
SYNTHESIS OF ASYNCHRONOUS CONTROLLERS FOR

HETEROGENEOUS SYSTEMS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Kenneth Yi Yun

August 1994

c Copyright 1994 by Kenneth Yi Yun

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

David L. Dill
(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Teresa H.-Y. Meng

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Stephen P. Boyd

Approved for the University Committee on Graduate

Studies:

iii

Abstract

There are two synchronization mechanisms used in digital systems: synchronous and

asynchronous. Synchronous or asynchronous refers to whether the system events

occur in lock-step based on a clock or not. Today's system components typically

employ the synchronous paradigm primarily because of the availability of the rich

set of design tools and algorithms and, perhaps, because of the designers' perception

of \ease of design" and the lack of alternatives. Even so, the interfaces among the

system components do not strictly adhere to the synchronous paradigm because of

the cost bene�t of mixing modules operating at di�erent clock rates and modules with

asynchronous interfaces. This thesis addresses the problem of how to synthesize con-

trollers operating in heterogeneous systems | systems with components employing

di�erent synchronization mechanisms.

We introduce a new design style called extended-burst-mode. The extended-burst-

mode design style covers a wide spectrum of sequential circuits ranging from delay-

insensitive to synchronous. We can synthesize multiple-input change asynchronous

�nite state machines, and many circuits that fall in the gray area between synchronous

and asynchronous which are di�cult or impossible to synthesize automatically using

existing methods. Our implementation of extended-burst-mode machines uses stan-

dard combinational logic, generates low-latency outputs and guarantees freedom from

hazards at the gate level.

We present a complete set of automated sequential synthesis algorithms: hazard-

free state assignment, hazard-free state minimization, and critical-race-free state en-

coding. We also describe two radically di�erent hazard-free combinational synthesis

iv

methods: two-level sums-of-products implementation and multiplexor trees imple-

mentation. Existing theories for hazard-free combinational synthesis are extended to

handle non-monotonic input changes. A set of requirements for freedom from logic

hazards is presented for each combinational synthesis method. Experimental data

from a large set of examples are presented and compared to competing methods,

whenever possible.

To demonstrate the e�ectiveness of the design style and the synthesis tool, the

design of a commercial-scale SCSI controller data path is presented. This design is

functionally compatible with an existing high performance commercial chip and meets

the ANSI SCSI-2 standard.

v

Acknowledgments

This work would not have been possible without the help of many people.

I would like to thank David Dill, my advisor, for his advice, support and encour-

agement for the past three years. He has taught me what I know about research in

computer science and engineering. I am grateful for his patience in putting up with

my inarticulate ramblings, his ability to sort out important ideas, and, most of all,

his ability to instill con�dence in me.

I would like to thank Teresa Meng, my associate advisor, for her help and guidance.

She convinced me that research in this �eld is not about just proving theorems and

developing algorithms but about building something real and interesting as well. I

would like to thank late Professor Peterson for his support and guidance and Stephen

Boyd, for rescuing me at the last minute, after Professor Peterson passed away.

I would like to thank the past and present members of the ASYNC group at

Stanford for the insightful discussions and criticisms. They include Peter Beerel, Jerry

Burch, Bill Coates, Al Davis, Mark Dean, Nanni De Micheli, Jeremy Gunawardena,

Alan Marshall, Chris Myers, Steve Nowick and Polly Siegel.

Working with Bill, Alan, and Polly has been a real joy. I would like to thank them

for putting up with many versions of the buggy prototype synthesis tool and actually

using it to design and fabricate a working communications chip.

I would like to thank Al Davis and Nanni De Micheli for their extremely helpful

guidance in launching my academic career.

I would especially like to thank Steve Nowick, who has been my mentor from day

one and the source of many insights since then. I became fascinated with practical

asynchronous circuits while working with Steve on the �rst SCSI example. The

vi

foundation of my research was laid by Steve's work on burst-mode machines. I am

grateful for his patience in mentoring me and correcting all those ungrammatical

sentences in our joint papers.

I would like to thank Bill Lin and Srinivas Devadas for their ideas on BDD-based

hazard-free combinational synthesis. The application of this idea to the 3D sequential

synthesis has complemented my earlier work very nicely.

I would like to thank the researchers in the asynchronous community world-wide

for the in-depth discussions: Ivan Sutherland for the inspiring lecture on Counterow

Pipeline Processor and nice circuit examples, Luciano Lavagno for discussions on

STGs, Peter Vanbekbergen for discussions on interfacing to synchronous environment,

Ganesh Gopalakrishinan and Erik Brunvand for discussions on 3D synthesis and Tam-

Anh Chu for discussions on my earlier work, just to name a few.

I would like to thank the users of the 3D synthesis tool, Prabhaker Kudva of Utah,

Loc Nguyen of Intel and Forrest Brewer of UCSB for their patience and comments.

I would like to thank Mark Knecht and the entire SCSI group at AMD for helping

me understand what it takes to build a real SCSI controller and for permitting me to

discuss this example in this thesis.

I would like to thank Lilian Betters for making my life easier by taking care of so

many administrative matters.

I would especially like to thank my parents for their love and support and for

bringing me to the United States, which made all this possible. I would like to thank

my brother, sisters and their signi�cant ones for their friendship. I would like thank

Kay and Andre for proofreading the �nal draft.

Finally, I am eternally grateful for all the love my wife, Minsup, has given me

and for all the sacri�ces she has made to support me all these years. Minsup and my

children, Paul and Sara, have been the joy and inspiration in my life. Without them,

this work would be meaningless.

The �nancial support for this research came from the Semiconductor Research

Corporation, Contract nos. 91-DJ-205, 92-DJ-205 and 93-DJ-205, and from the Stan-

ford Center for Integrated Systems, Research Thrust in Synthesis and Veri�cation of

Multi-Module Systems.

vii

\The years of anxious searching in the dark, with their intense longing,

their alternations of con�dence and exhaustion and the �nal emergence

into the light | only those who have experienced it can understand it."

Albert Einstein.

viii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Motivation : 1

1.1.1 Justi�cations for Asynchronous Circuits : : : : : : : : : : : : 2

1.1.2 Current State of Asynchronous Controller Design : : : : : : : 3

1.2 Models : 4

1.2.1 Circuit Models : 5

1.2.2 Environment Models : 5

1.3 Background and Related Work : 6

1.3.1 Asynchronous Data Paths : 7

1.3.2 Asynchronous Controllers : 8

1.4 Contributions of the Thesis : 15

1.5 Overview of the Thesis : 16

2 Speci�cation and Implementation 18

2.1 Introduction : 18

2.2 Controller Speci�cation : 19

2.2.1 Formal De�nition of Extended-Burst-Mode : : : : : : : : : : : 22

2.3 Implementation Overview : 24

2.3.1 A Simple Example : 25

2.4 3D Machine Operation : 29

ix

3 Hazard Considerations 32

3.1 Introduction : 32

3.2 Sequential Hazard : 34

3.2.1 Essential Hazard : 34

3.2.2 Environmental Constraints : 37

3.2.3 Summary : 38

3.3 Function Hazard : 38

3.3.1 De�nitions : 39

3.3.2 Generalized Transition : 40

3.3.3 Extended-Burst-Mode Transition : : : : : : : : : : : : : : : : 42

3.3.4 Critical Race : 46

3.4 Combinational Logic Hazards : 46

3.4.1 Two-Level AND-OR Implementation : : : : : : : : : : : : : : 48

3.4.2 BDD Implementation : 53

3.4.3 Summary : 61

4 Automatic Synthesis Procedure 63

4.1 Next State Assignment : 64

4.1.1 Next State Assignment for Two-Level AND-OR : : : : : : : : 70

4.1.2 Next State Assignment for BDD-Based Multi-Level Circuit : : 78

4.2 Layer Minimization : 80

4.2.1 De�nitions : 80

4.2.2 Layer Minimization Algorithm : : : : : : : : : : : : : : : : : : 84

4.3 Layer Encoding : 88

4.3.1 Layer Diagram : 89

4.3.2 Layer Encoding Algorithm : 92

4.4 Combinational Logic Synthesis : 95

4.4.1 Two-Level AND-OR Implementation : : : : : : : : : : : : : : 95

4.4.2 BDD-Based Multi-Level Implementation : : : : : : : : : : : : 95

4.5 Experimental Results : 96

4.5.1 Examples Using Two-Level Synthesis : : : : : : : : : : : : : : 97

x

4.5.2 Comparison to Locally-Clocked Methods : : : : : : : : : : : : 97

4.5.3 Experimental Results Using BDD Synthesis : : : : : : : : : : 99

5 Design Example: SCSI Controller 102

5.1 Overview : 102

5.2 Implementation : 106

5.2.1 BIU (Bus Interface Unit) : 107

5.2.2 FIFO : 111

5.2.3 SCSI Bus Interface : 113

5.3 Results : 115

6 Conclusion 117

6.1 Summary : 117

6.2 Future Work : 118

Bibliography 120

xi

List of Tables

3.1 Trigger/non-trigger signal. : 62

4.1 Experimental results. : 98

4.2 Comparisons to locally-clocked machine. : : : : : : : : : : : : : : : : 99

4.3 Comparing two-level vs BDD. : 101

xii

List of Figures

1.1 Circuit model. : 5

1.2 AFSM implementations. : 13

2.1 Extended-burst-mode speci�cation. : : : : : : : : : : : : : : : : : : : 19

2.2 Distinguishability constraints. : 22

2.3 Example (unique entry condition). : : : : : : : : : : : : : : : : : : : 23

2.4 3D asynchronous state machine. : 25

2.5 Simple example. : 26

2.6 Simple example (next-state table before layer encoding). : : : : : : : 27

2.7 Simple example (next-state table after layer encoding). : : : : : : : : 28

2.8 Simple example (Karnaugh map for Y). : : : : : : : : : : : : : : : : : 28

2.9 Simple example (3D implementation). : : : : : : : : : : : : : : : : : : 29

2.10 3D machine cycles (Types I and III). : : : : : : : : : : : : : : : : : : 30

3.1 Combinational view of the 3D state machine. : : : : : : : : : : : : : : 33

3.2 Essential hazard. : 35

3.3 Timing requirements for minimum feedback delay. : : : : : : : : : : : 36

3.4 Generalized transitions. : 43

3.5 Critical race. : 45

3.6 Delay model. : 46

3.7 Delay model used in 3D synthesis. : 47

3.8 Simple example (required cubes). : 51

3.9 Illegal intersection of privileged cube. : : : : : : : : : : : : : : : : : : 52

xiii

3.10 (a) BDD (b) MUX network derived from BDD (c) Simpli�ed network

(by constant propagation). : 54

3.11 A CMOS multiplexor. : 55

3.12 Simple example (BDD representations of X). : : : : : : : : : : : : : : 56

3.13 Dynamic hazard in BDD-based implementation. : : : : : : : : : : : : 57

4.1 Next state assignment. : 64

4.2 Conditional input setup transition. : : : : : : : : : : : : : : : : : : : 65

4.3 Example 2 (synchronous implementation). : : : : : : : : : : : : : : : 72

4.4 Example 2 (speci�cation and next-state table). : : : : : : : : : : : : : 72

4.5 Example 2 (problem). : 73

4.6 Example 2 (solution { state graph). : : : : : : : : : : : : : : : : : : : 74

4.7 Example 2 (solution { next-state table). : : : : : : : : : : : : : : : : 75

4.8 Example 2 (circuit and timing). : 77

4.9 Satisfying variable ordering locally. : : : : : : : : : : : : : : : : : : : 80

4.10 Output-compatible but not SOP-dhf-compatible. : : : : : : : : : : : 82

4.11 Output-compatible but not BDD-dhf-compatible. : : : : : : : : : : : 83

4.12 ISEND speci�cation and layer assignment. : : : : : : : : : : : : : : : 86

4.13 Compatibility table. : 87

4.14 Layer encoding example. : 90

4.15 Layer diagram. : 91

5.1 A simple con�guration of SCSI bus. : : : : : : : : : : : : : : : : : : : 103

5.2 SCSI controller block diagram. : 104

5.3 SCSI controller data path. : 105

5.4 DMA protocol. : 107

5.5 BIU (data transfer from DMA to FIFO). : : : : : : : : : : : : : : : : 109

5.6 FIFO cell (data transfer from DMA to SCSI). : : : : : : : : : : : : : 112

5.7 SCSI Bus Interface (initiator data transfer from FIFO to SCSI). : : : 114

5.8 SCSI controller design ow. : 116

xiv

Chapter 1

Introduction

1.1 Motivation

Asynchronous circuits are sequential circuits which do not require external clocks to

coordinate their internal operations. Asynchronous circuits were used in the earliest

computers, and the research in asynchronous circuits and systems blossomed in the

1960's. However, the interests in asynchronous circuits declined in the 1970's, as

synchronous circuits which use external clocks to schedule all their operations became

popular, and all but vanished by the early 1980's. The main reason for the decline was

the di�culty of designing custom components and the amount of details with which

designers had to cope. Synchronous designs o�ered simplicity: the only rule which

designers had to be concerned about was that circuits be stable some prescribed time

before and after each clock tick.

Nevertheless, as VLSI technology evolved, the limitations of synchronous circuits

began to surface. Some of the notable problems are clock skew, power dissipation,

and interfacing to the environment.

Synchronous designs have to cope with clock skew problems: the di�erence in

arrival times of a clock signal at various parts of a chip or a system e�ectively reduces

the amount of time alloted for useful computation. As the feature size of VLSI chips

shrank, the transistors switched faster but the distance electrons had to travel to

deliver clock edges remained constant. In addition, the width of wires shrank but

1

CHAPTER 1. INTRODUCTION 2

not the vertical thickness, which meant it took even longer for electrons to travel

the same distance. So the advances in VLSI technology actually aggravated clock

skew problems. In order to minimize these e�ects, increasingly larger portions of

the synchronous VLSI chips are devoted to clock distribution. It was reported that

DEC's new RISC chip Alpha 21064 [19, 21] uses one third of its chip area for clock

distribution.

Furthermore, as more and more transistors were packed into a single chip, design-

ers began to face real power dissipation problems. In synchronous chips with global

clocking, even the inactive parts of the chip, including the clocks to those parts,

dissipate power.

Finally, most VLSI chips and virtually all digital systems have to interface to sig-

nals that are asynchronous. It is absurd to even try to imagine two computer systems

connected via a network synchronized with a common global clock. A synchronous

chip or system that interfaces to an environment which does not share a common

clock must synchronize asynchronous external inputs to its own internal clock. This

introduces an inherent risk of synchronization failure [12, 44]. When the digital cir-

cuits operated at relatively low speed, the probability of synchronization failure was

extremely low; however, when the computer systems started using a clock rate in

access of 75MHz, the probability of failure became signi�cant enough to warrant a

search for a new solution.

1.1.1 Justi�cations for Asynchronous Circuits

There are many bene�ts asynchronous circuits can bring to system designs. We

consider the necessity of asynchronous circuits in the systems context:

� Many interface signaling protocols, such as the SCSI bus data transfer protocol,

are asynchronous. Synchronous controller design would require synchronizing

asynchronous handshaking signals to a high speed internal clock, complicating

the design and potentially sacri�cing performance.

� Asynchronous circuits are ideal for buildingmodular components. Modularity is

an attractive feature in any system, because it makes global timing veri�cation

CHAPTER 1. INTRODUCTION 3

unnecessary. Asynchronous circuits designed for high performance applications

work just as well when the system speed is lowered. For example, an asyn-

chronous module designed for a desktop workstation works equally well when

placed in a laptop computer with the same architecture operating at much lower

speed.

� Asynchronous circuits tend to dissipate less power than synchronous counter-

parts for certain applications using CMOS technology. Asynchronous circuits

have no power dissipation due to clock transitions and glitches, because CMOS

circuits dissipate power only while switching. Furthermore, the data-driven na-

ture of asynchronous circuits is ideal for low power applications that require

quick transitions from standby to active, because inactive parts of the asyn-

chronous circuits are always in \hot" standby mode without dissipating power.

With the growing emphasis on portable electronics and wireless applications,

low power may become a driving requirement for many new VLSI chip designs.

� Asynchronous circuits have low latency output because outputs are generated

immediately upon receipt of enabling inputs, without having to wait for the

next clock tick. Low latency outputs are useful in memory controllers and high

speed switching networks.

1.1.2 Current State of Asynchronous Controller Design

Although we made strong claims for the necessity of asynchronous circuits in the last

subsection, there are several problems with asynchronous design in its current state.

Asynchronous circuits are di�cult to design manually, mainly because of the phe-

nomenon called hazard | potential glitches, or undesired pulses, in the circuit. In

synchronous circuits, glitches in combinational circuits do not cause problems as long

as the combinational circuits stabilize before the next clock tick. However, in asyn-

chronous circuits, no amount of glitches can be tolerated because the circuits are

sensitive to every input change. Therefore, designers need to pay close attention to

whether each synthesis step introduces hazards in the �nal design.

CHAPTER 1. INTRODUCTION 4

An even greater hurdle for asynchronous design is that most existing design

methodologies are either not powerful enough or too di�cult to use, and, in some

cases, may not even produce correct results. The machines that were popular in the

1960's, such as single-input change Hu�man-mode machines [30, 69], are inadequate

for today's design requirements. Describing asynchronous circuits using system mod-

eling languages, such as Petri nets [56], is too complex for large machines. Because

these languages were designed primarily for modeling, not every speci�able machine

is implementable.

Most importantly, for the foreseeable future, practically every asynchronous de-

sign must interface to existing synchronous designs. Current asynchronous design

methodologies are not adequate for designing controllers that are to be used in het-

erogeneous systems | systems which consist of both synchronous and asynchronous

components.

This thesis addresses all of these issues: automation, correct design methodology,

simple user-level speci�cation formalism, and capability to interface to synchronous

designs.

1.2 Models

Results produced by synthesis methods are only as good as the models used to ap-

proximate the physical circuits. If the circuit model used by a synthesis method is

too optimistic, then the synthesized circuits may be incorrect, although the circuits

function correctly according to the model. On the other hand, if the circuit model is

too pessimistic, then the synthesized circuits may be very robust but suboptimal. In

this thesis, we attempt to strike a balance between optimistic and pessimistic models

so that our models represent the current generation of technology accurately. How-

ever, in some cases, we use a pessimistic model to make the analyses to guarantee the

correct results more manageable.

CHAPTER 1. INTRODUCTION 5

1.2.1 Circuit Models

A gate is a circuit component which computes the value of a logic function instanta-

neously, then asserts the computed value on its output after some delay. For example,

an AND gate asserts the boolean product of its inputs after some delay. A gate out-

put is connected to gate inputs by wires.1 A logic circuit (see �gure 1.1) consists only

of gates and wires; it is connected to its environment via wires. A wire transports

the value of a gate output to an input of a gate or to the environment of the circuit

after some delay.

g1

2w

3w
4w

2g

3g

circuit

environment environment

g
w

gates
wires

1w

w5

w6

Figure 1.1: Circuit model.

A change of a gate input is said to enable the gate output if the input change

alters the value of the associated logic function. A gate is said to be stable if the

value of the associated logic function is the same as the asserted output value. A wire

is said to be stable if the value of the gate input it is connected to is the same as that

of the gate output to which it is connected. A logic circuit is said to be stable if every

gate and every wire in the circuit is stable.

1.2.2 Environment Models

The environment of a circuit is said to operate in fundamental mode if it changes

inputs to the circuit only after the circuit is stable. The environment of a circuit is

said to operate in multiple-input change fundamental mode if it changes a speci�ed

1We assume that gate outputs cannot be connected other gate outputs to simplify our circuit

model, although, in some data paths, tri-state outputs and open-drain outputs can be connected to

other tri-state outputs and open-drain outputs.

CHAPTER 1. INTRODUCTION 6

set of inputs to the circuit and waits for a speci�ed set of outputs to change and

for the circuit to stabilize before it changes the next set of inputs. The synthesis

method presented in this thesis assumes a variation of the multiple-input change

fundamental mode operation: The environment is allowed to change certain inputs

that do not cause the outputs of the circuit to change before the circuit has stabilized.

The discussion on this variation is presented in detail in section 2.1.

1.3 Background and Related Work

A conventional way of classifying asynchronous circuits is by the robustness of each

class of circuits with respect to delay variations of physical components in the system.

Each class of circuits makes certain assumptions about delays. These assumptions

directly a�ect the validity of synthesis methods. For example, a circuit model that

assumes that gates have arbitrary delays would not be suitable for synchronous circuit

synthesis, because in that model there is no guarantee that gate outputs enabled to

change will stabilize within a clock period.

A delay-insensitive (DI) circuit is an asynchronous circuit which operates correctly

regardless of wire delay variations. In other words, the DI circuit model assumes the

unbounded wire delays, that is, both gates and wires are assumed to have arbitrary

�nite delays. A delay-insensitive circuit consists of macromodules and the wires that

connect them. Each macromodule must be designed so that delay variations on the

wires do not cause malfunction of the circuit. Early work on macromodules was

done by Molnar et al [46]. Since the internal design of each module assumes certain

timing bounds, the internals of the circuits are not really delay-insensitive, but the

communications among modules. There is a large body of theoretical work in this

area, beginning with Udding and others [68, 22, 62].

A speed-independent (SI) circuit is an asynchronous circuit which operates cor-

rectly regardless of gate delay variations. Wire forks, or points of multiple fanouts,

such as the junction of w2 and w3 in �gure 1.1, are assumed to be isochronic. That

is, changes of a gate output with multiple fanouts are assumed to arrive at the gate

inputs it drives at the same time. In e�ect, wire delays can be lumped into gate

CHAPTER 1. INTRODUCTION 7

delays, that is, gates are assumed to have arbitrary �nite delays but wires have zero

delays | the unbounded gate delay assumption. The speed-independent assumption

was viable during the early days of VLSI, when the wires within a chip had negli-

gible delays compared to gate delays. However, in the current generation of VLSI

technology, in which wire delays are no longer insigni�cant, circuits designed with the

SI assumption require careful layout and routing to ensure that the isochronic fork

assumption is not violated. Many synthesis methods use SI circuits as target imple-

mentations [13, 45, 2, 71]. There have been some practical designs using SI circuits

as well [41, 42].

There is a wide spectrum of circuits that are not SI circuits. Clearly, synchronous

circuits are not speed-independent. All variations of Hu�man-mode machines [30, 69]

fall outside of the SI category. In fact, we claim that the robustness of the circuit

really depends on how localized the delay variations are. There is no need to make

a sweeping assumption that every gate can have a delay between 0 and 1. Nor is

it safe to assume that a wire that stretches from one corner of the chip to the other

has a zero delay. The synthesis method in this thesis assumes the unbounded wire

delays in combinational circuits used as building blocks of sequential circuits and the

bounded wire delays in sequential circuits constructed by feeding back outputs of the

combinational circuits.

Below, we will briey survey current thoughts on asynchronous data path design

and various asynchronous controller design styles. Although this thesis is about de-

signing asynchronous controllers, we discuss the asynchronous data paths here briey,

partly to show just what kind of mechanisms the asynchronous controllers we design

actually controls and partly to provide some background for the design example in

chapter 5.

1.3.1 Asynchronous Data Paths

Although it is possible to construct a chip or a module which performs nothing but

control tasks, it is di�cult to conceive a system that do not contain some sort of data

path. The purpose of a data path is to move the data both physically and logically,

CHAPTER 1. INTRODUCTION 8

either as is or after performing some operations on it. A data path is controlled by a

controller or a group of controllers.

Conventional synchronous data paths are pipelines. Each stage of a pipeline con-

sists of some combinational logic or wires followed by a register to store the data.

A pipeline is normally controlled by a clock. In contrast, there are two radically

di�erent ways to design asynchronous data paths.

The �rst method, called micropipeline [65], was introduced by Ivan Sutherland. A

micropipeline without its control circuits is identical to a synchronous pipeline with

all clocks removed. Each stage of a micropipeline uses a request wire, instead of a

clock edge, to signal the next stage that the data is valid. The next stage, when it

receives the data, uses an acknowledge wire to signal the sender that it has received

the data. The sender is not to remove the data until it receives an acknowledge

signal from the receiver. This method is attractive because of its simplicity, albeit

some concerns about its robustness. Speci�cally, designers must take steps to assure

that valid data arrive at the receiver before the accompanying request signals, which

generally implies that carefully measured delays have to be added to the request wires.

The SCSI controller example in chapter 5 uses a variation of the micropipeline for its

data path.

The second method is based on generating a completion signal in a truly self-timed

way. Each data bit is encoded in 2 wires, 01 for logic 0, 10 for for logic 1, for example.

Before the computation, both wires are 0. When the computation is complete, one

of the wires becomes 1. When one wire of every data bit changes to 1, the sender

generates a completion signal to the receiver. When the receiver acknowledges the

receipt of data, the sender resets all data bits to 00. Disadvantages of this method are

the large overhead in area for the dual-rail logic and the extra energy cost associated

with toggling wires of the data bits whose logic values do not change.

1.3.2 Asynchronous Controllers

This thesis is concerned with designing correct and e�cient asynchronous controllers.

There are three factors that a�ect the quality of the �nal design and the scope of its

CHAPTER 1. INTRODUCTION 9

applications: speci�cation method, target implementation, and synthesis method. The

design style is a general term which refers to a combination of all of these.

Given a design style for controllers, there are two questions one must ask: \Can the

signaling and timing constraints of most controllers be described in this design style?"

and \Can every legal speci�cation in this design style be implemented e�ciently

and correctly by automatic synthesis tools?" Clearly, maximizing expressiveness and

maximizing implementability are conicting goals.

