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Abstract

This paper presents a CAD system for the automatic synthesis and verification of gate-level timed circuits.
Timed circuits are a class of asynchronous circuits that incorporate explicit timing information in the specifi-
cation which is used throughout the synthesis procedure to optimize the design. The system accepts a textual
specification capable of specifying general circuit behavior and timing requirements. This specification is au-
tomatically transformed to a graphical representation that can be analyzed using an exact and efficient timing

. analysis algorithm to find the reachable state space. From this state space, our synthesis procedure derives a
timed circuit that is hazard-free using only basic gates to facilitate the mapping to semi-custom components,
such as standard-cells and gate-arrays. The resulting gate-level timed circuit implementations are up to 40
percent smaller and 50 percent faster than those produced using other asynchronous design methodologies.
We also demonstrate that our timed designs can be smaller and faster than their synchronous counterparts.
We have also applied our timing analysis algorithm to verify efficiently not only our synthesized circuits but
also a wide collection of large, highly concurrent timed circuits that could not previously be verified using
traditional techniques.
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1 Introduction

In recent years, there has been a resurgence of interest in the design of asynchronous circuits due to their
ability to eliminate clock skew problems, achieve average case performance, adapt to processing and environ-
mental variations, and provide component modularity. Asynchronous circuits can also lower system power
requirements by reducing synchronization power, automatically powering down unused components, remov-
ing spurious transitions, and easily adjusting to a dynamic power supply. While asynchronous designs have
long been used in interface circuits, they are now being considered for the design of low-power embedded
controllers and portable devices due to their low-power advantages.

Traditional academic asynchronous design methodologies use unbounded delay assumptions, resulting in
circuits that are verifiably correct, but sacrifice timing for simplicity, leading to unnecessarily conservative
designs. In industry, however, timing is critical to reduce both chip area and circuit delay. Due to the lack
of formal methods to handle timing information correctly, circuits with timing constraints usually require
extensive simulation to gain confidence in the design. Our research bridges this gap by introducing timed
circuits in which explicit timing information is incorporated into the specification and utilized throughout
the design procedure to optimize the implementation. Timed circuits can be significantly smaller and faster
than those produced using traditional methods, and they are more reliable than those produced using adhoc
methods. The specification of timing constraints also facilitates a natural interaction between synchronous and
asynchronous circuits.

Timing considerations, however, often introduce an additional exponential factor of complexity into the
design procedure. As a result, timing analysis has hitherto either been avoided [l, 2, 31, simplified [4, 51, or
considered only after synthesis [6]. In this paper, we develop an exact and efficient timing analysis algorithm,
and apply it to the automatic synthesis and verification of gate-level timed circuits.

In our previous work, an efficient timing analysis algorithm is developed and applied to incorporate timing
considerations into the synthesis of timed circuits [7]. We verified that our timed circuit implementations
are hazard-free using Burch’s timed circuit verifier [8]. This work, however, is not without its limitations.
First, since the timing analysis is limited to only deterministic specifications, our synthesis procedure could
only be applied to a limited class of circuits. Second, our timed circuit implementations require complex-
gates, making it difficult to use semi-custom components, such as standard-cells and gate-arrays, which
are becoming increasingly important to improve time-to-market. Third, using the discrete-time verification
approach employed by Burch’s verifier is limited in its applicability since the number of discrete-time states
grows exponentially with respect to the number of concurrent events.

In this paper, we present a more general and widely applicable procedure for the synthesis and verification
of timed circuits. First, we expand the class of specifications to allow conditional operation, or choice, by
applying automatic transformations to the specification to obtain a representation which can be analyzed by
an exact and efficient timing analysis algorithm. Second, we facilitate the mapping of our implementations
to semi-custom components by adding constraints to our synthesis procedure, thereby, producing hazard-free
timed circuits using only basic gates such as AND gates, OR gates, and C-elements. Our synthesis procedure
has been fully automated in a CAD tool and applied to several examples, resulting in gate-level timed circuit
implementations which are up to 40 percent smaller and 50 percent faster than designs using other method-
ologies. After synthesis, using the same timing analysis procedure, we then verify if the synthesized timed
circuit implementation back-annotated with delays from a given cell-library satisfies its timed specification.
Our verification procedure is shown to be able to rapidly verify larger, more concurrent timed circuits than
could previously be verified using traditional techniques.

In section 2, we describe the initial textual specification language and the graphical representation translated
to for timing analysis. Section 3 describes our timing analysis algorithm and how it is used to explore the timed
state space. Section 4 explains the synthesis procedure, and section 5 describes the verification procedure.
Section 6 gives our conclusions.

I



2 Timed specifications

Many approaches could be taken to specify timed circuits including using languages such as communicating
sequential processes (CSP) [l] or graphs such as signal transition graphs (STG) [2]. Graphs are conducive to
automated timing analysis and synthesis algorithms, but they are cumbersome for specifying a large system.
Languages, however, allow large designs to be specified clearly and concisely. For these reasons, we chose to
use a language, timed handshaking expansions (THSE), as the initial specification which is then compiled to
a graphical representation, an orbital net [9], for timing analysis. This section describes our specification lan-
guage, our graphical representation, and the procedure used to compile from a specification to a representation
which can be efficiently analyzed.

2.1 Timed handshaking expansions

THSE are based on Martin’s handshaking expansions to which timing has been added and are easily derivable
from a CSP specification augmented with timing information using a method similar to Martin’s [ 11. A
specification using THSE is composed of two parts: a set of signal declarations and a set of processes
executing in parallel. Each declaration consists of a type (either input or output), a signal name, an initial
value (either true or false), and delays associated with transitions on the signal. A delay is given in the
form: (I,, u,; Zf , uf ) where I, and u,. are the lower and upper bounds on a rising transition and If and uf
are the lower and upper bounds on a falling transition. If the fall times are not specified, they are assumed
to be equal to the rise times. Each process is a set of commands repeated forever (denoted *[ C ] ). These
commands can be executed either in sequence (denoted Cl ; C2 ) or in parallel (denoted Cr 11 C2 ). Each
basic command is either an event or a wait. An event specifies when the process causes the occurrence of
either a rising transition (denoted s T) or a falling transition (denoted s I) on a signal s. A wait, on the other
hand, specifies when the process must stall for a certain set of events (denoted [ event-list ] ) caused by some
other process(es). The events in the set can be composed conjunctively  (denoted er A . . . A e,) to specify that
the process waits until it has seen all the events in the set. The events can also be composed disjunctively
(denoted ei V . . . V e,) to specify that the process waits until it has seen exactly one mutually exclusive event

A in the set. Since the semantics of the orbital net representation used in our timing analysis is event-based, the
semantics of our waits are based on events on signals rather than on values of signals. This change is made
explicit in the language by using lists of events rather than predicates on signal values in a wait command.

Within a process, a choice of behavior made by the environment may be specified. Choice is represented
with a set of guarded commands (denoted [ G1 + Cl 1 . . . / G, + Cn ] ). Each guarded command is
composed of two parts: a guard G;, which is either an event or a wait, and a set of commands C;. If the
guards in a set of guarded commands are waits, the commands associated with the first wait to be satisfied
are executed. If the guards are events, one event is nondeterministically chosen resulting in the occurrence
of the event followed by the execution of the commands that it guards. Since we allow choice but do not
allow arbitration, an event as a guard must be on a signal of type input. If an arbiter is needed, it can be
added as a special environment process. A guarded command may also loop (denoted Gi -+ Ci ; *) [lo].  If
a guarded command that loops is selected, then after the set of commands is executed, control is returned to
the beginning of the guarded command. This looping continues until a guarded command that does not loop
is selected.

The CSP specification for a port selector (SEL) is shown in Figure l(a). The CSP specification dictates
the ordering of communications on channels, but many different THSE using the signal wires shown in
Figure l(b) could implement the communications. Part of one possible THSE is shown in Figure 2 including
a few declarations, the process for the SEL being designed, and the environment process which makes the
choice of which output port to use. The basic operation of the SEL is as follows. First, the SEL waits until it
gets a request for a data transfer (i.e., xfer; T), then concurrently issues requests for the selection of an output
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port (i.e., sel, 1) and for the data to be transferred (i.e., data, t). After the SEL receives the port selection
(i.e., sell; t or seZ2; T) and acknowledgment that the data is ready (i.e., data; t), it initiates the transfer of
the data onto the selected output port (i.e., out1 0 t or out&, ]). After the SEL receives acknowledgment that
the selected port received the data (i.e., OutI; T or OUt2i I), it may acknowledge the completion of the data
transfer (i.e., tier, 1). The rest of the signals deal with resetting the four-phase handshake used to implement
the communication.

se1 se11i  Se12i0

*[ [ xfer  + ( data 11 seZ?(sell,  se12) );
[ sell + outl; xfer Xferi

outl,

I se12 + out2; xfer
OMtli

11
xfer,

o-

SEL out2,
OUt2i

data,  datai
(a> 0)

Figure 1: (a) CSP specification and (b) block diagram for a port selector (SEL).

input sell; = GfaZse,  (40,260; 2,40)};
input seZ2;  = GfaZse,  (40,260; 2,40)};
output seZo = dfalse,  (0,20)};
etc.
* [ [xfer;  t]; (([data; 11; data, t) ( 1 ([sell; J, V se& j,]; se&, 1)); [data; t];

[  [sell; t A OUtli J,] --) outl, 1; sel, 1; [outl;  t]; (xfero  T 11 data, L); outl. 1; [$eri  ./,];xfer,  i
1 [SeZ2;  1 A OUt2i j,] --) out2, 1; seZo ./,; [out2i  t]; (xfer, t II data, L); out2, L; [xferi  J];xfer, 1

11
II
* [ [sel,  t]; [ Sell i t -i [sel,  J,]; Sell;  J. I X12; t + [sel,  J,]; SeZ2;  .j, ] ]

* Iletc.

