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Abstract

Researchers have proposed a variety of techniques for dealing with memory latency, such as dy-

namic scheduling, hardware prefetching, software prefetching, and multiple contexts. This paper

presents the results of two case studies on the usefulness of some simple techniques for latency

tolerance. These techniques are nonblocking caches, reordering of loads and stores, and basic block

scheduling for the expected latency of loads. The e�ectiveness of these techniques was found to

vary according to the type of application. While nonblocking caches and load/store reordering

consistently improved performance, scheduling based on expected latency was found to decrease

performance in most cases. This result shows that the assumption of a uniform miss rate used by

the scheduler is incorrect, and suggests that techniques for estimating the miss rates of individual

loads are needed. These results were obtained using a new simulation environment, MXS, currently

under development.

Key Words and Phrases: Code scheduling, CPU simulation, Memory latency, Nonblocking

cache, Prefetching.
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1 Introduction

Processor cycle times are currently much faster than memory cycle times, and the trend has been

for this gap to increase over time. The problem of increasing memory latency, relative to processor

speed, has been dealt with by adding high speed cache memory. However, depending on the miss

rate, memory latency can still have a signi�cant performance impact. Since the trend of increasing

memory latency is expected to continue, the performance impact will become even more signi�cant

with time.

Researchers have proposed a variety of techniques for dealing with memory latency, many of which

have been implemented. These techniques fall into the categories of dynamic scheduling, hard-

ware prefetching, software prefetching, or supporting multiple contexts [GGH92, CB92, MLG92,

GHG+91]. Various combinations of techniques for latency tolerance are possible as well. This pa-

per presents the results of two case studies on the usefulness of some simple techniques for latency

tolerance. These techniques are nonblocking caches, reordering of loads and stores, and basic block

scheduling for the expected latency of loads.

These results were obtained using a new simulation environment, MXS, currently under develop-

ment. MXS stands for \Memory coupled eXecution based Simulation environment" and consists

of a compiler and a simulator. The compiler takes as input a binary �le compiled for execution on

the MIPS R3000 processor [Kan88], and produces a �le that the simulator can run. The compiler

is responsible for rescheduling the code as appropriate for the processor model being simulated and

for register re-allocation. The simulator then executes the �le, simulating both the CPU and the

memory subsystem.

The rest of the paper is organized as follows. Section 2 describes the simulation environment and

section 3 describes the processor models used in the studies. Then two studies are described, one

study involving nonblocking caches and load/store reordering (section 4), and another study on

the impact of basic block scheduling for the expected latency of loads (section 5). In section 6 the

results of these studies are discussed as well as our plans for enhancing the simulation environment.

2 The Simulation Framework

Figure 1 shows the simulation framework. The benchmark is �rst compiled and then it is executed

by the simulator. During execution, the simulator maintains counts of various statistics of interest,

such as number of loads, stores, cache misses, etc. After the execution is completed, the statistics

are written out to a results �le. Both the compiler and the simulator are con�gured by means of a

parameter �le which describes the processor and memory subsystem being modeled. While MXS

can simulate a wide variety of benchmarks, it is currently limited to simulating a single process

only, so benchmarks involving multiple processes cannot be simulated.

The parameter �le is implemented as a C language header �le. When the con�guration needs to

be changed, this �le is modi�ed and the MXS compiler and simulator are rebuilt (compile time

con�guration). The idea behind compile time con�guration is that the time to build a new version
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Figure 1: The Simulation Process

of the compiler and the simulator is small compared to the time to run the benchmarks in the

simulator.

2.1 The MXS Compiler

The MXS compiler performs the following operations on its binary input �le. It builds a list of

procedures by reading the symbol table, then passes over the code segment building a basic block

graph for each procedure (more procedures may be discovered during this phase). Then the R3000

instructions are translated into the format that is interpreted by the MXS simulator. During this

translation the compiler can insert special opcodes that increment counters during simulation. This

feature currently is used to count the number of cycles lost to no-ops in the branch delay slot.

