Nondeterministic Operators in
Algebraic Frameworks

Sigurd Meldal Michal Walicki

Technical report CSL-TR-95-664
Program Analysis and Verification Group Report No. 69

March 1995

Computer Systems Laboratory
Department of Electrical Egineering and Computer Science
Stanford University
Stanford, CA 94305-4055

Abstract
A major motivating force behind research into abstract data types and algebraic specifications is the realization
that software in general and types in particular should be described (“specified”) in an abstract manner. The
objective is to give specifications at some level of abstraction: on the one hand leaving open decisions regarding
further refinement and on the other allowing for substitutivity of modules as long as they satisfy a particular
specification.

The use of nondeterministic operators is an appropriate and useful abstraction tool, and more: nondeter-
minism is a natural abstraction concept whenever there is a hidden state or other components of a system de-
scription which are, methodologically, conceptually or technically, inaccessible at a particular level of abstrac-
tion.

In this report we explore the various approaches to dealing with nondeterminism within the framework of
algebraic specifications. The basic concepts involved in the study of nondeterminism are introduced. The main
alternatives for the interpretation of nondeterministic operations, homomorphisms between nondeterministic
structures and equivalence of nondeterministic terms are sketched, and we discuss various proposals for, re-
spectively, the initial and terminal semantics. We make some comments on the continuous semantics of non-
determinism and the problem of solving recursive equations over signatures with binary nondeterministic
choice. And we then go on to present the attempts at reducing reasoning about nondeterminism to reasoning in
first order logic, and gives an example of a calculus dealing directly with nondeterministic terms. Finally, re-
writing with nondeterminism is discussed: primarily as a means of reasoning, but also as a means of assigning
operational semantics to nondeterministic specifications.
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Introduction

Mathematics never saw much of a reason to deal with something called “nondeterminism.” It
works with values, functions, sets, relations. In computing science, on the other hand, non-
determinism has been an issue from the very beginning, if only in the form of nondetermin-
istic Turing machines or nondeterministic finite state machines. Early references to nonde-
terminism in computer science go back to the sixties [38, 84]. A great variety of theories and
formalisms dealing with it have been developed during the last two decades. There are the
denotational models based on power domains [103, 117, 51, 106], the predicate transform-
ers for the choice construct [29, 30, 104, 118], modifications of the A-calculus [73, 4, 49].
Nondeterminism arises in a natural way when discussing concurrency, and models of con-
currency typically also model nondeterminism. There are numerous variants of process lan-
guages and algebras [13, 89, 90, 50, 54, 52, 65, 39, 11], event structures [136, 135, 134, 2],
state transition systems [83, 71], Petri nets [100, 109].

In terms of modeling nondeterminism may be considered a purely operational notion.
However, one of the main reasons for considering nondeterminism in computer science is the
need for abstraction, allowing one to disregard irrelevant aspects of actual computations.
Typically, we prefer to work with models which do not include all the details of the physical
environment of computations such as timing, temperature, representation on hardware, etc.
Since we do not want to model all these complex dependencies, we may instead represent
them by nondeterministic choices. The nondeterminism of concurrent systems usually arises
as an abstraction of time. Similarly nondeterminism is also a means of increasing the level of
abstraction when describing sequential programs [85, 130], and as a way of indicating a
“don’t care” attitude as to which among a number of computational paths will actually be
utilized in a particular evaluation [30].

The variety of approaches referred to above indicates the possible difficulties in gathering
all the pieces into one uniform theory, let alone a short presentation. In this paper we are
concerned with algebraic specifications and hence will consider only a part of the whole pic-
ture of nondeterminism. As far as the basic notions related to nondeterminism and the asso-
ciated algebraic formalisms are concerned, the paper is by and large self-contained. Only oc-
casionally references to other areas presupposing some prior knowledge will be made.

In section 1 the basic concepts involved in the study of nondeterminism are introduced.
Sections 2-5 discuss the semantic issues, and 6-7 reasoning with nondeterminism. The main
alternatives for the interpretation of nondeterministic operations, homomorphisms between
nondeterministic structures, and equivalence of nondeterministic terms are sketched in 2.
Sections 3 and 4 discuss various proposals for, respectively, the initial and the terminal se-
mantics. In section 5 we make some comments on the continuous semantics of nondeter-
minism and the problem of solving recursive equations over signatures with binary nonde-
terministic choice. 6 presents the attempts at reducing reasoning about nondeterminism to
reasoning in first order logic and then gives an example of a calculus dealing directly with
nondeterministic terms. In 7 rewriting with nondeterminism is discussed: primarily, as a
means of reasoning, but also as a means of assigning operational semantics to nondeter-
ministic specifications.



1. Basic concepts

In this section we present informal definitions of the basic concepts and distinctions involved
in the study of nondeterminism.

Nondeterminism and nondeterminacy

Roughly speaking, nondeterminacy concerns
syntax, nondeterminism semantics. The con-
structs which always yield unique result are
determinate, those which may yield different
results when invoked several times nondeter-
minate. The presence of a nondeterminate con-
struct in an expression does not force the corre-
sponding operation to be nondeterministic.
Determinacy implies determinism but nonde-
terminacy does not necessarily imply nondeter-
minism and, as observed in [18], the problem
whether a nondeterminate term is deterministic
or not is, in general, undecidable. We are pri-
marily concerned with the intentional nondeterminism originating from the presence in the
language of some constructs which have nondeterministic semantics.

Nondeterminism and underspecification

When developing a software system in a number of refinement steps, we are often interested
in specifying the functionality of the system uniquely but only with respect to some relevant
properties. That is, each model of the specification is a standard (deterministic) structure but
we do not identify one unique model. We then speak of underspecification. Later in the de-
velopment process we may add more properties, whenever we find it appropriate, and so re-
strict the model class. Thus underspecification functions also, like nondeterminism, as a
means of abstraction. It bears a resemblance to nondeterminism in that it leaves open the
possibility of choosing among several admissible models. The important difference between
the two notions may be roughly expressed thus: underspecification admits a choice between
different models but nondeterminism admits choices within one model. While underspecifi-
cation fits into the concepts of classical logic and model theory smoothly, the treatment of
nondeterminism leads to complications and, typically, requires introduction of non-standard
features both into the models and logic. For this reason some researchers postulate the use of
underspecification as the primary, if not the only, means of abstraction. Others consider it
insufficient and try to design formalisms which capture the phenomenon of nondeterminism
as distinct from underspecification.

Representational vs. “real” nondeterminism

There are essentially two reasons why one might want to include the concept of nondeter-

minism in the traditional algebraic specification methods:

(1) Real nondeterminism.
The system being specified really is nondeterministic — its behavior is not fully predictable,
nor fully reproducible, no matter how detailed our knowledge of its initial state.

(2) Representational (or pseudo-) nondeterminism [64, 121, 130].
The behavior of the system being specified may be fully predictable in its final imple-
mentation (i.e. deterministic), but it may not be so at the level of abstraction of the specifi-
cation.

Though many think of representational nondeterminism as identical to underspecification,

they turn out to be technically and conceptually quite distinct (as we shall see shortly).
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Whether the world really is nondeterministic or not we leave to the physicists and philo-
sophers to ponder. A computer system in isolation certainly is deterministic: When started
from a particular state (given in full detail) twice, both executions will demonstrate identical
behavior. Possible sources of perceived nondeterminism lie only in the unpredictability of the
environment such as hardware failures or human factors. Considering all such factors as parts
of the total state given in full detail may obviate the perceived nondeterminism, but leads to
undesirable complexity and is possible only in principle.

The primary argument in favor of accepting nondeterministic operators is instrumental,
and identical to the credo of the abstract data type community: One should specify a system
only in such detail that any implementation satisfying the specification also satisfies the user, and no
more. It turns out that nondeterministic operators ease the process of specifying systems by
allowing one to disregard irrelevant aspects — be they the external influences or implemen-
tation details — and thus reducing the danger of overspecification resulting from technical
rather than methodical reasons.

For purposes of discussion it may be convenient to further identify three variants of rep-
resentational nondeterminism: (1) abstraction from hidden state, (2) abstraction from time,
and (3) abstraction from external entities. Though these may be dealt with uniformly, they
have often been considered distinct. In particular, the introduction of nondeterminism as a
result of abstraction from time is usually taken as a given in the process algebra community
without thereby necessarily accepting abstraction over state as requiring nondeterminism for
specification purposes.

How does this use of nondeterminism differ from the usual notion of underspecification?
Consider for a moment a user-defined choice function LI from sets of integers to integers,
returning one of the elements of the set:

For instance, LI({0,1}) may return either of the values 0 and 1. If choice were just an un-
derspecified function, then we would have that LI({0,1})=L1({1,0}), since the arguments of the
function are equal (though not syntactically identical) in the two terms. In practical terms,
this would require the choice operator always to return the same value when applied to a
particular set. l.e., LI({0,1}) is always O, or always 1.

However, this kind of underspecification does not allow for abstraction from
(conceptually) invisible entities that might influence the choice (such as a hidden state, tim-
ing or interaction with a human being). E.qg., if set values were implemented as unordered
sequences with new elements always added to the front of the sequence, this underspecified
description of the choice function would disallow using a simple implementation of choice as
picking the first element of the sequence, since such an implementation would sometimes
return the value 0, sometimes the value 1, when applied to the set {0,1}, depending on which
of the two elements were added first. If we were to treat choice as a nondeterministic opera-
tor, on the other hand, then such a straightforward implementation (though deterministic)
would be quite acceptable, both formally and according to the usual intuition about the re-
quirements of an operator picking some element from a set [107, 132].

Similarly, if the implementation of the choice function asked a human operator to pick
an element then one would encounter the same difficulty: The behavior of human beings
may be deterministic, but even were that the case their inner state determining that behavior
is not available for inspection. A specification needs to abstract from that inner state, and
nondeterminism is the right concept for doing that.

And similarly again, if the choice depended upon timing properties (e.g. the set was dis-
tributed among a number of processors, and the choice function simply queried them all,
returning the first (in terms of time) value returned to it by one of these processors) the ab-
straction from timing properties would introduce a seeming nondeterminism.



The implementation relation also arises in the distinction between loose and tight rela-
tionships between structures modeling nondeterministic operators (see below).

Bounded and unbounded nondeterminism
Bounded nondeterminism refers to the case where every terminating computation has only a
finite number of possible results; unbounded — to the one where the set of the possible results
may be infinite.

It may be argued [30, 54] whether unbounded nondeterminism has a plausible compu-
tational interpretation. A deterministic program P which takes a natural number n as input
and outputs a natural number m corresponds to a partial recursive function. The relation

Re(nm) & P(n)=m

Is recursively enumerable (RE), and the subset L, of natural numbers for which P does not
terminate is co-recursively enumerable. For nondeterministic program P, the input-output
relation R,(n,m) is also RE, but when the involved nondeterminism is unbounded L, is much
more complex than co-RE. Firstly, (non-)termination cannot be guaranteed and L, is the set
of those inputs on which P may not terminate. Then it is shown in [25] that for erratic (see
below) unbounded nondeterminism L, has the complexity = ;. This either presents a serious
challenge to the Church-Turing thesis and the classical notion of computability or, perhaps,
discredits unbounded nondeterminism as a notion without computational relevance. Never-
theless, even if one might agree that the notion of unbounded nondeterminism is not feasible
from the implementation point of view, it may even so provide an invaluable abstraction
mechanism at the specification level.

Unbounded nondeterminism creates severe difficulties in models based on fixed point
semantics because, unlike bounded nondeterminism, it is not continuous in the standard
constructions of power domains. However, it should be observed that noncontinuity is not
caused by the nondeterminism, but rather by the unboundedness. Noncontinuity may also
arise in a determinate language, for instance, in a language admitting quantification over infi-
nite sets.

Biased agents

The paradigmatic concept of nondeterminism is probably that of arbitrary choice. Choosing
nondeterministically between a and b there is a possibility that we get a and also a possibility
that we get b. The choice may be influenced by additional factors which nevertheless leave it,
to some extent, undetermined. If this is the case we may speak of the (agent making the)
choice being biased.

The most extensively studied case of such agents involves bias with respect to possible
termination. Erratic choice is completely arbitrary — it may happen that such a choice will
lead to a nonterminating computation and it may happen that it will eventually produce
some result. Angelic choice, on the other hand, will always avoid branches which may lead to
nontermination. If there is a computational path leading to a successful result, angelic non-
determinism will guarantee that such a path will be found. Finally, a demonic choice will do
the opposite and always follow the path, if such exists, leading to a nonterminating computa-
tion.

In terms of implementation, erratic nondeterminism is the least problematic. A choice
may be performed locally without consideration of the possible consequences of the choices
made. It may be also thought of as an unpredictable environment beyond the control of the
program. An operational intuition of angelic nondeterminism [25] can be a system which,
whenever a choice is to be made, spawns several new processes, one for each among the pos-
sible results of the choice. The first process to terminate causes all other processes to stop as
well. The demonic case can be analogous except that every process must terminate if the



whole computation is to terminate. Demonic nondeterminism is in [21] called backtrack
nondeterminism — it is there thought of as a system which makes a choice and follows the
path until it terminates. If it does, the system backtracks to the point at which the last choice
was made and follows another path. It will terminate only after having checked that all possi-
ble choices lead to terminating computations.

The terms erratic, angelic, demonic are used not only to refer to the termination aspect
but, generally, to the situations where nondeterminism involves arbitrary choices where the
results are either “desirable” or “undesirable,” e.g., with respect to definedness.

The first version of angelic nondeterminism [84] was related to this kind of preference
for “desirable” behavior. It was local (like the erratic one) in the sense that it chose among its
arguments looking only at their values rather than at the consequences of its own choice. If
both arguments were well defined (completed computations) any of them might have been
chosen erratically but if any of the arguments was undefined the other one was chosen.

This is an example of the value bias [110] where every agent may have its own preference
as to which values to choose. Such a bias can be modeled by a partial order on the values ex-
pressing the preferences. An agent presented with the choice between a and b first considers
whether any of the values is to be preferred (is greater in the ordering), in which case this
value is selected. Otherwise the choice is arbitrary. For instance, the ordering for the angelic
agent in the last paragraph would be the flat partial order: a<b iffa=1 v a=b.

Another form of a bias is fairness. If an erratic agent has infinitely many occasions to
choose between a and b it may happen that it will always choose a. A fair agent will eventu-
ally choose also b.t There is a close connection between fair choice and unbounded nonde-
terminism as the well-known example illustrates [30, 99, 3]:

b:=T ; x:=0;
while b do

b:=F U X:=x+1 (Progl)
od;

If LI denotes erratic (demonic) choice this program may (will) not terminate. Any number
may be returned by a terminating (erratic) computation. If LI is fair (in this case it means also
angelic) then the program will always terminate. There is no upper bound on the number of
iterations before this will happen, though, so any natural number may be returned as the
value of x. This means that a “solution” to the fairness problem would also provide a mecha-
nism to implement unbounded nondeterminism.

