
INSTRUCTION LEVEL PARALLEL

PROCESSORS|A NEW

ARCHITECTURAL MODEL FOR

SIMULATION AND ANALYSIS

Kevin W. Rudd

Technical Report: CSL-TR-94-657

December 1994

This work was supported in part by NASA-Ames under grant NAG2-248.

INSTRUCTION LEVEL PARALLEL PROCESSORS|A NEW

ARCHITECTURAL MODEL FOR SIMULATION AND ANALYSIS

by

Kevin W. Rudd

Technical Report: CSL-TR-94-657

December 1994

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

Trends in high-performance computer architecture have led to the development of in-

creased clock-rate and dynamic multiple-instruction issue processor designs. There have

been problems combining both these techniques due to the pressure that the complex

scheduling and issue logic puts on the cycle time. This problem has limited the per-

formance of multiple-instruction issue architectures. The alternative approach of static

multiple-operation issue avoids the clock-rate problem by allowing the hardware to concur-

rently issue only those operations that the compiler scheduled to be issued concurrently.

Since there is no hardware support required to achieve multiple-operation issue (there are

multiple operations in a single instruction and the hardware issues a single instruction at

a time), these designs can be e�ectively scaled to high clock rates. However, these designs

have the problem that the scheduling of operations into instructions is rigid and to increase

the performance of the system the entire system must be scaled uniformly so that the static

schedule is not compromised. This report describes an architectural model that allows a

range of hybrid architectures to be studied.

KeyWords and Phrases: super-scalar, superscalar, VLIW, instruction level parallelism,

computer architecture, static scheduling, dynamic scheduling, processor simulation.

Copyright c
 1994

by

Kevin W. Rudd

Contents

1 Introduction 1

2 Super-scalar issue techniques 1

2.1 Dynamic super-scalar issue techniques|dynamic multi-instruction issue pro-

cessors : 2

2.2 Static super-scalar issue techniques|static multi-operation issue processors : 2

2.3 Issues leading to a hybrid design : 3

2.4 Hybrid architecture conclusions : 6

3 The split-issue execution paradigm 6

3.1 An introduction to split-issue : 8

3.2 A tabular representation for split-issue : 10

3.3 Representation of a traditional static multi-operation issue processor : : : : : 12

3.4 Further examples of split-issue techniques : : : : : : : : : : : : : : : : : : : 13

4 The NYFO VLIW model 17

4.1 Stages in an NYFO VLIW model : 18

4.2 Elaboration on the invoke stage : 19

4.3 Elaboration on the compute stage : 20

4.4 Implementation policies : 21

5 Example implementation descriptions 22

5.1 Simple static multi-operation issue implementation : : : : : : : : : : : : : : : 22

5.2 Simple dynamic multi-instruction issue implementation : : : : : : : : : : : : : 23

6 Conclusion 24

7 Acknowledgments 24

A Illustrative code fragments 24

iii

1 Introduction

High-performance processor design has recently taken two di�erent (and often diametrically

opposed) approaches. One approach used to design a high-performance processor is to

increase the execution rate by increasing the clock rate of the processor or by reducing the

latency of operations. These improvements are primarily through the application of circuit

design and fabrication process enhancements and, while important, are outside the scope

of this report. Another approach used to design a high-performance processor is to issue

and to execute multiple operations concurrently. Traditional processor designs that issue

and execute at most one operation per cycle have been referred to as \scalar" designs1.

Processor designs that can issue and execute more than one operation per cycle will be

referred to as \super-scalar" processors.

Historically, there have been two primary techniques used to achieve super-scalar perfor-

mance. The �rst technique uses dynamic analysis of the instruction stream during execution

to determine those operations that are independent. These independent operations can be

issued and executed concurrently. The second technique uses static analysis performed by

the compiler to schedule independent operations together into compound multi-operation

instructions. All operations in a given instruction can be issued and executed concurrently

with no dynamic analysis. Both of these approaches to processor design have advantages

and disadvantages and both have demonstrated signi�cant problems that have limited their

performance. We have developed an architectural model that will be used as a research

platform to evaluate a number of con�guration and policy trade-o�s in a design space that

spans these two techniques and allows a variety of hybrid architectures to be compared.

Section 2 describes these two techniques in more detail and develops the need for explor-

ing hybrid architectures to achieve scalable high-performance processor designs. Section 3

describes the execution paradigm that supports modeling a range of processors that spans

these two techniques and provides several examples to clarify its organization and behavior.

Section 4 describes the model in detail. This model is parametric not only in con�guration

(number and type of function units, architectural and implementation latencies) but also in

several of the key policies that a�ect the behavior of the architecture. Section 5 describes

several examples to reinforce the features and operation of the model.

2 Super-scalar issue techniques

As recent designs have demonstrated, neither dynamic nor static techniques alone have been

su�cient to achieve high performance. The obvious consequence of this situation is that

hybrid techniques should be considered as a general and e�ective solution to the problem

of achieving high-performance in a super-scalar processor.

1Each operation in a \scalar" processor operates on single (scalar) data values in contrast to a \vector"
processor which, while executing only a single operation at a time, execute the operation on multiple (vector)

data values.

1

2.1 Dynamic super-scalar issue techniques|dynamic multi-instruction is-

sue processors

The most popular technique today is the use of dynamic analysis to determine the operations

that are available for concurrent issue and execution. Processors that use this technique

are dynamic multi-instruction issue processors and are frequently referred to as superscalar

processors|an unfortunate but not untrue nomenclature since this technique is but one of

many techniques that achieve super-scalar performance. In this type of architecture, each

instruction in the instruction stream consists of a single operation. In order to issue and

to execute multiple operations concurrently, operations in the instruction stream must be

analyzed for dependencies each time that issue is attempted. Compilers minimize the actual

dependencies that an instruction stream will have but if the compiler cannot, or does not,

prevent a dependency, the hardware must ensure that all dependencies are detected and

enforced. This technique has signi�cant advantages, one of which is code compatibility with

other processors sharing the same architecture|a signi�cant advantage in the marketplace

if not in the research laboratory. Another advantage is that, since the analysis is based on

the dynamic code stream, operations across branches and other changes of control
ow are

considered for concurrent issue and execution.

The major drawback of using dynamic analysis in a dynamic multi-instruction issue pro-

cessor is that it requires a signi�cant amount of hardware to analyze the instruction stream

and to ensure that correctness is maintained. This approach lengthens the amount of time

required to perform operation issue and can result in an increased cycle time (resulting in

a reduced clock rate) or an increased pipeline length (resulting in increased branch penal-

ties). Neither of these results is desirable and and the increase in performance from the

concurrent issue and execution of multiple operations can be reduced or eliminated due to

these problems. The complexity of the hardware required to perform the analysis is limited

by both the number of operations within the analysis window (proportional to n2 where

n is the window size) and the maximum number of pending register results (proportional

to k where k is the number of pending results). Existing designs have had di�culty with

dynamically analyzing 2 to 4 operations and even with low issue widths have been limited

to exploiting only those cases that match speci�c patterns of operations.

2.2 Static super-scalar issue techniques|static multi-operation issue pro-

cessors

An alternative technique is the use of static analysis to determine the operations that

are available for concurrent issue and execution. Processors that use this technique are

static multi-operation issue processors and are frequently referred to VLIW processors|these

processors have very long instruction words. In this type of architecture, each instruction

in the instruction stream consists of multiple independent operations. No dynamic analysis

is required to issue and execute these operations concurrently|the compiler performs any

necessary analysis and schedules independent operations within a single instruction. Since

no dynamic analysis is required during execution, the clock rate is not limited by the

instruction issue logic and wide and fast processor designs are feasible. It is possible that

2

there will be independent operations within several instructions|but, in order to issue and

execute operations from multiple instructions concurrently, similar techniques to those used

in dynamic multi-instruction issue processors would be required and similar complexity issues

would arise.