The compiler then constructs a call graph of the benchmark, and traverses the call graph from

the leaves to the root, performing a dataow analysis on each procedure [ASU88]. After dataow

analysis, the registers can be renamed, to simulate an architecture with a di�erent number of

registers than an R3000. Then each basic block is rescheduled. A dependency graph is built

for each basic block and the edges of the graph are annotated with the corresponding operation

latencies. A list scheduling algorithm processes the basic block, at each step scheduling the ready

operation whose path to the �nal node of the graph is the longest [Fis81, GM86].

The compiler includes a parameter �le which de�nes the particular CPU and memory system

being con�gured. The parameters de�ned in this �le include instruction latency (which can vary

depending on the instruction), size of the cache, cache line size and degree of associativity, cache
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read and write miss penalties, and bus bandwidth. The compiler currently makes use of only the

instruction latencies and the cache miss penalties. The other parameters are included because the

parameter �le is shared between the compiler and the simulator.

2.2 The MXS Simulator

In order to achieve reasonable performance, the MXS simulator does not completely simulate the

operation of the processor. Instead, it simulates each instruction in terms of its initiation and

completion. Each cycle the simulator executes one instruction (assuming that its operands are

ready), checks to see if any pending operations complete this cycle, and processes the load/store

queue (see �gure 2). If the instruction being executed completes in one cycle, then we are through

with that instruction.

If the instruction takes multiple cycles to complete, then after the operation is performed, the

destination register for that instruction is locked and the register unlock operation added to the

work list queue. When the cycle counter advances to the point where the instruction completes

execution, the register unlock is pulled from the work list queue and executed. While the register is

locked, instructions which use that register are stalled. In this way the exact latencies of instructions

can be modeled, without modeling the details of processor operation.

For load and store instructions, the operation is added to the load/store queue, and the subsequent
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Operation Latency

Load 2 cycles

Branch 2 cycles

Int. Multiply 12 cycles

Int. Divide 35 cycles

Other int. op 1 cycle

FP Add 2 cycles

FP Multiply 4/5 cycles

FP Divide 12/19 cycles

Table 1: Operation Latencies

processing of the operation depends on the memory subsystem model. In the case of cache misses,

where the result may not be available for several cycles, the work list mechanism is again used.

The cache miss is translated into a bus request and placed in a list of outstanding bus transactions.

The completion of the bus transaction is then added to the work list queue, and at the appropriate

cycle it is pulled from this queue and executed.

3 Processor Models

For both of the following studies, the processor being modeled was a statically scheduled scalar

processor, with operation latencies taken from the R3000 (see table 1). Where two latencies are

given, the smaller number is for single precision and the larger latency is for double precision.

The latency for the load is the latency assuming a hit in the cache. The number of registers in

the processor was 32 integer and 16 oating point registers for most of the following results. The

register renaming option of the second study allowed an unlimited number of registers.

Only a single level of cache was modeled, in this case a 16K byte direct mapped cache with a 16

byte line size. The cache miss penalty was taken to be 10 cycles for both read misses and write

misses.

The processor model labeled "blocking" (see �gure 3) blocks on both cache read and cache write

misses. It remains stalled until the time speci�ed for handling the cache miss has passed. In all

other models, the processor continues execution past the load or store up to the point when a

register is referenced whose value is not yet available. This limited level of dynamic behaviour in

the processor can be implemented using register interlocks.

The processor models labeled "one miss" and "unlimited" have the ability to reorder loads and

stores, via a set of queues called the cache line busy queues. In these models, loads and stores are

allowed to proceed as long as they don't conict with prior memory operations which are waiting

on a cache miss. Conict detection is handled during cache access. If a memory operation accesses

a cache line that is busy (handling a cache miss), then that operation is placed on a cache line busy

queue for that cache line.

Subsequent memory operations can then be processed, as long as they don't access a cache line
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Figure 3: Compress

that is busy. This is safe since if a memory operation accesses a cache line that isn't busy, this

means that its address doesn't match the address of any pending memory operation.

If a subsequent memory operation does access a busy cache line, then it is also added to the cache

line busy queue for that cache line. When the cache miss handling is completed, the operations

in the cache line busy queue are processed. They are given a higher priority than other memory

operations. In this way memory operations with addresses that might match are processed in order.