Many subtleties arise in this connection: the distinction between strong termination
(which requires an upper bound on the number of iterations) vs. weak (where no such
bound exists) [5], tight implementation (which produces all the results prescribed by the
specification) vs. loose (which only needs to produce some of them) [21, 99] and, of course,
various kinds of fairness ranging from the “ideal” fairness as in the example above to forms of
computable fairness where the bound on the delay in selecting any of the alternatives is de-
termined by some computable function. The latter is shown in [25] to have complexity =7,
i.e., essentially the same as functions computable by deterministic programs. (Thus fairness
will restrict the functions “computable” by a nondeterministic program.)

As a final example of biased agents we mention probabilistic nondeterminism [68, 108,
111, 81]. Here every choice is made with some probability distribution P which may depend
only on the values (e.g., whenever a choice between a and b is to be made, P(a)=1/3 and

1 This is known as unbounded fairness. There are many different notions of fairness but we do not focus on them
here.



P(b)=2/3), or also on the agents making the choice (so that P,,(a,b) for an agent M may differ
from P,(a,b) for another agent N.) Of course, the formalism for the description, as well as the
models, of probabilistic nondeterminism are considerably more complex than the formalisms
and models of non-probabilistic nondeterminism. They are probably more appealing to the
community interested in probabilistic algorithms than to workers in the field of formal speci-
fications and abstract data types.

Singular and plural

In deterministic programming the distinction between call-by-value and call-by-name se-
mantics is well-known. The former corresponds to the situation where the actual parameters
to function calls are evaluated and passed as values. The latter allows also parameters which
are function expressions, passed by a kind of Algol copy rule [113], and which are evaluated
only when a need for their value arises.

The nondeterministic counterparts of these two notions are what [110] calls singular and
plural semantics of parameter passing. Other, very closely related distinctions go under the
names call-time-choice vs. run-time-choice [26, 49, 50], inside-out (10O) vs. outside-in (Ol)
[34, 35]. The different names reflect slight differences in meaning of the concepts. Except
where we are entering into a more detailed discussion of this distinction (7) we will adopt the
terminology [110] (taking the risk of abusing it a bit for the sake of a more intuitive exposi-
tion).

The terminology of [110] reflects the meaning of the nondeterminate terms as repre-
senting sets of possible results. Evaluation of such a term yields a unique result, hence when
evaluation of the argument is required at the moment of the call it represents a single value.
When a term is passed by some variant of the textual copy rule and several evaluations of it
in the body of the operation can happen independently of each other, then we can picture
the situation as passing the whole set of possible results where each reference to the parame-
ter name picks (independently) one among the possible results.

Etc. ...

Among other, more particular distinctions which may be occasionally referred to, we have:

Weak vs. strong [110]. Weak nondeterminism means that, although some internal parts of a
computation may happen nondeterministically, the eventual result is uniquely determined
by the input. For instance, confluent rewriting of a term may apply different rules (chosen
nondeterministically) but will always arrive at the same normal form; a term may be called
weakly nondeterministic if it is nondeterminate and deterministic. Strong nondeterminism
is, of course, the nondeterminism proper.

Tight vs. loose [99, 21, 110]. This distinction concerns the relation between two, possibly
nondeterministic, structures. If M is one of them and displays some nondeterminism then
N is said to be tight if it displays exactly the same amount of nondeterminism, and it is
loose if its nondeterminism is, possibly, more restricted than of M. For instance, if M is a
specification then, typically, its implementation N will be allowed to decrease the nonde-
terminism of some operations (loose). Similarly, if M is a programming language with
nondeterminate constructs, then we may think of a (loose) deterministic implementation
N of M as being correct if every operation in N returns a result which is among the possi-
ble results of the corresponding operation in M.

Restrained vs. unrestrained [110]. The former is nondeterminism of single programming con-
structs — “choose arbitrary number”, and the latter is nondeterminism allowing choice of
different execution paths — “goto labell or label2”. The latter can be easily implemented
using the former. Nevertheless, the names come from the fact that denotational models of
the latter are much more complex and require power domain construction over function
spaces with a non-flat ordering.



Notation

A specification SP is a pair (=, II) of the signature and the formulae in some language which
will depend on the context. The set of ground terms over = will be denoted Wy, and W, will
denote terms with variables from the set X. Terms may be determinate or nondeterminate —
when speaking of their interpretation we will say “function” whenever a deterministic opera-
tion is meant, and “operation” whenever the term may denote a nondeterministic operation.
For teW, ,, we will let {t} denote the set of its possible results, possibly with a superscript, as
in {}, for the structure A in which t is interpreted.

Nondeterministic choice is denoted by “LI”. Sometimes LI will denote binary choice,
written xLly, but usually its argument will be a set — either because the profile of LI in = de-
clares it so, or because the appropriate axioms of commutativity, associativity and idempo-
tency are given. For the set-valued operator the notation LI.{X,y} will be used.

Equality, as a primitive of the language, is written in the infix notation, x=y; =(x,y) is used
to denote equality as a defined predicate. The symbol “=” indicates syntactic identity of its
arguments.

An upper case letter such as “A” usually denotes a set or a model with carrier |A|. (The
latter notation is also occasionally used for the cardinality of a set. We expect no confusion
arise from this overloading of notation.) P(A) is the power set of A, P*(A) the set of its non-
empty subsets. PA will denote (some variant of) power set structure. Instead of S,x...xS; we
will write S'.

2. Semantic preliminaries

The algebraic approach to nondeterminism is dominated by the use of power set structures.
We use the name “power set structure” (algebra, model) as the generic description of most
algebraic models of nondeterminism. In particular, power algebras are just a special case of
power set algebras. We include here also the function oriented and relational constructions
since they are closely related to what one would naturally associate with the expression
“power set structure”. However, there is no standard definition of this notion and the choices
one has to make are not merely esthetical or technical. In this section we sketch the main al-
ternatives of modeling operations and homomorphisms using power set structures. The fol-
lowing definition will be used extensively:

Definition 2.1. We say that a function f: P(A)— P(B) is

1. additive, fe[P(A) —, PB)], iff VSeP(A) : f(S) = Uf({s}) | s€S},

2. strict, fe[P(A) —, P(B)], iff f(@) =4, and

3. preserves singletons, fe[P(A) —, P(B)], iff VYSeP(A):|S|=1 = |f(S)|=1.
Functions satisfying both 1. and 2. will be indicated by — .
O

2.1. Operations ...

The carrier of a power set algebra PA is (usually) the power set of some (underlying or basis)
set A: for each sort SeS, the carrier of S is (S"), or P*(S%). (In the notation we usually drop
the sort indexing — it is always implicitly present.) The elements of A will be called individuals
— interpretation of terms in 2PA is usually based on the interpretation of variables as individu-
als (singular semantics [110]). The interpretation of a nondeterminate operation f: S'—S offers
several choices.

Functional models: f* = {f: (5)* — $*}
Here the carrier is the set A rather than its power set. Every f is interpreted as a set {f} of de-
terministic functions. Operationally it may mean: whenever f is to be applied, it first chooses



some i and then applies the (deterministic) function f, i.e., all nondeterminism is resolved at
the beginning of the computation.

A possible argument against the functional model is that it is not fully abstract. Instead of
looking at the input-output relation which gives the abstract view of a program
(specification) it looks inside it and distinguishes models with the same observable behavior,
[59, 58]:

Example 2.2
Let A and B be two models of the operation f: S—S:
$f#={01}=¢%°
f = {fo.f} P ={f,f}

B0)=f(1)=0  1,(0)=0,1,(1)=1

LO)=f(M)=1  £0)=11f{1)=0
For any input, A and f8 can return the same result, and hence might be called indis-
tinguishable. The above semantics, however, would claim that A and B are different
because both computations are performed in different ways.
0

This vice may become a virtue if the way in which operations are computed matters. It is easy
to abstract such a structure of computations and look only at the result sets produced by a
nondeterministic operation [126].

The model reflects also the fact that each computation of any program produces a unique
result — observing the results produced in one execution of a program does not supply suffi-
cient information to decide whether we run a nondeterministic f, which happened to choose
an f,, or whether we run a deterministic f. Thus

m, € f(n) < df.ef:f(n)=m, (2.3)

In this view there is, in general, no deterministic program equivalent to a nondeterministic
one. Both produce unique results in every computation on a given input, but all computa-
tions of the former produce the same result, while different computations of the latter can
produce different results. In terms of the automata theory this amounts to viewing each non-
deterministic finite state machine NM as a set of deterministic machines D,, each accepting
exactly one string from the language of NM.

This functional approach has received relatively little attention in the literature. The do-
mains of indexed sets used in [9] instead of power domains remind one of indexed functions.
A more elaborate investigation of the functional models is reported in [126] where the rela-
tionships to the next kind of models are studied as well. We will denote functional models by
FMod.

Multialgebras: f: (S)* —P(5%)

This is the most common approach [102, 64, 53, 58, 93, 8]. The arguments to the operations
are individuals and the result is the set of possible outcomes. Thus operations are modeled as
deterministic set-valued functions.

This view corresponds to the equivalence of nondeterministic and deterministic (finite
state or Turing) machines. The central point of this equivalence is the definition of languages
accepted by the former in which nondeterminism is eliminated: a nondeterministic machine
NM accepts a string s, se L(NM), iff there exists an accepting computation starting on s.
Writing S for the initial state, Y for a final (accepting) state, and & for the empty string, we
have

seL(NM) < dcomputation C: (S5,8) — ©(Y,8)



The existential quantifier eliminates all nondeterminism — it does not matter any more which
computation is performed; an accepting computation C either exists or not, and the language
of NM is uniquely defined. Hence, an equivalent deterministic machine DM can be con-
structed by “dovetailing” all possible computations of NM. Analogously, if f is a
(nondeterministic) multioperation, the result set f(n) can be computed deterministically by
evaluating (“dovetailing”) all possible computation paths, as it is done for the Turing ma-
chines.

Composition of multioperations is defined using the following simple fact [34, 106]:

Proposition 2.4. For every f: A—7P(B) there exists a unique f7: P(A)—,P(B) (strict,
additive) such that the following diagram commutes:
A
{4} N f

P L PE)
O

{ } denotes the canonical embedding sending every element to the singleton set. Thus com-
position is defined as: g(f(x)) = g”(f(x)) = U{g(e) | e<f(x)}. Also here it is natural to interpret the
carrier as the set A rather than its power set, but the canonical embedding {_} and additivity
of the operations make the transition between the two very easy. We will denote multimodels
by MMod.

Here the two models from example 2.2 would be identified, since both f* and & applied
to any argument return the set {0,1}.

In most cases, one lets an operation f map A to *(B) rather than P(B). The former cor-
responds to the total while the latter to the partial models in which f(a)=@ indicates that f is
undefined on a. With the above definition of composition this partial interpretation implies
angelic nondeterminism.

Example 2.5
Let the sort N = {0,1,2} and S={a,b,c}, and the operations f: N—S, g: S—N be such
that

f(0) = {a,b} g(a) ={0,1}

f(1) = {ac} g(b) = {2}

f2)=0 g(c) =@
Then

9(f(0)) ={0,1,2}
9(f(1)) = ¢”(f(1)) = g"({a,c}) ={0,1} uB = {0,1}
9(f(2)) = @

O

To obtain more flexibility in modeling biased nondeterminism with multialgebras some ad-
ditional constructions in the specification language are needed, analogous to those for parti-
ality in the deterministic case, e.g., the bottom element L [77, 63, 91], or definedness predi-
cate [21, 18, 59, 58].

Although the classes MMod and FMod are not isomorphic there is a strong sense of cor-
respondence between the two:

Proposition 2.6 [127]. Every functional algebra F determines a multialgebra M and
vice versa.



Proof:
Let r b|e a| fL|mctionaI algebra where f* = {f,, f,,...}. Define the multialgebra M by:
. F
= fx) = {f()lfief}.
The reverse implication is analogous, though a bit more technical and not construc-
tive:
= [Fl=M| _ o
For every f and me|F| (of appropriate sort), let K, denote the cardinality of the set
fM(m), and let k; = Uk;,,. Then, for every m there is a surjection
o, Kk — Mm)"
and we define
e fr={f | i<k} where, for every m, f(m)=c,(i).
(Note that F isn’t unique and the axiom of choice is needed to actually determine it.)
O

Treatment of partiality in a functional model will be quite different from that illustrated in
example 2.5. Unless we introduce a 1 element (or a definedness predicate) explicitly, there
will be no default interpretation of undefinedness (such as the empty set) in the carrier of a
functional model.

Other consequences of the multialgebraic interpretation can best be explained by con-
trasting it with the third possibility:
Power algebras: f: P(S)x...xP(S") —2P(S")
Here every function takes a set as an argument and returns a set as the result. There are still
two possible ways to interpret this:

a) Every element of the result set is a possible outcome of applying the operation to any ele-
ment of the argument set. Under this interpretation a power algebra is just a more concise
expression of a multialgebra, as the following straightforward consequence of the proposition
2.4 shows ([A—B] denotes the partial order of functions from A to B ordered pointwise):

Proposition 2.7. [A—P(B)] ~ [P(A) —, P(B)].

b) The other (and from now on the only) meaning is that every element of the result set is a
possible outcome of applying the operation to the argument set. Without any additional con-
ditions such a definition begs the whole question of nondeterminism because what we obtain
is a deterministic structure which just happens to have a power set as the carrier. In particu-
lar, there is no distinction between elements, or 1-element sets, and other sets. An operation f
may, for instance, be such that f({O 1,2} = {0} and f({0}) = {0,1}. This is counterintuitive [33,
103] because one expects that an increase in the nondeterminism of the arguments to an op-
eration should not result in a decreased nondeterminism of the result.

To meet the intuitive understanding one would require that the operations in a power al-
gebra be =-monotonic. =-monotonicity does not imply additivity, and so proposition 2.7
does not yield an isomorphism with multialgebras. The possibility of non-additive functions
between power sets offers new possibilities. If we aim at plural semantics of parameter pass-
ing [110, 130] we are forced to allow the arguments of functions to be sets (and to let vari-
ables refer to sets rather than individuals).

Example 2.8

Let f be the operation
f(x) = if x=x then O else 1.
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In any multimodel (x will refer to an individual and) the result set of f will be {0} for
all x. In particular, {f(aLb)}={0}. Some authors [77, 53] focus on the purely semantic
issues, i.e., do not consider any specification language. But by adopting the multi-
model of operations they are forced to adopt the singular semantics of the operation
symbols.
If, on the other hand, we take f as mapping sets to sets, we obtain

f(aub) = if alib=aLib then O else 1,
which may give {f(aLib)}={0,1}.
O

Actually, the last equality does not follow by itself in a power model, but depends further on
the interpretation of the equality aLib=alib (which may be interpreted as element- or set-
equality). We discuss this further in 2.3 and 7. The singular semantics can be obtained, ac-
cording to 2.7, if we impose the additional restriction of additivity. Thus power algebras, but
not multialgebras, give us the possibility to define both singular and plural semantics.