Using static analysis in a static multi-operation issue processor is not without its problems.

While there is no complex hardware to limit the performance, there is the requirement that

the compiler have full knowledge of the hardware structure and latencies. This requirement

is necessary since there are typically no interlocks on data dependencies and operations must

not be scheduled until the source operands are ready. A side e�ect is that the hardware

cannot vary from the speci�cation that the compiler works with|all latencies (measured in

cycles) must be constant. Thus, while the entire system can be improved if the speed-up is

uniform, individual portions of the system cannot be improved upon independently without

requiring that the program be recompiled in order to run on the new system. Another side

e�ect is that since latencies are constant, operations with non-constant latencies cannot be

supported. Load operations from a memory hierarchy that has multiple levels (and includes

data caches) have multiple latencies depending on the location of the data within the mem-

ory hierarchy. This makes data caches unusable in a static multi-operation issue architecture

and results in memory operations that have very long latencies. However, there are many

programs that are able to be e�ciently scheduled with long memory operation latencies.

These programs are frequently loop-based
oating point programs are able to be scheduled

to hide the memory latency within loops and calculations. Existing implementations have

been able to exploit instructions that are 28 operations wide [4] on this class of application.

Unfortunately, there are also many programs that are not able to hide the long memory

latency and these programs do extremely poorly on these processors.

2.3 Issues leading to a hybrid design

Clearly, both dynamic multi-instruction issue and the static multi-operation issue techniques

can be used to achieve super-scalar performance and neither one has been proven to be

superior to the other in all cases. However, these techniques are not mutually exclusive

and some combination of static and dynamic techniques may result in an architecture that

tolerates multiple latency operations and is e�cient at wide instruction widths. In order to

understand the aspects of these techniques that must be considered in a hybrid architecture,

several issues must �rst be discussed.

One fundamental distinction that must be made is the separation of architectural and

implementation speci�cations. An architectural speci�cation determines the operation se-

mantics that the compiler must schedule code for to ensure a correct schedule and de�nes

the virtual processor. An implementation speci�cation determines the operation seman-

tics that are actually implemented|but this must be transparent outside the processor so

that code that is scheduled to the architectural speci�cation will run. For example, an

add operation may have an architectural latency of 2~ while a given implementation may

have a latency of 3~|this is not a problem as long as the implementation ensures that the

instruction stream will see the result as if it had occurred in 2~ as scheduled.

The notion of architectural and implementation speci�cations lead directly to the notion

3

of virtual time and latency and real time and latency. Operations are scheduled according

to the architectural speci�cation in virtual time and appear to have virtual latency while

they execute on the hardware according to the implementation speci�cation in real time

and have real latency. The implementation of the processor provides the illusion of a

virtual processor that implements the architectural speci�cation in much the same way

that memory management hardware and operating system software provide the illusion of

virtual memory|in both cases the reality is potentially very di�erent from the illusion and

yet there is no awareness of reality to the program.

In order to maintain the illusion of the virtual machine, when a result is generated earlier

in real time than the virtual latency speci�es, the result must be delayed so that it does not

become visible to the instruction stream until the appropriate virtual time. Analogously,

when a result is generated later in real time than the virtual latency speci�es, any opera-

tions that use the result (as scheduled in virtual time) are delayed appropriately until the

result is available. This distinction has been implicitly true within dynamic multi-instruction

issue architectures (where operation reordering avoids data dependencies when possible and

interlocks prevent data dependencies from occurring); there is no distinction between archi-

tecture and implementation in static multi-operation issue architectures since no operation

variation is allowed2. The distinction between the architecture and the speci�cation as it

applies to dynamic VLIW architectures was noted in [5].

Most operations in a dynamic multi-instruction issue architecture have a virtual latency

of 1~|that is, the hardware guarantees that dependent operations that are scheduled

consecutively (and which, in the virtual machine, issue in consecutive virtual cycles) will

produce the desired result. The few exceptions are typically memory load and control

ow operations which often have a virtual latency of 2~ and are speci�ed with a \load

delay slot" or a \branch delay slot" that may or may not be able to be �lled with a useful

instruction by the compiler. For the case of a load that takes longer, interlocks typically

ensure that the dependencies between operations are honored; for the case of a branch that

takes longer, the pipeline control typically inserts null operations into the pipeline until

the new instruction stream is available. A recent trend in architectural extensions is to

deprecate or eliminate these \delayed" operations and to add in analogous operations that

have a virtual latency of 1~ so that all operations have uniform virtual latencies. Shifting

away from delayed operations allows implementations to more easily support varying issue

widths and out-of-order execution. Unfortunately, this does not eliminate the need for

the compiler to target its code schedule for a given architecture with knowledge of its

implementation speci�cation|in fact, this customized scheduling becomes more and more

important as higher performance and wider issue designs are developed.

Even a simple machine that performs no concurrent operation issue is a�ected by poor

code scheduling. A program that is scheduled using only the architectural latencies (of 1~

per operation) will run correctly but will exhibit poor performance on many implementa-

tions. With this code schedule, any time that there is a dependency (when the implemen-

tation latency exceeds the architectural latency) the pipeline will have to stall until the

2There have been cases where some results, primarily those from memory operations, may not be available

when scheduled. These cases were handled by stalling the processor until the late result was available.

4

dependency is resolved. One of the goals of dynamic multi-instruction issue architectures is

to analyze the instruction stream and to rearrange the operations so that better utilization

of the pipeline is possible (this was a precursor to the goal of achieving concurrent issue

and execution and is a similar but more limited problem). Thus, when a dependency arises,

the dynamic scheduling will attempt to �nd another operation that can execute while the

stalled operation waits for the dependent result to become available. But even if a program

is scheduled e�ciently for one implementation, when run on a di�erent implementation it

may no longer be scheduled e�ciently and performance may su�er.

When concurrent issue and execution is considered, the problem becomes worse. The

goal is no longer to �nd one available operation to issue but to �nd several available op-

erations to issue. In this situation, there are more operands being analyzed and and more

operations in progress within the pipelines to be checked against resulting in signi�cantly

more hardware requirements. This occurs even when the compiler anticipates which op-

erations are independent and schedules them so as to avoid any dependencies on a given

implementation|however, since this information is thrown away after the schedule is gener-

ated there is no way that the implementation can be aware of this. Additionally, operations

that are analyzed but not issued are examined again during the next analysis cycle resulting

in more redundant computation by the hardware.

To clarify this problem, consider the following example code sequence:

0: r <- comp8(a, b)

1: s <- comp2(c, d)

2: t <- comp4(d, e)

3: u <- comp2(s, f) ; s available

4: v <- comp4(s, s)

5: w <- comp2(u, a) ; u available

6: x <- comp2(t, u) ; t available

7: y <- comp4(b, w) ; w available

8: z <- comp2(r, x) ; r, v, x available

In this code sequence, comp2 operations complete in 2~ , comp4 operations complete in

4~ , and comp8 operations complete in 8~ .

First, consider the case where the architectural latency is 1~ for all operations. Now

every operation scheduled completes \late" and all operations that are in any stage of

execution must have their result operands compared with all operations being evaluated for

issue to ensure that there are no dependencies that must be enforced. All operations that

are being analyzed for issue until cycle 8 must be checked to ensure that they do not use

result r (which is unavailable for cycles 1 through 7) even though the compiler scheduled

the code with this knowledge and was able to avoid any true dependency. This is true of

every operation that is in execution since all of these are \late" relative to the architectural

speci�cation.