4 Study 1: Nonblocking Cache

One of the simplest techniques to provide for latency tolerance is the nonblocking (or lockup-free)

cache [Kro81]. The nonblocking cache allows multiple memory transactions to be in progress, lim-

ited by the number of registers allocated to track these transactions (called miss information/status

holding registers in [Kro81]). Techniques for latency tolerance, such as those listed in section 1,

rely on some mechanism to support multiple outstanding memory transactions. In this sense, the

nonblocking cache is the lowest common denominator of techniques for latency tolerance. Studies

of nonblocking caches include [CB92, FJ94].

In this study we look at varying the bus bandwidth assumed to be available to handle the outstand-

ing cache misses and varying the ability of the processor to reorder loads and stores in conjunction

with a nonblocking cache. Four di�erent system models were used in this study and their per-
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Figure 4: Doduc

blocking one miss no reorder unlimited
Processor Model

0.0

0.1

0.2

0.3

0.4

E
xc

es
s 

C
P

I

control

data

load

memory

Figure 5: Espresso

6



blocking one miss no reorder unlimited
Processor Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
xc

es
s 

C
P

I

control

data

load

memory

Figure 6: Tomcatv
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formance was compared on �ve di�erent benchmarks taken from the SPEC92 benchmark suite

(see �gures 3 through 7). The benchmarks were chosen to represent a variety of di�erent types of

applications. All benchmarks were run to completion.

These graphs plot excess CPI versus processor model for the �ve benchmarks. Excess CPI is the

number of stall cycles divided by the number of instructions executed. The excess CPI is broken

down according to the source of the delay: control hazard (i.e. an un�lled branch delay slot), data

hazard (or data dependency), load delay, or memory latency.

The �rst model (blocking) stalls on both cache read misses and cache write misses. All other models

only stall on a reference to a register whose value is not yet available. In the case of the blocking

processor model, the excess CPI due to memory latency is shown with a line that divides the delay

due to read misses from the delay due to write misses.

The second model (one miss) allows the processor to continue execution after a single cache miss,

but a second cache miss is held o� until the �rst one is processed. This models a system where

the bus bandwidth is limited to a single outstanding transaction at a time (also called \hit-under-

miss"). Loads and stores following the �rst cache miss which hit in the cache are allowed to proceed.

Reordering is enabled in this case, which means that if there are several cache accesses to the same

cache line which all miss, they are placed in a cache line busy queue, and subsequent loads and

stores to other cache lines are allowed to proceed. However, if the second cache miss occurs on a

separate cache line this blocks all subsequent loads and stores.

The third model (no reorder) allows an unlimited number of concurrent cache misses, but doesn't

allow loads and stores to be reordered. When reordering is turned o�, there are no cache line busy

queues. In this case, if two cache misses occur on distinct lines, they will both be processed and

placed on the bus in order. Subsequent loads and stores can then be processed. However, if two

cache misses occur on the same cache line, the second cache miss blocks all subsequent loads and

stores.

The fourth model (unlimited) allows an unlimited number of concurrent cache misses, and allows

reordering of loads and stores.

In all cases it can be seen that the latency due to write misses in the blocking processor model is

easily recovered. So it appears that the nonblocking cache functions as an excellent write bu�er.

However, to go beyond this depends heavily on the benchmark. In some cases (tomcatv and wave5),

more than half of the total memory latency is recovered, but in others (compress and espresso)

there is very little additional improvement beyond reducing write miss latency.

An interesting feature of these graphs is the way that the importance of reordering varies with the

application. In the case of tomcatv and doduc, when the processor is not allowed to reorder loads

and stores, its performance drops compared to the one miss case. The only case where the one

miss model will outperform the no reorder model is if there are multiple cache misses on the same

cache line. So the cache misses in doduc and tomcatv must be primarily of this kind. This would

happen, for example, if these programs stride through large arrays using unit strides.

On the other hand, wave5 gets nearly its full performance without bene�t of reordering. This
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indicates that cache misses in wave5 mostly occur on distinct cache lines, which would be the case

if it was randomly accessing a large array, or if it typically strides through the array using strides

larger than the cache line size.