The reasons why this approach is relatively unpopular in spite of its apparent generality
are probably mostly pragmatic and similar to the reasons why call-by-name semantics has
been superseded by the call-by-value in the deterministic setting (besides the fact that addi-
tive function spaces have nicer formal properties). It may be argued that programs written in
terms of call-by-value are significantly clearer and more tractable than those using call-by-
name. It should be also observed that one risks obtaining only uncountable models where
most elements are unreachable when defining the carrier as a set of all (also infinite if the ba-
sis set is infinite) subsets.

Power models will be denoted by PMod.

Relational models: f* < S,*x...xS/*xS"

Although relational structures are well known in the universal algebra [27, 80, 79] they have
not quite found their way into the world of algebraic specifications, where the intuition of
functional application and its result plays the central role. Use of relations in semantic defini-
tions is made in [99, 7, 93, 25, 18], and, in a categorical setting, in [119]. In so far as input-
output behavior is concerned the relational models are isomorphic to multimodels.

Proposition 2.9. [A—7P(B)] = [A —(B—Bool)] ~ [AxB — Bool] ~ P(AxB).

With the relational product as the definition of composition, one obtains angelic nondeter-
minism as with multialgebras (example 2.5). The most typical use of relations is for describ-
ing termination properties and this is how they are used in [99, 7, 93, 25, 18]. One intro-
duces a pair of relations: one for defining the input-output relation for the terminating com-
putations, and one for characterizing the inputs which may (will) lead to divergence.

At the level of specifications, [121, 64, 21, 18] pointed in the direction of the relational
structures by describing nondeterministic operations by means of characteristic predicates. But
the relations are used as auxiliary definitions of the semantics and are not fully integrated into
the formalism of the specification language. None of the above works developed a relational
specification language. An exception is the work from [1, 55, 123] which attempts to develop
a theory of data types based on the notion of a relation instead of a function. The relational
language leads to concise, albeit hard to read, specifications and gives powerful support in
performing calculations. Since nondeterminism is implicit in the notion of a relation —
functions being just a special case of relations — the relational approach offers a uniform
treatment of deterministic and nondeterministic operations.

11



2.2. ... homomorphisms ...
Homomorphisms for multialgebras were defined already in [101,102], and then in [45, 53,
59, 64, 93].
Recall that a homomorphism ¢ between (deterministic) structures A and B is a family of
mappings ¢ $*—S° for every SeS such that the following diagram commutes for every feF:
A
(fi)A ] Em N TA
P P,
(S Ofm- s
i.e., 1.foreveryconstant c: —S ¢s(c*) = c8 and
2. for every operation f: §,—S @s(fA(x,)) = F(os (X)) for all x.eSh

The transition to nondeterministic structures again introduces several possibilities of gener-
alization. They are only loosely related to the choice of interpretation of the operations. One
general remark applies to all of them: Since f is set-valued the result of following the leftmost
path in the diagram gives a set {f¥(¢(a))}. Similarly, {f*(a)} is a set and hence the result of ap-
plying ¢ to it (all its members) will give a set. The two basic possibilities are therefore:

tight homomorphism: {e(f(a))} = {f¥(¢(a))} (2.10)

loose homomorphism: {¢(f(a))} < {f(¢(a))} (2.12)

Any of these two conditions may replace the homomorphism condition 1.-2. Loose homo-
morphisms correspond to nonincreasing nondeterminism in the pre-image. Notice that this
does not preclude the cardinality of the set {f*(a)} being greater than this of {ff(¢(a))}. Then
some values produced by fA@) must be equivalent under ¢. Loose homomorphisms (or their
equivalents) are often used as the implementation criteria since it is generally accepted that
one should allow deterministic (less nondeterministic) implementations of nondeterministic
data types [121, 64, 94, 53, 132].

Both kinds of homomorphisms are used in the literature, though often under different
names. The vocabulary becomes even more confused since many authors introduce the parti-
ality considerations into the definitions. ([59, 18]. See [21, 93, 94] for more detailed and
idiosyncratic notions.)

Element homomorphisms: ¢: A—B.

This is the most common way of defining homomorphisms in a nondeterministic context,
and we will denote it by EHom. Here the basic entities are individuals and homomorphisms
send individuals to individuals. If multialgebras or power algebras are involved one still may
use this notion of homomorphism since pointwise extension then defines the mapping be-
tween the corresponding power sets. In either case the homomorphism condition will be
modified to (2.10) or (2.11).

Multihomomorphisms: ¢: A—7P*(B).
In [59] the element homomorphisms are generalized to the set-valued ones. There is at least
one advantage to be gained from this. In the deterministic case the initial structure for a given
signature = is the collection of all words, Ws. The interpretation of = in a structure A is given
by the (unique) homomorphism 7: Ws—A. In the nondeterministic case we may want to in-
terpret some terms as sets. The notion of multihomomorphisms makes such an interpretation
a homomorphism whereas element homomorphisms do not.

7 may be a homomorphism in EHom if we do not explicitly distinguish individuals from
sets. Then, if a structure B happens to be a power algebra, the mapping 7: Ws—B will actually
send terms to sets since here B is the power set of some set. But then sets, which are the in-
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terpretations of terms, cannot be identified with the result sets since the distinction between
individuals and sets disappears (sets are individuals in 2(B)).

Multihomomorphism will be denoted by MHom.
Power homomorphisms: ¢: P(A)—AB).
This notion may lead to the peculiarities reminiscent of those of unrestricted (to c-
monotonic) functions in power algebras. The intention behind the definition of a homomor-
phism is to make the mappings from individuals to individuals and from sets to sets
“compatible”, even if the specification language is insufficient for dealing with this distinc-
tion. Both EHom and MHom ensure such “compatibility” — mapping from a power set is ob-
tained by pointwise extension of the mapping from individuals.

Example 2.12
Suppose that = contains only two constants of sort S, 0 and 1. Let A and B be the
following power algebras:
A=P{0,a,b} B=7{0,1}
0"={0}, 1*={a.b} 0°={0}, 1°={1}
A power homomorphism ¢: A—B must send {0} to {0} and {a,b} to {1}. The rest is
arbitrary so, for instance, we may have ¢({a})=¢({b})={0}.
O

This does not look very plausible. Again, as in the case of the power functions, it helps a lot if
we insist that homomorphisms be =-monotonic. But the point is how such a requirement is
expressed. If we just restrict the legal morphisms to those which are =-monotonic then we
will exclude mappings which, like the one above, preserve the =-structure and satisfy the
compatibility condition defining homomorphisms.

It can be seen from the example that the trouble arises from the fact that we do not have
a syntactic operation which would correspond to the semantic operation of set construction.
Choice is not really such a constructor. If interpreted as set union, it would enable us to con-
struct only the set {0,a,b} in A but not, for instance {a}. Thus, instead of extending the gap
between syntax and semantics we might consider extending the specification language with
an appropriate operation (predicate) such that the homomorphism condition wrt. to this op-
eration would imply =-monotonicity. Several works [77, 59, 87, 91] introduce such an op-
eration. If, in addition, the language contains a predicate expressing that something is an in-
dividual [91] then homomorphisms are again determined by the images of singletons. This
leads to the same class of mappings as EHom since strict, additive mappings from P(A) to
P(B) which, in addition, preserve singletons are isomorphic to the mappings from A to B:

Proposition 2.13. [A—B] = [P(A) —, , P(B)].

See also [102, 106] for the results concerning the relationship between various forms of
mappings between power sets. Extending the notational analogy with the models we will de-
note the power homomorphisms by PHom.

2.3. ... and equivalencies.

Although it might seem natural that = should be interpreted in power set structures as set
equality (since the operations return sets) it is not obvious that the natural choice is the bet-
ter.

Element equality
First of all, the sets returned by the operations represent possible results. But each particular
application of every operation will return only one unique result. Thus, for instance, if
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{s}={0,1} and {t}={0,1} it may very well happen that one application of s returns 0 while an
application of t returns 1. One may require that two equal terms always return the same re-
sults. This element equality reflects a strict view of observability — two terms are equal only if
they are necessarily equal, i.e. they are deterministic and always return identical results. This
notion of equality corresponds to the function oriented model and, like that model itself, has
not received much attention in the literature (except for [127, 133, 130]). Its apparent oddity
lies in the fact that, since a nondeterministic operation may return different results at differ-
ent invocations, it is not even an equivalence relation. This reflects the lack of referential
transparency which is intrinsic to nondeterministic operators.

Set equality

Slight variations of the set equality have been applied by many authors: under the name of
ideal congruence in [102], extraction equivalence in [53, 121], observational equivalence in
[64]. Variations concern mainly whether one uses plain set equality or whether the relation is
defined in the context of observability. In the latter case there are hidden and visible sorts,
and terms s and t are extraction equivalent iff sets returned by all visible contexts C[_] when
applied to s and t are equal.t The simplest definition says that an equivalence relation E is ex-
traction equivalence iff

V(ts)eE, VC[]eW, ,, Vae{C[t]} 3be{C[s]} : (a,b)cE (2.14)
The following result is then reported in [53, 102]:

Theorem 2.15. Let SP be a specification, M a multimodel, E an extraction equiva-
lence on M, and [x] the E-equivalence class of xeM. Then M/E is a multimodel,
where

= the carrier of M/E is the set of E-equivalence classes { [X] | xe|M| }

- (XD = ygx] {[allaf"(y) }.

0

There is, of course, an implicit assumption about the form of the axioms in SP. In [102] SP is
just a signature, but if axioms are also present, as in [53], then the theorem does not hold in
full generality. For the deterministic models, it is shown in [74], that the model class of SP is
closed under homomorphic images iff all the axioms of SP are positive formulae. It is easy to
construct an example with inequality among the axioms which will show that M/E, for a
given multimodel M, is not necessarily a multimodel. It is not therefore unreasonable to ex-
pect that the result from [74] will generalize to multimodels.

The importance of this nice counterpart of the analogous result for the deterministic
equational classes is further diminished by the fact that one is still left with the problem of
constructing a multimodel (the initial one?) from which one could start taking quotients.

Consistency relation

Equality interpreted as set equality means that two terms are equal if they possibly can return
the same results. It does not, however, guarantee that they will. In terms of an arbitrary actual
observation it does not guarantee anything. Following this line of thought of “the possible,”
one arrives at the notion of the equality as the sheer prospect that two terms may conceivably
happen to return the same result.

1 We do not focus on the distinction between visible and hidden sorts which, though formally important,
would only add unecessary details to the presentation.
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Example 2.16
Suppose we have a specification with two sorts V (visible) and H (hidden), and the
operations binary choice LJ: HxH—H, and g: H—V. Let A be a multistructure where
H*={abc V*={012}
xuty={xy} ¢%@)={0} O={1 ¢()={2
We then have
g(Lr.{a,bh)* ={0.1} #{0,2} = g(L {a,ch*
If we stick to the strict model of observations then each observation involves only one
unique result. Now, unless we impose some fairness conditions on LU, it is free to
display any degree of nondeterminism. We have no guarantee that the choice opera-
tor will produce all possible results. Since {0,1}n{0,2}2@, we cannot be sure that
both g(LI.{a,b}) and g(LI.{a,c}) won't consistently produce the same result.
O

Thus, under this interpretation, s=t if {s}n{t}#@. This relation is called inseparability in [53]. s
and t are inseparable if both are capable of returning the same result, i.e., if there is a possibil-
ity that one may be unable to see the difference between them. This is not an equivalence re-
lation. (It is not transitive, e.g., {s}={0,1}, {t}={1,2}, {p}={2,3}.) The appropriate generalization
requires the following definition:

E is a consistent relation iff
V (t,5)€E, C[_]eWE’{X}, dJa<{CJ[t]} Ib<{C[s]} : (a,b)eE (2.17)

Two terms are consistent [64, 53] if they belong to some consistent relation. (In particular,
suppose that t and s are ground terms and {t}, {5} are the sets interpreting t, s in a given
structure A. If E on the individuals from A is equality and we let [t] denote the class of terms
equivalent to t with respect to the relation E, then ({{s} | s€[t]} must be nonempty. E.g., s, p,
and t above cannot all belong to the same E-equivalence class because {$n{p}=3.)

Consistent relations generalize the notion of congruence. A congruence relation is con-
sistent and a consistent relation on a deterministic structure is a congruence. The same ap-
plies also to the extraction equivalencies. This is a frequently occurring phenomenon that
different generalizations of deterministic concepts to the nondeterministic context all reduce
to the same definition when restricted again to the deterministic situations.

Obviously, extraction equivalence implies consistency, and in fact, consistency is maxi-
mal among the considered interpretations of equality in the sense that it will identify every
pair of terms which possibly (consistently) can be identified. Thus it corresponds to the
maximal congruence for a deterministic structure and, in analogy with the latter, character-
izes the terminal multimodels (see 4).

[53] contains more detailed and intricate notions of equivalencies and relations between
them. We can also refer to the interesting work in [93, 95, 94] for a more “realistic” study of
the nondeterministic equivalence where observations are defined relatively to a given pro-
gramming language.

3. Initial models & specification languages

The success of the initial semantics for deterministic equational specification motivated many
attempts at generalizing it to the situations where also nondeterministic operations are speci-
fied equationally. Below we review some of these attempts and arrive at the conclusion that
purely equational specification of nondeterminism is insufficient for ensuring the existence of

15



an initial model. Some more refined tools — at the syntactic as well as semantic level — are
needed.

Consider an equational specification SP which is supposed to be given a power algebra
semantics. As we have observed, power algebras are deterministic structures, and further-
more, any standard model of SP may be considered a power model by identifying all ele-
ments with 1-element sets and extending the operations pointwise. Thus, any equational
specification will have a power model which is initial in the category (PMod,PHom). But
what is missing in such a model is nondeterminism. The crucial thing for the semantics of
nondeterminism is the distinction between the individuals and the sets of individuals which
gets completely lost in PMod and PHom. In fact, an initial power model need not consist of
1-element sets. Any sets will do, since distinct sets are just distinct elements in PMod and
PHom map sets to sets without considering their elements.

The semantic distinction may be introduced in various ways, for instance, by taking
(PMod,MHom) or (PMod,EHom). In the former case, the same (deterministic) model as in
(PMod,PHom) will be initial (provided MHom are tight), so things do not really get much
more exciting. In the latter case, the deterministic power term structure will not be initial any
more, since there will be several element homomorphisms from a model interpreting every
term as a 1-element set to a model where some terms are interpreted as sets with more than
one element.

What is needed is a closer relationship between the intuitive meaning of the power set
structures (i.e., sets as the result sets of the operations) and the syntactic means of specifying
the relations reflected in such structures.

3.1. Choice as a primitive — set union

A “minimalist” approach [63, 77] admits two primitives in the specification language: equal-
ity, which is interpreted as set equality, and binary choice which is specified by the join axi-
oms:

Jo XUy =yLix (JC)
xU(yuz) = (xuy)uz (JA)
XLIX =X (n

Sometimes one also introduces a bottom element — the empty set [50] — and postulates dis-
tributivity of LI [63, 91]:

JL:xul =x (JE)

f(...xuy,..) =f(...x,..) U f(...y,..) (JD)

Notice that the last axiom ensures singular semantics. So far, we have not done anything new
— L is just a new deterministic operation specified equationally.

