
DESIGN ISSUES IN

FLOATING-POINT DIVISION

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-94-647

December 1994

This work was supported by NSF under contract MIP93-13701.

DESIGN ISSUES IN

FLOATING-POINT DIVISION

by

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-94-647

December 1994

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

Floating-point division is generally regarded as a low frequency, high latency operation in
typical oating-point applications. However, the increasing emphasis on high performance
graphics and the industry-wide usage of performance benchmarks, such as SPECmarks,
forces processor designers to pay close attention to all aspects of oating-point computation.
This paper presents the algorithms often utilized for oating-point division, and it also
presents implementation alternatives available for designers. Using a system level study as
a basis, it is shown how typical oating-point applications can guide the designer in making
implementation decisions and trade-o�s.

Key Words and Phrases: Floating-point, division, benchmarks, system performance

Copyright c 1994

by

Stuart F. Oberman and Michael J. Flynn

Contents

1 Introduction 1

2 Divide Algorithms: General Discussion 2

2.1 Subtractive Algorithms : 2
2.2 Multiplicative Algorithms : 3
2.3 Comparison : 5

3 System Level Study 5

3.1 Instrumentation : 5
3.2 Method of Analysis : 6

4 Results 6

4.1 Instruction Mix : 6
4.2 Compiler E�ects : 6
4.3 Overall CPI : 9
4.4 Shared Multiplier E�ects : 10
4.5 On-the-y Rounding and Conversion : 12
4.6 Consumers of Divide Results : 13

5 Conclusion 15

6 Acknowledgement 15

iii

List of Figures

1 Basic SRT Topology : 4
2 Instruction count distribution : 7
3 Functional unit stall time distribution : 7
4 Spice with optimization O0 : 8
5 Spice with optimization O3 : 8
6 Cumulative average interlock distance : 9
7 Average e�ective divide latency : 9
8 CPI and area vs divide latency : 11
9 CPI and area vs divide latency : 11
10 Excess CPI due to shared multiplier : 12
11 E�ects of on-the-y rounding and conversion : : : : : : : : : : : : : : : : : 13
12 Consumers of divide results : 14
13 Consumers of multiply results : 14

iv

List of Tables

1 E�ects of compiler optimization : 10

v

1 Introduction

Modern computer applications have increased in their computation complexity in recent
years. The development of high speed oating-point (FP) arithmetic is a requirement to
meet the computation demands of modern applications which have increased in their com-
putation complexity in recent years. The emphasis on high performance graphics rendering
systems has placed further demands on the computation abilities of processors. Further-
more, the industry-wide usage of performance benchmarks, such as SPECmarks, forces
processor designers to pay particular attention to oating-point computation.

Applications such as the aforementioned comprise several oating point operations,
among them addition, multiplication, and division. In recent FPUs, emphasis has been
placed on designing ever-faster adders and multipliers, with division receiving less attention.
Typically, the range for addition latency is 2 to 4 cycles, and the range for multiplication is
2 to 8 cycles. In contrast, the latency for double precision division in modern FPUs ranges
from 7 to 61 cycles [4]. This phenomenon is largely due to the perception that divide is an
infrequent operation in modern oating-point applications. Because of the low frequency,
it is believed that the overall performance degradation incurred by the use of a slow divider
will not be large. More emphasis has been placed on improving the performance of addition
and multiplication. As the performance gap widened between these two operations and
division, oating-point algorithms and applications have been slowly rewritten to account
for this gap by mitigating the use of divide. Thus, current applications and benchmarks are
usually written assuming that divide is an inherently slow operation and should therefore
be used sparingly.

While the methodology for designing e�cient high-performance adders and multipliers is
well-understood, the design of dividers still remains a serious design challenge, often viewed
as a \black-art" among system designers. Extensive theory exists describing the theory
of division. However, the implementation of division has received less attention, and very
little emphasis has been placed on studying the e�ects of FP division on overall system
performance.

This study investigates in more detail the relationship between FP divide and system
performance. This relationship is studied in the context of a set of oating-point appli-
cations. The choice of applications to use when studying the performance of a system is
often di�cult and controversial. The application suites considered for this study included
the NAS Parallel Benchmarks [5], the Perfect Benchmarks [8], and the SPECfp92 [10]
benchmark suite. An initial analysis of the instruction distribution showed that the SPEC
benchmarks had the highest frequency of oating-point operations, and they were therefore
chosen as the target workload of the study to best reect the behavior of oating-point
intensive applications.

