
Multipliers and Datapaths

Hesham Al-Twaijry

Michael Flynn

Technical Report : CSL-TR-94-654

December 1994

This work was supported using facilities supported by NASA contract NAG2-842

and a fellowship from Saudi Arabia.

Multipliers and Datapaths

by

Hesham Al-Twaijry

Michael Flynn

Technical Report : CSL-TR-94-654

December 1994

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

People traditionally have considered the number of counters in the critical path as the met-

ric for the performance of a multiplier. This report presents the view that tree topologies

which have the least number of levels do not always give the fastest possible multiplier when

constrained to be part of a microprocessor. It proposes two new topologies: hybrid struc-

ture and higher order arrays which are faster than conventional tree topologies for typical

datapaths.

Key Words and Phrases: Floating-Point, Multiplication, Datapaths

Copyright c 1994

by

Hesham Al-Twaijry

Michael Flynn

Contents

1 Introduction 1

2 Background 2

3 Layout 3

4 Topology 5

5 Circuits 10

6 Simulation 10

7 Results 11

8 Conclusion 16

iii

List of Figures

1 Multiplication Structures : 1

2 IEEE Double Precision Format : 2

3 Datapath Structure : 2

4 Multiplication Parallelogram : 4

5 General Layout : 5

6 Structures for Comparison : 6

7 4-2 Counter Structure : 7

8 Circuits Used : 11

9 Minimum Number of wiring tracks needed to use Complementary Signal

Circuits : 13

10 Narrow Bit Pitch Delay : 14

11 Narrow Bit Pitch Delay in \Fan Out of 4" : : : : : : : : : : : : : : : : : : 14

12 Wide Bit Pitch : 15

13 Wide Bit Pitch Delay in \Fan Out of 4" : 15

iv

List of Tables

1 Subcell Circuit Sizes : 12

2 Area of Each Circuit : 12

v

PP PP PP PP PP PP PP PP

Adder Adder Adder

Adder

Adder

Adder

Adder

Result

Adder

Adder

Adder

PP

PP

PP

PP

PP

Adder

Result

Parallel Tree Linear Array

Figure 1: Multiplication Structures

1 Introduction

Multiplication is one of the most common arithmetic operations. In fact 8.72 % of all in-

structions in typical scienti�c programs are multiplies [1]. Also, multiplication is a long

latency operation. In typical processors multiplication takes between 2 and 8 cycles. Con-

sequently, having high speed multipliers are critical for the performance of processors.

When a multiplication implementation is mapped into a 2D package the resulting imple-

mentation's shape (ow of communication) is a parallelogram. This shape occurs because

of the need to shift between the partial product rows to allow for the di�erent arithmetic

weights. Adding the counters that are needed to add the partial products, only exaggerates

this shape even more, making it oval shaped.

Traditionally in order to achieve high performance multipliers, parallel addition of the

partial products is used. These types of structures are called parallel tree structures as

shown in �gure 1. Another method used to reduce the partial products is to add the partial

products serially, creating a linear array, as also shown in �gure 1. Although both of these

structures require the same amount of hardware, the tree structure requires more complex

interconnections, and has fewer stages of delay.

This study investigates the relationship between the topology of the partial product

interconnections and possible circuit implementations. It also studies the e�ect of these

topologies on the latency of the multiplier, when the multiplier is part of a larger system.

The remainder of this paper is organized as follows. Section 2 lays the foundation by

describing the background to the problem. Section 3 presents the layout of the multiplier.

1

Sign Bit Normalized Fraction Biased Exponent
(1) (52) (11)

Figure 2: IEEE Double Precision Format

Booth Mux
(subcell)

Booth Mux
(subcell)

Booth Mux
(subcell)

Booth Mux
(subcell)

3-2 Counter

(subcell)

3-2 Counter

(subcell)

Buses or
Wiring Tracks

Booth

Encoder

(subcell)

Booth Mux

(subcell)

Booth

Encoder

(subcell)

Booth Mux

(subcell)

Booth

Encoder
(subcell)

Bit Pitch

Figure 3: Datapath Structure

Section 4 gives several topologies that are used. It also introduces two new topologies.

