golub and C. Van Loan. Matrix Computations, Second Edition. The Johns
Hopkins University Press, 1989.

[49] K. Gopinath. Copy elimination in single assignment languages. PhD thesis, Stanford,
CA, April 1988.

[50] S. Gregory. Parallel Logic Programming in PARLOG: the Language and its Imple-
mentation. Addison-Wesley, Reading, MA, 1987.

[51] J. Guzman and P. Hudak. Single-threaded polymorphic lambda calculus. In Pro-
ceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pages
333–343, Philadelphia, PA, June 1990.

[52] E. Hagersten, A. Landin, and S. Haridi. DDM – a cache-only memory architecture.
Computer, 25(9):44–54, September 1992.

[53] M. Hall, K. Kennedy, and K. McKinley. Interprocedural transformations for par-
allel code generation. In Proceedings of Supercomputing ’91, Albuquerque, NM,
November 1991.

[54] R. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[55] R. Halstead, Jr. An assessment of Multilisp: Lessons from experience. International
Journal of Parallel Programming, 15(6):459–501, December 1986.

[56] R. Hammel and D. Gifford. FX-87 Performance Measurements: Dataflow Imple-
mentation. Technical Report MIT/LCS/TR-421, MIT, November 1988.

[57] R. Harper. On the type structure of Standard ML. ACM Transactions on Programming
Languages and Systems, 15(2):211–252, April 1993.

[58] J. Harris, S. Lazaratos, and R. Michelena. Tomographic string inversion. In 60th
Annual International Meeting, Society of Exploration and Geophysics, Extended
Abstracts, pages 82–85, 1990.

BIBLIOGRAPHY 193

[59] L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data
structures: Improving the analysis and transformation of imperative programs. In
Proceedings of the SIGPLAN ’92 Conference on Program Language Design and
Implementation, San Francisco, CA, June 1992.

[60] High Performance Fortran Forum. High Performance Fortran language specification,
version 1.0. Technical Report CRPC-TR92225, Center for Research on Parallel
Computation, Rice University, Houston, TX, January 1993.

[61] M. Hill, J. Larus, K. Reinhardt, and D. Wood. Cooperative shared memory: Software
and hardware for scalable multiprocessors. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 262–273, Boston, MA, October 1992.

[62] C. A. R. Hoare. Monitors: An operating system concept. Communications of the
ACM, 17(10):549–557, October 1974.

[63] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, August 1978.

[64] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, N.J., 1985.

[65] M. Homewood and M. McLaren. Meiko CS-2 interconnect elan-elite design. In
Proceedings of Hot Interconnects 93, Stanford, CA, August 1993.

[66] P. Hudak and A. Bloss. The aggregate update problem in functional programming
systems. In Conference Record of the Twelfth Annual ACM Symposium on the
Principles of Programming Languages, pages 300–313, January 1985.

[67] P. Hudak, S. Peyton-Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. Guzman,
K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and
J. Peterson. Report on the programming language Haskell: A non-strict, purely
functional language (version 1.2). SIGPLAN Notices, 27(5):Ri–Rx, Rl–R163, May
1992.

[68] Intel Supercomputer Systems Division. Paragon XP/S Product Overview, 1991.

[69] D. Jefferson. Virtual time. Transactions on Programming Languages and Systems,
7(3):404–425, July 1985.

[70] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DiLoreto, P. Hontalas,
P. Laroche, K. Sturdevant, J. Tupman, V. Warren, J. Wedel, and H. Younger. Dis-
tributed simulation and the Time Warp Operating System. In Proceedings of the

194 BIBLIOGRAPHY

Eleventh Symposium on Operating Systems Principles, pages 77–93, Austin, TX,
November 1987.

[71] E. Jul, H. Levy, and A. Black. Fine-grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6(1):109–133, 1988.

[72] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Distributed
Shared Memory on Standard Workstations and Operating Systems. In Proceedings
of the 1994 Winter Usenix Conference, pages 115–132, January 1994.

[73] Kendall Square Research Corporation, Cambridge, MA. KSR-1 Technical Summary,
1992.

[74] A. Klaiber and H. Levy. A comparison of message passing and shared memory
architectures for data parallel programs. In Proceedings of the 19th International
Symposium on Computer Architecture, Chicago, IL, April 1992.

[75] D. Klappholz. Refined Fortran: An update. In Proceedings of Supercomputing ’89,
Reno, NV, November 1989.

[76] D. Klappholz, A. Kallis, and X. Kong. Refined C – An update. In D. Gelernter,
A. Nicolau, and D. Padua, editors, Languages and Compilers for Parallel Computing,
pages 331–357. MIT Press, Cambridge, MA, 1990.

[77] A. Krishnamurthy, D. Culler, A. Dusseau, S. Goldstein, S. Lumetta, T. von Eicken,
and K. Yelick. Parallel programming in Split-C. In Proceedings of Supercomputing
’93, pages 262–273, November 1993.

[78] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and
compiler optimizations. In Conference Record of the Eighth Annual ACM Symposium
on the Principles of Programming Languages, Williamsburg, VA, January 1981.

[79] D. Kuck, Y. Muraoka, and S. Chen. On the number of operations simultaneously
executable in Fortran-like programs and their resulting speedup. IEEE Transactions
on Computers, C-21(12):1293–1310, December 1972.

[80] M. Lam and M. Rinard. Coarse-grain parallel programming in Jade. In Proceedings
of the Third ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 94–105, Williamsburg, VA, April 1991.

[81] B. Lampson and D. Redell. Experience with processes and monitors in Mesa.
Communications of the ACM, 23(2):105–117, February 1980.

[82] D. Lenoski. The Design and Analysis of DASH: A Scalable Directory-Based Multi-
processor. PhD thesis, Stanford, CA, February 1992.