These applications are used to investigate several questions regarding the implementa-
tion of oating-point division:

� Does a high-latency divide operation cause enough system performance degradation
to warrant a separate, lower latency divide functional unit?

� How well can a compiler schedule code in order to maximize the distance between

1

divide result production and consumption?

� What are the e�ects of increasing the width of instruction issue on e�ective divide
latency?

� If a hardware divide unit is warranted, should the divider share the FP multiplier
hardware, or should it have its own dedicated functional unit?

� Is on-the-y rounding and conversion necessary?

The remainder of this paper is organized as follows. Section 2 presents common division
algorithms and implementations. Section 3 describes the method of obtaining data from
the benchmarks. Section 4 presents and analyzes the results of the study. Section 5 is the
conclusion.

2 Divide Algorithms: General Discussion

Many classes of algorithms exist for implementing division. These include the subtractive
method, the multiplicative method, various approximation methods, and special methods
such as the CORDIC and continued product methods [1]. The most commonly used algo-
rithms in modern FPUs are the subtractive and multiplicative methods, and the analysis
here is limited to these.

2.1 Subtractive Algorithms

Digit recurrence algorithms use subtraction as the iterative operator. The quotient is rep-
resented in a radix-r form and one digit of it is calculated in every iteration. This class
be can be further divided into restoring and nonrestoring division. Restoring division is
similar to the familiar paper and pencil division. When dividing two n-bit numbers, the
division can require up to 2n + 1 adds. The Winograd bound [13] on restoring division in
gate delays is therefore:

T = (2n+ 1) log2 2n

Nonrestoring division eliminates the restoration cycles. Accordingly, the bound on non-
restoring division is given by:

T = n log2 2n

SRT is a nonrestoring division algorithm that is basically a trial and error process [11].
It utilizes the following relationship:

Pj+1 = rPj � qj+1D

To calculate a next partial remainder, the divisor is multiplied by the next quotient digit,
and the result is subtracted from the product of the last partial remainder, or dividend for
the �rst iteration, and a radix r. The next quotient digit is obtained by supplying a �xed
number of bits from the last partial remainder, approximately 8 bits for a radix-4 divider,

2

to a look-up table. By choosing a radix to be a power of 2, the product of the radix and
the last partial remainder can be formed by shifting. Similarly, the various products of
the divisor multiplied by the next quotient digit can be formed by multiplexing di�erent
multiples of the divisor. However, the problem with this basic scheme is that it requires a
full-width subtractor. Consequently, this scheme can be very slow.

In order to improve upon this basic scheme, some redundancy is often introduced into
the algorithm. An extra constraint is added to provide redundancy:

jPj+1j < kD

where k = n / (r - 1) and n is the number of positive allowed digits for the next quotient
digit. A design tradeo� can be noted in this relationship. By using a large number of allowed
digits for the next quotient digit, and thus a large value for k, a smaller look-up table is
required, and thus the complexity and latency of the table look-up can be reduced. However,
choosing a smaller number of allowed digits for the quotient simpli�es the generation of the
multiple of the divisor. Multiples that are powers of two can be formed by simply shifting.
If a multiple is required that is not a power of two (e.g. three), an additional operation
such as addition may also be required, which can add to the complexity and latency of the
divisor multiple generating process. Thus, the complexity of the look-up table and that of
generating multiples of the divisor must be balanced.

To increase the performance of the subtraction process, the partial remainders them-
selves are often kept in a redundant form. Instead of using full-width adders that require
carry propagation to compute partial remainders, a series of carry-save adders are used to
compute the next partial remainder in the delay of a single full-adder. In this way, the
conversion to a non-redundant form only needs to be done after the �nal iteration using
a full width carry propagate adder. A block diagram of a basic SRT topology is shown in
�gure 1. The critical path of the topology is shown by the dotted line.

2.2 Multiplicative Algorithms

Multiplication based algorithms obtain a reciprocal of the divisor and multiply the result
by the dividend. Flynn [2] shows that there are two main methods of iteration to evaluate
the reciprocal: the series expansion, and the Newton-Raphson iteration. The two schemes
are similar, and in fact, they have the same iteration under certain situations. Accordingly,
only the Newton-Raphson iteration is discussed here.