Answers to the �rst question can only be found empirically, by examining the

design examples in the target application area. For example, the speci�cation for-

malism in our design style was extended from earlier ones after consideration of the

HP Post O�ce packet routing chip [17], and industry-standard backplane and local

bus controllers. It is the author's view, after having designed and analyzed a large

number of controllers, that mechanisms to handle a moderate degree of concurrency

and mechanisms to select alternative responses based on conditional signal levels as

well as signal edges are essential. Fine-grained concurrency is not necessary in most

applications.

The correctness part of the answer to the second question can only be demon-

strated reasonably by proving that the synthesis procedure guarantees that the re-

sulting circuits observe the constraints on behavior described in the speci�cations.

The e�ciency part of the answer can only be found by performing a large number of

experiments and examining the results.

There have been a number of asynchronous controller design styles in the past 30

years. Many are based on high-level languages of concurrency [40, 7, 11, 22, 1] or

Petri nets [13, 45, 34, 47, 71, 2, 48, 73]. These methods have proved successful for

small, highly concurrent designs. However, they often lack exibility in minimization

and encoding of state and in the implementation of logic functions, and thus have

di�culty taking advantage of global optimization techniques. Target implementations

for almost all of these methods are either DI or SI circuits. Other methods based

on asynchronous state machine speci�cations make more realistic delay assumptions

and have been implemented in numerous styles [49, 33, 59, 69]. However, these

methods often allow only single-input changes or restricted multiple-input changes

CHAPTER 1. INTRODUCTION 10

which impose timing constraints on inputs [69, 14, 28]. None of the currently known

methods are capable of correctly implementing synchronous features.

We will briey survey existing design styles and zero in on a design style called

burst-mode, which has a reasonable combination of expressiveness and implementabil-

ity, and present a design style that extends burst-mode by allowing more concurrency

and by adding a synchronous-like feature. We call this style, extended-burst-mode.

Compilation from High-Level Languages of Concurrency

Several design styles use high-level languages of concurrency as their user-level spec-

i�cation formalisms. The synthesis procedures typically consist of a series of trans-

formations to generate either DI or SI circuits.

Martin's method [39] uses Hoare's CSP (Communicating Sequential Processes)

[29] as the speci�cation formalism. A speci�cation describes a set of concurrent pro-

cesses that communicate via commands on channels. The speci�cation is translated

into a set of operators called production rules, which are mapped to hardware compo-

nents. The resulting circuit is speed-independent.2 Burns [10] developed an automatic

synthesis and performance analysis method for this design style. This method has

been applied to a number of practical examples [38, 41, 42, 66].

Ebergen [22] uses a language derived from trace theory [58], developed by Rem,

Snepscheut, and Udding. A speci�cation in this language describes a sequence of

events. The speci�cation is decomposed into a network of macromodules; the resulting

circuit is delay-insensitive.

Brunvand's method [7] is based on a CSP-like language called Occam. A speci�-

cation described in Occam is compiled into an unoptimized delay-insensitive circuit,

which is later enhanced by a technique called peephole optimization.

An advantage of the compilation methods over other methods is that complex

concurrent systems can be described elegantly and concisely in high level constructs

without low-level timing concerns, which makes it easier to modify and verify the sys-

tem behavior. However, because it is di�cult to utilize global optimization techniques

2Martin uses a term, quasi-delay-insensitivity, which is equivalent to our de�nition of speed-

independence.

CHAPTER 1. INTRODUCTION 11

during the translation process, the automated synthesis often produces ine�cient re-

sults. In general, the circuits generated using the compilation methods tend to incur

considerably more area than those synthesized by other methods.

Recently, some e�orts have been made to address the optimization problems.

Gopalakrishnan et al [26] introduced a new way of doing peephole optimization by

translating a DI module or a group of DI modules into burst-mode speci�cations and

resynthesizing using the 3D tool described in this thesis.

Also, there has been a concerted e�ort to synthesize commercial-scale circuits

to demonstrate the practicality of these methods, such as the error detection and

correction chips developed at Philips Research Laboratories by van Berkel et al [70]

and Kessels et al [32] using a synthesis tool called Tangram compiler. A notable

design problem with these chips is that interfacing to the environment is di�cult

because the internal circuits are designed to be delay-insensitive but the environment

is synchronous.

Graph-Based Methods

Almost all of the graph-based methods use the Petri net or a restricted form of the

Petri net as the speci�cation formalism. A Petri net is a graph model used for

describing concurrent systems.

Chu [13] introduced a restricted form of the Petri net called STG (Signal Transi-

tions Graph) to specify asynchronous circuits. An STG in Chu's initial de�nition is

an interpreted free-choice Petri net, which is capable of describing concurrent signal

transitions but only a limited form of choice, the mechanism to select alternative

responses of the circuit. Chu developed a synthesis method to implement SI circuits

from STG descriptions.

Meng [45] extended Chu's work and developed an automatic synthesis tool which

optimizes concurrency by exploiting known delays of the environment. Meng also

designed and implemented a digital signal processor chip using this method.

The synthesis methods of Chu and Meng assume that the building blocks that

comprise the resulting circuits are complex gates, the networks of basic gates, such as

ANDs and ORs. Because these complex gates may not be free of internal hazards,

CHAPTER 1. INTRODUCTION 12

they rely on automatic veri�ers, such as Dill's AVER [20], to guarantee correctness

of the resulting circuits.

More recent works include the synthesis methods of Lavagno [34], Moon [47],

Vanbekbergen [71], and Ykman-Couvreur [73]. Lavagno's method inserts �xed delay

elements to avoid hazards. In order to compute the size of delays, this method uses

the bounded wire delay model, a circuit model in which the delay of each gate and

wire has a lower and an upper bound. However, this method assumes, a bit too

optimistically, that certain types of glitches are �ltered out by a gate if it is narrower

than the gate delay. Moon's method uses an automatic veri�er to ag whether the

synthesized circuits are hazard-free or not. If the resulting circuit is not hazard-

free, the designer must modify the speci�cation or abort the synthesis. The methods

of Vanbekbergen and Ykman-Couvreur are based on the notions of lock class and

extended lock class, the ordering constraints on signals. These methods are limited

to a subclass of STGs called Marked Graphs, which cannot describe input choices.

In general, the strong suit of the STG is its ability to express concurrency. Its main

weakness is the awkwardness in specifying input choices. That is, the mechanisms to

guide the responses of the machine is limited. In a free-choice STG speci�cation, the

machine selects the course of its future behavior solely based on input transitions.

The machine cannot handle choices based on input levels. Chu described a syntactic

extension of STG in [13] to allow more exible input choices. Moon et al [47] proposed

more comprehensive extensions. However, no synthesis method in existence today

can guarantee to synthesize correct circuits from speci�cations with these extensions.

Vanbekbergen [71] introduced the generalized STG, that includes extensions proposed

by Chu and Moon and also adds synchronous-like features. However, the synthesis

method cannot guarantee to generate hazard-free circuits.

Some recent graph-based methods, not strictly Petri net derived, include Beerel's

[2] and Myers's [48]. Beerel's method is based on an earlier work by Varshavsky

[72]. This method automatically synthesizes gate-level SI circuits from a state graph

description, which is typically generated by enumerating all possible signal transition

orderings of a higher level speci�cation, such as an STG. Because the synthesis begins

CHAPTER 1. INTRODUCTION 13

at a lower level, this method must rely on higher level synthesis tools to generate race-

free state graphs, the state graphs with no duplicate state codes. Myers's method

uses an STG-like speci�cation formalism called Event-Rule Systems [11]. This method

synthesizes very compact area-e�cient circuits by exploiting all known delays, both

internal and external; however, it is di�cult to construct large circuits because the

basic building blocks used are complex gates called generalized C-elements.

Asynchronous Finite State Machines

AFSMs (Asynchronous Finite State Machines) have been around for the past 30 years.

The work on AFSMs was pioneered by Hu�man and others. Early AFSMs [30, 69]

assumed that the environment operates in fundamental mode, that is, the environ-

ment generates a single input change and waits for the machine to stabilize before it

generates the next input change. Recent work in AFSMs allows the multiple-input

change fundamental mode operations. As shown in �gure 1.2, some machines have

Hu�man-mode machine structure, combinational logic with some outputs fed back,

and others have self-synchronizing structure, similar to synchronous state machines

but with a locally generated clock.

S

OI

CL

Huffman-mode AFSM

S

OI

CL

Local ClockClock
Gen

Self-synchronizing AFSM

Figure 1.2: AFSM implementations.

We omit discussing earlier works on AFSMs here, because there is a large body

CHAPTER 1. INTRODUCTION 14

of literature on this topic. Instead, we will focus on a recently introduced multiple-

input change machine called burst-mode machine. Burst-mode asynchronous �nite

state machines were �rst introduced by Davis et al [18, 17] and formalized by Nowick

and Dill [52, 49]. Burst-mode machines have been implemented using a method

developed at HP Laboratories called MEAT [16], the locally clocked method [52, 49],

the 3D method [76, 74], and the UCLOCK method [50].

A burst-mode speci�cation is a variation of a Mealy machine that allows multiple-

input changes in a burst fashion | in a given state, when all of a speci�ed set of

input edges appear, the machine generates a set of output changes and moves to a

new state. The speci�ed input edges can appear in arbitrary order, thus allowing

input concurrency, and the outputs are generated concurrently. The advantages of

a burst-mode speci�cation over STG speci�cations are that it is similar to the syn-

chronous Mealy machine designers are familiar with, that the input choice is more

exible than that of the STG, and that the state encoding is more exible in the im-

plementations. Burst-mode speci�cations have been very useful in specifying large,

practical controllers, such as a SCSI data transfer protocol controller [54], an asyn-

chronous high performance cache controller [51], and asynchronous communications

controllers [37].

Its main practical disadvantage is that it does not allow input changes to be

concurrent with output changes. The input choice mechanism is more exible than

the STG but still primitive. For example, it cannot handle choices between two sets

of concurrent events if one set is a subset of the other.

Extended-Burst-Mode Machine

The extended-burst-mode design style described in this thesis is a superset of burst-

mode with two new features: directed-don't-cares and conditionals. Directed don't

cares allow an input signal to change concurrently with output signals, and con-

ditionals allow control ow to depend on the input signal levels, in the same way

synchronous state machines regulate control ow. Thus this design style not only

supports burst-mode multiple-input change asynchronous designs with added in-

put/output concurrency, also allows the automatic synthesis of any synchronous

CHAPTER 1. INTRODUCTION 15

Moore machine, in which the synchronous inputs are represented as conditional sig-

nals, and the clock is the only non-conditional signal. Moreover, this design style

covers a wide range of circuits between burst-mode and fully synchronous. We can

easily specify and synthesize sequential circuits which change state on both rising

and falling clock edges, have multiple-phase clocks, etc., subject only to setup and

hold-time constraints.

1.4 Contributions of the Thesis

The contributions of this thesis cover all aspects of an asynchronous controller syn-

thesis: user-level speci�cation formalism, hazard-free combinational synthesis theory

and its application to sequential synthesis, automated sequential synthesis algorithms,

and a large commercial-scale design example. The main contributions are summarized

below:

Extended-burst-mode design style: This thesis introduces a new design style called

extended-burst-mode. The extended-burst-mode design style covers a wide spectrum

of sequential circuits, which ranges from delay-insensitive to synchronous. It is signi�-

cant theoretically because it is the �rst asynchronous design style that subsumes fully

synchronous designs. It is signi�cant practically because a wide range of practical

circuits can be speci�ed in a common speci�cation language and synthesized using

a single synthesis tool. For example, we can synthesize multiple-input change asyn-

chronous �nite state machines, including all burst-mode machines, and many circuits

that fall in the gray area between synchronous and asynchronous which are di�cult

or impossible to synthesize automatically. These include circuits that require clocking

with multiple clocks, circuits that require clocking on both edges of a clock signal,

and circuits that require selective clocking.

Hazard-free combinational synthesis requirements: This thesis presents two rad-

ically di�erent hazard-free combinational synthesis methods: hazard-free two-level

sums-of-products implementation and hazard-free multiplexor trees implementation.

Existing theories for hazard-free combinational synthesis are extended to handle non-

monotonic input changes.

CHAPTER 1. INTRODUCTION 16

3D automatic synthesis algorithm: This thesis presents a complete set of au-

tomated sequential synthesis algorithms: hazard-free state assignment, hazard-free

state minimization, and critical-race-free state encoding. The automated synthesis

tool uses heuristics that �nd near-optimal solutions in polynomial time, whenever

appropriate. Experimental data from a large set of examples are presented and com-

pared to competing methods, whenever possible.

Commercial-scale design example: This thesis reports on the design and imple-

mentation of a commercial-scale SCSI controller data path, which demonstrates that

the extended-burst-mode design style and the 3D synthesis tool are feasible for real-

world designs.

1.5 Overview of the Thesis

This thesis is organized as follows:

After the introduction in this chapter, chapter 2 describes the extended-burst-

mode speci�cation and the 3D asynchronous state machine implementation. The

extended-burst-mode speci�cation is described �rst informally using an example and

then formally. An overview of the synthesis procedure using a simple example is

presented at the end.

Chapter 3 precisely characterizes every possible hazard that can arise in the 3D

implementation of extended-burst-mode machines. For every type of hazard, a neces-

sary and su�cient condition or at least a su�cient condition for freedom from hazards

is stated and proved. This chapter presents the notion of generalized transition which

is used for functional synthesis and for analysis of function hazards. This chapter also

presents two di�erent combinational synthesis methods: two-level sums-of-products

implementation and multiplexor trees implementation.

Chapter 4 presents automatic synthesis procedure and algorithms. The �rst sec-

tion describes the hazard-free state assignment algorithm and proves the existence of

a hazard-free implementation for every legal extended-burst-mode speci�cation. The

second section presents a state minimization heuristic and compares it to a classical

method. The third section describes a critical-race-free state encoding algorithm.

CHAPTER 1. INTRODUCTION 17

The last section reports the experimental results.

Chapter 5 describes the design and implementation of a SCSI controller data path.

Each section describes one state machine in detail from each area of the data path,

Bus Interface Unit, FIFO, and SCSI Bus Interface, and the rationale for key design

decisions. The last section discusses important parameters of the implementation

qualitatively.

Chapter 6 presents concluding remarks and some related open problems to solve.

Chapter 2

Speci�cation and Implementation

2.1 Introduction

This chapter describes a user-level speci�cation formalism, called extended-burst-

mode, a target implementation style, called 3D, and an overview of how an asyn-

chronous controller speci�ed in extended-burst-mode is transformed into a correct

implementation.

The extended-burst-mode is a powerful user interface for specifying a large class of

controllers. It is intended for designing asynchronous state machines and the machines

that fall in the gray area between asynchronous and synchronous, although it is

theoretically possible to specify any synchronous Moore machine [43] and practically

feasible to design small to medium size synchronous Moore machines. It is particularly

useful for designing controllers that operate in heterogeneous systems | systems with

a mixture of synchronous and asynchronous components. It is important to note that

every legal extended-burst-mode speci�cation is implementable. In other words, the

extended-burst-mode is a design tool, not an abstract modeling tool.

There are many implementation styles that can be used to synthesize asynchronous

controllers | each has advantages and disadvantages. This thesis describes one par-

ticular implementation style called 3D, which is suitable for implementing extended-

burst-mode machines. It is similar to Hu�man-mode machines [30, 69] in structure

and similar to Mealy machines [43] in functionality.

18

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 19

This chapter is organized as follows: Section 2.2 describes the extended-burst-

mode speci�cation formalism. Section 2.3 describes hardware implementations of

extended-burst-mode machines and an overview of the synthesis using a simple ex-

ample. Finally, section 2.4 describes three di�erent types of machine cycles in which

3D machines may operate.

2.2 Controller Speci�cation

ok- frin- /
faout-

frin+ dackn+ /
faout+

frin- /
dreq+ faout-

ok+ frin* /
dreq+

<cntgt1+>
frin* dackn- / dreq-

<cntgt1+>
frin* dackn- / dreq-

ok* frin+ dackn+ /
faout+

<cntgt1->
frin* dackn- / dreq-

<cntgt1->
frin* dackn- / dreq-

6

5

0

1

2

3

4

Figure 2.1: Extended-burst-mode speci�cation.

Figure 2.1 shows an example of the extended burst-mode speci�cation. Signals not

enclosed in angle brackets and ending with + or � are terminating signals. These

are edge signals. The signals enclosed in angle brackets are conditionals, which are

level signals whose values are sampled when all of the terminating edges associated

with them have occurred. A conditional ha+i can be read \if a is high" and ha�i

can be read \if a is low." A state transition occurs only if all of the conditions are

met and all the terminating edges have appeared. A signal ending with an asterisk

is a directed don't care. If a is a directed don't care, there must be a sequence of

state transitions in the machine labeled with a�. If a state transition is labeled with

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 20

a�, the following state transitions in the machine must be labeled with a� or with

a+ or a� (the terminating edge for the directed don't care). Figure 2.1 describes a

state machine having a conditional input (cntgt1), 3 edge inputs (ok; frin; dackn), and

2 outputs (dreq; faout). Consider the state transitions out of state 4. The behavior

of the machine at this point is: \if cntgt1 is low when dackn falls, change the current

state from 4 to 5 and lower the output dreq; if cntgt1 is high when dackn falls, change

the current state from 4 to 2 and lower output dreq."

A directed don't care may change at most once during a sequence of state transi-

tions it labels, i.e., directed don't cares are monotonic signals, and, if doesn't change

during this sequence, it must change during the state transition its terminating edge

labels. A terminating edge which is not immediately preceded by a directed don't

care is called compulsory, since it must appear during the state transition it labels.

In �gure 2.1, frin is low when the speci�cation is in state 4. It can rise at any point

as the machine moves through states 5 and 6 or through state 2, depending on the

level of cntgt1, and it must have risen by the time the machine moves to states 6 or

2, because the terminating edge frin+ appears between states 5 and 6 and between 4

and 2.

The input signals are globally partitioned into level signals (conditionals), which

can never be used as edge signals, and edge signals (terminating or directed don't

care), which can never be used as level signals. If a level signal is not mentioned on a

particular state transition, it may change freely. If an edge signal is not mentioned,

it is not allowed to change.

More generally, an extended-burst-mode asynchronous �nite state machine [75] is

speci�ed by a state diagram which consists of a �nite number of states, a set of labeled

state transitions connecting pairs of states, and a start state. Each state transition is

labeled with a set of conditional signal levels and two sets of signal edges: an input

burst and an output burst. An output burst is a set of output edges, and an input

burst is a non-empty set of input edges (terminating or directed don't care), at least

one of which must be compulsory.

In a given state, when all the speci�ed conditional signals have correct values and

when all the speci�ed terminating edges in the input burst have appeared, the machine

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 21

generates the corresponding output burst and moves to a new state. Speci�ed edges

in the input burst may appear in arbitrary temporal order. However, the conditional

signals must stabilize to correct levels before any compulsory edge in the input burst

appears and must hold their values until after all of the terminating edges appear.

The minimum delay from the conditional stabilizing to the �rst compulsory edge is

called the setup time. Similarly, the minimum delay from the last terminating edge to

the conditional change is called the hold time. Actual values of setup and hold times of

conditional signals with respect to the �rst compulsory edge and the last terminating

edge depend on the implementation. The period starting at the speci�ed setup time

before the �rst compulsory edge and ending at the speci�ed hold time after the last

terminating edge is called the sampling period. Conditional signal levels need not be

stable outside of the speci�ed sampling periods. Each signal speci�ed as a directed

don't care may change its value monotonically at any time including during output

bursts, unless it is already at the level speci�ed by the next terminating edge. Outputs

may be generated in any order, but the next set of compulsory edges from the next

input burst may not appear until the machine has stabilized. This requirement |

the environment must wait until the circuit stabilizes before generating the next set

of compulsory edges | is a variation of the multiple-input change fundamental-mode

environmental constraint.

The following are some examples of labels on state transitions:

� hc1
+ihc2

�i x+=z1
+z2

� means \if c1 = 1 and c2 = 0 when x rises, then the

machine raises z1 and lowers z2."

� x1
+x2

�=z+ means \the machine raises z when x1 rises and x2 falls."

There is an additional restriction to extended-burst-mode speci�cations, called

distinguishability constraint, which prevents ambiguity among multiple input bursts

emanating from a single state: For every pair of input bursts i and j from the same

state, either the conditions are mutually exclusive, or the set of compulsory edges in

i is not a subset of the set of all possible edges in j.

For instance, the input bursts from state 0 in �gure 2.2a are legal because hc+i

and hc�i are mutually exclusive. However, the input bursts from state 0 in �gure 2.2c

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 22

are illegal because the conditions are not mutually exclusive and fb+g � fa+; b+g.

Moreover, the input bursts from state 0 in �gure 2.2b violate the distinguishability

constraint because the set of all possible edges for the input burst a+b� is fa+; b+g

and fb+g � fa+; b+g.

1 2 1 2

b+ /
y+

abxy = 0000abxy = 0000

0 0

1 2

abxy = 0000

0

(a) (b) (c)

<c+>
a+b+ /
x+

<c->
b+ /
y+

a+b* /
x+

<c+>
a+b+ /
x+

<c+>
b+ /
y+

Figure 2.2: Distinguishability constraints.

To simplify exposition, we assume that the unique entry condition is satis�ed. The

set of possible entry points into a state (input and output values entering a state)

from every predecessor state must be identical. This is a simplifying assumption that

does not constrain the range of permissible behaviors since an extended-burst-mode

speci�cation can always be transformed into an equivalent speci�cation satisfying the

unique entry condition by duplicating some states.

For example, the set of valid entry points to state 1 from state 0 in �gure 2.3a

is f01011; 01111g, but from state 3 to state 1 it is f01011g. Thus the unique entry

condition is not met in this speci�cation. A speci�cation satisfying the unique entry

condition is shown in �gure 2.3b.

2.2.1 Formal De�nition of Extended-Burst-Mode

The following formal de�nition of the extended-burst-mode speci�cation is adapted

from the de�nition of the burst-mode speci�cation in [49]. An extended-burst-mode

speci�cation is a directed graph, G = (V;E; C; I; O; v0; cond; in; out), where V is a

�nite set of states; E � V � V is the set of state transitions; C = fc1; : : : ; clg is the

set of conditional inputs; I = fx1; : : : ; xmg is the set of edge inputs; O = fz1; : : : ; zng

is the set of outputs; v0 2 V is the unique start state; cond labels each state transition

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 23

abcxy = 00001 abcxy = 00001

a+c+ / y-
c- / x-

1100011110

a+c+ / y-
c- / x-

1100011110

a- / x+y+
01x11

(a) no unique entry (b) unique entry

b+c* / x+ b+c* / x+

a-c* / x+y+

2

1

0

3 3

0

1

2

Figure 2.3: Example (unique entry condition).

with a set of conditional inputs; in and out are labeling functions used to de�ne the

unique entry cube of each state. The function cond : E ! f0; 1; �gl de�nes the values

of the conditional inputs. The function in : V ! f0; 1; �gm de�nes the values of the

edge inputs and the function out : V ! f0; 1gn de�nes the values of the outputs upon

entry to each state.

Labeling functions transIN and transOUT are derived from graph G. transIN : E !

P(I) de�nes the set of edge input changes and transOUT : E ! P(O) de�nes the set

of output changes. (P(I) and P(O) denote the power set of inputs and the power

set of outputs respectively.) Given a state transition, (u; v) 2 E, xi 2 transIN (u; v) i�

ini(u) 6= ini(v)_ ini(v) = �. That is, xi
+ is in the input burst i� ini(v) = 1^ ini(u) 6= 1,

xi
� is in the input burst i� ini(v) = 0 ^ ini(u) 6= 0, and xi

� is in the input burst

i� ini(v) = �. Similarly, zj 2 transIN (u; v) i� outj(u) 6= outj(v). That is, zj
+ is

in the output burst i� outj(v) = 1 ^ outj(u) = 0, zj
� is in the output burst i�

outj(v) = 0 ^ outj(u) = 1. Finally, ctransIN de�nes the set of compulsory edge input

changes: ctransIN (u; v) = fxi 2 transIN (u; v) j ini(u) 6= � ^ ini(v) 6= �g.

The unique entry condition is satis�ed by the above de�nition. The remaining

requirements to ensure well-formed speci�cations are:

� Every input burst must contain a compulsory edge. That is, for every state

transition (u; v), there exists xi 2 transIN (u; v) such that ini(u) 6= � ^ ini(v) 6= �.

� Every pair of state transitions emanating from the same state must satisfy

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 24

the distinguishability constraint. That is, for every pair, (u; v); (u; w) 2 E,

ctransIN (u; v) � transIN (u; w) implies that either v = w or cond(u; v) and

cond(u; w) are mutually exclusive, that is, there exists k such that condk(u; v) 6=

condk(u; w) ^ condk(u; v) 6= � ^ condk(u; w) 6= �.

� For every sequence of state transitions, u ! v1 ! � � � ! vn ! w, with n � 1

and ini(u) = ini(w) 6= �, there exists k 2 1; : : : ; n such that ini(vk) 6= �.

2.3 Implementation Overview

In all sequential machines, the machine output depends not only on the inputs but

also on the state of the machine, which keeps track of the history of input changes.

