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Abstract

Memory latency is an important bottleneck in system performance that cannot be adequately solved by

hardware alone. Several promising software techniques have been shown to address this problem success-

fully in specific situations. However, the generality of these software approaches has been limited because

current architectures do not provide a fine-grained, low-overhead mechanism to observe memory behavior

directly. To fill this need, we propose a new set of memory operations calledinforming memory operations,

and in particular, we describe the design and functionality of aninforming load instruction. This instruction

serves as a primitive that allows the software to observe cache misses and to act upon this information inex-

pensively (i.e. under the miss, when the processor would typically be idle) within the current software con-

text.

Informing loads enable new solutions to several important software problems. We demonstrate this

through examples that show their usefulness in (i) the collection of fine-grained memory profiles with high

precision and low overhead and (ii) the automatic improvement of memory system performance through

compiler techniques that take advantage of cache-miss information. Overall, we find that the apparent bene-

fit of an informing load instruction is quite high, while the hardware cost of this functionality is quite mod-

est. In fact, the bulk of the required hardware support is already present in today’s high-performance

processors.

Key Words and Phrases:Memory latency, Performance monitoring, Prefetching, Processor archi-
tecture, Cache miss notification.
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1.0  Introduction
As the gap between processor and memory speeds continues to widen, memory latency has become a dominant

bottleneck in overall application execution time. In current uniprocessor machines, a reference to main memory takes

on the order of 50 processor cycles [DEK+92], while in shared-memory multiprocessors, latencies to remote memory

can be three to four times larger [KOH+94]. In the future, these latencies are expected to increase even further

[CWN92]. To cope with memory latency, most computer systems today rely on their cache hierarchy to reduce the

effective memory access time. While caches are an important step toward addressing this problem, neither they nor

other purely hardware-based mechanisms (e.g., stream buffers [Jou90]) are complete solutions.

In addition to hardware mechanisms, a number of software techniques have been proposed for avoiding or toler-

ating memory latency. For example, performance monitoring tools attempt to measure where memory bottlenecks lie

and give indications of how programmers could fix them. Automatic compiler transformations attempt to generate

code with improved locality and better latency tolerance. Operating systems attempt to adjust page coloring and

migration strategies in response to memory referencing behavior. While these techniques are successful in many

cases, they are handicapped by the fact thatsoftware cannot directly observe the behavior of the memory system.

Because of this basic limitation, monitoring tools are forced either to measure memory overhead indirectly (often at a

coarser granularity than desirable) [GH93] or to rely on simulated data about memory system behavior [Mar93,

LW94]; compiler optimizations are driven by static guesses rather than dynamic observations of caching behavior

[Mow94]; and for some page migration and mapping optimizations, operating systems are turning to specialized add-

on hardware support such as bus-based hardware monitors [CDV+94] and cache miss lookaside buffers[BLRC94].

The fundamental problem is that load instructions were defined when memory hierarchies were flat, and memory

latency was not a prime concern. The model they present is one of a uniform high-speed memory. Given that the

memory system has become such an important bottleneck, it is time to re-examine the semantics of memory instruc-

tions. We propose a new set of memory operations,informing memory operations,which serve as primitives that

allow software to observe cache misses directly, and to act upon this knowledge inexpensively within the current soft-

ware context. An informing load instruction, for example, gives software the ability to react differently to the unex-

pected case of the loadmissing in the primary cache and execute this code under the miss, when the processor would

normally stall. Note that informing loads represent new load instructions with added functionality—they are not

intended to supplant any existing types of load instructions.1 In particular, informing loads do not replace the need for

prefetch instructions, which are inserted by the compiler when it believes that a subsequent load operation is likely to

miss in the cache. Although we concentrate on loads in this paper, one could also define other “informing” memory

operations, such asinforming stores, which indicate when the store misses in the cache, orinforming prefetches

which software could use to detect the unexpected (and undesirable) case of a prefetchhitting in the cache.

While there are potentially many different types of informing memory operations and many ways to implement

their functionality in hardware, all share a number of common characteristics. Section 2.0 presents these characteris-

tics in the context of an informing load instruction, and it contrasts our approach with existing approaches for observ-

ing and reacting to memory behavior. Section 3.0 focuses on how theobservability of misses makes it feasible and

inexpensive to collect a wide variety of memory profiling information. This information is not only useful to the pro-

1.  When software does not care whether a particular load hits or misses, it is free to use regular (rather than informing) loads.
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grammer, but can also be used by the compiler or the operating system to automatically improve performance, as we

demonstrate in Section 4.0. Section 4.0 also shows that the informing load primitive can be used not only to update

miss statistics, but also to takeactive measures to improve memory performance under a miss, such as prefetching the

next data item expected to miss. Having demonstrated the utility of this mechanism, Section 5.0 then describes a

number of implementations of informing loads and shows that the added implementation cost is modest. Section 6.0

summarizes the findings of this work, and describes our continuing efforts in this area.