In the Newton-Raphson algorithm, a function is chosen which has a root at the desired
result. As the algorithm searches for the root, it creates a higher precision approximation
of the result. For division:

Q = a=b = a � (1=b);

where Q is the quotient, a is the dividend, and b is the divisor. The algorithm is used to
�nd an approximation to the reciprocal operation and then a multiplication is performed
to calculate the quotient. The following function is chosen for the algorithm which has a
root at the reciprocal:

f(X) = 1=X � b = 0

3

CLA

TABLE

MUX

Pj D

MUX

CSA

Quotient

CONVERTER

Figure 1: Basic SRT Topology

The function and its �rst derivative are evaluated at X0:

f(X0) = 1=X0 � b

f 0(X0) = �1=X2

0 :

These results are then used to �nd an approximation to the reciprocal:

X1 = X0 �
f(X0)

f 0(X0)

X1 = X0 +
(1=X0 � b)

(1=X2
0
)

X1 = X0 � (2� b �X0)

...

Xi+1 = Xi � (2� b �Xi)

As can be seen from the general relationship, each iteration involves two multiplications
and a subtraction. The subtraction is equivalent to the two's complement operation and is
commonly replaced by it. Thus, two multiplications and one two's complement operation
are performed each iteration.

As long as the second derivative of f is continuous and the approximation is su�ciently
close, the Newton-Raphson algorithm converges quadratically. The bound for Newton-
Raphson division is:

T = dlog2 ne(log3=2 2n + log2 2n)

4

2.3 Comparison

The performance of these two methods of division computation can be compared by consid-
ering the latency for �xed length operands. A widely used standard today for oating-point
representation is the IEEE 754 speci�cation [3]. The standard has two precisions, single
and double. A double precision operand is a 64-bit word, comprising a 1 bit sign, an 11
bit biased exponent, and 52 bits of mantissa, with one hidden mantissa bit. Thus, for this
format, n = 53. Comparing the latency bounds for the three algorithms presented earlier, it
can be seen that the bound for restoring division is 428 gates, for nonrestoring division it is
212 gates, and for Newton-Raphson it is 109 gates. From a latency perspective, the iterative
Newton-Raphson algorithm seems to have provide the highest performance. However, other
system issues must be considered when designing a divide functional unit besides overall
latency. These issues include cycle time, area, availability of remainder, and the e�ects on
other, possibly shared, functional units. Only when the issues are considered in the context
of an entire system can design choices be accurately made.

Actual implementations of the Newton-Raphson algorithm have yielded latencies as low
as 12 cycles. The fundamental issue in enhancing the performance of this form of division is
to initiate the algorithm with as good an approximation (i.e. as many bits of the quotient)
as possible. This is typically accomplished by the use of large look-up tables or reuse
of existing multiplier hardware [9]. While Wong [14] reports very low latencies using an
iterative scheme similar to Newton-Raphson, between 20 and 30 ns or about 3 to 6 cycles,
the chip area requirement can be quite high, due to the very large look-up tables required.
SRT implementations can have latencies of under 8 cycles. Williams [12] presents a self-
timed SRT divider with a latency between 45 ns and 160 ns. In the technology of that
divider, the latency translates into between 4 and 8 cycles. Oberman [6] reports how a
radix-256 SRT implementation can achieve a latency under 8 cycles in a reasonable cycle
time. The question still remains as to how these latencies actually a�ect system performance
and what the trade-o�s in these schemes are.

3 System Level Study

3.1 Instrumentation

As stated earlier, system performance was evaluated using the SPECfp92 benchmark suite.
This suite contains 14 CPU intensive oating point applications. All but one of them are
written in Fortran, and the other is written C.

The applications were each compiled on a DECstation 5000 using the MIPS C and For-
tran compilers at each of three levels of optimization: no optimization, O2 optimization, and
O3 optimization. O2 performs global optimization, including code motion, code scheduling,
and inlining of arithmetic statement functions. O3 performs all of O2's optimizations, but
it also implements loop unrolling [7]. By varying the level of compiler optimization, two
results were gained: how far apart a divide operation and the use of its result could be
spaced, and also the dynamic frequency of divide operations as a percentage of the total
number of operations. The compilers utilized the MIPS R3000 machine model with double

5

precision FP latencies of add = 2 cycles, multiply = 5 cycles, and divide = 19 cycles.
The resulting binaries were then instrumented using pixie, which reads an executable

�le and partitions the program into its basic blocks. Pixie then writes a new version of the
executable using this information which contains extra instructions to dynamically count
the number of times each basic block is executed. Each benchmark was then executed with
its standard input data set. As a result, each application executed approximately 3 billion
instructions.

