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Abstract

This paper introduces three performance factors for dynamically scheduled superscalar processors.
These factors, availability, efficiency, and utility, are then used to explain the variations in perfor-
mance that occur with different processor and memory system features. The processor features that
are investigated are branch prediction depth and following multiple branch paths. The memory
system features that are investigated are cache size, associativity, miss penalty, and memory bus
bandwidth. Dynamic scheduling with appropriate levels of bus bandwidth and branch prediction is
shown to be remarkably effective at achieving good performance over a range of differing application
types and over a range of cache miss rates. These results were obtained using a new simulation
environment, MXS, which directly executes the benchmarks.
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1 Introduction

This paper investigates the ability of dynamic scheduling to achieve good performance in a su-
perscalar processor, over a range of processor design and memory system design options. To help
understand the conditions which give rise to good performance in a dynamically scheduled super-
scalar processor, we introduce three performance factors: availability, efficiency, and utility. These
factors are then used to explain the variations in performance that occur with different processor
and memory system features.

Because of cycle time constraints, the size of the primary cache is likely to remain limited[HP90]
in future processors. The miss rate will accordingly remain significant. A secondary cache can be
used to reduce the cost of primary cache misses, but in a processor capable of executing multiple
instructions per cycle, these misses can still have a major impact. Dynamic scheduling has been
proposed as an effective technique for tolerating memory latency due to cache missesf CCMH91,

BP91, GGH92].

To investigate the factors that contribute to good performance in the presence of memory latency,
we study the performance for a fixed primary cache organization, as the branch prediction depth
varies. From the results of these runs, a particular processor configuration is chosen, and its ability
to tolerate memory latency is tested by varying the memory system. The features of the memory
system that are varied are the size, associativity, miss penalty, and bandwidth of the primary
data cache. Dynamic scheduling with appropriate levels of bus bandwidth and branch prediction is
shown to be remarkably effective at achieving good performance over a range of differing application
types and over a range of cache miss rates.

This paper is organized as follows. In section 2, the experimental procedure is outlined, with
descriptions of the processor model, the simulation environment and the benchmarks. The factors
of performance are introduced in section 3. Section 4 describes the results of the simulation runs.
Section 5 discusses these results and related work on techniques for tolerating memory latency.
Finally, section 6 presents some conclusions and plans for future work.

2 Experimental Procedure

2.1 The processor model

The processor model is an eight issue superscalar processor. The model is parameterized in terms
of the bandwidth and latency of its various components. The processor timing is based on a shallow
pipeline design, where cache accesses can be completed in a single cycle (see table 1). The timing is
similar to the MIPS R3000[KH92], except for floating point latencies. All operations are assumed
to be fully pipelined.

Each cycle, up to eight instructions can be fetched, up to eight instructions can begin execution,
and up to eight instructions can complete (write their results to the register file). Registers are



Operation Latency

Load 2 cycles
Branch 2 cycles
Int. Multiply | 12 cycles
Int. Divide 35 cycles
Other int. op | 1 cycle
FP Add 2 cycles
FP Multiply | 3 cycles
FP Divide 12 cycles

Table 1: Operation Latencies

renamed to eliminate output (WAW) and anti- (WAR) dependencies. Instructions begin execution
as soon as their operands become available, up to the limit of eight.

The instruction window for this model is defined as the number of instructions that have been
fetched and have not yet begun execution. This is the number of instructions that need to be
examined when determining which instructions are ready to begin execution, and includes the
instructions which are waiting in reservation stations[Tom67]. To allow sufficient scope for the
dynamic scheduling, the instruction window is set to 32 for all of the tests in this paper.

The primary data cache varies in size and degree of associativity, with a constant line size of 16
bytes. The policy on write misses is to first read in the cache line, and then perform the write
(write miss allocate). Data from the primary cache is written out to the secondary cache when a
miss occurs on a line which has been modified (a dirty line). The time to read a cache line from
the secondary cache into the primary cache varies from four to eight cycles, and the time to write
out a dirty cache line is the same. The number of outstanding requests allowed to the secondary
cache varies.

The number of unresolved branches allowed varies from 0 to 8 branches.

