
ON DIVISION AND

RECIPROCAL CACHES

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-95-666

April 1995

This work was supported by NSF under contract MIP93-13701.

ON DIVISION AND

RECIPROCAL CACHES

by

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-95-666

April 1995

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

pubs@shasta.stanford.edu

Abstract

Floating-point division is generally regarded as a high latency operation in typical

oating-point applications. Many techniques exist for increasing division performance, of-
ten at the cost of increasing either chip area, cycle time, or both. This paper presents two
methods for decreasing the latency of division. Using applications from the SPECfp92 and
NAS benchmark suites, these methods are evaluated to determine their e�ects on overall
system performance. The notion of recurring computation is presented, and it is shown how
recurring division can be exploited using an additional, dedicated division cache. Addition-
ally, for multiplication-based division algorithms, reciprocal caches can be utilized to store
recurring reciprocals. Due to the similarity between the algorithms typically used to com-
pute division and square root, the performance of square root caches is also investigated.
Results show that reciprocal caches can achieve nearly a 2X reduction in e�ective division
latency for reasonable cache sizes.

Key Words and Phrases: Floating-point, division, reciprocal, square root, caches, area
tradeo�s

Copyright c
 1995

by

Stuart F. Oberman and Michael J. Flynn

Contents

1 Introduction 1

2 Division Caches 1

2.1 Description : 1
2.2 Experiment : 2
2.3 Performance : 3
2.4 E�ciency : 6

3 Reciprocal Caches 7

3.1 Description : 7
3.2 Iterative Division : 8
3.3 Performance : 9

4 Square Root Caches 12

5 Conclusions 14

iii

List of Figures

1 Format of a division cache entry : 3
2 Hit rates for in�nite division cache : 3
3 Average hit rates for division caches : 4
4 Excess CPI due to division : 5
5 CPI and area vs division latency : 6
6 CPI vs area with and without division caches : : : : : : : : : : : : : : : : : 7
7 Hit rates for in�nite reciprocal cache : 10
8 Average hit rates for reciprocal caches : 10
9 Performance/area tradeo�s : 12
10 Hit rates for in�nite square root cache : 13
11 Hit rates for shared division/square root cache : : : : : : : : : : : : : : : : 13

iv

List of Tables

1 Performance of functional units : 11
2 Performance/area tradeo�s of reciprocal caches : : : : : : : : : : : : : : : : 11

v

1 Introduction

Modern computer applications have increased in their computation complexity in recent
years. The industry-wide usage of performance benchmarks, such as SPECmarks, forces
processor designers to pay particular attention to
oating-point computation. Furthermore,
special purpose applications, such as high performance graphics rendering systems, have
placed further demands on the computation abilities of processors. The development of high
speed
oating-point (FP) hardware is a requirement to meet these increasing computation
demands.

Floating point units often comprise hardware implementations of addition, multiplica-
tion, division, and square root. Emphasis is typically placed on designing high performance
adders and multipliers. As a result, division and square root often receive less design at-
tention. While division is typically an infrequent operation even in
oating-point intensive
applications, ignoring its implementation can result in system performance degradation [8].
Many methods for implementing high performance division have appeared in the litera-
ture. Because of the low frequency of division operations, any proposed divide performance
enhancement should be analyzed in terms of its possible silicon area and cycle time e�ects.

This paper investigates two techniques for decreasing the latency of
oating-point di-
vision. Both techniques are based on recurring or redundant computations that can be
found in applications. When the same divide calculation is performed on multiple occa-
sions, it is possible to store and later reuse a previous result without having to repeat the
lengthy computation. For multiplication-based divide implementations, the reciprocal can
be reused rather than the quotient, increasing the likelihood of the computation being re-
dundant. Additionally, due to the similarity between division and square root computation,
the quantity of redundant square root computation is investigated.

Due to the probabilistic nature of caches, the true latency of each divide instruction is
not constant. Variable latency instructions are, in general, undesirable when implementing a
statically scheduled pipelined processor. However, modern CPUs are more frequently using
the technique of dynamic scheduling to increase overall performance. Dynamic scheduling
reduces the cost of data dependencies, and it also allows code that was compiled for one
pipeline to continue to run e�ciently on a di�erent pipeline [2]. Thus, a divide instruction,
when using one of the described techniques, becomes similar to a memory load in terms
of processor scheduling. Thus, these methods are practical means of reducing the e�ective
latency of division in high performance processors.