All sequential machines use feedback to store the state of the machine. In Hu�man-

mode state machines [30, 69], the state of the machine is stored only in internal state

variables | primary outputs do not store any state information. In our 3D machines,

however, primary outputs are used to store the state of the machine whenever possible

in order to minimize the number of internal state variables.

A 3D asynchronous �nite state machine is formally de�ned as a 4-tuple (X; Y; Z; �)

where

� X is a non-empty set of primary input symbols;

� Y is a non-empty set of primary output symbols;

� Z is a (possibly empty) set of internal state variable symbols;

� � : X � Y � Z ! Y � Z is a next-state function.

The hardware implementation of a 3D state machine (see �gure 2.4) is a combi-

national network, which implements the next-state function, with the outputs of the

network fed back as inputs to the network. There are no explicit storage elements

such as latches, ip-ops or C-elements in a 3D machine.

A 3D implementation of an extended-burst-mode speci�cation is obtained from

the next-state table, a 3-dimensional tabular representation of �. The next state of

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 25

input output

state
Network

Hazard−free
Combinational

Figure 2.4: 3D asynchronous state machine.

every reachable state must be speci�ed in the next-state table; the remaining entries

are don't cares.

2.3.1 A Simple Example

A simple example is used to illustrate the synthesis and operation of a 3D machine

(see �gure 2.5). We describe the desired machine behavior according to an extended-

burst-mode speci�cation and the next-state table entries needed to make the machine

behavior conform to the speci�cation. From a completed next-state table, we can

extract the logic equations directly, because next-state tables describe the next values

of outputs and state variables for every combination of inputs, outputs and state

variables.

In S0 (the initial state), the machine awaits the input burst a+b�. During the

input burst a+b�, abc changes from 000 to 100, if a+ arrives �rst, or from 000 to

110 via 010, if b+ arrives �rst. The outputs cannot change until a rises, regardless

of b, because the extended-burst-mode speci�cation mandates that outputs remain

unchanged until the �nal terminating input edge (a+ in this case) of the input burst

arrives. Thus the next outputs, XY , for abcxy = 00000 and 01000 are speci�ed to

be 00. Once a has risen, regardless of the value of b, the outputs xy must change

monotonically to 11; thus the next output entries for abcxy = 1x0xx are speci�ed to

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 26

Conflict during table construction

abcxy = 00000

0

a+b* /
x+y+

b+c+ /
x-

c- /
x+y-

a-b- /
x-

321

0

1

2

S 0

S 1

S 2

11

1101 11

00

01

00

000 001 011 010 110 111 101 100

00

01

11

10

abc

xy

Conflict

0 2
11

11

11
1

11

11

11

10

1

Figure 2.5: Simple example.

be 11. When the outputs xy stabilize to 11, the machine is in S1. Note that b may

be 0, 1, or rising in S1.

In S1, the machine waits for the input burst b+c+ | during this input burst, abc

changes from 100 to 111 via 101 or 110, if b is 0 initially, and from 110 to 111, if b is

already 1. The next outputs, XY , for abcxy = 10011, 10111, and 11011 are speci�ed

to be 11, so that the outputs xy remain unchanged until both b and c have risen.

The next outputs, XY , for abcxy = 111x1 are speci�ed to be 01, so that x then falls

monotonically. When x stabilizes to 0, the machine is in S2, where it awaits the input

burst c�. When the input c falls, the outputs xy must change to 10 monotonically.

A problem (see �gure 2.5) occurs when we attempt to specify the next outputs for

abcxy = 110xx to be 10. The next outputs, XY , for abcxy = 110xx have already been

speci�ed to be 11 (during S0 ! S1).

Such conicts can be avoided by adding state variables, which can be viewed

as transitioning between layers of the next-state table (see the bottom table in �g-

ure 2.5). Conicting entries can be placed in di�erent layers. Our strategy, in this

case, is to back up to the state following the last input burst before the conict

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 27

Next−state table (before layer encoding)

Layer B

Layer A

11

11

11 11

01 11

10

10

10

00

00

11

01

00

10

00

000 001 011 010 110 111 101 100

00

01

11

10

00

01

11

10

abc

xy

0

2

10

11

11

11

01

01

10

00
3

11

Figure 2.6: Simple example (next-state table before layer encoding).

(abcxy = 11111) and change the internal state and the outputs concurrently. When

the output/state burst is complete, the machine is in S2. We continue the construc-

tion of the next-state table (for outputs xy) by applying the same procedure for the

state transitions from S2 to S3 and from S3 to S0.

The resulting table (in �gure 2.6) has two layers, so just one state bit is needed

to encode them. The code value of 0 is assigned to layer A, and 1 to layer B. We

can complete the construction of the next-state table by encoding the layers in binary

and adding the resulting state bits to the next-state entries as shown in �gure 2.7.

At this point, all reachable entries of the next-state table are speci�ed; next states of

the remaining entries are don't cares. We can then synthesize the logic directly from

the next-state table. A Karnaugh map for the next output function Y is shown in

�gure 2.8, and the circuit implementation is shown in �gure 2.9. Of course, care must

be taken to avoid hazards in the logic, when translating a Karnaugh map to logic.

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 28

Next-State Table

011

011

011

011101 011

011

110

000

000

011

101

000

000

000 001 011 010 110 111 101 100

000

001

011

100

101

111

110

abc

qxy

110

110

110

0

2

3

QXY

010

011

011

101

101

110 110

000
1 1

Figure 2.7: Simple example (next-state table after layer encoding).

100

1

1

1

1

0

Y = c + a q’

000 001
abc

qxy 011 010 110 111 101

100 0

000

001

011

010

110

111

101

0

0

0

0

1

1

1

1 11

1

0

0

0

0 1

1

0

Figure 2.8: Simple example (Karnaugh map for Y).

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 29

xa

q

y

b

c

Figure 2.9: Simple example (3D implementation).

2.4 3D Machine Operation

There are three types of machine cycles in a 3D state machine:

Type I. an input burst followed by a concurrent output and state burst;

Type II. an input burst followed by an output burst followed by a state burst;

Type III. an input burst followed by a state burst followed by an output burst.

The selection of a machine cycle depends on the required level of concurrency and

the combinational synthesis method used. Normally, the user of the 3D synthesis tool

selects Type I or II. Type III is used only to avoid a dynamic hazard that arises in

two-level AND-OR due to undirected don't cares, which will be discussed in detail in

chapter 3.

At power-up or after completion of the previous machine cycle, the machine waits

for an input burst to arrive. In a Type I machine cycle when the machine detects

that all of the terminating edges of the input burst have appeared, it generates a

concurrent output/state burst (which may be empty), completing a 2-phase machine

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 30

c

i1

i2

o

s

<c+> i1+ i2* o+ s- i1- i2+ o-

Φ1 Φ2 Φ1 Φ2

<c+> i1+ i2* o+ i1- i2+ o-

Φ1 Φ2 Φ1 Φ2Φ3

Type I

Type III

c

i1

i2

o

s

s-

Figure 2.10: 3D machine cycles (Types I and III).

CHAPTER 2. SPECIFICATION AND IMPLEMENTATION 31

cycle. In a Type II machine cycle, when the machine detects that all of the terminating

edges of the input burst have occurred, it generates an output burst (which may be

empty). A state burst (which may also be empty) immediately follows the output

burst, completing the 3-phase cycle. Note that an output burst enables a state burst

in the \burst-mode fashion" | the state variable changes are enabled only after all

the changes of the output burst have fed back. In a Type III machine cycle, a state

burst is enabled by the input burst and an output burst is enabled by the state burst.

Note that the state assignment used in the simple example in the last section forced

the machine cycle in S1 to be of Type I; however, a state assignment scheme that

generates a di�erent type of machine cycle can be used just as well.

Figure 2.10 illustrates examples of two machine cycles (Type I and Type III). The

�rst machine cycle begins with input burst (phase 1) hc+i i1
+i2

�. The conditional

signal c stabilizes to 1 before i1
+ �res. The directed don't care signal i2 may remain

at 0 or change to 1. In the Type I machine cycle, this input burst enables a concurrent

output/state burst (phase 2), o+s�. In the Type III machine cycle, this input burst

enables the state burst (phase 2), s�, which, in turn, enables the output burst (phase

3), o+. In the second machine cycle, an input burst, i1
�i2

+, enables an output burst,

o�, and no state burst is required. Thus both the Type I and III machine cycles are

identical.

Chapter 3

Hazard Considerations

3.1 Introduction

In this chapter, we pay close attention to the correctness of the implementation and

the requirements for correctness. An implementation is correct if and only if the

range of possible behavior in the environment of the implementation is a subset of

the range of behavior allowed by the speci�cation. One way to guarantee that an

implementation is correct is to transform the speci�cation using a procedure each

step of which preserves correctness.

The main problem in ensuring the correctness of asynchronous circuits is avoiding

the possibility of hazards. A hazard is broadly construed as a potential for malfunction

of the implementation. We review precise characterization of various kinds of hazards

and describe how each is avoided. We show that the 3D machine synthesis problem

reduces to one of synthesizing hazard-free combinational logic and then show how the

various sources of hazards are systematically eliminated.

Figure 3.1 illustrates how the 3D machine can be viewed as a combinational logic

function during each burst (Type II machine cycle is used in this example). Assume

that no fed-back output change arrives at the network input until all of the speci-

�ed changes of the output burst have appeared at the network output. The same

assumption applies to the fed-back state variable changes and the state burst. These

conditions will be met by inserting delays in the feedback paths as necessary. The

32

CHAPTER 3. HAZARD CONSIDERATIONS 33

machine then can be viewed as a combinational logic function

1. excited by the input changes during the input bursts (phase 1);

2. excited by the fed-back output changes during the output bursts (phase 2);

3. excited by the fed-back state variable changes during the state burst (phase 3).

Note that the machine is stable at the beginning of each phase.

input output

2-Level
AND-OR

L
C

Φ1

state

Φ2

Φ3

Figure 3.1: Combinational view of the 3D state machine.

Therefore, the 3D machine synthesis procedure follows the steps outlined below:

1. specifying a hazard-free combinational logic function that can be transformed

into a hazard-free logic circuit;

2. implementing a hazard-free combinational circuit from the speci�ed combina-

tional function;

3. ensuring that the sequential circuit created by connecting feedback paths are

free of hazards.

The �rst step of the synthesis procedure is to correctly specify a combinational

logic function that conforms to the speci�cation. This step must ensure that the

speci�ed function is free of function hazards, that is, for every set of input changes

CHAPTER 3. HAZARD CONSIDERATIONS 34

and feedback signal changes with all the signals not speci�ed to change set to correct

values, both the static and dynamic behavior of every output is exactly as speci�ed.

In addition, this functional synthesis step must take measures to ensure that a hazard-

free circuit exists for the speci�ed function.

The second step of the synthesis procedure is to correctly implement a combina-

tional logic circuit from the combinational function speci�ed in the last step. That

is, this step must implement a circuit free of logic hazards.

The last step of the synthesis procedure is to turn this combinational circuit

into a sequential circuit by connecting outputs of the network to the inputs, that is,

creating feedback paths. This step must ensure that the sequential circuit created by

connecting feedback paths is free of sequential hazards, that is, the circuit behaves as

speci�ed as a sequential machine.

In the remainder of this chapter, we examine the sources of hazards (sequential

hazards, function hazards, and combinational logic hazards) in detail and provide

remedies for each. The synthesis procedure itself and the algorithms are presented in

chapter 4.

3.2 Sequential Hazard

The correct operation of the 3D machine relies on the assumption that all of the

speci�ed changes of the outputs of the combinational network excited by a set of

changes at the network inputs are completed before the next set of changes arrives at

the network inputs. A violation of this assumption may result in a sequential hazard,

the hazard that exists regardless of the correctness of the underlying combinational

circuit. Both the timing characteristics of the circuit itself and the environment of

the circuit can cause sequential hazards.

3.2.1 Essential Hazard

We examine how the internal timing of the circuits can introduce sequential hazards.

It has been assumed up to now that no change at the network output is fed back to

CHAPTER 3. HAZARD CONSIDERATIONS 35

the input of the combinational network until all the changes at the network outputs

that are concurrently enabled have taken place. However, this assumption may be

violated if feedback delays are short compared to the di�erence between the maximum

and minimum feedforward delays. The hazard that arises due to the race between

the arrivals of input edges and one or more fed-back output edges, enabled by the

same input changes, at the network input is called essential hazard.

b

a

a’

X

y = a’bX

glitch due to "fast" x

Next-state table

00 00 10 00

11

00
01
11
10

00 01 11 10
ab

xy

00
00
00

ta-a’

a-xt x-Xt+

b
a

y

x

ta-a’

a-xt

x-Xt
X

a+b+ x+

a+b+ / x+

a- / y+

b- / x- y-

0

11 2

10 1

2

1

0

Figure 3.2: Essential hazard.

The possibility of an essential hazard during a 0 ! 0 transition of an output is

illustrated in �gure 3.2. During the input/output burst (a+b+ ! x+), y is speci�ed

to remain 0. However, if x+ is fed back to the network input before a0 goes low, then

a 0� 1� 0 glitch may propagate to output y. Thus, we need to make sure that the

feedback delay (tx�X) is su�ciently large to avoid essential hazards.

Essential hazards, in general, can be avoided simply by inserting su�cient delays

in the feedback paths. However, the delays in the feedback paths increase the delay

constraint between last output change and next compulsory input change that must

CHAPTER 3. HAZARD CONSIDERATIONS 36

be obeyed by the environment of the circuit. Hence, it is desirable to minimize

feedback delays to improve system performance. Sometimes, it is possible to �nd

tighter constraints, i.e., reduce feedback delays, if the details of the implementation

technology are known.

in

outf

out

sv

tsvf-prod

Tin-lit

Tin-prod

t in-out

svf

toutf-prod

Toutf-lit

Toutf-prod

toutf-sv

tout-outf

tsv-svf

Figure 3.3: Timing requirements for minimum feedback delay.

Su�cient Conditions for Freedom from Essential Hazards in 2-Level AND-

OR

If 3D machines are implemented in two-level AND-OR, a set of simple one-sided

timing constraints can be used to characterize the minimum required feedback delay.

We show below a set of timing constraints required for Type II machine cycles. tx�y

CHAPTER 3. HAZARD CONSIDERATIONS 37

denotes the minimum delay from a transition of type x to a transition of type y, while

Tx�y denotes the maximum delay (see �gure 3.3).

1. tin�out + tout�outf > Tin�lit .

2. tin�out + tout�outf + toutf�prod > Tin�prod .

3. toutf�sv + tsv�svf > Toutf�lit .

4. toutf�sv + tsv�svf + tsvf�prod > Toutf�prod .

Usually, these inequalities are satis�ed without adding delays, as should be clear by

comparing the lengths of the paths followed on each side of the inequalities. Note

that the requirements for a Type I machine cycle are simpler, because state variable

changes are concurrent with output changes: only the �rst two inequalities are needed.

3.2.2 Environmental Constraints

An inherent feature of the 3D implementation is that parts of the circuit may still be

unstable after a change at the network output has taken place. In some sense, this

feature can help improve the performance of the system by e�ectively making the

stabilization of the circuit and the reaction of the environment concurrent, provided

that the environment is slow to react to the changes in the circuit outputs. However,

if the environment reacts so fast that the circuit detects the new input arrivals before

the arrival of feedback variable changes, then the circuit may malfunction. Therefore,

we must have the environment delay generating certain changes. This is called the

fundamental-mode environmental constraint. In practice, this is usually not a prob-

lem, because of the delays in wires between the circuit and the environment and the

time for the environment to react are generally longer than it takes for the circuits to

stabilize. In addition, not all the input signals have to meet this constraint, because

some signals are speci�ed as don't cares in the extended-burst-mode.

Another form of the environmental constraint required by the extended-burst-

mode 3D machine are the setup time and hold time requirements: all conditional

signals speci�ed to stabilize must stabilize for some interval before any compulsory

CHAPTER 3. HAZARD CONSIDERATIONS 38

(sampling) edge appears and must remain stable until the output/state burst is com-

pleted. This requirement is similar to the setup and hold requirements on data signals

with respect to clock of synchronous ip-ops.

3.2.3 Summary

The following are the timing requirements imposed by the synthesis method to guar-

antee correctness of the implementation.

1. feedback delay requirement : feedback variable changes are not fed-back until all

enabled feedback variable changes are completed;

2. fundamental-mode environmental constraint : no compulsory edges of the next

input burst may arrive until the machine is stabilized;

3. setup and hold time requirements : all conditional signals speci�ed to be stable

must be stabilize before any compulsory (sampling) edge appears and must

remain stable until the output/state burst is completed.

Assuming these timing constraints are met, we need only analyze the hazards in the

combinational circuit that results from cutting feedback paths.

3.3 Function Hazard

A function hazard is a non-monotonic change, i.e., more than one change, of a com-

binational function during a multiple-input change [23, 69]. Function hazards are

problematic because they are present in every gate-level implementation of the func-

tion, if inputs to functions have arbitrary delay. Consequently, function hazards must

be prevented before combinational synthesis. We consider function hazards during

multiple-input changes in which some inputs are non-monotonic, i.e., change more

than once. We examine the implications of allowing certain input changes to be non-

monotonic, de�ne what a function hazard is in this setting, and explain how function

hazards are avoided in the 3D implementations.

CHAPTER 3. HAZARD CONSIDERATIONS 39

3.3.1 De�nitions

We summarize some de�nitions and concepts from [5, 4, 53, 60] that are used in the

following subsections.

A logic function f is a mapping from f0; 1gn to f0; 1; �g. A minterm of f is an

n-tuple [x1; x2; : : : ; xn] where xi, the value of the i-th input of f , is 0 or 1.

The on-set of f is the set of minterms for which f is 1; the o�-set of f is the set

of minterms for which f is 0; the dc-set of f is the set of minterms for which f is �.

A cube c, written as [c1; c2; : : : ; cn], is a vector in f0; 1; �g
n. A minterm [x1; x2; : : : ; xn]

is a cube such that for every i 2 1; : : : ; n, xi 6= �.

A cube [a1; a2; : : : ; an] is said to contain another cube [b1; b2; : : : ; bn] i�, for all i in

1; : : : ; n, ai = bi or ai = �.

A cube [a1; a2; : : : ; an] is said to intersect another cube [b1; b2; : : : ; bn] i�, for all i

in 1; : : : ; n, ai = bi or ai = � or bi = �.

A literal is a variable or its complement. A product term is a boolean product

of literals, and a sum of products is a boolean sum of product terms. We consider

only product terms satisfying the restriction that no product term can have both a

variable and its complement as inputs. With this restriction, there is a one-to-one

correspondence between product terms and cubes, so we use the terms cube and

product term interchangeably. Thus a product term x1x3x4 is equivalent to a cube

[1; �; 0; 1; �; : : : ; �].

An implicant of f is a product term which contains no o�-set minterms of f .

A cover C of a logic function f is a set of implicants of f such that every on-set

minterm of f is contained in some cube of C but no o�-set minterm. A cover is

isomorphic to a sum-of-products implementation of f .

If A = [a1; a2; : : : ; an] andB = [b1; b2; : : : ; bn], the transition cube C = [c1; c2; : : : ; cn]

is determined so that, for i = 1; : : : ; n, ci = ai = bi, if ai = bi, and ci = �, if ai 6= bi.

The transition cube C, denoted as [A;B], is the smallest cube that contains both A

and B.

A trajectory in [A;B] is a vector of minterms contained [A;B], denoted as

[m1; m2; : : : ; mp], such that, for every j in 1; : : : ; p � 1, the minterms mj and mj+1

di�er in just one bit position.

CHAPTER 3. HAZARD CONSIDERATIONS 40

A combinational function has a function hazard if it changes more than once dur-

ing a speci�ed multiple-input change. Assume, for now, that all input changes are

monotonic (we will generalize it so that some input changes can be non-monotonic in

the following subsection). There is a corresponding transition cube for every multiple-

input change. The transition cube contains all of the minterms in every possible tra-

jectory of the speci�ed input changes. If the function changes its value more than once

along a certain trajectory, then there is a function hazard. The following \classical"

de�nition of function hazard adapted from [4] captures this notion precisely.

De�nition 3.1 A combinational function f contains a function hazard during a

multiple-input change from A to B i� there exists a pair of minterms X and Y in

[A;B] (A 6= X and Y 6= B) such that

1. X 2 [A;B] and Y 2 [X;B] and

2. f(A) 6= f(X) and f(Y) 6= f(B).

If f(A) = f(B), it is a static function hazard, that is, a 1 � 0 � 1 or 0 � 1 � 0

function hazard. Otherwise, it is a dynamic function hazard, that is, a 1� 0� 1� 0

or 0� 1� 0� 1 function hazard.

3.3.2 Generalized Transition

If some inputs are allowed to change non-monotonically during multiple-input changes,

the classical de�nition of function hazard is inadequate. We develop a notion of

generalized transition to remedy this de�ciency and to provide a vehicle to discuss

functional synthesis in analytical terms in chapter 4.

A generalized transition (T;A;B) de�nes a set of all legal trajectories in [A;B],

where A is a start cube, B is an end cube, and T is a mapping from a set of inputs to a

set of input types. There are three types of inputs: rising edge, falling edge, and level

signals. Edge inputs can only change monotonically; therefore, edge inputs change at

most once in a legal trajectory. Level inputs must remain constant or be unde�ned

(don't care), which implies that each level input must hold the same value in both

CHAPTER 3. HAZARD CONSIDERATIONS 41

A and B or be unde�ned in both A and B. Level inputs, if they are unde�ned, may

change non-monotonically,

A generalized transition cube [A;B] is the smallest cube that contains the start

and end cubes A and B, as de�ned before. Open generalized transition cubes, [A;B) =

[A;B] � B, (A;B] = [A;B] � A, and (A;B) = [A;B) � A respectively. Note that

[A;B) = ;, if A = B. The start subcube A0 is a maximal subcube of A such that:

1. the value of every rising edge input i in A0 is 0, if it is � in A;

2. the value of every falling edge input j in A0 is 1, if it is � in A.

The end subcube B0 is a maximal subcube of B such that:

1. the value of every rising edge input i in B0 is 1, if it is � in B;

2. the value of every falling edge input j in B0 is 0, if it is � in B.

Intuitively, if edge signals have weight 1 and level signals have weight 0, the trajec-

tories from A0 to B0 are the maximum-weight trajectories. If every don't care input

is an edge signal in (T;A;B), [A0; B0] = [A;B] and A0 and B0 reduce to minterms.

Lemma 3.1 For every minterm X in [A;B], all of the minterms in every legal tra-

jectory from X to B is contained in [X;B0].

Proof: We prove by contradiction. Assume that there exists a trajectory such that

one of the minterms in the trajectory is outside of [X;B0].

1. [X;B0] = [X;B]

[X;B] contains all of the minterms in every trajectory from X to B, which

contradicts the assumption.

2. [X;B0] � [X;B]

Then there exists Y contained in [X;B] � [X;B0] such that Y can be reached

from X legally. Let X = [x1; : : : ; xn], Y = [y1; : : : ; yn], B
0 = [b01; : : : ; b

0

n], and

[X;B0] = [c1; : : : ; cn]. For every i in 1; : : : ; n, ci = � or ci = b0i. Since Y is not

contained in [X;B0], there exists an edge signal j such that yj 6= � ^ yj 6=

b0j ^ cj 6= �. Because cj 6= �, xj = b0j, which means xj changed once. Thus there

is no legal trajectory from X to Y , which contradicts the assumption.

CHAPTER 3. HAZARD CONSIDERATIONS 42

During a generalized transition (T;A;B), each output signal is assumed to change

its value at most once. Furthermore, no output change is allowed in A and B. If

not, a function hazard is said to be present. Below is the new de�nition of function

hazard adapted for generalized transitions:

De�nition 3.2 A combinational function f contains a function hazard in (T;A;B)

i�

1. there exists a pair of minterms X; Y in A such that f(X) 6= f(Y), or

2. there exists a pair of minterms X; Y in B such that f(X) 6= f(Y), or

3. there exists a pair X; Y in (A;B) such that Y 2 [X;B0) (or, equivalently, X 2

(A0; Y]) and f(A) 6= f(X) and f(Y) 6= f(B).

The last criterion states that there is a function hazard if there exist two minterms X

and Y in a legal trajectory from A to B such that f(A) 6= f(X) and f(Y) 6= f(B).

A generalized transition (T;A;B) is a static transition for f i� f(A) = f(B); it

is a dynamic transition for f i� f(A) 6= f(B). No change in level inputs can enable

output changes directly, that is, at least one edge input must change from 0 to 1 or

from 1 to 0 in a generalized dynamic transition.

Examples of generalized transitions are shown in �gure 3.4. a, b, and c are rising

edge signals, and s is a level signal. Figures 3.4ac show function-hazard-free static

and dynamic transitions respectively. Figure 3.4b illustrates a 1-0-1 static function

hazard, and �gure 3.4d does a 0-1-0-1 dynamic function hazard on the trajectory,

abc : 000! 100! 101! 111.

3.3.3 Extended-Burst-Mode Transition

An extended-burst-mode transition is a generalized transition with the following re-

quirements:

1. For every pair of minterms X and Y in A [[A;B), f(X) = f(Y).

CHAPTER 3. HAZARD CONSIDERATIONS 43

(a) function−hazard−free
 static transition

A = A’
a+

b+

s+ s−

B = B’

A = A’
a+

b+

s+ s−

B = B’

A

B

A’

B’

c+

a+

b+

A

B

A’

B’

c+

a+

b+

(c) function−hazard−free
 dynamic transition

(b) static function hazard (d) dynamic function hazard

a, b, c:

s:

f = 0
f = 1

level signal
rising edge signal

Figure 3.4: Generalized transitions.