Next, consider the same example where the architectural speci�cation re
ects the antic-

ipated implementation speci�cation. This means that values are known not to be available

until their architectural (and implementation) latency and operations that are not \late" do

5

not need to be checked while analyzing the instruction stream. Now, when every operation

completes \on time" there are no checks required. In contrast, consider the same example

where now all comp2 operations actually take 3~ to complete. In this case, the operation

in instruction 1 does not complete in cycle 3 but in cycle 4. Since result s is not late until

cycle 4 this cycle is the �rst cycle that this result needs to be checked while analyzing the

instruction stream. Even if there are a number of operations that have an implementation

latency that is greater than the architectural latency, it is clear from these cases that using

non-unit architectural latencies that are matched closely to the anticipated implementation

latencies results in few late operations. Since there are few late operations there are also few

pending register results that need to be checked for dependencies during the issue process

are reduced resulting in less complex issue hardware.

2.4 Hybrid architecture conclusions

As has been shown, the signi�cant feature that a dynamic multi-instruction issue processor

has is its ability to reschedule code to support unexpected latencies|either from a poor

schedule or from a mispredicted operation latency (typically from the memory system). This

is, unfortunately, an expensive feature to support given the liabilities of single-operation in-

structions and the 1~ virtual operation latencies. There are two signi�cant features that

the static multi-operation issue processors have|multiple operation instructions (which are

guaranteed independent) and accurate virtual operation latencies. These features have

their downsides however. The exclusive use of static scheduling proscribes any schedul-

ing errors|including mispredicted operation latencies|requiring that all implementation

latencies match the virtual latencies.

All is not as bleak as one might expect|there are three key characteristics of these

two processors that can be identi�ed and must be considered in a hybrid architecture: the

instruction stream must include as much dependency information as possible from the com-

piler; architectural latencies that correspond reasonably well to the anticipated implementa-

tion latencies must be used; and the distinction between architectural and implementation

speci�cations and the illusion of a virtual machine. Providing these capabilities reduces the

amount of dynamic analysis that must be performed to issue and to execute concurrent op-

erations (the critical problem with dynamic multi-instruction issue processors) and reduces or

eliminates many scheduled stalls (the critical problem with static multi-operation issue pro-

cessors). This results in fast wide operation issue architectures that will achieve much higher

performance and much greater scalability than either of the two original architectures.

3 The split-issue execution paradigm

The primary goal of creating a new architectural model is to explore high-performance

instruction-level parallel processor architectures over a wide range of con�gurations. In

order to meet this requirement, section 2.4 presented three architectural characteristics that

are e�ective in achieving this goal. To include dependency information from the compiler

we use statically scheduled instructions that contain independent operations; to minimize

the di�erences between the architectural and implementation machines we use realistic

6

latencies for all operations; and to maintain the illusion of a virtual processor we use split-

issue techniques.

The �rst two features, instructions containing independent operations and the use of

realistic latencies, are already characteristic of static multi-operation issue processors. This

similarity is not surprising since both of these are e�cient techniques for embedding de-

pendency information into the instruction stream. Both the Horizon [1] and Cydra 5 [2]

processors used variations on the use of realistic latencies for their operations to avoid

unnecessary analysis or stalls.

In the Horizon processor, instead of using �xed operation latencies, each instruction

embedded the distance to the nearest use of any result from the contained operations along

any possible path. The use of this distance �eld allowed additional instructions to be issued

while a given instruction was in execution|only when the distance value was exceeded

and the instruction was still in execution would a stall occur. Since the Horizon instruction

contained three operations, this distance value was a worst-case value of all three operations

along all possible paths. One obvious extension to this technique would be to use a unique

distance value for each operation. This extension would increase the Horizon instruction

size by 5% to 10% and would increase the complexity of the execution logic slightly to

support carrying a distance value for each operation.

In the Cydra 5 processor, instead of using �xed memory latencies a memory latency

register contained the e�ective memory latency value that the current code region was

scheduled for. Using the memory latency register allowed the schedule to take into account

the memory access pattern of a region of code and to reduce the scheduled memory latency in

those cases where the memory system could approach its minimum latency. When memory

references took a di�erent amount of time to complete than the value in the memory latency

register, the results were either bu�ered (when available early) or the pipelines were stalled

(when available late) so that results appeared to be available precisely as schedule. This

approach could be easily be extended to support an operation latency register for each

operation or class of operations. This would not a�ect the instruction size (although there

would need to be new instructions added to read and to modify these values) but would

increase the complexity of the execution logic to support variable scheduled latencies for all

operations.

Neither of these extensions appears to have signi�cant performance gains although both

may reduce the stall penalty in some cases; both of these extensions increase the complexity

of the processor to support operations that have non-�xed latencies during execution. Using

statically scheduled instructions with �xed virtual latencies avoids both of these ine�ciencies

and embeds a signi�cant amount of dependency information in each instruction. There may

yet be better approaches and when an e�cient approach for embedding the full dependency

graph in the instruction stream is developed then the situation may improve further|but

this development is neither likely nor expected to achieve dramatic improvements over the

current approach.

The third feature, the use of split-issue techniques, is less traditional and the remainder

of this section is devoted to the topic. In the split-issue execution paradigm the execution

of an operation is broken up into three independent sets of events that correspond to the

three phases of operation execution|the acquisition of source values from their origination

7

(register �le), the computation of result values (within execution resources), and the delivery

of result values to their destination (register �le). Each event in this scheme is scheduled

at the virtual time that the architectural speci�cation requires so that the implementation

is able to maintain the illusion of the virtual processor. Temporary storage is used to hold

the source and result values during this process which decouples the three phases from each

other and allows them to be acted upon independently. There are a number of dependency

issues that must be considered in order to ensure correctness but these are policy issues

that are independent of (but allowed by) the model. This section will describe the split-

issue paradigm in detail and will show how this model is directly applicable to the simulation

of a wide range of high performance processors.

3.1 An introduction to split-issue

The execution of an operation typically consists of three distinct phases|the acquisition of

source values, the computation of result values, and the delivery of the completed results.

In a traditional pipelined processor, these are often described as \register fetch", \execute",

and \write-back" and are considered to be inseparable steps in the execution of an operation

in the pipeline. In the split-issue model, these phases are decoupled from each other so

that they can be treated independently in the implementation. In order to maintain the

correctness of the virtual machine, each event is scheduled to take e�ect at the appropriate

time based on the architectural speci�cation for each operation. Whereas in the traditional

pipeline, source, result, and intermediate values are held in latches in pipeline stages until

conditions are set to proceed, in the split-issue model these are held in temporary storage

locations.

The original concept for split-issue was presented in [3] as a mechanism for supporting a

dynamic execution model for a static multi-operation issue processor. In the original model,

operations were split into two independent micro-operations that operated in a producer-

consumer relationship using an internal temporary register �le to bu�er results between

the two micro-operations. Each micro-operation is scheduled to occur in the virtual cycle

speci�ed by the architecture. Thus the operation A f(B;C) with an architectural

latency of 3~ would be broken out into the two micro-operations T1 f(B;C) @ 0 and

A T1 @ 2 with the advantage that slip between these two micro-operations is allowed.

In this nomenclature, x f(y) @ z indicates that the register (temporary or otherwise)

x is assigned the value of the computation f(y) at the virtual time z. If there is no time

speci�ed then the result will be generated at some arbitrary time when it is ready. Note

that the result of this example operation is available at the end of cycle 2|and can be used

3~ from the start time as required by the architectural speci�cation.