Branch prediction is implemented as a 256 entry table of 3-bit saturating counters. This is a minor
variation of the traditional 2-bit branch prediction scheme[Smi81]. Bits 2-9 of the branch address
are used to index a table of 3-bit counters, and if the value found there is greater than 3, the
branch is predicted taken, otherwise it is predicted not taken. When the branch is resolved, if
the branch was taken, the counter is incremented, otherwise it is decremented. The value of the
counter saturates at 0 and 7 (no wraparound occurs). There is also a 256 entry table of branch
target addresses for predicting the destination address of indirect branches.

2.2 The simulation process

All the results in this study were obtained using the MXS simulation environment[BF94]. Figure 1
shows the simulation framework. The benchmark is first compiled and then it is executed by the
simulator. During execution, the simulator maintains counts of various statistics of interest, such
as number of loads, stores, cache misses, etc. After the execution is completed, the statistics are
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Figure 1: The Simulation Process

written out to a results file. Both the compiler and the simulator are configured by means of a
parameter file which describes the processor and memory subsystem being modeled.

When using trace based simulation the addresses of speculatively generated loads and stores are
not available. The execution based simulation technique used in this study correctly generates all
memory references, both speculative and non-speculative.

For all these studies the compiler performed a simple translation from the MIPS binary to the
format that the simulator expects. No rescheduling was performed, and MIPS instructions were
mapped directly into instructions supported by the simulator (that is, no expansion in the number of
instructions occurred). This is the performance that would be obtained when using a dynamically
scheduled processor to run existing binaries. Increased performance beyond that reported here
might be obtained by recompilation. Compiler issues are discussed in section 5.3.

The MIPS instructions set is similar to a number of other RISC instruction sets. The instruction
per cycle (IPC) numbers presented here should be applicable to any of the machines in this class.

2.3 The benchmarks

The following benchmarks were used for evaluating the performance of the different processor
models: Compress, Uncompress, Espresso, FFT, Linpacks, Sc, Spice, Wave, and Xlisp. They were
chosen to represent a variety of distinct workloads and reference patterns. Some summary statistics
on these benchmarks are presented in table 2. Length is the number of instructions executed in one



Benchmark Length FP | Branch | Memory | Miss rate
compress 239M | 0.0% | 11.2% 33.7% 10.1%
uncompress | 1.80 M | 0.0% | 13.3% 33.9% 3.5%
espresso 41.64 M | 0.0% | 14.3% 22.8% 1.4%
sc 46.30 M | 0.0% 17.6% 31.3% 4.5%
xlisp 14.61 M | 0.0% 12.6% 38.8% 2.4%
it 3.39 M | 29.9% 3.0% 38.8% 16.2%
linpacks 68.85 M | 28.7% 6.5% 45.4% 7.2%
spice 99.21 M | 7.2% 8.8% 34.9% 11.2%
wave 34.30 M | 22.7% 5.0% 34.2% 9.8%

Table 2: Benchmarks

run of the benchmark, and the miss rate is the miss rate with an 8K 4-way set associative cache.

Each of these benchmarks was compiled with the default compilers (C and Fortran) provided with
IRIX! version 5.1. The -O and -non_shared options were set. The default optimizations enabled
by -O include loop unrolling, which helps to explain the low frequency of branches in the floating
point benchmarks. The -non_shared option forces the libraries to be linked in with the application
binary, which is needed for the simulator to be able to execute the library code.

These benchmarks were taken mostly from the SPEC 92 benchmark suite, but the inputs were
reduced so that the simulator could run the benchmark to completion. Correspondingly reduced
cache sizes were used to obtain a realistic range of cache miss rates. The non-SPEC benchmarks
are FFT and Linpacks. FFT performs a one dimensional fast Fourier transform on an array of
single precision floating point data of length 1024. Linpacks is the single precision version of the
standard linear algebra benchmark.

2.4 The experiments

In the first set of experiments, the number of outstanding branches allowed was varied. Then a set
of tests was run to determine the effectiveness of fetching along multiple alternative paths. From
the results of these runs, a particular processor configuration was chosen, and its ability to tolerate
memory latency was tested by varying the memory system.

To bracket the performance gains attributable to latency tolerance, the performance of a machine
with no miss penalty is calculated, and also the performance of a machine that stalls on cache
misses. The performance is then determined for different assumptions about the bandwidth of the
interface between the primary and secondary caches. This portion of the experiment is modeled
after the study that Farkas and Jouppi did on scalar processors[FJ94]. Then these results are tested
by varying the cache size, degree of associativity, etc., in order to determine the effectiveness of
this scheme over a range of cache sizes and designs.