BIBLIOGRAPHY 195

[83] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy.
The DASH prototype: Implementation and performance. In Proceedings of the 19th
International Symposium on Computer Architecture, Gold Coast, Australia, May
1992.

[84] S. Leung and J. Zahorjan. Improving the performance of runtime parallelization. In
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 83–91, San Diego, CA, May 1993.

[85] K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Dept. of Computer Science, Yale University, New Haven, CT, September 1986.

[86] INMOS Limited. Occam Programming Manual. Prentice-Hall, Englewood Cliffs,
N.J., 1984.

[87] J. Lucassen. Types and effects: Towards the integration of functional and imperative
programming. Technical Report MIT/LCS/TR-408, MIT, August 1987.

[88] E. Lusk, R. Overbeek, J. Boyle, R. Butler, T. Disz, B. Glickfield, J. Patterson, and
R. Stevens. Portable Programs for Parallel Processors. Holt, Rinehart and Winston,
Inc., 1987.

[89] M. Martonosi and A. Gupta. Tradeoffs in message passing and shared memory
implementations of a standard cell router. In Proceedings of the 1989 International
Conference on Parallel Processing, pages 88–96, August 1989.

[90] D. Maydan, S. Amarasinghe, and M. Lam. Data dependence and data-flow analysis
of arrays. In Proceedings of the Fifth Workshop on Languages and Compilers for
Parallel Computing, New Haven, CT, August 1992.

[91] D. Maydan, J. Hennessy, and M. Lam. Efficient and exact data dependence analysis.
In Proceedings of the SIGPLAN ’91 Conference on Program Language Design and
Implementation, Toronto, Canada, June 1991.

[92] M. Metcalf and J. Reid. Fortran 90 Explained. Oxford Science Publications, 1990.

[93] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,
Cambridge, MA, 1990.

[94] R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and K. Crowley. Principles of
runtime support for parallel processors. In Proceedings of the Second International
Conference on Supercomputing, St. Malo, France, July 1988.

[95] J. Mitchell, W. Maybury, and R. Sweet. Mesa language manual, version 5.0. Technical
Report CSL-79-3, Xerox Palo Alto Research Center, April 1979.

196 BIBLIOGRAPHY

[96] E. Mohr, D. Kranz, and R. Halstead. Lazy task creation: A technique for increasing
the granularity of parallel programs. In Proceedings of the 1990 ACM Conference
on Lisp and Functional Programming, pages 185–197, June 1990.

[97] D. Mundie and D. Fisher. Parallel processing in Ada. IEEE Computer, 19(8):20–25,
August 1986.

[98] G. Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, Englewood
Cliffs, NJ, 1991.

[99] J. Nelson. Remote Procedure Call. PhD thesis, School of Computer Science,
Carnegie Mellon University, May 1981.

[100] J. Nieh and M. Levoy. Volume rendering on scalable shared-memory MIMD archi-
tectures. Technical Report CSL-TR-92-537, Computer Systems Laboratory, Stanford
University, August 1992.

[101] R. Nikhil. Id version 90.0 reference manual. Technical Report 284-1, Computation
Structures Group, MIT Laboratory for Computer Science, September 1990.

[102] R. Nikhil and K. Pingali. I-structures: Data structures for parallel computing. ACM
Transactions on Programming Languages and Systems, 11(4):598–632, October
1989.

[103] J. Palmer and G. Steele, Jr. Connection Machine model CM-5 system overview. In
Frontiers ’92: The 4th Symposium on the Frontiers of Massively Parallel Computa-
tion, McLean, VA, October 1992.

[104] P. Pierce. The NX/2 operating system. In Geoffrey Fox, editor, Proceedings of
the Third Conference on Hypercube Concurrent Computers and Applications, pages
384–390, Pasadena, CA, January 1988.

[105] J.K. Reid. The Fortran 90 standard. In IFIP Transactions A (Computer Science and
Technology), volume A-2, pages 343–348, September 1991.

[106] J. Reppy. Higher–order Concurrency. PhD thesis, Dept. of Computer Science,
Cornell University, June 1992.

[107] M. Rinard. Implicitly synchronized abstract data types: Data structures for modular
parallel programming. In Proceedings of the 2nd International Workshop on Massive
Parallelism: Hardware, Software and Applications, Capri, Italy, October 1994.

[108] M. Rinard and M. Lam. Semantic foundations of Jade. In Proceedings of the
Nineteenth Annual ACM Symposium on the Principles of Programming Languages,
pages 105–118, Albuquerque, NM, January 1992.

BIBLIOGRAPHY 197

[109] M. Rinard, D. Scales, and M. Lam. Heterogeneous parallel programming in Jade. In
Proceedings of Supercomputing ’92, pages 245–256, November 1992.

[110] M. Rinard, D. Scales, and M. Lam. Jade: A high-level, machine-independent
language for parallel programming. Computer, 26(6):28–38, June 1993.

[111] J. Rose and G. Steele. C*: An extended C language for data parallel programming.
Technical Report PL 87-5, Thinking Machines Corporation, Cambridge, MA, April
1987.

[112] J. Rose and G. Steele, Jr. C*: An extended C language for data parallel programming.
In L. Kartashev and S. Kartashev, editors, Proceedings of the Second International
Conference on Supercomputing, Santa Clara, CA, May 1987.

[113] E. Rothberg. Exploiting the memory hierarchy in sequential and parallel sparse
Cholesky factorization. PhD thesis, Stanford, CA, January 1993.

[114] J. Salmon. Parallel Hierarchical N-body Methods. PhD thesis, California Institute
of Technology, December 1990.