The original model supports the ability to dynamically schedule operations but limits

these operations to those that can be supported in this simple two-step manner. However,

the coupling of all source accesses with the operation may lead to unnecessary complexity

when some source values are available and others are not. Reconsidering the events that

occur during the execution of an operation leads to a revision of the two-step producer-

consumer model to the three-step acquisition-computation-delivery model that provides

additional capabilities.

8

In the split-issue model, operations are split into into three independent phases|�1

performs all acquisition events, �e performs all computation, and �2 performs all delivery

events. The �1 and �2 events are similar in that they are access events performing read

and write accesses to the register �le. Using the same example as before, in this model

A f(B;C) results in the event triple

�1 : T1 B @ 0 T2 C @ 0

�e : T3 f(T1; T2)

�2 : A T3 @ 2

Note that the �e events do not need any timing information speci�ed since they are able

to commence once all operands are
agged as available.

With the exception of the separation of the acquisition events this approach accom-

plishes the same result as the original approach with the apparent addition of complexity.

However, there are two bene�ts of this approach. First, there is only a single conceptual

micro-operation that operates on the temporary storage values instead of two independent

processing units|the acquisition and delivery of source and result values has been decou-

pled and is in many ways more like the traditional pipelined approach. Second, in addition

to supporting basic operations like those supported in the original model, operations that

allow events to occur at arbitrary cycles are also supported. One simple example is that

of an operation with the late delivery of one operand|such as in a multiply-accumulate

operation that forms the core of the SAXPY loop. This operation, S A �X + Y , can be

speci�ed such that only the two multiplicands (A and X) are required to start the operation

and the summand (Y) is not required until later3. Using a 1~ delay for the summand and

a 3~ operation latency, we have the triple

�1 : T1 A @ 0 T2 X @ 0 T3 Y @ 1

�e : T4 f(T1; T2) T5 g(T4; T3)

�2 : A T5 @ 2

Note that in this example, the function f(a; x) is used as the �rst stage of processing of the

multiply-accumulate that takes the two multiplicands as arguments and immediately sets

the
ag T4 (which could be an intermediate value from the computation) to represent that

the computation has begun. The function g(t; z) is then used to provide the summand to

the process and the �nal result is placed in the temporary T5.

Arbitrarily complex operations may be constructed in this manner and even the most

complex CISC processor operation can be framed in this form. For example, even inde�nite

iteration can be speci�ed as in Tx; � � � h(Tx; � � �). One tangential use of split-issue tech-

niques might be the emulation of CISC processors|this use will not be considered further

in this report.

An observation of the representation used in the above two examples is that it bears

a striking resemblance to the information contained in a machine speci�cation for the op-

erations. In a machine readable form, this is essential information that a compiler would

3Note that the multiply-accumulate operation is a reasonable example of the use of this approach and is

not necessarily a recommendation for this speci�cation!

9

need to schedule the operation and is also essential information that a processor designer

would require to implement the same operation. This natural connection between speci�ca-

tion and model is fortuitous|and the next section will demonstrate that there is a similar

connection between the model and implementation as well.

One �nal point to make about the model concerns the timing of the events. It is clearly

important to be able to model operations that take a single cycle to execute and to allow

these to be supported back-to-back. Rather than to specify complex rules regarding the

behavior of forwarding logic to deliver results and to provide values to execution events

issuing the same cycle, this model adopts a simple read-execute-write sequence within a

cycle. This is not a signi�cant limitation since the problem can be resolved for many

processor con�gurations by having the compiler schedule operations taking these delays

into account and using operations that are speci�ed to have the appropriate latencies for

these cases. It is easy to conceive of a complex processor for which this approach would

be inadequate but it is our belief that these processors are also too complex to reasonably

consider building.

3.2 A tabular representation for split-issue

While the representation presented in the previous section is useful for specifying the be-

havior of operations, it is not directly useful for an implementation|either hardware or

simulator|due to the tagged nature of each of the acquisition and delivery events. How-

ever, there is an analogous table-based representation that embodies the same information

in a similar manner to what can be seen to be e�ciently implemented. In the tabular rep-

resentation there are three columns that represent the three phases in the execution of the

operation|�1 , �e , and �2 . Thus the earlier example of the simple operation A f(B;C)

is represented in this model as

�e

�1 src op dest �2

T1

T2 f T3 A T3

T1 B

T2 C

In this representation, the �rst column corresponds to the �1 events and the third

column corresponds to the �2 events. These operate as queues of events scheduled in

virtual time with the bottom event being the current event. Thus, for this example, the

acquisition events T1 B and T2 C are scheduled as the next events to be processed

and the delivery event A T3 is scheduled to occur two cycles later as speci�ed. As events

are processed, all events in the queues progress one cycle just as in a queue. The behavior

is only half like a queue since events are inserted at their appropriate virtual time and not

at the very top, but the queue analogy is a useful one in understanding the sequencing of

event processing.

10

The second column is corresponds to the �e events and is used more as a scoreboard of

pending operations than as a queue. This example re
ects that the source values for the

operation shown are in temporary storage T1 and T2 and that the result value will be placed

in temporary storage T3. Note that, although there is a required correlation between the

positions in the �1 and �2 queues, there is no correlation between the positions in the �1

and �2 queues and the entries in the �e structure. While the �e structure may maintain

the ordering of operations4 there is no requirement that it do so.

In the examples that follow, all operations will be limited to a single source and des-

tination operand and will avoid the use of temporary storage labels. This simpli�es the

examples and demonstrates the use of the model without any loss of generality|but with

signi�cantly less complexity than actually tracking multiple source and destination values

using more realistic operations. Another simpli�cation is that the tabular representation

will be \preloaded" at the start of the example and will not show the sequential �lling

that would normally occur during a step-by-step execution process. However, all events are

listed in the places that they would be relative to the �rst operation that is inserted so the

events that are processed will be dealt with appropriately.

The following demonstrates the use of this representation for hypothetical code starting

at cycle 1000:

Cycle 1000

�e

�1 src op dest �2 Register Filep
(f) | h : w(R

1
) R

1
= 3

| g R
2
= ?

g : r(R
1
) h |

f : w(R
2
)

This example represents three arbitrary operations labeled \f ", \g", and \h". The

parenthesis on operation f represent that the operation has started computation. In the

state represented, the acquisition for operation f is completed (represented by the \
p
"

mark) and the operation has started computation; however, the \|" in the destination

for f indicates that there is a result value but it is not available yet. The delivery event

for operation f is shown below the �2 event queue as \f : w(R
2
)"|this placement indi-

cates that this event was scheduled to be executed before the operation actually completed

computation and is \late"|this also is re
ected in the \?" in register R
2
indicating an

unknown value.

Operation g is waiting for its source value (this is the next acquisition event to execute)

and has no result and operation h has no source value but generates a result. Neither of

these operations has started execution yet although it may be possible to start operation

h depending on how dependencies are handled (operation h writes the same register that

operation g is waiting to read). One key feature of this model is that a number of aspects

of an implementation|such as how dependencies and late results are handled|are not a

part of the model but can be speci�ed independently.

4One use of operation ordering in the �e structure is to implement precise interrupts.

11

3.3 Representation of a traditional static multi-operation issue processor

As a real example to start o� with, consider a bare-bones static multi-operation issue with

no dynamic behavior of any kind|typical of a traditional VLIW processor (although for the

purposes of this example, all operation latencies are 1~ for simplicity). For this example,

we will use the following code sequence:

R
2
 f(R

1
)

R
3
 g(R

2
)

R
2
 h(R

3
)

There are two dependencies in this code (each operation is immediately dependent on its

predecessor). However, since the compiler guarantees that there are no scheduling problems

the processor can execute the code stream without regard to any potential dependencies.