To make it into a choice one may attempt to require that LI is to be interpreted as set un-
ion. This, however, goes awry very quickly:

Example 3.1.a

The specification with three constants 0,1,2 and the axiom OLI1 = OLI(1U2) has no
initial model. For, constants must be interpreted as singletons {0},{1},{2}, and LI is
set union, so 7(0L1) = {0,1} and Z(0LI(1U2)) = {0,1,2}. In order to make these two
sets equal we have to identify 2 with Q or 1. Either choice leads to the situation where
there is no homomorphism to the model obtained by realizing the other choice. Also,
since choice is set union we cannot take 7(0L1) to be the set {0,1,2}.

0

1 Actually, this depends on the definition of power set structure and homomorphism we are working with.
PMod would give the possibility of interpreting them as arbitrary sets. They have to be different sets, though,
and so the problem would persist anyway.
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The problem arises from the fact that one has decided in advance what the meaning of L
should be. Since it is the set union there is no other way to make the sets 7(Ou1) and
7(0w(12)) equal than by identifying 2 with 1 or 0. Taking the quotient of the term struc-
ture or interpreting OLI1 as the set {0,1,2} are excluded. Thus axioms affecting the semantics
of choice may introduce inconsistency (albeit not a logical one) with this pre-defined mean-
ing.

The axioms J1 are given in [63] without requiring the interpretation of LI as set union.
Then, of course, all equational specifications will have initial models, but this again is at the
price of loosing control over the distinction between deterministic and nondeterministic op-
erations. Nevertheless, conditions are given (in terms of the associated rewriting systems) un-
der which initial models of such specifications are isomorphic to the expected multimodels
with U interpreted as set union. The conditions (left-linearity and Li-freeness, see 7) amount
to forbidding situations like the one from the example — Li-freeness, for instance, disallows
equating two terms which both contain occurrences of L.

The problem from example 3.1.a actually has two parts: One is that choice obtains some
fixed semantics. Set union is perhaps not the best one and we will see in a moment other
possibilities. The other is that the specification language does not provide sufficiently flexible
means for introducing new, nondeterministic operations by reference to this primitive one.
Equations are symmetric and affect equally both sides. Introduction of a new operation, f,
defined by f=0L11, and f=0LI(1112) would lead to the same problem. Thus each new equation
is a potential source of a conflict.

It turns out that an increase in the expressive power of the specification language is re-
quired. Some refinement of the equational language is needed for ensuring that choice will be
a nondeterministic operation if this is not secured by some predefined semantics. A more
flexible language is needed to distinguish between the equivalence of two terms and the fact
that one denotes only a (more deterministic) possible result of the other.

3.2. Inclusion

Since = is interpreted as set equality it shouldn’t do much harm if we instead made use of set
inclusion as the primitive relation between terms [59, 58, 127, 133, 130]. HuBmann supplies
a very constructive generalization in [59, 58] where he introduces appropriate rewriting
techniques. Inclusion is the only primitive operation in the language of [59, 58]. There speci-
fications are sets of inclusion rules (we shall keep “<” as denoting set inclusion in the struc-
tures and use “<” for the corresponding syntactic relation):

Example 3.1.b
1) 0 < 1.{0,1}, 1 < L1.{0,1}
2)0 < 11.{0,1,2},1 < 1.{0,1,2}, 2 < L.{0,1,2}
Notice that choice is no longer a primitive operation. The problematic axiom now be-
comes:
3) u.{0,1} < 11.{0,1,2} (writing >< for two inclusions)
The initial model is given by the following interpretation
4) 1(c) ={c}, for c=0,1,2
5) (1 {0,1}) = 7(L.{0,1,2} = {0,1.2}
O

Since we have inclusions instead of equality in 1) the (initial) interpretation of L1.{0,1} can be
expanded if necessary — here it contains 2 besides 1 and 2. Choice is no longer primitive - the
semantics of sets is built into the semantics of <. In the initial (term) model, any term t is in-
terpreted as the set of [s] such that s<t, where [s] is the equivalence class of s, i.e., the set of
all p such that s> <p.
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However, to ensure the existence of the initial models some assumptions about the
specification must be made [59, 58]. One is that the specification has to possess a determi-
nistic basis, i.e., a set of terms which are interpreted as singletons, and such that every term
can be reduced to at least one deterministic term (DET-completeness). To express this a
predicate DET is introduced into the language, where DET(t) is valid if the term t is determi-
nistic. Another assumption (DET-additivity) implies that arguments in the right hand sides of
inclusions must be deterministic. For instance, instead of 0<f(1L12) we must write 0<f(1)
and 0<f(2). Under these assumptions, every specification has a (loosely) initial model in
(MMod,MHom) which can be constructed as in the above example. (These conditions are
further discussed in section 7.)

3.3. Partial orders
Instead of sticking to the set interpretation one may generalize the fact that the set union
(choice) is join operator. That is, instead of set union we can speak about join, instead of in-
clusion — about a partial order.

The first work exploring these ideas in an algebraic framework is [77]. Given the axioms
J (from 3.1) and a language with = and LI, one can define a structure on the models reflecting
the intended nondeterministic interpretation. For each sort in the signature =, the result par-
tial order on the word structure W, <, is defined [77, 49]:

R: s<t iff l.s=t or
2. t=suUs, or
3.s=f(p,), t=1(r), and p,<r,

This definition amounts to the standard definition of a partial order on a lattice extended
with the monotonicity axiom 3. which ensures that an increase in nondeterminism of the ar-
guments never decreases the nondeterminism of the result. Note that the singularity axiom
JD does not follow from J+R. We only have that R3 implies f(...,x,...) U f(...,y,...) <
f(...,xUy,...), reflecting our intuition that whatever can be produced under singular semantics
can also be produced under the plural one.

Equational specifications with LI (and the axioms J) are just classical equational specifi-
cations and hence always possess initial models. These models are essentially deterministic
and nondeterminism is encoded as the additional structure < implied by the occurrences of
LI. However, < is not a part of the specification language.

Example 3.2.a

Let us suppose that we want to add a new operation f to the specification (J) with the
following axioms:

1) f(X,,X5X3) = X LIX,LIX,

2) 1(0,1,2) =1(0,0,1)
We will obtain an initial model where 0LI1 = OLI1LJ2. This does not cause the prob-
lems of example 3.1.a since we now have a deterministic structure and merely take
quotients of such structures. However, as a result we will obtain that 2 < OLI1 holds,
which is perhaps not quite what we had in mind.
O

It may be slightly surprising that defining a new operation has such consequences for the
original structure. After all, writing 1) and 2) we might be interested not in changing the se-
mantics of choice but only in defining a new nondeterministic operation which behaves a lit-
tle differently in some cases - for instance, so that it never returns some “forbidden” values.
This illustrates the failure of this “deterministic” approach to reflect, in the general case, the
intended meaning of nondeterministic choice as set union. The specification from example
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3.2 does not conform to the restrictions from [63] mentioned at the end of 3.1 which make
models of specifications with = and LI isomorphic to the intended models where LI is inter-
preted as set union.

The collapse of the original ordering results here from the exclusive use of equations. The
approach from 3.2 can easily accommodate such a situation. Using inclusions instead of
equality and making LI a defined operation allows one to specify the nondeterministic opera-
tions directly.

Example 3.2.b
The corresponding specification would be:
1) X; < (X, X5, Xs5), fori=1,2,3

2) 1(0,1,2) ><1(0,0,1)
The initial interpretation will assign the set {0,1,2} to both (0,1,2) and f(0,0,1). This
does not affect semantics of other operations, like LI, which are specified independ-
ently.
O

The resulting partial order < is introduced in [77] in addition to the continuous struc-
ture on the models needed for finding the solutions of recursive systems of equations. We
devote section 5 to this topic and will continue the discussion of the present work there. At
this point we may only remark that as the consequence of using continuous algebras the
model class is no longer closed under substructures and quotients. Thus initial models can
not be constructed simply as quotients of the word structure.

3.4. Lattices and unified algebras

The approach discussed above introduced axioms for the join operation and defined
(implicitly) the corresponding partial order. Example 3.2.a-b indicated that it might be ad-
vantageous to reflect the semantically defined partial order in the specification language. This
leads us directly to the lattice structures. In a very general form, they have been proposed as
the theoretical foundation of data types in [115, 116]. In [6] lattices are used to define a
specification language enabling the construction of the weakest predicate transformers for
commands which include angelic and demonic nondeterminism, and in [1] a relational ap-
proach to data types uses lattices as the basis of the specification language and relational cal-
culus. Here we will consider a very elegant construction of unified algebras introduced by
Mosses in [92, 91]. Unified algebras combine the advantages of several approaches described
so far, adding new interesting features.

Every unified signature = contains the subsignature Q with the operations {nothing, _|_,
_& }and predicates { =, <, : }. For the sake of notational compatibility with the rest of
specifications are (universal) Horn clauses. A unified >-algebra A is a structure (with one sort)
such that:

= |Alis a distributive lattice with LI* as join, M as meet, and L* as bottom.

e There is a distinguished set EAc|A| — the individuals of A.

e =Ais the identity on the elements of the lattice (not only on the individuals).

e <Ajsthe partial order of the lattice, i.e., x<Ay iff xLiAy =*y.

e For every fez, f* is monotonic wrt. <.

e Xx:*yholds iff xeE* and x<*y.
“Unified” refers to the fact that there is only one syntactic sort, and no syntactic distinction is
made between sorts and individuals. Sorts in the sense of classical algebra, as well as indi-
viduals, are elements of the lattice. Also sorts and nondeterminism are treated in a unified
way. The partial order of the lattice corresponds to the set inclusion; sorts and nondetermin-
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istic choice are interpreted as joins — the elements “just above” their members. The set E rep-
resents the individuals. The individuals need not be the atoms of the lattice, i.e., the elements
“just above” the bottom, though, typically, this will be the case. _:_is the membership of sin-
gletons — t:s means that t is contained ins (t<s) and t is an individual. Monotonicity with re-
spect to the partial order of the lattice allows the extension of the definitions of the operations
on individuals to their respective upper bounds (sorts or nondeterministic choices).

The revision of example 3.2 will look as follows:

Example 3.2.c
The richer semantics gives us several possibilities to interpret the problem.
1) x; < f(X;,X,,X5), fori=1,2,3
2) 1(0,1,2) =1(0,0,1),
This specification will lead to the initial model where 2 is a possible result of (lies
“below”) 1(0,0,1). The alternative
17) (X0, X5,X5) < LJ{X XX}
2')(0,1,2) = L.{0,1}
will ensure that the result set of f(0,1,2) is the join of 0 and 1 and does not include 2.
All the other applications of f will be “just below” the corresponding LI but their only
result in the initial model will be the bottom element.
O

Axioms 1'-2’ yield a specification which, in the terminology from 3.2, is not DET-complete,
and hence does not have an initial multimodel. This fact is reflected in the initial unified al-
gebra by the 1 element which corresponds to an unspecified result set of f(x;,X,,X5).

Of course, it can still happen that the ordering collapses as it did in example 3.2.a (e.g.,
take 1) and 2"). Although choice is a primitive operation of unified algebras, the specification
language gives one the ability to avoid (or introduce) such cases at will.

The “inclusion” approach from 3.2 can be subsumed under unified algebras. Thus
DET(t) corresponds to t: t and inclusions to the partial order, and the other way around, t: s is
the same as t<s » DET(t).) The initial unified algebra model of 1)-3) from example 3.1.b will
essentially be the same as the one presented there (a lattice with individuals 0, 1 and 2, and
the top element LI.{0,1}=11.{0,1,2}). In fact, both will give the same class of models when in-
terpreted in multialgebras. The analogy can be further illustrated by the fact that both ap-
proaches emphasize the distinction between individuals and sets and, in fact, treat the dis-
tinction in quite similar ways.

Example 3.3
Unified algebra Hulimann’s multialgebra
0:0, 1:1, DET(0), DET(1), 0<0u1, 1<0u1
1. c:oul DET(c), c<0uU1
2. d=0u1 d><0ul

In 1. ¢ is a nondeterministic constant. In the initial model it is an (additional) element
below OLI1, and in any model where 0 and 1 are the only individuals it will be equal
to either of them (to which, will vary from model to model). d in 2. is a nondeter-
ministic operation equivalent to OLI1, i.e., it is the same element in the lattice as OLJ1.
0

The distinction between individuals and sets cannot be expressed if equality is the only
primitive of a language. But it should be obvious that it may be essential to know whether we
are speaking about the result returned by a particular application of a nondeterministic op-
eration, or about the set of such results.
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In the last example we show a feature of the unified algebras which brings us closer to
the explicit treatment of the singular vs. plural semantics. The basis for the distinction is the
possibility of defining functions either by the pointwise extension from their definition on
individuals or by direct definitions on the non-individual arguments.

Example 3.4
Define if then_else :
i1) if T then x elsey = X, if Fthen xelsey =,
i2) if zLw then x elsey = (if z then x else y) U (if w then x else y)
and
3) f(x) = if x=x then O else 1.
Then for all values of x, f(x)=0. In particular f(0LI1)=0 since the equality x=x holds for
all elements of the lattice. This is the result required by the singular semantics of the
argument in f(x).
Let us define a new equality predicate ~:
el) xxx = (X=X) =T e3) (X~y) < TUF
e2) (0=~1)=TF
Monotonicity of the operations and axiom e3) give then
(OL1=0) = TUF and (Oul=l) =TUF
and hence
(Ou1~0ul) = TUF.
Observe that the antecedent in el) forces x~X to be true only when x is an individual.
Now change 3) to
3") f'(x) = if (x~x) then O else 1
Since (OLI1~0LI1) = TUTF, i2) implies that f/(0L1) = OLIL reflecting the plural
meaning of the argument in f'(x).
O

This example illustrates the power of unified algebras in the treatment of nondeterminism
which is unmatched by any other approach we have discussed. On the one hand this feature
is related to the ability to distinguish between individuals and sets — but now with respect to
variables. In [58, 59] the distinction was applicable only to terms which were not single vari-
ables. For a given non-variable term (say, f(x)) one could write DET(f(x)) (to make f(x) de-
terministic) or not (to allow f(x) to include several results), but for variables the axiom
DET(x) was always a given. On the other hand, this is a consequence of the fact that the vari-
ables in unified algebras refer to arbitrary elements of the lattice, and these elements may rep-
resent individuals as well as sets. Consequently, operations are in general interpreted as in
power models, i.e., map sets to sets. Singular semantics is obtained as indicated in 2.1 by
taking the pointwise extension of the operations defined on the individuals.

The main advantage of unified algebras is that specifications using at most Horn clauses
always have initial models (and the operations from Q can be specified by Horn formulae).
Other advantages follow from the general properties of institutions [41, 112, 122] in which
unified algebras are defined. In particular, the institution of unified algebras is liberal so that
one can impose (under a slightly modified definition of the forgetful functor) various data
constraints, such as the fact that T#F.