[115] J. Saltz, H. Berryman, and J. Wu. Multiprocessors and run-time compilation. Con-
currency: Practice & Experience, 3(6):573–592, December 1991.

[116] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling and
execution of loops on message passing machines. Journal of Parallel and Distributed
Computing, 8(4):303–312, April 1990.

[117] J. Saltz, R. Mirchandaney, and K. Crowley. Runtime parallelization and scheduling of
loops. In Proceedings of the 1st Symposium on Parallel Algorithms and Architectures,
Santa Fe, NM, 1989.

[118] H. Sandu, B. Gamsa, and S. Zhou. The shared regions approach to software cache
coherence on multiprocessors. In Proceedings of the Fourth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 229–238, San
Diego, CA, May 1993.

[119] V. Saraswat and M. Rinard. Concurrent constraint programming. In Proceedings
of the Seventeenth Annual ACM Symposium on the Principles of Programming Lan-
guages, pages 232–245, San Francisco, CA, January 1990.

[120] V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent
constraint programming. In Proceedings of the Eighteenth Annual ACM Symposium
on the Principles of Programming Languages, pages 333–352, Orlando, FL, January
1991.

198 BIBLIOGRAPHY

[121] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. PhD
thesis, Stanford, CA, 1987.

[122] V. Sarkar. Partition and Scheduling Parallel Programs for Multiprocessors. The
MIT Press, Cambridge, MA, 1989.

[123] V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallel pro-
grams. In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction,
pages 17–26, July 1986.

[124] D. Scales and M. S. Lam. An efficient shared memory system for distributed mem-
ory machines. Technical Report CSL-TR-94-627, Computer Systems Laboratory,
Stanford University, July 1994.

[125] K. Schauser, D. Culler, and T. von Eicken. Compiler-controlled multithreading for
lenient parallel languages. In Proceedings of the Fifth ACM Conference on Functional
Programming Languages and Computer Architecture, pages 50–72. Springer-Verlag,
August 1991.

[126] J. Singh. Parallel Hierarchical N-body Methods and their Implications for Multipro-
cessors. PhD thesis, Stanford University, February 1993.

[127] J. Singh and J. Hennessy. Finding and exploiting parallelism in an ocean simulation
program: Experiences, results, and implications. Journal of Parallel and Distributed
Computing, 15(1):27–48, May 1992.

[128] J. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel applications for
shared memory. Computer Architecture News, 20(1):5–44, March 1992.

[129] M. Smith. Tracing with Pixie. Technical Report CSL-TR-91-497, Stanford Univer-
sity, November 1991.

[130] V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:
Practice & Experience, 2(4):315–339, December 1990.

[131] Thinking Machines Corporation, Cambridge, MA. The Connection Machine CM-5
Technical Summary, October 1991.

[132] P. Tinker and M. Katz. Parallel execution of sequential Scheme with Paratran. In
Proceedings of the 1988 ACM Conference on Lisp and Functional Programming,
pages 28–39, Snowbird, UT, July 1988.

[133] C. Tomlinson and V. Singh. Inheritance and synchronization with enabled-sets.
In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 103–112, October 1989.

BIBLIOGRAPHY 199

[134] K. Traub. Sequential implementation of lenient programming languages. Technical
Report MIT/LCS/TR-417, Massachussets Institute of Technology, 1988.

[135] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis,
Stanford, CA, August 1992.

[136] A. Yonezawa, J. Briot, and E. Shibayama. Object oriented concurrent programming
in ABCL/1. In Proceedings of the OOPSLA-86 Conference, pages 258–268, Portland
OR, September 1986.

[137] S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous distributed shared mem-
ory. Technical Report CSRI-244, Computer Systems Research Institute, University
of Toronto, September 1990.

Appendix A

The Jade Front End

A.1 The Shared-Memory Front End

The shared-memory front end performs some simple program transformations. These
transformations translate the withonly and with constructs into calls to the Jade run-
time system, generate the code to transfer the parameters between the parent and child tasks,
insert the dynamic access checks and convert the Jade syntax to pure C code. To perform
these actions the front end does a complete parse of the Jade code, including a complete
type analysis. We demonstrate what the front end does by discussing the translation of
several examples designed to present the functionality of the front end.

A.1.1 The withonly Construct

For a withonly construct, the preprocessor extracts the task body section, generates
a separate function which contains the code from the task body section, generates code
to perform the parameter transfer and generates several calls to the Jade implementation.
The first example illustrates what code the front end emits when it encounters a withonly
construct. Figure A.2 contains the C code that the front end generates for the function in
Figure A.1.

The shared-memory implementation represents shared pointers with a normal C pointer
to the allocated space that holds the object. In line 1 in Figure A.2 the implementation has
converted the Jade syntax for declaring variables to C syntax for pointer declarations by
removing the shared keyword from the declarations of a and b.

The next section of emitted code translates the withonly construct. The call to
the begin withonly routine in line 12 allocates the data structure used to hold the
data associated with the task. The begin withonly routine is passed a pointer to
the function containing the task body, and a parameter indicating how much space is
required for the task parameters. The begin withonly routine returns a pointer to space

200

A.1. THE SHARED-MEMORY FRONT END 201

1: add(double shared *a, double shared *b, int n)
2: {
3: withonly { rd(a); wr(a); rd(b); } do (a, b, n) {
4: aux_add(a, b, n);
5: }
6: }

Figure A.1: Jade Source for withonly Example

1: add(double *a, double *b, int n)
2: {
3: {
4: struct __test0 {
5: double *a;
6: double *b;
7: int n;
8: };
9: void __code_test0(struct __test0 *__p);
10: struct __test0 *__p;
11: __p = (struct __test0 *)
12: begin_withonly(__code_test0,
13: sizeof(struct __test0));
14: { rd(a); wr(a); rd(b); }
15: __p->a = a;
16: __p->b = b;
17: __p->n = n;
18: end_withonly();
19: }
20: }

Figure A.2: Generated Code for withonly Example

202 APPENDIX A. THE JADE FRONT END

inside the task data structure reserved for the task’s parameters. The code in lines 14
through 16 copies the values of the parameters into this space. The code in line 13 is the
accessspecification section of the withonly construct. The access specification
statements (in this case the rd(a), wr(a) and rd(b)) are calls to Jade library routines.
The call to the end withonly construct informs the Jade implementation that the task’s
access specification section has finished and that the parameters are in place.