The figure of merit used to compare different models is IPC, the number of instructions per cycle.

'IRIX is a trademark of Silicon Graphics, Inc.



This figure is computed by taking the number of instructions executed when running the bench-
mark on a non-speculative model, and dividing it by the number of cycles required to execute the
benchmark with the given model. No-op instructions are not included in the instruction count.

3 Performance factors

In order to gain more insight into this behaviour, the following three performance factors were
defined: fetch efficiency, fetch utility, and fetch availability. These factors are defined from the
point of view of the instruction fetch mechanism. The instruction window is a buffer between the
instruction fetch unit and the issue/execute mechanism. When the fetch unit is 100% efficient,
then it is successfully filling all of the available slots in the instruction window each cycle.

Utility measures how many of the instructions that were fetched were truly needed in the com-
putation. Loss of utility occurs when there are lots of no-ops in the instruction stream, or when
instructions are fetched along an incorrectly speculated path.

Availability measures how much room there is left in the instruction window each cycle. If the
fetch unit is more efficient than the issue/execute mechanism, then the instruction window will fill
up. This results in a loss of availablility; the fetch unit could fetch more instructions, but there
aren’t enough available slots in the instruction window.

More precisely, the factors are defined as follows:

The total number of fetch slots in a given run is the fetch bandwidth times the number of cycles
in the run. For example, if the fetch bandwidth is 8, and a benchmark runs for 1,000 cycles, then
there are 8,000 fetch slots in the run (throughout this paper, the fetch bandwidth is fixed at 8).
Out of these 8 fetch slots each cycle, some cannot be filled because the instruction window is full.
The remaining fetch slots are known as the available fetch slots. Fetch availability is defined as the
ratio of available fetch slots to the total number of fetch slots.

Even when it has an available fetch slot, the fetch unit isn’t necessarily able to fill it. For example,
the fetch unit might be stalled waiting for a branch to be resolved. Fetch efficiency is defined as
the ratio of the number of instructions fetched to the number of available fetch slots.

Of the fetched instructions, not all of them are necessary to the execution of the program. They
might have been fetched speculatively, and never executed. Fetch utility measures how appropriate
or useful the fetched instructions were. It is defined as the ratio of the number of instructions

executed in a non-speculative model to the number of instructions fetched in a given run.

The performance can be calculated from the three factors, as follows:

1PC =8 x Availability x E f fictency * Utility
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Figure 2: Performance vs. Speculation
4 Results

4.1 Branch prediction level

In figure 2, the performance of the processor model on the various benchmarks is shown for differing
levels of speculation. The performance appears to flatten out at about 6 unresolved branches for
the integer benchmarks, and at 4 branches for the floating point benchmarks. This is consistent
with the lower frequency of branches in the floating point benchmarks.

The performance factors for the Uncompress benchmark are shown in figure 3, along with their
product (which is I PC'/8), expressed as percentages. The pattern shown in this figure is typical of
the benchmarks in this study. Fetch efficiency increases as the level of branch prediction increases,
because the processor spends less time waiting for branches to be resolved. This is offset somewhat
by decreasing fetch utility, as instructions are fetched which have a lower probability of being
on the true path when more branches are predicted. The overall effect, however, is to increase
performance.
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As more branches are predicted, the instruction window fills up more often, and this combined with
the decreasing fetch utility, causes performance to flatten out after around six predicted branches.
The improvement in fetch efficency also flattens somewhat as the level of branch prediction increases
past six. Whenever a branch is encountered, fetching is stalled at least until a branch prediction is
made, which means that the remaining fetch slots that cycle are lost. Thus the high frequency of
branches in this benchmark places an upper bound on the fetch efficency.

The best performing benchmark overall was FFT. Figure 4 displays the performance factors for this
benchmark. With increasing branch prediction level, efficiency increases, but availability decreases.
This indicates that the fetch unit is more often successful in filling up the available slots in the
instruction window, but that the window becomes full more often as more branches are predicted.