3.2 Method of Analysis

To determine the e�ects of FP divide on overall system performance, the performance
degradation due to divide is written as:

CPIdiv = F (f; u; l)

where f is the dynamic frequency of divide instructions, u is the urgency of divide results,
and l is the functional unit latency of divide. It is clear that f is solely a function of the
application, u is a function of the application and the compiler, and l is a function of the
hardware. Thus, the system designer can only directly control l.

After the completion of execution, the program's execution characteristics were statically
analyzed. The application code, in conjunction with the basic block counts from pixie, were
used to compute many statistics regarding the dynamic execution.

4 Results

4.1 Instruction Mix

Figure 2 shows the arithmetic average of the frequency of divide operations in the bench-
mark suite relative to the total number of oating-point operations. This �gure show that
simply in terms of dynamic frequency, divide seems to be a relatively unimportant instruc-
tion, with about 3% of the dynamic oating-point instruction count due to divide. The
dominant instructions are FP multiply and add. It should be noted that add, subtract,
move, and convert operations typically utilize the FP adder hardware. Thus, FP multiply
accounts for about 37% of the instructions, and the FP adder is used for about 55% of the
instructions. However, in terms of latency, divide can play a much larger role. By assuming
a machine model where every divide instruction takes 20 cycles to complete, and the adder
and multiplier each take three cycles, a distribution of the stall time due to the FP hardware
was formed as shown in �gure 3. Here, FP divide accounts for about 40% of the latency, FP
add accounts for about 42%, and multiply accounts for the remaining 18%. It is apparent
that by improving the performance of divide, overall system performance can be improved.

4.2 Compiler E�ects

In order to analyze the impact that the compiler can have on improving system performance,
the urgency of divide results was measured as a function of compiler optimization level.

6

||0.0

|10.0

|20.0

|30.0

|40.0

|50.0

 P
er

ce
nt

 o
f

al
l F

P
 I

ns
tr

uc
ti

on
s

(%
)

div mul add sub abs mov cvtd neg cvtw

Figure 2: Instruction count distribution

||0.0

|10.0

|20.0

|30.0

|40.0

|50.0

 E
xe

cu
ti

on
 T

im
e(

%
)

div add mul

Figure 3: Functional unit stall time distribution

7

Figure 4 shows a histogram of the interlock distance for divide instructions at O0, as well
as a graph of the cumulative interlock distance for the spice benchmark. Figure 5 shows
the same data when compiled at O3. It is clear that by intelligent scheduling and loop
unrolling, the compiler is able to expose instruction-level parallelism in the applications,
decreasing u in the divide CPI function.

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 spice2g6.O0

 Interlock Distance (instructions)

 D
iv

id
e

In
st

ru
ct

io
ns

 (
%

)

Figure 4: Spice with optimization O0

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 spice2g6.O3

 Interlock Distance (instructions)

 D
iv

id
e

In
st

ru
ct

io
ns

 (
%

)

Figure 5: Spice with optimization O3

An average of the divide interlock distances from all of the benchmarks was formed,
weighted by divide frequency in each benchmark. This result is shown in �gure 6 for the
three levels of compiler optimization. In this graph, the curves represent the cumulative
number of divides at each distance.

The average number of stall cycles for a given latency divider was determined when
executing these benchmarks. This result is shown in �gure 7, again as a function of compiler
optimization level. For this analysis, it is assumed that all instructions other than divide

8

 O0
 O2
 O3

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Interlock Distance (instructions)

 D
iv

id
e

In
st

ru
ct

io
ns

 (
%

)

Figure 6: Cumulative average interlock distance

take one cycle, and that the memory system is perfect with no cache misses. This forms a
worst case bound for the e�ective divide latency.