The remainder of this paper is organized as follows. Section 2 presents and analyzes
division caches. Section 3 evaluates reciprocal caches. Section 4 analyzes square root caches.
Section 5 is the conclusion.

2 Division Caches

2.1 Description

Computer applications typically perform computations on input data, and produce �nal
output data based on the results of the computation. Often the input operands for a calcu-

1

lation are the same as those in a previous calculation due to the nature of the application.
In matrix inversion, for example, each entry must be divided by the determinant. By rec-
ognizing and taking advantage of this redundant behavior, it is possible to decrease the
e�ective latency of computations.

Richardson [10] discusses the technique of result caching as a means of decreasing the
latency of otherwise high-latency operations, such as division. This technique exploits the
redundant nature of certain computations by trading execution time for increased memory
storage. Once a quotient is calculated, it is stored in a result cache. When a divide operation
is initiated, the result cache can be simultaneously accessed to check for a previous instance
of the computation. If the previous computation result is found, the quotient is available
immediately from the cache. Otherwise, the operation continues in the divider, and the
result is written into the cache upon completion of the computation.

2.2 Experiment

In this section, we analyze double precision
oating-point divide operations and the e�ects
of using a division cache to increase system performance. To obtain the data for the study,
ATOM [12] was used to instrument several applications from the SPECfp92 [11] and NAS
[7] benchmark suites. These applications were then executed on a DEC Alpha 3000/500
workstation.

All double precision
oating-point divide operations were instrumented. An IEEE dou-
ble precision operand is a 64-bit word, comprising a 1 bit sign, an 11 bit biased exponent,
and 52 bits of mantissa, with one hidden mantissa bit [6]. For division, the exponent is
handled in parallel with the mantissa calculation. Accordingly, the quotient mantissa is
independent of the input operands' exponents, and only the input mantissas need be stored
in the cache.

The reuse of previous division computations is a consequence of temporal locality. Spa-
tial locality, a characteristic often found in memory references, is not applicable in this form
of cache. In order to maximize hit rates of these caches, only associative caches with random
replacement were considered in this study to take advantage of the temporal locality. Direct
mapped or lower associativity caches could be used. However, to avoid lower hit rates due
to con
ict misses to the same cache entry, it would be necessary to su�ciently randomize
the indexing into the cache. This was the technique chosen in [10], where a complex hash
function is incorporated to perform this randomization. Thus, a tradeo� exists between
complexity of the hash function and that of implementing higher associativity.

In this experiment, the tag is composed of the concatenation of the dividend and divisor
mantissas, and a valid bit, forming 105 bits. Because the leading one is implied for the
mantissas, only 52 bits per mantissa need be stored. The double precision quotient mantissa,
with implied leading one, is stored in the data memory, along with guard, round, and sticky
bits for a total of 55 bits. These extra bits are required to allow for correct rounding on
subsequent uses of the same quotient, with possibly di�erent rounding modes. The total
storage required for each entry is therefore 160 bits. This is less than the 192 bits used in
[10], due to the exclusion of exponents and hidden ones. The format of each cache entry is
shown in �gure 1.

2

Tag Memory Data Memory

Dividend Divisor QuotientValid

105 bits 55 bits

Figure 1: Format of a division cache entry

2.3 Performance

To place an upper bound on the amount of available redundant computation, hit rates were
measured for each of the applications assuming an in�nite, fully-associative division cache
was present. These results are shown in �gure 2.

||0

|10

|20

|30

|40

|50

|60
|70

|80

|90

|100

 H
it

 R
at

e
%

doduc

m
dljdp2

tom
catv

ora

su2cor

hydro2d

nasa7

fpppp

appbt

applu

appsp

Figure 2: Hit rates for in�nite division cache

These applications showed a wide variation in amounts of redundant divide computa-
tion, as demonstrated by the range of hit rates. However, the distribution is clearly bimodal.
The majority of the applications exhibited some amount of redundant division. However,
the applications tomcatv and su2cor from the SPEC suite exhibited very little or no re-
dundant division, even though FP division accounted for 0.45% and 0.65% of the executed
instructions respectively. Several of the applications exhibited a very large amount of re-
dundant divide computation. The applications ora, hydro2d, and nasa7 all had hit rates

3

greater than 90%. The standard deviation of the hit rates for all 11 applications was 36.5%.
When only those applications that exhibited some redundant computation are analyzed,
thus excluding tomcatv and su2cor, the standard deviation decreased to 25.8%.