3.5. The price of initiality
We have seen that multialgebraic semantics does not, in general, admit initial models and
that one has to introduce some partial order (lattice) structures to guarantee the existence of
such models. We end this section by observing some disadvantages of the initial semantics in
modeling nondeterminism.
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Partial orders provide simpler mathematical structures than multialgebras. However, this
Is a consequence of the fact that the distinction between individuals and sets — which is the
underlying intuition of the distinction between deterministic and nondeterministic operations
— gets blurred. Consequently, the partial order models sometimes fail to correspond to any
set based structure which would express the intended meaning of a nondeterministic specifi-
cation.

Taking choice as the primitive (join) may lead to the unintended collapse of the ordering
if one is not sufficiently careful in writing the axioms. Furthermore, the minimal elements of
a partial order need not correspond to the actual individuals. A specification with two non-
deterministic constants a and b, and the axiom a<b does not have an initial multimodel be-
cause the result set of a (and b) may be arbitrary. The initial partial order model will have just
one (minimal) element a which is below b. The price of this generality is that a and b are not
sets and, in particular, a is not an element of the set b.

More significantly, and this applies to multialgebras as well as partial orders, initial mod-
els lead to an appearance of additional elements not intended by the specifier [128]. In ex-
ample 3.3 the axiom c: OL/1 (or DET(c), c<0uLI1) was given for the constant c. Its intended
meaning is probably that c is an operation which is either O or 1, but we do not (want to)
state which. Because of this “do not know which”, the initial model has to introduce, in addi-
tion to the elements 0 and 1 the extra element ¢, and all three elements appear as the possible
results of OLI1. Although formally everything is correct as far as initiality is concerned, we
may feel justified in calling elements such as ¢ “intuitive junk” and thus a violation of the “no
junk” dictum which favors initial models in the deterministic case.

The specification of ¢ attempts to indicate that c is equal to O or 1 without actually iden-
tifying ¢ with any of the two. One wants to model the fact that “c=0 or c=1" without spelling it
clearly out. This fear originates, of course, in the knowledge that disjunctive equations do
not, in general, allow initial models — Horn-formulae are the most general ones admitting
initial models [78, 76, 122].

The source of the problem is the presence of underspecification and that one insists on
using initial models of such specifications, not with nondeterminism per se — deterministic
underspecifications give rise to similar problems. However, in the deterministic case under-
specification is an optional tool for handling exceptional situations rather than the standard
procedure. Typically, one tries to apply some strategy, such as generator induction [28, 44,
60], resulting in specifications with intended initial models. Nondeterminism, on the other
hand, implies disjunction and, with it, underspecification.

Another aspect of this implication is that the nondeterministic operations themselves are
not adequately specified. In all three cases, underspecification of the ¢ element destroyed
0LI1 as binary choice and turned it into an operation capable of returning, besides 0 and 1,
some c¢. These observations make us argue that making a clear distinction between nonde-
terminism and underspecification and admitting disjunctive formulae to handle the latter is
more advantageous than it is dangerous. Above all, it would allow us to restore the intended
simplicity of the model.

Introducing the lattice structure in unified algebras one avoids disjunction and models it
with the help of the join operation. It might seem that, since disjunction is the join operation
(in the Boolean algebra of propositions), the two will lead to similar results. However, the ob-
vious differences are quite significant:

Lattice/Joins | Disjunctive specification
all joins must be present only relevant disjunctions are included
introduces “junk” eliminates “junk”
allows initial models disallows initial models
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The first point refers to the fact that in the lattice model join is an operation (choice) with
predefined semantics. If there are several constants in the specification, say d besides 0, 1 and
¢, then unified algebra is forced to interpret the element aLid as join. But if we are interested
in a binary operation which is only some variation of choice, e.g., chooses nondeterministi-
cally merely between 0 and 1, and for other arguments behaves as, say first projection, then
we have to relate it to the primitive choice operation. OLId will always be there. Disjunction
allows us to specify different kinds of nondeterministic (also partially defined) operations
without any reference to some basic form of nondeterminism. The significance of disjunctive
specifications has been noted by several authors. It has been studied in the theory of data
bases [37, 124, 125], introduced in the theory of algebraic specifications and conditional
term rewriting [42, 137, 62], and utilized for specifications of nondeterminism [127, 128,
126].

We may treat disjunction as a replacement of the join operation. It will not lead to the
lattice models, but instead to the standard algebraic models. The most important advantage
of this is that it actually removes the unintended “junk” and produces models which have an
intuitive clarity comparable to initial models of deterministic specifications. We would
(under)specify our example in the obvious way:

Example 3.5
1) Det(0) Det(1) Det(c)
2) Xx<xLly y<XxLly
3) c=0vc=1
4) d < aub
0

Notice that the choice operator is actually not needed at all in the specification of c. Disjunc-
tion allows us to distinguish ¢ as underspecified from d as a result returned by nondetermin-
istic choice (although we are not going into the details here — see [127]).

The specification of example 3.5 does not have an initial model. Nevertheless, disjunc-
tion does not spoil initiality completely. Disjunctive specifications always possess quasi-initial
computational semantics, and mild restrictions on the specifications guarantee existence of
quasi-initial multialgebra semantics [127]. Quasi-initiality generalizes initiality to situations
involving “either ... or ...”. For the above example, such a semantics can be summarized by
saying that the model class will consist of two parts: the models where ¢ equals 0 (M0) and
those where it equals 1 (M1). Two models, A and B given by

A B
0 < a — 0
1 < b — 1
{01} <~ aub — {01}
0 < ¢ — 1

will be initial in the respective components MO and M1 of the model class.

Now, the difference between an underspecified ¢ and a nondeterministic operation LI is
that the former has a unique value in every model, but these values may vary from one
model to another. The latter, on the other hand, may also return different values in one
model. 0LI1 may be thought of as a series of distinct applications, each returning either O or
1. But this means that every single application of OLI1 is underspecified! The final example
makes use of this fact to specify LI as a user-defined operator.
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Example 3.6
1) Det(0) Det(1) Det(c) Det(d)
2) X=yllz = X=y v X=Z
3) c=0vc=1
4) d < 0ul
0

Axiom 2 specifies binary choice by underspecifying each particular application of it. It reads:
if x is a result of (some) application of yLIz then x equals y or z. (Compare this to the axiom
2. from example 3.5.) Substituting 0, 1, d for y, z, x, and using axiom 2. we will get that d
equals 0 or 1. The initial covering of the model class will contain the following models: Each
of the models A and B above will now be split into two new models depending on whether
7(d)=0 or 7(d)=1. In addition, there will be models where 7(0LI1) = {0}, and 7(0uI1) = {1}
(these can be excluded by adding axioms 2. from example 3.5). Since d is defined in terms of
0LI1, in models where one of these hold d will be equal to the respective 7(0LI1). ¢ remains
underspecified and so even if 7(0L11)={0} ¢ may still equal 1. We believe that all these models
reflect the intuitive possibilities of the specification. In particular, none will contain any re-
dundant elements, and the sort will consist of at most 0 and 1.

The price for this adequacy is, of course, that we no longer have initial semantics. This is
the trade-off between using disjunction in specifications or excluding it.

The argument favoring disjunctive equations is bolstered by the following observation:
The two axioms 0<0LI1 and 1<0LI1 may be given initial semantics where 0 and 1 are the
only results of OLI1. However, they only say that 0 and 1 must be among the possible results,
not that they are the only ones. In the non-initial models of the class any kind of elements
may occur as the additional results returned by OLI1. Thus, simple (or Horn) formulae can
only specify “lower bounds” of nondeterminism which coincide with the “upper
bounds” only in the initial models.

Horn-specifications also lead to “necessarily” nondeterministic implementations. The
axioms 0<t and 1<t force all models to be nondeterministic (unless O is identified with 1).
They would disallow a model which implements t as a deterministic operation returning al-
ways only O (or only 1). Implementations of a given algebra may restrict only nondeter-
minism which is not explicitly specified by the axioms. Thus one is forced to distinguish
between nondeterminism and underspecification, and can not use nondeterminism as a pure
abstraction mechanism at the specification level.

4. Terminal models

The initial semantics has several well-known limitations. 1) As remarked in the last section,
in order to ensure the existence of initial models one has to restrict the specification language
to conditional equations. 2) On the other hand, initial models yield only special classes of
algebras (semicomputable, or, in the case of monomorphic specifications, computable ones,
see [12, 14]). 3) It has also been pointed out [56, 19, 21] that, typically, initial structures are
not fully abstract — they often distinguish elements which behave identically in all contexts,
and additional axioms are needed if one wants to identify them.

Terminal algebra semantics shares two of these limitations. 1) Not all specifications pos-
sess terminal models. According to [17], the restriction of the specification language to the
positive formula (universally or existentially quantified disjunctions or conjunctions of posi-
tive atomic formula (equations)) guarantees the existence of terminal models. This may easily
reduce to the trivial model but the result admits positive specifications relative to some
primitive (monomorphic) types as long as the specifications are sufficiently complete wrt.
these primitive types. Thus, required inequalities may be introduced via the primitive types.
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2) Furthermore, the data types obtained by terminal semantics are co-semicomputable [12,
14].

An advantage of the terminal models is that they do not distinguish elements which are
observationally equivalent. Every other model M can be seen as a refinement —an imple-
mentation — of the terminal model Z, and the unique homomorphism M—Z serves as the
natural abstraction function which determines the equivalence on the concrete representa-
tions of the abstract values. Focusing on observational equivalence, terminal models are often
well suited for studying implementation relations.

These properties are carried over to the terminal models of nondeterminate specifica-
tions. While constructing initial power set models of nondeterminism poses severe problems,
one has at least obtained a characterization of the congruence determining the terminal mul-
timodel. Let B be a multimodel of a specification SP, and L(B) be the class of multimodels of
SP such that for every MeL(B) there exists a (loose) multihomomorphism M —B.

Theorem 4.1 [53]. A multimodel B is terminal in the class (L(B),MHom) iff it identi-
fies all consistent values.
O

Thus, recalling the definition of consistency from 2.17, a terminal model has to identify two
values whenever there is a possibility that they may give rise to the same observations in all
contexts.

The theorem is qualified by the clause “B is terminal in L(B)” which means that we still
do not have the criteria for the existence of terminal models. In particular, the work in [53]
has a purely semantic character and no formal specification language is considered. We may,
however, use the theorem to show that a terminal model does not exist for a specification SP
by showing that the class of multimodels of SP, MMod(SP), is not equal to the class L(B) for
any model B which identifies all consistent values.

In [21] terminal semantics is used to study the implementation relation between four
kinds of nondeterminism. The programming languages CN, BN, AN, and LN are specified
which include, respectively, erratic, demonic, angelic, and loose nondeterminism (which,
roughly, reflects the idea of a specification with loose deterministic semantics). For the defi-
nition of these notions a predicate “loops” is introduced which expresses the possibility of
nontermination (loops(s)=F iff s always terminates). The terms correspond to the statements of
the intended programming language, and the models of the specifications represent the pos-
sible semantics of the languages. It is shown that the first three, CN, AN, and BN, have ter-
minal models. These are of special interest because they are

1. minimally defined, i.e., whenever there is a semantics in which some statement s
is undefined, then this possibility is reflected in the terminal model where s is
undefined too, and
2. fully abstract, i.e., two statements which have the same loops values and the
same result sets are equal.
LN does not have a terminal model, but all minimal models of LN are possible deterministic
semantics of LN and are possible implementations of some of the terminal models of CN, AN
or BN. The implementation ordering <, on models is defined in the natural way [93, 53, 18]:
M <, N iff for all terms t, elements a:
loops(tM)=F = loops(t")=F
a" e {tM} = aN e {tV}
That is, M implements N if it terminates at least in the situations when N terminates and is
not more nondeterministic than N. The result states then that the terminal models for AN
and BN are incomparable but both are possible implementations of the terminal model of
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CN. This reflects exactly our intuition about the relation between these forms of nondeter-
minism. Erratic nondeterminism (CN) is the most general and both angelic (AN) and de-
monic (BN) ones are possible specializations. Angelic and demonic nondeterminisms are, of
course, mutually exclusive — neither subsumes the other. Finally, any nondeterminate opera-
tion which does not require fairness may be implemented (loosely) by a deterministic opera-
tion.

We may look at this result as a semantic counterpart of the complexity analysis of non-
deterministic computations from [25]. Different kinds of nondeterminism are there classified
according to the complexity of their loops predicate. Unbounded erratic nondeterminism is
the most complex class which can be fully characterized only by =; formulae, while angelic
nondeterminism (bounded as well as unbounded) requires only 117 formulae. Of course, the
deterministic programs are simplest in this respect — they do not require the loops predicate at
all since it can be uniquely determined from their input-output relation (which in all cases is
of the same, partial recursive complexity, =7). Other, more specific forms of biased nonde-
terministic computations are also included in the classification in [25].

The reader is referred also to [19, 20] for more details about the general approach on
which the results from [21] are based.

5. Solutions of recursive equations — continuous models.

One of the reasons for the great importance of the initial models is that they, in a sense,
“represent” the whole class of models. In particular, equality on the ground terms in an initial
model “represents” the equality on such terms in all models. In order to check whether a
ground equation holds in some model A we can check whether it holds in the initial one, and
if it does conclude that it holds in A. Equations of a specification define the operations which
are legal interpretations of the operation symbols. In particular, recursive equations define
operations — namely operations which, when substituted for the operation symbols in the
equations, provide a solution to the equational system. The next natural question is: can such
solutions be constructed effectively?

The theory of the deterministic languages and specifications knows the “Mezei-Wright-
like results” (after [88]) of the form: there is a (symbolic, initial) structure W such that:

1. solving a system of recursive equations over W and interpreting the solution in
another structure A, and
2. interpreting the system in A and solving it directly
give the same result. One of the main results of this kind for the equational specifications is
given in [40] for W the initial continuous model.

We will summarize briefly the ideas of such a construction and some difficulties in ex-
tending it to the nondeterministic case. The issue is especially relevant because it focuses on
the problems of nontermination, finite observability and computability and allows us to
identify some connections between the algebraic and the denotational approaches to seman-
tics.

5.1. Deterministic preliminaries

Let = be a determinate signature. Any term teW,, can be considered a tree t reflecting its
syntactic structure. A term defined by recursion may be considered as a, potentially infinite,
tree obtained by the stepwise unfolding of the term along its defining equations. An addi-
tional symbol L is used to indicate the “unfinished” unfolding.

Example 5.1

Define
f0)=0 f(x+1) = f(x)+2
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The tree for f(3) is constructed by applying the definition to 1 until no L elements
occur in the tree:
f(3) —»f(2)+2 — (f(1)+2)+2 - ((f(0)+2)+2)+2 — ((O+2)+2+2)

L—*/\2—* /\ - /\ - /\
1

/\ /\ /\

2 + 2 + 2
N /N

1 2 0o 2

O

If there is a possibility of infinite unfolding, then the semantics is obtained as the fixed point
of the defining equations. For this purpose, the structure of =-algebras is enriched with the
appropriate ordering to make them complete partial orders (cpo).

