
INTERPROCEDURAL PARALLELIZATION
ANALYSIS: PRELIMINARY RESULTS

Mary W. Hall
Saman P. Amarasinghe
Brian R. Murphy
Shih-Wei Liao
Monica S. Lam

Technical Report: CSL-TR-95665

- March 1995

This work was supported in part by DARPA contracts N00039-91-C-0138, an NSF Young Investigator
Award, and NSF CISE postdoctoral fellowship, a fellowship from Intel Corporation, and a fellowship
from AT&T Bell Laboratories.

Interprocedural Parallelization Analysis: Preliminary Results

Mary W. Hall
Saman P. Amarasinghe

Brian R. Murphy
Shih- Wei Liao

Monica S. Lam

Technical Report No.: CSL-TR-95-665

March 1995

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305-4055
pubs@shasta.stanford.cdu

Abstract

This paper describes a fully interprocedural automatic parallelization system for Fortran
programs, and presents the results of extensive experiments obtained using this system. The
system incorporates a comprehensive and integrated collection of analyses including depen-
dence, privatization and reduction recognition for both array and scalar variables, and scalar
symbolic analysis to support these. All the analyses have been implemented in the SUIF
(Stanford University Intermediate Format) compiler system, with the aid of an interproce-
dural analysis construction tool known as FIAT. Our interprocedural analysis is uniquely
designed to provide the same quality of information as if the program were analyzed as a
single procedure, while managing the complexity of the analysis.

We have implemented a robust system that has parallelized, completely automatically, loops
containing over a thousand lines of code. This work makes possible the first comprehensive em-
pirical evaluation of state-of-the-art automatic parallelization technology. This paper reports
evaluation numbers on programs from standard benchmark suites. The results demonstrate
that all the interprocedural analyses taken together can substantially advance the capability
of current automatic parallelization technology.

Key Words and Phrases: automatic parallelization, interprocedural data-flow analysis

Copyright 0 1995

Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy,
Shih-Wei Liao, and Monica S. Lam

Interprocedural Parallelization Analysis: Preliminary Results

Mary W. Hall
California Institute of Technology

Saman P. Amarasinghe Brian R. Murphy
Shih-Wei Liao Monica S. Lam

Stanford University

Abstract

This paper presents results of extensive experiments with a fully interprocedural automatic parallelization
system for Fortran programs. The system incorporates an integrated collection of interprocedural analyses,
including privatization and reduction recognition for both array and scalar variables, and a supporting scalar
symbolic analysis. The analyses were implemented in the SUIF (Stanford University Intermediate Format)
compiler system, with the aid of an interprocedural analysis construction tool known as FIAT. The analysis
framework is uniquely designed to provide results as precise as full inlining, while managing the complexity of the
analysis. The implemented system is robust, and has parallelized, completely automatically, loops containing
hundreds of lines of code.

This work makes possible the first empirical evaluation that demonstrates positive results from automatic
parallelization, particularly interprocedural analysis, presenting measurements of a number of programs from
standard benchmark suites. The results demonstrate that a combination of interprocedural analyses can sub-
stantially advance the capability of automatic parallelization technology.

1 Introduction
As small to moderate-scale multiprocessors have become increasingly common, the demand for compilers capa-
ble of extracting parallelism from existing codes is also increasing. Today’s commercial parallelizers tend to be
successful only in identifying parallelizable innermost loops. While this may be sufficient for vector and SIMD
(Single Instruction Multiple Data) machines, it is inadequate when compiling for multiprocessors. Code outside
of innermost loops represents a significant fraction of the execution time and must be parallelized to achieve high
performance. Because multiprocessors are capable of following different threads of control, they can exploit such
parallelism when available by executing iterations of outer parallel loops. Outer parallel loops provide coarse-grain

w computations that exhibit very small overhead costs from synchronization relative to the amount of time spent
doing useful work in parallel.

If compilers are to successfully locate coarse-grain parallelism, procedure boundaries must not pose a barrier to
analysis. One way to eliminate procedure boundaries is to perform inline substitution - replacing each procedure
call by a copy of the called procedure - and perform program analysis in the usual way. This is not a practical
solution for large programs, which may expand to an unmanageable size. Other techniques for interprocedural
parallelization analysis have been much studied [8, 12, 20, 9, 10, 151, but the results have been inconclusive and
sophisticated interprocedural ana,lysis has not been adopted in practice.

The primary obstacle to progress in this area has been that effective interprocedural compilers are substantially
harder to build than their intraprocedural counterparts. The compiler must be able to handle program features
not encountered in an intraprocedural setting, such as parameter passing and variable scoping. In addition,
when extending traditional data-flow analysis to the interprocedural setting, we must ensure that the analysis
maintains reasonable efficiency without sacrificing too much precision. For example, a simple interprocedural
adaptation of iterative analysis might converge very slowly and introduce imprecision by propagating information

This research was supported in part by DARPA contracts N00039-91-C-0138 and DABT63-91-K-0003, an NSF Young Investigator
Award, an NSF CISE postdoctoral fellowship, a fellowship from Intel Corporation, and a fellowship from AT&T Bell Laboratories.

Technical Report CSL-TR-95-665, Computer Systems Laboratory, Stanford University, March 1995

along unrealizable paths - paths in the program representation that do not correspond to executable paths. Finally,
interprocedural analysis must be very robust, avoiding gross approximation even when it encounters program
constructs that are difficult to analyze; such constructs appear frequently when parallelizing computations that
span thousands of lines of code.

This paper presents an interprocedural parallelizing compiler that performs a comprehensive suite of paralleliza-
tion analyses. Our research goal in developing this system has been to provide parallelization results comparable
to what would be possible with full inlining of the program, while managing the complexity of the analysis. In this
way, we avoid penalizing the programmer for writing programs in a modular style, in which important computations
in the program might span multiple procedures. This paper makes the following contributions:

Extensive empirical evaluation. This paper is the first to provide extensive measurements of a state-of-the-art
automatic parallelization system. These are the first results measuring the effectiveness of aggressive inter-
procedural parallelization analysis on a large collection of real programs. They show that a purely automatic
parallelization analysis can be successful at finding the parallelism necessary to obtain good speedups for
some programs. This evaluation provides a critical missing piece of information needed to advance the state
of the art in parallelization technology.