Figure 2: Part of the THSE specification for the SEL.

2.2 Orbital nets

The THSE is translated to an orbital net representation. An orbital net is essentially a labeled safe Petri net
extended with automatic net constructions and syntactic shorthands for composition and receptiveness [9].
The net constructions allow us to have relatively straightforward operational semantics, while the syntactic
shorthands allow us to compose the nets without an exponential blowup in net size. These features are
described in detail in [9]. Orbital nets also include both behavior- and constraint timing requirements as well
as simultaneous actions (i.e., transitions labeled with sets of actions). These allow us to easily mix behavior
and environmental requirements even at the gate model level. These last two features are described in detail
in the following subsections.

An orbital net is modeled by the tuple (A, P, T, F, MO, R, L) where A is the set of atomic actions, P is
the set of places, T is the set of transitions, F & (P x T) U (T x P) is the set of edges, MO C P is the initial
marking, R is an assignment of timing requirements to places, and L is a function which labels transitions with
sets of simultaneous actions. A marking is a subset of the places. For a place p E P, the preset of p (denoted
l p) is the set of transitions connected to p (i.e., l p = {t E T I (t,p) E F}), and the postset of p (denoted po)
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is the set of transitions to which p is connected (i.e., pa = {t E T 1 (p,t)  E F}). For a transition t E T, the
presets and postsets are similarly defined (i.e., l t = {p E P I (p, t) E F} and to = {p E P I (t,p)  E F}).

2.2.1 Timing requirements

Timing in an orbital net is associated with a place as a timing requirement consisting of a lower bound, an
upper bound, and a type (denoted (I, z$ype).  The lower bound is a nonnegative integer and the upper bound
is an integer greater than or equal to the lower bound, or 00. Since real values can be expressed as rationals
within any required accuracy, restricting the bounds of timing requirements to be integers does not decrease the
expressiveness of orbital nets. Since there are only a finite number of timing parameters, if any are rational,
we can multiply all of them by the least common denominator.

There are two types of timing requirements: behavior (b) and constraint(c). Behavior timing requirements
are used to specify guaranteed timing behavior. Constraint timing requirements, on the other hand, are used to
specify desired timing behavior, and they do not affect the actual timing behavior. If the timing requirement
on a place is omitted, it is assumed to be (0, cc)c.

Consider a D-type flip-flop (FF) pictured in Figure 3(a). The timing requirements for the FF are depicted
using a timing diagram in Figure 3(b) and using an orbital net in Figure 3(c). This FF has a setup time of 5
time units which is represented with a constraint timing requirement from the rising transition on the input D
to the rising transition on the clock 9. Similarly, a hold time of 5 time units is represented with a constraint
timing requirement from the rising transition on the clock 9 to the falling transition on the input D. Note
that these are requirements that the environment must satisfy, and the FF cannot guarantee this behavior. The
delay of the FF is represented as a behavior timing requirement from the rising transition of the clock p to
the rising transition on the output Q. This requirement says that the FF circuit will generate Q t between 5
and 8 time units after q 1.

D

(PILFF
(5,8)b

(a> (b) cc>

Figure 3: (a)A D-type flip-flop, (b) its timing requirements represented using a timing diagram, and (c) its
timing requirements represented using an orbital net.

-When there is a single behavior place p in the preset of a transition, regardless of the interpretation,
the time of occurrence of a transition in the postset of p (denoted t(po)) is always greater than the time of
occurrence of any transition in the preset of the place (denoted t( l p)) by at least the lower bound of the timing
requirement on p, and it is always less then the upper bound. If, on the other hand, there are multiple behavior
places in the preset of a transition, there are four different ways the specified behavior can be interpreted [SJ.
The first, or type 1, says that for all behavior places p, t(po) - t(op) must exceed the lower bound but must
not exceed the upper bound (this is the type used by our constraint places). If no possible timing behavior
satisfy these constraints, the specification is inconsistent. The second, or type 2, says that for all behavior
places P, t(pa) - t(v) must exceed the lower bound and for at least one behavior place, t(po) - t(op)  must
not exceed the upper bound. This is the type usually associated with circuit behavior, so it is the type we
associate with our behavior places. Types 3 and 4 are duals in which only a single lower bound needs to be
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(4

I (2,fW

(274)b ’

(4

Figure 4: (a) AND gate with inputs a and b, and output d; (b) orbital net for functional behavior; (c) delay
buffer with input c, output d, and delay of (4,lO).

reached (i.e., an OR relationship). These two types are not considered as they do not correspond with the
conjunctive nature of the Petri-net model.

Our timing analysis algorithm relies on the fact that each behavior place represents a single nondeterministic
choice of delay that cannot be affected by other behavior places. When there are multiple behavior places in
the preset of a transition, the type 2 semantics allow the delay between the transition in the preset and postset
of a behavior place to exceed its upper bound if the transition in the postset  is being constrained by another
behavior place. Therefore, our algorithm requires specifications to include at most a single behavior place in
the preset of each transition. Fortunately, our original orbital net specification can always be transformed, as
described later, into one which satisfies the single behavior place requirement.

2.2.2 Simultaneous actions

For a large class of speed-independent and delay-insensitive designs, any hazard is potentially fatal [ 111,  so
. simple delay models that are easy to integrate into gate models suffice. With the more complex delay models

required for modeling real-time circuit delay, such integration is no longer easy or straightforward. Labeling
each transition in an orbital net with a (possibly empty) set of simultaneous actions remedies this difficulty by
allowing the function of a gate to be modeled separate from its delay behavior without a significant blowup
in the state space size.

Consider, for example, an AND gate with a delay of 4 to 10 time units. Under the output delay model, the
gate is modeled with an instantaneous function block followed by a delay element as shown in Figure 4(a).
The orbital net corresponding to the functional behavior of the AND gate is given in Figure 4(b). In this
net, there are four places corresponding to the four states of the two input signals a and b, and the value of
c in each place tracks exactly the AND of the signals a and b. The orbital net corresponding to a simple
delay element is shown in Figure 4(c). The behavior place labeled (4,10) indicates that an output will occur
between 4 and 10 time units after the preceding input occurs; no behavior violating this requirement will be
generated by the net. The constraint places do not constrain the behavior of the net, but if another input
event occurs before the preceding output event then the environment violates the specification. Composition
of these nets gives a AND gate operating under the output delay model. In a similar manner, an AND gate
operating under the input delay model could also be obtained.

The delay model shown in Figure 4(c) is relatively simple, and it suffices for many types of circuits. More
complex delay models can and have been constructed, modeling more accurately the behavior of a gate under
hazard conditions; for these, the separation of gate models into combinational function and delay behavior is
essential [9].
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2.2.3 Operational semantics

I’ The behavior specified by an orbital net that satisfies the single behavior place requirement is defined with an
operational semantics composed of two types of operations: advancement of time and firing of transitions. In
an orbital net, an untimed state is a marking of the net. A timed state is an untimed state with a time-valued
clock cZki associated with each marked place. Each clock advances with time and denotes how long the place
has been marked. Time is advanced by uniformly increasing these clocks by an amount r which is less than or
equal to max-advance for a given marking. The function max-advance is defined as the minimum difference
over all marked behavior places between the upper bound of the timing requirement on the place and its clock,
or 00 if there are no marked behavior places. This upper limit on time advancement maintains the clocks for
all behavior places below the maximum allowed by their range.

In an orbital net, a transition is untimed-enabled if all places in its preset are marked. A transition is
timed-enabled when it is untimed-enabled and if there is a behavior place in its preset, this place’s clock is
greater than the lower bound of the timing requirement on the place. Any timed-enabled transition can be
fired instantaneously, and any number of transitions can be fired without time advancing. A transition is fired
by removing the marking in the places in its preset and discarding the clocks. The places in the postset  of the
fired transition are then marked, and all newly marked places are assigned a clock initialized to zero.