CHAPTER 3. HAZARD CONSIDERATIONS 44

2. For every pair of minterms X and Y in B, f(X) = f(Y).

Theorem 3.1 Every extended-burst-mode transition is function-hazard-free.

Proof: Consider f during an extended-burst-mode transition from A to B. Since

A � A [[A;B), for every pair of minterms X and Y in A, f(X) = f(Y) by re-

quirement 1 of the de�nition of extended-burst-mode transition. This contradicts

criterion 1 of De�nition 3.2. For every pair of minterms X and Y in B, f(X) = f(Y)

by requirement 2, which contradicts criterion 2 of De�nition 3.2. Finally, for all X in

(A;B), f(X) = f(A) by requirement 1, which contradicts criterion 3 of De�nition 3.2.

Therefore, f is free of function hazards.

An edge signal that changes from 0 or � to 1 or from 1 or � to 0 during an

extended-burst-mode transition from A to B is a terminating signal in (T;A;B). An

edge signal whose value is � in B is a directed don't care in (T;A;B). A level signal

whose value is � in (T;A;B) is an undirected don't care. In a dynamic extended-burst-

mode transition, the output is enabled to change only after all of the terminating edges

appear.

Another way of describing terminating signals and don't cares is as follows: Let

minterms X = [: : : ; xs; : : :] and X 0 = [: : : ; xs; : : :], where xs and xs are the values of

s in X and X 0. s is a terminating signal i� X 2 B implies X 0 62 B. s is a don't care

(directed or undirected) i� X 2 B , X 0 2 B or, equivalently, X 2 [A;B) , X 0 2

[A;B).

A 3D machine cycle that requires no conditional signals to stabilize has transitions

corresponding to an input burst and a concurrent output/state burst, if it is of Type

I, or an input burst, an output burst and a state burst, if it is of Type II or III.

A 3D machine cycle that requires conditional signals to stabilize has an additional

transition for setting up conditional signals. Each of these transitions by itself is free

of function hazards, since these are all extended-burst-mode transitions. However, as

we have seen in the simple example in section 2.3.1, a function-hazard-free next-state

assignment requirement for one transition may conict with another transition. The

3D state assignment algorithm avoids this type of conict by adding state variables

when necessary, as described in the next chapter.

CHAPTER 3. HAZARD CONSIDERATIONS 45

Input Bit Vector

Output Bit Vector State Var Bit Vector

X

Y Z

c

d

Layer 00 (C)

Layer 10 (F)

Layer 11 (D)

Layer 01 (E)

ba

beginning of input burst
end of input burst / beginning of output burst
end of output burst / beginning of state burst

end of state burst
transient states

a
b
c

d
e, f

e

f

a
c
d

d
(critical race if d is not next-state)

Next-stateState

Figure 3.5: Critical race.

CHAPTER 3. HAZARD CONSIDERATIONS 46

3.3.4 Critical Race

If a transition between layers requires multiple state bit changes (see �gure 3.5), the

machine traverses intermediate layers (E or F) before it settles down to the �nal

stable state (d). In traditional asynchronous state machines [30, 69], a critical race is

said to be present if the �nal stable state depends on the order in which the state bits

change. In 3D machines, a critical race is said to be present if the transient states

during a layer transition have di�erent next values of outputs and state variables

from those of the start-state of the transition. Hence, in 3D machines, a critical race

is simply a manifestation of a function hazard during a state burst. We insure that

the machine is free of critical races by encoding layers so that the next states of the

transient states during layer transitions are the same as those of the start-state of the

transition.

3.4 Combinational Logic Hazards

Hazards in combinational circuits can also be introduced by the delay variations of

physical gates and wires, even if the logic functions are completely and correctly

speci�ed, i.e., function-hazard-free. In this section, we present two di�erent methods

to implement hazard-free combinational logic: the two-level AND-OR implementation

[53] and the multiplexor tree implementation derived from a Binary Decision Diagram

(BDD) representation of the next-state function [35].

δ

Inverter

τ = 0 τ = δ

< δ

Inertial delay model

Pure delay model

Figure 3.6: Delay model.

The existence of hazards depends on the delay assumptions in the circuit model

CHAPTER 3. HAZARD CONSIDERATIONS 47

used and on the models of the delay itself. Lots of delay models have been proposed

[69, 63, 9], here are two commonly used examples: the inertial delay model which

assumes that no input pulse of duration shorter than the gate delay is transported to

the output of the gate, and the pure delay model which assumes that a pulse of any

duration computed by the logic function of the gate is asserted on the gate output.

δ

Allowed

Not allowed

Figure 3.7: Delay model used in 3D synthesis.

Our synthesis method works for all delay models, because we use a strategy to

avoid multiple input changes to a delay before output (see �gure 3.7). In addition,

we assume that both the gates and the wires connecting gates in the combinational

network have �nite but arbitrary delays.

The following de�nitions of logic hazards are from [4, 53].

De�nition 3.3 A combinational network contains a static logic hazard during a

function-hazard-free input change from A to B i�

1. f(A) = f(B);

2. A momentary pulse may be present during the input change from A to B.

De�nition 3.4 A combinational network contains a dynamic logic hazard during

a function-hazard-free input change from A to B i�

1. f(A) 6= f(B);

2. A momentary 0 and a momentary 1 output may appear during the input change

from A to B.

CHAPTER 3. HAZARD CONSIDERATIONS 48

3.4.1 Two-Level AND-OR Implementation

First, we consider the implementation of the next-state functions in two-level AND-

OR logic. We develop a set of hazard-free covering requirements for the 2-level AND-

OR implementation of a logic function during an extended-burst-mode transition.

The hazard-free combinational logic synthesis for multiplemonotonic input changes is

described in [23, 5, 3, 4, 53, 77]. The new results presented here are simple extensions

of the theory in [53] to account for non-monotonic input changes. We apply these

results to the 3D machine combinational logic synthesis.

Below we state and prove necessary and su�cient conditions for hazard freedom

for a two-level AND-OR circuit during an extended-burst-mode transition. Note that

the product term refers to an on-set cube for the remainder of this section.

Lemma 3.2 A product term that does not intersect the generalized transition cube

[A;B] remains 0 during a function-hazard-free transition (T;A;B).

Proof: Every product term that does not intersect [A;B] has a literal whose value

remains 0 during the input change. Thus a product term not intersecting [A;B]

remains 0.

Lemma 3.3 A product term that contains A0 (or B0) changes monotonically during

an extended-burst-mode transition (T;A;B).

Proof: First, consider the case in which a product term p contains both A0 and

the start-point of a trajectory in the transition (T;A;B). The initial values of all

the literals of p are 1. Level signals are either constants or don't cares in A0. If a

level signal is a don't care in A0, then it is a don't care in the cube that contains A0;

therefore, it does not appear as a literal in the corresponding product term. Since all

other input changes are monotonic, values of the literals change monotonically from

1 to 1 or from 1 to 0. Thus the output of p changes monotonically.

Now consider the case in which the product term, p, contains A0 but not the

start-point. By the de�nition of A0, at least one monotonic change of an edge signal

is needed to traverse from A0 to a start-point in A� A0; no additional change of the

CHAPTER 3. HAZARD CONSIDERATIONS 49

same signal occurs in [A;B]. The value of the literal in p which corresponds to this

input signal falls during a transition from A0 to the start-point and remains 0. Thus

the output of p remains 0 in [A;B], if the start-point of the trajectory is not contained

in p.

Thus the output of a product term that contains A0 changes monotonically (1! 1,

1! 0, or 0! 0).

Using the same argument, the output of a product term that contains B0 also

changes monotonically (0! 0, 0! 1, or 1! 1).

Theorem 3.2 The output of a two-level AND-OR circuit is hazard-free during a

0! 0 extended-burst-mode transition.

Proof: No product term intersects the transition cube since the transition is function-

hazard-free. Thus all the product terms in the network remain 0 during the transition

by lemma 3.2.

Theorem 3.3 The output of a two-level AND-OR circuit is hazard-free during a

1 ! 1 extended-burst-mode transition i� the circuit contains a product term which

contains the transition cube [A;B].

Proof: ()) Assume that the circuit does not contain a product term that contains

[A;B]. In order for the transition to be function-hazard-free, [A;B] is covered by

more than one product term. During a transition from A to B, one or more product

terms rise, one or more product terms fall, and the rest remain 0. If a falling edge of

a product term precedes all rising edges, the output of the circuit may change from

1 to 0 to 1, which is a hazard, contradicting the hypothesis.

(() The output of a product term that contains [A;B] remains 1 during a transi-

tion from any point in A to any point in B, because there is no literal in this product

term that can change in [A;B]. Hence, the sum of products remains 1 throughout

the trajectory.

Theorem 3.4 The output of a two-level AND-OR circuit is hazard-free during a

1! 0 extended-burst-mode transition i� every product term intersecting the transition

cube [A;B] also contains the start subcube A0.

CHAPTER 3. HAZARD CONSIDERATIONS 50

Proof: ()) Assume that there exists a product term p that intersects [A;B] but

does not contain A0. Consider a trajectory from a point in A0 not contained in p to

any point in B. The initial value of p is 0 since p does not contain the start-point.

The �nal value of p is 0 because the �nal value of the output of the network must be

0. Because p intersects [A;B], p changes from 0 to 1 to 0 on some trajectories from A0

to B. All other product terms that contain A0 fall during a transition from A0 to B.

Since the wire delay on p can be arbitrary, the output of the network may undergo a

1! 0! 1! 0 transition. Thus the circuit is not hazard-free, which contradicts the

hypothesis.

(() The �nal values of all the product terms are 0, because the �nal value of the

output of the network must be 0. By lemma 3.3, the product terms that contain A0

change monotonically during a transition from A to B. Thus the product terms that

intersect [A;B] fall monotonically. The product terms that do not intersect [A;B]

remain 0, by lemma 3.2. Thus the output of the network changes monotonically, i.e.,

hazard-free.

Theorem 3.5 The output of a two-level AND-OR circuit is hazard-free during a

0 ! 1 extended-burst-mode transition i� no product term intersects the transition

cube [A;B] unless it also contains the end subcube B0.

Proof: Exchange 0 and 1 and reverse trajectories in proof of Theorem 3.4.

The hazard-free covering requirements for two-level AND-OR logic for extended-

burst-mode transitions can be summarized as below:

1. For every 1! 1 transition:

There exists a product term that contains [A;B].

2. For every 1! 0 (0! 1) transition:

Every product term that intersects [A;B] must also contain A0 (B0).

Each maximal subcube of [A;B] needed to satisfy the covering requirements above

is called a required cube of [A;B] [53, 49]. Just one cube is required for a 1! 1 tran-

sition whereas n cubes are required for a 1! 0 transition enabled by n terminating

CHAPTER 3. HAZARD CONSIDERATIONS 51

input edges. Figure 3.8 illustrates the hazard-free covering requirements for the sim-

ple example from section 2.3.1. Each unshaded circle represents a required cube for

a 1 ! 1 transition; shaded circles constitute a set of required cubes for a 1 ! 0

transition.

Q

X

000 001 011 010 110 111 101 100

000

001

011

010

abc
qxy

110

111

101

100

1

1

1

10 1

10

1

0

0

1

1

1

0

0

1

0

1-0 Transition
1-1 Transition

Y

000 001 011 010 110 111 101 100

000

001

011

010

abc
qxy

110

111

101

100

1

1

1

1 1 1

0

0

1

1

0

0

0

0

0

0

0

1

000 001 011 010 110 111 101 100

000

001

011

010

abc
qxy

110

111

101

100

0

0

0 0

0 0

00

0 1

0

1

1

0 1

1

0

1 1

0

1

1

1

1

1

1

0 0

0

1

1

10

0

1 1

Figure 3.8: Simple example (required cubes).

Suppose a generalized transition cube [A;B] for a 1 ! 0 extended-burst-mode

transition is intersected by a required cube cr (required for another transition). If cr

does not contain A0 and cannot be expanded (by assigning 1 to don't care entries)

to contain A0, then the implementation has a dynamic logic hazard. Figure 3.9

illustrates four examples of illegal intersections of transition cubes. In each of these

cases, a dynamic logic hazard is present in the implementation of x | for instance,

in �gure 3.9b, the output of c3 may glitch (0 � 1 � 0), if s rises momentarily before

a rises but the output of c3 is slow to change, and this glitch may propagate to the

CHAPTER 3. HAZARD CONSIDERATIONS 52

output. This observation leads to the notion of privileged cube.

A generalized transition cube [A;B] for a 1! 0 extended-burst-mode transition is

said to be a privileged cube [53, 49] i� [A;B) contains more than one minterm. Like-

wise, a generalized transition cube [A;B] for a 0! 1 extended-burst-mode transition

is said to be a privileged cube i� B contains more than one minterm. A cube that

intersects a privileged 1 ! 0 transition cube must also contain the start subcube,

and a cube that intersects a privileged 0 ! 1 transition cube must also contain the

end subcube. Otherwise, the cube is said to intersect the privileged cube illegally .

Let C be a cover of a logic function f that implements an output or a state variable

of the 3D machine. C is free of logic hazards i� it includes all of the required cubes

and no cube in C intersects a privileged cube illegally.

s+a+

a+s+

s+

s+ a+

s+a+

a+s+

s+a+

s+ a+

s-

s-

s-

s-

A =A’

B

B’ B =B’

A = A’
a+

B =B’

A =A’ A =A’

B =B’

x = 0
x = 1

Required cube
Illegally intersecting cube

(a) 0-1 transition (a) 1-0 transition

(c) 0-1 transition (d) 1-0 transition

c1

c2

c3

Figure 3.9: Illegal intersection of privileged cube.

CHAPTER 3. HAZARD CONSIDERATIONS 53

3.4.2 BDD Implementation

Here we present a radically di�erent alternative method for implementing hazard-free

combinational circuits. In this method, combinational networks that describe next-

state functions are multiplexor trees constructed from BDD (binary decision diagram)

descriptions. Lin and Devadas presented a method to synthesize a combinational

logic, which is hazard-free for a set of multiple-input changes, for a speci�ed function

by building a BDD for the function and deriving a multi-level circuit from it in [35].

We observed that it is possible to apply this technique for synthesizing a combinational

logic which is hazard-free for a set of extended-burst-mode transitions. This requires

an extension of their theory to handle non-monotonically changing signals.

The following de�nition of a Binary Decision Diagram is from [8].

De�nition 3.5 A Binary Decision Diagram is a rooted, directed graph with vertex

set V containing two types of vertices. A non-terminal vertex v has as attributes

an argument index index(v) 2 f1; : : : ; ng and two children low(v); high(v) 2 V . A

terminal vertex v has as attributes a value value(v) 2 f0; 1g.

The correspondence between a BDD and a Boolean function is de�ned as below:

De�nition 3.6 A Binary Decision Diagram G having root vertex v denotes a func-

tion fv de�ned recursively as:

1. If v is a terminal vertex:

(a) If value(v) = 1, then fv = 1.

(b) If value(v) = 0, then fv = 0.

2. If v is a non-terminal vertex with index(v) = i, then

fv(x1; : : : ; xn) = xi � flow(v)(x1; : : : ; xn) + xi � fhigh(v)(x1; : : : ; xn).

xi is called the decision variable for vertex v.

In addition,

1. Each decision variable occurs at most once on every path from a terminal vertex

to the root vertex,

CHAPTER 3. HAZARD CONSIDERATIONS 54

2. A reduced BDD is a BDD in which low(v) 6= high(v) for every vertex v and

no two subgraphs are identical.

In a reduced BDD, each path from a terminal vertex to the root vertex corresponds

to a cube of the logic function the BDD represents.

A reduced ordered BDD (ROBDD) is a canonical form with the following restric-

tion: for any non-terminal vertex v, if low(v) is a non-terminal, then index(v) <

index(low(v)), and if high(v) is a non-terminal, then index(v) < index(high(v)).

A reduced free BDD (free BDD) is a BDD which does not require a strict vari-

able ordering (unlike in an OBDD) but still requires that each decision variable is

encountered at most once when traversing a path from a terminal vertex to the root

vertex.

(a) (b) (c)

a

b c

bq
0

10

1

1 0

f

0

0

0 0

0

1

1

1

1

1

f

a

c
b

q

0 1

01

1

a

0

0

1

0 1

0 1

f

b c

bq

1 0

Figure 3.10: (a) BDD (b) MUX network derived from BDD (c) Simpli�ed network
(by constant propagation).

A multi-level network can be derived directly from a BDD by replacing each vertex

with a two-input MUX with the decision variables as the select inputs of the MUXes.

Figure 3.10b shows a MUX network derived from the BDD in �gure 3.10a. If one or

more input of a MUX is constant, the MUX can be replaced with a simpler gate, such

as a NAND or a NOR. This constant propagation is carried out topologically from

inputs to outputs. Constant propagation cannot introduce hazards. Figure 3.10c

CHAPTER 3. HAZARD CONSIDERATIONS 55

shows an equivalent network after constant propagation. The basic gates that com-

prise the resulting combinational network are ANDs, ORs, NANDs, NORs, inverters,

and MUXes. We assume that every basic gate is atomic, i.e., a single change of a

gate input cannot cause a multiple change at the output. Figure 3.11 shows a CMOS

pass transistor implementation of a multiplexor. This implementation is atomic, if

the delays t1 and t2 are closely matched.

s

y

a b

0 1
s

a b

y

t1

2t

Figure 3.11: A CMOS multiplexor.

To ensure that the resulting multi-level circuit is hazard-free, a requirement called

trigger signal ordering (TSO) must be satis�ed. This requirement imposes constraints

on the variable ordering of the BDD. It was shown in [35] that if this variable ordering

is satis�ed, then the resulting multi-level circuit is free of logic hazards for a set

of speci�ed transitions. Note that every input change in [35] was assumed to be

monotonic during each transition. We will prove that the resulting circuit is free of

logic hazards for a set of speci�ed extended-burst-mode transitions, in which some

inputs may change non-monotonically, as long as the TSO requirement is satis�ed.

A trigger state is a state in which a legal input change enables the output to

change. A trigger signal is an input signal whose transition enables the output to

change in a trigger state; a non-trigger signal is an input signal which is enabled to

change but cannot by itself enable the output to change. The TSO requirement states

that trigger signals in a trigger state must appear before the non-trigger signals of the

same trigger state in the variable ordering.

In the generalized transition cube that corresponds to an extended-burst-mode

dynamic transition, all terminating signals are trigger signals in one or more minterms,

CHAPTER 3. HAZARD CONSIDERATIONS 56

because terminating edges can appear in any temporal order and the last one that

appears is a trigger signal. Note that no terminating signal can be a non-trigger

signal, because no output change can be enabled until all terminating edges appear.

Furthermore, all don't care signals (directed or undirected) are non-trigger signals in

one or more minterms, because their values may change anywhere, including in the

trigger states, in the generalized transition cube. Clearly, no don't care signal can

be a trigger signal in any minterm in the generalized transition cube, because don't

care signals can never enable outputs to change. Therefore, we can impose a set

of ordering requirements, which do not conict, as a su�cient condition for hazard

freedom per generalized transition cube, although the TSO requirement in [35] is an

imposition on each trigger state in the transition cube.

Now we can state the variable ordering requirements for the extended-burst-mode

transitions as follows:

Along every path from root to terminal of the BDD whose corresponding

cube intersects the generalized transition cube, no don't care signal of a

dynamic transition appears before a terminating signal of the same gen-

eralized transition cube.

a+ b+

[A,B]

A

B

(a) (b)

0

1

1

00 1

0

1

0 1
b

a

c
q

a

X

Xb

10

01

1

a

0

0

1

0
1

0 1

b c

bq

X

01

Figure 3.12: Simple example (BDD representations of X).

CHAPTER 3. HAZARD CONSIDERATIONS 57

a

b

X

bX
a

b

10

10

X

bX

q = 0
c = 0

Figure 3.13: Dynamic hazard in BDD-based implementation.

Figure 3.12 shows two di�erent implementations of the next-state functionX from

the simple example in section 2.3.1. Every path from the root to a leaf corresponds

to a cube. Solid arrows represent the cubes that intersect the generalized transition

cube corresponding to the extended-burst-mode transition shown on the right. In

�gure 3.12a, the terminating signal a appears before the don't care b in every path,

but the order is reversed in �gure 3.12b. Hence, �gure 3.12a is hazard-free and

�gure 3.12b is hazardous. Figure 3.13 illustrates a possibility of a dynamic hazard in

�gure 3.12b, a direct consequence of the violation of the variable ordering requirement.

Initially, a = b = c = q = Xb = X = 0. A rising edge of a enables Xb to rise. Since b

is a don't care, it may rise anytime. If b rises after a but before Xb, a 0 � 1� 0� 1

glitch may propagate to X. Note that, in order to prevent this hazard, we must

ensure that one terminal of the multiplexor remains constant. It is always possible to

achieve this for the extended-burst-mode transitions as long as the variable ordering

requirement stated above is satis�ed, as we will prove below.

Here, we prove that the combinational network derived from a reduced BDD

(ordered or free) description is hazard-free during an extended-burst-mode transition

as long as the BDD satis�es the variable ordering requirement for the transition: No

don't care signal appears before a terminating signal in a dynamic transition.

Lemma 3.4 If (T;A;B) is an extended-burst-mode transition for f , then fs(X) =

fs(X) for every don't care signal s in (T;A;B) and for every minterm X in [A;B].

Proof: Suppose that s is a don't care in (T;A;B) and a minterm X is in [A;B].

CHAPTER 3. HAZARD CONSIDERATIONS 58

X = [: : : ; xs; : : :] and X 0 = [: : : ; xs; : : :], where xs and xs are the values of s in X and

X 0 and all other components are the same. Because s is a don't care in (T;A;B),

X 2 B implies X 0 2 B and X 2 [A;B) implies X 0 2 [A;B). Thus f(X) = f(X 0). If

xs = 1, f(X) = fs(X) and f(X 0) = fs(X
0). fs(X

0) = fs(X) because fs is independent

of s. Thus fs(X) = fs(X). On the other hand, if xs = 0, f(X) = fs(X) and

f(X 0) = fs(X
0) = fs(X). Therefore, fs(X) = fs(X).

De�nition 3.7 Subtransitions:

1. If s is not a constant 0 in (T;A;B), (T;As; Bs) is a subtransition of (T;A;B)

with the value of s �xed to 1.

2. If s is not a constant 1 in (T;A;B), (T;As; Bs) is a subtransition of (T;A;B)

with the value of s �xed to 0.

Note that As is not necessarily a subset of A with s = 1. For example, if s is a

rising edge signal and s is 0 in A, then As is not a subset of A with s = 1, because

As � [As; Bs] but A with s = 1 is ;. Also note that (T;As; Bs) = (T;A;B), if s is a

constant 1 in (T;A;B), and (T;As; Bs) = (T;A;B), if s is a constant 0 in (T;A;B).

If B = [: : : ; bs; : : :], then Bs = [: : : ; 1; : : :] and Bs = [: : : ; 0; : : :].

Lemma 3.5 If (T;A;B) is an extended-burst-mode transition for f , then

1. (T;As; Bs) is an extended-burst-mode transition for fs, if s is not a constant 0;

2. (T;As; Bs) is an extended-burst-mode transition for fs, if s is not a constant 1.

Proof: First, we will prove that (T;As; Bs) is an extended-burst-mode transition

for fs, if s is not a constant 0.

1. s is a constant 1 in (T;A;B).

Then fs = f in [A;B] and (T;As; Bs) = (T;A;B). Thus (T;As; Bs) is an

extended-burst-mode transition for fs.

CHAPTER 3. HAZARD CONSIDERATIONS 59

2. s is a don't care in (T;A;B).

Then s is a don't care in B. Thus Bs � B, so f(Bs) = f(B). [As; Bs) =

[As; Bs] � Bs = [As; Bs] � B � [A;B), so f([As; Bs)) = f([A;B)). Thus

(T;As; Bs) is an extended-burst-mode transition for fs.

3. s is a rising terminating signal in (T;A;B).

Then s = 1 inB, which impliesBs = B and f(Bs) = f(B). [As; Bs) = [As; Bs]�

B � [A;B), so f([As; Bs)) = f([A;B)). Thus (T;As; Bs) is an extended-burst-

mode transition for fs.

4. s is a falling terminating signal in (T;A;B).

Then s = 0 in B. Thus [As; Bs] \ B = ;, which implies [As; Bs] � [A;B).

Therefore, f([As; Bs]) = f([A;B)), which means that (T;As; Bs) is an extended-

burst-mode transition for fs.

Similarly, (T;As; Bs) is an extended-burst-mode transition for fs, if s is not a constant

1.

Corollary 3.1 If (T;A;B) is an extended-burst-mode dynamic transition for f and

s is a don't care in (T;A;B), then (T;As; Bs) is an extended-burst-mode dynamic

transition for fs and (T;As; Bs) for fs.

Corollary 3.2 Static transitions of cofactors:

1. (T;As; Bs) is a static transition for fs if (T;A;B) is an extended-burst-mode

transition for f and s is a falling terminating signal.

2. (T;As; Bs) is a static transition for fs if (T;A;B) is an extended-burst-mode

transition for f and s is a rising terminating signal.

Theorem 3.6 The combinational network C derived from a reduced BDD (ordered

or free) description of f is hazard-free during an extended-burst-mode transition if

it satis�es the variable ordering requirement for the transition: no don't care signal

appears before a terminating signal.