Divide caches with many con�gurations were then simulated, and the resulting hit rates
are shown in �gure 3. These hit rates were formed by taking the arithmetic average of the
hit rates for each of the applications, weighted by dynamic divide instruction frequency, at
each cache size.

| | | | | | | | | | | ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Entries

 H
it

 R
at

e
%

8 16 32 64 128 256 512 1024 2048 Infinite

�

�

�

�

�

�

�

Figure 3: Average hit rates for division caches

The results of �gure 3 demonstrate a knee near a division cache of 128 entries, with an
average hit rate of about 60%. Additional entries over 128 provided only marginal increases
in the hit rates.

A better measure of the e�ectiveness of a division cache is to determine its impact on
system performance. While hit rates demonstrate the quantity of redundant computation
present in an application, they do not provide much insight into how a division cache can
increase overall performance. The excess CPI due to FP division interlocks in an application
can be measured as a function of functional unit latency, both with and without a division
cache.

The performance degradation due to divide can is a function of three variables, f , u,
and l, where f is the dynamic frequency of divide instructions, u is the urgency of divide
results, and l is the functional unit latency of divide. It is clear that f is solely a function
of the application, u is a function of the application and the compiler, and l is a function
of the hardware. For this analysis, a division cache size of 128 entries was chosen. A miss

4

to the division cache would su�er the standard divide latency. A hit to the cache, though,
would have an e�ective latency of only two cycles: one cycle to return the result from the
cache, and one cycle to perform any necessary rounding. Thus, it would be known one cycle
in advance exactly when the computation would complete. This knowledge would allow a
dynamically-scheduled processor to properly schedule the usage of the divide result.

In this way, the quantity l was formed. The value of u was determined by averaging the
interlock distances, i.e. the distances between the production and consumption of divide
results, across all of the applications. To minimize this quantity, all applications were
compiled with a high degree of optimization, at the level of O3. These performance e�ects
are presented in �gure 4. This �gure also shows the e�ect of increasing the number of
instructions issued per cycle on excess CPI due to division. As the width of instruction
issue increases, u increases for divide data proportionally. In the worst case, every divide
result consumer could cause a stall equal to the functional unit latency.

 Issue 4 - No Cache
 Issue 1 - No Cache
 Issue 4 - With Cache
 Issue 1 - With Cache

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|0.00

|0.05

|0.10

|0.15

|0.20

|0.25
|0.30

|0.35

|0.40

|0.45

|0.50

 Divide Latency (cycles)

 E
xc

es
s

C
P

I

Figure 4: Excess CPI due to division

For scalar processors with high latency division units, for example a simple radix-2 SRT
implementation with a latency near 60 cycles, the excess CPI due to division is decreased by
a factor of four. Lower latency dividers, such as a radix-16 SRT divider with a functional
unit latency of 15 cycles, have their CPI's reduced by about a factor of three. Similar
speedups are obtained for the multiple issue processor. Thus, from a purely performance
perspective, division caches seem to be an attractive method for reducing e�ective division
latency.

5

2.4 E�ciency

An important metric for FPU designers is the amount of performance gained per additional
unit of silicon area used. As mentioned previously, many techniques exist for reducing the la-
tency of division. Thus, while division caches provide signi�cant speedups, it is necessary to
evaluate them as an alternative to other, possibly less area-demanding, alternatives. These
alternatives include directly increasing the radix of SRT dividers, using multiplication-based
Goldschmidt dividers, self-timed dividers, and look-up table based series approximations [8].
Using layout-extracted areas from several published dividers [9, 14, 15], along with the reg-
ister bit equivalent (rbe) area model of Mulder [3], the relationship between functional
unit latency, system performance, and silicon area can be derived. Figure 5 presents this
relationship.