 O0
 O2
 O3

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0

|2

|4

|6

|8

|10

|12

|14

|16
|18

 Functional Unit Latency (cycles)

 A
ve

ra
ge

 S
ta

ll
 (

cy
cl

es
)

Figure 7: Average e�ective divide latency

4.3 Overall CPI

The e�ect of divide latency on overall performance is displayed in �gure 8. This graph
shows how excess CPI, in this case the CPI due to the divide interlocks, varies with divide
unit latency between 1 and 20 cycles at an optimization level O3. Varying the optimization
level also changed the total number of instructions executed, but left the number of divide
instructions executed constant. As a result, the fraction of divide instructions is also a
function of optimization level. While CPI due to divide actually increases from O0 to O2,
the total performance at O2 and O3 would decrease because the total instruction count

9

decreases. This e�ect is summarized in table 1.
Figure 8 also shows the e�ect of increasing the number of instructions issued per cycle

on excess CPI due to divide. As the width of instruction issue increases, u increases for
divide data proportionally. In the worst case, every divide result consumer could cause a
stall equal to the functional unit latency.

Figure 8 also shows how area increases as the functional unit latency decreases. The
data for the areas are based on layouts from [6, 12, 14], all of which have been normalized
to 1.0�m MOSIS scalable CMOS layout rules. Clearly, as divide latencies decrease below 4
cycles, a large trade-o� must be made. Either a very large area penalty must be incurred
to achieve this latency by utilizing a large look-up table method, or large cycle times will
result if an SRT method is utilized.

Optimization Level Divide Frequency Excess CPI for L=20

O0 0.33% 0.057
O2 0.76% 0.093
O3 0.79% 0.091

Table 1: E�ects of compiler optimization

Figure 9 shows the excess CPI versus divide latency tradeo� over a larger range of divide
latencies. The graphs can roughly be divided into �ve regions: for l > 40 cycles corresponds
to very inexpensive 1-bit SRT schemes. They can contribute in the worst case up to 0.50
CPI in wide-issue machines. However, the area used by such schemes is small, under 2 mm2.
The second region corresponds to 2-bit SRT schemes, for 20 < l < 40 cycles. The excess
CPI in this region is 0.10 < CPI < 0.32, with an area of approximately 2.1 mm2. The third
region corresponds to 4-bit SRT schemes, for 10 < l < 20 cycles, with excess CPI in the
range 0.04 < CPI < 0.10, and area of approximately 2.75 mm2. The range from 4 < l < 10
cycles corresponds to 8-bit SRT as well as the self-timed SRT implementation of [12]. The
CPI penalty here is 0.01 < CPI < 0.07, with an area of approximately 4.5 mm2. The �nal
region consists of dividers with latencies less than or equal to 4 cycles. To achieve this
performance, with CPI < 0.01, large area is typically required for very large look-up tables,
often over 100 mm2.

4.4 Shared Multiplier E�ects

If a multiplicative based divide algorithm is chosen, it must be decided whether to use a
dedicated multiplier for this purpose, or share the existing multiplier hardware. The area
for a well-designed 3 cycle FP multiplier is around 11 mm2, again using the 1.0�m process.
Thus, adding this much area may not be always desirable. If an existing multiplier is shared,
this will have two e�ects. First, the latency through the multiplier will probably increase
due to the modi�cations necessary to support the divide operation. Second, in some cases,
as in the case of a scalar processor with a single multiplier, a multiply operation can be
stalled due to a structural hazard that the divide operation has caused by sharing the

10

 Issue 1
 Issue 2
 Issue 4
 Issue 8

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0.00

|0.02

|0.04

|0.06

|0.08

|0.10

|0.12

|0.14

|0.16

|0.18

 Divide Latency (cycles)

 E
xc

es
s

C
P

I

 Area

| | | | | | | | | | |

| 1.00

|
|

|
|

|
|

|
|
| 10.00

|
|

|
|

|
|

|
|
| 100.00

|
|

 A
re

a
(m

m
2)

Figure 8: CPI and area vs divide latency

 Issue 1
 Issue 2
 Issue 4
 Issue 8

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|0.00

|0.05

|0.10

|0.15

|0.20

|0.25

|0.30

|0.35

|0.40

|0.45

|0.50

 Divide Latency (cycles)

 E
xc

es
s

C
P

I

1.9 mm2

2.1 mm2

2.75 mm2

Figure 9: CPI and area vs divide latency

11

multiplier. The e�ect of this structural hazard on excess CPI is shown in �gure 10. Here
again, the results are based on an average of all of the applications when scheduled with
O3. In all cases of the divide latency less than 20 cycles, the excess CPI is less than 0.07.
For reasonable implementations of a multiplication based divide, with l approximately 12
cycles, the actual penalty is 0.02 < CPI < 0.04. Accordingly, due to the relatively low
frequency of divide operations, the penalty incurred for sharing an existing multiplier is not
large.