Before firing a transition, however, the constraint places in the entire net must be checked, and if any are
marked with elk; > u, this firing is marked as a failure. Also, the clocks corresponding to a marking that
is removed from a constraint place must be checked, and if elk;  < I, this firing is also marked as a failure.
Finally, after the firing of a transition, every marked behavior place must have a transition in its postset that
is untimed-enabled in the new state; if this condition is not satisfied, this firing is a failure. This requirement
ensures that every marked behavior place can fire in all states in which its timing conditions are met, and
thus the value of its clock when it fires cannot be controlled by external state. If a failure is detected during
synthesis, the specification is inconsistent and must be modified before a implementation can be obtained. If
a failure is detected during verification, the timed circuit violates its specification.

These semantics define the set of legal timedjring  sequences P, which is a sequence of pairs of transition
firings and time values. For simplicity, the time value represents a non-negative duration since the previous

* pair. Executing a timed firing sequence a on an orbital net results in the timed state fire(a). The set P is
defined recursively. The empty sequence E is in P. For every firing sequence a in P and for every value of r
such that r 5 max-advance@-e(a)),  then ~(4, r) is in P, where 4 represents an ‘empty’ firing. In addition,
if a transition t is timed-enabled in fire(a), then cr(t , 0) is also in P. The reachable state space is the range
of the function fire over P.

2.3 Translation from a timed handshaking expansion to an orbital net

The procedure to translate a THSE into an orbital net first transforms each concurrent process individually,
then composes the resulting orbital nets to obtain the complete orbital net representation. While this process
can be formalized, only an intuitive description is given here as it is beyond the scope of this paper.

The procedure to transform a process to an orbital net is initially described without choice. First, for
each signal in the specification a rising and falling transition on the signal are added to the set of atomic
actions. Next, a transition is added to the net for each occurrence of an action in either an event or a wait,
and the transition is labeled with the corresponding action. For each event in the specification, the procedure
adds a behavior place and corresponding edges to the corresponding transition from each action in an event
or wait that directly precedes it with a timing requirement taken from the declarations. The procedure also
adds a constraint place with timing requirement (0, oc)c and corresponding edges to the preset for any other
event which is separated only by waits. To handle the outer loop, the procedure considers the last events as
preceding the first events with the difference that each place that is added is initially marked.
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To address choice, care must be taken to determine whether a new place is needed or if a previously added
place is to be shared. For example, for the selection process from the SEL, the events sell; T and seZ2; T
must share the place in the postset of the event seZo T. The complete orbital net for the selection process is
shown in Figure 5(a).

(4 0-Q
Figure 5: (a) Orbital net for the selection process from the SEL; (b) part of the orbital net after composition
with the SEL process.

I

When this net is composed with the orbital net for the SEL process, different occurrences of actions in
. one process are matched with their corresponding occurrences in the other process by keeping track of their

order. Part of the orbital net after composition with the SEL process is shown in Figure 5(b). Note that as
an optimization a simple analysis of the graph determines that all the constraint places in Figure 5(a) can be
removed since there are paths through behavior places that make them redundant.

2.4 Satisfying the single behavior place requirement

Next, the orbital net is transformed to one which satisfies the single behavior ;Aace requirement. To accomplish
this, consider a fragment of an orbital net that has two behavior places in the preset of a transition shown in
Figure 6(a). The desired timing behavior can be depicted graphically as shown in Figure 6(b). This net can be
transformed to the one shown in Figure 7(a) which satisfies the single behavior place requirement. Basically,
the idea behind this net transformation is that a path through the net is created for each possible ordering of
the transitions in the preset. This has the effect that each transition in the preset is given the chance to be the
last one preventing the transitions in the postset  from occurring. For illustration purposes, additional events
CO and cl are added to the net to occur simultaneously with the two transitions associated with c. The timing
behavior of CO and cl are shown graphically in Figure 7(b) and (c), respectively. The behavior of these two
together is exactly the desired timing behavior of c. For n behavior places, the net is transformed to model
the n! possible orderings of the n enabling events. While this transformation can lead to a substantial blowup
in the net size, we have found that the value of n tends to be quite small in practical examples.

The transformation is more complicated in the case that one of the behavior places in the preset has
multiple transitions in its postset.  Consider a fragment of the orbital net from the SEL shown in Figure 8(a).
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Figure 6: (a) Fragment of the orbital net that violates the single behavior place requirement; (b) graphical
representation of the desired timing behavior.
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Figure 7: (a) Orbital net that satisfies the single behavior place requirement; graphical representation of the
timing behavior of CO (b) and cr (c).

t&J - t(a) t(q) - t(a)

In this net, the behavior place in the postset  of data; T is shared by the transitions outlO T and out2, T.
In other words, if out2, T occurs, the marking is removed before it can contribute to the firing of outl, T.
In order to model this, the net is first transformed using the procedure described above for out1  0 T and
out2, T. Then, transitions are added to the part associated with outl, 1 on out2, 1 that reset the marking, and

. similarly transitions are added to the part associated with out2 0 r on outl,  T. A portion of the transformed
net illustrating this is shown in Figure 8(b).

3 Timed state space exploration

The basic idea behind synthesis and verification methods that use explicit state space exploration is that, if the
reachable state space is finite or has a finite representation, only a finite subset of the firing sequences needs to
be considered to compute the complete set of reachable states. In orbital nets, the clocks associated with each
marking can take on real values, so there are an infinite number of timed states. In order to perform explicit
state space exploration, we must either group the timed states into a finite number of equivalence classesL
or sets, or restrict the set of values that the clocks can attain. In this section, we describe three previously
proposed techniques for timed state space exploration: unit-cubes, discrete-time, and geometric timing. Then,
we introduce our proposed technique, partial order timing, which improves upon the geometric methods by
making use of concurrency and causality information.

3.1 Unit-cubes

Alur’s unit-cube technique has the best known worst-case complexity for timed state space exploration of
general timed systems [ 141. This technique considers equivalence classes of timed states with the same
integral clock values and a particular linear ordering of the fractional values of the clocks. For the case where
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Figure 8: (a) Fragment of an orbital net with a behavior place that has multiple transitions in its postset;  (b)
pax-t of the transformed orbital net which satisfies the single behavior place requirement (note “a” and “b” are
shorthands for connections).

there are two marked places and two clocks clkr and cZk2, the equivalence classes are pictured in Figure 9(a);
every point, line segment, and interior triangle is an equivalence class. Let us assume the number of distinct
untimed states in an orbital net is IS]. If the maximum value of any timing requirement is k, and there are at
most n marked places in the net in any state (this value is trivially bounded by the size of the safe net), the
worst-case size of the state space for his method is asymptotically [9],

ISI
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’

..........

..........

..........

..........

..........
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o pclk0 I

elk,

0
0
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10

(a> 03 cc>
Figure 9: (a) Unit-cube, (b) discrete-time, and (c) geometric timing representations of the timed state space.

3.2 Discrete-time

It has been proven, however, that the general unit-cube technique is unnecessary for orbital nets since con-
sidering only integer event times gives a full characterization of the continuous-time behavior [9]. This proof
is similar to one given by Henzinger, et. al. in [ 151 for timed transition systems. In other words, only every
timed state associated with each discrete-time instance, represented as a point for the two-dimensional case in
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Figure 9(b), needs to be considered. This was the technique employed by Burch for verifying timed circuits
[8]. This technique has a worst-case state space size of IS 1 (k + 1)” which is better than the unit-cube method
by more than n!.

3.3 Geometric timing

Both unit-cubes and discrete-time, however, are of little more than theoretical interest, because the size of
the state space increases exponentially with the concurrency in the net. In general, during analysis, every
possible integer firing time must be considered for every transition in each state. For a circuit with timing
values accurate to two significant digits, with up to six independent concurrent pending events, the state space
is easily in excess of 1Or2 states-well beyond the capabilities of most finite-state synthesis and verification
techniques.

In this section, we discuss geometric timing, a timing analysis technique that usually performs well in
practice, even though the worst-case performance is much worse than either the unit-cube or the discrete-time
approaches. Dill [ 161,  Lewis [ 171,  and Berthomieu and Diaz [ 181 originated geometric state space exploration,
and it has become an active area of research [ 19, 20, 211.

3.3.1 Geometric regions

Rather than consider at each step a single discrete-time state, or a minimum equivalence class of timed states,
the geometric timing method considers an infinite set of timed states in parallel. Specifically, convex geometric
regions of timed states represented by upper and lower bounds on specific clock values and on the differences
between pairs of specific clock values are used as the representation of the timed state space. The set of such
constraints is usually represented by a matrix A, where the constraints on clocks {elk 1, . . . , elk,} are of the
form elk; - clkj 5 aj;. A fictitious clock cZk0  that is always exactly zero is introduced so that upper and lower
limits on a particular clock can be represented in the same form [ 161.