Section 5 gives some information about the circuits used. The simulation methodology is

presented in section 6, followed by section 7 where the results are presented.

2 Background

The datapath is part of an arithmetic processor which uses the IEEE oating point arith-

metic standard [2]. The format for double precision numbers is shown in �gure 2. The

standard de�nes numbers in a sign-magnitude, normalized format. The standard has a

normalized signi�cand, that is the most signi�cant bit of the fraction is always 1, which is

not stored. The signi�cand e�ectively becomes 53 bits because there is no need to save the

hidden \1" bit. To achieve the rounding accuracy de�ned by the standard, the full 106 bit

result has to be calculated, even though almost half of it is used only for rounding.

To reduce the number of partial products that need to be summed, the Modi�ed Booth

Algorithm [3] is used. In this algorithm, the multiplier is partitioned into overlapping

groups of 3 bits. Each group is decoded in parallel to select a partial product row. Using

this algorithm the number of partial product rows is 27.

Tree topologies give structures that have a small number of delay stages at the expense

of complex interconnections. However, when the multiplier is built as part of a bus-oriented

CMOS datapath, tree structures do not necessarily give the best performance. A bus-

oriented datapath is a highly structured design in which the data and control buses ow

2

right through the subcells of the design as shown in �gure 3. The fact that the multiplier

is part of a datapath forces that the width of the subcells or bit pitches to be constant.

Since the bit pitches are constant, one can reuse each subcell. The required structure is

achieved by varying the interconnection network of the adders. Several bit pitches were

selected to study the e�ect of the number of wiring tracks available per bit pitch. Each bit

pitch is capable of supporting a di�erent number of wiring tracks. Based on the needs of

an interconnection scheme for wiring tracks, one uses either circuits that need single-ended

or complementary signals.

In typical datapath designs the number of buses or tracks commonly available is around

fourteen per bit pitch. Only ten of these tracks are commonly available for routing. The

other four tracks are used for the routing of the two operands, result, power, and ground

buses. The power and ground can be designed such that they use a single bus by mirroring1.

These ten tracks are used to route the interconnections between the counters, in addition to

the routing of the Booth muxes outputs and inputs. Therefore, since tree structures have

complex interconnections they can not use complementary signals.

3 Layout

When a multipliers' parallelogram shape is laid out on a plane in silicon it is ine�cient. It is

wasteful because it leaves a lot of unusable silicon at the sides. Even though some hardware

for the rounding and control can be hidden in the unused space. Even if there was no

wasted silicon the layout would have a poor aspect ratio (ratio of height to width) since

the parallelogram is 106 bits wide and the datapath is only 53 bits wide. So to improve the

layout, multipliers are folded. Figure 4 gives the layout structure for the multiplier when it

is folded by the maximum amount possible. It is also possible to align the partial products

vertically and cause the equal weights to be shifted diagonally as shown in �gure 4. Aligning

is not feasible if trees are used, since aligning the partial products increases the di�culty

in wiring the counters. The di�culty arises because adjacent weight's columns trees have

di�erent interconnections, so routing the di�erent weights in each bit pitch increases the

number of wiring tracks needed dramatically. Aligning the partial products is commonly

used for arrays since the interconnections of adjacent weights are identical.

The general layout structure for the multiplier is given by �gure 5. The multiplier

operand (operand 2) is routed to the Booth encoders. The output of the Booth encoders is

then routed to the Booth muxes. The counter tree/array reduces the partial products into

two 106 bit operands that are stored in the latches that precedes the CPA (Carry Propagate

Adder). These latches are folded, and their output drives the CPA and rounding logic that

produces the �nal result.