2.0  Architectural Characteristics of Informing Loads
While the computing industry largely agrees on the critical importance of the growing processor-memory perfor-

mance gap, it has not yet reached a consensus on the type or degree of hardware support appropriate for monitoring

memory behavior. Overall, a number of disjoint and specialized solutions have been proposed for different parts of

the problem. For example, on-chip hardware miss counters have been implemented to offer at least minimal support

to compilers and performance monitors [DEC92], while off-chip hardware like the cache miss lookaside buffer has

been proposed to support operating systems activities like page coloring [BLRC94]. Neither of these approaches is

general or efficient enough to support the needs of both the compiler and the operating system. Furthermore, the

existing hodgepodge of approaches contains solutions that are often either heavyweight (i.e. access to the monitoring

information greatly disrupts the behavior of the monitored program) or coarse-grained (i.e. the monitoring informa-

tion is only a summary of the actual memory system behavior). These characteristics are inappropriate for software

techniques requiring on-the-fly, high-precision observation and reaction to memory system behavior; instead, a fine-

grained, lightweight mechanism is needed. These reasons, along with the fact that our work spans a number of disci-

plines and computer architectures, motivated us to define a memory system monitoring mechanism with the follow-

ing characteristics:

• general: independent of a particular hardware organization;

• fine-grained: enables low-level observation of the memory system;

• selective notification: invoked only when triggering action occurs;

• low overhead: introduces very little perturbation in the monitored program when not invoked;

• instantaneous notification: supports fast response to triggering action;

• primitive: provides only notification of triggering action.

Our proposal to meet these goals is an informing load instruction—a non-blocking load instruction that is capa-

ble of squashing (i.e. inhibiting) the execution of the instruction that immediately follows the informing load in the

sequential program. (In a single-issue RISC machine, this would be the instruction in the delay slot of the informing

load instruction.) In some sense, an informing load is akin to the squashing branches in the SPARC architecture

[Pau94] or the nullifying operations in the HP PA-RISC architecture [HP92]. An informing load operationsquashes

its delay slot instruction if the loadhits in the cache. Informing loads are non-blocking loads so that the software can

invoke an alternate action during the processing of an informing load that misses in the cache. In other words, the

instruction following an informing load is only executed when the informing load misses in the cache. This function-

ality allows a single instruction (perhaps a speculative prefetch of a related load that may also miss) to be inlined with

the informing load. We can also implement more complex instruction sequences by filling the informing load slot

with a jump to other code, such as a monitoring routine or a starting point for alternatively scheduled code.
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With this functionality, informing loads exhibit a lower overhead than other existing approaches for monitoring

the memory system. The major difficulty in observing and reacting to memory behavior has always been that memory

references are interspersed throughout the code at a very fine granularity. Instrumentation techniques that attempt to

trap or read privileged timers on every memory reference clearly fail; both the execution time overhead and the cache

perturbation of these techniques are prohibitive. More recently, machines have offered high-resolution timers to pro-

grammers. While these timers support loop-level monitoring of code, as in Mtool [GH93], they still have too high an

overhead to be used to time and record individual memory reference latencies. Another attempt to address this prob-

lem is the inclusion of various forms of hardware cache-miss counters. For example, the Alpha 21064 includes a per-

formance counter that can be configured to cause an interrupt after either 256 or 4096 cache misses have occurred

[DEC92]. However, because of the overhead and cache perturbation of handling a full interrupt, these techniques are

least intrusive with the larger count. Even if processor architects were willing to define a miss counter as part of their

architecture (so it could be read at user level) the overhead in reading the counter values before and after the load and

doing the comparison would be prohibitive for monitoring every load. As we quantify in the next section, our low

overhead notification allows such fine-grained memory performance monitoring. This finer granularity then opens up

new possible uses for memory performance information, such as the adaptive prefetching discussed in Section 4.0.