The lack of improvement in compress and espresso indicates that for these applications, in most

cases, values are referenced soon after the load is issued. Then the bene�t of letting the processor

proceed until the register is referenced is minimal.

Although this study demonstrates that a nonblocking cache o�ers a performance advantage, there

is still in all of these graphs some amount of memory latency left. This raises the question of

whether these results can be improved. One idea is to reschedule the code, taking into account the

potential memory latency. This approach is investigated in the next section.

5 Study 2: Scheduling for Expected Latency

To incorporate memory latency concerns into the compiler, the scheduling algorithm (see sec-

tion 2.1) needs to be modi�ed. The simplest change would be to replace the load latency with the

potential latency (i.e. the cache miss penalty) in the annotated dependency graph. However, since

most cache references hit, this could produce a bad schedule.

For example, in a basic block with a series of loads and oating point operations, the original

scheduler would attempt to schedule the operations in the load delay slots and the loads in the

latency slots of the oating point operations. The resulting schedule would then tend to intersperse

the loads and operations.

On the other hand, if the cache miss penalty were used as the load latency, then the loads would

tend to be scheduled at the top of the basic block, and the oating point operations would be

pushed to the bottom. If, when the code is executed, all of the loads actually do miss in the cache,

then this schedule will perform better than the originally produced schedule. However, if the loads

all hit in the cache, the second schedule will su�er because it doesn't overlap loads and operations

the way the �rst schedule does.

An example of this e�ect is shown in �gure 8, where two schedules are shown for the same compu-

tation (z = w+v �(y+2x)). The NOP's were added to indicate where stalls would occur, assuming

a two cycle latency for both loads and oating point operations. The original scheduler produces

a schedule (schedule 1) that is two cycles shorter than the schedule based on a longer load latency

(schedule 2). However, if the load into R4 misses in the cache, then schedule 2 executes in fewer

cycles than schedule 1, because the miss processing starts two cycles earlier.

The overall e�ect of the new schedule then depends on the miss rate of the loads. In this case,

if the loads miss in the cache more than half the time, then schedule 2 would give better overall

performance than schedule 1. To decide which schedule is better, the probabilities of the misses

have to be considered. In general, the schedule which has the lowest expected value for its length

should be chosen [Hoe71].
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Schedule 1 Schedule 2

LOAD R1, <addr>
LOAD R2, <addr>
ADD R5, R1, R1
LOAD R3, <addr>
ADD R6, R5, R2
LOAD R4, <addr>
MULT R7, R6, R3
NOP
ADD R8, R7, R4
NOP
STORE R8, <addr>

LOAD R1, <addr>
LOAD R2, <addr>
LOAD R3, <addr>
LOAD R4, <addr>
ADD R5, R1, R1
NOP
ADD R6, R5, R2
NOP
MULT R7, R6, R3
NOP
ADD R8, R7, R4
NOP
STORE R8, <addr>

Figure 8: Rescheduling for Latency

The MXS compiler was modi�ed to compute this expected value and to minimize it during schedul-

ing (see [KE93] for an alternative approach to scheduling for memory latency). The details of this

operation are as follows:

� Associated with each operation is a �xed latency (L) and a probabilistic latency (PL), both

expressed in cycles (The probabilistic latency is equal to the cache miss penalty).

� The dependency graph is annotated with both these latencies, and when an instruction is

scheduled, its destination register is marked with the latencies of that instruction.

� The cost of scheduling an instruction which references a particular register is the expected

value of the latency associated with that register, L+MR � PL, where MR is the miss rate.

� Among all instructions that are ready at each step, the instruction with the lowest cost is

scheduled. When there is a choice between instructions with an equal cost, the instruction

with the longest path to the �nal node is scheduled.

� The length of the path is also computed as L+MR � PL, where in this case L and PL refer

to the sum of the latencies and probabilistic latencies, respectively, along the path.

� After an instruction is scheduled, the latencies and probabilistic latencies associated with

each register are updated. They are set to zero for registers that the instruction references,

and otherwise are decremented by the number of cycles consumed by the instruction.

To test out the e�ect of this modi�ed scheduling algorithm, some benchmarks from the SPEC92

benchmark suite were run with both scheduling algorithms, and their performance was compared.