Figure A.3 contains the generated task body function. This function takes a single
parameter: the pointer to the space in the task data structure that holds the task’s parameters.
In lines 6 through 8 the front end generates code to extract the parameters from the task
data structure. Line 10 contains the task body.

1: void __code_test0(struct __test0 *__p)
2: {
3: double *a;
4: double *b;
5: int n;
6: a = __p->a;
7: b = __p->b;
8: n = __p->n;
9: {
10: aux_add(a, b, n);
11: }
12: }

Figure A.3: Generated Task Body for withonly Example

A.1.2 Access Checks

We next present an example that illustrates how the front end inserts the dynamic checks
required to verify that a task does not violate its access specification. The C code in Figure
A.5 is what the Jade front end generates for the Jade code in Figure A.4.

Every time the task body assigns to a local pointer or dereferences a shared pointer the
implementation inserts a call to the shared to local routine in the Jade library. This
routine performs the access check that enforces the preservation of the serial semantics. The
first parameter to this routine is the object pointer, and the second specifies how the code
will access the object. 0x040 specifies a write access, 0x020 specifies a read access, and
0x060 specifies both a read and a write access. The call to shared to local returns
a pointer to the object. In line 4 from Figure A.5 the front end has inserted a call to the

A.1. THE SHARED-MEMORY FRONT END 203

1: aux_add(double shared *a, double shared *b, int n)
2: {
3: int i;
4: double local rd wr *la = a;
5: for (i = 0; i < n; i++) {
6: la[i] = la[i] + b[i];
7: }
8: }

Figure A.4: Jade Source for Access Check Example

1: aux_add(double *a, double *b, int n)
2: {
3: int i;
4: double *la = ((double *)shared_to_local(a,0x060));
5: for (i = 0; i < n; i++) {
6: la[i] = la[i] + ((double *)

shared_to_local(b,0x020))[i];
7: }
8: }

Figure A.5: Generated Code for Access Check Example

shared to local routine because of the assignment to a local pointer. In line 6 the
front end has inserted a call to the shared to local routine because of the dereference
of a shared pointer.

A.1.3 Allocating Objects

The front end must translate the parameters of the create object construct to fit the
interface of thecreate object routine in the Jade library. This routine allocates memory
for each object, returning a pointer to the first byte of memory in the object. Figure A.7
presents the translation of the Jade code in Figure A.6. The front end has put a sizeof
construct around the type, and inserted the default number of items (one) as the second
parameter.

204 APPENDIX A. THE JADE FRONT END

1: double shared *make_double()
2: {
3: return(create_object(double));
4: }

Figure A.6: Jade Source for Object Creation Example

1: double *make_double()
2: {
3: return((double *)create_object(sizeof(double), 1));
4: }

Figure A.7: Generated Code for with Example

A.1.4 The with Construct

The next example illustrates what the front end does with a with construct. Figure A.9
is the translation of the Jade code in Figure A.8. The implementation inserts a call to the
begin with routine, then inserts the access specification from the with construct, then
inserts a call to the end with routine. The only quirk is to ensure that the with construct
gets treated as a single statement by putting braces around the generated code.

1: void zero(double shared *a, int n)
2: {
3: int i;
4: with { wr(a); } cont;
5: for (i = 0; i < n; i++) {
6: a[i] = 0.0;
7: }
8: with { df_wr(a); } cont;
9: }

Figure A.8: Jade Source for with Example

A.1. THE SHARED-MEMORY FRONT END 205

1: void zero(double *a, int n)
2: {
3: int i;
4: { begin_with(); { wr(a); } end_with(); }
5: for (i = 0; i < n; i++) {
6: ((double *)shared_to_local(a,0x040))[i] = 0.0;
7: }
8: { begin_with(); { df_wr(a); } end_with(); }
9: }

Figure A.9: Generated Code for with Example

A.1.5 Global Variables

In the shared-memory implementation all pieces of code can access global variables directly.
The front end therefore does nothing with global variable declarations except translate the
declarations to legal C.

A.1.6 Shared Functions

The shared-memory front end represents shared function pointers as hard pointers to the
address of the code. All it must do to translate the declarations and uses of shared functions
is to remove the shared keyword to convert the Jade syntax to legal C syntax. Figure
A.11 contains the C code generated from the example in Figure A.10.

1: int shared plus_one(int a)
2: {
3: return(a + 1);
4: }
5:
6: int shared (*f()) (int)
7: {
8: return(plus_one);
9: }

Figure A.10: Source Code for Shared Function Example

206 APPENDIX A. THE JADE FRONT END

1: int plus_one(int a)
2: {
3: return(a + 1);
4: }
5:
6: int (*f()) (int)
7: {
8: return(plus_one);
9: }

Figure A.11: Generated Code for Shared Function Example

A.2 The Message-Passing Front End

Like the shared-memory front end, the message-passing front end translates the with
and withonly constructs into calls to the Jade run-time system, generates the code to
transfer the parameters between the parent and child tasks, inserts the dynamic access
checks and converts the Jade syntax to pure C code. The message-passing front end must
also generate routines to pack and unpack objects, object queues and task data structures
from message buffers, using a machine-independent representation for all data that crosses
machine boundaries. These pack and unpack routines are built on a set of routines in the
Jade implementation for manipulating message buffers. Each such routine manipulates
data of a different type. The type information is present so that the implementation can
apply the data format translation required to move data correctly between machines in a
heterogeneous environment.