The low overhead of an informing load instruction is coupled with an instantaneous notification to thecurrently

executing thread. (Other latency-hiding techniques often force a light-weight context switch on a cache miss

[LGH94].) Of course, the notification of a cache miss during an informing load could be used to implement a light-

weight context switch functionality. In addition to light-weight context switches, informing loads support a wide vari-

ety of application-level responses to a cache miss. For example, one could speculatively execute additional code on

cache misses, dynamically control the degree of parallelism (by running code to increase or reduce the number of par-

allel application threads), or even execute an alternative instruction schedule that was statically optimized for the case

of a cache miss. In a broader sense, if the code executed in response to an informing load miss has access to the refer-

encing application’s context, we are not simply hiding machine latency by executing an independent (and likely unre-

lated) thread. Rather, individual users can get benefits from informing loads, even on sequential code.

Overall, an informing load instruction is a primitive that supports a variety of proposed latency tolerance and

avoidance techniques in a unified way. A preliminary list would include: (i) program performance monitoring, (ii)

software-controlled prefetching, (iii) multithreading, (iv) speculative execution, (v) operating system page coloring

and migration, and (vi) dynamic instruction rescheduling. In the following two sections, we examine and evaluate

implementations of several of these techniques using informing loads.

3.0  Monitoring Program Performance
A number of performance tools have been proposed to monitor program caching behavior [BM89, GH93, LW94,

Mar93]. One of the major stumbling-blocks in building such tools is gathering appropriately detailed memory statis-

tics with low runtime overheads and minimal perturbations of the monitored program. For example, Mtool gathers

memory statistics for loop nests by comparing basic block execution times from program runs with estimates of exe-

cution times based on ideal memory behavior. In this way, it is able to use techniques based on program-counter sam-

pling to gather program memory statistics. The main drawback to approaches like Mtool is that statistics at a loop or

basic block granularity are often too coarse-grained to be useful in understanding program memory bottlenecks. For
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example, blocked matrix multiply codes access three matrices within their main loop nest. Of these three matrices, it

is the blocked matrix that is most susceptible to poor memory performance due to conflict misses [LRW91]. Loop-

level statistics will report this as a problem with the entire loop, rather than pinpointing the bottleneck to a particular

data structure or reference point.

For finer-grained memory statistics, other tools rely on dedicated hardware to monitor memory references.

Burkhart, et al. [BM89] and others have implemented tools based on data collected by special hardware bus monitors.

These approaches are increasingly difficult due to the levels of integration in modern processors. With first-level and

perhaps second-level caches on-chip, cache performance monitoring warrants integrated processor support.

Some techniques monitor memory behavior by trapping on particular accesses and simulating them [RHL+93],

or by trapping based on values in sampled hardware miss counters [DEC92]. Such trap-based techniques incur over-

heads of 200 cycles or more on each trapped event just to get to monitoring code. In addition, the cache perturbation

due to trap handling can be significant. In contrast, informing loads will have “trap” costs of 0 to 5 cycles, depending

on their implementation. This low overhead greatly increases flexibility in monitoring style. Furthermore, from both

philosophical and efficiency standpoints, there is no clear justification for requiring applications to use operating sys-

tem services to monitor their own performance.

Because of the drawbacks of hardware-based and trap-based monitoring, tools such as MemSpy

[Mar93] and CProf [LW94] are based on direct-execution simulation. These approaches require no dedicated hard-

ware, but unfortunately even streamlined implementations of simple simulators impose slowdown factors of three to

five on application execution time. While these overheads may be acceptable when there are no alternatives for gath-

ering the needed data, there is an unavoidable tradeoff between the accuracy at which the memory system can be sim-

ulated and the tool’s runtime overhead. A final significant drawback is that formultiprocessors, the overheads of

simulation-based approaches scale almost linearly with the number of simulated processors, due to the fine-grained

synchronization necessary for parallel simulation.

Informing loads are a primitive for capturing program memory performance information; they avoid these high

simulation overheads, and also have good scaling behavior for monitoring parallel programs. They are integrated into

the processor design, avoiding the black-box problem faced by dedicated hardware bus monitors with today’s highly

integrated processors. Finally, their low overhead allows the development offine-grained monitoring tools.

3.1  A Memory Performance Monitor Based on Informing Loads
Because informing loads are a general primitive, one can imagine using them to implement many different tools.