1Mirroring is the circuit layout scheme,in which one places the power and ground buses at the edges of

the subcell. The subcells are then mirrored, so that one can place the power and ground lines of adjacent

cells on top of one another.

3

 represents, two rows.

so that row 0 & row 26 are adjecent

The Rows are then interchanged,

Tree is Folded after row 10

Note : Each Row in the diagram
0

2
4

6
8

10
12

26

14
16

18
20

22
24

26

24

20

18

22

16

14

0

2

4

6

8

10
12

0

10
8

6
4

2

26

22

18
16

20

24

Interleaved Tree Line Placement

Multiplication Parallelogram

Fold Here

Non Interleaved Line Placement

The partial products have been

 aligned. The parallelogram

 has been shifted.

Shift here
Shift here

26

14
16

18
20

22
24

0
2

4
6

8
10

12

Array Structure

Tree After Folding

Figure 4: Multiplication Parallelogram

4

Latch

Latch

Latch

Latch

Latch

Latch

B
ooth E

ncoder

CPA

B
ooth E

ncoder

Counters & Booth Muxes

Rounding Logic

Operand 1 Latch (Multiplicand)

Operand 2 Latch (Multiplier)

Figure 5: General Layout

4 Topology

The topologies that are used to reduce the partial products that were compared spanned

the spectrum from almost directly linear arrays to several tree types as shown in �gure 6,

and they include:

1. Double Linear Arrays in Parallel: This is the simplest circuit [4]. It consists of two

linear arrays in parallel. The �rst array sums the odd numbered partial products,

while the second array sums the even partial products.

This multiplier has a very regular structure, which avoids the folded parallelogram

scheme. The partial products are aligned and the sums ow diagonally.

The array structure allows for multipliers that are very easily pipelined. These

pipelined multipliers could also be designed to produce the result iteratively. Pipelin-

ing is accomplished by adding a latch at the output of each counter, whenever a stage

is required.

2. A 4-2 counter tree: The 4-2 counter is constructed from two 3-2 counters as shown in

�gure 7. The 4-2 counter is symmetric, in that it has a 2 : 1 reduction ratio, while

the 3-2 counter is not symmetric.

The 4-2 counter tree [5] has a regular and symmetric structure. 4-2 trees are commonly

used in pipelined, and iterative multipliers. The symmetric nature of the 4-2 counter

facilitates the addition of latches that are needed for pipelining after each 4-2 counter.

5

Double Linear Array 4-2 Counter Tree

OS TreeZM Tree

Figure 6: Structures for Comparison

6

3-2 Counter

3-2 Counter

From Adjaent

Counter

To Adjecent

Counter

4-2 Counter

Figure 7: 4-2 Counter Structure

Iterative and pipelined 4-2 counter trees use the same structure for each bit pitch.

Also, the multiplier is not folded, since the iterative tree only operates on small

horizontal portions of the parallelogram consecutively, so the width increase of the

multiplier is small. Both of these factors lead to an extremely regular structure.

When the 4-2 counter tree is used in a non-iterative multiplier folding is required. In

addition di�erent weights in the multiplier require slightly di�erent trees, even though

zeros are inserted in the empty slots in the counters. Folding and the di�erent tree

structures both contribute to produce a structure that is less regular than the iterative

trees.

The 4-2 counters do not have a constant requirement for wiring tracks. The number

of wiring tracks increases by two when the number of partial products is doubled.

Their wiring requirement is similar to that of Wallace trees [7]. However the growth

rate of wiring tracks in 4-2 trees is smaller. Also, their wiring requirement is more

regular, since Wallace trees which use 3-2 counters are extremely irregular making

them notoriously di�cult to layout.

The advantage of the binary tree reduction of the 4-2 trees is not all that signi�cant

for IEEE double precision numbers since the signi�cand size is not a power of two.