 Issue 1
 Issue 2
 Issue 4
 Issue 8

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0.00
|0.01

|0.02

|0.03

|0.04

|0.05

|0.06

|0.07

 Divide Latency (cycles)

 E
xc

es
s

C
P

I
S

tr
uc

tu
ra

l H
az

ar
d

Figure 10: Excess CPI due to shared multiplier

4.5 On-the-y Rounding and Conversion

In a nonrestoring division implementations such as SRT, an extra cycle is often required
after the division operation completes. In SRT, the quotient is typically collected in a
representation where the digits can take on both positive and negative values. Thus, at
some point, all of the values must be combined and converted into a standard representation.
This requires a full-width addition, which can be a slow operation. Additionally, to conform
to the IEEE standard, it may be necessary to round the result. This, too, can require a
slow addition.

Techniques exist for performing this rounding and conversion \on-the-y," and therefore
the extra cycle may not be needed [1]. The implementation of such a scheme is complex
and is not discussed here. Because of its complexity, the designer may not wish to add this
hardware to the divider. Figure 11 shows the performance impact of requiring an additional
cycle after the divide operation completes. For divide latencies greater than 10 cycles, less
than 20% of the total divide penalty in CPI is due to the extra cycle. At very low divide
latencies, where l is less than or equal to 4 cycles, the penalty for requiring the additional
cycle is obviously much larger, often greater than 50% of the total penalty.

12

 Issue 1
 Issue 2
 Issue 4
 Issue 8

|
0

|
5

|
10

|
15

|
20

|0

|25

|50

|75

|100

|125

 Divide Latency (cycles)

 A
dd

it
io

na
l F

ra
ct

io
n

fo
r

E
xt

ra
 C

yc
le

 C
on

ve
rs

io
n

(%
)

Figure 11: E�ects of on-the-y rounding and conversion

4.6 Consumers of Divide Results

In order to reduce the e�ective penalty due to divide, it is useful to look at which operations
actually use the divide results. Figure 12 shows a histogram of instructions that use the
divide results. This graph can be compared with that for multiply results, which appears
in �gure 13. For multiply results, the biggest users are the multiplier itself and the adder.
It should be noted that both add:d and sub:d use the FP adder. Thus, the FP adder is
the consumer for nearly 50% of the multiply results. Accordingly, fused operations such as
multiply-accumulate are reasonable. Because the multiply-add pattern occurs frequently in
such applications, and it does not require much more hardware than a typical FP multiplier,
fused multiply-adders are often used in machines today.

Looking at the consumers of divide results, the FP adder is the biggest consumer with
27% of the results. The second biggest consumer is the store operation with 23% of the
results. It is possible to overcome the penalties due to a divide-store interlock, though, with
other architectural implementations. A typical reason why a store would require a divide
result and cause an interlock is because of register pressure, due to a limited number of
registers. By either adding registers or register renaming, it may be possible to reduce the
urgency due to store.

While the percentage of divide results that the adder consumes is not as high as for
multiply results, it is still the largest quantity. A designer could consider the implementa-
tion of a fused divide-add instruction to increase performance. In divide implementations
where on-the-y conversion and rounding is not used, an extra addition cycle exists for this
purpose. It may be possible to make this a three-way addition, with the third operand
coming from a subsequent add instruction. Because this operand is known soon after the
instruction is decoded, it can be sent to the the three-way adder immediately. Thus, this
fused divide-add scheme could provide additional performance.