For any convex region that can be represented by such a matrix, there are many matrices that represent
the same convex region. The process of canonicalization  using Floyd’s algorithm can be performed to yield a

. unique constraint matrix [ 161. While in general Floyd’s algorithm runs in time 0( n “), since only incremental
changes are made to the matrix during analysis, specializations of Floyd’s algorithm that run in time 0 (n 2,
suffice [9]. Two sample regions are given in Figure 9(c).

3.3.2 State space exploration with geometric timing

Each geometric region can be considered as an infinite set of timed states which are operated on in parallel.
In order to perform sta?e space exploration using geometric timing, we redefine the operational semantics of
orbital nets in terms of these geometric regions as opposed to individual timed states. We do not discuss
the aspects of state spp,ce exploration that do not consider time, since they are the same in both cases. We
describe how these operations work for a single step in a timed sequence, assuming it works for the predecessor
sequence; the trivial base case and structural induction on sequences completes the proof that these operations
work for all sequences.

In our original operational semantics, advancing time involves adding some number t to all clocks. For
geometric regions, advancing time involves extruding the geometric region in the elk 1 = cZk2 = . . . = cZk,
direction, subject to max-advance, which itself is a convex region.

Determining whether a particular transition is timed-enabled in our original operational semantics entails
comparing the clocks with the timing requirements. With geometric regions, we determine the subset of the
timed states in the region for which the particular transition is enabled. This can be performed by introducing
the enabling conditions on the transition as additional constraints on the region and recanonicalizing. For
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orbital nets, these conditions describe a convex region in the appropriate form, and it is easy to show that the
intersection of two such convex regions is a convex region of the same form. Canonicalization  by definition
does not reduce the set of timed states represented.

After selecting an enabled transition, firing that transition involves removing some set of clocks and
introducing new clocks initialized to zero. With geometric regions, removing these clocks involves projection
of the system of constraints to eliminate a particular set of variables, and introducing new clocks is done by
adding a new set of variables equal to zero.

3.3.3 Performance of geometric timing

While unit-cubes and discrete-time operate on timed firing sequences, geometric timing operates over untimed
firing sequences. The function untime(a)  returns the underlying untimedjiring  sequence from a given timed
firing sequence by stripping the timing and removing any 4 firings. For each untimed firing sequence cy
operated on by geometric timing, it calculates directly the full set of timed states reachable from all timed
firing sequences p that satisfy untime(p) = cx. Thus, rather than separately considering every possible
occurrence time for a particular transition in QI during state space exploration, in one step the geometric region
method considers all possible occurrence times.

State space exploration using geometric timing can be very efficient. However, some examples require
an extremely large number of geometric regions such as the adverse example adv4x4 0 shown in Fig-
ure 10. While only having a single untimed state, standard geometric timing techniques generate an incredible
219,977,777  distinct geometric regions. This is more than either the number of discrete-time states or unit-cube
equivalence classes.

Figure 10: The adverse example adv4x4  0 with n = 4 and k = 40.

3.4 Partial order timing

In this section, we describe a new technique for timed state space exploration called partial order timing. This
technique uses partial orders to improve the standard geometric timing approach for systems with concurrency.
Recent work by Yoneda et. al. [22] also considered partial orders. Our work differs in that our formalism
includes notions of specification, circuit composition, and receptiveness which enable us to perform efficient
state space exploration on nontrivial timed circuit examples. To our knowledge, neither timed automata nor
time Petri nets have been used in this fashion.

3.4.1 Concurrency, causality, and posets

The major source of blowup in the adverse example is the way the standard geometric timing algorithm
calculates exactly the set of timed states reachable from a sequence of transition firings; the transition firings
are linearly ordered, even if they are concurrent in the system being evaluated. That is, if two concurrent
transitions start clocks, the constraints between the two clocks reflect the linear order that the transitions are
fired in the original sequence. For example, when the geometric timing algorithm analyzes the untimed firing
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sequence [a, b], it obtains the upper geometric region shown in Figure 11, and when the algorithm considers
the sequence [b, a], it obtains the lower geometric region. In general, if there are n concurrent transitions that
reset clocks visible in the resulting timed state, there are n! different sequences that need to be considered,
each of which leads to a distinct geometric region. For this reason, it is important to distinguish the causal
ordering of transitions from the non-causal ordering caused by the selection of a particular firing sequence.

Figure 11: Geometric regions from the adverse example.

To solve this problem, we construct a partially order set, or poset for each untimed firing sequence which
is represented with an acyclic, choice-free unfolding of the original orbital net. The poset reflects the causality
and concurrency inherent in the firing sequence. Initially, the unfolded net representing the poset contains
a single transition with places in its postset  corresponding to each initially marked place. Transitions are
added in the same order as they occur in the firing sequence. For each transition in the firing sequence, a
correspondingly labeled transition is added to the unfolded net. A set of arcs into the transition are connected
from the most recently added places in the unfolded net corresponding to places in the preset of the transition
in the original orbital net. Finally, a new set of places corresponding to the places in the postset of the
transition in the original net are added, and these places are connected to the new transition. Every place
and every transition in the unfolded net, except the first, correspond to some place and some transition in
the original net. Every place and every transition in the original net correspond to zero or more places and
transitions in the unfolded net.

A poset explicitly represents the concurrency in a particular firing sequence. That is, a particular poset
corresponds to many different firing sequences that differ only in the interleavings of concurrent transitions;
every such firing sequence fires the same set of transitions and leads to the same final untimed state. For
example, the poset represented with the unfolded net shown in Figure 12 corresponds both to the sequence
[a, 61 and to the sequence [b, a].

3.4.2 State space exploration with partial order timing

State space exploration proceeds just as it does for the previous methods based on sequences, except that,
for each sequence, the algorithm constructs the corresponding unfolded net. With depth-first search, this is
done incrementally. The algorithm also incrementally calculates a constraint matrix that stores the firing time
relationship among the transitions. For each constraint place p, the constraint t(ap) < t(po) is introduced. For
each behavior place p in the resulting unfolded net with a timing requirement of (I, u)b, two constraints are
introduced. The first reflects the minimum separation, t(op) - t(po) 2 -1. The second reflects the maximum
separation, t(p0) - t(op) 5 u. All constraints introduced in this fashion for a given unfolded net must be
satisfied. After canonicalizing this constraint matrix, it has produced a geometric region that represents the
full set of reachable states for the poset corresponding to the unfolded net. Applying this procedure to the

I 4m



Figure 12: One poset from the adverse example.

unfolded net shown in Figure 12, we obtain at once the geometric region which encloses both regions shown
in Figure 11.

While geometric timing operates on untimed firing sequences, partial order timing operates on posets.
The function poset takes an untimed firing sequence and returns the corresponding unfolded net. For each
untimed firing sequence Q operated on by the partial order technique, it calculates directly the full set of
timed states reachable from any timed firing sequence p such that poset(untime(P))  = poset(a). Thus, rather
than separately considering every interleaving of concurrent transitions, in one step the partial order method
considers all possible interleavings. For untimed state space exploration, different interleavings result in the
same state. For timed state space exploration, different interleavings usually result in different sets of timed
states, with different future behavior, leading to a combinatorial explosion of timed regions for each untimed
state. Representing, as a single constraint matrix, the union of all timed states reachable from all possible
interleavings, therefore, dramatically reduces the size of the state space representation. In fact, the partial
order method typically reduces the average number of timed regions for each untimed state to a value close
to one. For example, partial order timing applied to the adverse example in Figure 10 obtains exactly one

* geometric region corresponding to the one untimed state.

3.4.3 Efficiency considerations

The number of transitions in the unfolded net is equal to the length of the firing sequence plus one, and it
increases with the depth of our search. Calculating the minimum separations between the occurrence times in
the unfolded net, even with our incremental O(n2)  approach, becomes prohibitively expensive as the firing
sequence lengthens. In addition, the algorithm needs a constraint matrix for each step; this would require a
tremendous amount of storage during depth-first search.

To keep n bounded as the depth of our search increases, the algorithm determines what prefi;;,  if any,
of the unfolded net can safely be ignored. The algorithm can eliminate any transitions that no longer affect
future calculations. In general, the algorithm can eliminate a variable from any set of equations or inequalities
whenever it has produced the full set of equations or inequalities that use that variable. Since all constraints
introduced through the firing of a transition are associated with places connecting the new transition to the
old, once a transition in the unfolded net no longer has any places in its postset which do not have a transition
in their postset,  it is eliminated from our constraint matrix. Thus, our n is-at most-the number of marked
places in the original net at any given time, plus one for the current transition.