3. A ZM tree: This is the Balanced Delay Tree proposed by Zuras and McAllister [6].

The ZM tree is based upon the idea of balanced delay chains of counters. Trees are

constructed by combining progressively longer serial chains into serial chains below

them. The connection between the two chains is made when the total delay of the

upper chain is equal to the delay of the lower chain. That is the connection is made

when the number of counters in the critical path of upper chain of counters is as long

as the delay of the critical path of the chain of lower counters. This method builds

ZM trees of type one, which require only two tracks to feed the output of one counter

to the input of a non-adjacent counter.

7

This tree structure has a very regular layout and it requires only a few primitive

cells. This type of tree generally uses more levels of counter delay than the Wallace

tree [7] gives, for most values of partial products that must be summed. To reduce the

number of levels, ZM trees are connected in parallel to produce higher order ZM trees

of type two, etc. These higher order trees, which require a larger number of tracks,

are constructed by connecting type one ZM trees in parallel using 4-2 compactors.

These higher order trees are less regular and require more wiring tracks.

ZM trees are not easily pipelined. The pipelining of a ZM tree requires that the

outputs of the Booth muxes that are not at the �rst level, ie. those Booth muxes

whose output is after the �rst latch, must be latched in addition to the outputs of the

3-2 counters. So the number of latches required is greater than the number of latches

in a 4-2 counter tree. ZM trees can be built to produce the result iteratively using

structure that is similar to 4-2 tree.

4. An OS tree: This is the Overturned Stairs Tree that was proposed by Mou and Jutand

[8]. This method divides a tree into a body and a root. The root is the last 3-2 counter

in the tree. The body is constructed recursively. In that a body of height k, where k

is the number of 3-2 counters in the critical path, is constructed from a body of height

k-1 and a linear array of height k-2. The linear array and the body are joined using

a 5-3 counter. The 5-3 counter is constructed from two 3-2 counters in series. This

method build OS trees of type one. This tree structure requires a few primitive cells.

It requires 3 tracks to route signals between non-adjacent counters. The OS tree uses

more wiring tracks than the ZM tree. The OS tree needs more primitive cells, and it

has a less regular structure, compared to the ZM tree.

OS tree structure can give the optimal (minimum) number of counter levels for most

numbers of partial products. However, to achieve this , one has to use higher order

OS trees. Higher order OS trees can be built by replacing the linear arrays with OS

trees of type one. The higher order trees require more wiring tracks. Increasing the

order of the OS by one increases the number of tracks by three.

OS trees are not easily pipelined. The pipelining of a OS tree requires that the outputs

of the Booth muxes that are not at the �rst level, ie. those Booth muxes whose output

is added to the outputs of the �rst level counters, must be latched in addition to the

outputs of the 3-2 counters. So the number of latches required is greater than the

number of latches in a 4-2 counter tree. OS trees can be built to produce the result

iteratively using structure that is similar to ZM tree. However, OS trees are not

typically used for iterative multipliers, since 4-2 trees give a more regular topology,

that uses the same number of counter levels.

5. A Hybrid Solution. The Hybrid solution is a non-interleaved solution that tries to

make the best use of the tracks available. The unfolded regions of the parallelogram

uses a ZM/OS tree of type one. While the folded regions upper part is a ZM/OS

tree of type one and the lower part is a linear array. This type of organization allows

the circuit to use complementary circuits for pitches that it would not normally be

possible. In this solution the critical path is no longer the column with the largest

8

number of partial products, but is now at the edge of the layout. The critical path

becomes the largest linear array. This array occurs at the hinge point where the

folding occurred. This circuit has the ability to trade o� between the width of the

total design and the number of counter levels. So the number of 3-2 counter levels

can be decreased by one for the increase of 4 bit pitches. The decision to choose a ZM

or OS tree a�ects the extent of the trade o�. In that the OS tree needs more wires

but it uses less levels, so one can continue the trade o� width for number of counter

levels for a larger number of levels.