CHAPTER 3. HAZARD CONSIDERATIONS 60

Proof: We prove this by induction on the number of variables.

Base case: The sole input of the network is connected to the select input of the

multiplexor. The other inputs terminals are connected to a constant 1 or 0. Since

the multiplexor is atomic and only the select input can change, f is hazard-free.

Inductive hypothesis: Now assume that a combinational network derived from

a reduced BDD representation of an n-input function (n � 1), which satis�es the

variable ordering requirements for an extended-burst-mode transition, is hazard-free

during the extended-burst-mode transition.

Now consider the network C derived from a reduced BDD representation of a

function f with n+1 input variables and an extended-burst-mode transition (T;A;B)

for f . Assume that the select input of the multiplexor driving the output of C is s

and the data inputs are fs and fs, the Shannon cofactors of f with respect to s and

s. Then (T;As; Bs) is an extended-burst-mode transition for fs if s is not a constant

0, and (T;As; Bs) is for fs if s is not a constant 1, by Lemma 3.5. Since f satis�es

the variable ordering requirements, so do fs and fs. Therefore, fs is hazard-free if s

is not a constant 0, and fs is hazard-free if s is not a constant 1, by the inductive

hypothesis. We will consider 3 cases: s is a constant, s is a don't care, and s is a

terminating signal.

1. s is a constant:

Thus, if s = 0, f = fs is hazard-free since s is not a constant 1. Likewise, f is

hazard-free, if s = 1.

2. s is a don't care:

First we prove by contradiction that (T;A;B) must be a static transition for f

if s is a don't care. Assume that (T;A;B) is a dynamic transition for f . By

Corollary 3.1, (T;As; Bs) is an extended-burst-mode dynamic transition for fs.

Suppose s remains at 1 while fs changes. Then the change in fs propagates

to f , which means that there is a terminating signal that enables f to change,

regardless of s, violating the variable ordering requirement. Thus (T;A;B)

cannot be a dynamic transition, if s is a don't care.

By Lemma 3.4, f(X) = fs(X) = fs(X) for every X in [A;B]. Therefore,

CHAPTER 3. HAZARD CONSIDERATIONS 61

(T;As; Bs) and (T;As; Bs) are static transitions of same type, that is, both

0 ! 0 or both 1 ! 1, for fs and fs respectively. By the inductive hypothesis,

fs and fs are hazard-free, therefore constant. Since the multiplexor is atomic,

f is hazard-free.

3. s is a terminating signal:

Without loss of generality, consider only the case in which s rises. By Corol-

lary 3.2, fs undergoes a static transition. By the inductive hypothesis, both

fs and fs are hazard-free. Consider the case in which fs = 0. We prove by

contradiction that fs must rise or remain a constant. Assume that fs is initially

1 and falls to 0, but s rises �rst. Since fs = 0 and fs = 1 initially, f is enabled

to rise as s rises. This is a static function hazard, since f is assumed to be 0 at

the end of the transition. Thus fs must rise or remain a constant; in both cases,

f is hazard-free. Similarly, we can prove that f is hazard-free when fs = 1, by

proving that fs must fall or remain a constant.

Corollary 3.3 The combinational network C derived from a reduced BDD (ordered

or free) description of f is hazard-free during an extended-burst-mode static transition.

Table 3.1 summarizes the correspondence between the classi�cations of signals in

the extended-burst-mode transition and in [35]. Note that a signal can be a trigger or

a non-trigger signal only in the trigger states. Therefore, the classi�cations, \trigger"

and \non-trigger", in the trigger/non-trigger column of table 3.1 represent that each

signal is either trigger or non-trigger in some trigger states in the generalized transition

cube.

3.4.3 Summary

We presented two methods of synthesizing hazard-free combinational logic: two-

level AND-OR implementation and the BDD-based multi-level implementation. We

showed that these methods require di�erent constraints to guarantee that implemen-

tations are hazard-free. In the next chapter, we will show how these constraints are

CHAPTER 3. HAZARD CONSIDERATIONS 62

input signal level at trigger or terminating
start cube end cube non-trigger or don't care

0 0 { {
1 1 { {
0 1 trigger terminating
1 0 trigger terminating
� 1 trigger terminating
� 0 trigger terminating
0 � non-trigger don't care
1 � non-trigger don't care
� � non-trigger don't care

Table 3.1: Trigger/non-trigger signal.

satis�ed and how the selection of the combinational synthesis method a�ects the state

assignment.

Chapter 4

Automatic Synthesis Procedure

One of the most signi�cant reasons for the resurrection of asynchronous circuits in

the 1980's was the advent of automatic synthesis, which meant tedious and complex

tasks, such as hazard-free state assignment and logic minimization, could be carried

out by computer. During the course of this research, it was observed that the exact

algorithms generally tend to be intractable and do not improve the results signi�cantly

over simple heuristics that run in polynomial time. Whenever possible, this thesis

presents heuristics that �nd near-optimal solutions in polynomial time, instead of

exact algorithms that �nd optimal solutions in exponential time.

The synthesis procedure consists of the following steps:

1. next state assignment: A primitive next-state table with each speci�cation

state assigned to a unique layer is constructed from the extended-burst-mode

speci�cation.

2. layer minimization: Layer minimization is performed by merging compati-

ble layers.

3. layer encoding: A layer diagram, which represents connectivities and encod-

ing restrictions among the layers, is generated, and then a critical-race-free layer

encoding is performed.

4. combinational logic synthesis: Combinational logic synthesis is carried

63

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 64

out.

4.1 Next State Assignment

We describe an algorithm for assigning next states in a primitive next-state table. In

a primitive next-state table, a state is a combination of the values of primary inputs

and outputs and the current speci�cation state of a 3D machine; a next state is a

combination of the next output values and the next speci�cation state of a state.

A layer of a primitive next-state table contains (l + m) � n entries, each of which

represents the next state of a state, where l + m and n are the total numbers of

primary inputs and outputs respectively. A primitive next-state table consists of

a set of layers; there is a one-to-one correspondence between the set of layers in a

primitive next-state table and the set of speci�cation states of the 3D machine the

table represents. This algorithm assigns a next state for every reachable entry in the

table, according to the extended-burst-mode semantics.

0 0

1
1

1
1

B
C

C

D

b+

a+
x+ y+

b+

a+
x+ y+

B

C

C D

1 1
1
1

1
1

00

11

11

1 1

00
01
11
10

00
01
11
10

x-

x-

0

0

0 0
B

b+

a+
x+ y+B

C

1 1
1
1

1
1

11

abc
xy
00
01
11
10

000 001 011 010 110 111 101 100

x-

0

A

A

a+ b* x+ y+x-
0

Figure 4.1: Next state assignment.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 65

A Type I 3D machine cycle that requires no conditional signal to stabilize has

transitions corresponding to an input burst and a concurrent output/state burst. A

Type II or III machine cycle that requires no conditional signal to stabilize has tran-

sitions corresponding to an input burst, an output burst and a state burst. Figure 4.1

illustrates the next state assignments for the layer that corresponds to S0 of the simple

example from section 2.3.1. The Karnaugh maps on the left side represent the next

output function, X, of the output x during the output/state burst from S3 to S0 and

the input and output/state bursts from S0 to S1. The �rst transition, which is a static

extended-burst-mode transition, corresponds to the output burst x�. The start cube

A of this transition is abcxy : 00010, and the end cube B is abcxy : 00000. The second

transition corresponds to the input burst a+b�. The start cube B of this transition

is abcxy : 00000, and the end cube C is abcxy : 1x000. f([B;C)) = f(B) = 0 and

f(C) = 1; thus it is a dynamic extended-burst-mode transition. The third transition,

which is a static extended-burst-mode transition, corresponds to the output burst,

x+y+. The start cube C of this transition is abcxy : 1x000, and the end cube D is

abcxy : 1x011.

0 0

1

A B

C D

a+

c+
b+ x+

a+

b+ x+

A

B

C

D

1 1

00

00

01

cab
x
0
1

0
1

000 001 011 010 110 111 101 100

11 c-

c+
c-0

1 1

Figure 4.2: Conditional input setup transition.

A 3D machine cycle that requires conditional signals to stabilize has an additional

transition for setting up conditional signals. Consider an input burst, hc+i a�b+ (see

�gure 4.2). Initially, c = � and a = b = 0. Conditional signals must stabilize

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 66

before any compulsory edge appears. The conditional signal c may change non-

monotonically until some setup time before b+ appears. Since a is a directed don't

care, it may rise before c stabilizes to 1. Therefore, the start cube A of this conditional

input setup transition is cabx : x000, and the end cube B is cabx = xx00. All

conditional input setup transitions are static, because outputs cannot be enabled to

change until the setup is complete. The next transition corresponds to the input

burst, a�b+. The start cube C of this transition is cabx : 1x00, and the end cube D

is cabx : 1x10. f([C;D)) = f(C) = 0 and f(D) = 1; thus it is a dynamic extended-

burst-mode transition.

Given an extended-burst-mode speci�cation, G = (V;E; C; I; O; v0; cond; in; out),

with C = fc1; : : : ; clg, I = fx1; : : : ; xmg, and O = fy1; : : : ; yng, let W be the set of

conditional input bit vectors f(c1; : : : ; cl) j ci 2 f0; 1g; i 2 1; : : : ; lg, let X be the

set of edge-input bit vectors f(x1; : : : ; xm) j xj 2 f0; 1g; j 2 1; : : : ; mg, and let Y be

the set of output bit vectors f(y1; : : : ; yn) j yk 2 f0; 1g; k 2 1; : : : ; ng. A primitive

next-state table is de�ned as T = (V;W;X; Y; �; �), where V is the set of speci�cation

states, and � : V �W � X � Y ! V [f�g and � : V �W � X � Y ! f0; 1; �gn

de�ne the next speci�cation state function and the next output function respectively.

Below, we describe the next state assignment for Type I (an input burst fol-

lowed by a concurrent output/state burst) and Type II (an input burst followed by

an output burst followed by a state burst) machine cycles. cond(u; v), in(u), and

out(u) denote the values of conditional inputs from u to v, edge-inputs in u, and

outputs in u respectively. L(u) is a symbolic code assigned to speci�cation state

u. [cond(u; v); in(v); out(u); L(u)] denotes a cube in f0; 1; �gl+m+n+r, where r is the

length of state variable bit vectors. Of course, the actual value of r will not be de-

termined until the layer encoding is done. � in the place of conditional inputs is a

shorthand notation, meaning that all conditional inputs are �. in0 is de�ned as: for

all j 2 1; : : : ; m,

in0j(u) =

8<
:

inj(u) if there exists (u; v) such that inj(v) 6= �

� otherwise
:

in0j(u) 6= � i� there exists a state transition (u; v) in which j is compulsory or a

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 67

constant. Thus, in0(u) represents the allowed values of edge-inputs immediately prior

to the �rst compulsory input edge during a state transition from u. � means both 0

and 1 are possible.

The next state assignment for an input burst is as follows: For all k 2 1; : : : ; n

and for every state transition, (u; v),

� Conditional input burst:

{ Conditional input setup:

for every minterm M in [A;B], where A = [�; in(u); out(u); L(u)] and B =

[�; in0(u); out(u); L(u)],

�k(M) = outk(u);

�(M) = u,

{ Input burst:

for every minterm M in [A;B), where A = [cond(u; v); in0(u); out(u); L(u)]

and B = [cond(u; v); in(v); out(u); L(u)],

�k(M) = outk(u);

�(M) = u,

� Unconditional input burst:

for every minterm M in [A;B), where A = [�; in(u); out(u); L(u)] and B =

[�; in(v); out(u); L(u)],

�k(M) = outk(u);

�(M) = u,

Note that [A;B] = B during conditional input setup transitions because A � B.

The only edge-inputs that may change during conditional input setup transitions are

non-compulsory signals.

The next state assignment for output and state bursts is as follows: For all k 2

1; : : : ; n and for every state transition, (u; v),

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 68

� Type I machine cycle (Output/state burst):

for every minterm M in [A;B], where A = [cond(u; v); in(v); out(u); L(u)] and

B = [cond(u; v); in(v); out(v); L(v)],

�k(M) = outk(v);

�(M) = v,

� Type II machine cycle:

{ Output burst:

for every M in [A;B), where A = [cond(u; v); in(v); out(u); L(u)] and B =

[cond(u; v); in(v); out(v); L(u)],

�k(M) = outk(v);

�(M) = u,

{ State burst:

for every M in [A;B], where A = [cond(u; v); in(v); out(v); L(u)] and B =

[cond(u; v); in(v); out(v); L(v)],

�k(M) = outk(v);

�(M) = v.

Finally, for all the remaining entries, �k(M) = � and �(M) = �.

We prove that a function-hazard-free next state assignment exists for every output

and state variable if each speci�cation state is assigned to a unique layer of the next-

state table and if the layers can be encoded so that every state burst is function-

hazard-free. In section 4.3, we will show that such layer encoding is always possible

as well.

Theorem 4.1 The above next state assignments are free of function hazards, if each

speci�cation state is assigned to a unique layer and if the layers can be encoded so

that every transition crossing the layer boundary is function-hazard-free.

Proof: We prove this for Type I machine cycles:

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 69

Consider a layer which corresponds to speci�cation state u. According to the

next state assignment algorithm for Type I machine cycles, next states must be as-

signed for the following transitions: output/state burst transitions into u, conditional

input setup transitions from u, and input burst and output/state burst transitions

from u. Since all these transitions are extended-burst-mode transitions and only the

input bursts can be dynamic transitions, each output must have the same next out-

put throughout all the output/state burst transitions into u, the conditional input

setup transition, and all the input burst transitions excluding the end cubes of the

transitions. The next output values may change in the end cubes of the input burst

transitions but remain at those values during the corresponding output/state tran-

sitions from u. Therefore, to show that the next state assignment for layer u is free

of function hazards, it su�ces to show that no output/state burst transition from u

intersects (1) an output/state burst transition into u, (2) the conditional input setup

transitions from u, (3) the other output/state burst transitions from u or the input

burst transitions which enable those output/state bursts.

Without loss of generality, consider an output/state burst transition from u to v.

1. Since every input burst must contain a compulsory edge, there exists j 2

1; : : : ; m such that inj(u) 6= inj(v) and inj(u) 6= � and inj(v) 6= �. There-

fore, the generalized transition cube for the output/state burst from u to v,

[: : : ; in(v); : : :], does not intersect any generalized transition cube for the out-

put/state bursts into u, [: : : ; in(u); : : :].

2. Since every input burst must contain a compulsory edge, there exists j 2

1; : : : ; m such that inj(u) 6= inj(v) and inj(u) 6= � and inj(v) 6= �. More-

over, inj(v) 6= � implies in0j(u) = inj(u), which means that in0j(u) 6= inj(v) and

in0j(u) 6= � and inj(v) 6= �. Therefore, the generalized transition cube for the

output/state burst of (u; v), [: : : ; in(v); : : :], does not intersect the conditional

input setup transition from u, [: : : ; in0(u); : : :].

3. The distinguishability constraint requires that, for every pair of state transitions

(u; v) and (u; w), either the conditions are mutually exclusive, or the set of com-

pulsory edges in the input burst of (u; v) is not a subset of the set of all possible

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 70

edges in the input burst of (u; w). Therefore, either there exists i 2 1; : : : ; l

such that condi(u; v) 6= condi(u; w) and condi(u; v) 6= � and condi(u; w) 6= �, or

there exists j 2 1; : : : ; m such that j is compulsory in (u; v) but a constant in

(u; w), that is, inj(v) 6= inj(u), inj(v) 6= �, inj(u) 6= �, and inj(w) = inj(u).

In the �rst case, neither the input burst transition nor the output/state burst

transition of (u; w) can intersect the output/state burst transition of (u; v),

because the generalized transition cubes of both the input and output/state

bursts of (u; w) are of the form [cond(u; w); : : :] but the generalized transition

cube of the output/state burst of (u; v) is of the form [cond(u; v); : : :]. The

same is true of the second case, because the generalized transition cube of the

output/state burst of (u; v) is of the form [: : : ; inj(v); : : :] but the generalized

transition cube of the input and output/state bursts of (u; w) are of the form

[: : : ; inj(v); : : :].

Therefore, the only possible intersections are between the input burst transitions and

the corresponding output/state burst transitions. Since the end cube of an input burst

transition is the same as the start cube of the corresponding output burst transition

and the next states are speci�ed the same, there is no function hazard.

4.1.1 Next State Assignment for Two-Level AND-OR

Now we must examine whether it is possible to �nd a hazard-free logic implemen-

tation from the next-state table constructed using the above next state assignment

algorithms. In the last chapter, we derived hazard-free covering requirements for two-

level AND-OR logic: for a 1! 1 transition of output, a product term must contain

[A;B], and for 1! 0 and 0! 1 transitions every product term that intersects [A;B]

must also contain A0 and B0 respectively.

These covering requirements can be satis�ed trivially for each transition individu-

ally, as shown in �gure 3.8. It is not clear, however, whether it is possible to satisfy the

requirements for every transition simultaneously. First, we will show that it is always

possible to satisfy the covering requirements for every transition without violating a

requirement for another transition, provided every input burst is unconditional, that

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 71

is, no level input exists in the speci�cation. Second, we will show how level signals, in

certain situations, cause dynamic hazards and then show how to handle level signals

by further constraining the next state assignment.

Assume that no level input exists. Consider a state u. In a Type I machine

cycle, only the input bursts can be dynamic transitions; thus only the input burst

transition cubes can be privileged cubes. To show that there are no hazards, we use

Theorems 3.4 and 3.5. By the unique entry condition imposed on the extended-burst-

mode speci�cation, the end cube of every output/state burst transition into u is the

same as the start cubes of the input bursts. Thus all the required cubes that intersect

input burst transitions and enable outputs or state variables to fall, also contain the

start cubes of the corresponding input burst transitions. As shown in Theorem 4.1,

output/state burst transitions intersect only the corresponding (enabling) input burst

transitions, and the start cube of every output/state burst transition is the same as

the end cube of the corresponding input burst transition. Therefore, all the required

cubes that intersect input burst transitions and enable outputs or state variables to

rise, also contain the end cubes of the corresponding input burst transitions.

In a Type II machine cycle, both the input and output bursts can be dynamic

transitions, because outputs can enable state variables to change. As before, all

the required cubes that intersect input burst transitions and enable outputs to fall,

also contain the start cubes of the input burst transitions, because of the unique

entry condition. The start cube of every output burst transition is the same as the

end cube of the corresponding input burst transition; furthermore, the output burst

transition intersects no other input burst transitions, by Theorem 4.1. Therefore,

all the required cubes that intersect input burst transitions and enable outputs to

rise, also contain the end cubes of the corresponding input burst transitions, and all

the required cubes that intersect output burst transitions and enable state variables

to fall, also contain the start cubes of the corresponding output burst transitions.

The start cube of every state burst transition is the same as the end cube of the

corresponding output burst transition; moreover, the state burst transition intersects

no other output burst transitions. Thus, all the required cubes that intersect output

burst transitions and enable state variables to rise, also contain the end cubes of the

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 72

corresponding output burst transitions.

In both of these cases, we showed that no required cubes illegally intersect privi-

leged cubes. Thus, by Theorems 3.4 and 3.5, there exist hazard-free two-level AND-

OR implementations.

E�ects of Undirected Don't Cares on Next State Assignment

We examine the e�ects of allowing undirected don't cares, that is, how conditional

signals cause dynamic hazards. Then we show how making state variable changes

before output changes can avoid these hazards. We begin by analyzing an example.

x

y

D Q

Q

d

φ
x

y

φ

d

Figure 4.3: Example 2 (synchronous implementation).

Next-state Table Karnaugh map for x

0 0

00 01 11 10

1

0000

01

11

10

01 10

10

00

00 0010

01 01200 00

xy
dφ

0 00

0 0

00 01 11 10

1

11 a

c

00

01

11

10

xy

0 0 0 0

dφ

y-φ− / x-φ− /

y+φ+ / <d-> x+φ+ / <d+>
2 0 1

Figure 4.4: Example 2 (speci�cation and next-state table).

Figure 4.4 shows a speci�cation of a circuit described below and �gure 4.3 shows

one possible synchronous implementation and the timing diagram.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 73

If the mode bit d sampled at the rising edge of the clock � is 1, the output

x follows the clock for that cycle and the output y remains 0. Otherwise,

y follows the clock and x remains 0.

Consider the input burst �� in S1, which causes the output x to fall. The covering

requirement states that no cube may intersect the transition cube [A;B] (A = d�xy :

x110 and B = d�xy : x010) unless it also contains A0, which is the same as A here.

However, cube c, required to cover the output burst x+ in S0, shown in �gure 4.4

intersects the cube a (part of the transition cube [A;B]), but it cannot be expanded

to cover A0 | there is a dynamic hazard.

2 1

y−φ− / x−φ− /

0
y+φ+ / <d−> x+φ+ / <d+>

1 1

x
φ
d

x+

d=0

d=1

d−

d+

φ+

φ+

φ−

φ−[1]

[2]

[3]

Figure 4.5: Example 2 (problem).

To see how the hazard can actually occur, let's examine a fragment of the state

graph in �gure 4.5. After the output burst x+, the machine is at [2] waiting for the

next input change ��. Since we allow conditional signals to vary freely, d may fall,

taking the machine to point [1] (product terms corresponding to cube c and cube a are

0 and 1 respectively). If the next set of events is a concurrent input change d+��, the

machine may change from point [1] to [2] to [3]. During this change, product term a

falls, and product term c glitches 0�1�0 which may propagate to the output causing

a 1�0�1�0 glitch at the output (dynamic hazard). Note that this phenomenon can

occur long after the hold time constraint is satis�ed, because, according to the hold

time requirement, d only needs to be stable until x becomes 1, and the cause of this

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 74

glitch, a concurrent input change d+��, can occur long after x+. This phenomenon

would not occur if the conditional signal change is monotonic.

This is a general problem that occurs when an output burst transition enabled

by a conditional input burst intersects an unconditional input burst transition that

enables an output to fall. Consider an output/state burst transition (To; E; F), from z

to u, enabled by a conditional input burst, where E = [cond(z; u); in(u); out(z); L(z)]

and F = [cond(z; u); in(u); out(u); L(u)], and an unconditional input burst transition

(Ti; A; B) from u, where A = [�; in(u); out(u); L(u)] and B = [�; in(v); out(u); L(u)].

Note that there are no setup transitions preceding unconditional input bursts. Assume

that an output x undergoes 1 ! 1 and 1 ! 0 transitions in [E; F] and [A;B]

respectively. If there exists i such that condi(z; u) 6= �, then A0 6� F because the

level signal i is a don't care in A0. If F cannot be expanded to contain A0, then the

covering requirement for the 1 ! 0 transition is violated, which induces a dynamic

hazard.

d=0

d=1

p+

x+

d+

d-

φ+

φ+

φ−

φ−

Figure 4.6: Example 2 (solution { state graph).

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 75

0 0 1 10

0 0

0 0

0 0 1 1

0

p = 0 p = 1

00 01 11 10 10 11 01 00

00

10

01

11

Partial Karnaugh map
for next x

0 0 10

0 0

0 0

0 0 1 1

1100

10

01

11

00 01 11 10 10 11 01 00
for next p

0

1

00 01 11 10 10 11 01 00

00

10

01

11

xy

00 000

10 10

1000 00

00000000

p = 0 p = 1

1000 00

Partial Next−state Table

dφ

dφ
xy

dφ
xy

Figure 4.7: Example 2 (solution { next-state table).

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 76

Solution

Our solution to avoid this dynamic hazard is to add a new layer and to move to it via

a state burst before enabling outputs to change if the next input burst is unconditional

and enables an output to fall. Intuitively, the trick is to \store" the conditions in the

state variables. Once the conditions are stored in the state variables, the conditional

signals can change freely. To eliminate hazards on the state variables, the state

variables are \latched" by a \strobe" generated by the last sampling edge followed

by output changes. The conditional signals must remain stable only until the strobe

is turned o� by the output changes.

Figures 4.6 and 4.7 illustrate our solution. In �gure 4.6, if d = 1 when � rises, we

move to a new layer via the state burst p+ before raising x. Thus the next x entry for

d�xy = 1100 in the p = 0 part of the table in �gure 4.7 is speci�ed to be 0. Now we

need to specify the next x for the output burst transition x+. The trick here is that

we expand the generalized transition cube as if d were allowed to change, although

the environment is not allowed to change d until x is stable because of the hold time

constraint. This is possible because the generalized transition cube for this output

burst is on a new layer, the p = 1 part of the table. When output x stabilizes to 1,

the machine is in S1. The next x for d�xy = x110, in the p = 1 part of the table, is

speci�ed to be 1 so that output x remains unchanged until the compulsory edge ��

appears.

The start cube of the output burst x+ is pd�xy = 1x100, and the end cube

pd�xy = 1x110. The required cube (pd�xy = 1x1x0) for this output burst now

contains the start cube of the next input burst �� | there is no violation of covering

requirements.

Now examine the required cubes for state variable p we added (see the bottom

table in �gure 4.7). We require one cube (pd�xy = x1100) to cover the state burst

p+ enabled by the conditional input burst hd+i�+ and another cube (pd�xy = 1x1x0)

to cover the output burst x+. Since the required cube (pd�xy = x1100) does not

intersect the start cube of the next input burst ��, the covering requirements are not

violated.