Because the number of geometric regions is typically small, a further optimization is possible. Rather
than backtracking only when an identical geometric region is found, our search can backtrack whenever a
new geometric region is a subset of a previously seen geometric region. Comparing two geometric regions
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for inclusion can be performed in 0( n2) time.

4 Synthesis procedure

Synthesis is the process of transforming a specification into a circuit implementation. Our synthesis procedure
begins with a THSE specification from which a hazard-free timed circuit implementation is generated using
only basic gates such as AND gates, OR gates, and C-elements. After the specification is compiled to an orbital
net representation as described above, the partial order timing algorithm is used to find the set of reachable
states. From the resulting state graph, there are several different approaches that could be used to obtain
a gate-level timed circuit implementation. The first approach is to use a traditional boolean minimization
technique directly. We demonstrate, however, that when mapping the resulting implementation to basic gates,
it may result in a hazardous implementation. Another approach is to split the design of the rising and falling
transitions to obtain a generalized C-element implementation [l] and decompose it to basic gates. This
technique alleviates some of the hazard problems, but we demonstrate that it may still be hazardous when
mapped, to basic gates. We take a standard C-implementation approach in which each rising and falling region
for each output signal is implemented using a single AND gate, or cube, which must satisfy certain constraints.
A covering problem is setup and solved to find an optimal implementation for each region. When all the
regions are merged, the resulting implementation is guaranteed to be a hazard-free gate-level timed circuit.

4.1 Finding the state graph

Our timing analysis algorithm operates on the orbital net representation to find the reachable state space
represented as a state graph (SG). A SG is a graph in which its vertices are untimed states and its edges are
possible state transitions.

A state graph is modeled by the tuple (I, 0, pb, r) where I is the set of input signals, 0 is the set of
output signals, @ is the set of states, and r & Pj x @ is the set of edges. For each untimed state s, there is a
corresponding labeling function s : I U 0 --) (0, R, 1, F} which returns the value of each signal and whether

. it is untimed-enabled, i.e.,

I 0 if u is stable low in s

s(u) f R if u is untimed-enabled to rise in s
1 if u is stable high in s
F if u is untimed-enabled to fall in s.

It is useful to also define a function val which strips the excitation information, i.e.,

vaZ(x)  = 0 ifx=Oorx=R
1 ifx=lorx=F.

Traditional definitions of state labeling functions have not included the enabling of signals as it can usually
be inferred from the set of state transitions. In timed circuits, however, it is possible that a signal is untimed-
enabled but not timed-enabled in a given state. In this case, there would be no state transition out of that state
in which that signal fired, and thus, it would not be possible to infer from the state graph that the signal is
untimed-enabled.

A state graph is defined to be well-formed if it is strongly connected and for any state transition (s, s ‘) in
r, the value of exactly one enabled signal in s changes to a new value in s’. A state transition (s, s’) and
the signal v that differs in value is denoted as follows: s -% s’. Our synthesis procedure also requires that
the state graph be complete state coded, defined to be that if for any two states in which all signals have the
same value, any output signal untimed-enabled in one state is also untimed-enabled in the other. It has been
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reported that adding state variables can transform an arbitrary state graph into one that satisfies complete state
coding [23,  24, 251. These approaches, however, may be conservative when timing is considered. Therefore,
we believe adding state variables in a timed specification is an interesting open research problem.

While obtaining a state graph, there may be violations of some constraint timing requirements. For our
nets, this typically occurs if an ordering assumed at the specification level is not guaranteed by the specified
behavior. If there are any constraint violations, the specification is automatically modified, if possible, to solve
the problem. If all transitions in the postset  of the violating constraint place are output signals, our procedure
transforms it to a behavior place with a default timing requirement. If any transition in the postset of the
violating constraint place is an input, it must instead slow down an earlier transition by adding a behavior
place between the transitions in the preset and the first output transition that precedes the transitions in the
postset.

For the SEL, there are four constraint violations on the places between tier; T and data, T, xfer; T and
seZo T, datai  T and outl,  1, and data; t and out2, 1‘.  All of these violations have output signals in the postset,
so they are simply changed to behavior places with a default timing requirement of (0,20)b. The final state
graph obtained for the SEL contains 53 states. A state graph generated ignoring all the timing information
contains 256 states. As shown later, this larger state graph leads to a larger circuit implementation.

4.2 Boolean minimization technique

After obtaining a state graph, we could apply a traditional Boolean minimization technique to find an imple-
mentation. Using this technique, the state space is partitioned into an on-set, an oflset,  and a don ‘t-care-set.
Then, a Boolean minimization program, such as espresso [26] can be used to find the optimal sum-of-
products representation. For our designs, a minimization problem would be setup for each output signal u
with the on-set containing each state s in which the signal is enabled to rise or is stable high (i.e., s(u) = R
or s(u) = I), the off-set containing each state s in which the signal is enabled to fall or is stable low (i.e.,
s(u) = F or s(u) = 0), and the don’t-care-set containing all unreachable states (i.e., pJuo - Q).

Applying this technique to the signal out2. from the SEL results in the Boolean equation:

out2, = (data; A se12;  A Tout2;)  V (data, A out2,) V (lxfer, A out2,)

In order to guarantee correctness, Chu [2] and Meng [3] assumed that the logic equation for each output signal
could be implemented directly with a single complex atomic gate. In other words, each signal is built with an
instantaneous function block with a delay element connected to its output. Unfortunately, if the equation is
mapped to basic gates and the delays of these gates are considered individually, the implementation may be
hazardous. For example, the equation for out2, could be implemented directly as a sum-of-products as shown
in Figure 13. If the 3-mput AND and OR gates (gates 1 and 4) are assumed to have a delay of (2,5) while
the 2-input AND gates (gates 2 and 3) have a delay of (2,3), this implementation is hazard-free. However,
if the upper bound of the delay on the 2-input AND gates increases to 4 or more time units, this circuit is
now+ hazardous. The segment of the state graph to the left illustrates a sequence of transitions which cause a
hazard. Essentially, after gate 1 has caused out2, to rise, it has the potential of being shut off again before
gates 2 or 3 can come on to hold the state.

In order to solve this problem, Lavagno 161 first mapped the logic equations ignoring hazards using standard
synchronous techniques, then added delay elements where necessary to remove any potential hazards. This
technique, however, not only adds additional overhead in terms of area and delay, but the resulting circuits
may not be very reliable due to the difficultly in designing delay elements with accurate timing.
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Figure 13: A hazardous sum-of-products implementation of out2, from the SEL.

4.3 Generalized C-element technique

Another implementation strategy originally proposed by Martin [l] is to use generalized C-elements as the basic
building blocks. This is also the technique used in our earlier work [7]. In this technique, the implementation
of the set and reset of a signal are decoupled. The basic structure is depicted in Figure 14(a) in which the
upper sum-of-products represents the logic for the set, the lower sum-of-products represents the logic for the
reset, and the result is merged with a C-element. This can be implemented directly in CMOS as a single
compact gate with weak-feedback as shown in Figure 14(b) or as a fully-static gate as shown in Figure 14(c).
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Using a procedure similar to the one described in [7], we obtain a generalized C-element implementation
for the signal out2,  shown in Figure 15. While this could be implemented with a single generalized C-element,
a gate-level implementation would be composed of a 3-input AND gate, a 2-input AND gate, and a C-element.
Although this implementation no longer has the hazard associated with the SG fragment in Figure 13, it now
has a hazard illustrated with the state graph shown to the left in which the reset AND gate glitches while the
output is stable low. For the specified delays, it can be shown that the hazard does not propagate to the output,
but given appropriate delays this hazard may propagate [ 111.  To address this problem, after a generalized
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C-element implementation is produced and decomposed to basic gates, the design could be back-annotated
with delays from the gate library, and the circuit could be verified. While this may often work, it is not clear
what to do in the cases in which a hazard does exist. Also, a hazard is a spurious transition which wastes
power and does no useful work. In a power efficient implementation, it is desirable to have logic which is
hazard-free both internally and externally.

FlOOlOlFOlO

OOOOFOFOOOO

( xferi,  datai,  selli,  se12i, outliy out2ip  xfer,,  data,, se&,, outl,  out2, >
Figure 15: A hazardous gate-level implementation of out2, from the SEL.

4.4 Standard C-implementation technique

To avoid the hazard concerns discussed above, our approach obtains a gate-level implementation by first
decomposing the design into a set of rising and falling regions which are each implemented using a single
cube. While the general structure of the standard C-implementation is similar to the generalized C-element

. structure shown in Figure 14, each cube in the set or reset block must satisfy certain constraints to guarantee
that the merged implementation is a gate-level hazard-free circuit. The approach is conservative in that timing
analysis may show that the decomposed generalized C-element implementation is sufficient, but the overhead
required tends to be small to get a safe implementation that is free of internal hazards.