This benchmark is unusual in that the instruction window becomes full even when no branch
prediction is performed. This indicates that the fetch unit is racing ahead of the computations,
as in a decoupled architecture[Smi84]. This can happen whenever the branches are independent of
the results of the computation, and the dependency chain from one branch to the next is shorter
than the dependency chain through the computations.
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Benchmark | Taken | W. Take | W. Fall | Fall-thru | Indirect
compress 68.5% 1.7% 3.2% 26.4% 0.2%
uncompress | 70.9% 1.3% 0.4% 16.2% | 11.1%
espresso 61.2% 3.4% 2.9% 23.8% 8.7%
sc 55.9% 2.9% 2.7% 30.0% 8.6%
xlisp 41.3% 3.7% 2.2% 35.9% 16.9%
fft 70.7% 0.4% 0.2% 23.2% 5.5%
linpacks 69.4% 0.4% 0.1% 22.7% 7.3%
spice 49.0% 4.2% 2.1% 28.7% | 16.1%
wave 58.6% 1.5% 1.8% 28.1% | 10.0%

Table 3: Branch frequency by category

Spice and Xlisp have the lowest overall performance of all of the benchmarks, so it is interesting to

look at their performance factors.

In the Spice benchmark (figure 5) we see that while the fetch efficiency continues to rise, especially
between 4 and 6 predicted branches, it is accompanied by a corresponding decline in availability.
This indicates the instructions aren’t being issued as fast as they are being fetched, because there
isn’t enough parallelism within the instruction window. The fetch utility also declines steadily as
the number of predicted branches increases. The end result is little or no performance increase.

In Xlisp (figure 6), on the other hand, availability remains high, and the flattening of performance
is the result of the modest rate at which efficiency is increasing, and poor utility. The poor utility
is due to the fact that branch prediction accuracy on this benchmark is worse than on the other
benchmarks (see section 4.2). The low efficiency is caused by the relatively high branch frequency,
and because branches are taking longer in this benchmark to be resolved. This second effect is
demonstrated by the continued increase in efficiency as the level of branch prediction is increased

from six to eight.

These two cases illustrate two different constraints on instruction level parallelism: Limits due to
data dependencies in the case of Spice, and limits due to control dependencies in the case of Xlisp.

4.2 Branch prediction accuracy

Branch prediction affects the performance of the dynamically scheduled processor primarily by its
impact on fetch utility. The better the branch predictor, the lower the probability that instructions
will be incorrectly fetched, and the higher the fetch utility. The branch prediction mechanism in
this model achieves about 90% accuracy, on average. This average can be broken down according
to branch type and benchmark.

The 3-bit counter is used to classify branches into four categories. A branch is predicted taken,
weakly taken, weakly not taken, or not taken, as the counter takes on the values 6 or 7, 4 or 5, 2
or 3, or 0 or 1, respectively. A fifth type of branch is the indirect branch, or branch to a location
whose address is in a register. In the instruction set of the simulator indirect branches are always

11



Benchmark | Taken | W. Take | W. Fall | Fall-thru | Indirect | Overall
compress 97.3% 51.8% | 64.1% 81.5% | 89.3% | 91.3%
uncompress | 92.6% 68.2% | 52.2% 90.0% | 85.8% | 90.9%
espresso 93.7% 60.7% | 53.8% 91.9% | 80.8% | 89.8%

sc 92.1% 60.2% 55.2% 92.1% 80.7% | 89.2%
xlisp 82.1% 61.8% 59.4% 89.2% 64.4% | 80.4%
fft 96.3% 61.0% 60.4% 89.0% 98.9% | 94.5%
linpacks 92.6% 29.3% 53.6% 99.5% 98.1% | 94.3%
spice 88.3% 60.5% | 47.7% 89.8% 84.3% | 86.1%
wave 90.7% 59.8% 63.2% 94.1% 88.8% | 90.5%

Table 4: Branch prediction accuracy

unconditional. The frequencies of the various kinds of branches is given in table 3.

The effectiveness of the branch prediction mechanism is given in table 4. The accuracy of the
predictions is given for each of type of branch. In the case of indirect branches, the accuracy refers
to how often branch target addresses in the table agree with the correct address. These numbers
were taken from the run in which the branch prediction level was set to six. The values vary slightly
from run to run, since at the time the prediction is made, different numbers of unresolved branches

may be outstanding.

The 3-bit counter does a good job of classifying the branch instructions according to whether they
are predictable or not. The weakly predicted branches have an overall prediction accuracy of around
60%, not much better than a coin flip. Fortunately there are relatively few branches in the weakly
predicted categories, so the overall branch prediction accuracy is quite high.

The suggestion has been made that following multiple paths of execution is a good way to increase
instruction level parallelism[Uht93]. However for a fixed level of instruction fetch bandwidth, it
would seem that the optimal strategy is to fetch only along the most probable path.