The hybrid solution can also be pipelined, similarly to the ZM tree. However, this

design is primarily proposed to reduce the latency of the multiplier using the smallest

number of wiring tracks available. It is not designed for iterative solutions, since

iterative solutions sum only a small number of partial products at a time and wiring

tracks are not a concern.

6. Higher Order Arrays: This is a class of arrays in which the 3-2 counters are designed as

several linear array chains. The chains are combined in parallel when the delay of the

upper chain is equal to the delay of the lower chain. This class of arrays can in fact be

thought of as a collection of ZM trees of type one. The ZM trees have been designed

for the column with the largest number of inputs. This design is replicated for all

other columns. In this design the non-critical columns are not optimized. This design

trades of the performance of the non-critical columns for regularity. The design is very

regular which allows the use of the aligned partial product method. The regularity of

the higher order tree is proportional to the number of linear arrays that are combined.

The smaller the number of arrays the more regular the design.

Higher order trees can be classi�ed according to the lengths of the chains of partial

products before the combining occurs. For example the 6-6-8-8 array has a linear

array that combines 6 partial products which is combined with an array the combines

6 partial products. The resulting structure is then combined with an array that

combines 8 partial products. Finally the resulting structure is combined with an

array that sums 8 partial products.

Higher order arrays are just as easily pipelined as arrays. However since their design

is proposed to reduce the latency of the multiplier using the smallest number of wiring

tracks available, pipelined iterative higher order trees are not very attractive.

Because our design is part of a datapath, we would like to keep the number of wiring

tracks for each column constant. We can accomplish this for ZM/OS trees by constraining

the folded section of the parallelogram to use a ZM or OS tree of type one, for each group

of inputs that have to be summed together, while the unfolded part uses a ZM or OS tree

of type two. This constraint has no e�ect when one is using a Booth encoded multiplier

for multiplying two IEEE double precision numbers. 4-2 trees can not achieve a constant

number of tracks, although the di�erence is only two tracks between the maximum and

minimum number of tracks required.

9

5 Circuits

Based upon the number of wiring tracks one has available and the interconnection require-

ments of the structure chosen, one uses either single-ended or complementary signal circuits.

Single-ended signals include both the static or pass transistor logic families [9]. While com-

plementary signal circuits include both the domino [10], NORA[11], and CVSL[12] logic

families.

The static logic uses NMOS and PMOS transistor trees. These trees are never simul-

taneously active in steady state, and have no steady state power dissipation. The pass

transistor logic family uses NMOS or NMOS/PMOS transistors for steering the input to

the output, and an inverter for ampli�cation. Gates in this logic family are similar to in-

verting muxes. The domino logic family gate is a pre-charge logic gate, where the internal

node is precharged high and conditionally discharged. The internal node is bu�ered from

the outside using an inverter. This is a monotonic2 gate, so one needs to generate and

propagate both the signal and its complement. NORA is similar to domino logic, except

there is no inverter and one alternates between precharge and predischarge logic. It is a

dense logic family that is faster than domino logic, because it has no inverter. It is not

commonly used because of its poor noise margins. CVSL or cascode voltage switch logic

uses two cross-coupled PMOS transistors, and it builds two NMOS trees that are con-

nected to the PMOS transistors. The NMOS trees are similar to ECL di�erential steering

trees. This logic family is extremely good for implementing complex gates such as parity

tree. An expanded discussion about the merits and disadvantages of each logic family when

implementing counters can be found in Song[13]

The circuits that were modeled are shown in �gure 8. For the single-ended circuits, pass

transistor logic family was chosen, and for the complementary signal circuits, domino logic

was used.

6 Simulation

The circuits were simulated using HSPICE. They were simulated for an HP 0:8�m processes.

The simulations are run for typical processing conditions at 25oC. The simulation includes

the wire delays that are modeled using the Ersatzco [14] wire model. This model calculates

the wire RC delay by placing half the wires capacitance on each side of the wires resistance.