13

| | | | | | | | | | | ||0

|5

|10

|15

|20

|25

|30

 P
er

ce
nt

 o
f

al
l D

iv
id

e
In

st
ru

ct
io

ns

add.d swc1 mul.d cvt.d.s div.d cfc1 cvt.s.d mfc1 sub.d ctc1 c.lt.d

Figure 12: Consumers of divide results

| | | | | ||0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

 Instruction Mix

 P
er

ce
nt

 o
f

al
l M

ul
ti

pl
y

In
st

ru
ct

io
ns

mul.d add.d sub.d swc1

Figure 13: Consumers of multiply results

14

5 Conclusion

This study has investigated the issues of designing an FP divider in the context of an
entire system. The frequency and interlock distance of divide instructions in SPECfp92
benchmarks have been determined, along with other useful measurements, in order to answer
several questions regarding the implementation of a oating-point divider.

The �rst question asked was whether a hardware FP divide unit is necessary in a system.
The data shows that for the slowest hardware divider, with l > 60 cycles, the CPI penalty
is greater than 0.50. This indicates that to achieve reasonable system performance, some
form of hardware divide is required. The compiler's ability to improve system performance
due to divide was then investigated. The results showed the compiler's ability to decrease
u, and so reduce the e�ective divide latency by 30%. Most of the performance gain was in
performing basic compiler optimizations, at the level of O2. Only marginal improvement
was gained by further optimization.

The e�ects of multiple issue on divide latency were then investigated. It was clear that
increasing the number of instructions issued per cycle also increased the urgency u. On the
average, increasing the number of instructions issued per cycle to 2 caused a 38% increase
in CPI, increasing to 4 caused a 94% increase in CPI, and increasing to 8 caused a 120%
increase in CPI. Wide issue machines utilize the instruction-level parallelism in applications
by issuing multiple instructions every cycle. While this has the e�ect of decreasing the base
CPI of the processor, it exposes the functional unit latencies to a greater degree.

The question of whether an existing FP multiplier could be shared when using a multi-
plication based divide algorithm was then investigated. The results show that for a divide
latency l of around 12 cycles, the CPI penalty is between 0.025 and 0.040. This result that
due to the low frequency of divide operations combined with the low frequency of multiply
instructions that happen to occur in-between the divide result production and consump-
tion, the structural hazard is also very infrequent. While the CPI penalty is low when the
multiplier is shared and modi�ed to also perform division, the designer must also consider
latency e�ects through the multiplier which could have an impact on cycle time.

The �nal topic investigated was the necessity of on-the-y rounding and conversion. For
divide latencies greater than 10 cycles, the lack of on-the-y rounding and conversion does
not account for a signi�cant fraction of the excess CPI, and, as a result, is probably not
required.

While division is typically an infrequent operation even in oating-point intensive ap-
plications, ignoring its implementation can result in system performance degradation. By
studying several design issues related to FP division, this paper has attempted to clarify
the important components of implementing an FP divider in hardware.

6 Acknowledgement

The authors wish to thank N. Quach for his assistance throughout this work.

15

References

[1] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithms

and Implementations. Kluwer Academic Publishers, 1994.

[2] M. Flynn. On division by functional iteration. IEEE Transactions on Computers,
C-19(8), August 1970.

[3] Ansi/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

[4] Microprocessor Report, Various issues, 1994.

[5] NAS Parallel Benchmarks 8/91.

[6] S. Oberman, N. Quach, and M. Flynn. The Design and Implementation of a High-
Performance Floating-Point Divider. Technical Report No. CSL-TR-94-599, Computer
Systems Laboratory, Stanford University, January 1994.

[7] MIPS compiler reference pages.

[8] Perfect Benchmarks, University of Illinois 1992.

[9] E. Schwarz. High-Radix Algorithms for High-Order Arithmetic Operations. Techni-
cal Report No. CSL-TR-93-559, Computer Systems Laboratory, Stanford University,
January 1993.

[10] SPEC benchmark suite release 2/92.

[11] S. Waser and M. Flynn. Introduction to Arithmetic for Digital Systems Designers.
Holt, Rinehart, and Winston, 1982.

[12] T. E. Williams and M. A. Horowitz. A Zero-Overhead Self-Timed 160-ns 54-b CMOS
Divider. IEEE Journal of Solid-State Circuits, 26(11), November 1991.

[13] S. Winograd. On the time required to perform addition. Journal ACM, 12(2), 1965.

[14] D. Wong and M. Flynn. Fast Division Using Accurate Quotient Approximations to
Reduce the Number of Iterations. IEEE Transactions on Computers, 41(8), August
1992.

16