An infinite unfolding may lead to an infinite term so the carriers must contain elements
interpreting such terms. The ordering must ensure that unfoldings constitute increasing
chains: in particular, L is the least element, and the operations are required to be continuous.
Then, by the Knaster-Tarski theorem (e.g., [75]), unfoldings have the least fixed points which
may be computed starting with the least element L.

Such a computational (approximation) ordering, =, on terms Wy , is defined as follows [40,
77,23, 96, 15, 97]:

C: sct iff l.s=t or
2.5=10r
3.5=1f(p,), t =f(r), and p,=r,

Notice the natural interpretation of the unfolding in the above example as a gradual ap-
proximation to the final result by successive evaluation of the “currently undefined” L leaves.
This intuition is reflected by = in that a term s is =-less (computed) than t if t can be obtained
from s by substituting “better defined” terms for some occurrences of L ins.

Every model A, €Alg, | is required to be =-continuous (i.e., the carrier is a =-cpo and all
operations are c-continuous). Similarly, the homomorphisms of models are strict =-
continuous =-homomorphisms. The point of these requirements is that when all operations
are =-continuous the unfoldings are chains and have lub, and such lubs are preserved by the
homomorphisms between models.

Technically, =-continuous models are obtained by ideal completion [75, 40] of standard
models partially ordered by c. Every partially ordered aIgebra A, | with a least element L (for
each sort) can be embedded into a continuous algebra A; | with the carrier being the set of all
ideals of A; | (i.e., downward closed subsets J such that any two elements ofJ have an upper
bound in J) ordered by set inclusion. The embedding is the mapping ™ A, —A;  which
sends every element aof A; | to the ideal generated by a, i.e., the set of aII beAE | such that
be=a.

Intuitively, we may think of this construction as adding the “infinite elements” as the
limit points of chains in A; | . In particular, for the initial word structure W, , we obtain the
structure W, , (of finite and infinite terms) which is initial in Alg, .. Consequently, the least
solution of recursive equatlons can be constructed as 1) the lubs of the unfolding chain in
W, . and mapped by the unique homomorphism to some actual algebra A , or else 2) the
terms from the equations can be interpreted in the algebra and the solution can be found as a
the lub of the chain in A . The content of the Mezei-Wright-like theorem can be summarized
as:
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Theorem 5.2 [40]. Given a system of recursive equations over Wy |, the following
diagram commutes for every A eAlg, :

W.
~/ E*xz_
WE,L J-_’ AL
O

5.2. CPOs for nondeterministic choice

Let (=,L1,1) denote a (determinate) signature = extended, as above, with 1, and with the
nondeterministic binary choice LI. The first generalization of 5.2 to nondeterminism is given
in [77] which we have discussed briefly in 3.3. The generalization is quite straightforward.
The ordering = is defined by the same axioms C and so lubs exist and are computed in the
same way regardless of whether terms involve occurrences of LI or not.

Example 5.3
Define f(x) = f(x+1) LI x. The (infinite) lub tree for f(x) is the fixed point of the same
unfolding process as in example 5.1.

L L L L
L = /X - /X - /N /N
1 X L X LJ X LJ X
/N /N /N
1 x+1 L x+1 L x+1
/N /N
1 X+1+1 .I_J. x+1+1
O

Nondeterminism is encoded in the result ordering < which is defined by the axioms R from
subsection 3.3. Unlike in the (Hoare, Smyth, Plotkin) power domain constructions, the two
orderings are not merged into one but are kept apart. Turning < into a cpo might present
new difficulties, such as an additional bottom element, and would bring us very close to the
denotational definitions of the combined orderings. Instead, it is shown that the ordering <
Is “compatible” with = in the sense that, if {a,}, {b} are two =-chains such that a,<b,, for all i,
then ach, where a, b are the =-lubs of the respective chains. The intuitive content of this
“compatibility” is that the two computations (computational chains) which at each step have
<-ordered results are =-ordered as computations.

Recall that axiom R3 (from section 3.3) made all the operations monotonic with respect
to the result ordering. Homomorphisms are now required to be not only strict and c-
continuous but also <-monotonic. In general, quotients of continuous algebras are not con-
tinuous. However, it may be shown that in the special case of the congruence generated by
the axioms JC, JA, JI (section 3.1) the quotient T, , of Wy,  is initial in the class of c-
continuous, <-monotonic models. This initiality result yields the desired analog of theorem
5.2.

The simplicity of this generalization relies on the fact that models are here, as we said, es-
sentially deterministic. Also, the nature of LI, although modeled to some extent by the result
partial order, does not fully correspond to choice. There will be cases (and not very rare, as a
matter of fact, for instance, the one from example 3.1) when a model of LI does not corre-
spond to the intuition of choice. This means, that the obtained result does not have the de-
sired consequences if we attempt to interpret specifications in some power set structures.
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This may be explained by the comparison of the intuitive meaning of the tree t when the term
t is determinate and when it contains applications of L.

Example 5.4.a
Let b: — S, f: S—S, and g: SxS—S be determinate operations, and consider the trees
for the terms

t=f(g(L,b)): and  s=f(LLb):
f f
| |
t= g S= L
N N
i b i b

1 represents an incomplete evaluation which requires a substitution of some closed
term for L in order to represent the unique result of the computation (singular se-
mantics is assumed). The intuitive interpretation of §, on the other hand, would say
that the LI node represents a branching of the computation which may proceed either
toward b — in which case we have a complete computation, or toward 1 —in which
case we do not have a one. It would not consider s as a single syntactic tree § but
rather as a pair of trees, each representing a possible result of the evaluation of s:

In short, the branching of a tree at deterministic terms (such as in t) has a different meaning
than the branching at LU in §. The set interpretation of the latter is quite natural and most
authors do interpret it this way [82, 97, 23]. Unfortunately, the formalization of this intuition
causes serious problems.

As the example suggests, we would like to define a mapping, ¥: W , , —2P(W, ,) sending
a (possibly infinite) term t to the set of its result trees, i.e., trees where LI has been replaced
by the chosen branches, and such that the following diagram commutes:

\I“/ E,u,J_\ \IIA
T(WE,L) 2 ?(AL)
Fig. 5.5

where: 1. A, is a continuous =-algebra and P(A ) is the power set of its carrier. Notice that
A is deterministic since LI[=.
2. 7: Wy  —A_ is the interpretation of the determinate terms in A . It is shown in
[96] that such a continuous interpretation can be obtained as a unique extension
of the interpretation of finite terms W, —A .
3.7 P(W; ,)—P(A)) is the pointwise extension of 2. to sets.
4., is a “direct interpretation” of terms involving LI in (A ) which should satisfy:
) ) ={72(t)} forteW,
i) w,(tus) = w,(t) u v,(6)
i) w,(f(t)) ={ (a) | a,ewa(t) }
Equations 4.i-ii) require that ¥, interprets LI as the set of results obtained by performing all
choices in the term, and iii) requires singular semantics of the arguments.
If there exists such a ¥ which is continuous then we can construct the lub in W, ,, map
it on the set of the result trees in P(W, ,) and interpret the elements of the latter in A , or,
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alternatively, interpret the equation using ¥, in (A ) and solve it there. Commutativity of
the diagram and the equations 4. ensure that the results obtained in these two ways will be
the same and, by the continuity of ¥ and 7, will yield lub in P(A ). The continuity require-
ment on ¥ demands a definition of an ordering on P(W, ,). Unfortunately, Broy reports the
following result

Proposition 5.6 [23]. There does not exist an ordering on P(W ) such that ¥ is
continuous.
O

Notice, that the ordering = on W, |, is not flat. The problem here is the same as in defining
an adequate ordering making power domains of non-flat domains cpos. We sketch two solu-
tions of this problem. The first one modifies the structure (W ) so that an appropriate or-
dering can be defined. The second releases the continuity claim and, instead, applies more
refined techniques of finding fixed points.

For the finite terms the situation is rather simple and equation 4.ii) will, for instance,
make Ww(s) from example 5.4.a return the two expected trees 3, and §,. To envisage a general
solution Boudol introduced [16, 97] choice trees for terms containing LI. In addition to the
chosen branches choice trees also keep a record of discarded branches.

Example 5.4.b
The choice trees for s = f(_LIb) will be:
5= | 5= |
L R
VAN 7\
1 erase erase b

L(eft), R(ight) and erase are the new symbols added to the alphabet for indicating which of
the branches of the original syntactic tree has been selected. The ordering on the choice trees
is again =. For teW, , , denote by CT(f) the set of the choice trees of t and define the map-
ping ys: \/T/M‘L ?(WELReraS“) by {s(t) = CT(f). This mapping is still not continuous (and it is
shown, analogously to 5.6, that no ordering for the target can make it continuous). But a
slight modification yields the desired continuity. Let CTy | = {(t¢) | teW, , ,, €eCT(f) } or-
dered by (t,6)=(t',¢") iff t=t’ and ¢=C". Order P(CT, ,) by the Egli-Milner extension [33] of =
ie., VT,SeP(CT, )

Ty S Iff ViceT, dsces : teese 4 VsceS, tceT : te=se (EM)

Then the mapping v, defined as w(t) = {(t,) | EeCT(f)} is continuous.

The possible dissatisfaction with the fact that the intermediate structure introduced by
the L, R and erase symbols had to be used, and that the final structure is not P(Wy ) is re-
solved in [23]. Broy shows there that, although no continuous ¥ exists, one can find a con-
tinuous mapping into (an appropriate representation of) the Plotkin power domain [103]
which factors through v. Let P(A|) denote the Plotkin power domain over A , P the map-
ping P(A,) — P(A)), and let C send sets of A, to their closures (i.e., for BeP(A ), C(B)
contains least upper bounds and greatest lower bounds of, respectively. upward and down-
ward directed, subsets of B). Then there exists a ¥, such that P«¥, is continuous with re-
spect to the Egli-Milner ordering, ¥, satisfies the equations 4., and such that the following
diagram commutes
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pONN]

v/ TN v,
M) TS P
P | lp

P, ) 01 P@)
Fig. 5.7

Commutativity of the upper triangle of this diagram is the required Mezei-Wright-like result.
One can interpret a term teW, , , using ¥,, directly in P(A ) as a set of the elements of A,
or interpret t as a set of trees over W, | which are then interpreted in A . Notice that all sets
in the image of ¥, (and V) are closed. This extends the notion of f|n|te observability — if all
finite apprOX|mat|ons of an element s are in the set w,(t) then so will s.

The construction of ¥, involves finding fixed points in P(A), S(A) (the Smyth power
domain [117]) and taking the minimal function approximating the former and approximated
by the latter. For the details of this construction, we refer the reader to [22, 23]. An exten-
sive, both introductory and advanced, material on the power domains and continuity of the
nondeterministic choice can be found in [106, 110, 118, 5, 99, 105, 3, 31, 18, 48].

The discussion above was concerned with singular (10) semantics only. Detailed com-
parison of the Mezei-Wright-like results for 10 vs. Ol algebras can be found in [34, 35].

6. Reasoning Systems

As the variety of the proposals discussed so far indicates, the semantics of nondeterminism is
certainly not a closed research topic. This is perhaps one of the reasons why relatively little
work focuses on the reasoning about nondeterminism. Initially, one attempted to reduce
such reasoning to reasoning about some deterministic equivalents. These attempts are the
topic of 6.1. Only very recently some authors began to design systems for direct reasoning
about nondeterminism. We give an example of such a system in 6.2. The following section 7
discusses the reasoning systems based on rewriting.

6.1. Reduction to determinism

The early approaches attempted to effect a reduction of the nondeterministic axioms to the
semantically equivalent deterministic ones and to apply the standard forms of reasoning to
the latter. In [121] such a translation is given for a specification language with equality inter-
preted as set equality. In order to specify nondeterministic operations one also allows charac-
teristic predicates describing the result sets. These predicates, although a part of the specifica-
tion, are not, strictly speaking, a part of the specification language. (They are similar to the
“semantic functions” loops and elem from [21], or breadth from [18].)

Example 6.1

Binary nondeterministic choice
LI: NatxNat—Nat

can be specified with the help of the predicate
P,: NatxNatxNat—Bool

P_(x,y,z) is to be true iff z is a possible result of xLly. So we define:
Puixy.2) = (X2 vy=2)

0
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The problem of reasoning with the nondeterminate terms arises because they do not have the
substitutivity property. Variables refer to the elements of the semantic domain while nonde-
terminate terms denote sets of such elements. The characteristic predicate specification above
is reasonable only because the variables X, y, z refer to single values and not sets (or arbitrary
terms). Thus the substitution of xLly for z, although consistent with the signature and syn-
tactically correct, is not really meaningful since it yields

P (xy.xUy) = (x=xuy v y=xLly)
which would make choice return always the first or always the second argument. In a sense,
the predicates are at a different syntactic level of the specification than the (nondeterminate)
terms. The formulae one reasons about are equations, and predicates are used only to make
the following translation into the first order language possible.

Let us consider the equation:

XLy = yLIx (@)

Equality is interpreted as set equality, so the translated determinate formula will be:
Vzl:[Pu(Xiyizl) = Elzz:(Pu(y,x,zz) A Z1:22)] A szz[Pu(y’X’zz) = Elzl:(Pu(X’y’Zl) A Z1:22)] (a,)

It would be rather annoying to write the general translation pattern for equality, but the
above example illustrates the point. It says: (a) holds iff for every possible result z, returned
by xLly there exists a result z, returned by yLIx such that z,=z, and vice versa.

“Elementwise” reasoning can then be carried out in full first order logic. Denote the re-
sult of translating an equation e by FOL() (for First Order Logic). All equational axioms e of
the specification are translated into FOL(e) and a formula a is valid iff FOL(a) follows from
the derived axioms. One can save some work by avoiding translation of deterministic terms
and carrying them directly to the derived formulae. However, it is in general undecidable
whether a given nondeterminate term is deterministic or not [18], so such an improvement
would be limited to a syntactic check on the occurrences of nondeterminate subterms.

FOL will leave all logical symbols except for = unaffected, e.g., FOL(-e) = -FOL(e),
FOL(e,ve,) = FOL(e,)vFOL(e,), etc. Using this observation, [64] generalizes FOL to conditional
equations. Let b be a Boolean expression in the specification language (not a characteristic
predicate), e an equation. The translation of b = e is defined as FOL(b=T) = FOL(e). For in-
stance, take b to be 0 <0LI1, and consider the conditional formula:

0<0uUl > e (b)
It will be translated as

[Vz:(P,0,1,z) = 0<z) » Jz:0<z] = FOL(e) (b")

All nondeterminate subexpressions of b are replaced with new variables (0<z) and these are
bound in the characteristic predicates (P (0,1,z)) to be the results of the corresponding op-
erations. Then the condition of (b’) is true if b holds for all possible results of its nondeter-
ministic subexpressions (and there exists a value making b true — this, apparently superflu-
ous, conjunct is obtained automatically by applying FOL to b=T). The consequent is just the
translation of the consequent of (b).