The processor model in all cases was the same as the unlimited model from section 4. A selection

of the results are shown in �gures 9 through 12 for the di�erent compiler options (which are de�ned

in table 2). The benchmarks were chosen to show the variety of responses to this optimization.

The somewhat surprising result was that the performance generally got worse when probabilistic

scheduling was enabled. The only exception to this among the benchmarks was tomcatv (see
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Option Use

-s Reschedule basic blocks

-p Use probabilistic scheduling for loads

-r Rename registers

Table 2: Compiler Options

�gure 11). To test if perhaps the scheduler was doing a poor job because it was overconstrained,

the same tests were run again with register renaming enabled. Registers were renamed assuming

an unlimited number of registers, to eliminate the dependencies caused by register reuse. However

this did not change the relative impact of enabling probabilistic scheduling. In fact, in one case

(see �gure 12) the scheduler used this extra freedom to produce a schedule that performed worse

than when no register renaming was performed.

In all cases, the scheduler was able to reduce the excess CPI due to memory latency, however the

cost of doing this was an increase in the other components of the excess CPI. Usually the tradeo�

was with delay due to data dependencies, although for espresso (see �gure 10) the tradeo� was with

delay due to control dependencies (i.e. un�lled branch delay slots). This tradeo� occurred even

when the overall performance improved; the end result of the rescheduling depended on whether the

bene�t of the memory latency reduction was outweighed by the increase in the other components.

The scheduler was supposed to take this tradeo� into account, using the miss probabilities, as

described above. To give the scheduler the best available information, it was passed the actual read

miss rate of the benchmark, as determined by a previous run. How could the performance actually

decline in this case?

The big assumption that is made when the scheduler is computing the expected value of the

latency is that all loads have an equal probability of missing. In fact, di�erent load instructions

have di�erent miss rates [ASW+93]. For example, an instruction that is loading a scalar variable

within a loop will almost always hit in the cache, while an instruction that is striding through a

large array in the same loop will frequently miss. From the results of this study it is clear that

these di�erence are signi�cant, and should be taken into account by any scheduler which attempts

to minimize expected latency.

6 Conclusion

In study 1, nonblocking caches were shown to be e�ective in hiding write miss latency, and for some

benchmarks (but not all) in hiding a signi�cant portion of the read miss latency. Performance also

generally increased as the bus bandwidth was increased, and the amount of the increase was again

application dependent. These results agree with other studies of nonblocking caches, for example

[FJ94], which has a detailed study of the performance bene�ts obtained with varying numbers of

miss information/status holding registers.

The most interesting result of this study was the extent to which the ability to reorder loads and

stores impacted the e�ectiveness of the nonblocking cache. Even a hit under miss cache bene�ted
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from reordering. In this case the reordering could be implemented using a single cache line busy

queue, which seems to be a worthwhile addition when this type of cache is used.

In study 2, the scheduler was shown to be generally ine�ective in hiding memory latency. Although

the memory latency was reduced by the scheduler, the excess CPI due to other sources was in-

creased. In most cases, the net e�ect was to reduce the performance of the benchmark, although

there was one case where the performance was signi�cantly improved. This result emphasizes the

point that miss rates are not uniform when considered on an instruction by instruction basis. The

scheduler needs to know which loads are likely to miss and which are likely to hit in the cache in

order to do a good job of scheduling for memory latency.

A logical follow on to this study would be to use either pro�ling information or static analysis to

estimate the miss rate of individual loads. Then the compiler could use this estimate to derive

the probabilistic latencies for the scheduling algorithm described in section 5. For example, static

analysis could be based on stride estimation in loops, or on whether loads are or aren't stack

relative. This approach is currently under investigation.

Our current plans for the simulation environment are to add support for superscalar and VLIW

architectures, dynamic scheduling, and speculative executions. This will allow us to study a wider

range of latency tolerant architectures. In addition, the compiler component needs to be enhanced

to perform loop analysis and code motion. All of the studies presented here were limited to

rescheduling code within basic blocks, whereas other studies indicate that moving code between

basic blocks or loop iterations is necessary in order to hide large amounts of memory latency

[MLG92].
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