These tools can range from extremely inexpensive techniques such as program miss counts using sampling to

extremely detailed techniques including high-level program semantics (e.g. correlating misses with surrounding loop

iterations or data addresses). To demonstrate the utility of informing loads for performance monitoring, we imple-

mented a fairly simple, but low overhead, memory performance tool that gives precise counts of cache misses for dif-

ferent reference points in the code. For all program loads that are not accessing memory off the stack pointer, an

informing load is used.2 In the informing load delay slot, we place a procedure call (a jump and link) to the monitor-

2.  Although we omit stack frame references since they generally hit in the cache, one could clearly monitor them as well.
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ing code. If the load turns out to be a cache hit, this procedure call is squashed, and application execution continues.

If the load turns out to be a cache miss, the procedure call (to a short sequence of monitoring code) is executed.

The action taken on a monitoring call-out depends on the degree of sampling. With no sampling, every informing

load miss results in a hash table lookup and a subsequent increment of the appropriate counter. Each application pro-

gram counter value that generates an informing load miss has a separate count. That is, statistics are kept per static

reference point in the code. Informing loads let monitoring code execute directly in the application’s context, and this

tool takes advantage of that fact—the return address register within the monitoring procedure uniquely identifies the

reference that suffered the miss, and we use this value to index a hash table. For efficiency and for access to this

return address register, monitoring code is written in assembly language.

With sampling, every Nth miss results in these actions—the other misses simply decrement a sampling counter.

We show results for N equal to 1 (no sampling), 100, and 1000. Although other memory monitoring approaches have

also used sampling, they are restricted in their choice of sampling frequency either to reduce execution time overhead

or to improve accuracy. Trap-based techniques often monitor very infrequently in order to reduce overhead and cache

perturbation. This limits their ability to keep fine-grained statistics. On the other hand, sampling with simulation-

based techniques must overcome a cold-start effect at the beginning of each sample; thus large chunks of memory ref-

erences must be simulated in each sample. Because informing loads are both low-overhead and low-perturbation, we

have flexibility to choose sampling frequency from a much broader range of values.

3.2  Results
We have run our tool on a collection of SPEC and other applications [Dix92,Smi92]. For each, we collected the

per-static-reference data as described above. In the sections below, we present information on the execution time

overhead of the informing-load-based tool. We also quantify data cache perturbation induced by running monitoring

code interspersed with the application code.

The results presented here, and in later sections presenting simulation results, were collected using a simulator

based onpixie [Smi91]. We model a single-issue processor with split, direct-mapped primary instruction and data

caches (each 8KB), and a 256KB, direct-mapped, unified secondary cache. A primary miss satisfied by the secondary

cache takes 12 cycles, and a primary miss going all the way to memory takes a total of 75 cycles. Floating point stalls

are not modelled. This execution-time overhead we measure assumes the essentially worst-case behavior of the sim-

ple, single-issue pipeline described in Section 5.1. In superscalar machines where there are typically free instruction

fetch and execute positions available, the overheads presented here would decrease even further.

3.2.1  Initial Tool Overhead

Figure 3.1 shows the normalized execution times when using the memory tool to monitor several applications.

The bars are normalized to the execution time of unmonitored code (which would be 100%). The three columns give

tool overheads for different levels of monitoring and sampling. Execution time overheads for the unsampled (N=1)

implementation range from 2% for grep to 355% for espresso. The wide range in overheads stems from variance in

application reference rate, cache miss rate, and the degree that the monitoring code perturbs application caching

behavior. With the N=100 sampling implementation, overheads drop to a range from 0.6% for grep to 25% for com-

press.
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For comparison, Mtool produces much less detailed statistics, but in spite of this still reports overheads in the

range of 3% to 15% (for a subset of these applications) [GH93]. MemSpy uses a simulation-based approach to collect

detailed memory statistics, and its execution time overheads typically range from 700% to 1600%.3 Overall, perfor-

mance overheads for an informing-load-based tool are competitive with high-level tools offering much less detailed

statistics, and they are superior to simulation-based tools offering similar levels of detail in their statistics. Most

importantly, we generate statistics based on true executions of the program—not cache simulations. Our statistics

reflect the impact of operating system references and multiprogramming on program cache behavior.

3.2.2  Data Cache Perturbations

Because we are monitoring a real program execution, our tool can potentially perturb program behavior. Data

cache effects can have a two-fold impact. First, monitoring can potentially perturb the application data cache behav-

ior enough that the measured memory statistics do not closely correspond to the memory behavior of the unmonitored

application. Second, if monitoring substantially increases the data cache miss rate, it may slow down the application

execution, which would appear as another form of tool runtime overhead.