Interprocedural reductions. This system is the first to incorporate interprocedural reduction recognition. Our
algorithm is simple yet powerful enough to recognize reductions to array regions, even in the presence of
arbitrarily complex data dependences. Our experiments suggest that interprocedural reduction is very im-
portant.

Precise analysis framework. We use a pair of techniques to obtain precise results while managing the complexity
of the analysis. First, to obtain path-specific interprocedural information at a procedure, we rely on selective
procedure cloning, whereby the compiler replicates information for a procedure so that it may be analyzed
in light of each distinct calling context. We manage the amount of replication by performing it selectively,
based on the unique information contributed by a path.
Second, we use interprocedural interval analysis to perform data-flow analysis over the entire program with
only two passes over the code. This interval-based approach is not only more efficient than interprocedural
iterative data-flow analysis, but it also avoids propagating information along unrealizable paths.

Mathematical formulation of array reshapes at procedure calls. A system for interprocedural array anal-
ysis must address the common occurrence in Fortran programs of array reshaping across procedure boundaries.
We formulate the array reshape problem as a rewrite of a system of linear inequalities in terms of different
variables. This approach is more powerful than pattern matching or special-case solutions.

A comprehensive and robust experimental platform. We have an implementation of a large suite of inter-
procedural analyses that is sufficiently robust to perform this empirical evaluation. The system incorporates
a comprehensive and integrated suite of analyses, including array and scalar dependence, privatization and
reduction recognition and symbolic analysis of integer varia.bles. In developing a robust platform, we found it
necessary to extend existing approaches to meet the demands of compiling real programs. For example, our
array privatization algorithm extends the scope of previous implementations by including arrays that need
to be initialized before execution. The determination of the specific analysis requirements for this collection
of programs provides valuable information to designers of parallelization systems.

The paper is organized as follows. We start by describing briefly other related work in the area. We then
introduce the basic interprocedural framework used in the implementations of all our analyses. Due to space
constraints, we are able to only include an overview of the analysis on scalar variables (Section 4) and analysis
on array variables (Section 5). We then present a series of experimental results on both static and dynamic
measurements of contributions of the various analyses, including speedups.

2 Related Work

In the late 198Os, a series of papers presented results on interprocedural parallelization analysis [8, 12, 201. Their
common approach was to determine the sections of arrays that are modified or referenced by each procedure call,
enabling parallelization of some loops containing calls whenever each invocation modifies array elements distinct
from those that are referenced or modified in other invoca,tions. These techniques were shown to be effective in

2

parallelizing linear algebra libraries. More recently, the FIDA system was developed at IBM to obtain more precise
array sections through partial inlining of array accesses [9] (see Section 6).

Irigoin et al. have developed the PIPS system, an interprocedural analysis system that is part of an environment
for parallel programming [lo]. M ore recently, PIPS has been extended to incorporate interprocedural array privati-
zation. PIPS is the most similar to our work, but lacks three important features: (1) path-specific interprocedural
information such as obtained through selective procedure cloning, (2) interprocedural reductions, and (3) extensive
interprocedural scalar data-flow analysis such as scalar privatization. Further, to the best of our knowledge, the
PIPS project has never published experimental results on the effectiveness of their system.

The Polaris system at University of Illinois is also currently being developed to advance the state of the art
in parallelization technology [2]. T h e most fundamental difference between our system and Polaris is that Polaris
performs no interprocedural analysis, instead relying on full inlining of the programs to obtain interprocedural
information. The Polaris group has demonstrated that good coverage results (% of the program parallelized) can
be obtained automatically (with some hand-modification). Although they report that full inlining is feasible on
eight medium-sized programs, this approach will have difficulty parallelizing large loops containing thousands of
lines of code. The Polaris group has not published execution-time results on the programs parallelized by their
system.

A few commercial parallelizing compilers have initial interprocedural analysis systems. Most notably, the
Convex Applications Compiler performs flow-insensitive array analysis and interprocedural constant propagation
and obtains some path-specific information through inlining and procedure cloning [151. However, we know of
no commercial system that currently employs any flow-sensitive array analysis, particularly interprocedural array
privatization ‘.

3 Interprocedural Framework
Interprocedural parallelization depends upon the solution of a large number of interprocedural data-flow analysis
problems. These problems share many commonalities. We have utilized FIAT [6], a tool which encapsulates these
common features, in combination with the Stanford SUIF compiler to constitute our interprocedural parallelization
system. FIAT is an interprocedural framework, analogous to traditional data-flow analysis frameworks [ll]. A
framework is even more important for interprocedural optimization because of the complexity of collecting and
managing information about all the procedures in a program.

Although the FIAT system has been described previously [6], we have extended the system to obtain precise
flow-sensitive interprocedural results through the combination of two techniques which we now describe. We have
also added to the system a mathematical formulation of array reshapes (see Section 5.5) in order to support
interprocedural array analysis.

Interprocedural Interval Analysis. Interprocedural analysis is classified as either flow sensitive or flow insen-
sitive. A flow-sensitive analysis derives effects common to all control flow paths, whereas flow-insensitive analysis
represents a conservative approximation of all paths. Whereas a flow-insensitive analysis can ignore control flow-
within each procedure, flow-sensitive analysis requires that a representation of each procedure’s control flow be
available during interprocedural analysis. Flow-insensitive analysis is well-understood, can be done efficiently, and
is beginning to appear in commercial compilers.

Flow-sensitive analysis is more complex because values flow bot,h within a procedure and between a procedure
and its callers. Consider a straightforward interprocedural adaptation of iterative data-flow analysis: analysis is
carried out over a program representation called the supe~gruph [16], where individual control flow graphs for the
procedures in the program are linked together at procedure call and return points. Iterative analysis over this
structure may be slow because information must be propagated through call chains to determine the local effects
of a procedure call on its caller. In addition, such analysis may lose precision by propagating information along
unrealidle paths [17]; th e analysis may propagate information from one caller through a procedure and return the
information to a different caller.