4.4.1 Excitation regions and quiescent states

In order to obtain our gate-level implementation, the SG is decomposed for teach output signal into a collection
of excitation regions. An excitation region for the output signal u is a maximally connected set of states in
which the signal is enabled to change to a given value (i.e., s(u) = R or s(u) = F). If the signal is rising
in the region (i.e., s(u) = R), it is called a set region, otherwise the region is called a reset region. The
excitation regions for a signal u are indexed with the variable k and the Ph excitation region of signal u is
denoted ER(u,  k). Typically, different excitation regions correspond to different output signal transitions in
a higher-level specification. For example, there are two set regions for the signal xfer, in the SEL which
correspond to the two instances of xfer, t in the THSE in Figure 2.

For each excitation region, there is an associated set of quiescent, or stable, states Qs(u, k). For a set
region ER(u, Ic), it is the states where the signal is stable high (i.e., Qs(u, k) = {s E @ 1 s(u) = l}), and for
a reset region, it is the states where the signal is stable low (i.e., Qs(u, k) = {s E pi 1 s(u) = O}).
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4.4.2 Correct covers

In our gate-level implementation, each excitation region is implemented with a single cube corresponding to
a correct cover of the excitation region. The cover of an excitation region C(u, k) is a set of states for which
the corresponding cube in the implementation evaluates to one. A cover is a correct cover if it satisfies two
conditions. First, it must satisfy the covering constraint which says that the reachable states in the cover
must include the entire excitation region but must not include any states outside of the union of the excitation
region and associated quiescent states, i.e.,

Second, it must satisfy the entrance constraint which says that a correct cover must only be entered through
excitation region states, i.e.,

[(s,s’) E r A s $t c(u,k) A s’ E c(u,k)] j s’ E ~!%(u,b).

The definition of correct covers is based on the definition given for speed-independent circuits in [27]. This
definition differs slightly from the one in [27] in that Qs( u, k) does not need to be a maximally connected set
of states, but it is easy to show this condition is made redundant by the entrance constraint. Extending the
proof for the speed-independent case, it can be shown that these conditions ensure when the specified timing
assumptions are met that the resulting gate-level timed circuit implementation is hazard-free.

4.4.3 Finding enabled cubes and trigger cubes

Since each region is implemented with a single cube, to obtain a hazard-free implementation, all literals in the
cube must correspond to signals that are stable, i.e., constant throughout the excitation region. Otherwise, the
single-cube cover would not cover all excitation region states. When a single-cube cover exists, an excitation
region ER( u, k) can be sufficiently approximated using a cube called an enabled cube, denoted EC( u, k),
defined on each signal v as follows:

.

1

0 if V’s E ER(u,k) [vaZ(s(v))  = 0]
EC(u, k)(w) E 1 if V’s E ER(u,k) [vaZ(s(v))  = 11

X otherwise

If a signal has a value of 0 or 1 in the enabled cube, it can be used in the cube implementing the region. A cube,
such as the enabled cube, implicitly represents a set of states in the obvious way. The set of states represented
by the enabled cube is always a superset of the set of excitation region states (i.e., EC( u, k) > H?( u, k)).

Each cube in the implementation is composed of trigger signals and context signals. For a given excitation
region, a trigger signal is a signal whose firing can cause the circuit to enter the excitation region while any
non-trigger signal which is stable in the excitation region can potentially be a context signal. The set of trigger
signals for an excitation region ER( u, k) can also be represented with a cube called a trigger cube TC(u,  v)
defined as follows for each signal w:

TC(u, k)(w) ii? vaZ(s’( v)) If 3s,s’ [(s s s’) A (s fi! ER(u,k)) A (s’ E ER(u,k))]x
otherwise

In order for our synthesis procedure to generate a circuit, the cover of each excitation region must contain
all its trigger signals (i.e., C(u, k) & TC(u, k)). S ince only stable signals can be included, a necessary condition
for our algorithm to produce an implementation is that all trigger signals be stable (i.e., EC(u, k) c TC(u, k)).
If a trigger signal is not stable then we must either constrain concurrency [3], add state variables [28], or use
a more general algorithm [27].

The enabled cubes and trigger cubes are easily found with a single pass through the state graph. Table 1
shows the enabled cubes and trigger cubes corresponding to all the excitation regions in the SEL.
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Table 1: Enabled cubes and trigger cubes for the SEL.

u,k sethese t EC(U, k) TW, k)
xfec ,O set 11x0100x010 xxXX1xxxxxx

I xfer,, 1 I set I11OXO1OXOO1 I XXXXXlXXXXX I
xfer,? reset oxooxxloooo o x x x x x x x x x x
data,, 0 set 1 0 0 0 0 0 0 0 x 0 0  l x x x x x x x x x x

I data,, 1 I reset I 11X010X1010 I XXXXlXXXXXX I
data,, 2 reset 110x01x1001 xxXXx1xxxxx
sel,, 0 set 1 0 0 0 0 0 0 x 0 0 0  l x x x x x x x x x x

I sel,, 1 I reset I 11100001110 I XXXXXXXXXlX I
sel,,  2 reset 11010001101 xxxxxxxxxx1

outl,,  0 set 11100001100 x11xxxxxXXx
out& 1 reset 1xx01010010 xxxxxx10xxx

I outLO I set ~11010001100 I XlXlXXXXXXX I
out20,l reset ~1x0x0110001( xxxxxx10XXx

(xferi,  data;, sell i, sel2;, outli  7 out2;  7 xfero, datao7  do, OUtlo, OUt2,)

4.4.4 Finding an optimal correct cover

Our procedure to find a correct cover begins with a cube consisting only of the trigger signals (i.e., C( u, k) =
TC(u, k)). If this cover contains no co@icts, i.e., states that violate either the covering or entrance constraint,
we are done. This, however, is often not the case, and context signals must be added to the cube to remove
any conflicting states. For each conflict detected, the procedure determines the choices of context signals
which would exclude the conflicting state. Finding the smallest set of context signals to resolve all conflicts
is a covering problem. Due to the implication in the entrance constraint, inclusion of certain context signals

. may introduce additional conflicts which must be resolved. Therefore, the covering problem is binate.
To solve our binate covering problem, we create a covering and closure (CC) table [29]  for each region.

While other techniques exist to find binate covers such as those described in [30, 311, the CC table is simple
and facilitates presentation. There is a row in the CC table for each context signal, and there is a column for
each conflict and each conflict that could potentially arise from a context rule choice. An entry in the table
contains a cross (x ) if the context signal resolves the conflict. An entry in the table contains a dot (0) if the
inclusion of the context signal would require the conflict to be resolved.

To construct the table for a given excitation region El?@, k), the procedure first finds all states in the
initial cover (i.e., TC(u,  k)) which conflict with the covering constraint. In other words, a conflict exists in
a state s in TC(u, k) if the signal u has the same value but is not enabled (i.e., s(u) = 0 for a set region or
s(u) = 1 for a reset region), is enabled in the opposite direction (i.e., s(u) = F for a set region or s(u) = R
for a reset region), or is enabled in the same direction but the state is not in the current excitation region
(i.e., s(u) = R for a set region or s(u) = F for a reset region and s $ EC(u,  k)). If a conflict exists, the
procedure adds a new column to the table with a cross in each row corresponding to a context signal v that
would exclude the conflicting state (i.e., EC(u,  k)(w) = lvaZ(s(w))).

The next step in the table construction is to find all state transitions which conflict with the entrance
constraint in the initial cover or may conflict due to a context signal choice. For any state transition s z s’,
this is possible when s is not in the excitation region (i.e., s 4 EC(u,  k)), s’ is a quiescent state (i.e., s’(v) = 1
for a set region and s’(v) = 0 for a reset region), s’ is in the initial cover (i.e., s’ E TC(u, k)), and v excludes
s (i.e., EC(u, k)(w) = lvaZ(s(v))).  For each entrance conflict or potential entrance conflict detected, the
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procedure adds a new column to the table again with a cross in each row corresponding to a context signal
that would exclude the conflicting state. If the signal v in the state transition is a context signal, the state
S’ only needs to be excluded if v is included in the cover. This implication is represented with a dot being
placed  in the row corresponding to the signal w.

If a conflict is detected for which there is no context signal to resolve it, the CC table construction fails.
In this case, as with non-stable trigger signals, it is necessary to constrain concurrency, add state variables, or
use a more general algorithm.

In a single pass through the state graph, all the CC tables can be constructed. When implementing
(out20, 1) from the SEL, no covering conflicts are detected. This is not surprising since our complex-gate
implementation of this region only contained the trigger signals xfer. and ldata,.  There are, however, entrance
conflicts which are shown in the CC table in Table 2.

Table 2: The CC table for the region (out2,,  1) from the SEL.