Assuming for the moment that fetch availability and fetch efficiency are independent of the choice
of which path to follow, then the path with higher probability will yield the better fetch utility
and thus the better performance. If the fetch bandwidth is to be divided between two paths, then
fetches along the path of lower probability are displacing fetches along the higher probability path,
and so performance on the average is reduced.

However, fetching along multiple paths does have some second order effects. The instructions
along distinct paths are independent of each other, so the parallelism in the instruction window
is increased. This may be of some benefit if the instruction window is filling up frequently (i.e if
availability is low), as it will increase the rate at which instructions are removed from the window

by execution.

Thus if a branch has a roughly even chance of being taken, then it might make sense to follow
both paths. Using the branch prediction bits, branches can be classified according to whether they
are strongly or weakly predicted. However the vast majority of branches are strongly predicted, as
shown in table 3, so any benefit from following multiple paths will be limited by lack of opportunity.

12



Benchmark | Blocking | fe=1| fe=2| fe=3 | fe=4 | Unlim | No lat.
compress 1.95 | 232 | 2.78 | 2.84 | 2.88 291 3.31
uncompress 2.66 | 2.86 | 293 | 293 | 2.93 2.93 3.17
espresso 2777 2.88 1 290 | 2.90 | 2.90 2.90 2.97
sC 2.18 | 2.44 | 2.61 | 2.64 | 2.65 2.66 2.81
xlisp 1.81 ] 1.94 | 1.97| 1.98 | 1.98 1.99 2.11
fft 1.66 | 1.87 | 3.21 | 3.86 | 4.09 4.22 4.91
linpacks 1.95 ] 2.84 | 3.78 | 3.82 | 3.82 3.82 3.89
spice 1.50 | 1.69 | 1.82| 1.84 | 1.85 1.86 2.13
wave 1.66 | 1.96 | 2.27 | 2.38 | 2.42 2.45 2.63

Table 5: TPC as memory bandwidth varies

The benchmarks were run on models that varied in the number of paths followed from 1 to 6, to
test out this line of reasoning. The net result was that increasing the number of paths followed,
and using the strategy of following both paths only if the branch was weakly predicted, did cause
a slight increase in performance. The largest increase was 1.3%, in the case of Espresso, with the
model that could follow up to three paths.

Because this was a small effect, and since following multiple paths would involve considerable
expense to implement in a real machine, the remaining experiments assume that only a single path
is followed.

4.3 Varying memory bandwidth

In [FJ94], the performance of a scalar processor was studied with varying organizations of a non-
blocking cache. The terminology “fc=1", “fc=2", etc., was defined there to mean that the cache
could support one outstanding fetch, two outstanding fetches, etc. This number is a measure of
the bandwidth demanded by the primary cache.

In this set of simulations, the processor is run with a limit on the number of outstanding primary
cache fetches. When the limit is reached, no more cache requests are allowed until one of the
outstanding fetches completes. The processor model in these test runs supports six deep branch
prediction, and only follows a single branch path. The results are shown in table 5. For reference,
the results of the same processor on a perfect memory system (no latency) and on a blocking cache
are shown.

For most benchmarks, two outstanding fetches is sufficient to approach the performance of the
unlimited fetch bandwidth case. One exception to this is the FFT benchmark, which shows strong
performance gains all the way up to four outstanding fetches.

In comparison with the scalar case, clearly there is an increased demand for bandwidth into the
primary cache, even though the latencies are relatively small here. One good example is Compress,
which shows an overall performance increase of 20% when going from one to two outstanding
fetches. In contrast, in the scalar case (as reported in [FFJ94]), there was minimal performance gain

13



Benchmark | No lat. | 16K 4-way | 8K 4-way | 8K Direct | 8K 4-way

4 cycles 4 cycles 4 cycles 8 cycles
compress 3.31 2.95 291 2.89 2.38
uncompress 3.17 3.08 2.93 2.85 2.72
espresso 2.97 2.96 2.90 2.80 2.83
sC 2.81 2.69 2.66 2.60 2.51
xlisp 2.11 2.02 1.99 1.94 1.84
fft 4.91 4.45 4.22 4.08 3.33
linpacks 3.89 3.85 3.82 3.80 3.48
spice 2.13 1.93 1.86 1.83 1.64
wave 2.63 2.56 2.45 2.48 2.22

Table 6: IPC for various cache configurations

in going from one to two outstanding fetches.