 Issue 1
 Issue 2
 Issue 4
 Issue 8

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|0.00

|0.05

|0.10

|0.15

|0.20

|0.25

|0.30

|0.35

|0.40

|0.45

|0.50

 Divide Latency (cycles)

 E
xc

es
s

C
P

I

 Area

| | | | | | |

| 1.50

| 2.00

| 2.50

| 3.00

 A
re

a
in

 m
m

2
(r

be
)

(4443)

(3703)

(2962)

(2222)

Figure 5: CPI and area vs division latency

Using the data from �gure 5, it is possible to analyze the performance/area tradeo�s
of using a division cache to supplement the performance of an existing divider. Figure 6
shows these tradeo�s. In this �gure, excess CPI due to divide interlocks is graphed as a
function of total silicon area devoted to divide computation. The bold curve is the set of
dividers obtained where any additional area is used to directly decrease the latency of the
functional unit. The other two curves show the e�ect of adding division caches to existing
dividers, using the average hit rates from the previous analysis.

From �gure 6, it is apparent that if the existing divider has a high latency, as in the
case of the radix-4 SRT curve, the addition of a division cache is not area e�cient. Only
when the base divider already has a very low latency can the use of a division cache be as

6

 Radix 4 With Cache
� � Radix 256 With Cache
� � No Cache

|
2000

|
4000

|
6000

|
8000

|
10000

|
12000

|
14000

|
16000

|
18000

|
20000

|0.00

|0.02

|0.04

|0.06

|0.08

|0.10

|0.12

|0.14

|0.16

 Area (rbe)

 E
xc

es
s

C
PI

�

�

�
�

�

�

�

�

�

Figure 6: CPI vs area with and without division caches

e�cient as simply improving the divider itself. However, many FPU designs do not have
such a large area budget to devote to the divide hardware. Thus, from this analysis, the use
of a cache to store the quotients for recurring divisions is not an e�cient use of silicon area.
Further, due to the large standard deviation in division cache hit rates, any reduction in
latency is highly variable across di�erent applications. Thus, if additional area is available
for enhancing division performance, other alternatives for increasing the performance of the
base divider should be considered.

3 Reciprocal Caches

3.1 Description

If redundancy exists in quotient computation, it is apparent that similar redundancy should
exist in reciprocal computation, if not more. The calculation of a reciprocal requires only
one operand. Hence, the likelihood of redundant computations based on a single operand
would be equal to or greater than one that must match two operands. At the high level,
redundant reciprocals might occur when many numbers are all divided by the same divisor,
as in the case of matrix inversion. One solution might be to rewrite the algorithm to take this
situation into account. The reciprocal of the divisor could be calculated directly, and each
subsequent division operation would be converted into a faster multiplication. However,
this would require the compiler or programmer to recognize this situation and rewrite the
algorithm.

7

An alternative to algorithmic modi�cation is to implement a reciprocal cache, which
would store frequently used reciprocals. This would have two distinct advantages over the
use of a division cache. First, the tag for each cache entry would be smaller, as only the
mantissa of the divisor needs to be stored. Accordingly, the total size for each reciprocal
cache entry would be approximately 108 bits. Second, intuitively, the hit rates should be
larger, as it should be easier to �nd computations which share only the same divisor, rather
than both the same divisor and dividend. The functionality of the reciprocal cache would
be similar to that of the division cache. When a divide operation is initiated, the reciprocal
cache can be simultaneously accessed to check for a previous instance of the reciprocal. If
the result is found, the reciprocal is returned and multiplied by the dividend to form the
quotient. Otherwise, the operation continues in the divider, and upon computation of the
reciprocal, the result is written into the cache.