These operations generate results that correspond to the operation. The �rst operation

thus generates the result f and so forth. Initial values correspond to the register number

for simplicity.

Thus, we initially have

Cycle 0

�e

�1 src op dest �2 Register File

h : r(R
3
) | f | h : w(R

2
) R

1
= 1

g : r(R
2
) | g | g : w(R

3
) R

2
= 2

f : r(R
1
) | h | f : w(R

2
) R

3
= 3

After executing the �rst cycle we read R
1
, issue operation 1, and write R

2
and this

results in

Cycle 1

�e

�1 src op dest �2 Register Filep
(f)

p
R
1
= 1

h : r(R
3
) | g | h : w(R

2
) R

2
= f

g : r(R
2
) | h | g : w(R

3
) R

3
= 3

Similarly we execute the second cycle and get

Cycle 2

�e

�1 src op dest �2 Register Filep
(f)

p
R
1
= 1p

(g)
p

R
2
= f

h : r(R
3
) | h | h : w(R

2
) R

3
= g

And �nally we execute the third cycle and get

Cycle 3

�e

�1 src op dest �2 Register Filep
(f)

p
R
1
= 1p

(g)
p

R
2
= hp

(h)
p

R
3
= f

12

The code operates in 3~ as scheduled|not surprising since traditional static multi-

operation issue architectures do not allow any unpredictability in the behavior of their op-

erations.

3.4 Further examples of split-issue techniques

We now consider a con�guration that relies on split-issue techniques to maintain correctness.

As a �rst example of the abilities of split-issue to resolve problems with schedule di�culties,

consider the same code sequence as before with the exception that each operation now has

an architectural latency of 2~ while the code is scheduled for the virtual latency of 1~ .

We have the same initial condition of the example in the previous section of

Cycle 0

�e

�1 src op dest �2 Register File

h : r(R
3
) | f | h : w(R

2
) R

1
= 1

g : r(R
2
) | g | g : w(R

3
) R

2
= 2

f : r(R
1
) | h | f : w(R

2
) R

3
= 3

After the �rst cycle we've issued the �rst computation but it hasn't completed yet. We

thus have the following situation where the �rst write must be held until it is ready. We

thus have

Cycle 1

�e

�1 src op dest �2 Register Filep
(f) | R

1
= 1

h : r(R
3
) | g | h : w(R

2
) R

2
= ?

g : r(R
2
) | h | g : w(R

3
) R

3
= 3

f : w(R
2
)

After the next cycle we retire the �rst computation but can't start the second since the

read hasn't occurred yet. We get

Cycle 2

�e

�1 src op dest �2 Register File
p

(f)
p

R
1
= 1

| g | R
2
= f

h : r(R
3
) | h | h : w(R

2
) R

3
= ?

g : r(R
2
) g : w(R

3
)

Now we can start the second but have to deal with the deferred write and the new

deferred read and write, thus

Cycle 3

�e

�1 src op dest �2 Register Filep
(f)

p
R
1
= 1p

(g) | R
2
= ?

| h | R
3
= ?

h : r(R
3
) h : w(R

2
)

g : w(R
3
)

13

With the end if the �rst cycle of the second operation we have the result posted but

the third operation has not yet read its register so does not immediately re
ect the result.

Thus,

Cycle 4

�e

�1 src op dest �2 Register Filep
(f)

p
R
1
= 1p

(g)
p

R
2
= ?

| h R
3
= g

h : r(R
3
) h : w(R

2
)

The third operation completes its read and issues

Cycle 5

�e

�1 src op dest �2 Register Filep
(f)

p
R
1
= 1p

(g)
p

R
2
= ?p

(h) | R
3
= g

h : w(R
2
)

And after its second cycle the third operation completes and updates its result thusly

Cycle 6

�e

�1 src op dest �2 Register Filep
(f)

p
R
1
= 1p

(g)
p

R
2
= hp

(h)
p

R
3
= g

This has taken a total of 6 cycles|exactly what would have been scheduled by the

compiler had it know that the latency for the operations were doubled. This is also the

same amount of time that it would have taken a double-cycled static multi-operation issue

processor although operations would not have been executed with the same timing.

The next example will demonstrate a more realistic situation where split-issue is useful|

a mis-scheduled memory load operation that takes 5~ to complete instead of the scheduled

2~ . This is representative of a �rst level cache miss which is a hit in the second level

cache. Other operations will be included and will serve to mitigate the cost of the load. All

other operations are scheduled to complete in 1~ . The code sequence to be considered is

as follows:

R
3
 ld(R

1
)

 f (R
2
)

R
5
 use(R

3
)

R
6
 g(R

1
)

R
7
 h(R

5
)

R
8
 k(R

6
)

This sequence takes 6~ to complete as scheduled.

14

For this example we have the initial setup of

Cycle 0

�e

�1 src op dest �2 Register File

k : r(R
6
) | ld | k : w(R

8
) R

1
= 1

h : r(R
5
) | f h : w(R

7
) R

2
= 2

g : r(R
1
) | use | g : w(R

6
) R

3
= 3

use : r(R
3
) | g | use : w(R

5
) R

4
= 4

f : r(R
2
) | h | ld : w(R

3
) R

5
= 5

ld : r(R
1
) | k | R

6
= 6

R
7
= 7

R
8
= 8

After the �rst operation, the load operation, we have the following state:

Cycle 1

�e

�1 src op dest �2 Register Filep
(ld) | R

1
= 1

k : r(R
6
) f k : w(R

8
) R

2
= 2

h : r(R
5
) | use | h : w(R

7
) R

3
= 3

g : r(R
1
) | g | g : w(R

6
) R

4
= 4

use : r(R
3
) | h | use : w(R

5
) R

5
= 5

f : r(R
2
) | k | ld : w(R

3
) R

6
= 6

R
7
= 7

R
8
= 8

So far, so good|the load was supposed to take 2~ to begin with so we can easily deal

with the next operation. Thus

Cycle 2

�e

�1 src op dest �2 Register Filep
(ld) | R

1
= 1p

(f) R
2
= 2

k : r(R
6
) | use | k : w(R

8
) R

3
= ?

h : r(R
5
) | g | h : w(R

7
) R

4
= 4

g : r(R
1
) | h | g : w(R

6
) R

5
= 5

use : r(R
3
) | k | use : w(R

5
) R

6
= 6

ld : w(R
3
) R

7
= 7

R
8
= 8

Now we see the problem|the load operation has not completed but the next operation

requires the result. Thus this operation is pended as follows and processing continues, giving

15

Cycle 3

�e

�1 src op dest �2 Register Filep
(ld) | R

1
= 1p

(f) R=

2
2

| use | R
3
= ?

k : r(R
6
) | g | k : w(R

8
) R

4
= 4

h : r(R
5
) | h | h : w(R

7
) R

5
= ?

g : r(R
1
) | k | g : w(R

6
) R

6
= 6

use : r(R
3
) use : w(R

5
) R

7
= 7

ld : w(R
3
) R

8
= 8

While the last operation was pended, the next can proceed since it is not dependent on

the load but on the operation following the load. Thus we have this operation complete

\out of order" with respect to the earlier operations. We then see

Cycle 4

�e

�1 src op dest �2 Register Filep
(ld) | R

1
= 1p

(f) R
2
= 2

| (use) | R
3
= ?p

(g)
p

R
4
= 4

k : r(R
6
) | h | k : w(R

8
) R

5
= ?