Signal 11 1 1 2 1 3 ) 4 ) 5 I 6 1 7 I 8 1 9 1 10 I 11 1 12 / 13 1 14 I 15 1

The last step is to find the smallest set of context signals to implement each excitation region by solving the
CC tables that are constructed. The CC tables are solved using standard reduction rules [29] given below:
Rule 1: (Select essential rows) If a column contains only a single cross and blanks elsewhere, then the row

with the cross must be selected. The row is deleted together with all columns in which it has crosses.
Rule 2: (Remove columns with only dots) If a column has only a single dot and blanks elsewhere, the row

containing the dot must be deleted together with all columns in which it has dots.
Rule 3: (Remove dominating columns) A column Cj dominates a column Ci if it has all the crosses and dots

of Ci. If Cj dominates Ci, then Cj is deleted.
Rule 4: (Remove dominated rows) A row Ri dominates a row Rj if it (a) has all the crosses of Rj; and (b)

for every column CP in which Ri has a dot, either Rj has a dot in CP or there exists a column C, in
I which Rj has a dot, such that, disregarding the entries in rows Ri and Rj, Cp dominates C,. If Ri

dominates Rj, then Rj is deleted together with all columns in which it has dots.
Rule 5: (Remove rows with only dots) If a row only has dots, then the row is deleted together with all columns

in which it has dots.
It is important to note that when applying rule 4, two rows may mutually dominate each other. These ties
are resolved by picking the rule that provides symmetry between different regions of the same signal. This
symmetry often leads to gates being shared between regions. The table is completely solved when all columns
are eliminated, and the context signals are those corresponding to the essential rows selected by Rule 1. While
in practice these reduction rules are often sufficient to solve the table, some tables may be cyclic. To solve
the cyclic table, we use a branch and bound method.

For the SEL, the CC table for (out20, 1) is reduced to the one shown in the left-half of Table 3 after
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removing dominating columns. The CC table is further reduced to the one shown in the right-half of Table 3
after removing dominated rows. This leaves us with a choice of using either out2; or out2,  as a context signal.
In this case, they are equivalent, and we arbitrarily select Out2i.

Table 3: The CC table for the region (out20, 1) from the SEL after removing dominating columns.

Signal 1 9 11 12 14 14
xfer;

I selli II I I O I il I

out2, x x x x x

For the SEL, we derive a gate-level timed circuit implementation with 27 literals shown in Figure 16(a).
If all the timing information is ignored, we obtain a gate-level speed-independent circuit implementation with
44 literals shown in Figure 16(b). Besides being nearly 40 percent smaller, the timed circuit has reduced
latency since it requires gates with at most 3-inputs while the speed-independent circuit requires many large
gates including one with 6-inputs.

DC

oldisel,Olul”
outz,

sel,
outz,

GO (b)
Figure 16: Gate-level (a) timed and (b) speed-independent circuits for the SEL.

4.5 Experimental results

The synthesis procedure described in this paper has been fully automated within the CAD tool ATACS.
We have applied this procedure to several examples and compared our results with designs produced using
other asynchronous design methodologies including Beerel’s speed-independent method (SYN) [27],  Lavagno’s
method which adds delay elements to remove hazards (SIS) [6], and Yun’s burst-mode method (3D) [32].
Our synthesis procedure results in timed designs which are not only more efficient than designs produced by
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these other asynchronous design methodologies but also more efficient than comparable synchronous designs.
This section describes two examples in detail, an MMU controller and a DRAM controller, and summarizes
the rest of our results.

4.5.1 MMU controller

In ~71,  we presented  a complex-gate implementation of one of the six possible cycles for an asynchronous
memory management  unit (MMU) [33].  Previously, our synthesis procedure could not synthesize the complete
&sign as it contains events concurrent with the environment making a choice. The specification for the MMU
controller process is shown in Figure 17. From this specification, our synthesis procedure obtains a state
graph which contains 187 states. From the state graph, the procedure obtains a gate-level timed circuit
implementation with 62 literals depicted in Figure 18(a) using only basic gates with at most 3-inputs.  For
a gate-level speed-independent circuit implementation, the state graph explodes to 23,296 states resulting in
the circuit implementation shown in Figure 18(b) that is not only significantly larger, 114 literals, but also
significantly slower since it requires gates as large as 8 inputs!

module MMU;

( [MDs; f] -+ (([WA; J]; WA, T) iI ([Hi I V B2; I V B3; 1];& I)); [WA; 1‘1;
[ [Hi 1‘ A SW 41; --) SSR, 1‘; (WA, 1 11 & L); [SS& T]; MDso  t; SW, 1; [Mh J]; MDso I
1 [B2; 1‘ A sswi i]; + SSW,  ‘f; (WA, I; I I B, L); [SW r]; MDs, T; SSW, 1; [Mk 1.1;  M&, 1
1 [B3;  T A MSsi .J,]; + MSS, 1; (WA, J,; II B, .j,); [MSsi  l];MDso  T;MSso  I; [MDsi J];MDso I

1
11

. 11  etc.

4.5.2 DRAM controller

Figure 17: Part of the THSE for an MMU.

Our second example is a DRAM controller which is an interface between a microprocessor and a DRAM
array. Typically, a DRAM controller is implemented as a synchronous circuit. Since a DRAM controller must
interface with a synchronous environment, it cannot be implemented as a speed-independent asynchronous
circuit, but it can be implemented as a timed circuit that satisfies certain timing constraints.

‘A block diagram for the entire DRAM controller is shown in Figure 19. Our specification shown in
Figure 20 is derived from a burst-mode specification given in [34]. The DRAM controller has three possible
modes of operation: read, write, and refresh. In [7], due to this choice in the specification, in order to derive
a timed circuit implementation, the specification had to be unwound to make it deterministic. Also, the timed
circuit derived required complex-gates, and thus, it is not hazard-free at the gate-level. The synthesis procedure
reported in this paper can be directly applied to the original specification with choice to produce the gate-level
hazard-free timed circuit shown in Figure 21(a). While the two implementations have a different structure,
they are equivalent in terms of literal count (38 literals each) before optimizations, so there is no cost in
achieving hazard-freedom at the gate-level. A synchronous implementation of the DRAM controller shown in
Figure 21(b) is generated using Berkeley’s synchronous synthesis program SIS [35].  Surprisingly, our timed
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Figure 18: Gate-level (a) timed and (b) speed-independent circuits for the MMU.
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design is about 40 percent smaller and 30 percent faster. This result comes from the sequential don’t-care
information that is taken into account by the asynchronous nature of our synthesis procedure. There is also a
significant improvement in power consumption since our timed design produces no spurious transitions.

4 dtack ’
I

I
I L

I Figure 19: Block diagram for a DRAM interface.

module DRAM;
* [L kf=-eq 11 + @P T; [c -11; ras~;!a~Ab~A~reqt];(rJip~  IIr~st);[atAbtAct]

) [asw L] + ras 1; [a J,]; (dtack 1 11 we 1 II selca T); [b 1 A dds J,];cas I;
[asw T A dds l];(ras’f  II cas T II dtack 1 II we 1 11 selca l);[a  T A b ‘f]

I [asri  A ddsi]  + rasL;[aI];(dtackj,  II selca ‘Tj;[bl];casJ,;
[asw 1 A dds t];(rasT  II cas 1 1) dtack t I I selca J,); [a 1 A b t]

11
II etc.

Figure 20: Part of the THSE specification of a DRAM controller.

4.5.3 Other synthesis results

In addition to the examples described above, another design of the SEL (SEL2) is given in the table in which
the selection of the output port is performed using a single conditional signal rather than dual-rail encoding
and three signal wires. The last example is the target-send burst-mode portion of a SCSI controller (TSBM)
originally specified using a burst-mode finite-state machine in [34].

The results are tabulated in Table 4. First, we compared the literal counts (Lit) for the gate-level circuits
derived using the generalized C-element (gC) technique and our standard C-implementation techniques. Our
results show only about a 10 percent increase in literal count for generating a safe implementation that has no
internal hazards. For the first three examples, the timed implementations are compared with those produced by
SYN and SIS in terms of area represented by transistor count and delay represented as ratio of fanout of four
inverter delays. The timed implementations are about 40 percent smaller and faster than the speed-independent
ones produced by SYN. Compared with SI S, the area gains are about the same, but the improvement in delay
is now about 50 percent. The table also gives the number of reachable states (I 6, I> for timed and other methods
showing up to two orders of magnitude less states in the timed case. In fact, due to the large state space size
of the MMU example, SIS runs out of memory during synthesis. The last two examples are compared with
the 3D method with the 3D specifications and results taken from [32] assuming a 0.3ns  inverter delay in a
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Figure 21: (a) Timed and (b) synchronous circuits for a DRAM controller.