In our system, we use an interval-based approach which solves the problems of unrealizable paths and slow
convergence. By separating a procedure’s calling environment from its behavior, we can perform analysis efficiently
in two passes through the program. A bottom-up analysis over the call graph (i.e., procedures are analyzed before

‘The reader may have seen speedup results from Applied Parallel Research on a few of the programs presented here. Note that
these programs were parallelized with programmer directives that instruct the compiler to ignore dependences it finds on a particular
loop.

3

their callers) produces descriptions of the behavior of program regions (regions are basic blocks, loop bodies and
loops), in the form of a transfer function. In a top-down analysis over the call graph, data-flow information from
the calling environment is applied to these transfer functions to derive the final analysis results for a procedure’.
Within each procedure, we aggregate information at regions, the basic blocks, loop bodies and loops; the bottom-
up phase proceeds from innermost loops to outermost loops, while the top-down phase operates in the opposite
way. This corresponds to what is traditionally called interval-based analysis. For reducible flow graphs, a region’s
behavior is a simple combination of its nested subregion behaviors; irreducible subgraphs are handled by iterative
solution of a dataflow problem in the enclosing single-entry region. An application of this interval-based analysis
is described in detail in Section 4. (To simplify presentation, we will only describe the analysis for reducible flow
graphs in the remainder of the paper; the actual implementation also handles irreducible graphs.)

Selective Procedure Cloning. For procedures invoked on multiple distinct paths through a program, tra-
ditional interprocedural program analysis forms a conservative approximation of the information entering the
procedure that is correct for all paths. Such approximations can affect the precision of analysis if a procedure is
invoked along paths that contribute very different information.

To illustrate the effects of path-specific information on optimization, consider the following example taken from
the SPEC89 benchmark matrix300.

SUBROUTINE SAXPY(...,X,IX,Y,IY)
REAL X(1X,1), Y(IY,l)
DO I = 1, N

Y(1,I) = Y(l,I) + A*X(i,I)

The arrays X and Y have symbolic dimension sizes, inhibiting any optimizations that rely on precise knowledge of
array accesses. In calls to SAXPY, the value passed to IX is either 1 or 100, depending on whether we are accessing X
or its transpose. IY is similarly either 1 or 102. Because their values vary across invocations, traditional techniques
assume no knowledge of the values of these dimension variables, resulting in lost precision.

Path-specific interprocedural information has previously been obta.ined either by inline substitution or by tagging
data-flow sets with a path history through the call graph, incurring a data-flow set expansion problem corresponding
to the code explosion problem of inlining [19, 16, 18, 71. To avoid such excessive space usage, we utilize path-specific
information only when it may provide opportunities for improved optimization. Our system incorporates selective
procedure cloning, a program restructuring in which the compiler replicates the analysis results for a procedure to
analyze it in the context of distinct calling environments [4]. By applying cloning selectively according to the unique
data-flow information it exposes, we can obtain the same precision as full inlining without unnecessary replication.
The cloning phase corresponds to the partitioning of the calling contexts according to the information they contain
before applying the context to the transfer function for a procedure. Cloning is reduced through the use of smart
filters that eliminate from the data-flow sets information not relevant to the current optimization, further avoiding
unnecessary replication. In final code generation, multiple versions of the “cloned” procedure are only produced if
they have different parallelization. Otherwise we merge the cloned information before generating code.

Combining Flow-Sensitive Interval Analysis and Selective Procedure Cloning. The combination of
the above two techniques allows us to produce analysis results with the same level of precision as if the program
were fully inlined, without resulting in unmanageable code expansion. The precision of this approach depends
on the ability to derive transfer functions T that do not approximate information. For the analyses in our syve
accomplished this goal.

4 Scalar Data-Flow Analysis
Scalar data-flow analysis is crucial for parallelizing loops. Analyses of scalar variables in a loop
to support precise analysis of array accesses and to det#ect and elimina.te scalar dependences.

are necessary both

2This approach
the cycle. [13]

can work on recursive programs as well, by collapsing cycles in the call graph into a single node and iterating within

4.1 Support for Array Analysis: Interprocedural Symbolic Analysis
Analyzing array accesses precisely requires analysis of integer variable values-including constant propagation,
induction and loopinvariant variable detection, copy propagation, and common subexpression recognition. Our
system provides such analysis interprocedurally, through a flow-sensitive symbolic analysis.

For each variable of interest to the array analysis within a loop, the symbolic analysis determines a value for
that variable in terms of loop iteration numbers and loop invariants. Once variables used in an array index are
expressed in such terms, the locations accessed by one or more iterations of the loop are easily determined. For
example, at the array accesses in

K = J + l
DO 10 I=l,N

A(J) = A(K)
J =J+2
K =K+2

10 CONTINUE

J is found to have a value JO + 2i, for some loop-invariant JO and base-0 iteration count i, and K has a value
JO + 2i + 1. Using these symbolic values, an array analysis can determine that there is no dependence between the
two accesses.

The symbolic analysis works by computing a zralue map for ea.& program point, associating with each variable
a symbolic description of its value: either Unknown or an arbitrary expression in terms of constants, variables,
loop indices, and symbolic constants. During the analysis relative value maps are used to describe the values on
exit from a region in terms of variables on entry to the region. The final result of the analysis is an absolute value-_
map, which contains only variable-free symbolic values.

We obtain absolute value maps describing variable values at every program point in two passes, as an interval-
based data-flow problem.

Computing Transfer Fkmctions. A bottom-up traversal through the call graph determines the behavior of
each region in the program. The behavior of a basic block is described by a relative value map, whose bound
values give each variable a value on exit in terms of constants, symbolic constants, and variable values on entry.
A symbolic constant is introduced when a variable is assigned an unknown value; the value is considered unknown
but invariant within the nearest enclosing loop body or procedure.