A.2.1 The withonly Construct

The message-passing implementation generates significantly more code for a withonly
construct than the shared-memory implementation. We discuss what the front end does by
presenting how it translates the withonly construct in Figure A.12.

Because data associated with tasks must cross processor boundaries, the implementation
has to generate code that will pack and unpack data associated with tasks from message
buffers. For each withonly construct the front end therefore generates a set of routines to
pack and unpack the task’s parameters from message buffers. The front end also generates
a routine that computes how much space the parameter data will occupy in the message
buffer. Figure A.13 contains these automatically generated routines. The routines with
names like int put are routines from the Jade implementation that pack typed data into
message buffers; routines with names like int get unpack the data.

A.2. THE MESSAGE-PASSING FRONT END 207

1: add(double shared *a, double shared *b, int n)
2: {
3: withonly { rd(a); wr(a); rd(b); } do (a, b, n) {
4: aux_add(a, b, n);
5: }
6: }

Figure A.12: Jade Source for withonly Example

1: struct __test0 {
2: double *a;
3: double *b;
4: int n;
5: };
6: void __woput_test0(struct __test0 *p)
7: {
8: object_id_put((int) p->a);
9: object_id_put((int) p->b);
10: int_put(p->n);
11: }
12: void __woget_test0(struct __test0 *p)
13: {
14: object_id_get((int *) &p->a);
15: object_id_get((int *) &p->b);
16: int_get(&p->n);
17: }
18: int __wosize_test0(struct __test0 *p)
19: {
20: int size = 0;
21: size += object_id_size((int) p->a);
22: size += object_id_size((int) p->b);
23: size += int_size(p->n);
24: return size;
25: }

Figure A.13: Generated Packing and Unpacking Routines for withonly Example

208 APPENDIX A. THE JADE FRONT END

At the actual withonly site the message-passing front end generates code that is
very similar to the shared-memory front end. There is one subtle difference in line 14.
The message-passing front end and initialization code in the Jade message-passing library
cooperate to number every withonly site in the program. The first parameter to the
begin withonly routine in the message-passing library is the global serial number of
the withonly site. The message-passing front end generates a static variable for each
file holding the serial number of the first withonly site in the file. In this example that
variable is called wo test. This variable is declared in line 1.

The front end computes the global serial number for each withonly site in the file
by adding an offset to this variable. The reason the implementation uses a serial number
instead of a raw function pointer is that the task data may have to cross machine boundaries,
and the implementation needs a machine-independent representation of which withonly
site generated the task. On each processor the serial number indexes tables which contain
pointers to functions (such as the task body function and functions to pack and unpack task
parameters from message buffers) that the implementation uses to manipulate the task. The
translation of the function containing the task body is the same as in the shared-memory
implementation.

For every file the Jade front end generates code to initialize the tables of data associated
with withonly constructs. The implementation calls this routine once on every processor
before it transfers control to the user code. Figure A.15 contains the generated functions.
The implementation uses the init wo test function to compute how manywithonly
sites there are in the file. Each file contains an automatically generated routine that returns
the number of withonly sites in that file. There is also an automatically generated
routine that calls each of these functions in turn to compute the total number of withonly
constructs in the whole program. The implementation then allocates tables of that size, and
calls the functions that initialize the tables for each file.

A.2.2 Access Checks

The message-passing front end generates the exact same access check code as the shared-
memory front end. The message-passing implementation implements shared pointers using
globally valid machine-independent identifiers, so the shared to local routine in the
message-passing implementation must both translate the globally valid identifiers to the
local version of the object and check that the task correctly declared the access. The
generated code is the same as in the shared-memory implementation, however.

A.2. THE MESSAGE-PASSING FRONT END 209

1: static int __wo_test;
2:
3: add (double *a , double *b , int n)
4: {
5: {
6: struct __test0 {
7: double *a;
8: double *b;
9: int n;
10: };
11: void __code_test0();
12: struct __test0 *__p;
13: __p = (struct __test0 *)
14: begin_withonly(__wo_test + 0,
15: sizeof(struct __test0));
16: { rd(a); wr(a); rd(b); }
17: __p->a = a;
18: __p->b = b;
19: __p->n = n;
20: end_withonly();
21: }
22: }

Figure A.14: Generated Code for withonly Example

A.2.3 Allocating Objects

We next discuss the translation of the create object construct. Because the message-
passing implementation must transfer objects between processors to implement the abstrac-
tion of a single address space, the implementation must generate routines that pack and
unpack objects from message buffers. The front end must also keep track of the types
of objects so that the run-time system can correctly perform the data format translation
required in heterogeneous environments. We describe what the front end does for objects
by presenting what the front end generates for the code in Figure A.16.

For each object creation site, the implementation generates a set of routines that pack
and unpack objects created at that site. Figure A.17 contains the generated pack and unpack
routines.