h : r(R
5
) | k | h : w(R

7
) R

6
= g

use : r(R
3
) use : w(R

5
) R

7
= 7

ld : w(R
3
) R

8
= 8

The next operation depends on the operation stalled by the load operation and we must

pend it too. However, the load completes in this cycle so it and its dependent operation are

updated giving

Cycle 5

�e

�1 src op dest �2 Register Filep
(ld)

p
R
1
= 1p

(f) R
2
= 2

p
(use)

p
R
3
= ldp

(g)
p

R
4
= 4

| h | R
5
= ?

k : r(R
6
) k | k : w(R

8
) R

6
= g

h : r(R
5
) h : w(R

7
) R

7
= ?

use : w(R
5
) R

8
= 8

This cycle we are (potentially) able to issue both �1 operations use and k since both

are ready|this is shown here. Thus we now have one operation left to process:

16

Cycle 6

�e

�1 src op dest �2 Register Filep
(ld)

p
R
1
= 1p

(f) R
2
= 2p

(use)
p

R
3
= ldp

(g)
p

R
4
= 4

| h | R
5
= usep

(k)
p

R
6
= g

h : r(R
5
) h : w(R

7
) R

7
= ?

R
8
= k

And after the �nal execution we have

Cycle 7

�e

�1 src op dest �2 Register Filep
(ld)

p
R
1
= 1p

(f) R
2
= 2p

(use)
p

R
3
= ldp

(g)
p

R
4
= 4p

(h)
p

R
5
= usep

(k)
p

R
6
= g

R
7
= h

R
8
= k

From this example it is clear that there was a 1~ penalty from the increased latency of

the ld operation due to a cache miss. Had the miss been scheduled for by the compiler there

would not have been any penalty at all since other operations could have been scheduled in

to the stall slots|however, this is not the typical situation in non-loop code and the use of

dynamic scheduling will bene�t these cases.

4 The NYFO VLIW model

The NYFO VLIW architectural model is based on the split-issue execution paradigm de-

scribed in section 3 and allows the speci�cation of a wide range of processor con�gurations

through the use of di�erent policies to control the transitions within the split-issue frame-

work. At a high level|that of the virtual processor|the NYFO VLIW architectural model

has the structure of a traditional static multi-operation issue machine. Instructions are

fetched, decoded, issued, and executed precisely as scheduled. At a low level|that of the

implementation processor|the NYFO VLIW architectural model has very di�erent char-

acteristics than the traditional static multi-operation issue. Latencies may di�er from the

architectural speci�cation and resources may have contention for their use. This section

describes the characteristics of the architectural model in detail and identi�es the aspects

of the model that provide the
exibility to model a wide range of architectures.

17

4.1 Stages in an NYFO VLIW model

The NYFO VLIW architectural model is organized as a sequence of four basic stages which

are fetch, decode, invoke, and compute. These stages correspond to the major actions that

occur within the NYFO VLIW architectural model and do not necessarily correspond to

separate pipeline stages. Speci�c details on the ordering of events within any particular

implementation are modeled by policies which provide for both event handling and time

(cost) accounting.

The fetch stage is responsible for maintaining the code stream supply to the decode

stage for processing. Unless otherwise directed, it continues to fetch contiguous memory

along the current fetch path. Using branch prediction, other stages (primarily decode and

compute) can adjust the fetch path to try and reduce the e�ective latency of branches.

The fetch stage is not concerned with the boundaries and format of instructions|only the

maintenance of a ready memory stream for the decode stage.

The decode stage assembles instructions from the memory stream provided by the fetch

stage and delivers the assembled instructions to the invoke stage. Instruction assembly

can be a simple or complex problem depending on the encoding used and whether or not

the instruction stream is compressed to reduce the memory footprint. In the simple case,

instructions are �xed size packets that are easily assembled. The problem with this simple

scheme is that not all operation slots in an instruction are always �lled and the presence of

many unused operations in an instruction results in an ine�ciently used instruction memory

hierarchy. An alternative to the simple encoding is to use some form of compression|a

tradeo� between memory utilization and decode complexity. This research may look into

the characteristics of di�erent encoding and compression schemes at a later point but these

will not be considered further in this report. The delivered instructions are not just copies of

uncompressed instructions from memory but are templates of the actions that are required

by the architectural speci�cation. This information is then processed by the invoke stage.

The invoke stage receives the assembled instruction template from the decode stage,

adds in any dynamic information that is required for each contained operation, and delivers

the speci�ed actions to the compute stage for computation. This stage bears a strong

resemblance to the instruction issue stage in a traditional processor and is e�ectively the

instruction issue stage of the virtual processor. However, the notion of invoking instructions

to generate and deliver the dynamic event instances reduces confusion with other points of

issue within the implementation. Section 4.2 describes the actions of this stage in detail.

The compute stage continuously processes the events that have been delivered to it by

the invoke stage. Speci�cs of when events are processed and how late events are handled are

provided by the policies for a particular con�guration. The invoke stage ensures that the

events are scheduled for execution according to the implementation speci�cation and the

compute stage processes these events accordingly performing whatever actions are necessary

to maintain the illusion of the virtual processor. Section 4.3 describes the actions of this

stage in detail and introduces the aspects that are governed by speci�c policies.

18

4.2 Elaboration on the invoke stage

The invocation of an instruction results in two primary actions that are performed within the

invoke stage. These actions are the collection and merging of relevant processor con�guration

information with the individual operations and the delivery of the operation events to the

compute stage.

The view that the compiler has of an operation is that events occur at speci�c times

based on the architectural speci�cation. The compiler schedules operations into speci�c

instructions based on the availability of results and on its view of the con�guration of

the processor at the scheduled cycle. Each operation is placed into a speci�c slot in the

instruction which may be restricted in which operations may be placed there. These slots

correspond to execution resources within the virtual processor. In the ideal processor, there

are su�cient resources to satisfy all possible operation con�gurations without contention.

In the NYFO VLIW architectural model there is a split-issue structure (�1 , �e , and �2) that

corresponds to each slot|there may or may not be an execution resource that corresponds

to each slot depending on the details of the implementation.

The schedule that the compiler produces is based on the architectural speci�cation

and the compiler must keep track of any changes to the processor con�guration that the

scheduled code produces during execution. As the processor con�guration changes during

program execution, the code that the scheduler generates must take these changes into

account|the same e�ective operation may be generated di�erently depending on where

the compiler schedules it to take these changes into account. The reference point that the

compiler uses to make these decisions is the scheduled invocation time. While not the only

point that could be chosen, it appears to be the best for several reasons not the least of

which is the simplicity that it provides. Because the processor con�guration that a�ects

the behavior of an operation is the processor con�guration at the time of invocation, the

relevant information must be carried with the operation throughout the remainder of the

execution process so that operation events can correctly execute out-of-order within the

machine framework at the time of invocation.

One example of a processor con�guration change that a�ects the details of operation

scheduling and execution is the use of a rotating register �le. A rotating register �le renames

its registers in a systematic way|typically through a rotation base pointer which is added

to any register reference to determine the actual register. Since the value for base pointer

can change during the execution process, the relevant value for the base pointer must be

maintained with an operation after the invocation process completes in order to reference

the proper register at a later time in the presence of further rotations or changes to the

base pointer.