The behavior of a loop body or procedure is found by composing and meeting basic block, sub-region, and called
procedure behavior maps; for a region contain irreducible loops, an iterative dataflow problem is solved to obtain
a conservative region behavior. As with basic blocks, a symbolic constant is introduced to denote an unknown
variable value on exit from a subregion. Procedure effects are determined without considering calling context; for
reducible programs, procedure behavior can be exactly represented, so no information is lost in the process.

- Computing Calling Contexts. In the second phase of the scalar analysis, we compute the context of each
region, as an absolute map giving each live variable’s value in terms of constants, symbolic constants, and indices
of enclosing loops. The context of the outermost region is a map binding all variables to Unknown. We proceed
top-down over the call graph, determining the context of each subregion or called procedure from the context of
the enclosing region, by applying and combining subregion behaviors.

We employ selective procedure cloning based on the values in the map. Currently, the filter function eliminates
from the map relations for variables that are no longer live, which we have found significantly reduces the amount
of replication in the analysis.

Inequality Constraints The symbolic analysis described thus far can only determine equality constraints be-
tween variables. Since array analysis also benefits from knowledge of loop bounds and other control-based contextual
constraints on variables (e.g., if predicates), which may contain inequalities, a separate top-down pass carries loop
and predicate constraints to relevant array accesses. Equality constraints determined by the symbolic analysis are
used to rephrase each predicate in terms of loop-invariant terms, if possible. The control context is represented by
a set of inequalities in the form discussed in Section 5. This pass also may selectively clone.

4.2 Scalar dependence and privatization
A number of standard analyses ensure that scalar variables do not limit the parallelism available in a loop. The
basic techniques are well known in an intraprocedural setting. We apply them interprocedurally. A simple flow-
insensitive mod-ref analysis[l] detects scalar dependences. A flow-sensitive live-variable analysis, discussed below,
allows detection of privatizable scalar variables. The flow-sensitive symbolic ana.lysis of Section 4.1 also finds
induction and loop-invariant integer variables, which can tNhen be privatized.

Live Variable Analysis. We solve the interprocedural scalar live-variable problem through a interval-based
approach like the one used for symbolic analysis. Since liveness is a backwards data-flow problem, the solution is
not so straightforward. While all program regions have a single entry, they may have multiple exits, since loops
can contain returns and breaks. A single transfer function is not sufficient to describe the behavior of a loop in a
backwards data-flow problem. Instead, we summarize the behavior of a loop body by three transfer functions-
from loop body exit, from loop exit, and from enclosing procedure exit. A loop is described by just two transfer
functions-from loop exit and from procedure exit. A single transfer function still suffices to describe a procedure.
In other respects the analysis is straightforward.

5 Array Data-Flow Analysis
Our system performs array dependence, privatization, and reduction recognition analyses in a single bottom-up
pass over the call graph, using context information provided by the scalar analyses of Section 4. For simplicity,
we describe each analysis separately, after first giving a brief overview of the common representation-based upon
systems of linear inequalities-used for array regions.

5.1 Representation of Array Regions
The read or written portion of an array is represented as a set of convex polyhedra, whose enclosed integral points
denote index tuples of accessed elements. Each polyhedron is represented by a system of linear inequalities. The
array analyses are based upon these sets of systems of linear inequalities. This framework is more powerful than
previous work based on regular sections [3, 121 and less expensive than using convex hulls [20].

We have developed a library that implements basic operations on these representations: union, intersection,
difference, emptiness and containment tests, and projection to a lower-dimensional space. The representation of
data accesses as a set of polyhedra allows us to trade off precision for efficiency where necessary. For example, our
union operator combines two polyhedra into one only if it is computationally inexpensive. The projection operation
uses a Fourier-Motzkin elimination algorithm [5] that has been enhanced to work for the integer domain. Our system
introduces auxiliary variables and constraints on these variables where necessary to ensure no information is lost
due to projection.

- 5.2 Data Dependence Analysis
Our analysis formulates a test for arra.y data dependence as an integer programming problem: if the locations
possibly written on one iteration intersect the locations accessed on another iteration there is a dependence. For
accesses with affine subscripts the data dependence problems encountered in practice can be solved efficiently and
exactly [14]. We summarize the regions of data accessed in a loop to eliminate the need to perform n2 dependence
tests for a loop containing n array accesses.

Our data dependence analyzer is fairly conventional. In a bottom-up manner, the analyzer summarizes the data
that have been read and data that have been written within each loop and procedure. We create for each array
access a data descriptor, which can accurately represent all affine array index expressions. A non-affine index in
a dimension is replaced by a conservative approximation: the entire dimension may be accessed. In addition, we
add to the descriptor all the relationships in the scalar context that involve any of the variables used in the array
index calculation.

We compute the union of the array descriptors to represent the Read and Write array regions accessed in
a sequence of statements, with or without conditional flow. At loop boundaries, we derive a loop summary by
projecting away the loop index variables in the array descriptors. At procedure boundaries, we perform parameter
mapping using the method discussed in Section 5.5. At ea.& loop level, we apply a data dependence test to the

’Read and Write data summaries.

5.3 Array Privatization Analysis
To find array dependences which yield to privatization of the arrays, we determine for each program region the array
regions that are definitely written (MustWrite), tl1a.t may be written (MayWrite), and that are upwards-exposed
read accesses (ExposedRead). A written array region considered a MayWrite if any of its array indices is not an
affine expression; otherwise it is a MustWrite. The meet (a.t a control-flow merge point) of two MustWrite regions
yields a MustWrite of their intersection and a MayWrite of their disjunction; the meet of any other two Write
regions yields a MayWrite region. We calculate the ExposedRead of a statement within a loop by subtracting from
the Read region of the statement the MustWrite region for preceding statements within the loop.

Our formulation of array privatization is an extension of Tu and Padua’s algorithm[21]. Tu and Padua recognize
an array as privatizable only if there are no upwards-exposed reads within the loop. Our algorithm is more general
in that upwards-exposed reads are acceptable as long as they do not overlap writes in other iterations of the same
loop.