The implementation also generates a routine that computes how much space the object
occupies in a message buffer, and a routine to deallocate the space holding any part objects to

210 APPENDIX A. THE JADE FRONT END

1: int __num_wo_test(int t)
2: {
3: return(t+2);
4: }
5: int __init_wo_test(int t, void (*put_tbl[])(),
6: void (*get_tbl[])(),
7: void (*code_tbl[])(),
8: int fsize_tbl[])
9: {
10: __wo_test = t;
11: put_tbl[t + 0] = __woput_test0;
12: get_tbl[t + 0] = __woget_test0;
13: code_tbl[t + 0] = __code_test0;
14: {
15 struct __test0 p;
16: fsize_tbl[t + 0] = __wosize_test0(&p);
17: }
18: return(t+1);
19: }

Figure A.15: Generated withonly Initialization Functions

1: double shared *make()
2: {
3: return(create_object(double));
4: }

Figure A.16: Source Code for Object Creation Example

which the object points. The implementation allocates and deallocates the space associated
with each object as the object moves between processors. Figure A.18 contains the generated
size and deallocation routines.

Figure A.19 contains the translation of the object creation site in Figure A.16. It is
similar to what the shared-memory implementation generates. There is a subtle difference
in line4. Likewithonly sites, the implementation numbers all of the object creation sites
in the program. The first parameter to thecreate object routine in the message-passing
library is the serial number of the object creation site. The Jade implementation uses this

A.2. THE MESSAGE-PASSING FRONT END 211

1: void __put_test0(double *p)
2: {
3: {
4: int n;
5: if (p == 0) {
6: int_put(0);
7: }
8: else {
9: n = *((int *)(p) - 1);
10: int_put(n);
11: if (n != 0) double_array_put(p, n);
12: }
13: }
14: }
15: void __get_test0(double **pp)
16: {
17: {
18: int n;
19: int_get(&n);
20: double_array_get(*pp, n);
21: }
22: }

Figure A.17: Pack and Unpack Routines for Object Creation Example

number as a machine-independent representation of the object’s type. On each processor it
indexes a table containing local data (such as pointers to functions to pack and unpack the
object’s data into message buffers) that the implementation needs to manipulate objects of
that type. The implementation determines the total number of object creation sites in the
program and sets up the tables that point to object manipulation routines in much the same
way as it performs the analogous functions for withonly sites.

A.2.4 The with Construct

The message-passing Jade implementation generates the same code for with constructs as
the shared-memory Jade implementation.

212 APPENDIX A. THE JADE FRONT END

1: void __free_test0(double *p) {}
2: int __size_test0(double *p)
3: {
4: int size = 0;
5: {
6: int n;
7: size += int_size(n);
8: if (p != 0) {
9: n = *((int *)(p) - 1);
10: if (n != 0) size += double_array_size(p, n);
11: }
12: }
13: return size;
14: }

Figure A.18: Size and Deallocation Routines for Object Creation Example

1: static int __type_test;
2: double *make ()
3: {
4: return((double *)create_object (__type_test + 0, 1));
5: }

Figure A.19: Generated Code for Object Creation Example

A.2.5 Global Objects

The message-passing Jade implementation generates a machine-independent identifier for
every shared object. Shared pointers contain these identifiers rather than native pointers
valid in only one address space. The Jade implementation therefore generates a structure
for each global variable; one of the elements of this structure stores the identifier of the
global variable. There is also a dummy field that the implementation uses to store some
information about the global variable. Figure A.21 contains the translated object declaration
for the global variable in Figure A.20. The front end automatically adjusts all references to
the global variable to take the new format into account.

When the implementation transfers the data associated with a global object between
processors, it must store the data in the preallocated space – i.e. in thevalfield in the global
variable declaration. The implementation must also ensure that the id field contains the

A.2. THE MESSAGE-PASSING FRONT END 213

int shared g;

Figure A.20: Global Object Declaration

struct { int *_id; double _dummy[11]; int _val[1]; } g;

Figure A.21: Generated Code for Global Object Declaration

correct object identifier on all processors. The implementation therefore generates routines
that initialize the id field and a table containing pointers to the data associated with global
objects. These tables are indexed by the machine-independent identifiers of the global
objects.

In the described scheme a global object occupies space on all processors whether or
not that processor actually references the global object. There is an option in the Jade
preprocessor to simply treat global objects like other objects, and dynamically allocate and
deallocate the space that holds the local version of the object as the object moves between
processors. This is useful if there are very large global objects that do not need to be resident
on all processors.

A.2.6 Shared Functions

Because shared function pointers can cross processor boundaries, the message-passing Jade
implementation must represent them in a globally valid, machine-independent way. As for
withonly sites and object creation sites, the implementation numbers all of the sites in
the program that use a shared function name as a value. Each shared function pointer
is then represented by the serial number of the value site that generated it. When the
program calls a shared function using a shared function pointer, it indirects through a table
indexed by shared function numbers that contains pointers to the local versions of shared
functions. This makes it possible to transfer pointers to shared functions between machines
in a heterogeneous environment. We illustrate what the front end does with shared function
pointers using the example in Figure A.22.

Figure A.23 contains the generated code for the example in Figure A.22. The imple-
mentation generates a variable called fn test that contains the serial number of the first
shared function name use site in the file. In line 9 the implementation uses this variable to
determine the global serial number of the shared function name use site. The implemen-
tation also automatically generates routines to initialize the shared function name use sites
and to generate the tables pointing to local versions of shared functions.

214 APPENDIX A. THE JADE FRONT END

1: int shared plus_one(int a)
2: {
3: return(a + 1);
4: }
5:
6: int shared (*f()) (int)
7: {
8: return(plus_one);
9: }

Figure A.22: Source Code for Shared Function Example

1: static int __fn_test;
2: int plus_one (int a)
3: {
4: return (a+1);
5: }
6:
7: int (*f()) (int)
8: {
9: return ((int (*)()) (__fn_test + 0)) ;
10: }

Figure A.23: Generated Code for Shared Function Example

Appendix B

Benchmark Programs

B.1 Benchmark Programs

This appendix contains the benchmark programs that measure the basic time overhead of the
Jade constructs. There are three benchmark programs: a program designed to measure the
task creation and execution overhead, a program designed to measure the with overhead,
and a program designed to determine the grain size that the Jade implementations can
profitably exploit. The results in section 3.6 come from these benchmark programs.