All relevant con�guration information is required before invocation can complete for a

given virtual cycle. When this information is not available, virtual time must be stalled

until it is available. Once the con�guration information is collected, the operations must

be inserted into the compute stage for evaluation. This is done in parallel for each slot

and involves placing the individual events|acquisition, execution, and delivery|into the

appropriate position in the structures|�1 , �e , �2|so that the events occur at the ap-

propriate time. In addition to ensuring that there are no data dependencies within the

19

instruction, the compiler also ensures that there are no resource con
icts. This allows the

insertion of these events into the �1 and �2 queues without checking for the presence of

existing entries|if any con
icts exist then there is a scheduling problem and the results are

indeterminate. Once all events for all operations are inserted into the appropriate places

within the compute stage, the invoke stage is complete for the current virtual cycle. Exam-

ple code fragments that show the invoke stage and its relation to the other stages is shown

in appendix A.

4.3 Elaboration on the compute stage

The computation process performs a sequence of steps to emulate the virtual processor

according to the architectural speci�cation. These steps include the acquisition of source

operand values, the computation of result values, and the delivery of result values to desti-

nation operands.

Computation is performed in four distinct steps that in some senses comprise an em-

bedded processor within the compute stage that autonomously processes whatever events

it has (which are inserted by the invoke stage each virtual cycle). These four steps process

the data in the split-issue queues (described in section 3.1) that exist for each instruction

slot and manage the allocation of resources when they are limited. The register binding and

the acquisition of source operands is performed by the resolve step, the selection of ready

operations and the allocation of execution resources to perform the required computation is

performed by the issue step, the collection of computed results from the execution resources

is performed by the complete step, and register binding and the delivery of result values to

destination operands is performed by the post step.

Register binding is the process of mapping an architectural register (as speci�ed in an

access event) to a speci�c physical register on the processor. Not only does it establish this

mapping but it also results in a connection between the register and the referencing event.

In a simple processor that does not rename registers, binding is essentially an identity

function. However, when registers are renamed, binding obtains a new physical register

that replace the currently mapped physical register. The referencing event is then bound to

this physical register. Previous bindings are una�ected since the physical register that they

refer to cannot be reallocated if it is still in use. Once a register and an event are bound,

that register cannot be reassigned until that event (and any other events bound to the same

register) have completed. Binding registers must be performed in virtual time according

to the architectural speci�cation. When a register cannot be bound for any reason, virtual

time must stall and cannot continue until all binding is completed for that virtual cycle.

Binding is the only action performed during computation that occurs in virtual time|the

rest of the actions occur as values and resources are available in real time.

Binding a register for acquisition is straightforward|there is always a register available

that corresponds to the architectural register which can be referenced by the acquisition

event (guaranteed by the nature of the posting step). Thus, while it is possible that resource

limitations prevent the binding from completing, it is not possible that the appropriate

register is not available for binding. Binding a register for delivery may be more complicated

depending on the register allocation policy in use. A register may be unavailable for binding

20

if either the register has outstanding acquisitions depending on it or there are no new

registers that can be assigned in a renaming process. There may also be resource limitations

which prevent the binding of an available register.

Once binding is completed, there is much similarity in the way that the �1 acquisition

events, the �e execution events, and the �2 delivery events are handled. Ready events

are selected from the queues, resources are distributed as available, and those events that

can have been allocated resources are evaluated. For acquisition events, the destination

temporary storage is updated with the value from the source register; for execution events,

the allocated execution resource for computation is provided with the source operand values

and speci�ed function; and for the delivery events, the destination register is updated with

the value from the source temporary storage. Which events are selected for evaluation and

the mechanism for allocating resources are policy issues.

For the simplicity of the model, each step in the sequence is executed in turn. Thus

resolve occurs �rst followed by issue, complete, and post. This provides the read-execute-

write sequencing described in section 3.1 but does not take into account any of the timing

issues that would need to be resolved to make a workable implementation. Implementation

details are beyond the scope of this report and will be presented at a later point in this

research.

4.4 Implementation policies

Detailed policy de�nitions is critical to the precise modeling of di�erent architectural speci-

�cations; however, a detailed examination of these issues is beyond the scope of this report.

This section brie
y introduces the di�erent aspects of the stages that are implemented

through policy speci�cations and provides insight into the nature and scope of these poli-

cies.

The fetch stage performs the interface to the memory system and maintains the memory

stream to the decode stage. The fetch policy includes such issues as inline and alternate

path prefetch behavior, fetch width, and so forth.

The decode stage converts the instruction stream into expanded instruction packets and

maintains a source of decoded instructions to the invoke stage. The decode policy includes

such issues as instruction decompression, timing template generation, and so forth.

The invoke stage performs the invocation of the instructions and the placing of the

individual events within the split-issue structures in the compute unit. The invocation

policy includes such issues as con�guration, number of virtual cycles processed in a single

real cycle (also a�ected by the ability of the compute unit to bind registers at this rate). In

the NYFO VLIW architectural model, each virtual cycle is processed in turn before real cycle

actions are taken. This is possible to do concurrently just as in a dynamic multi-instruction

issue processor but is much more complicated to model|the sequential processing of virtual

cycles has the same e�ect (without the complexity) that concurrent processing would have.

This can be seen in the code fragments in appendix A.

The compute stage performs the evaluation of the instruction and operates on the events

that are provided in its split-issue structures by the invoke stage. The execution policy

includes many issues that a�ect the behavior of the compute unit. Binding registers is a

21

policy issue that may limit the ability of the invoke stage to process multiple invocations (in

virtual cycles) within a single real cycle. It also a�ects the ability to reorder events within

the split-issue structures.

Scheduling and allocating resources is another signi�cant policy issue that has perfor-

mance limitations. Selecting which events to process|whether �1 , �e , or �2|may be

limited in a number of ways. While the selection policy can be di�erent for the di�erent

queues, they share similar considerations. These include bus and port limitations, value

availability, execution resource limitations, and so forth. The individual slots within the

compute unit may be treated independently or in groups (or some of both) depending on

the implementation speci�cation.

Events which have completed computation return their results to the split-issue struc-

tures. Completion has potential resource limitations since the evaluation of events out-of-

order may cause the results to be available when they are not expected and when resources

are not adequate to transfer all results. This results in some execution resources stalling

(and any events within their pipelines as well) and delaying the completion of their com-

putation. The completion policy ensures that these limitations are detected and accounted

for.

5 Example implementation descriptions

There are many di�erent con�guration variables|how many, how fast, how connected, how

arbitrated, etc.|that de�ning a simple description scheme is not possible without some

restrictions in the scope of the problem. The approach taken in this research is to separate

con�guration into two separate aspects. One aspect is the quantizable information|how

many, how fast, etc. Another aspect is the non-quantizable information|how connected,

how arbitrated, etc. The quantizable information in the architectural speci�cation and the

implementation speci�cation are similar. However, there is no non-quantizable informa-

tion for the architectural speci�cation since it de�nes the virtual processor. The virtual

processor assumes that there are su�cient resources so that the instruction stream can be

executed precisely as scheduled. This section will describe two example implementation

speci�cations|one for a traditional static multi-operation issue processor, one for a tradi-

tional dynamic multi-instruction issue processor|and will present some simple modi�cations

and their impact on the model. Each of the examples is based on similar hardware|a

multiple execution unit processor with a simple non-rotating register �le. However, the

descriptions will be limited to a discussion of policies since these are the di�erentiating

aspects of the processors.

5.1 Simple static multi-operation issue implementation

The static multi-operation issue processor that this section describes is a perfect match for

the architectural speci�cation of the processor with the exception of the memory system

which uses data caches. There is no dynamic scheduling used in this example and delayed

results stall virtual time. Register renaming is not used in this simple model.