Consider the following excerpt from the spec77 program:

DO 1000 LAT = 1, 38
. . .
DO 9 K=l, 12

ZE(2,K) = RELVOR(K)
CALL UVGLOB(...,ZE(l,K),...)
ZE(2,K) = ABSVOR(K)

9 CONTINUE
. . .

1000 CONTINUE

Each call to UVCLOB reads a column of the array ZE. The LAT loop writes the second row of the matrix, and
none of the elements in the second row are read before they are written in the same iteration. Although there is
an upwards-exposed read to all but the second row in the arra,y, we can privatize the outer loop by giving each
processor a private copy of ZE and initializing the upwards-exposed region with the contents of the original array.

If an array is live on exit of the loop, it must contain the same values as those obtained had the loop been
executed sequentially; we limit privatization to those cases where every iteration in the loop writes to exactly the
same region of data. To do so the analysis checks that all the writes are in MustWrite, and the region written is
not parameterized by the index of the loop to be parallelized. The processor executing the last iteration of the
loop uses the original array as its private copy, and is not allowed to alter the array until all other processors have
completed their initialization.

5.4 Reductions
A reduction occurs when a location is updated on each loop itera.tion with the result of a commutative, associative
operation applied to its previous contents and some data va.lue. The loop can be parallelized if each processor

- updates a private location instead, and the original locat,ion is finalized by combining it with the private ones. We
currently recognize reductions on scalar va.riables and array locations involving the operations +, *, MIN, and MAX.

The design of our reduction analyzer is a response to the common cases we have encountered experimenting
with the compiler. By combining basic reduction recognition and array summary techniques, our array reduction
analyzer is simple yet powerful. We illustrate our technique with the following sparse matrix-vector code found in
the cgm program among the NAS benchmarks:

DO 200 J = 1, N
XJ = X(J)
DO 100 K = COLSTR(J) , COLSTR(J+l)-1

Y(ROWIDX(K)) = Y(ROWIDX(K)) + A(K) * XJ
100 CONTINUE
200 CONTINUE

Starting with the statement in the innermost loop, the analysis recognizes that the add operation is an ac-
cumulation to the data element y (rowidx(k)) . Since the compiler cannot tell the value of the index, it has to
conservatively assume that any location in the array could be updated. When considering each loop, it finds that
the array y is written only by accumulation operations within each loop, and is thus a potential reduction target;

7

for each loop the potentially updated region is the entire array. The compiler parallelizes the outermost loop by
having each processor accumulate to its private copy of the y vector and summing up all the vectors at the end of
the computation. This simple technique allows the compiler to find parallelism even among sparse computations.

The ability to recognize reductions to array variables is particularly instrumental to parallelizing large loops.
Consider the following example from the PERFECT benchmark spec77:

. . . SUBROUTINE FL22(...,FLN,...)
DO LAT = 1, 38 DO LL = 1, 31

. . . DO I = 1, 31, 2
DO K = 1, 12 FLN(I,LL) = FLN(I,LL) + . . .

CALL FL22(...,Y(l,K),...) DO I = 2, 30, 2
. . . FLN(I,LL) = FLN(I,LL) + . . .

Even though the compiler can parallelize both loops in FL22 via standard data dependence analysis, our analysis
also notes that all the accesses to FLN within FL22 are accumulation operations. Mapping FLN to Y at the procedure
boundary, the compiler retains the reduction information across the procedure call. When the analysis considers
the LAT loop, it determines that the loop carries a dependence on Y. It examines whether all accesses corresponding
to dependences on the loop are marked as potential reductions. They are, so the loop can be parallelized, by
generating specialized reduction code.

5 .5 Array Reshaping

Array reshapes occur commonly in Fortran programs, as when a slice of an array is passed into a procedure, or when
a multi-dimensional array in one procedure is trea.ted as a linear array in another. Linearization is particularly
common as it provides long vectors for vector machi lies.

We formulate the array reshape problem formally as rewriting a system n of linear inequ alities in terms of different
variables. We illustrate our algorithm with the following example:

SUBROUTINE FOO SUBROUTINE BAR(B)
INTEGER A(10000, 10) INTEGER B(100, 100)

. . . . DO 9 I= 1,100
CALL BAR(A(1, K)) DO 9 J= 1,50

B(I,J) = . . .
9 CONTINUE

In this example, FOO passes BAR the Kth column of the array A. This lOOOO-element, vector, on the other hand,
is manipulated as a 100 x 100 array in BAR. For a location B [bl, bz] in BAR to coincide with a location A [al, a21 in
FOO, the indices must be related by:

100 * (b2 - 1) + (bl - 1) = 10000 * (a2 - Ii’) + (a1 - 1) (1)
- Array bounds for arrays A and B define additional constraints:

1 5 al 5 10000 1 5 bl 5 100
1 5 a2 5 10 1 5 b2 5 100 (2)
1 5 I< < 10

To map the summary of array B across the procedure call, we add the constraints from (1) and (2) to a system
representing the region written by BAR and apply our integer projection algorithm to eliminate bl and 62:

1 5 bl 5 100 < a1 5 5000
b2 50

1 1-1 4~1, ~21 a2 = Ii< 5
1 5 Ii’ < 10

This technique is simple and general. For example, it easily handles cases where complex numbers in one procedure
are treated as real numbers in another by modeling a complex number as an array with two elements. If array
dimensions are unknown, there is no linear relationship between the indices of the actual and formal parameters.
If the unknown dimensions are identical, we can handle this case exactly, but otherwise we must approximate.

8

adm arc2d b d n a d y f e s m flo52q m d g mg3d o c e a n q c d 2
Loops w/ calls 35 1 9 21 9 7 12 12 40
Parallel (FIDA) * 0 00 7 0 0 0 0
Parallel (us) 2 0 0 6 8 2 0 0 2

spec77 track trfd . doduc matrix300 dnasa7 TOTAL
Loops w/ calls 35 18 6 19 11 8 234
Parallel (FIDA) * 1 0 2 0 0 10
Parallel (us) 17 1 0 8 8 0 54

Figure 1: Comparison of our system with FIDA.