 To indicate the impact of data cache perturbation, Figure 3.2 compares the application data cache behavior for

monitored and unmonitored code. For each application, the leftmost bar gives the data load miss rate without moni-

toring. The next three bars show theapplication data load miss rate with monitoring occurring at different sampling

frequencies. For these data, wesimulate thecombined cache effects of both the monitoring and application code, but

3.  MemSpy keeps data-oriented statistics, but approximately 50% to 90% of MemSpy’s execution time is spent in cache simula-
tion and lightweight context switching, so overheads do not drop significantly if data oriented statistics are omitted. There is also a
version of MemSpy that, like the tool described here, uses sampling to reduce overheads. Simulating one-tenth of the total refer-
ence stream in 20 to 30 large samples, overheads are 250% to 900%. Because MemSpy is a simulation-based approach, it has to
overcome a cold-cache effect as part of trace sampling; as such, the aggressive sampling feasible with informing loads (1/100 or 1/
1000 of total misses) leads to intolerable inaccuracy within MemSpy.

FIGURE 3.1. Normalized execution times for monitored applications with different levels of sampling. The
“No Sampling” bar represents the monitoring of every informing load miss. The “N=100” and “N=1000” cases
keep statistics on only every hundredth and every thousandth informing load miss, respectively.
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keepseparate statistics on the misses incurred on behalf of the application. This isolates the effect monitoring has on

application caching behavior. For very frequent performance monitoring, the data indicate that performance monitor-

ing can indeed impact data cache behavior. For the N=1 case, data load miss rates are elevated by 10% to 277%. With

even moderate sampling (N=100) though, cache perturbation drops dramatically.

In some applications like compress, perturbation at N=100 is still not negligible. In that particular case, perturba-

tion remains because of frequent conflicts between an important program variable, and the location used to save away

one application register before performing a sampling count check. To avoid these sorts of perturbation, we also

implemented a version of the tool using uncached loads and stores for all memory references performed by the moni-

toring code. Since monitoring references are not cached, they never directly perturb application data cache behavior.

The version with uncached loads allows virtually perfect reproduction of the application’s original memory behavior.

Application memory behavior perturbations will be due to secondary effects. For example, time dilation due to mon-

itoring may mean that the application undergoes more context switches than it otherwise would have.

For the version with uncached references, execution overhead is higher than for the tool using cached references,

ranging from 13% for grep to 700% for compress. Relative to the cached-references tool, overhead has increased by

factors of 17 to 60. Despite this overhead increase, the uncached reference version is useful for applications where

cached monitoring code causes significant perturbation. Users could opt for this tool only when they notice a discrep-

ancy between memory behavior predicted by the cached-references version and a coarser-grained (loop-level), lower

perturbation tool also implemented with informing loads. Finally, our studies use direct-mapped caches at both the

first and second levels of the memory hierarchy; two or four-way set associativity should decrease cache conflicts

between application and monitoring code, and expand the set of applications amenable to the faster cached-reference

monitoring. For parallel applications, monitoring with uncached loads makes it easier to account for monitoring time;

at synchronization points, tools can correct for monitoring time and ensure that dynamic task assignments are identi-

cal for monitored and unmonitored code.

FIGURE 3.2. Effect of monitoring on application cache miss rates.
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The tool implementations described here are case studies that highlight the strengths of informing loads. By pro-

viding a very low overhead means of observing and reacting to cache misses, informing loads give crucial support to

fine-grained memory performance monitoring tools. Our initial cached-reference tool monitors individual memory

references in the code with low overheads (0.6% to 25%) and tolerable data cache perturbations. The version using

uncached references has higher overhead (13% to 700%) but eliminates data cache perturbation.

4.0  Improving Memory Performance Automatically
To improve an application’s performance using informing loads requires us to merge the methods described in

the previous section with software techniques for improving memory performance. These techniques include com-

piler optimization likeblocking [ASKL79, GJMS87, MC69, WL91, GL89] andsoftware-controlled prefetching

[Mow94, Por89, CMCH91] and the operating system optimizations likepage coloring [KH92, BLRC94] andpage

migration [CDV+94, LE91, CF89, BFS89]. Without informing loads, the success of these automatic techniques

depend heavily on how well the compiler can predict caching behavior ahead of time. Unfortunately, predicting

dynamic caching behavior with only static information is quite difficult, and appears to be tractable only for array-

based scientific codes which have regular and predictable access patterns. Even for these regular codes, complications

such as unknown loop bounds and set-associative caches make it difficult to model caching behavior accurately.

Therefore we expect the incorporation of dynamic information into the decision-making process of these techniques

to be an important step toward overcoming their current limitations.