By comparing the performance of the blocking model with the performance of the “fc=2" model, it
is clear that substantial amounts of memory latency have been hidden by the dynamic scheduling.
The biggest gains occur (naturally) on the benchmarks with the highest miss rate. The performance
of Compress, for example, increases by 53%. The biggest improvement occurs for FFT, which shows
a 126% increase in performance.

4.4 Differing cache designs

To determine how robust the performance of this model is in different environments, the same
processor model was run with a variety of different cache configurations. The results are shown
in table 6. The cache configurations tested were a direct mapped 8K cache (8K Direct), a 16K
4-way set associative cache (16K 4-way), and an 8K 4-way set associative cache with double the
miss penalty. The miss penalties in cycles are given beneath each cache type. The figures in the
first column are the results for the 8K 4-way set associative cache used previously.

One question that is sometimes asked is whether the performance decreases linearly with increasing
cache miss penalty. Looking at the results for no latency, and the two 8K 4-way caches with miss
penalties of 4 and 8 cycles, the performance decline is roughly linear for most of the benchmarks
(see figure 7). The benchmarks where the decline is clearly not linear are FFT, Linpacks, and
Compress. The drop off in performance suggests that the ability of the processor model to tolerate
cache misses has been saturated in some way by these benchmarks.

When the miss penalty increases, this causes instructions to reside longer in the instruction win-
dow, waiting on data. Thus the pressure on the instruction window increases as the miss penalty
increases. In table 7, we see that the same benchmarks (FFT, Linpacks, and Compress) have the
biggest decrease in fetch availability as the miss penalty increases.

The variation in performance for different cache sizes and configurations is mostly explained by the
variation in miss rates for the different caches. The miss ratios for the different benchmarks are

14



IPC

6.00

5.00

4.00

3.00

2.00

1.00

G—=© Compress
G --oUncompress __

- - = Espresso
+—-+F1Sc

= -- & Xlisp
*— FFT

» - - X Linpacks
*¥—— Spice
* - - % Wave

Miss Penalty

4
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Benchmark | No latency | 4 cycles | 8 cycles
compress 89.6% | 85.2% | 72.0%
uncompress 92.2% 85.8% 80.3%
espresso 94.2% |  93.6% | 92.7%
sc 94.6% 94.4% 94.0%
xlisp 99.0% 98.4% 97.0%
it 80.8% 68.7% 54.2%
linpacks 67.0% | 65.8% | 59.3%
spice 73.3% | 69.2% | 65.3%
wave 75.3% | 74.7% | 73.2%

Table 7: Fetch availability vs. Miss penalty
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IPC

Benchmark | 8K Direct | 8K 4-way | 16K 4-way
compress 10.2% 10.0% 8.4%
uncompress 4.5% 3.4% 1.4%
espresso 3.2% 1.3% 0.3%
sc 5.9% 4.4% 3.0%
xlisp 3.2% 2.1% 1.4%
fft 14.9% 16.2% 6.5%
linpacks 7.7% 7.2% 4.8%
spice 11.6% 10.2% 7.6%
wave 10.3% 9.6% 5.2%

Table 8: Miss ratios
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Figure 8: Performance vs. Miss rate
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Figure 9: Performance vs. Miss rate
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given in table 8, and figure 8 plots performance vs. miss rate for each of the benchmarks.

The dotted lines in figures 8 and 9, labeled “Hypothetical”, represent the performance that would
be seen if the processor were to block on a cache miss. These curves were calculated assuming that
one-third of all operations were loads and stores, and that one-half of the cache misses were dirty
misses. These were taken from the observed ratios in the benchmarks.

The amount of latency being tolerated by the benchmark through the use of dynamic scheduling is
shown by these lines. At the Y axis, where the miss rate is 0, choose a nearby hypothetical line for
each benchmark. Then follow the two lines to the left. As the gap between these two lines grows,
the benchmark is tolerating increasing amounts of memory latency.

The direct relationship between performance and miss rate for most benchmarks is clear from the
graph. The FFT benchmark once again reveals some unusual behaviour. Although overall miss
rate is smaller for the FFT in the direct mapped cache, more of the misses are dirty misses, so the
total miss penalty is still greater than in the set associative case.