3.2 Iterative Division

Division can be implemented in hardware using the following relationship:

Q =
a

b
= a � (

1

b
);

where Q is the quotient, a is the dividend, and b is the divisor. Certain algorithms, such
as the Newton-Raphson and Goldschmidt iterations, are used to evaluate the reciprocal [5].
These two algorithms can be shown to converge quadratically in precision. The number
and type of operations performed in the iterations for both the Goldschmidt and Newton-
Raphson iterations are the same; they di�er only in their ordering. The Goldschmidt iter-
ation has a performance advantage in that the successive multiplications are independent,
allowing for the e�cient use of a pipelined multiplier. In general, iterative division algo-
rithms are used due to their lower latency than typical subtractive methods. Additionally,
the cycle time of each iteration is tightly coupled to the cycle time of the multiplier, which
is typically tuned for low latency. Thus, iterative division allows for high radix division at
achievable cycle times.

The choice of which iteration to use has a rami�cation on the use of a reciprocal cache.
Whereas Newton-Raphson converges to a reciprocal and then multiplies by the dividend to
compute the quotient, Goldschmidt's algorithm prescales the numerator and denominator
by an approximation of the reciprocal, and converges directly to the quotient. Thus, Gold-
schmidt, in its basic form, is not suitable for reciprocal caching. However, a modi�cation
of Goldschmidt's can be made where this algorithm, too, converges to the reciprocal of the
divisor. Then, it is necessary to multiply the reciprocal by the dividend to compute the
quotient. This has the e�ect of adding one additional multiplication delay into the latency
of the algorithm. This is a tradeo� that will be analyzed shortly.

Given an initial approximation for the reciprocal, typically from a ROM look-up table,
the algorithms converge to the desired precision. Thus, higher performance can be achieved
by using a higher precision starting approximation. Das Sarma [1] has shown the relation-
ship between the accuracy of reciprocal ROM tables and the number of input bits to the
table. The reciprocal tables described are of the form k-bits-in, k + g-bits-out, where g is

8

the number of guard digits in the input. The size of such tables is shown to be

2k � (k + g)

To guarantee error less than one ulp, g is chosen such that g � 1. In order to compute 60
bits of reciprocal precision in 3 iterations, the reciprocal table must provide at least 7.5 bits
of precision. The smallest table that would provide this precision is a 7-bits input, 8-bits
output table, which would yield 7.678 bits of precision. After 3 iterations, this would yield
61.424 bits of precision. The total size of this table would be 1,024 bits. However, depending
on the rounding scheme implemented, it might be desired to calculate slightly more bits of
precision. Hence, an 8-bits input table with no guard bits in the output, i.e. with 8-bits of
output stored, will provide 8.415 bits of precision, and after 3 iterations would yield 67.32
bits precision. This table has a total size of 2,048 bits. For a 16-bits input, 16-bits output,
the total size is 1M bits. For double precision division, due to the quadratic convergence of
the iterative algorithm, an 8-bit table requires 3 iterations, while the 16-bit table requires
only 2. This results in a tradeo� between area required for the initial approximation ROM
and the latency of the algorithm. In this study, we present the additional tradeo� between
larger initial approximation ROM's and cache storage for redundant reciprocals.

3.3 Performance

To place an upper bound on the quantity of redundant reciprocals present in the applica-
tions, hit rates were �rst measured assuming an in�nite, fully-associative reciprocal cache
was present. These results are shown in �gure 7. The standard deviation for the hit rates
of all 11 applications is 27.7%. However, when tomcatv is excluded, the standard deviation
drops to only 6.2%. When compared with �gure 2, it is readily apparent that for these
applications, the reciprocal cache hit rates are consistently larger and less variable than the
division cache hit rates.

Reciprocal caches with many con�gurations were then simulated, and the resulting hit
rates are shown in �gure 8, along with the hit rates of the division caches. The results of
�gure 8 demonstrate that a knee exists near a reciprocal cache of 128 entries. In general,
the shape of the reciprocal cache hit rate tracks that of the division cache. At each cache
size, though, the reciprocal cache hit rate is larger than that of the division cache by about
15%.

To determine the e�ect of reciprocal caches on overall system performance, the e�ective
latency of division is calculated for several iterative divider con�gurations. For this analysis,
the comparison is made with respect to the modi�ed implementation of Goldschmidt's
algorithm discussed previously. It is assumed that a pipelined multiplier and adder are
present with performance as shown in table 1. These latencies correspond to a high-clock
rate, high performance CPU.