0.8pm CMOS process. For these designs, our timed circuits show about a 30 percent improvement in area
’ (comparing literal count) and delay.

5 Verification procedure

Verification is the process of checking if the circuit built satisfies its specification. There are many reasons
to use verification. First, even if a circuit is automatically synthesized using a formal, systematic synthesis
procedure, such as ours, verification provides a double-check to discover bugs in the synthesis tools. Second,
since timing assumptions must be made at the outset to synthesize a circuit, verification can be used to check
these assumptions after the circuit has been synthesized. Third, designers often perform hand-optimizations
to synthesized circuits, and these optimizations can be checked using verification. Finally, verification can be
used to measure the robustness of the design to changes in design parameters. Although a circuit may be
synthesized for one set of bounded delays, it may still work when some of the delay bounds change.

Our verification procedure requires both a specification and circuit implementation either given in or
translated to an orbital net representation. The orbital net for the specification is mirrored (i.e., inputs and
outputs are swapped) [ 121  and composed with the orbital net for the implementation. The state space is then
explored using the partial order timing analysis algorithm described earlier. If in the process of exploring the
state space a failure is detected, an error trace is returned, otherwise the timed circuit is found to implement
its timed specification.
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Table 4: Experimental results.

Timed Other Design Methodologies
gc ATACS SYN SIS 3D

Ex. I @ I Lit Lit Area Del ) @ I Area Del Area Del L i t  De l

SEL 53 25 27 104 5 256 160 7 158 11 n/a n/a
SEL2 36 19 21 76 5 128 108 6.5 130 11.5 n/a n/a
MMU 187 56 62 210  4 .5  23 ,296 412 10 out of memory n/a n/a
DRAM 79 38 38 110 5.5 n/a n/a n/a n/a n/a 46 7
TSBM 113 32 33 140 4.5 n/a n/a n/a n/a n/a 58 7.5

5.1 Behavioral semantics

In order to verify our timed circuits, we adopt as our behavioral semantics trace theory as defined by Dill
[ 121 which originated with Rem, Snepscheut, and Udding [ 131. We provide structural constructions and
syntactic shorthands for labeled safe Petri nets that correspond to the behavioral semantics operations. Burch
[8] extended trace theory semantics to timed circuits; we extend this work with an operational formalism that
allows timing in the specification, and thus hierarchical timed verification.

Dill’s trace theory is based on sequences of actions, but our nets allow transitions to be labeled with sets of
actions. A trace theory based on sequences of sets of actions yields a conformance relation that distinguishes,
for instance, interleaved and concurrent actions. In addition, composing a net that interleaves a pair of actions
with another net that has those same actions labeling one transition may lead to an unintended deadlock.
We do not attempt to resolve the complexities that arise in use of such a trace theory. Instead, we define
conservative structural conditions on the use of labels consisting of sets of actions that allow us to use Dill’s
trace theory. For instance, we cannot perform verification using traditional trace theory on the instantaneous
AND function block shown in Figure 4(a). However, when we compose that model with the simple buffer

* given in Figure 4(b) and hide the internal wire, the resulting net contains at most a single action for each
transition and traditional trace theory can be applied.

With these semantics, untimed constructions for receptiveness and synchronization apply unchanged to the
timed case. Thus, implementing verification of trace structure conformance is straightforward. Determining
whether an implementation conforms to a specification is reduced to determining if any of a specific set
of failure transitions can be enabled. In addition, the trace theory operation of mirroring is also preserved,
allowing hierarchical verification.

5.2 Generating the orbital net representations

To verify that our synthesized timed circuits implement their timed specifications, our verification procedure
begins with the THSE specification and the implementation given as a netlist of basic gates. To translate
the specification to an orbital net representation, the same procedure described earlier is used except that the
timing requirement for each behavior place in the preset of an output transition is changed to a constraint place
with timing requirement (0, oo)c. These constraints must be satisfied by the timed circuit implementation.

For each gate in the implementation, an orbital net is constructed corresponding to an instantaneous
function block such as the one given for the AND gate in Figure 4(a). This net is composed with a delay
element such as the one in Figure 4(b) with the behavioral timing requirement set by the delay given in the
gate library. Each orbital net in the implementation is composed with the other orbital nets as dictated by the
connections in the netlist.
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5.3 Reporting failures

To determine if a timed circuit implements its timed specification, the reachable state space is found using the
partial order timing algorithm for the orbital net obtained by composing the implementation with its mirrored
specification. If while exploring the state space a failure is detected, a sequences of transitions found using
a depth-first search is reported that demonstrates the failure. This sequence, however, may be quite long, so
after reporting the failure the procedure attempts to find a shorter sequence using a breadth-first search.

5.4 Experimental results

The verification procedure described in the previous section has been automated in the tool Orbits. This tool
has been incorporated into the design system for timed circuits ATACS described above. Experimental results
are given in Table 5 which were run on an HP9000/735  with 144 megabytes of memory using CScheme 7.3.
The left four columns indicate values that are the same for geometric and partial order timing. The startup
time is the time required to parse the input and construct the appropriate orbital net. The number of net nodes
is the sum of the places and transitions in the resulting orbital net. The third column gives the number of
untimed states. The fourth column gives the number of discrete states, after all timing parameters are divided
by their greatest common divisor. The next four columns give the number of geometric regions and the run
time in seconds for verification using standard geometric timing and partial order timing, respectively.

The first half of Table 5 consists of the automatically synthesized gate-level timed circuits described above.
First, we find that the number of discrete states can be quite large making discrete-time verification difficult,
if not impossible. Verification of these examples using partial order timing is also more efficient than the
geometric timing approach. Especially in the case of the DRAM controller where the verification time is
improved by over an order of magnitude.

din dout

Figure 22: The Seitz queue element, a small timed circuit.

The second half of the table consists of other timed circuits and systems that exhibit a high degree of
concurrency. For example, the seit z queue element is pictured in Figure 22; sei tz2 is two connected
copies of this circuit. The kyy examples [36] have thirty-seven gates and timing parameters given to three
significant digits. Where the examples ran out of time or space using the geometric method, often the
verification was far from done. For the sei t z 2 example, after one hour of CPU time, only 1,404 of the
4,572 untimed states have been seen, yet 473,202 distinct geometric regions have been encountered. One
particular untimed state has 13,275 distinct geometric regions at this point. Partial order timing for this
example finds the entire state space as 5,820 geometric regions in one half minute of CPU time.
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Table 5: Experimental results. Time values are given in seconds. An entry of out of time indicates that the
verification did not complete within two hours, and an entry of out of memory indicates that the verification
ran out of memory before completing.

1 phi13 11 0.19

Net Untimed Discrete Geometric timing Partial order
nodes states states regions time regions time

770 271 6.16e5 582 1.91 358 1.76
616 96 2033 130 0.33 102 0.29

2248 547 2.21e7 1163 5.22 583 2.03
1326 8093 1.17e6 70611 1492.97 8899 98.13
1464 305 49936 510 3.36 305 2.07

6 1 68921 1.52e5 164.99 1 0.01
81 1 1 2.83e6  1 out of memory 1 1 1 0.01

100
149

-
1 4.36e80 out of memory 1 60.21

144 27806 758 1 0.77 188 0.36
197 1152 9.82e5 out of time 1541- 6.98
245 9840 3.47e7 out of time 14039 159.40
355 344 2.92e13 3234 1 5.48 416 1.22
624 4572 5.48e19 out of memory 5820 29.79

1484 5266 > le20 out of memory 6083 56.74
1484 18357 > le20 out of memory 20250 321.47

6 Conclusion

This paper describes a methodology for the automatic synthesis and verification of gate-level timed circuits.
. Our synthesis procedure begins with a general THSE specification capable of specifying sequencing, concur-

rency, and choice. The specification is automatically translated to an orbital net representation which provides
an efficient formalism for modeling timed circuit behavior. We develop a timing analysis procedure using
geometric regions and partial orders to efficiently determine the reachable state space for both synthesis and
verification. Using a method that decomposes the state space into regions, our synthesis procedure obtains
a hazard-free timed circuit implementation using only basic gates, facilitating the use of semi-custom com-
ponents. We also demonstrate the effectiveness of this synthesis procedure on several practical examples,
and our results indicate that our timed circuit implementations are significantly smaller and faster than those
produced by other asynchronous and synchronous design methodologies. Our verification results show that
partial order timing verification can handle much larger, more concurrent examples than the standard discrete
or geometric methods. Partial order timing also often finds on average very close to one and no more than
two geometric regions for every untimed state which means this approach is achieving a near optimal repre-
sentation of the timed state space. By applying systematic methods that incorporate timing into asynchronous
circuit design, our procedure produces both efficient and reliable implementations opening the door to the use
of asynchronous circuits in domains previously dominated by synchronous circuits.
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