B.1.1 withonly Overhead

The benchmark program in Figure B.1 measures the task creation and execution time for
Jade tasks. The routine serially creates and serially executes NUM TASK tasks. It batches
the creation and execution in that it creates BLOCK TASK tasks, then executes the tasks
before it goes on to create and execute the next batch of tasks. To ensure that there is
no concurrency in the creation and execution, for each batch the routine first creates one
task (the blocking task) that must execute on the processor that creates the tasks. The
blocking task prevents all of the subsequently created tasks in the batch from executing.
The execution of each batch therefore proceeds as follows:

� The creator creates the blocking task.

� The creator creates all of the other tasks in the batch.

� The creator executes the blocking task.

� The rest of the tasks execute sequentially.

Because all of the tasks in the batch execute sequentially, there is no concurrency in the
execution of the tasks. The running time accurately measures the total time to create and

215

216 APPENDIX B. BENCHMARK PROGRAMS

execute the tasks. The program assumes that the time to create and execute the blocking
task is negligible compared to the time to create and execute the rest of the tasks in the
batch.

B.1.2 with Overhead

The benchmark program in Figure B.2 measures the time to execute with constructs. It
simply measures the time to execute a group ofwith constructs, then divides by the number
of with constructs to get the overhead per with.

B.1.3 Speedup Benchmark

The program in Figures B.3 and B.4 measures the speedup for various task sizes. For each
task size it serially creates 31 * 256 tasks and assigns the tasks to processors for execution
in a round-robin fashion, omitting the main processor (processor 0), which creates all of
the tasks. The tasks themselves execute in parallel. For a 32 processor run processors 1
through 32 (the worker processors) each execute 256 tasks.

We next develop a simple analytical model of the performance of this benchmark.
Specifically, we define a function m(o; t) which gives the running time of the program
assuming the Jade overhead per task at the creating processor is o seconds and the tasks
execute for t seconds. Because there is some concurrency in the execution of a task, o will
be less than the total task creation overhead presented in Figures 3.4 and 3.5. On a real
machine the overhead may vary slightly with the task time because of the interleaving of
the processor interactions.

If the task size is smaller than the time required to create 31 tasks (i.e. if 31 � o < t),
every worker processor will be idle when it gets a task. In this case the critical path is the
creation of all of the tasks followed by the execution of the last task. The running time for
this task size is therefore 31 � 256 � o+ t.

If the task size is greater than or equal to the time required to create 31 tasks (i.e. if
31 � o � t), each worker processor will be idle until it gets its first task, and will then be
busy until it finishes executing its last task. The critical path is the creation of the first round
of tasks, followed by the execution of the 256 tasks on the last processor to finish executing
its tasks. The running time for this task size is therefore 31 � o + 256 � t. We therefore
define m(o; t) as follows:

m(o; t) =

(
31 � 256 � o + t if 31 � o � t

31 � o + 256 � t if 31 � o < t

We next experimentally measure the running time of benchmark program. Figures B.5
and B.6 graph the actual measured execution time e(t) divided by 256 for a variety of task
times t between 0 and 50 milliseconds. If there were no Jade overhead e(t)=256 would

B.1. BENCHMARK PROGRAMS 217

#define NUM_TASK 100000
#define BLOCK_TASK 250
#define NUM_SPEC 10

do_withonly(a, proc)
int shared *a[NUM_SPEC];
int proc;
{

int start_time, stop_time, run_time;
int s, cs, i, num_stat = 0;
for (cs = 1; cs <= NUM_SPEC; cs++) {

get_time(&start_time);
i = 0;
while (i < NUM_TASK) {
block {
withonly {
for (s = 0; s < cs; s++) wr(a[s]);

} @ 0 do () {}
while (i < NUM_TASK) {
withonly {
for (s = 0; s < cs; s++) wr(a[s]);

} @ proc do () {}
i++;
if (i % BLOCK_TASK == 0) break;

}
}

}
get_time(&stop_time);
run_time = stop_time-start_time;
printf("proc = %d, num stmts = %d, overhead = %lf\n",
proc, cs, ticks_to_seconds_time(run_time) / NUM_TASK);

}
}

Figure B.1: withonly Overhead Benchmark

218 APPENDIX B. BENCHMARK PROGRAMS

#define NUM_WITH 10000

int do_with(a, proc)
int shared *a[NUM_SPEC];
int proc;
{

int num_stat = 0;
int start_time, stop_time;
int s, cs, bl;
for (cs = 1; cs <= NUM_SPEC; cs++) {

get_time(&start_time);
for (bl = 0; bl < NUM_WITH; bl++) {
with {
for (s = 0; s < cs; s++) rd(a[s]);

} cont;
with {
for (s = 0; s < cs; s++) df_rd(a[s]);

} cont;
}
get_time(&stop_time);
printf(f, "num specs = %d, overhead = %lf\n",
cs, ticks_to_seconds_time(stop_time-start_time) /

(2 * NUM_WITH));
}

}

Figure B.2: with Overhead Benchmark

equal t. The deviation from this ideal displays the relative effect of the Jade overhead. Both
curves have a knee at the point when 31 � o = t. This knee explains the corresponding
knee in the curves in Figures 3.8 and 3.9, reproduced here as Figures B.7 and B.8 for the
convenience of the reader.