Since 0£0 the antecedent of (b’) is false and so (b) will be considered true. This may be
not quite what we intended when writing (b) since we could have been interested in making
e hold only in the cases when OLI1 returns 1. The translation enforces a uniform interpreta-
tion of Boolean expressions — they are either true or false but not indeterminate. This reflects
a general assumption made in [64] that Boolean expressions are, at most, weakly nondeter-
ministic — for any argument (a single value) they can be evaluated nondeterministically but
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their result must be uniquely determined by the arguments. For instance, a Boolean opera-
tion b(x) defined as O<x would be legal, but the one defined as OLI1<x would not. The re-
striction is motivated by the fact that Boolean expressions are used there for handling excep-
tions, but it also indicates the limitations of the approach.

6.2. Calculus of nondeterminate terms

It is far from pleasing that starting with an equational specification, and being interested only
in its equational consequences, one has to apply full first order logic. But it seems that the
complexity of the equational logic of nondeterminism exceeds by far the complexity of the
classical equational reasoning. Other systems which can deal with nondeterminism, espe-
cially variants of modal logics (temporal logic [83, 10, 71], dynamic logic [47, 36, 46]), are
based on conceptual models which are much more complex than one would expect, and
wish, for a logic of simple specifications with equations/inclusions.

An elegant contribution is that of unified algebras which, being based exclusively on
Horn clauses, offer the possibility of taking the full advantage of the existing tools for rea-
soning about Horn specifications. The idea, however obvious, is only implicit in the presen-
tation of unified algebras — the framework is based on the notion of institutions and deliber-
ately abstracts from the peculiarities of the reasoning systems which might possibly be cou-
pled with it.

As mentioned before, the main problem with nondeterminate terms is that they cannot
be freely substituted for the (singular) variables. This introduces highly non-standard features
into logics of nondeterminism. The only, to our knowledge, calculus for direct reasoning
about nondeterminism which has been shown complete wrt. the multialgebraic semantics is
given in [127, 126]. The calculus, NEQ, can be used for reasoning about disjunctive clauses
where each clause C in NEQ is a set of atomic formulae (i.e., the ordering and multiplicity of
the atomic formulae do not matter), written as e, .., e,. A clause is interpreted as the dis-
junction of its literals.

The atomic formulae e in NEQ are inclusions (s<t), equalities (s=t), and inequalities
(t#s). Equalities are understood to mean necessary equality (i.e. the two terms always return
the same result). — s=t means not only that t and s are equal but also that they are determi-
nistic, and + t=t holds only for the deterministic terms. (Thus it is element equality and the
symbol “=" is used instead of “=” to emphasize the distinction w.r.t. standard equality). Ine-
qualities are understood to mean necessary inequality (i.e. the two terms never return the
same results). Variables are singular and a clause C is satisfied iff the formula V' x;(e,v...ve,) is
satisfied, where x, are all variables in C. Equations and inclusions are called positive atoms,
and inequations negative atoms. The latter act as negations of both equalities and inclusions.
(A slightly different language where the negation of equality does not coincide with the nega-
tion of inclusion is used in [130].) For instance, a clause { t#s, p<r } is thought of as the
(equivalent) conditional formula —(t#s) = p<r, stating that p is included in r whenever t in-
tersects s. A clause with exactly one positive atom is a Horn formula, and Horn formulae with
no negative atoms are simple formula.

The introduction of inequalities is motivated by the need of binding the applications of
nondeterministic operations, and thus distinguishing between the terms treated as sets and
the results of particular applications of terms corresponding to individuals. A formula
 0u1=0, OLI1=1 says that OLI1 is a set which is either equal to O or to 1, in other words,
OLI1 is not nondeterministic, merely underspecified. In order to express nondeterminism,
one has to indicate that not the set but an arbitrary application of (element of the set) OLI1
equals O or 1. This is expressed by the binding:

F x#(0Ul), x=0, x=1. (6.2)
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(I.e., for any value X, x is either one of 0 and 1, or it is not a possible result of OLI1.) Thinking
of terms as sets, an inequality  ...s#t....is a short form for ~ ....zes, zet...., where z is a
new variable, and the inequation in (6.2) corresponds requiring xe0ULI1 in the rest of the
clause. The two inclusions ~ 1<0U1 and ~ 0<0U1 have the expected multialgebraic
meaning which, together with the above disjunction, will force OLI1 to be interpreted in all
models exactly as the set {0,1}. Horn-formulae are a special case of clauses and the obvious
restriction of the calculus below can be applied to this case. The rules of the calculus are as
follows :

R1: a) - X#Y, X=y b) - x#t, x<t  x,yeV
- —CY ; FD,s=t
' ~C%,D
—CY ; +D,s<t o _ .
R3: ~ x not in a right-hand side of < in C
~C5,D
FC,s=<t ; FD,s#t L
R4: "CD (CUT) (X being either = or <)
R5: -C WEAK
' —C,e ( )
R6: Lc)ijﬂ (ELIM) xe V="V[t], at most one x in C
=Ch

Uppercase Latin letters C, D, denote single clauses and lowercase Latin letters a, e atomic
formulae. Semicolon indicates a conjunction of clauses. E.g., if C is {c,, ..., ¢,}, D is {d,, ...,
d,}, and a is an atomic formula, then “C ; D” denotes the conjunction of the two clauses,
while “C, D” denotes the clause {c,, ..., ¢, d,, ..., d}. Similarly, “C, a” is the clause {c,, ..., C,,
a}and “C ; a” is the conjunction of C and {a}. C; denotes C with t substituted for x.

A few comments regarding the rules may be in order.

R1 expresses the relation between # and equality and inclusion. Since variables x and y are
individuals, the two rules correspond to, respectively, x2y v x=y, and x[Jt v xet. They also
reflect the fact that ‘=’ is a partial equivalence relation and is reflexive only for variables.

R2 is a paramodulation rule allowing replacement of deterministic terms (in the case when
s=t holds in the second assumption). In particular, it allows derivation of the standard
substitution rule when the substituted terms are deterministic, and prevents substitution
of nondeterministic terms for variables.

R3 allows “specialization” of a clause by substituting for a term t another term s which is in-
cluded in t. The restriction that the occurrences of t which are substituted for don’'t occur
in the right-hand side of < in C is needed to prevent, for instance, the unsound conclu-
sion - p<s from the premises - p<tand - s<t.

s+t implies both negation of s=t and of s<t. R4 allows us to resolve these complementary at-
oms.

R5 allows one to weaken the premise clause by extending it with additional disjuncts.

34



R6 eliminates redundant bindings, namely those that bind an application of a term occurring
at most once in the rest of the clause.
The main result concerning this calculus is its soundness and completeness:

Theorem 6.3 [127, 126]. For any specification SP: MMod(SP) E C iff SP ~ C.
0

The tight relation between multimodels and functional models referred to in proposition 2.6
is further strengthened by the fact that the same theorem holds when we replace MMod by
FMod.

7. Operational models and rewriting

Many authors approach the problem of reasoning about algebraic specifications using some
form of rewriting. Rewriting systems have at least two features distinguishing them from the
general form of reasoning discussed in this section: 1) they focus on (and are much more
amenable to) automation and 2) they may be also seen as a way of giving the operational se-
mantics to the specifications.

Nondeterministic operations have the inherent computational ingredient which determi-
nistic functions lack: their result depends on the actual computation since nondeterministic
decisions are made only when the program is executed. The power set constructions model
this by considering all possibilities in one single model. An operational interpretation, on the
other hand, incorporates the fact that nondeterminism is resolved during computation into
the semantic structure.

Such structure is given by a reduction system which simulates the evaluation of terms
(programs). Different interpretations of the objects being reduced (as strings, sequences,
graphs) and different reduction strategies give rise to a variety of operational semantics.

7.1. Non-confluence and restricted substitutivity
The main idea is to simulate the computation by allowing a nondeterminate term to reduce to
any of its possible result. For instance, the reduction rules for the binary choice will be:

XUy —x and xuUy»—y (7.2)

This idea is applied in various operational semantics for the denotational models and \-
calculus. In [66, 67] the computation sequences (simulating sequences of nondeterministic
choices), rather than the result sets, are introduced as the basis for a power domain construc-
tion. In [70] a similar semantics is shown equivalent to the operational semantics of bounded
nondeterminism. [5] considers a generalization to unbounded nondeterminism and points
out that power domains based on the computation sequences help solve the problem of non-
continuity of unbounded nondeterministic choice. In [3, 105] noncontinuity is tackled by
the generalization of the semantics of the iterative construct to fixed points over transfinite
ordinals (according to the suggestion from [99]), and the resulting Plotkin and Smyth power
domains for countable nondeterminism are shown equivalent to the respective operational
semantics. An operational interpretation of A-calculus extended with the choice operator can
be obtained by appropriate modifications of the B-rule. Such modifications, leading to both
plural and singular semantics, are discussed, for instance, in [49, 73, 4]. We will base the
following discussion on the terminology of the systems for term rewriting which constitute a
natural counterpart to the algebraic specifications.

Since x and y in (7.1) may be arbitrary terms, in particular both may be in normal form
(not reducible by the rules of the system) rewriting with nondeterminism will be, typically,
non-confluent [24, 59, 57, 97, 4, 87]. One may simply accept it as a fact of life — after all, a
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nondeterministic computation is precisely one which can return several results, and each re-
write represents one among them [59, 4, 87]. Nevertheless, one may try to show some desir-
able properties of the resulting system. For instance, in [4] the authors show that their re-
writing system is confluent for all terms not involving LI, and that for all terms the possible
rewrites constitute exactly the set prescribed by the independently defined model. In the
cases when the semantics of a specification is defined also by non-operational means the lat-
ter correspondence between the set obtained by all possible rewritings of a term and the set
assigned to this term by the static semantics is, of course, an obligation. Inclusion of the for-
mer in the latter yields soundness and the opposite inclusion completeness of the reasoning
by rewriting.

An exception to the schema (7.1) is the work of Kaplan [63]. It actually forbids rules like
these, except for the one rule of distributivity of LI over function application (JD from 3.1
oriented from left to right). Instead, terms in normal form may involve LI. For instance, one
may define an operation f by the rule f — aLib. If a and b are irreducible alLib will be the
normal form of f. Rewriting is then performed modulo the equations for associativity and
commutativity of LI with the rules corresponding to other join axioms (JI and JE from 3.1).
This leads to the possibility of obtaining unique normal forms for the nondeterminate terms
(bounded nondeterminism) and the conditions for such systems to be confluent are given.
An interesting property of such confluent systems is that their initial models are isomorphic
to the intuitive multialgebra models with LI interpreted as set union.

One of the issues raised by virtually any work on rewriting is the distinction between the
singular and the plural semantics of parameter passing [34, 35, 49, 4, 73]. The need to de-
cide when the arguments of the terms under evaluation are to be reduced makes this distinc-
tion natural, not to say unavoidable. The two evaluation strategies are present already in the
rewriting of deterministic terms [43, 98]. Most generally, the singular semantics requires the
arguments to be evaluated before the enclosing operation call (10), while the plural one
postpones their evaluation until the enclosing term has been reduced in its entirety (Ol). This
gives the two substitution rules:

f(x) [X/tho — UL ) | set) (10)
f(x) [X/tlo — ) (o)

We have adopted the rather informal notation f — {...} to indicate that f can be rewritten to
any element of the set on the RHS of ~—, and st to say that sis (one of) the normal forms of
t. For instance, let f(x) — x+x and t = 0LI1. Evaluation of f(t) under 10 requires that we first
find all the rewrites of OLI1, and will give us f(x)[x/0LI1],, — {f(0), f(1)} — {0,2}. OlI, on the
other hand will yield f(x)[x/0L11],, — f(OL1) — OLI1+0LI1 — {0,1,2}.

Ol is a much simpler mechanism than 10. The latter requires that the argument t be first
reduced to (some of) its normal forms s before f(t) can be evaluated. Furthermore, all such
normal forms must be deterministic in order for 10 to yield the singular semantics! For if t
can be reduced to a nondeterminate normal form s then f(x)[x/t],, will be reduced to a set
{...,f(s),...} and then to {...,sts,...}. Thus, having the singular semantics in mind, one must, in
addition to designing an 10 rewriting system, make sure that the system, as well as the speci-
fication, satisfy some additional conditions. Such conditions are given by HuBmann in [59,
58]. The rewriting system must satisfy the condition that any substitution of a term s for a
variable x be guarded by the prior proof that s is deterministic, DET(s). The responsibility of
the specifier is to ensure that all terms do have a deterministic normal form, i.e.:

VteW,dseW, it »5s 4 DET(S) (DET-completeness)
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where »%is the transitive closure of —. One more condition is needed to ensure the singular
semantics. Any (deterministic) result obtained from a term f(t) must be a result obtained by
making some choices during the evaluation. The rule f(OLI1) ~— ¢ does not determine singu-
larity of the argument passed to f. If ¢ is to be produced in the singular semantics from
f(OLI1) it must be the result of either f(0) or f(1). This requirement, termed DET-additivity, is
ensured if the specification with the rewriting rules R satisfies two conditions:

1L.VI—reR : |=f(t,.t) Vi.DET(t)
2.V f(t,...t) : DET((t,...t)) = DET(t) (DET-additivity)

Besides the rules with single variable in the LHS, 1. forbids the rules like f(OLI1) — ¢ and re-
quires that one write instead the rules f(0) — cand f(1) — c¢. Analogous requirements of left
LI-freeness is made in [63]. 2. says that an operation f with the nondeterministic arguments is
capable of returning a set of possible results. This is again the condition analogous to one
made by Kaplan in [63]. Compared with the latter work the system of HuBmann’s [59] is
much less restrictive since in [63] it is also required that rules be left-linear, i.e., contain no
multiple occurrences of a variable in LHS. The rewriting system of HuBmann is shown to be
sound and (weakly) ground complete with respect to the model class (MMod,MHom) of
DET-complete and DET-additive specifications. The calculus of section 6.2 is sound and
complete for specifications without the restrictions to DET-completeness and -additivity.

What makes nondeterministic Ol so much simpler than 10 is the fact that the models of
the former are essentially deterministic power algebras. Hence, the variables in Ol refer to
sets which are just individuals of the carrier. This is succinctly expressed in:

Proposition 7.2 [34]. Ol substitution is associative, i.e.:

f(.x.y..z.) (XA LysDIz/plo, = f(.x..y..z..) IXE(IY/s][2/p])o
]

A simple example shows that this is not the case for the 10 substitutions:

X +y ([yX[x/0u1l]) [x/0ul],, =x+y [y/0ul] [x/0L1],={0,1,2} #
X +y [y ([x/0u1][x/0Li1]),, = x+ x [x/0U1] [x/OLI1],, = x+ X [X/OL1],, = {0,2}

The lack of associativity of 10 substitutions is the reason for the complications of the rewrit-
ing systems referred to above. The problem does not arise if there is always at most one oc-
currence of a variable to be substituted for or if the substituted terms are deterministic.

Proposition 7.3 [34]. If
1. there is at most one occurrence of the variable to be substituted for, or
2. any substituted term is deterministic then 10 substitution is associative.
0

1. is reflected in the systems requiring linearity, i.e., forbidding multiple occurrences of a
variable, which is a very strong restriction ([63], the introductory system in [58]), and 2. in
the systems, like HuBmann'’s, which require a proof of determinacy for the substituted terms.
(The calculus from subsection 6.2 takes care of both cases: the restriction on the rule R7 cor-
responds to 1, and the second premise in rule R2 to 2. In [130, 131] it is also shown that a
complete extension of the calculus to plural arguments requires only the addition of the stan-
dard, unrestricted substitution rule for plural variables.)