We can also understand this in the physical circuit (see �gure 4.8). The sampling

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 77

p

q

x

y

φ

d
x’q’dφ

p

x

Hold time

d

φ

φp

dφx’q’

Figure 4.8: Example 2 (circuit and timing).

signal � generates a \strobe" (d�x0y0 = 1) to latch p; once the output x rises, the

strobe signal is turned o� blocking out the e�ects of changing d. No glitch occurs if

d remains stable until x+ turns o� the strobe signal.

Formally, the next state assignments for the state and output burst portions of

a Type III machine cycle (an input burst followed by a state burst followed by an

output burst) are as follows: For all k 2 1; : : : ; n and for every edge, (u; v),

� State burst:

for every M in [A;B), where A = [cond(u; v); in(v); out(u); L(u)] and B =

[cond(u; v); in(v); out(u); L(v)],

�k(M) = outk(u);

�(M) = v,

� Output burst:

for everyM in [A;B], where A = [�; in(v); out(u); L(v)] andB = [�; in(v); out(v); L(v)],

�k(M) = outk(v);

�(M) = v.

Note that the output burst in Type III machine cycle must not be empty. If the

output burst is empty in the speci�cation, a dummy output edge is added.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 78

4.1.2 Next State Assignment for BDD-Based Multi-Level Cir-

cuit

We show that both Type I and II next state assignments are free of logic hazards for

a BDD-based implementation, if each speci�cation state is assigned to a unique layer

and if the layers can be encoded so that every transition crossing the layer boundary is

critical-race-free. The BDD-based implementation is hazard-free during an extended-

burst-mode static transition and, if the variable ordering requirement is satis�ed,

hazard-free during an extended-burst-mode dynamic transition as well. Again, this

ordering requirement can be satis�ed trivially for each transition individually, as

shown in chapter 3. however, we need to check whether it is possible to satisfy the

requirements for every transition simultaneously.

Assume that each speci�cation state is assigned to a unique layer. In a Type I

machine cycle, only the input bursts can be dynamic transitions. Therefore, it su�ces

to check whether there are conicting ordering requirements among the input bursts

from the same speci�cation state. In a Type II machine cycle, both the input and

output bursts can be dynamic transitions. Since the terminating edges of output

bursts are output edges and the terminating edges of input bursts are input edges,

there are no conicting ordering requirements between input bursts and output bursts.

Since outputs cannot be don't cares, there are no conicting ordering requirements

among output bursts. Again, it su�ces to check whether there are conicting ordering

requirements among the input bursts from the same speci�cation state.

Lemma 4.1 There always exists a free BDD that satis�es the variable ordering re-

quirements for two dynamic input burst transitions from a speci�cation state.

Proof: If there are no conicting ordering requirements among the input bursts,

then the variable ordering requirements are trivially satis�ed in an ordered BDD.

Assume that the input bursts from state transitions (u; v) and (u; w) have conict-

ing ordering requirements. By the distinguishability constraint, either the conditions

are mutually exclusive, or the set of compulsory edges in the input burst of (u; v) is

not a subset of the set of all possible edges in the input burst of (u; w).

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 79

If the conditions of two input bursts are mutually exclusive, then there exists a

conditional signal such that it is a constant in both input bursts but its value in one

input burst is di�erent from that in the other input burst. If this conditional variable

appears before any variable involved in the ordering, the variable ordering for each

input burst is satis�ed in left or right partition created by this conditional variable.

If the conditions of two input bursts are not mutually exclusive, then there exist

compulsory signals i and j in the input bursts of (u; v) and (u; w) respectively such

that i is a constant in the input burst of (u; w) and j is a constant in the input burst

of (u; v). Suppose that we select a variable ordering such that i appears before j and

before any variable involved in the orderings. Let the output of the multiplexor with

i as its select signal be g. Without loss of generality, assume that i rises. For the

input burst of (u; w), gi is irrelevant, because i is a constant 0 in the input burst of

(u; w). Therefore, the variable ordering requirement for the input burst of (u; w) is

satis�ed by selecting an appropriate variable ordering in the sub-BDD g{.

Let (T;A;B) be the input burst transition of (u; v). Since (T;A;B) is an extended-

burst-mode transition for g, (T;A{; B{) is an extended-burst-mode transition for g{, by

Lemma 3.5. By Corollary 3.2, (T;A{; B{) is a static transition for g{. Thus, there is no

ordering requirement in the sub-BDD g{ for (T;A{; B{). We can select an appropriate

variable ordering in the sub-BDD gi to satisfy the requirement for the input burst of

(u; v).

By symmetry, a free BDD with j appearing before i can also satisfy the variable

ordering requirement.

Example

Consider two input bursts, a+b�c+ and a�b+d+, which correspond to (Tb; A; B) and

(Tc; A; C) respectively with A = 0000, B = 1x10, and C = x101, as shown in �g-

ure 4.9a. (Tb; A; B) requires that a < b and c < b, because b is a directed don't

care and a and c are terminating signals in (Tb; A; B). (Tc; A; C) requires that b < a

and d < a, because a is a directed don't care and b and d are terminating signals in

(Tc; A; C). Obviously, we cannot satisfy a < b and b < a globally. Since c and d are

compulsory edges in (Tb; A; B) and (Tc; A; C) respectively and c = 0 in (Tc; A; C) and

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 80

(b) (c)

01

01

b
1

a
0

0

1

0 1

f

c

d
01

01

b

1

a

0

0

1

0 1

f

c

d

(a)

0 0 0 0

1 1

1 10 0

00

00 01 11 10

00

01

11

10

ab

cd

A

B

C

f

Figure 4.9: Satisfying variable ordering locally.

d = 0 in (Tb; A; B), free BDD implementations that satisfy a < b and b < a \locally",

such as the ones in �gure 4.9bc, exist.

4.2 Layer Minimization

In the previous section, we showed that a hazard-free implementation (two-level AND-

OR or BDD-based multi-level circuit) exists if each speci�cation state is assigned to a

unique layer and if the layers can be encoded so that every transition crossing the layer

boundary is function-hazard-free. In this section, we present a heuristic for hazard-

free layer minimization and contrast it with a classical state minimization algorithm

[69]. The goal of hazard-free layer minimization is to reduce the number of layers

required for the next state table while insuring that a hazard-free implementation can

be found for every output and state variable. This is done by merging compatible

speci�cation states, as de�ned below, into a common layer.

4.2.1 De�nitions

A partially encoded total state (u; s), where u 2 V , s 2 W �X � Y , is a member of

the set V �W �X � Y .

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 81

(u; s) and (v; s) are output-compatible i� �(u; s) = �(v; s) or �(u; s) = � or �(v; s) =

�.

u and v are dhf-compatible [49] if no dynamic hazard results from specifying the

next states of u and v on a single layer of the next-state table.

u and v are SOP-dhf-compatible (sum-of-products dynamic-hazard-free compati-

ble) if no required cube in u illegally intersects a privileged cube in v and vice versa,

when the next states of u and v are speci�ed on a single layer of the next-state table.

In �gure 4.10, for example, if speci�cation states i and j are merged, the layers i and

j, represented as Karnaugh maps, would be superimposed, resulting in a violation of

a hazard-free covering requirement: a required cube abxy : 11x1 illegally intersects

a privileged cube abxy : x111. The generalized transition cube of every input burst

for Type I machine cycles is treated as a privileged cube; since we do not yet have

encoding of layers, we must assume that any input burst may enable a state variable

to fall. Likewise, the generalized transition cubes of output bursts for Type II and

input bursts for Type III are treated as privileged cubes.

Note that two speci�cation states bridged by a Type III machine cycle are always

incompatible, because the next outputs of the minterms in the start cube of the state

burst are di�erent from those in the end cube. That is, outputs are enabled to change

in the end cube of the state burst in Type III machine cycles.

u and v in V are SOP-compatible (u �s v) i� u and v are SOP-dhf-compatible

and, for every s in W �X � Y ,

1. (u; s) and (v; s) are output-compatible and

2. �(u; s) = � or �(v; s) = � or �(u; s) �s �(u; s).

u and v are BDD-dhf-compatible (BDD dynamic-hazard-free compatible) i� for

every pair of state transitions (u; wu) and (v; wv),

1. there exists k 2 1; : : : ; n such that outk(u) 6= outk(v) or

2. i is a terminating signal in (u; wu) and j is a don't care in (u; wu) imply that i is

a terminating signal in (v; wv) or j is a don't care in (v; wv), that is, ini(wu) 6=

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 82

abxy = 0111

a+b− / x−

b+ / x+b− / x−

j

i

k 00 01 11 10
00

01

11

10

1 1 1

1 0

0

ab
xy

X

XYXY

Start−cube of input burst
{a+,b−} enabling x−

j

00 01 11 10
00

01

11

10

ab
xy

11

0111

i

00 01 11 10
00

01

11

10

ab
xy

11 11 11 01

01

because i and j on a single layer causes

a required cube
(aby) to intersect
a priv−cube (bxy)
illegally

Not SOP−dhf−compatible

Figure 4.10: Output-compatible but not SOP-dhf-compatible.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 83

ini(u) ^ ini(wu) 6= � ^ inj(wu) = � implies ini(wv) 6= ini(v) ^ ini(wv) 6= � or

inj(wv) = �.

This criterion states that no input burst from u has conicting ordering require-

ments with an input burst in v that has identical values of fed-back outputs.1 In

�gure 4.11, merging speci�cation states i and j would result in conicting variable

ordering requirements: a < b, c < d, b < a, and d < c. Therefore, i and j are not

BDD-dhf-compatible.

0 0 1 1

1

1

0

00 01 11 10

00

01

11

10

ab
cd

A B

C

X

0

0

1

11

1

0

00 01 11 10

00

01

11

10

ab
cd

X

F FD

E

E

a+b* / x+ c+d* / x+
i j

abcdx = 11110

a*b− / x+ c*d− / x+

because i and j on a single layer would require

a < b
c < d

b < a
d < c

Conflicting ordering

Not BDD−dhf−compatible

abcdx = 00000

Figure 4.11: Output-compatible but not BDD-dhf-compatible.

u and v in V are BDD-compatible (u �b v) i� u and v are BDD-dhf-compatible

and, for every s in W �X � Y ,

1This is just a su�cient condition for dynamic hazard freedom. It is possible to state a necessary

condition; however, it is much more complex and not very useful. In practice, we have never encoun-

tered an example with two speci�cation states incompatible solely due to BDD-dhf-incompatibility.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 84

1. (u; s) and (v; s) are output-compatible and

2. �(u; s) = � or �(v; s) = � or �(u; s) �b �(v; s).

�s and �b are reexive and symmetric but not transitive. Thus �s and �b are not

equivalence relations. Henceforth, we will use the terms compatible and incompatible

to mean SOP-compatible and SOP-incompatible, when the two-level synthesis is used,

and to mean BDD-compatible and BDD-incompatible, when the BDD synthesis is

used. Moreover, we will use the notation u � v to mean that u and v are compatible

and u 6� v to mean that u and v are incompatible.

A compatible, C, is a set of speci�cation states, of which every pair of speci�cation

states u and v in C is compatible. A maximal compatible is a compatible which is

not a proper subset of any other compatible.

A set of compatibles is said to cover the extended-burst-mode speci�cation if every

speci�cation state is included in at least one compatible. An irredundant cover is a

cover in which each speci�cation state appears in exactly one compatible.

(u0; v0) belongs to the implied set of (u; v) if u � v implies u0 � v0.

A compatible C is closed if, for every pair u and v in C, every member of the

implied set of (u; v) is a subset of some compatible C 0 in the cover. A compatible C

is self-contained if, for every pair u and v in C, every member of the implied set of

(u; v) is a subset of C.

A closed cover is a cover of which every compatible is closed. An irredundant

closed cover is a closed cover in which each speci�cation state appears in exactly one

compatible.

4.2.2 Layer Minimization Algorithm

The general state minimization problem can be stated as follows, to �nd an irredun-

dant closed cover of minimum cost, e.g., the cost is the cardinality of the cover, if

the objective is to minimize the number of states. It has been shown elsewhere [27]

that the exact state minimization algorithm for an incompletely speci�ed table, such

as ours, is exponential in the number of original states. Furthermore, minimizing the

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 85

number of layers does not necessarily result in minimizing the area of the �nal im-

plementation [15]. Therefore, we use a simple algorithm, which works well for for the

most extended-burst-mode speci�cations, as an alternative to the exact algorithm.

Our algorithm guarantees to �nd a (not necessarily minimal) cover in polynomial

time in the number of speci�cation states. In practice, the number of layers has been

optimal or close to optimal for most examples.

Our layer minimization algorithm proceeds as follows | step 1 is exact but the

step 2 is a heuristic.

1. For every pair of speci�cation states u and v, the algorithm determines the

compatibility of u and v and the implied set of (u; v).

2. The heuristic traverses the extended-burst-mode speci�cation depth-�rst and

merges self-contained connected sets of compatible speci�cation states into lay-

ers.

Here we describe a classical technique [69] for the state minimization problem, as

applied to the extended-burst-mode state machine, for comparison.

1. Determine the compatibility relation by checking, for every pair of states u and

v in the extended-burst-mode speci�cation, whether u and v are compatible.

2. Find a set of maximal compatibles.

3. Find an irredundant minimum cover using an algorithm such as Petrick's method

[57].

4. Check if each compatible is still closed. If a member of the implied set of

(u; v) 2 C, say (u0; v0), is \split" (i.e., for all C 0 in the irredundant cover,

u 2 C 0) v 62 C 0 and v 2 C 0) u 62 C 0), then u and v must also be \split".

Note that this step needs to be done recursively.

In general, steps 2 and 3 induce a state explosion | the number of maximal compat-

ibles is exponential in the number of speci�cation states.

The outcome of the layer minimization is a reduced next-state table,

T 0 = (V 0;W;X; Y; �0; �0), where V 0 is the set of layers, and �0 : V 0 �W � X � Y !

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 86

V 0 [f�g and �0 : V 0�W �X �Y ! f0; 1; �gn de�ne the next layer function and the

next output function respectively.

Example

We use an example in �gure 4.12 to compare our algorithmwith the classical algorithm

described above.

12

8

7

3

4

5 6

b+ / x+z+

a+ / z−b−d− / y−

d+ / x−

b− c− / y−

c+ / x−y+

b−c+ /
x−y+

b+c− /
x+y−

b+d− /
x+y−

b−d+ / x−

a− / y+

0 0

12

8

7

3

4

5 6

A

B

E F

G

Figure 4.12: ISEND speci�cation and layer assignment.

Both our algorithm and the classical algorithm share the same �rst step. For

every pair of speci�cation states, u and v, in the extended-burst-mode speci�cation,

the compatibility of u and v is decided (see �gure 4.13). Note that in this example

no pair of compatible speci�cation states has a corresponding implied set.

Compatible speci�cation states are merged into common layers as the heuristic

traverses the extended-burst-mode speci�cation depth-�rst. First, states 0, 1, and 2

are merged into layer A because S0 � S1, S0 � S2, and S1 � S2. Because S2 6� S3,

state 3 is assigned to a new layer B. Because S3 � S4, state 4 is merged to layer

B. State 5 is assigned to another new layer E, because S4 6� S5. Since state 5 only

connects to state 4, it is the leaf node. The heuristic then backs up to the node with

branches that have not been traversed. States 6 and 7 are assigned to new layers F

and G, because S4 6� S6 and S6 6� S7. When the heuristic traverses the right branch

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 87

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

8

Compatible

Incompatible

Figure 4.13: Compatibility table.

of state 2, state 8 is merged to layer A, because it is compatible with all three states

0, 1, and 2. Our heuristic layer minimization is complete once the traversal of the

extended-burst-mode speci�cation is over; the result is a set of layers each of which

contains a self-contained connected compatible speci�cation states (see right side of

�gure 4.12).

A (0; 1; 2; 8) E (5)

B (3; 4) F (6)

G (7)

For comparison, we also compute the results from the classical algorithm.

The following is a list of maximal compatibles computed:

A (0; 1; 2; 8) E (0; 4; 5)

B (0; 1; 3; 4) F (0; 4; 6)

C (0; 1; 4; 8) G (0; 4; 7; 8)

D (0; 2; 7; 8)

Two sets of minimum covers are found using Petrick's method [57]:

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 88

(A;B;E; F;G) (B;D;E; F)

Possible symbolic layer assignments after removing redundancies are:

Solution I: ((A;B;E; F;G) is selected as a cover)

A (0; 1; 2; 8) E (5)

B (3; 4) F (6)

G (7)

Solution II: ((B;D;E; F) is selected as a cover)

B (0; 1; 3; 4) E (5)

D (2; 7; 8) F (6)

Note that the solution I is identical to the result we obtained using our algorithm.

4.3 Layer Encoding

We describe an algorithm for critical-race-free encoding of layers. It has been shown

elsewhere [24, 61, 69] that there exists a universal one-shot state encoding (using state

splitting), with a Hamming distance of 1 between any two state codes. However,

universal state encoding is very costly to implement for a large number of states;

furthermore, requiring a Hamming distance of 1 between any two layers is unnecessary

for our 3D implementation. Instead, we use a simple algorithm derived from [67].

In the previous section, we presented an algorithm to construct the layers of the

next-state table. At the end of the layer construction, we have a symbolic layer code

for each state. We can then extract the constraints on the layer encoding in the form

of a layer diagram (see �gure 4.15). We use this diagram to do the critical-race-free

layer encoding. The objective of the layer encoding is to generate a critical-race-free

layer assignment with few state bits.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 89

4.3.1 Layer Diagram

A conict is a function hazard during a state burst. A layer diagram is an undirected

graph. Each edge is labeled with a (possibly empty) set of pairs of vertices. The

vertices represent layers of the next-state table, the edges represent transitions be-

tween the layers, and the labels on an edge correspond to potential conicts during

transitions between the layers.

If there is a transition from layer C to layer D, an undirected edge is drawn

between them. The next-state table entries of all states with the same combination

of primary inputs and outputs (see �gure 3.5) as the initial state (c) and the �nal

state (d) of the layer transition from C to D are checked for possible conicts. If

the next state of e, a state with the same xy-position as c and d, has already been

speci�ed, then the layer E containing e is considered a potential conict layer in

assigning codes to C and D, unless the next layer of e is D. The edge between C

and D is then labeled with E. Furthermore, if the next state of e is in another layer,

say F , then layer E, layer F , and all the transient layers between E and F become

potential conict layers. The edge between C and D is labeled with [E; F] in this

case.

Given a reduced next-state table, T 0 = (V 0;W;X; Y; �0; �0), where V 0 is the set

of layers, and �0 and �0 de�ne the next layer function and the next output function

respectively, assume that C;D;E; F 2 V 0 are unique layers, s is a member ofW�X�

Y , and �0(C; s) is D. Formally, a layer transition from E to F is said to be a potential

conict transition for the transition from (C; s) to D i� �0(E; s) = F . Furthermore,

layer E is said to be a potential conict layer for the transition from (C; s) to D i�

�0(E; s) = E and �0(E; s) 6= �.

So far, we have assumed that C, D, E, and F are unique. Now consider degenerate

cases: C = E and D = F . In the �rst case, since �0(C; s) cannot be both D and

F , if D 6= F , it is impossible for [C; F] to be a potential conict transition for the

transition from C to D. In the second case, the transition from (E; s) to D is not a

potential conict transition for the transition from (C; s) to D, because they merge

at (D; s)

Let the codes assigned to layers C and D be cC and cD. A potential conict layer

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 90

C

D

E

F

input
ou

tp
ut

100

001

100

D

F

010C

E

input
ou

tp
ut

0010

0100

0001

1000

C

D

E

F

No obstruction Obstruction

0

0

1

1
0000

[E,F] [C,D]

Figure 4.14: Layer encoding example.

E, if assigned the code cE, is said to obstruct the transition from C to D (or from D

to C) i� cE di�ers from cC and cD only in bit positions whose values change during

the transition from C to D |

cC + (cC � cD) = cE + (cC � cD)

where + and � denote bitwise OR and XOR. For example, the potential conict layer

E obstructs the transition from C (cC = 001) to D (cD = 010), if cE is 000 or 011,

but does not, if cE is 100.

We can generalize the de�nition of obstruction to the case in which the transition

between C and D has a potential conict with a transition [E; F]. The potential

conict transition [E; F] is said to obstruct the transition from C to D (or from D to

C) i� E and F are assigned the codes cE and cF and cE and cF di�er from cC and

cD only in bit positions whose values change during the transition from C to D or

during the transition from E to F |

cC + cX = cE + cX

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 91

where cX = (cC � cD) + (cE � cF). Note that if [E; F] is labeled on the edge between

C and D, then [C;D] is labeled on the edge between E and F ([C;D] and [E; F]

are said to form a dichotomy in [67]). In �gure 4.14, [E; F] does not obstruct [C;D]

and vice versa, as long as cC and cD share the same value and cE and cF share the

value opposite to cC 's at least in one bit position (the MSB in this example). The

potential conict transition [E; F] obstructs the transition from C (cC = 0010) to D

(cD = 0100), if cE and cF are 0001 and 1000 respectively, but does not, if cE and cF

are 1001 and 1100.

E

B

CD

A

F G

H

H H
J

I
[G,H]
[J, I]

[D,E]
[J, I]

[D,E]
[G,H]

Figure 4.15: Layer diagram.

Suppose that layer transition [C;D] is labeled [E; F] and layer transition [E; F]

is labeled [C;D]. It is clear that we can �nd codes for C, D, E, and F that do not

cause the obstruction. If C 6= E, C 6= F , D 6= E, and D 6= F , we can �nd codes

with an arbitrary Hamming distance between C and D and between E and F . We

simply select a bit position and assign 0 in that bit position for C and D and 1 for

E and F ; the remaining bit positions are used to make codes for C, D, E, and F

unique. Therefore, it is always possible to encode layers so that every state burst is

critical-race-free.

Now we must examine whether there is a possibility of logic hazard due to these

state bursts. Recall that, in the BDD implementations, only a Type I or II machine

cycle was used. In Type I and II machine cycles, every state burst is a static transition.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 92

Thus, there can be no hazard due to state bursts in the BDD implementation. Recall

that, in the two-level AND-OR implementation, dynamic hazards arise due to illegal

intersections of privileged cubes. Because we took care to avoid intersecting any non-

don't care entry except in the cases in which two state burst transitions merge at

the destination layer, no state burst transition intersects a privileged cube and no

required cube intersects a state burst transition. Thus, no hazard is introduced by

state bursts in the two-level AND-OR implementation.

4.3.2 Layer Encoding Algorithm

Our goal is to encode the layers so that no layer or transition between layers obstructs

the transitions (edges) on which it is labeled as a potential conict. The layer encoding

algorithm begins by resolving all potential conicts. Initially, a code bit is reserved

for each labeled layer transition so that the potential conict layers are assigned a

value di�erent from the source and destination layers of the layer transition in that

bit position. For example, 5 bits are allotted to encode the layers of the layer diagram

in �gure 4.15 because there are 5 labeled transitions. In the table below, each row

represents a dichotomy (transition and corresponding obstructions) and each column

represents a layer to be encoded.

Transition Obstructions A B C D E F G H I J

[A,E] j H

[A,I] j H

[D,E] j [G;H]; [I; J]

[G,H] j [D;E]; [I; J]

[I,J] j [D;E]; [G;H]

All redundant dichotomies are then removed and symbolic code values are as-

signed. In the above example, [D;E] from row 4 and the entire row 5 can be removed

because these dichotomies are already represented in row 3. In the table below, vi is

0 or 1, vi is the complement of vi, and � is a don't care).

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 93

Transition Obstructions A B C D E F G H I J

[A,E] j H v1 � � � v1 � � v1 � �

[A,I] j H v2 � � � � � � v2 v2 �

[D,E] j [G;H]; [I; J] � � � v3 v3 � v3 v3 v3 v3

[G,H] j [I; J] � � � � � � v4 v4 v4 v4

Compatible rows of the above table are merged to minimize the number of state

bits. Two rows i and j are compatible i� one of the following conditions is true:

� in every column, the bit positions i and j have the same value or at least one

is a don't care;

� in every column, the bit positions i and j have the opposite value or at least

one is a don't care.

A set of rows of the dichotomy table that can be merged is said to be a compatible.

A maximal compatible is a compatible which is not a proper subset of any other

compatible. Minimizing the number of rows is then posed as a covering problem

(as in the state minimization case): cover all the dichotomies with as few maximal

compatibles as possible. A dichotomy table with the minimum number of rows is said

to be a reduced dichotomy table. Then the symbolic codes are replaced with binary

values (0 for vi and 1 for vi).

A B C D E F G H I J

[A,E],[A,I],[I,J] j [G;H]; H 0 � � � 0 � 1 1 0 0

[D,E] j [G;H]; [I; J] � � � 0 0 � 1 1 1 1

Before completing the code assignment, the algorithm determines the total number

of state bits required to uniquely encode each layer, which may exceed the number of

rows in the table.

A subcode of code, cA, is any code that has the same value as cA in every bit

position in which cA is not a don't care. For example, cE (00) is a subcode of cA (0�)

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 94

but cD (�0) is not. In order to di�erentiate cA from all of its subcodes in the table

(cE, cI and cJ), at least 2 bits (dlog2(3 + 1)e) are needed; hence we need at least 3

bits to encode cA (2 bits to di�erentiate cA from cE, cI and cJ and 1 preassigned bit).