6 Empirical Evaluation
We present a series of empirical results to quantify the effectiveness of our parallelization system. We are the first
to present any dynamic results on the effectiveness of interprocedural analysis, reduction or array privatization.
Every program presented in this section was parallelized by our system completely automatically. We start with
the original Fortran version of the program. The compiler generates an SPhID (Single Program Multiple Data)
parallel C version of the program that is compiled by native C compilers and linked to our own ANL-macro-based
thread package; the thread package supports parallel execution on the Stanford DASH and Kendall Square Research
distributed-shared-memory architectures and the Silicon Graphics Challenge series of bus-based shared-memory
architectures.

To evaluate our parallelization analysis, we measured its success at parallelizing three standard benchmark
suites, SPEC, PERFECT and the sample NAS benchmarks. NAS is a highly parallel suite used for benchmarking

parallel computers. PERFECT is a set of originally sequent#ia,l codes used to benchmark parallelizing compilers. SPEC
is used to benchmark uni-processor architectures and compilers. In the following, we present complete results for
23 of these programs. These programs each consist of 500 to 5,500 lines of source code- 41,000 lines of code in
all. Of the remaining 10 programs in the suites, 8 of them have less than 40% of their execution parallelized, so
we omitted them from the presentation to concentrate on those that are improved by parallelization.

The results reported below were generated without using any special flags to the compiler, and we did not rely
on user directives to assist in the parallelization. We have ma.de no modifications to the original programs except
to correct a few type declarations in spec77 tl1a.t violated Fortran 77 semantics.

6.1 Comparison with Previous Interprocedural Systemss
We first compare against the FIDA system (Full Interprocedural Data-Flow Analysis), an interprocedural system
that performs precise flow-insensitive array analysis [9] (see Section 2). Earlier work on interprocedural array
analysis had demonstrated that such systems were effective at locating parallel loops in the LINPACK library
functions, which are cleanly written and have very regular array access patterns, but had not evaluated their
effectiveness on real applications [20, 12, 81. The FIDA system was the first to measure how changes in precision
of the analysis affect the number of parallel loops tha.t the system can recognize. They reported results for the
LINPACK libraries, observing results comparable to those from the earlier studies. More importantly, they expanded
the scope of their experiment to consider full applications from the PERFECT and SPECS9 benchmark suites.

The table in Figure 1 examines programs from the PERFECT and SPEC89 benchmark suites, comparing the
number of loops found parallel by FIDA and by our system. The first row provides a count of the number of loops
in each program that contain calls; other loops in the program a.re ignored. The second row shows the number of
these loops that FIDA discovered were parallel. The third row gives the number of these loops that our system
found to be parallel.

The FIDA system found only 10 loops containing calls to be parallel, appearing in 3 of the 13 programs for
which they reported results. Moreover, the called procedures contained no accesses to arrays in their caller’s scope,
so to detect that these loops are parallel requires only scalar hIod/Ref information. No additional parallel loops
were uncovered as a result of the interprocedural arra.y dependence analysis.

9

On the same set of programs, our system located 54 parallel loops, appearing in 9 of the 15 programs for which
we reported results. (The asterisk in the FIDA entries for adm and spec77 indicate that they did not report results
on these programs.) The marked difference between our results and theirs can be attributed to the additional
techniques employed in our system.

6.2 Robustness of Analysis

The compiler has been able to find parallel loops spanning a large number of lines of code. The largest loop it has
parallelized is from spec77; it consists of 1002 lines of code from the original loop and its invoked procedures. This
loop stresses all of our analyses, including interprocedural reduction, privatization, and complex array reshapes;
many of these provided us with examples used earlier in the paper. Within this loop, there are 48 interprocedural
privatizable arrays, 5 interprocedural reduction arrays and 27 other arrays accessed independently.

For the purposes of comparison, we attempted full inlining of this program with KAP, a commercial source-to-
source parallelizing compiler. KAP failed to inline the entire loop because of the difficult reshapes. The partially
inlined loop contained 9839 lines (almost a factor of 10 increase in size) and still had 29 calls to 8 different functions.
Such a loop illustrates the problems with inlining for parallelizing large programs; the expansion would have been
even more significant if full inlining of the loop had occurred!

6.3 Contribution of analysis components
This section presents measurements on the impact of individual analysis techniques on parallelization, both in
the intraprocedural and interprocedural setting. We have observed that interprocedural scalar privatization is
a key factor in parallelizing programs such as SPEC benchmarks ora and doduc. Cloning based on symbolic
analysis provided constaiit bounds on dimension sizes in spec77 that enabled array reshaping to obtain precise
results. In the remainder of this section, we focus on the contJributions of array analysis. In all our comparisons,
Traditional includes a large collection of parallelization analyses, including intruprocedurd dependence analysis,
scalar privatization, scalar reduction, constant propagation, and induction variable recognition, corresponding to
the techniques in most currently available automatic parallelization systems. SUIF results extend these analyses
to include interprocedural dependence a.nalysis and both int,ra- and interprocedural array privatization and array
reduction recognition.

6.3.1 Static measurements

We measured the number of loops in the 23 programs, and identified whether the loop was parallelized and what
analysis techniques were required. Interprocedural scalar dat(a-flow analysis was applied in all cases.

There were 3294 loops in all the programs, of which 2362 were found to be parallelizable. Of the 2362 paral-
lelizable loops, 2080 were simple DOALL loops. Of the remaining, 151 required array privatization, 50 required
reduction recognition, 59 were interprocedural DOALL loops, 5 required interprocedural privatization, 7 required
interprocedural reduction and 10 required both interprocedural privatization and reduction.

6.3.2 Dynamic measurements

We use two metrics to quantify the dynamic contributions of t#he array analyses. First, coverage refers to the
percentage of sequential execution time spent in parallelized regions of the program. The coverage percentage must
be high for parallelization to yield much benefit. Second, DOALL invocations refers to the number of times a
parallel region is entered, signifying the costs of synchronization. Synchronization costs are a second order effect;
they add overhead which diminishes the improvements possible from parallelization. For each program, we collected
timings and counted barrier invocations during program execution. Because these measurements were obtained at
run time, they are subject to minor variations.