The capacitance is calculated using the parallel plate model, with fringing capacitance.

This model has the advantage of being computationally simple, while still providing accurate

results. The transistor models include an approximation of the gate and source capacitances

that is calculated automatically by HSPICE.

The tree circuits were simulated, using two cases. The �rst case has the inputs for the

two trees of the folded part of the parallelogram interleaved. The second case has them

separated (non-interleaved). The �rst case has the advantage that it leads to a smaller

circuit because it uses fewer Booth encoders. It also has the advantage that the Booth

encoding is faster because there is less wire capacitance between the latch outputs and the

2All signals change in only one direction when evaluating.

10

Carry

Domino 3-2 CounterPass Transistor 3-2 Counter

c b a

Sum

φ

c

Sum

Sum Carry

Carry

c

φ

a
a

b
b

Figure 8: Circuits Used

Booth encoder inputs. The second method has the advantage that adjacent counters in

which the input of one is the output of the previous counter do not have to use a wiring

track.

The delays are measured from the time the input is latched into the circuit by the system

clock in the latches to the time the result becomes available at the output of the trees before

the CPA.

7 Results

For simplicity two bit pitches where chosen to compare the various interconnection methods.

The sizes of the various circuits used for each bit pitch is given in table 1.

Table 2 gives the area for each possible design. In this table for the type column, A

refers to Array, interleaved is represented by the letter I, the �rst N refers to non-interleaved,

the second N represent narrow, and W refers to wide. For the circuit used column S-E is

single-ended and comp is complementary. From this table it is apparent that the areas

needed by the designs are the same. This is because of the assumption that the design of

the multiplier is part of a larger design. The only di�erence between the di�erent designs

is in the use of the available wiring tracks.

There is some lost silicon area that is not used in the Booth encoder columns. This lost

area corresponds to the area in the Booth encoder column that is adjacent to the counters.

This is shown in �gure 3 where the lost space corresponds to the area above the counters.

The reason that the wide bit pitches have a smaller area is because their 3-2 counters have a

smaller length Thus, generating less wasted area. The table also shows that the Array and

hybrid designs are the largest narrow designs. This is because the complementary circuits

11

Circuit Bit pitch Type Length Width

(�) (�)

Latch Narrow Pass Trans 250 40

Wide Pass Trans 130 80

3-2 Counter Narrow Pass Trans 72 40

Narrow Domino 105 40

Wide Domino 55 80

4-2 Counter Narrow Pass Trans 145 40

Wide Domino 210 80

Booth Encoder Narrow Pass Trans 32 248

Wide Pass Trans 20 450

Booth Mux Narrow Pass Trans 32 40

Wide Pass Trans 20 80

Table 1: Subcell Circuit Sizes

Structure Type Circuit Length Width Area

used (mm) (mm) (mm
2)

Double A-N Comp 4.26 2.970 12.6522

Linear Arrays

ZM Trees I-N S-E 3.40 2.725 9.2650

N-N S-E 3.40 2.970 10.0980

I-W Comp 1.18 5.220 6.1596

N-W Comp 1.18 5.670 6.6906

4-2 Trees I-N S-E 3.40 2.725 9.2650

N-N S-E 3.40 3.050 10.3700

I-W Comp 1.18 5.220 6.1596

N-W Comp 1.18 5.750 6.7850

OS Tree I-N S-E 3.40 2.725 9.2650

N-N S-E 3.40 2.970 10.0980

I-W Comp 1.18 5.220 6.1596

N-W Comp 1.18 5.670 6.6906

Hybrid N-N Comp 4.26 2.970 12.6522

High Order Trees A-N Comp 4.26 2.970 12.6522

Table 2: Area of Each Circuit

12

||0.0

|5.0

|10.0

|15.0

|20.0

|25.0

|30.0

|35.0

 W
ir

in
g

T
ra

ck
s

DA ZM-I ZM-N 42-I 42-N OS-I OS-N Hybrid HA

Figure 9: Minimum Number of wiring tracks needed to use Complementary Signal Circuits

used for the counters are larger than the single-ended circuits used for the counters.