Dynamic information can be fed back into the optimization process in two ways: (i)between runs of a program,

whereby we might recompile for a second run based on the behavior of the first run, or (ii)during the run of a pro-

gram, whereby the code is able to monitor and adapt to dynamic information “on the fly.” An advantage of the latter

approach is that even the first run of a program can benefit from dynamic information—a potential disadvantage is the

runtime overhead of processing and reacting to the dynamic information. In the following two subsections, we will

use software-controlled prefetching as an example to demonstrate how both of these approaches can be implemented

using informing loads.

4.1  Using Dynamic Memory Information at Compile-Time
The idea of using dynamic information at compile-time is not new. Compilers have historically usedcontrol-flow

feedback (also known as “branch profiling”) to perform aggressive instruction scheduling across branches [Fis81,

Smi92]. Given that informing loads make it practical to collect accurate per-reference miss rates across entire applica-

tions (as demonstrated earlier in Section 3.0), a similar feedback methodology can be used to enhance aggressive

memory optimizations, such as software-controlled prefetching.

Previous studies have demonstrated that for codes with regular access patterns, compiler-inserted prefetching can

effectively hide memory latency, thus improving overall execution time by as much as twofold on both uniprocessor

and multiprocessor systems [MLG92,Mow94]. A key step in the compiler algorithm is usinglocality analysis to pre-

dict which dynamic references are likely to suffer cache misses, and therefore should be prefetched. While locality

analysis is helpful in reducing prefetch overhead, its scope is limited to affine array references, and its accuracy is

limited by the abstract nature of the model. Therefore to enhance the predictions of locality analysis for regular access
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patterns and to haveany prediction of whether irregular accesses hit or miss in the cache, we would like to exploit

memory feedback information.

Although precise per-reference miss rates may sound like perfect information, a subtle issue is how to handle ref-

erences with intermediate miss rates (between 0% and 100%). Ideally we would like to prefetch such references only

when they miss, but unfortunately the information relating individual misses to when they occur is lost in the course

of summarizing them as a single miss rate. Perhaps the simplest approach is to prefetch such references either all the

time or not at all, depending on whether their contribution to total misses exceeds a certain threshold.4 More sophisti-

cated approaches would involve reasoning about when the misses were likely to have occurred. For regular access

patterns, a combination of locality analysis and control-flow feedback may be helpful. For example, consider the code

in Figure 4.1(a). Assume that each element ofa is 8 bytes, a cache line contains 32 bytes, the primary cache size is 8

Kbytes, and that memory feedback tells us that the load ofa[j]  suffered an 8.3% miss rate. From locality analysis,

we would expecta[j]  to have spatial locality along the inner loop, and possibly temporal locality along the outer

loop, but that would depend on whetherm was large relative to the cache size. If control-flow feedback indicates that

the i  andj  loops had average trip counts of three and 100 iterations, respectively, then we would expecta[j]  to

miss only on the first of the threei  iterations and only on every fourthj  iteration, thus explaining the 8.3% miss rate.

Therefore we could isolate these misses by peeling off the first iteration ofi  and unrollingj  by a factor of four.

While locality analysis and control-flow feedback may shed some light on when misses occur, they cannot recog-

nize all regular access patterns, and they do not address irregular access patterns (which are beyond the scope of

locality analysis). For example, the 8.3% miss rate ofa[j]  in Figure 4.1(a) may correspond to at least two different

miss patterns. One possibility is the combination of temporal and spatial locality described above. However, another

possibility is that thea[j]  locations were already in the cache when the loop nest was entered, and the misses

occurred sporadically acrossall iterations due to occasional conflicts with other references infoo() .

To further improve the information content of the memory profile, we would like to correlate the misses with the

“dynamic context” in which they occur. For array-based codes, a useful dynamic context would distinguish the first

loop iteration from the remaining iterations (to capture temporal locality), and also the loop iteration modulo the

cache line size (to capture spatial locality). For example, ifa[j]  in Figure 4.1(a) had the combination of temporal

and spatial locality we described earlier, we would notice that all misses occurred on the first iteration ofi  and on

every fourth iteration ofj . For the sporadic miss pattern due to conflicts, we would notice that the misses were scat-

tered across all iterations. For irregular access patterns, such as the dereference of pointerp in Figure 4.1(b), the

dynamic context might consist of paths in the control-flow graph that arrive at that point. For example, if we discover

4.  Note that miss rate alone can be a misleading metric, since a reference can have a relatively low miss rate but still cause the
majority of misses in an application if it is frequently executed.