A close up of the graph, excluding FFT, is shown in figure 9. The leftmost point of each line
segment is the perfect memory case (no misses). Moving to the right along the line segment, the
data points are for a 16K 4-way set associative cache, an 8K 4-way set associative cache, and an
8K direct mapped cache.

In this graph, the lines are mostly straight, which means that the variation in performance is almost
entirely explained by the miss rate. That is, the organization of the cache (direct mapped vs. set
associative) does not appear to impact the performance of the dynamically scheduled processor,
other than through the variation in miss rate.

5 Discussion

5.1 Related work

Other papers have studied the ability of dynamically scheduled machines to tolerate memory
latency[ CCMH91, BP91, GGH92]. The focus of [GGH92] was scientific applications running on
multiprocessors with very long latencies. Static vs. dynamic scheduling is compared in [CCMH91]
and the variation in performance with cache size and load latency are studied in [BP91].

While [BP91] and this paper both study scalar processors running a mix of applications, this paper
examines the factors that allow dynamically scheduled machines to tolerate latency. Also [BP91]
studied processors with a smaller instruction window and longer memory latencies. As a result,
their instruction windows were more frequently saturated, leading to performance that was strongly
influenced by memory latency.
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5.2 Branch prediction

Many branch prediction methods have been proposed that are better than the simple scheme used
here, for example [YP93]. The performance factors introduced in this paper can be used to analyze
the likely impact of adopting better branch prediction mechanisms. The factor primarily affected
by improved branch predition is fetch utility, so the biggest performance benefits will occur in those
benchmarks where fetch utility is a significant factor. Xlisp, for example, should get a significant
boost from better branch prediction.

However, fetch utility is not the most important factor limiting performance in most of the bench-
marks. The fetch efficiency has the biggest impact on performance in general. A second con-
sideration is whether the instruction window is becoming saturated, as indicated by a declining
availability factor. When this happens, improving the fetch utility may not make much difference
in performance, as it would increase the pressure on the instruction window. This implies that
a simple branch prediction scheme, such as the one presented here, might be sufficient to achieve
most of the attainable performance.

5.3 Compiling for dynamically scheduled machines

What sort of compiler optimizations are appropriate for dynamically scheduled machines? First,
reducing the dynamic branch frequency is important to achieving good fetch efficiency. Techniques
such as loop unrolling and superblock formation[HMB'93], for example, ought to work well.

Second, the fetch availability is determined by the rate at which the processor can execute the
instructions in the instruction window. This, in turn, depends on the amount of parallelism that
is present in the instruction window. Compiler optimizations that can increase the amount of
parallelism available within such a fixed window size, such as loop transformations[WL91], should
work well.

6 Conclusion

Dynamic scheduling approaches date back to the CDC 6600[Tho64] and the IBM 360/91[Tom67].
Various techniques for dynamic scheduling have been proposed in [WS84, PHS85, AKT86, Soh90,
DT92]. Dynamic scheduling has even been proposed for VLIW processors[Rau93].

This paper inquires into the factors that affect the performance of such a machine. The factors of
fetch availability, efficiency, and utility were introduced in order to provide some insight into the
causes of variation in performance in a dynamically scheduled processor.

Depth of branch prediction has a significant impact on performance, as it directly improves the
fetch efficiency. As fetch efficiency increases, the factors of availability and utility start to play a
significant role in limiting performance. Executing along both paths of a branch provides only a
small performance increase for machines of this class.
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Dynamically scheduled machines are able to tolerate cache misses, but in order to do so they
need additional bandwidth at the primary cache interface, in the form of support for multiple
outstanding cache misses. For the latencies studied here, supporting two outstanding cache misses
is quite effective for most of the benchmarks. However the FFT benchmark continues to improve
significantly in performance as the number of outstanding cache misses supported is increased to
four.

As the latency is increased from four cycles to eight cycles, the instruction window starts to saturate
for some of the benchmarks. This leads to a sharper drop off in performance, as the full impact of
the memory latency starts to make itself felt.

Finally, a dynamically scheduled machine can work with a direct mapped primary cache just as
well as with a set-associative primary cache. The performance of the processor with different types
of primary caches depends primarily on the miss rate, rather than on the cache organization.

In the future we plan to look at how the performance factors are affected by a more deeply pipelined

processor model, in which cache accesses require two cycles instead of one. We also plan to look
into the tradeoff between instruction window size and overall performance.
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