The latency for a divide operation can be calculated as follows. An initial approximation
ROM look-up is assumed to take 1 cycle. The initial prescaling of the numerator and the
denominator requires 2 cycles. Each iteration of the algorithm requires 2 cycles for the
multiply operations. Two cases arise for those schemes that use a reciprocal cache. A
hit to the cache would have an e�ective latency of only three cycles: one cycle to return

9

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 R
ec

ip
ro

ca
l H

it
 R

at
e

%

doduc

m
dljdp2

tom
catv

ora

su2cor

hydro2d

nasa7

fpppp

appbt

applu

appsp

Figure 7: Hit rates for in�nite reciprocal cache

 Reciprocal Cache
� � Divide Cache

| | | | | | | | ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Entries

 H
it

 R
at

e
%

8 16 32 64 128 256 512 1024 2048

�

�

�

�

�

�

Figure 8: Average hit rates for reciprocal caches

10

Functional Unit Latency (cycles) Throughput (cycles)

Adder 2 1

Multiplier 2 1

Table 1: Performance of functional units

the result from the cache, and two to perform the multiplication by the dividend. A miss
to the cache, though, would su�er the standard latency, plus an additional two cycles to
multiply the reciprocal by the dividend, as per the modi�ed Goldschmidt implementation.
The results of this analysis are shown in table 2.

ROM Size Cache Entries Latency (cycles) Extra Area (bits)

8-bit - 9 -

16-bit - 7 1,048,576

8-bit 8 8.76 864

8-bit 32 8.06 3,456

8-bit 64 6.68 6,912

8-bit 128 4.84 13,824

8-bit 512 4.60 55,296

8-bit 2048 4.38 221,184

Table 2: Performance/area tradeo�s of reciprocal caches

To better understand the tradeo�, �gure 9 shows the performance of the di�erent
schemes relative to a no-cache, 8-bits-in 8-bits-out ROM reciprocal table implementation.
Here, the speedups are measured against the increased area required, expressed as a factor
of the 8-bit ROM reciprocal table size.

This graph demonstrates that as long as the total storage is less than about eight times
that of an 8-bit implementation with no cache, or 2,048 bits, reciprocal caches can provide
reasonable increases in division performance, achieving a latency speedup of 1.86. When
the total area exceeds eight times the base area, the marginal increase in performance does
not justify the increase in area. This can be compared to the use of a 16-bit reciprocal
table, with a total storage of 1M bits. This yields an area factor of 512, with a speedup
of only 1.29. The use of various reciprocal table compression techniques can reduce this
storage requirement. However, the best case speedup with no reciprocal cache and requiring
2 iterations is still 1.29.

Performing IEEE rounding with a reciprocal cache could be done in a manner similar to
the Texas Instruments TMS390C602A [4]. In this instance, the result would be computed
to extra precision and would require a few more guard bits in the cache. Thus, the main
e�ect would be slightly greater area for the same number of entries.

11

|
1

| | | | | | | | |
10

| | | | | | | | |
100

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

|2.50

 Total Storage Area

 S
pe

ed
up

�
�

�

�

�

�

�

Figure 9: Performance/area tradeo�s

4 Square Root Caches

The implementation of square root in an FPU often shares the same hardware used for
division computation. It can be shown that a variation of Goldschmidt's algorithm can be
used to converge to the square root of an operand [13]. Thus, the question arises as to the
quantity of redundant square root computation available in applications. Because both the
reciprocal and square root operations are unary, they could easily share the same cache for
their results.

A similar experiment was performed for square root as was done for division and recip-
rocal operations. All double precision square roots were instrumented along with double
precision divide operations. The resulting hit rates for a dedicated in�nite square root cache
are shown in �gure 10. The analysis showed that for an in�nite cache, some applications
contained a large amount of redundant square root computation. However, about half of the
applications contained no redundant computation. The standard deviation of the square
root hit rates was 48%.