Figure 2 shows coverage measurements for the array analysis. Note that, in the following, the programs are
grouped according to application suite and are presented in order of impact due to the enhanced array analyses
in our system. From the graph, we observe improved coverage for 13 of the programs presented here when all the
analyses were applied. Six of the programs, ora, mdljdp2, mdljsp2, cgm, embar and bdna, have very low coverage in
the traditional case which is increased dramatically by the enhanced array analyses in the SUIF system. In fact,
the coverage for ora and embar is essentially O%, so the “traditional” bar for these programs does not appear on
the graph.

10

Traditional
SUIF

Figure 2: Coverage with and without illt~~p~o~edlll.a.1 array analysis, a.rra.y privatization and array reduction.

Figure 3 shows synchronization invocations for the traditional vs. the full SUIF system. The synchronization
invocations are normalized with respect to the results for intraprocedural array analysis with no privatization or
reduction. We observe that synchronization is dramatically reduced for appbt, appsp, embar, and spec77. For
almost all of the programs, synchronization is less than 1, signifying an overall decrease in synchronization costs.
We might expect synchronization to go up for the 13 programs with higher coverage, but in fact, synchronization
increases for only five of the programs, and it remains manageable.

Table 1 identifies what analysis component was required for each result. When examined in conjunction with
the coverage and synchronization figures, we can discover which components are important for each program. In the
table, a check (4 in a column indicates that a particular analysis was required to parallelize the program. Priv refers

- to intra-procedural array privatization, Red refers to intra-procedural reduction, Inter describes an interprocedural
DOALL loop, Inter-+-B-iv requires interprocedural privatization, Itzter+Red requires an interprocedural reduction
and Inter-+Priv+Red requires both interprocedural privatization and interprocedural reduction.

In Figure 4 we show speedups on the 8 programs most improved as a result of the interprocedural array analysis,
array privatization and reduction recognition. These were all programs that exhibited no speedup whatsoever
witliout these techniques, and continue to get speedups up to 8 processors after being run through our compiler.
We compare these speedups with the Traditional version of the program, to demonstrate the improvements over
what one would obtain using a currently available commercial parallelizer. Timings were gathered on 1, 2, 4 and 8
processors of an SGI Challenge, a bus-based multiprocessor, and compared against the sequential execution time
of the program (without any of the parallelization overhead). The following is a brief description of these eight
programs and what was required to parallelize them:

bdna (PERFECT, 3979 lines) Bdna is a molecular dynamics code. The program spends more than 50% of its time in a
doubly-nested parallel loop, consisting of 75 lines of code. The loop computes reductions on 3 2000-element vectors
and a scalar. There are 8 other parallel loops requiring reduction.

mdljdp2, mdljsp2 (SPEC, 4172, 3885 dines) These programs solve the equations of motion for a model of 500 atoms; they
are t,he same model in double and single-precision, respectively. Successful parallelization of this program relies on
irltc,J,proct~tlIlr-;\l reduction recognition’ in an outer loop where the program spends approximation 80% of its time. If

11

0 . 8

0 . 6

0 . 4

0 . 2

0 . 0

-

-

-

Figure 3: Normalized synchronization costs with and wit,hollt interprocedural array analysis, array privatization
and array reduction.

the compiler computed the reduction in the inner loop, which would not have required interprocedural analysis, the
program would have executed more than GO times more barrier synchronizations, with the overhead exceeding the
benefits of parallelization.

appsp (NAs, 3991 lanes) Appsp computes 5 scalar-pent,adiagonal PDEs. The bulk of the computation is spent in a single
loop consisting of over a hundred lines of code, parallelized via array privatization. There are several interprocedural
parallel loops in this program as well, that further reduce the synchronization overhead.

arvbt PAS, 4442 1ines) Appbt computes 5 coupled, block-tridiagonal partial differential equations. It has a similar
structure to appsp, with a large outer loop parallelized by array privatization and several interprocedural parallel

s loops.

cgm (NAs, 855 lines) Cgm is a sparse conjugate gradient code. The main computation is the sparse matrix-vector multiply,
which was used as an example in Section 5.4. Although sparse codes are typically considered beyond the scope of
automatic parallelization, our compiler was successful on this code because of the generality of the reduction recognition
technique.

embar (NAs, 265 lines) Embar builds a table for a random number generat,or. Here, we have used a version of this code
obtained from Applied Parallel Research.3

ora (SPEC, 373 lines) Ora is an optical tracing code. Nearly 100% of its execution time is spent in a single loop, which
contains a procedure call. In addition to interprocedural analysis, the compiler is also required to buffer I/O inside
this loop and print it following the exit. This loop also contains an exit; the compiler applies constant propagation
and control flow simplification to prove this jump is never taken.

7 Conclusions

This paper has presented extensive experimental results using a fully interprocedural automatic parallelization
system. We have demonstrated that interprocedural arra.y data-flow analysis, array privatization, and reduction

3This slightly different version separates the first call to a function, which initializes static data, from the other calls.

12

A

3

2

A T r a d i t i o n a l
A SUIF

I I I I

2 4 a 0
Number of Processors

BDNA

S-

7-

S-

5-

4 -

3 -

2-

l-

A Traditional
A SUIF

0’ I I I
0 2 4 a a

Number of Processors

A P P S P

a--

f 7-

S-

01 I I I
0 2 4 6 a

Number of Processors

EMBAR

4 a-

x
8 7-
0

S-

s-

4-

3 -

2 -

l-

A Traditional
A SUIF

,I-
Number of Processors

MDLJDP2

4
a

6

a-

i 7-
0

S-

2 4
Number of Processors

MDLJSP2

A Traditional
A SUIF

4 a-

-8
B 7-

CA
a -

s -

4-

3 -

2 -

l-

A Traditional
A SUIF

I I I 01 I I

2 4 6 a 0 2 4 6 a
Number of Processors Number of Processors

A P P B T CGM

3 a-

z

8. 7-
(13

6 - A Traditional /
A SUIF

.?*

5 - /
4 - / *

3 - p '
P

/
2-

f'

,r'

l-1

0 I I I
0 2 4 a a

Number of Processors

ORA

Figure 4: Comparison of speedups with and without interprocedural analysis, array privatization and array
reduction.