FIGURE 4.1. Examples of references that may suffer misses only occasionally.

(a) for (i = 0; i < n; i++)
for (j = 0; j < m; j++)

a[j] = a[j] + foo(i);

(b) if (x > 0) {
for (i = 0; i < n; i++)

a[i] = foo(i);
}
x = *p;
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that dereferencingp results in a 10% miss rate, but that these misses correspond directly to the “then” part of the

“x > 0 ” conditional statement being taken 10% of the time, we can schedule the prefetch only along the “then” path,

thus minimizing instruction overhead. The properties of informing loads—i.e. flexibility, low overhead, and complete

access to the current software context—make it feasible to collect a profile where misses are correlated with their

dynamic contexts.

Having discussed a range of possible implementations, we now present experimental results to demonstrate the

performance benefits of exploiting dynamic memory information at compile-time. For these experiments, we focus

on regular array-based codes. Informing loads are used to collect the miss rates of all load references (similar to the

monitoring code described in Section 3.1), but misses are not correlated withwhen they occur. We then augment the

compiler algorithm presented in [MLG92] to use these miss rates as follows. After performing locality analysis, the

predicted andobserved miss rates are compared for each reference. If they disagree beyond a certain margin, the

locality analysis model is adjusted taking factors such as uncertainty and control-flow feedback into account to find

an explanation for the miss rate that is consistent with the intrinsic data reuse (for further details, see [Mow94]). This

allows the compiler to reason about intermediate miss rates and schedule prefetches only for the dynamic instances

that are expected to miss.

We simulated the same array-based scientific codes presented in an earlier prefetching study [MLG92] using the

same architectural assumptions. One of the cases improved significantly using memory feedback: OCEAN, which is

a uniprocessor version of a SPLASH application [SWG91]. Figure 4.2(a) shows the performance of OCEAN, which

has been broken down into three categories: time spent executing instructions (including the instruction overhead of

prefetching), stall time due to data misses, and stall time due to memory overheads caused by prefetching (which is

primarily contention for the primary cache tags during prefetch fills).

The overall performance of OCEAN speeds up by 35% when memory feedback is used rather than using static

information alone. The reason why static analysis fails in this case is because the critical loop nest is split across sep-

arate files, with the outer loop in one file, and the inner loop inside a procedure call in another file. (Figure 4.2(b)

shows a simplified version of this scenario.) Since our version of the SUIF compiler [TWL+91] does not perform

interprocedural analysis across separate files, the prefetching algorithm does not recognize the group locality due to

the outer loop, and therefore issues too many prefetches. Once feedback information is available, the compiler imme-

diately recognizes the group locality, thus avoiding the unnecessary prefetches. Interestingly enough, eliminating
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FIGURE 4.2. Performance of OCEAN using memory feedback at compile-time. (N = no prefetching, S =
prefetching with static analysis only, F = prefetching with feedback).

for j = 2 to jm-1
laplacalc(j);

laplacalc (int col){
...
for i = 2 to im-1

z(col,i) = fact*(x(col,i+1) + x(col,i-1)
+ x(col+1,i) + x(col-1,i)
- 4*x(col,i));

}

(a) (b)
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prefetches actually reduces the memory stall time in this case by eliminating register spilling, since the spilled refer-

ences were often conflicting with other data references.

OCEAN illustrates that even codes with regular access patterns (where we would normally expect static analysis

to perform well) can benefit from using dynamic information at compile-time. Our experience with compiling other

array-based codes indicates that reasoning about intermediate miss rates is the most challenging part of using memory

feedback, and that greater gains could be achieved if informing loads were fully exploited to correlate misses with

their dynamic contexts. Finally, we would expect that irregular codes would show even greater benefit from memory

feedback, since there is currently no viable means of predicting misses with only static information for such codes.

4.2  Using Dynamic Memory Information at Run-Time
While memory feedback gives the compiler more information to reason with, it has a few shortcomings. First,

the feedback process itself is a bit cumbersome, since it requires that the program be compiled twice. Second, it may

be difficult (or impossible) to capture a representative dynamic profile, particularly if the behavior depends critically

on whether the data set fits in the cache or if the data set size is determined only at run-time.