B.1. BENCHMARK PROGRAMS 219

#define START_TIME 0.050
#define STOP_TIME -0.0001
#define INC_TIME 0.00025
#define NUM_TASKS (31 * 256)
#define NUM_OBJECTS (31)

speedup(read, write, glb)
int shared *read[NUM_OBJECTS];
int shared *write[NUM_OBJECTS];
int shared *glb;
{

double t;
int start_time, stop_time, n, run_time;
for (t = START_TIME; t >= STOP_TIME; t -= INC_TIME) {

get_time(&start_time);
block {
for (n = 0; n < NUM_TASKS; n++) {
withonly {
wr(write[n % NUM_OBJECTS]);
rd(read[(n + 1) % NUM_OBJECTS]);
rd(glb);

} @ (n % NUM_OBJECTS) + 1 do (glb, n, t) {
wait(t);

}
}

}
get_time(&stop_time);
run_time = stop_time - start_time;
printf("task time= %lf speedup= %lf run time= %lf\n",
t,
(t * NUM_TASKS) / ticks_to_seconds_time(run_time),
ticks_to_seconds_time(run_time));

}
}

Figure B.3: Speedup Benchmark

220 APPENDIX B. BENCHMARK PROGRAMS

wait(t)
double t;
{

int st, ct;
get_time(&st);
while (1) {

get_time(&ct);
if (ticks_to_seconds_time(ct - st) >= t) {
break;

}
}

}

Figure B.4: wait Procedure for Speedup Benchmark

B.1. BENCHMARK PROGRAMS 221

|

0
|

5
|

10
|

15
|

20
|

25
|

30
|

35
|

40
|

45
|

50

|0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

 Task Size (milliseconds)

 E
xe

cu
tio

n
T

im
e/

25
6

(m
ill

is
ec

on
ds

)

Figure B.5: Measured e(t)=256 on DASH

|

0
|

5
|

10
|

15
|

20
|

25
|

30
|

35
|

40
|

45
|

50

|0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

 Task Size (milliseconds)

 E
xe

cu
tio

n
T

im
e/

25
6

(m
ill

is
ec

on
ds

)

Figure B.6: Measured e(t)=256 on iPSC/860

222 APPENDIX B. BENCHMARK PROGRAMS

|

0
|

5
|

10
|

15
|

20
|

25
|

30
|

35
|

40
|

45
|

50

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Task Size (milliseconds)

 S
pe

ed
up

Figure B.7: Measured Speedup on DASH

|

0
|

5
|

10
|

15
|

20
|

25
|

30
|

35
|

40
|

45
|

50

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Task Size (milliseconds)

 S
pe

ed
up

Figure B.8: Measured Speedup on iPSC/860

Appendix C

Machine Characteristics

1

C.1 The iPSC/860

The iPSC/860 is a distributed-memory machine consisting of i860 processing nodes inter-
connected by a hypercube network. Each processing node consists of a 40MHz i860 XR
processor with a 4KByte instruction cache and an 8KByte write-back data cache, each with
32-byte lines. Each node can deliver a maximum of 40 MIPS and 30 double-precision
MFLOPS. (There are special dual-operation instructions that allow a floating-point add
and multiply to execution in parallel, thus raising the peak rate to 60 MFLOPS, but these
instructions are not used in our compiled code.)

The processing nodes are connected by a hypercube network that scales from 8 to 128
processors in powers of 2. The network is circuit-switched and provides a bandwidth of 2.8
megabytes per second between neighboring nodes.

Jade uses the NX/2 message-passing library on the iPSC/860, which provides primitives
for sending arbitrary-sized messages between any two nodes. The NX/2 library automati-
cally does buffering on the send and receive sides. We have measured a minimum time to
send a short message as 47 microseconds, and the minimum round-trip for a request/reply
as 154 microseconds.

C.2 The Stanford DASH Machine

The Stanford DASH machine[82] is a cache-coherent shared-memory multiprocessor. It
uses a distributed directory-based protocol to provide cache coherence. It is organized
as a group of processing clusters connected by a mesh interconnection network. Each of

1We would like to thank Dan Scales for compiling the information in this Appendix.

223

224 APPENDIX C. MACHINE CHARACTERISTICS

the clusters is a Silicon Graphics 4D/340 bus-based multiprocessor. The 4D/340 system
has four processing nodes, each of which contains a 33MHz R3000 processor, a R3010
floating-point co-processor, a 64KByte instruction cache, 64KByte first-level write-through
data cache, and a 256KByte second-level write-back data cache. Each node has a peak
performance of 25 VAX MIPS and 10 double-precision MFLOPS. Cache coherence within
a cluster is maintained at the level of 16-byte lines via a bus-based snoopy protocol. Each
cluster also includes a directory processor that snoops on the bus and handles references
to and from other clusters. The directory processor maintains directory information on the
cacheable main memory within that cluster that indicates which clusters, if any, currently
cache each line.

The interconnection network consists of a pair of wormhole routed meshes, one for
request messages and one for replies. The total bandwidth in and out of each cluster is 120
megabytes per second. The DASH prototype supports up to 16 clusters for a total of 64
processors.

The latencies for read accesses to shared data in DASH vary depending on the current
state of the data in the caches of the local processor, the processors in the local processor,
and the processors in the remote clusters. A processor takes 1, 15, and 29 cycles to access
data that is in its first-level cache, in its second-level cache, or in the cache of another
processor in the cluster, respectively. If the data is not available in the local cluster, a
request must be made to the home cluster of the data, causing a latency of 101 cycles if
there is no contention. If the data is dirty in a third cluster, the request must be forwarded
to that cluster and the latency is 132 cycles. The bandwidth at which the processor can
access data therefore varies on the location of the data; for an average latency of 50 cycles
and assuming that the processor uses every byte in each line that it accesses, the usable
bandwidth is about 10 megabytes per second.