The critical number of wiring tracks needed for each kind of the tree to use the comple-

mentary signal circuits is given by �gure 9. The critical column for wire congestion for most

topologies is not the critical path, but rather the hinge point where the folding occurred

for the tree organizations. This is because there are two comparably sized partial products

sets that must be reduced, and they share the wiring tracks.

From this �gure non-interleaved placement of partial product rows allows the use of

complementary signals before the interleaved method for all circuit topologies, since they

require a smaller number of wiring tracks. The hybrid solution and the higher order trees

require the smallest number of wiring tracks, because they use linear arrays that do not

need any wiring tracks.

The results of the HSPICE simulations for the narrow bit pitch are summarized in

�gure 10 and in �gure 11 which gives the results using the technology independent \fanout

of 4" (FO4) metric. In these �gures there is a di�erence between the overall delay and sum

of the Booth and tree delays in the complementary circuits. This di�erence is due to the

delay in the clock used to initiate the complementary circuit. This di�erence does occur in

reality although it can be minimized by careful design.

For the narrow bit pitch the hybrid solution gives the fastest multiplier, since it is able

to use the faster complementary signal circuits. The higher order arrays are also able to

use complementary signals and need fewer levels of 3-2 counters than the hybrid scheme.

However, they are slower than the hybrid solution because they have much longer wires.

13

 Booth

 Tree

 Total

||0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

 D
el

ay
 (

ns
)

DA ZM-I ZM-N 42-I 42-N OS-I OS-N Hybrid HA(6688) HA(33579)

Figure 10: Narrow Bit Pitch Delay

 Total

 Tree

 Booth

||0.0

|5.0

|10.0

|15.0

|20.0

|25.0

|30.0

|35.0
|40.0

 D
el

ay
 (

FO
4)

DA ZM-I ZM-N 42-I 42-N OS-I OS-N Hybrid HA(6688) HA(33579)

Figure 11: Narrow Bit Pitch Delay in \Fan Out of 4"

14

 Booth

 Tree

 Total

||0.0

|2.0

|4.0

|6.0

|8.0

|10.0

 D
el

ay
 (

ns
)

ZM-I ZM-N 42-I 42-N OS-I OS-N

Figure 12: Wide Bit Pitch

 Total

 Tree

 Booth

||0.0

|5.0

|10.0

|15.0

|20.0

|25.0

|30.0

 D
el

ay
 (

FO
4)

ZM-I ZM-N 42-I 42-N OS-I OS-N

Figure 13: Wide Bit Pitch Delay in \Fan Out of 4"

15

They should give better performance for the ECL circuits where wire capacitance is not

such a dominating factor. Higher order arrays also have the advantage of being much more

regular than the hybrid solution. The advantage of the hybrid topology and higher order

arrays remains until the bit pitch is su�cient to allow the use of a tree with complementary

circuits.

Surprisingly, for the narrow bit pitch the double-linear array, which is extremely regular,

gives comparable performance to the tree topologies that can only use single-ended signal

circuits.

The results for the wide bit pitch are summarized in �gure 12 and in �gure 13. The

wide bit pitch has better performance than the narrow bit pitch, since the wide bit pitch

allows the use of complementary circuits with any topology. However, this wide bit pitch is

not commonly used because of its large value (80�). The wide bit pitch circuits also have

a large di�erence in their aspect ratio, in that they are much wider than they are long.

Between the tree topologies, the OS tree gives the best performance. This is due to two

factors. The �rst factor is that it is able to achieve the same number of levels as the wallace

trees. The second factor is that it has an even distribution of wire lengths. The ZM tree

provides better performance than the 4-2 tree, even though they have the same number

of counter levels, because it has a more even distribution of the wire lengths between the

counters.