The minimal code length required for a partially encoded layer (a layer with don't

care bit positions) A with the code assignment of cA in the reduced dichotomy table

is then:

max(nr; nr � nd + dlog2(ns + 1)e)

where nr is the number of rows of the reduced dichotomy table, nd is the number of

don't care bit positions in cA, and ns is the number of subcodes of cA in the reduced

dichotomy table. nr � nd is the number of preassigned bits, and dlog2(ns + 1)e

additional bits are needed to di�erentiate cA from all of its subcodes.

If the longest of the minimal code lengths exceeds the number of rows of the

reduced dichotomy table, the algorithm pads the table with rows of don't cares until

the number of rows equals the longest of the minimal code lengths (4 in our example),

which is the lower bound on the number of rows that needs to be added. Note that

the upper bound is no greater than dlog2 nle where nl is the total number of layers.

In all of the examples we synthesized, the lower bound was su�cient.

The number of available codes for a partially encoded layer A is 2nd � ns where

ns is the number of subcodes of cA in the padded reduced dichotomy table and nd is

the number of don't care bit positions in cA.

A B C D E F G H I J

[A,E],[A,I],[I,J] j [G;H]; H 0 � � � 0 � 1 1 0 0

[D,E] j [G;H]; [I; J] � � � 0 0 � 1 1 1 1

j � � � � � � � � � �

j � � � � � � � � � �

The remaining task of the algorithm is to assign an available code to each par-

tially encoded layer while sustaining the number of available codes for other partially

encoded layers greater than 0. If no code can be found that keeps the number of

available codes for other layers greater than 0, then the algorithm pads another row.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 95

A �nal code assignment for the example is shown below.

A B C D E F G H I J

0 1 0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 1 1 1

0 0 1 1 0 1 0 0 0 0

1 0 1 0 0 0 0 1 0 1

4.4 Combinational Logic Synthesis

4.4.1 Two-Level AND-OR Implementation

The 3D synthesis tool generates required cubes and privileged pairs (privileged cubes

and associated start states) for each primary output and internal state variable func-

tion. Logic minimization is performed using exact algorithms for hazard-free logic,

implemented in an automated logic minimizer [49]. This hazard-free logic minimizer,

using a variation of Quine-McCluskey algorithm, �nds an optimal hazard-free cover of

required cubes using dynamic-hazard-free implicants, implicants that do not illegally

intersect privileged cubes.

4.4.2 BDD-Based Multi-Level Implementation

Our strategy is to build an ROBDD using a global variable ordering, if such an

ordering can be found, or to build a free BDD. If no global order exists, there is

always a variable that can appear �rst. This variable partitions the function into a

left and right BDD. The left and right BDDs do not have to have the same variable

order, so they can be constructed recursively using the same method.

In the 3D implementation of extended-burst-mode machines using Type I or II

machine cycles, no state burst (fed-back state variable changes) ever enables a state

variable to change. Furthermore, all fed-back state variables remain constant in the

generalized transition cubes for input and output bursts. During the state minimiza-

tion step, two speci�cation states with conicting ordering requirements are placed

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 96

in di�erent layers, which means that two speci�cation states with conicting ordering

requirements are placed in di�erent partitions. We showed that conicting ordering

requirements between two input bursts from the same speci�cation state can be re-

solved by selecting a variable ordering such that unique compulsory signals appear

�rst. Therefore, it is always possible to satisfy the variable ordering requirements in

each partition.

The 3D synthesis tool generates extended-burst-mode transition cubes (start cube

and end cube pairs) and the variable ordering constraints for each primary output and

internal state variable function. The actual BDD construction and logic minimization

is carried out using the combinational synthesis tool by Lin and Devadas [35].

4.5 Experimental Results

The synthesis procedure is completely automated. The 3D synthesis tool transforms

a textual extended-burst mode speci�cation into the next-state table with a symbolic

layer assignment, derives a layer diagram, performs a critical-race-free layer encoding,

generates required cubes and privileged pair sets for outputs and state variables for

the two-level combinational synthesis, and generates extended-burst-mode transition

cubes and variable ordering constraints for the BDD-based combinational synthesis.

The logic minimization is performed by the combinational synthesis tools discussed

in the last section.

Numerous experiments have shown that the 3D synthesis tool produces results

that have smaller area and are much faster than competing asynchronous synthesis

methods. There are two measures that characterize the performance of the 3D ma-

chines: latency and cycle time. The latency is the delay from the last terminating

input edge of an input burst to the last edge of the resulting output burst. The cycle

time is the delay required to avoid circuit malfunction from the last terminating input

edge of an input burst to the �rst compulsory input edge of the next input burst.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 97

4.5.1 Examples Using Two-Level Synthesis

Experimental results are shown in table 4.1. The latencies and the cycle times are eval-

uated using a 0.8�m CMOS standard cell library, developed for the Verilog simulator

by the Torch group at Stanford University [36]. The library cells were characterized

using the SPICE simulator under military worst-case conditions (4.5V power supply,

125�C) and derated for the nominal case (5V, 25�C). The two-level logic equations

produced by the 3D tool were mapped to the standard cell library either manually or

using a hazard-nonincreasing technology mapper [64].

The largest example we have evaluated is a pipelined SCSI bus controller (asyn-

chronous data transfer protocol). The extended-burst-mode speci�cation of the asyn-

chronous data transfer protocol of the pipelined SCSI bus controller has 45 states and

62 state transitions, 10 primary inputs, and 5 primary outputs. The 3D synthesis

tool added 5 internal state variables, and the implementation required 108 product

terms and 378 literals. The Verilog simulation results for the output latency and the

cycle time were 3.3ns and 6.1ns.

4.5.2 Comparison to Locally-Clocked Methods

We compare the 3D and the locally-clocked method [52, 49] for four controller imple-

mentations: pe-send-ifc, dramc, 5380fsm, and cache-ctrl (see table 4.2).2 It is interest-

ing to compare to the locally-clocked method, because (1) the locally-clocked method

uses the burst-mode as the user-level speci�cation formalism, which means that ev-

ery machine synthesized using the locally-clocked method can be reimplemented in

3D, and (2) the locally-clocked method has been used for many practical large scale

controller designs.

The 3D results are based on two-level AND-OR implementations. pe-send-ifc,

dramc, and 5380fsm are designed for Type II machine cycles, and cache-ctrl for Type

I. The delay estimates are based on comparison of output literal counts. The area

2No extended-burst-mode machine implementations are compared because the locally clocked

synthesis only works for burst-mode machines.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 98

Speci�cation Implementation

States / Primary State Prod Cycle
Transitions In Out Vars Terms Lits Latency Time

D-FF 4 6 2 1 1 8 21 1.8ns 2.3ns
chu-ad-opt 4 4 3 3 0 4 11 1.2ns 1.2ns
vanbek-ad-opt 3 3 3 3 0 4 9 1.3ns 1.3ns
dme 8 10 3 3 2 11 29 2.0ns 3.1ns
dme-fast 8 10 3 3 2 12 29 1.7ns 2.9ns
alloc-outbound 8 9 4 3 2 12 27 1.8ns 3.0ns
mp-forward-pkt 4 4 3 4 0 6 14 1.4ns 1.4ns
nak-pa 6 6 4 5 1 10 17 1.7ns 2.5ns
pe-send-ifc 11 14 5 3 2 21 60 2.3ns 3.7ns
pe-rcv-ifc 12 15 4 4 2 26 72 2.1ns 3.8ns
ram-read-sbuf 8 8 5 5 0 13 22 1.7ns 1.7ns
rcv-setup 6 8 3 2 0 3 8 1.4ns 1.4ns
sbuf-ram-write 6 6 5 5 1 18 41 1.9ns 3.2ns
sbuf-read-ctl 7 8 3 3 1 8 17 1.5ns 2.6ns
sbuf-send-ctl 8 9 3 3 2 14 32 2.1ns 3.3ns
sbuf-send-pkt2 7 10 4 2 2 11 30 2.2ns 3.5ns
sendr-done 3 3 2 1 1 4 8 1.0ns 2.4ns
sic-example 6 12 2 1 1 6 13 1.5ns 2.5ns
dram-controller 12 14 7 6 1 20 46 2.2ns 2.2ns
scsi-tsend-bm 11 13 5 4 2 27 58 2.3ns 3.8ns
scsi-trcv-bm 10 12 5 4 2 24 55 2.3ns 3.4ns
scsi-isend-bm 10 12 5 4 2 25 62 2.5ns 3.9ns
scsi-tsend-csm 10 11 5 4 2 24 44 2.2ns 3.3ns
scsi-trcv-csm 8 9 5 4 2 23 42 2.3ns 3.6ns
scsi-isend-csm 8 9 5 4 2 24 42 1.9ns 3.4ns
pscsi-isend 9 11 4 3 3 28 80 2.9ns 4.4ns
pscsi-ircv 6 7 4 3 2 14 31 1.7ns 3.2ns
pscsi-tsend 10 12 4 3 3 26 70 2.2ns 4.3ns
pscsi-trcv 6 7 4 3 1 14 25 2.2ns 2.6ns
pscsi-tsend-bm 10 12 4 4 3 23 60 2.0ns 3.7ns
pscsi-trcv-bm 7 9 4 4 2 21 47 2.0ns 3.8ns
pscsi 45 62 10 5 5 108 378 3.3ns 6.1ns

Table 4.1: Experimental results.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 99

reduction is mainly due to the lack of a local clock whereas the output latency reduc-

tion is a result of greater degrees of freedom in logic minimization due to the greater

number of inputs to logic functions, with the addition of primary outputs as inputs

to logic functions. Literal and product counts do not include the latch overhead of

the locally-clocked machine. We also ignore area overhead due to feedback delays,

which we assume is negligible. In a typical 1�m gate array implementation, we es-

timate an additional saving of about 2ns in output latency over the locally-clocked

implementation due to the lack of latches. If the locally clocked implementations use

dynamic latches, then the saving would be about .7ns. The cost of latch removal in

the 3D machines is an increase in state variable logic and greater constraints on state

encoding, since the encodings must be critical-race-free.

Literals Product terms
Output Total Output Total Latency Area
LC 3D LC 3D LC 3D LC 3D Reduction Reduction

pe-send-ifc 47 45 79 60 15 15 25 21 4% 24%
dramc 51 40 64 46 20 17 23 20 22% 28%
5380fsm 217 181 459 345 59 54 114 100 17% 25%
cache-ctrl 720 494 886 532 215 161 245 172 31% 40%

Table 4.2: Comparisons to locally-clocked machine.

4.5.3 Experimental Results Using BDD Synthesis

We used the 3D synthesis tool [78] in conjunction with the combinational synthesis

tool [35] to perform experiments (see table 4.3) on many examples previously synthe-

sized by the method described in [75]. With very modest e�orts to �nd the optimal

variable order,3 most of the examples required less area than the two-level method,

primarily because of the reduction in the number of state variables due to simpler

3Experiments were conducted by Bill Lin at IMEC, Belgium. He tried a few random orderings

and picked the best result.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 100

state assignment. For a minority of the examples, area increased somewhat. We be-

lieve that the area results will be further improved with the development of heuristic

variable ordering algorithms tuned to our application.

A more important issue is output latency. Out of 39 examples synthesized, 24

of them (the names with *) previously required state variable changes before output

changes for some of the speci�ed state transitions. In these cases, using BDD-based

synthesis rather than 2-level synthesis improved the output latency by 100% or more.

CHAPTER 4. AUTOMATIC SYNTHESIS PROCEDURE 101

Speci�cation State vars Total

States / Primary added literals

Transitions In Out 2-level BDD 2-level BDD

iccad93ex* 3 4 2 2 2 0 20 6
edac93ex* 4 5 3 2 2 1 32 20
condtest* 4 5 3 2 2 1 30 23
d�1* 4 6 2 2 2 0 28 12
d�2* 4 6 2 2 2 0 28 12
sr2* 8 12 2 3 3 2 82 55
sr2x2* 8 20 3 3 4 2 131 130
q42 4 4 2 2 1 1 27 24
select2ph* 4 8 2 2 2 0 42 56
selmerge2ph* 8 12 3 2 2 1 89 47
sin 13 17 3 4 3 4 71 108
ring-counter 8 8 1 2 1 1 45 64
binary-counter 32 32 1 4 3 3 94 80
binary-counter-co 32 32 1 5 3 3 104 88
pe-send-ifc 11 14 5 3 2 2 90 115
pe-rcv-ifc 12 15 4 4 3 2 84 85
dramc 12 14 7 6 1 0 71 76
cache-ctrl 38 49 16 19 1 1 704 1379
tsend* 22 30 7 4 5 5 328 583
isend* 24 32 7 4 5 7 490 887
trcv* 16 22 7 4 3 2 175 111
ircv* 16 22 7 4 3 2 188 124
tsend-bm* 11 14 6 4 2 2 96 88
trcv-bm* 8 10 6 4 3 1 77 104
isend-bm* 12 15 6 4 3 3 177 103
ircv-bm* 8 10 6 4 3 1 80 78
tsend-csm* 11 14 6 4 4 3 92 67
trcv-csm* 8 10 6 4 3 2 70 72
isend-csm* 12 15 6 4 3 4 142 81
ircv-csm* 8 10 6 4 3 2 80 76
abcs 23 33 9 7 3 3 199 278
stetson-p1 31 38 13 14 3 3 376 754
stetson-p2 25 27 8 12 4 4 178 319
stetson-p3 8 11 4 2 1 0 16 7
biu-�fo2dma* 11 13 5 2 5 5 125 166
�focellctrl 3 3 2 2 1 1 16 20
scsi-targ-send* 7 8 4 2 3 3 53 50
scsi-init-send* 7 8 4 2 2 2 31 37
scsi-init-rcv-sync 4 5 3 1 1 1 20 16

Table 4.3: Comparing two-level vs BDD.

Chapter 5

Design Example: SCSI Controller

In this chapter, we describe a version of a commercial SCSI controller data path. The

purpose of this exercise is to demonstrate that the extended-burst-mode speci�ca-

tion and the 3D implementation indeed provide a powerful mechanism to design and

implement controllers operating in heterogeneous environment.

All the work related to the discussions in this chapter was performed as an in-

dependent project at Advanced Micro Devices, Sunnyvale, CA., during the summer

of 1993 under the supervision of Mark Knecht. All AMD proprietary information

has been omitted. Although this information can be used to construct a part of a

commercial SCSI controller, it does not represent any speci�c commercial product.

5.1 Overview

The SCSI (Small Computer Systems Interface) as de�ned by ANSI standard X3.131-

1986 (SCSI-1) and augmented in ANSI X3T9.2/86-109 Rev. 10c (SCSI-2) is a logical

and physical protocol for communication between computers and peripheral devices

such as disk and tape drives (see �gure 5.1). A maximum of eight SCSI devices are

allowed on the SCSI bus with communication allowed between only two SCSI devices

at a time | an initiator and a target. SCSI controllers support the physical layer

of the SCSI bus protocol (bus arbitration and data transfer). In this chapter, we

describe an implementation of the SCSI controller data path (BIU, FIFO, and SCSI

102

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 103

REQ

ACK

REQ

SCSI
Controller

ACK

SCSI
Controller

DMA
ControllerCtrl

S
C

S
I B

us

DReq

DAckn

DMA Bus

Figure 5.1: A simple con�guration of SCSI bus.

Bus Interface) and associated control circuits.

The SCSI controller communicates with two interfaces during data transfer: the

SCSI device's local DMA (Direct Memory Access) bus and the SCSI bus. The con-

troller regulates the ow of data between two buses. This implementation (see �g-

ure 5.2) assumes that the DMA bus uses a common protocol obeyed by most conven-

tional DMA controllers as described in section 5.2.1.

A SCSI device is con�gured in one of four operating modes before a data transfer

operation begins: Target-Send, Target-Receive, Initiator-Send, and Initiator-Receive.

The initiator originates the data transfer operation by requesting the target to begin

a handshaking protocol. The sender moves data from the local bus to the SCSI bus;

the receiver moves data from the SCSI bus to the local bus. This implementation

supports all four operating modes.

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 104

Transfer Counter
CPU

Initiator / Target
Control

Arbiter

Ctrl
I/F

Ctrl Ctrl

BIU FIFO SCSI
I/F

SCSI Controller

Lo
ca

l B
us

S
C

S
I B

us

Cmd
Status
Register

Figure 5.2: SCSI controller block diagram.

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 105

SCSI
Bus

SCSI I/F

dsel sel

8

8 s

DMA

BIU

La
tc

h

frin

faout
frout

faindreq

frout

fain

frin

faout

1616

∆

∆

C
tr

l

C
tr

l

C
tr

l reqout

ackin

reqin

ackout

8

Bus
DMA

16

wrn

dackn

16

8

8

8

FIFO

16

16

8

Figure 5.3: SCSI controller data path.

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 106

5.2 Implementation

The SCSI controller data path is a bidirectional asynchronous pipeline, which works

as a FIFO bu�er and a protocol converter. It is somewhat similar to Ivan Sutherland's

micropipeline [65].

The SCSI controller data path must have a FIFO to bu�er the data because of

the disparity in transfer rates between two interfaces. The maximum throughput

is 1-10 Mbytes/s on the SCSI side and 5-33 Mbytes/s on the DMA side. The data

transfer on the DMA side tends to be \bursty" because the DMA bus is shared among

many devices competing for access, but the data transfer between the SCSI devices

tends to be continuous because an entire data block, which is generally quite large

(sometimes up to 16Mbytes), is transferred at a time without interruption, unless the

target device requests interrupts. Thus, the SCSI controller with an internal FIFO

functions as a \rate smoother".

The SCSI controller must also bridge the di�erences in data transfer protocols of

two interfaces. The data transfer protocol on the DMA side is \quasi-asynchronous"

handshaking (described in detail in section 5.2.1), as de�ned by widely used DMA

controllers [31], and the default data transfer protocol on the SCSI side, as de�ned

by the SCSI speci�cation, is asynchronous handshaking. This makes the timing of

events on the DMA side and the SCSI side completely independent, and, as such, the

asynchronous pipeline is a natural bridge between two interfaces. However, we cannot

use a conventional delay-insensitive micropipelines for two reasons: the handshaking

on the DMA side depends on timing | communications cannot be delay-insensitive

| and the SCSI side must also support synchronous transfer modes. Instead, a com-

bination of pipelined registers, as in micropipelines, and the extended-burst-mode 3D

machines, as the control circuits for these registers, is used, because the extended-

burst-mode machines are equally adept at handling timing-dependent communica-

tions as they are at delay-insensitive communications.

The SCSI controller data path (see �gure 5.3) consists of BIU (Bus Interface Unit),

FIFO, and SCSI Bus Interface, and the control circuits for these modules.

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 107

5.2.1 BIU (Bus Interface Unit)

The BIU (Bus Interface Unit) is used as the interface between the DMA bus and

the FIFO. It is designed to obey a common protocol between a DMA controller and

slave devices (see �gure 5.4). A slave device initiates a DMA access by asserting

dreq (DMA request). The DMA controller acknowledges by asserting dackn (DMA

acknowledge) for a �xed assertion time (typically 35-100ns). Note that dackn is an

active low signal. Valid data is driven onto the DMA bus while dackn is active, and

dreq must remain asserted until dackn is asserted. After dackn is negated, dreq may

remain asserted or become negated; however, if it is to be negated, it must be done

before dackn is asserted again. If dreq remains asserted after dackn is negated, the

DMA controller asserts dackn again after a �xed negation time (typically 35-100ns).

dreq

data

dackn

Assertion
Time

Fixed
Negation

Time

Fixed

Figure 5.4: DMA protocol.

This SCSI controller has two options: (1) asserting dreq continuously until a

desired amount of data is transferred or until the FIFO is full, and (2) asserting and

negating dreq for each data word. In this implementation, the second option was

selected.

Keeping dreq asserted continuously has a drawback because of the di�culty in

synchronizing the FIFO events with the DMA access. Consider, for example, the

data transfer from the DMA bus to the FIFO. The FIFO must not be overrun, that

is, the SCSI controller must halt the DMA access before the FIFO becomes full.

The only mechanism available to halt the DMA access is to negate dreq. Negating

dreq must be done after dackn is negated but before dackn is asserted according to

the protocol described above. The only way to do that is to negate dreq shortly

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 108

after dackn is negated using the same reference clock as dackn, which can be viewed

as \synchronizing" dreq to dackn. Since dreq is negated by a FIFO event, which is

independent of DMA events, there is a �nite probability of synchronization failure

[12].

On the other hand, asserting and negating dreq for each data word can degrade

the transfer throughput. Suppose that the SCSI controller keeps dreq deasserted for

a \long" period (longer than it takes for the DMA controller to detect that dreq by

the SCSI controller is negated). Then the DMA controller may opt to service another

slave device actively requesting a DMA access. When the SCSI controller does request

a DMA access by asserting dreq, it may need to wait a signi�cant period before the

DMA controller grants the bus access to the SCSI controller.

Note that the synchronization failure will not be eliminated from the system as

long as this \quasi-asynchronous" handshaking, which requires sampling of dreq to

decide the next course of action, is used. By using the second option (asserting

and negating dreq for each data word), we removed the problem only from the SCSI

controller, not from the system.

The DMA data bus is assumed to be 16 bits wide and the SCSI bus is 8 bits wide.

One of the design decisions made was to use a 16-bit FIFO over an 8-bit one. A 16-bit

FIFO was selected primarily to reduce the latency from the DMA bus to the FIFO.

The BIU consists of an input data latch and an output data register and two

extended-burst-mode state machines (one for the data transfer direction from DMA

to FIFO and the other for the direction from FIFO to DMA). We describe the data

transfer direction from DMA to FIFO. The block diagram, the controller and the

timing diagram of this portion of the BIU are shown in �gure 5.5.

Data Transfer from DMA to FIFO

A data transfer operation begins when the BIU receives a go-ahead signal, ok+, from

the master control. The master control asserts ok+ when the Transfer Counter is

loaded with a value greater than 0. The BIU then makes a data transfer request to

the DMA controller by asserting dreq. The DMA controller acknowledges the request

by asserting dackn and wrn and placing a data word on the bus. The BIU then

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 109

dout

din

dreq

frin

faout

ok

cntgt1

dackn

ok

Din Dout

FIFODMA
BIU

16 16

La
tc

h

cntgt1

frin

faout

dreq

wrn

dackn

ok- frin- /
faout-

frin+ dackn+ /
faout+

frin- /
dreq+ faout-

ok+ frin* /
dreq+

<cntgt1+>
frin* dackn- / dreq-

<cntgt1->
frin* dackn- / dreq-

<cntgt1+>
frin* dackn- / dreq-

<cntgt1->
frin* dackn- / dreq-

ok* frin+ dackn+ /
faout+

2

3

4

1

06

5

Figure 5.5: BIU (data transfer from DMA to FIFO).

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 110

negates dreq immediately. The data is latched into the input data latch, available

to the FIFO, when dackn is negated. After dackn is negated and frin is asserted,

signaling that the FIFO is ready to receive a data word, the BIU acknowledges the

FIFO by asserting faout. The data word is latched into the FIFO cell at the rising

edge of faout. When the FIFO negates frin signaling that the FIFO has received the

data, the BIU negates faout and asserts dreq again, requesting a new data word. This

is repeated until the transfer count is down to 1 (cntgt1 is sampled low when dackn is

asserted), at which point dreq is negated for the last time. After the last data word

is latched and after frin is asserted, faout is asserted. When ok and frin are negated,

the BIU completes the data transfer operation by negating faout.

It is important to note the following:

1. the handshaking protocol between the BIU and the FIFO is a conventional

4-phase type (frin+ ! faout+ ! frin� ! faout�);

2. a transparent latch is used for storing the input data, which means that the

Dout is valid even before dackn is negated. This is to ensure that data is set up

in su�cient time before faout is asserted.

3. frin is speci�ed as a directed don't care in state 4, which means it may be

asserted immediately after faout is negated, although it won't be acknowledged

until after dackn is negated. This is to make DMA events and FIFO events as

concurrent as possible.

4. If frin is asserted before dackn is negated, that is, the FIFO can accept the data

upon its arrival, then only two events (faout+ and frin�) are required between

the negation of dackn and the new assertion of dreq, which is in the order of

several gate delays. Typically, the DMA controller samples dreq one clock cycle

(35-50ns) after dackn is negated, which is considerably longer than several gate

delays. Therefore, the SCSI controller will not \lose" the DMA bus as long as

the FIFO is not full.

5. The Transfer Counter is decremented each time dackn is negated, and the trans-

fer count is sampled each time dackn is asserted. Because the negation time for

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 111

dackn is 35-100ns, the Transfer Counter needs to generate cntgt1 ag in about

30ns, which is not a very harsh requirement.1

5.2.2 FIFO

This implementation of the FIFO is a simple asynchronous pipeline, selected for the

simplicity of design. The size of the FIFO is 16 bits wide and 8 cells deep. Each

cell communicates with its neighbors via 4-phase handshaking protocol. One end

of the FIFO interfaces to the BIU and the other end to the SCSI Bus Interface.

Communications between the BIU and the FIFO and between the FIFO and the

SCSI Bus Interface are done via 4-phase handshaking as well. Every cell is identical

so the layout of the FIFO is very regular and the timing characteristics are predictable.

Each cell has a 16-bit register and its own tiny control state machine.