13

SPEC%
Priv I Red I Inter I Inter+Priv I InterSRed 1 Inter+Priv+Red fl

ora d
mdljdp2 d d
mdljsp2 J J
doduc J J
nasa7 J d
swm256
su2cor d J
tomcatv
h yd ro2d

NAS
em bar J
cgm J
appbt J d d
aPPsP d J d
aPPlu J J d
mgrid
fftpde

PERFECT
bdna J
spec77.‘ J1/ J J
dyfesm J J J J
arc2d
flo52 J J
m43 d J J
trfd

Table 1: Contributions of array analysis components.

recognition are key technologies that greatly improve the success of the compiler at finding parallel code segments
that translate into increased parallelization coverage, lower synchronization costs and improved speedups. Through
our work, we discovered that the effectiveness of an interprocedural parallelization system depends on the strength
of all the individual analyses, and their ability to work together in an integrated fashion. This comprehensive
approach to parallelization analysis is why our system has been so much more effective at automatic parallelization

- than previous interprocedural systems and commercially available compilers.
There are two remaining analysis techniques that we feel a.re important to incorporate into this system. First,

the array analysis deals only with affine subscript expressions. A common idiom in vectorized codes is to linearize
multi-dimensional arrays to create long vectors; the resulting subscript expressions are non-affine. A simple anal-
ysis approach can de-linearize these accesses. Second, we are extending the scalar data-flow analysis to improve
privatization results through tracking conditional definition and use of a variable. We are currently incorporating
analysis to address both of these issues, and will report on preliminary results in the final paper.

For some programs, our analysis is sufficient to find the available parallelism. For other programs, it seems
impossible or unlikely that a purely static analysis could discover parallelism-either because correct parallelization
requires dynamic information not available at compile time or because it is too difficult to analyze. In such cases, we
might benefit from some support for run-time parallelization or user interaction. The aggressive static parallelizer
we have built will provide a good starting point to investigate these techniques.

Acknowledgements. The authors wish to thank Alex Seibulescu and Patrick Sathyanathan for their contribu-
tions to the design and implementation of this system, and the rest of the SUIF group, particularly Chris Wilson
and Jennifer Anderson, for providing support and infrastructure upon which this system is built.

14

References
[l] Banning, J.P. An efficient way to find the side effects of procedure calls and the aliases of variables. In Proceedings of

the Sixth Annual Symposium on Principles of Progranaming Languages, pages 29-41. ACM, January 1979.

[2] B. Blume, R. Eigenmann, K. Faigin, J. Grout, Jay Hoeflinger, D. Padua, P. Petersen, B. Pottenger, L. Rauchwerger,
P. Tu, and S. Weatherford. Polaris: The next generation in parallelizing compilers. In Proceedings of the Seventh
Annual Workshop on Languages and Compilers for Parallel Computing, August 1994.

[3] D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel programming environment. Journal
of Parallel and Distributed Computing, 5:517-550, 1988.

[4] K. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure cloning. Computer Languages, 19(2), April
1993.

[5] G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. Journal of Combinatorial Theory (A), 14:288-297,
1973.

[6] M. W. Hall, J. Mellor-Crummey, A. Carle, and R. Rodriguez. FIAT: A framework for interprocedural analysis and
transformation. In Proceedings of the Sixth Workshop on Languages and Compilers for Parallel Computing, Portland,
OR, August 1993.

[7] W.L. Harrison. The interprocedural analysis and automatic parallelization of Scheme programs. Lisp and Symbolic
Computation, 2(3/4):179-396, October 1989.

[8] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis. IEEE Transactions
on Parallel and Distributed Systems, 2(3):350-360, July 1991.

[9] M. Hind, M. Burke, P. Carini, and S. Midkiff. An empirical study of precise interprocedural array analysis. Scientific
Programming, 3(3):255-271, 1994.

[lo] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An overview of the PIPS project. In
Proceedings of the 1991 ACM International Conference: 011 Supercomputing, Cologne, Germany, June 1991.

[ll] J. Kam and J. Ullman. Global data flow analysis and iterative algorithms. Journal of the ACM, 23(1):159-171, January
1976.

[12] Z. Li and P. Yew. Efficient interprocedural analysis for program restructuring for parallel programs. In Proceedings
of the ACM SIGPLAN Symposium on Parallel Progranaming: Experience with Applications, Languages, and Systems
(PPEA LS), New Haven, CT, July 1988.

[13] Marlowe, T.J. and Ryder, B.G. An efficient hybrid algorit,hm for incremental data flow analysis. In Conference Record
of the Seventeenth Annual Symposium on Principles of Programming Languages, pages 184-196. ACM, January 1990.

[14] D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data dependence analysis. In Proceedings of the
SIGPLAN ‘91 Conference on Programnaing Language Desigra and Implementation, Toronto, Canada, June 1991.

[15] R. Metzger and P. Smith. The CONVEX application compiler. Fortran Journul, 3(1):8-10, 1991.

[16] E. Myers. A precise inter-procedural dat,a flow algorithm. In Conference Record of the Eighth Annual Symposium on
Principles of Programming Langzdages. ACM, January 1981.

- [17] Ryder, B. Constructing the call graph of a program. IEEE Transactions on Software Engineering, SE-5(3):216-225,
1979.

[18] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S. Muchnick and N.D. Jones, editors,
Program Flow Analysis: Theory and Applications. Prentice Hall Inc, 1981.

[19] 0. Shivers. Control-Flow Analysis of higher-order laraguages. PhD thesis, Carnegie Mellon University, School of Com-
‘puter Science, Pittsburgh, PA, May 1991.

[20] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. In Proceedings of the SIGPLAN ‘86
Symposium on Compiler Construction, SIGPLAN Notices 21(7), pages 176-185. ACM, July 1986.

[21] P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sixth Workshop on Languages and Compilers
for Parallel Computing, Portland, OR, August 1993.

15