As a general consideration the interleaved topology multipliers are faster than the non-

interleaved multipliers as they speed up Booth encoding by using less capacitance between

the Booth encoders and the Latch outputs. However, interleaved topologies require more

wiring tracks, so it is possible, if the bit pitch had only 20 tracks, the non-interleaved

topologies would be able to use complementary signal circuits, while the interleaved topology

can only use single-ended circuits.

8 Conclusion

The number of 3-2 counters in the critical path of the multiplier is not the deciding factor

in determining the latency of a multiplier. The topology chosen is at least as important in

determining the latency. Therefore, to build the fastest possible circuits one has to trade-o�

the number of 3-2 counter levels with the number of available wiring tracks per bit pitch.

The paper introduced the hybrid structure and higher order arrays which o�er alter-

natives, such that complementary signals can be used for narrow bit pitches. The hybrid

structure and higher order arrays performance is comparable and which one is better should

depend on the implementation and available bit pitches. When wires are not a limitation

OS trees give the best performance. ZM trees give the best performance only in those

situations when they are able to use complementary logic and OS trees can not.

The non-interleaved organization of partial product rows allows the use of complemen-

tary signals before the interleaved organization of the partial product rows. However the

non-interleaved organization requires a larger area.

These results are not only unique to CMOS circuits, but they can be generalized to ECL

circuits, in the Di�erential vs. Single-Ended issue.

16

9 Acknowledgement

The authors wish to thank N. Quach for his assistance throughout this work.

References

[1] Stuart Oberman and Michael Flynn, \Design issues in Floating Point Division", Tech-

nical Report: CSL-TR-94-647 Stanford University.

[2] An American National Standard, \IEEE Standard for Floating Point Arithmetic",

ANSI/IEEE standard 754-1985

[3] O.L. McSorley, \High Speed Arithmetic in Binary Computers", Proceedings of the IRE,

49(1), pp. 67-91, Jan 1961.

[4] J. L. Hennessy and D. A. Patterson, \Computer Architecture, A Quantitative Ap-

proach", Morgan-Kaufmann, pp. A44-A48, 1990.

[5] M. Santoro, \Design and Clocking of VLSI Multipliers", Ph.D. Thesis, Stanford Uni-

versity, Oct. 1989

[6] D. Zuras and W. McAllister, \Balanced Delay Trees and Combinatorial Division in

VLSI,"IEEE J. Solid-State Circuits, vol SC-21, No.5, pp. 814-819, Oct. 1986

[7] C. S. Wallace, \A Suggestion for a Fast Multiplier", IEEE Trans. Electronic Computers,

pp. 14-17, Feb. 1964.

[8] Z. Mou and F. Jutand, \A Class of Close to Optimum Adder Trees allowing Regular

and Compact Layout", IEEE Trans. Computers, pp. 251-254, 1990.

[9] C. A.Mead and L. A. Conway, \Introduction to VLSI systems", Reading, MA, Addison

Wesley, 1980.

[10] R. Krambeck, C. Lee and H-F. Lew, \High Speed Compact Circuits with CMOS",

IEEE Journal of Solid State, pp. 614-618, June 1982.

[11] N. Goncalves and H. DeMan, \NORA: A Race Free Dynamic CMOS technique for

Pipelined Logic Structures", IEEE Journal of Solid State Circuits, Vol SC-18, No.3,

pp. 261-266, June 1983.

[12] L. Heller, W. Gri�n, J. Davis and N. Thomas, \Cascode Voltage Switch Logic: A

di�erential CMOS Logic Family", IEEE International Solid State Conference, pp. 16-

19, Feb. 1984.

[13] P. Song, \New circuit and structures for combinatorial multipliers", Ph.D. Thesis Stan-

ford University, 1993.

[14] M. Horowitz, EE371 Class notes.

17