22

This processor invokes a single instruction (each containing multiple operations) each

virtual cycle and invocation is simple since the register �le is simple. Register renaming is

not necessary since virtual time stalls during posting if there are unavailable results and

thus all registers appear to be available as scheduled. Resolution never generates a stall

since values are always guaranteed to be ready at the appropriate virtual time. Issue always

takes the next event since there is never contention for execution resources. Completion

has no contention since (at most) only the scheduled results that are ready. Posting has all

results with the possible exception of memory results available when scheduled which are

the only source of virtual time stalls in this implementation.

Allowing outstanding incomplete events to exist with events from later virtual cycles

only complicates things slightly. Binding now requires some mechanism for maintaining

dependency information. Resolution and posting need arbitration to select which events

should be processed. Other than a few policy changes, this new capability is a simple

extension of the previous implementation with only a small increase in implementation

complexity for a potentially signi�cant increase in performance.

5.2 Simple dynamic multi-instruction issue implementation

The dynamic multi-instruction issue processor that this section describes is fairly traditional

in that it maintains a window of �xed size that it attempts to issue multiple independent

operations concurrently out of. Register renaming is used to eliminate false dependencies.

Operations are evaluated out-of-order from within the window.

The instruction window is simulated through the manipulation of virtual time based

on the current number of non-issued invoked operations within the compute stage. This

processor invokes as many instructions (each containing a single operation) as necessary

to maintain a constant window size (subject to instructions being available from the fetch

and decode stages). Invocation keeps track of the number of non-issued operations and

this �gure must be updated as events are �nished. Binding requires that register renaming

be performed when required and since this may be limited, virtual time may be stalled.

Resolution acquires values for as many events as possible (there are no dependencies since

registers are renamed) but not all events may be processed due to resource limitations.

Issue must select those events that can be matched with the available execution resources.

Completion probably has no contention but there may be some limitations depending on the

model. Posting is similar to resolution and may not be able to process all events. Virtual

time stalls represent the actual stalls that would occur in a dynamic multi-instruction issue

processor when the window is full. In this situation, the execution of operations (events

in the NYFO VLIW architectural model) continues. As operations have all their events

processed, more instructions are invoked to maintain the window size.

Allowing a maximum span of operations (representative of a non-compressing window)

requires only a simple change to the policy that tracks the number of operations outstanding.

Other changes to model di�erent aspects of dynamic multi-instruction issue processors can be

added using similar limitations|the structure supporting it is there already. This is indica-

tive of one signi�cant problem in actual dynamic multi-instruction issue implementations|

there are simpli�cations that can be made; however, any hardware reductions tend to be

23

minimal since most of the hardware is required for even a signi�cantly limited implementa-

tion (although performance may su�er more in keeping with expectations).

6 Conclusion

This report has reviewed some problems with existing dynamic multi-instruction issue and

static multi-operation issue processors and identi�ed three key characteristics of these pro-

cessors that are important to consider while examining hybrid processor designs. Based

on these characteristics, we have proposed a new architectural model|the NYFO VLIW

architectural model|that supports the study and analysis of these hybrid designs. Funda-

mental to this new model is the separation of the virtual processor that is visible to the user

and the compiler and the implementation processor that is used to perform the computa-

tions. Since the implementation processor maintains the illusion of the implementation of

the virtual processor, variations in con�gurations and behavior are allowed. Although it is

advantageous to maintain a close correspondence between the virtual and implementation

characteristics, there is no requirement to do so.

We are in the process of building software tools to assist in the study and analysis of

these hybrid architectures. Using these tools we will develop an understanding of the perfor-

mance consequences of di�erent con�guration and policy choices within the implementation

processor. By better understanding these e�ects we will be able to focus in on those tech-

niques that appear to be the most promising for achieving cost-e�ective high-performance

hybrid processor designs.

7 Acknowledgments

I would like to thank the following individuals for their support and assistance during this

work. Without their time, assistance, and support this research would not be possible.

� Michael J. Flynn, Stanford University

� B. Ramakrishna Rau, Hewlett-Packard

� Michael D. Schlansker, Hewlett-Packard

� Wen-mei Hwu, University of Illinois at Urbana-Champaign

� John C. Gyllenhaal, University of Illinois at Urbana-Champaign

A Illustrative code fragments

Examining some simple psuedo-code fragments may help in explaining the sequencing and

relationship of these events. The �rst fragment, cycle nv processor t, de�nes the top-

level behavior of the model. When the model is initialized, issueState is set to the value

nv is invoke and virtualStall is set to the value false. Each function in the virtual

24

execution loop does one of two things: either it updates the issue state to the next state (if

the current state completed processing for the current virtual cycle) and sets virtualStall

to false; or it leaves the issue state at the current value and sets virtualStall to true

indicating that the virtual cycle is incomplete and that processing must return to this point

the next real cycle.

The parameter concurrentIssues speci�es how many instructions are processed per

real cycle. The state that the issue process is currently in is issueState and this controls

which step is currently being processed. If everything goes according to the schedule, this

will be updated from one state to another and will cycle through the appropriate number

of times to complete the multi-instruction issue. When one state is incomplete, this will

exit the loop and continue on with whatever real time processing can be completed this real

cycle and then the virtual cycle will be continued where it left of the next real cycle.

void cycle_nv_processor_t(nv_processor_t *processor)

{

int i;

for (i = 0; i < processor->concurrentIssues; i++)

{

if (processor->issueState == nv_is_invoke) invoke_nv_processor_t(processor);

if (processor->virtualStall) break;

if (processor->issueState == nv_is_bind) bind_nv_processor_t(processor);

if (processor->virtualStall) break;

if (processor->issueState == nv_is_update) update_nv_processor_t(processor);

if (processor->virtualStall) break;

processor->virtualCycles += 1;

processor->issueState = nv_is_invoke;

}

compute_nv_processor_t(processor);

decode_nv_processor_t(processor);

fetch_nv_processor_t(processor);

processor->realCycles += 1;

}

Invocation is performed in invoke nv processor t. This fragment re
ects the need

to freeze the processor con�guration for the events with the current instruction before the

events are delivered to the compute unit for execution.

void invoke_nv_processor_t(nv_processor_t *processor)

{

collect_nv_processor_t(processor);

insert_processor_t(processor);

}

25

Computation is performed in compute nv processor t and each step is executed in

sequence|necessary to maintain the sequencing of read, execute, write that the model is

based on.

void compute_nv_processor_t(nv_processor_t *processor)

{

resolve_nv_processor_t(processor); /* phase1 bind has already occured */

issue_nv_processor_t(processor);

complete_nv_processor_t(processor);

post_nv_processor_t(processor); /* phase2 bind has already occured */

}

References

[1] James T. Kuehn and Burton J. Smith. The Horizon supercomputing system: Architec-

ture and software. In Supercomputing '88, pages 28{34, November 1988.

[2] B. Ramakrishna Rau, David W. L. Yen, Wei Yen, and Ross A. Towle. The Cydra

5 departmental supercomputer. Computer, 22(1):12{35, January 1989. A version of

this artical appeared in The 22nd Annual Hawaii International Conference on System

Sciences.

[3] B. Ramakrishna Rau. VLIW: Not your father's Oldsmobile. Invited talk, The 25th

Annual International Symposium on Microarchitecture, December 1992.

[4] P. Geo�rey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein,

Robert P. Nix, John S. O'Donnell, and John C. Ruttenberg. The Multi
ow trace schedul-

ing compiler. Journal of Supercomputing, 7(1-2):51{142, May 1993.

[5] B. Ramakrishna Rau. Dynamically scheduled VLIW processors. In The 26th Annual

International Symposium on Microarchitecture, pages 80{92, December 1993.

26