The experiment was repeated for �nite shared reciprocal/square root caches. The results
are shown in �gure 11. The shared cache results show that for reasonable cache sizes, the
square root result hit rates are low, about 50% or less. Although the frequency of square
root was about 10 times less than division, the inclusion of square root results did cause
interference with the reciprocal results. This had the e�ect of decreasing the reciprocal hit
rates, especially in the cases of 64 and 128 entries. Thus, this study suggests that square

12

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 S
qu

ar
e

R
oo

t H
it

 R
at

e
%

doduc

m
dljdp2

tom
catv

ora

su2cor

hydro2d

nasa7

fpppp

appbt

applu

appsp

Figure 10: Hit rates for in�nite square root cache

 Reciprocal Cache
� � Square Root Cache

| | | | | | | | ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Entries

 H
it

 R
at

e
%

8 16 32 64 128 256 512 1024 2048

�
�

�

�

� �

Figure 11: Hit rates for shared division/square root cache

13

root computations should not be stored in either a dedicated square root cache or a shared
reciprocal cache, due to the low and highly variant hit rate of square root and the resulting
reduction in reciprocal hit rate.

5 Conclusions

This study indicates that redundant division computation exists in many applications. Both
division caches and reciprocal caches can be used to exploit this redundant behavior. When
using a low radix SRT divider, division caches might initially seem attractive. However, this
study has shown that rather than including a division cache to increase system performance,
any additional area may better utilized in directly increasing the radix of the divider, so
long as the cycle time of the processor can still be met.

For high performance implementations, where a multiplication-based algorithm is used,
the inclusion of a reciprocal cache is an e�cient means of increasing performance. In this
scenario, too, a division cache could be used. However, the high standard deviation of
a division cache's hit rates compared with that of a reciprocal cache argues against its
usage and for the use of a reciprocal cache. Additionally, the analysis has shown that
these applications do not contain a consistently large quantity of redundant square root
computation. Thus, the caching of square root results as a means for increasing overall
performance is not recommended.

The primary alternative previously to decrease latency of multiplication-based division
algorithms has been to reduce the number of iterations by increasing the size of the initial
approximation reciprocal table. This study has demonstrated that a reciprocal cache is an
e�ective alternative to large reciprocal tables. The inclusion of a reasonably sized reciprocal
cache can consistently provide a signi�cant reduction in division latency.

References

[1] D. DasSarma and D. Matula. Measuring the accuracy of ROM reciprocal tables. IEEE
Transactions on Computers, 43(8), August 1994.

[2] J. Hennessy et al. Computer Architecture A Quantitative Approach. Morgan Kaufmann
Publishers Inc., 1990.

[3] J. Mulder et al. An area model for on-chip memories and its application. IEEE Journal

of Solid-State Circuits, 26(2), February 1991.

[4] M. Darley et al. The TMS390C602A
oating-point coprocessor for Sparc systems.
IEEE Micro, 10(3), June 1990.

[5] M. Flynn. On division by functional iteration. IEEE Transactions on Computers,
C-19(8), August 1970.

[6] ANSI/IEEE std 754-1985, IEEE standard for binary
oating-point arithmetic.

14

[7] NAS parallel benchmarks 8/91.

[8] S. Oberman and M. Flynn. Design issues in
oating-point division. Technical Report
No. CSL-TR-94-647, Computer Systems Laboratory, Stanford University, December
1994.

[9] S. Oberman, N. Quach, and M. Flynn. The design and implementation of a high-
performance
oating-point divider. Technical Report No. CSL-TR-94-599, Computer
Systems Laboratory, Stanford University, January 1994.

[10] S. E. Richardson. Exploiting trivial and redundant computation. In Proceedings of the

11th IEEE Symposium on Computer Arithmetic, pages 220{227, July 1993.

[11] SPEC benchmark suite release 2/92.

[12] A. Srivastava and A. Eustace. ATOM: A system for building customized program anal-
ysis tools. In Proceedings of the SIGPLAN '94 Conference on Programming Language

Design and Implementation, pages 196{205, June 1994.

[13] S. Waser and M. Flynn. Introduction to Arithmetic for Digital Systems Designers.
Holt, Rinehart, and Winston, 1982.

[14] T. E. Williams and M. A. Horowitz. A zero-overhead self-timed 160-ns 54-b CMOS
divider. IEEE Journal of Solid-State Circuits, 26(11), November 1991.

[15] D. Wong and M. Flynn. Fast division using accurate quotient approximations to reduce
the number of iterations. IEEE Transactions on Computers, 41(8), August 1992.

15