Of course, one of the main differences between 10 and Ol strategies concerns, as in de-
terministic rewriting, the termination properties. Since the former requires the evaluation of
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all arguments before the evaluation of a call, it will diverge in many cases in which the latter
will compute a well defined result. One of the numerous variations on the plural/singular vs.
OI/10 distinctions is proposed in [4]. It combines the singular semantics of parameter pass-
ing with the preferable termination properties of the Ol evaluation strategy by means of
sharing. The idea is to bind (share) the arguments and postpone their evaluation until reduc-
tion of the term requires a value of the argument (lazy evaluation). The language (of \-
expressions, actually, but we stay with our notation) is extended with the binding construct
{x/t} which is performed before substitution:

f(x) [x/t], — f(x) {x/t} (1)
The rest of the system takes then care of rewriting f and t as far as possible, e.g.,

if f(x) — f'(x) then f(x){x/t} — '(x){x/t}
if t—t then f(x){x/t} — fx){x/t'} 2

“As far as possible” is defined with the help of the critical set, CR, of a term. CR(t) is empty
whenever t can be rewritten and contains the variable x if further rewriting of t demands x to
be evaluated. The rule

if xeCR(f(x)) then f(){x/t} — f()[x/t] (3)

performs then the usual substitution [x/t] of t for all x in f(x). By the rules (2), t in the mo-
ment of such substitution will be in normal form.

7.2. Rewriting Logic
A very powerful and general theory of nondeterministic (and concurrent) rewriting called
Rewriting Logic was designed by José Meseguer in [87, 86].

As we have seen, purely equational specifications of nondeterminism do not yield intui-
tively plausible results: Defining choice by xLly=x, and xLly=y gives x=y. On the other hand,
the definition xLly=x v xLIy=y does not have an initial model. This motivates the use of inclu-
sion (3.2-3.4) or rewrite rules as above. The language of rewriting logic extends the equa-
tional language by allowing also conditional rewrite rules. Equations may be considered two-
way rewrite rules, but the idea is to simplify the exposition by rewriting in equivalence
classes modulo the congruence induced by the equations and to use rewrite rules for nonde-
terministic terms only. The generalization of the rewriting systems for equational theories lies
in allowing conditional rules and labeling the rules (we discuss this point in a moment). A
rewrite system S is given by a 4-tuple (=, E, L, R) of signature, equations, labels, and rewrite
rules labeled by L.

Example 7.4.a
For illustration, we will use the following system S for the natural numbers with bi-
nary choice
> 0 — Nat

succ: Nat — Nat
+: NatxNat — Nat
LI: NatxNat — Nat

E: 1.0+x=0 2. Xty = y+X
3. succ(x)+succ(y) = succ(succ(x+y))
4. XLy = yLIX

L: {rl,r2}

R: rl:xuy — X r2: xuy —y

O
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Rewriting logic
The rewriting logic (RL) is the following set of rules ([t] denotes the equivalence class of t un-
der the congruence induced by E; t,s,w;,v,eW, ,):

RL1. Reflexivity [t] — [t]
RL2. Congruence [t] — [s
[F(t)] — [f(s)]
RL3. Replacement (wi — [v] for each rule r: t(x,) — s(x;) in R
[t(w)] — [s(v))]
RL4. Transitivity [t]—[t] [t]—l[t]
[tl] H[tg]

This is the whole logic and its simplicity and intuitive appeal call for no further comments.
(We have simplified the rule RL3 which, in general, involves conditionals.) Like in the most
systems discussed above, a proof in RL will produce a possible result of the argument, for in-
stance, RL1 and RL3 will give [xLly + z] — [x+z] (using rl), and [xLly + z] — [y+z] (using
r2).

The model T(X)

A model of a system S is constructed as a category 7 (X) with the objects being the equiva-
lence classes [t] for teW,,, and the morphisms the equivalence classes of the terms repre-
senting proofs in RL. In order to identify appropriate proof terms (and possibly distinguish
two morphism with the same source and target) the labels of the rules applied are used. The
morphisms are generated using the rules “simulating” the proof rules of RL which, in addi-
tion, attach the appropriate label to each morphism:

1. ldentities [t]: [t] — [t]
o [t] —[s]
o) [F()] — [F(s)]
ot [w] — [v]
r(og) : [t(w)]l — [s(v))]
alft] —[t] B:ift] —[t]
o 1 [t] —[ts]

A morphism «y: [t] — [s] corresponds then to a proof (term) which, by applying the rules -,
starts with [t] and produces [s]. To make a category out of this one needs to ensure the asso-
ciativity of compositions and to make the morphisms [t] into the identities on the objects [t].
The following axioms take care of imposing the required properties on the morphisms:

(assoc)  forall o, B, v (;B)iy = o (B:v)

(ident)  forall a: [t] — [9 o;[s] =aand [t];a =«
Some additional axioms make sure that the appropriate morphisms will be identified. For
instance, axiom 4. makes [0LI1] = [1L0], and hence the morphisms r1([0],[1]): [OL1] —
[0], and r2([1],[0]): [OLi1] — [O] should be identified. In particular, all equations from E
should be valid in the model category, so for every equational axiom t(x)=s(x) and all « we
require that the morphisms t(a) and s(a) be equal. This will make, for instance, +([0],[x])
equal to the identity morphism [x] for all x.

2. >-structure

3. Replacement for each rule r: t(x,) — s(x;) in R

4. Composition (writing composition from left to right)
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Example 7.4.b
A small piece of the category T (X) for S from example 7.4.a is shown below:

[succ(OI_Il)]
[12]
[0U1] suce(r1([0],[1])) . succ(r2([0],[1])) Q
[ ]
r2([0],[1])
1([0],[1])
r1([0],[ ] J/rZ([l],[Z])
ri([1].[2])

[0] [1] 2]
O

Note that the object [succ(OLI1)] is not the same as [1L12]. This reflects the ability of the
model to distinguish between plural semantics (which is default) from the singular which
would require the additional distributivity axiom succ(xLly) = succ(x)Lisucc(y).
The last thing is to interpret the =-structure in 7 (X). Two final identifications are:

(comp) forallf, o, B; f(ey;B) = fer);f(B)

(ident)  forall f, t, f([t]) = [f(t)]
With these equations, every fe= determines a functor f.: TX)" — T(X) (where n is the
arity of f). For instance, succ will determine the functor which sends every object [t] to
[succ(t)], and every morphism, like r1([0],[1]), to the respective morphism succ(r1([0],[1])).

The category of S-models
T (X) is just one among the possible models of S. For a category C to be an S-model it must
satisfy all the axioms of S. Intuitively this means that

1. for every t=s € E, the functors t.and s. induced in C should be identical,

2. forevery [t] — [s] € R, there must exist a corresponding arrow in C.
Since t and s may involve variables, 2. is formalized as the requirement of the existence of a
natural transformation between the respective functors t. and s.. Finally, the notion of a
morphism of S-models is defined as an S-functor which preserves the =-structure and the
natural transformations corresponding to each rule of S. This gives a category S-C AT of all
models of S. One of the central results about these constructions is:

Theorem 7.5 [87]. The functor S-CAT — SET sending an S-model to the set of
its objects has the left adjoint which sends each set X to T(X).
O

The first thing one obtains from this theorem is an easy proof of completeness of RL with re-
spect to S-C AT (of course, RL is also sound for this class). It also suggests a generalized ini-
tial semantics for rewrite systems since any system S has now the initial model 7 The list of
various approaches which can be subsumed under rewriting logic is quite impressive. We
only mention the link to the classical initial algebras.

Given a standard rewriting system S one can construct the initial model for S provided it
is confluent. The present construction assigns an initial model to any S system —also the
ones which involve nondeterminism in the form of non-confluent rewrite rules (or are not
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confluent for other reasons) If S happens to determine an initial algebra T, or, more gener-
ally, if we are interested in the initial model T of the equational theory correspondlng to S,
then T, may be obtained as a quotient of 7. The equational theory for S is the one where aII
— have been turned into =. This means that all we have to do is to impose such equalities on
the morphlsms (representing — ) in T,. We unlabel all morphisms and make [t]=[s] when-
ever there is a morphlsm [t] — [s]. The image of 7 under this transformation will be T, In
fact, the transformation is a functor and it will send S-CAT onto the class Mod(S) of ordl-
nary =-models of the equational theory of S.

7.3. Reasoning and rewriting with sets.

The rewriting relation t= s, interpreted in the equational case as the equality of t and s, has
been redefined for the nondeterministic rewriting to mean that t is possibly equal to s (or that
s<t). As we have seen, an immediate consequence is a lack of confluence. Since < is not an
equivalence relation, this poses a more general question of rewriting in the presence of such
relations. In particular, inclusion is just one among the common set-relations. Thus reasoning
about nondeterminism becomes closely related with reasoning with sets (as observed in
[129]) — an area of increasing importance, especially in logic and constraint programming
[114, 32, 61, 120]. The suggested extensions go in the direction of rewriting atoms — pairs of
terms annotated with an appropriate relational symbol — rather than rewriting of terms.

The authors of bi-rewriting [72] propose the use of two kinds of relations: == and ~=. To
prove t<s, one will try to rewrite t to a term u replacing it by “bigger” terms along the relation
~=. Simultaneously, one tries to rewrite s to u replacing it by “smaller” terms along the rela-
tion = . Existence of such a u (which need not be unique) proves the inclusion. The use of
two relations gives more flexibility in applying different simplification orderings because now
the ordering of terms need not coincide with their inclusions <.

A related approach from [69] introduces a language for specifying the relations: <, ~,
and = which, interpreted in multialgebras, correspond to inclusion, intersection and identity
of 1-element sets. The associated reasoning is based on the replacement and compositional
properties of these relations. A sound and refutationally ground-complete system for the lan-
guage of sequents over such atomic relations is given. Rewriting is done using the corre-
sponding relations: -5, ~> , »=, and »=. In particular, in the course of a rewriting proof the
predicates may change according to the laws of their composition, yielding all the time the
strongest possible relation between the active terms. For instance, two rewriting steps t—=s
and -5 u will lead to a derivation of t-=u, while the steps t-=s and s—= u will yield t= u.

The above works extend the equational rewriting generalizing several classical notions
such as overlapping rules, critical pair, confluence. In particular, the notion of unique normal
form becomes less central. Instead, one has to invent a search strategy which finds appropri-
ate atoms/terms for chaining proofs (such as the termu in s~=u and t-5u needed to complete
the proof of t<s).

8. Summary

Nondeterminism poses many problems which cannot easily be incorporated into the frame-
work of deterministic specifications. The formalization of the intuition that nondeterministic
operations generate sets of possible results, reflected in the power set structures, presents se-
rious difficulties. The proposed generalizations of the classical results such as those on ini-
tiality, continuity, and equational reasoning to the power set structures have only limited va-
lidity. The most successful proposals are rather sophisticated and apply to non-standard con-
structions. They are often very general, addressing other problems besides that of nondeter-
minism.
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The fundamental difficulty seems to lie in the inherently computational character of
nondeterminism which confronts the attempts to enclose it in a single, preferably initial,
model. This difficulty may be expressed by the slogan that “choice is not a constructor.” An
occurrence of the syntactic operation LI in specifications will typically be reflected in the ini-
tial model by the occurrence of the respective choice terms, such as aLib. They, however,
represent a kind of “intuitive junk” because choice is not supposed to introduce any new
elements into the model. On the other hand, the intended meaning cannot be covered by the
purely equational language, which corrupts the nature of the choice operator and reduces it
to a deterministic function.

The solution comes in some form of the “is a possible result” predicate. It is present in
almost all approaches as inclusion, partial ordering or rewrite rules. In cases when the initial
semantics can be obtained — and these are the cases when the specifications are restricted to
Horn theories — such a predicate corresponds to the intuitive meaning of the nondeterminis-
tic operations.

For multialgebras, the initial semantics can be obtained only in particular cases. To guar-
antee its general applicability one has to introduce some partial order models. Such models,
however, are based on blurring the distinction between individuals and sets. In particular,
they give the predicate “is a possible result of” a mathematically simpler, but intuitively less
obvious, meaning than the set based models do.

Loose semantics of nondeterminism has not received much attention. The restriction to
Horn theories, even with the “is a possible result” predicate, have more undesirable conse-
quences for such semantics than in the deterministic case. The general models of determinate
specifications introduce junk (undenotable elements), but the behavior of the operations ap-
plied to such elements is still controlled by the axioms. This is no longer the case when we
move to the nondeterministic specifications. The axioms x<xLly and y<xLly specify only the
lower bound on the admitted nondeterminism of the choice operator. In the general power
set models, the interpretation of nondeterministic ground terms such as 0LI1 will be allowed
to return any imaginable (and unimaginable) results besides the two prescribed by such a
specification. Thus junk will appear, so to speak, not only next to non-junk but also in the
middle of it. (This does not apply to the unified algebras where the interpretation of choice as
join excludes such situations.)

The computational character of nondeterminism finds its natural expression in the op-
erational models. At the syntactic level it is reflected in the fact that nondeterminate terms do
not denote unique values, and consequently violate the requirements of referential transpar-
ency and substitutivity. This leads to an operational approach not only in the semantics, but
also in the reasoning. With the exception of the rewriting logic, this indicates why one had to
await completeness results of the proposed reasoning systems for so long. Also, such systems
usually describe the result set of a term not by a single formula but by a set of formulae — one
for each possible result. Hence, a deduction of the result set of a term requires derivations of
all such formulae. The reasoning must not only consider the syntax of the formulae involved
but also ensure that all possible rules have been applied. However, this deficiency does not
occur in the calculus from 6.2.

With respect to the last point, as well as to the deficiencies of Horn-specifications, dis-
junctive axioms provide significant help. However, such axioms do not admit initial models
and introduce a few extra complications in the reasoning systems.

An important issue that has not been addressed in this paper concerns the notion of im-
plementation of nondeterministic data types. The reason for this omission is the almost com-
plete absence of any published results which, we suppose, reflects the absence of active re-
search in that area. We may mention two works [107, 132] which both point in the same di-
rection: In the context of data refinement it seems necessary to distinguish underspecification
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from nondeterministic operations by relaxing the referential transparency (unrestricted sub-
stitutivity) requirement with respect to the latter. (This relaxation corresponds to the re-
stricted substitutivity in the logic discussed in section 6.2.) Mere underspecification excludes
the possibility of verifying implementations which naturally would be considered correct and
plausible.

Although there already exists an extensive literature on various aspects of nondeter-
minism in an algebraic setting, it does not seem that the research has established some con-
sensus similar to the one discernible in the classical specifications of deterministic data types.
Such a consensus — concerning not the best and only formalism, but the relative importance
and applicability of different formalisms — is probably needed before the questions about im-
plementation and structured specification of nondeterministic data types can receive closer
attention.
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