Data Transfer from DMA to SCSI

Suppose the FIFO is connected to the DMA on the left and the SCSI on the right and

the cells are numbered from left to right. If the data transfer direction is from the

DMA to the SCSI (see �gure 5.6), cell n requests a data word from its left neighbor

(cell n � 1), by asserting rout, as soon as its own cell is empty, that is, the data

has been emptied to its right neighbor (cell n + 1). When the left neighbor asserts

ain signaling that the data is ready, cell n latches the data and negates rout. If the

request from the right cell, rin+, is pending, when the left neighbor negates ain, cell n

asserts aout immediately. If not, it asserts aout when the request from the right cell

arrives. When aout+ is received by the right neighbor, the data is latched into cell

n + 1. When the right neighbor negates rin, signaling that it has received the data,

cell n, in turn, negates aout and asserts rout again, requesting a new data word from

the left neighbor.

Note that rin is speci�ed as a directed don't care in state 0, again, to make the

operation on the right side as concurrent as possible with the operation on the left

1This means that a slow but area and power e�cient ripple counter is perfectly suitable for this

24 bit Transfer Counter (to count up to 16Mbytes).

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 112

aout

dout

ain

din

rin

rout

rin* ain+ /
rout-

rin+ ain- /
aout+

rin- /
aout- rout+

rout = 1 upon reset

0

1

2Din Dout

16 16

rout

ain

rin

aout

Figure 5.6: FIFO cell (data transfer from DMA to SCSI).

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 113

side.

5.2.3 SCSI Bus Interface

The SCSI Bus Interface is used as the interface between the FIFO and the SCSI

bus. This implementation uses a state machine for each of four SCSI operating

modes: Initiator-Send, Initiator-Receive, Target-Send and Target-Receive. There are

two types of SCSI data transfer protocols used: asynchronous 4-phase handshaking

and synchronous. Although this implementation supports the synchronous protocol,

we will omit it here because it is not central to our discussion.2

Asynchronous Data Transfer from FIFO to SCSI by Initiator

In the Initiator-Send mode (see �gure 5.7), a data transfer operation begins when

the SCSI Bus Interface receives a go-ahead signal, ok+, from the master control. The

master control asserts ok when the Transfer Counter (not the same one as the one

used for BIU) is loaded with a value greater than 0. The SCSI Bus Interface then

requests the FIFO for a data word by asserting frout. The FIFO asserts fain, if its

rightmost cell has a data word, at which time the data is latched into the SCSI Bus

Interface output data register. When the SCSI Bus Interface detects fain asserted,

it negates frout. After the request from the target, reqin+, arrives and after fain is

negated, the SCSI Bus Interface acknowledges the target by asserting ackout. Recall

that the output data register holds a 16-bit word but the SCSI bus is only 8 bits wide.

The sel signal indicates whether the upper or lower byte of the data word stored in

the register should be sent out. Initially, sel is 0. When the target signals that it has

received a data byte by negating reqin, the SCSI Bus Interface negates ackout and

switches sel to 1, preparing for the next byte transfer.

2The synchronous protocol still uses Req and Ack wires. However, unlike the asynchronous

protocol, the requester (target) does not have to wait for Ack for each data byte. A stream of Req can

be sent out as long as the o�set between the number of Req and the number of Ack is less than some

prescribed amount, which is typically 4-8. Our implementation supports this protocol by adding the

interface between the SCSI Bus Interface module and the SCSI bus to handle synchronization and

bu�ering.

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 114

ok+ reqin* dsel* /
frout+

reqin* fain+ dsel* /
frout-

reqin+ fain- dsel* /
ackout+

reqin+ dsel+ /
ackout+

<cntgt1+>
reqin- /
ackout- frout+ sel-

reqin* fain+ dsel* /
frout-

reqin+ fain- dsel* /
ackout+

ok- reqin* dsel* /

<cntgt1+>
reqin- dsel- /
ackout- sel+

<cntgt1->
reqin- dsel* /
ackout-

<cntgt1->
reqin- dsel* /
ackout- sel-

8

0

2

1

6

7

5

4

3

ok

Din Dout

FIFO SCSI
Bus

SCSI I/F

dsel

16
8

8 s

sel

8

frout

fain

reqin

ackout

cntgt1

Figure 5.7: SCSI Bus Interface (initiator data transfer from FIFO to SCSI).

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 115

There is a delay from when the data is latched into the output data register to

when fain assertion is detected by the state machine. This is to guarantee a speci�ed

setup time (50ns according to the SCSI bus speci�cation) from the data validation

to ackout assertion.3 dsel, a delayed version of sel, is used for a similar purpose. As

stated earlier, at the conclusion of the �rst byte transfer, the state machine raises sel,

which enables dsel to rise after a speci�ed delay (� 50ns). The SCSI Bus Interface

does not assert ackout, even if the request from the target is pending, until dsel has

gone high, guaranteeing that the data has been valid for a speci�ed period. When

the target negates reqin, signaling that the second byte has been received, the SCSI

Bus Interface negates ackout, requests the FIFO to send the next word by asserting

frout and lowers sel again.

The data transfer continues until cntgt1 is sampled low when reqin is negated,

meaning that the transfer count is down to 1, at which point ackout is negated for

the last time and sel is reset to 0, unless it is already 0. The Transfer Counter counts

the number of bytes, not words, and the transfer count is updated each time ackout

is negated. The last negation of ackout decrements the transfer count to 0. When the

master control negates ok, the data transfer operation is complete.

reqin is speci�ed as a directed don't care in states 8, 0, 1, and 6 to make the SCSI

events and the FIFO events as concurrent as possible.

5.3 Results

We designed and simulated the SCSI controller data path and the associated control

circuits, which support all four SCSI bus operating modes and both asynchronous and

synchronous data transfer protocols. In addition, we designed a CPU interface and

skeletal high level control circuits to handle the arbitration and various initialization

tasks, in order to make all of the data transfer modes demonstrable. The completed

3In this implementation, this delay is generated by feeding this signal into a set of ip-ops,

clocked by an external clock. The need for generating \long" delays to meet some timing require-

ments in asynchronous circuits is quite real and warrants further research.

CHAPTER 5. DESIGN EXAMPLE: SCSI CONTROLLER 116

design was mapped to one of AMD's 0.8�m CMOS standard cell libraries and simu-

lated with Verilog simulator modi�ed to handle timing, called Verilog with Timing.

The design ow is shown in �gure 5.8. The design simulated correctly with respect

to all of the test vectors used. The performance is limited by the SCSI speci�cation,

not the design itself. One of the surprising results, was the competitiveness of the

area. Many recent experimental asynchronous microprocessor development e�orts

[41, 25, 55, 6] reported that the asynchronous design had a substantially larger area

compared to functionally equivalent synchronous designs. However, we do not yet

know whether the area savings can be replicated in other designs.

This exercise demonstrates that an automated asynchronous design is feasible for

commercial-scale circuits and that the extended-burst-mode speci�cation and the 3D

tool can be applied to designing a real, cost e�ective system.

EDIF netlist
Cadence

Place & Route

Layout
Cadence

functional / timing
simulation

pre−layout

simulation
timing

post−layout

Backannotate

Verilog

Verilog

XBM specification

Logic equations

To fab

0.8 um CMOS
standard cell test vectors

3D

Data path ++

Technology
mapper

Gate−level
Verilog input

state machines
Asynchronous

Synopsys

Synopsys

Figure 5.8: SCSI controller design ow.

Chapter 6

Conclusion

6.1 Summary

We have reviewed all aspects of an asynchronous controller design method: user-level

speci�cation formalism, hazard-free combinational synthesis theory and its applica-

tion to sequential synthesis, and automated sequential synthesis algorithms. We also

discussed a practical commercial-scale design example.

A summary of the results presented in this thesis is as follows:

Extended-burst-mode design style: We introduced a new speci�cation formalism

called extended-burst-mode. We showed that a wide range of practical circuits, both

asynchronous and synchronous, can be speci�ed in extended-burst-mode and synthe-

sized using a single synthesis tool. This design style is appropriate for specifying

many circuits that fall in the gray area between synchronous and asynchronous which

are di�cult or impossible to synthesize automatically using competing methods.

Hazard-free combinational synthesis requirements: We described two di�erent

hazard-free combinational synthesis methods: two-level sums-of-products and multi-

plexor trees implementation. We extended the existing theories on hazard-free com-

binational synthesis to handle non-monotonic input changes and developed a set of

requirements for freedom from logic hazards for each combinational synthesis method.

3D automatic synthesis algorithm: We presented a complete set of automated

117

CHAPTER 6. CONCLUSION 118

sequential synthesis algorithms: hazard-free state assignment, hazard-free state mini-

mization, and critical-race-free state encoding. We observed that eliminating dynamic

hazard was the key factor which set the overall synthesis direction. In fact, the func-

tional synthesis step looks ahead for any possibility of dynamic hazards and takes

measures to prevent them. Because each combinational synthesis method has a dif-

ferent set of requirements to avoid dynamic hazards, we observed that the functional

synthesis steps needed to be tuned to the selection of the combinational synthesis

method. We asserted that the heuristics that �nd near-optimal solutions in polyno-

mial time do not signi�cantly degrade the quality of the �nal implementations. Fi-

nally, we compared the results with the locally-clocked method and determined that

our 3D method produced substantially better results, both in area and in latency.

We also compared the two-level AND-OR implementations with the multiplexor tree

implementations.

Commercial-scale design example: We reported on the design and implementa-

tion of a commercial-scale SCSI controller data path. We showed that our automated

asynchronous design completed in a very short period was simulated to be correct

and compatible with an equivalent commercial design. More importantly, we demon-

strated that the extended-burst-mode design style and the 3D synthesis tool are

feasible for real-world designs.

6.2 Future Work

During the course of this research, it was observed that there are many important

problems that need to be addressed in order to make asynchronous design truly viable.

Arbitration and synchronization: Most synthesis methods today do not tackle

arbitration and synchronization problems directly. It is up to the designers to isolate

these problems and manually design them. Clearly, it would be bene�cial to the

designers to have the synthesis tool deal with these problems automatically. One

attractive solution is to extend the semantics of the speci�cation language so that

the arbitration behavior can be speci�ed directly in the controller speci�cation and

automatically synthesized by the synthesis tool.

CHAPTER 6. CONCLUSION 119

Timing analysis: In chapter 3, we observed that it is desirable to minimize feed-

back delays to improve system performance. Furthermore, in order to construct a

reliable system, it is necessary to compute output latencies and cycle times precisely.

These require careful timing analyses. A large body of work already exists in this

area; however, a timing analysis tool that can weed out a bulk of false paths and still

run in polynomial time would be very useful but does not exist today.

Electrical design issues: During the SCSI controller design, it was observed that

asynchronous circuits may be more prone to errors stemming from noise than syn-

chronous circuits, because asynchronous circuits are sensitive to every input change.

Today, engineers use sound design practices and guidelines to avoid glitches due to

ground bounces and reections in the backplane buses among others. Also there are

a few circuit-level remedies that remove narrow glitches caused by electrical noise.

However, a systematic system level solution that can selectively ignore certain signal

changes would complement sound design practices in solving electrical noise problems.

Delay generation: Asynchronous circuits operating in a heterogeneous system

sometimes require lengthy signal delays. In the SCSI controller design, delays of

35-50ns were needed, which were, in fact, generated by a conventional synchronous

solution using ip-ops clocked by a high speed clock. An alternative solution that

does not require a high speed clock is highly desirable.

Testing : For the asynchronous circuits to be widely accepted, they must be

testable. Simple strategies like adding scan latches in the feedback paths work just

as well as in synchronous circuits. However, more research needs to be done in com-

binational logic testing and delay fault testing. In 3D machines, the multiplexor tree

implementations have better testable structures than two-level implementations.

Bibliography

[1] V. Akella and G. Gopalakrishnan. SHILPA: A high-level synthesis system for self-

timed circuits. In Proceedings of the 1992 IEEE/ACM International Conference

on Computer Aided Design, pages 587{591, November 1992.

[2] P. Beerel and T. H.-Y. Meng. Automatic gate-level synthesis of speed-

independent circuits. In Proceedings of the 1992 IEEE/ACM International Con-

ference on Computer Aided Design, November 1992.

[3] J. Beister. A uni�ed approach to combinational hazards. IEEE Transactions on

Computers, 23(6):566{575, June 1974.

[4] J. Bredeson. Synthesis of multiple input change hazard-free combinational

switching circuits without feedback. International Journal of Electronics (GB),

39(6):615{624, December 1975.

[5] J. Bredeson and P. Hulina. Elimination of static and dynamic hazards for multi-

ple input changes in combinational switching circuits. Information and Control,

20(2):114{124, March 1972.

[6] E. Brunvand. The NSR processor. In Proceedings of the Twenty-Sixth Annual

Hawaii International Conference on System Sciences, volume I, pages 428{435.

IEEE Computer Society Press, January 1993.

[7] E. Brunvand and R. F. Sproull. Translating concurrent programs into delay-

insensitive circuits. In Proceedings of the 1989 IEEE International Conference

on Computer Aided Design. IEEE Computer Society Press, 1989.

120

BIBLIOGRAPHY 121

[8] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677{691, August 1986.

[9] J. R. Burch. Delay models for verifying speed-dependent asynchronous circuits.

In Proceedings of the 1992 International Conference on Computer Design: VLSI

in Computers and Processors, pages 270{274. IEEE Computer Society Press,

October 1992.

[10] S. M. Burns. Automated compilation of concurrent programs into self-timed cir-

cuits. Technical Report Caltech-CS-TR-88-2, California Institute of Technology,

1987.

[11] S. M. Burns. Performance Analysis and Optimization of Asynchronous Circuits.

PhD thesis, California Institute of Technology, 1991.

[12] C. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and arbiter

circuits. IEEE Transactions on Computers (Correspondence), C-22(4):421{425,

April 1973.

[13] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-Theoretic Speci�-

cations. PhD thesis, MIT, 1987. Technical Report MIT-LCS-TR-393.

[14] H. Y. H. Chuang and S. Das. Synthesis of multiple-input change asynchronous

machines using controlled excitation and ip-ops. IEEE Transactions on Com-

puters, C-22(12):1103{1109, December 1973.

[15] B. Coates, 1993. Private Communication.

[16] W. S. Coates, A. L. Davis, and K. S. Stevens. Automatic synthesis of fast com-

pact self-timed control circuits. In IFIP Working Conference on Asynchronous

Design Methodologies, Manchester, UK, 1993.

[17] W. S. Coates, A. L. Davis, and K. S. Stevens. The Post O�ce experience: Design-

ing a large asynchronous chip. INTEGRATION, the VLSI Journal, 15(4):341{

366, 1993.

BIBLIOGRAPHY 122

[18] A. Davis. A data-driven machine architecture suitable for VLSI implementation.

In Proceedings of the Caltech Conference on Very Large Scale Integration, pages

472{494, January 1979.

[19] Digital Equipment Corporation, Maynard, MA. DEC Chip 21064-AA RISC

Microprocessor Preliminary Data Sheet, 1992.

[20] David L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-

Independent Circuits. MIT Press, Cambridge, MA, 1989.

[21] D. Dobberpuhl et al. A 200MHz 64b dual-issue cmos microprocessor. IEEE

Journal of Solid-State Circuits, 27(11):1555{1565, November 1989.

[22] J. C. Ebergen. A formal approach to designing delay-insensitive circuits. Dis-

tributed Computing, 5(3):107{119, 1991.

[23] E. B. Eichelberger. Hazard detection in combinational and sequential switching

circuits. IBM Journal of Research and Development, March 1965.

[24] A. D. Friedman, R. L. Graham, and J. D. Ullman. Universal single transition

time asynchronous state assignments. IEEE Transactions on Computers, C-

18(6):541{547, 1969.

[25] S. B. Furber. AMULET1 { an asynchronous ARM processor. In Symposium

Record of Hot Chips V, Stanford, CA, August 1993.

[26] G. C. Gopalakrishnan, P. Kudva, and E. L. Brunvand. Peephole optimization for

asynchronous macromodule networks. In Proceedings of the 1994 IEEE Inter-

national Conference on Computer Design: VLSI in Computers and Processors.

IEEE Computer Society Press, October 1994.

[27] A. Grasselli and F. Luccio. A method for minimizing the number of internal states

in incompletely speci�ed sequential networks. IEEE Transactions on Electronic

Computers, EC-14(3):350{359, June 1965.

BIBLIOGRAPHY 123

[28] A. B. Hayes. Stored state asynchronous sequential circuits. IEEE Transactions

on Computers, C-30(8):596{600, August 1981.

[29] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-

tional, UK LTD., Englewood Cli�s, NJ, 1985.

[30] D. A. Hu�man. The synthesis of sequential switching circuits. J. Franklin Insti-

tute, March, April 1954.

[31] Fujitsu Microelectronics Inc. Fast Track to SCSI: A Product Guide. Prentice-

Hall, 1991.

[32] J. Kessel et al. An error decoder for the compact disc player as an example of vlsi

programming. In Proceedings of the European Design Automation Conference,

pages 69{74, 1992.

[33] M. Ladd and W. P. Birmingham. Synthesis of multiple-input change asyn-

chronous �nite state machines. In Proceedings of the 28th ACM/IEEE Design

Automation Conference, pages 309{314. Association for Computing Machinery,

June 1991.

[34] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for Synthesis and Testing

of Asynchronous Circuits. Kluwer Academic Publishers, 1993.

[35] B. Lin and S. Devadas. Synthesis of hazard-free multi-level logic implementations

under multiple-input changes from binary decision diagrams. In Proceedings of

the 1994 IEEE/ACM International Conference on Computer Aided Design. IEEE

Computer Society Press, November 1994.

[36] J. Maneatis and D. Ramsey, 1992. Private communication.

[37] A. Marshall, W. Coates, and P. Siegel. Designing an asynchronous communica-

tions chip. IEEE Design & Test of Computers, pages 8{21, Summer 1994.

[38] A. J. Martin. The design of a self-timed circuit for distributed mutual exclu-

sion. In Henry Fuchs, editor, 1985 Chapel Hill Conference on Very Large Scale

Integration, pages 245{60. Computer Science Press, Inc., 1985.

BIBLIOGRAPHY 124

[39] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI

circuits. Distributed Computing, 1:226{234, 1986.

[40] A. J. Martin. Programming in VLSI: From communicating processes to delay-

insensitive VLSI circuits. In C. A. R. Hoare, editor, UT Year of Programming

Institute on Concurrent Programming. Addison-Wesley, 1990.

[41] A. J. Martin, S. M. Burns, T.K. Lee, D. Borkovi�c, and P.J. Hazewindus. The

design of an asynchronous microprocessor. In C. L. Seitz, editor, Proceedings of

the Decennial Caltech Conference on Very Large Scale Integration, pages 351{

373. MIT Press, 1989.

[42] Alain J. Martin. Asynchronous datapaths and the design of an asynchronous

adder. Formal Methods in System Design, 1(1):117{137, July 1992.

[43] Edward J. McCluskey. Logic Design Principles With Emphasis on Testable Semi-

custom Circuits. Prentice-Hall, 1986.

[44] C. Mead and L. Conway. Introduction of VLSI Systems, chapter 7. Addison-

Wesley, 1980. C. L. Seitz, System Timing.

[45] T. H. Meng. Synchronization Design for Digital Systems. Kluwer Academic

Publishers, 1990.

[46] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. Synthesis of delay-insensitive

modules. In Henry Fuchs, editor, 1985 Chapel Hill Conference on Very Large

Scale Integration, pages 67{86. Computer Science Press, Inc., 1985.

[47] C. W. Moon. Synthesis and Veri�cation of Asynchronous Circuits from Graph

Speci�cations. PhD thesis, University of California, Berkeley, 1992.

[48] C. Myers and T. H.-Y. Meng. Synthesis of timed asynchronous circuits. IEEE

Transactions on VLSI Systems, 1(2):106{119, June 1993.

[49] S. M. Nowick. Automatic Synthesis of Burst-mode Asynchronous Controllers.

PhD thesis, Stanford University, 1993.

BIBLIOGRAPHY 125

[50] S. M. Nowick and B. Coates. Automated design of high-performance unclocked

state machines. In Proceedings of the 1994 IEEE International Conference on

Computer Design: VLSI in Computers and Processors. IEEE Computer Society

Press, October 1994.

[51] S. M. Nowick, M. E. Dean, D. L. Dill, and M. Horowitz. The design of a high-

performance cache controller: a case study in asynchronous synthesis. Integra-

tion, The VLSI Journal, 15(3):241{262, October 1993.

[52] S. M. Nowick and D. L. Dill. Synthesis of asynchronous state machines using

a local clock. In Proceedings of the 1991 IEEE International Conference on

Computer Design: VLSI in Computers and Processors, pages 192{197. IEEE

Computer Society Press, October 1991.

[53] S. M. Nowick and D. L. Dill. Exact two-level minimization of hazard-free logic

with multiple-input changes. In Proceedings of the 1992 IEEE/ACM Interna-

tional Conference on Computer Aided Design, pages 626{630, November 1992.

[54] S. M. Nowick, K. Y. Yun, and D. L. Dill. Practical asynchronous controller

design. In Proceedings of the 1992 IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pages 341{345. IEEE Computer

Society Press, October 1992.

[55] N. C. Paver. The design and implementation of an asynchronous microprocessor.

PhD thesis, University of Manchester, 1994.

[56] J. L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, 1981.

[57] S. R. Petrick. A direct determination of the irredundant forms of a boolean func-

tion from the set of prime implicants. AFCRC-TR-56-110 Air Force Cambridge

Research Center, April 1956.

[58] M. Rem, J. van de Snepscheut, and J. Udding. Trace theory and the de�nition of

hierarchical components. In R. Bryant, editor, Proceedings of the Third Caltech

BIBLIOGRAPHY 126

Conference on Very Large Scale Integration, pages 225{239. Computer Science

Press, 1983.

[59] C. A. Rey and J. Vaucher. Self-synchronized asynchronous sequential machines.

IEEE Transactions on Computers, C-23(12):1306{1311, December 1974.

[60] R. Rudell. Logic synthesis for VLSI design. Technical Report Memorandum

UCB/ERL M89/49, University of California, Berkeley, 1989.

[61] G. Saucier. Encoding of asynchronous sequential networks. IEEE Transactions

on Electronic Computers, EC-16(6):365{369, 1967.

[62] H. Schols. Delay-insensitive Communication. PhD thesis, Technische Universiteit

Eindhoven, 1992.

[63] C. J. Seger. Models and Algorithms for Race Analysis in Asynchronous Circuits.

PhD thesis, University of Waterloo, 1988.

[64] P. Siegel, G. De Micheli, and D. Dill. Automatic technology mapping for gen-

eralized fundamental-mode asynchronous designs. In Proceedings of the 30th

ACM/IEEE Design Automation Conference, pages 61{67, June 1993.

[65] I. E. Sutherland. Micropipelines. CACM, 32(6):720{738, First Quarter 1989.

[66] J. A. Tierno, A. J. Martin, D. Borkovic, and T. K. Lee. A 100-MIPS GaAs

asynchronous microprocessor. IEEE Design & Test of Computers, 11(2):43{49,

Summer 1994.

[67] J. H. Tracey. Internal state assignments for asynchronous sequential machines.

IEEE Transactions on Electronic Computers, EC-15(8):551{560, August 1966.

[68] J. Udding. Classi�cation and Composition of Delay-Insensitive Circuits. PhD

thesis, Technische Universiteit Eindhoven, 1984.

[69] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-Interscience,

New York, NY, 1969.

BIBLIOGRAPHY 127

[70] K. van Berkel et al. A fully asynchronous low-power error corrector for the dcc

player. In Proceedings of the 1994 IEEE International Conference on Solid-state

Circuits, page TA5.4, 1994.

[71] P. Vanbekbergen. Synthesis of asynchronous controllers from graph-theoretic

speci�cations. PhD thesis, Interuniversitair Micro-Elektronica Centrum, 1993.

[72] V. I. Varshavsky, editor. Self-Timed Control of Concurrent Processes. Kluwer

Academic Publishers, 1990.

[73] C. Ykman-Couvreur, B. Lin, G. Goossens, and H. De Man. Synthesis and op-

timization of asynchronous controllers based on extended lock graph theory. In

Proceedings of The European Conference on Design Automation with The Eu-

ropean Event in ASIC Design, pages 512{517. IEEE Computer Society Press,

February 1993.

[74] K. Y. Yun and D. L. Dill. Automatic synthesis of 3D asynchronous �nite-state

machines. In Proceedings of the 1992 IEEE/ACM International Conference on

Computer Aided Design, pages 576{580. IEEE Computer Society Press, Novem-

ber 1992.

[75] K. Y. Yun and D. L. Dill. Unifying synchronous/asynchronous state machine

synthesis. In Proceedings of the 1993 IEEE/ACM International Conference on

Computer Aided Design, pages 255{260. IEEE Computer Society Press, Novem-

ber 1993.

[76] K. Y. Yun, D. L. Dill, and S. M. Nowick. Synthesis of 3D asynchronous state ma-

chines. In Proceedings of the 1992 IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pages 346{350. IEEE Computer

Society Press, October 1992.

[77] K. Y. Yun, D. L. Dill, and S. M. Nowick. Practical generalizations of asyn-

chronous state machines. In Proceedings of The European Conference on Design

Automation with The European Event in ASIC Design, pages 525{530. IEEE

Computer Society Press, February 1993.

BIBLIOGRAPHY 128

[78] K. Y. Yun, B. Lin, D. L. Dill, and S. Devadas. Performance-driven synthesis of

asynchronous controllers. In Proceedings of the 1994 IEEE/ACM International

Conference on Computer Aided Design, pages 550{557. IEEE Computer Society

Press, November 1994.