Rather than generating code with a fixed memory optimization strategy, another possibility is to generate code

that adapts dynamically at run-time. For example, if informing loads indicate that more misses are occurring than

expected, the code might adapt by issuing more prefetches. Similarly, the code might reduce the number of prefetches

if it detects that many of them are hitting in the cache. Although tailoring code for every possible contingency would

theoretically result in exponential code growth, the good news is that in practice there appear to be only a small num-

ber of different cases to specialize for. Intuitively, this is because the key distinction is whether or not the data set fits

in the cache, which typically results in just two distinct prefetching strategies. Therefore when the compiler is uncer-

tain, it could potentially generate both cases and choose the appropriate one to execute at run-time.

Since a potential drawback of adapting at run-time is the additional overhead of processing and reacting to the

dynamic information, a key concern is how frequently the code would need to adapt its strategy. For array-based sci-

entific codes, the regular and repetitive nature of the computation allows us to detect trends with only infrequent

checks of miss counts, as we will demonstrate in Section 4.2.1. In contrast, the unpredictable nature of irregular codes

means that we may want to adapt our strategy as often as every miss. While this may sound daunting, the properties

of informing loads allow us to react at this fine granularity with minimal overhead—we simply schedule code that

actively improves performance in the informing load delay slots, as we will describe later in Section 4.2.2.

4.2.1  Adapting Regular Codes Using Miss Counts

The regular access patterns of array-based codes make it easy to detect dynamic trends, since miss patterns often

recur in a given pass through a loop. Therefore a reasonable way to adapt the prefetching strategy for a loop is to

instrument an initial set of iterations, and let their overall behavior guide the approach to handling the remaining iter-

ations. Figure 4.3 illustrates how this could be implemented with very little run-time overhead. Assuming that two

elements ofA fit in a cache line, all 1000 elements ofA can potentially fit in the cache, and ten loop iterations are suf-

ficient to hide memory latency, Figure 4.3(b) shows the code to prefetch all elements ofA. However, ifA was already

in the cache before entering this loop, these prefetches would result in unnecessary overhead.
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To hide cache miss latency without paying for unnecessary prefetches, we can modify our prefetching strategy as

shown in Figure 4.3(c). Here we useinforming prefetches (analogous to informing loads) to test whether the initial

elements ofA are already in the cache. If so, we discontinue prefetching—otherwise, we continue prefetching as

usual. Note that by using informing prefetches rather than informing loads in this case, we are able to hide the latency

of the first several iterations while testing for the presence of the data. (If hardware miss counters5 could be directly

manipulated without transferring to a general-purpose register, they would suffice for this simple example. Informing

prefetches, however, are advantageous for loops with multiple array references since we can maintain separate miss

counts for each reference, thus providing greater flexibility in our adaptiveness.)

We now present experimental results for the BCOPY library routine, which is used to copy a block of data from

one location to another. Although BCOPY is a simple routine, it is interesting for two reasons. First, since it is a

library routine, the compiler cannot make any assumptions about the input parameters and cannot analyze the call

sites for locality. Second, since BCOPY is frequently executed by the operating system, improving its performance

may significantly improve system performance. We rewrote BCOPY by hand to use adaptive prefetching, similar to

the code in Figure 4.3(c). We used a simple workload to drive BCOPY, since we were mainly interested in testing the

ends of the spectrum. The workload consisted of a loop that repeatedly called BCOPY with two distinct arrays and a

given block size as arguments. Since identical block copies are performed on subsequent iterations, there can poten-

tially be a temporal locality benefit if the blocks can fit in the 8 Kbyte cache. Figure 4.4 shows the performance of

BCOPY using various block sizes and loop iteration counts.

As we see in the “500x10” case (where BCOPY is called ten times with 500 byte blocks) in Figure 4.4, the orig-

inal code without prefetching suffers a significant amount of miss latency. These misses occur the first time the rou-

tine is called, since the data remains in the cache for subsequent calls. As we see from the middle bar, the code that

5.  Separate hardware miss counters should be maintained forload misses (which are undesirable) andprefetch misses (which are
desirable over prefetch hits).

FIGURE 4.3. Example of how dynamic miss counts can be used to adapt prefetching in array-based codes.

(a) Original Code

/* is A[i] already in cache? */
for (i = 0; i < 1000; i++)

sum = sum + A[i];

(b) Code with Static Prefetching

/* prolog */
for (i = 0; i < 10; i+=2)

prefetch(&A[i]);
/* steady state */
for (i = 0; i < 990; i+=2) {

prefetch(&A[i+10]);
sum = sum + A[i];
sum = sum + A[i+1];

}
/* epilog */
for (i = 990; i < 1000; i++)

sum = sum + A[i];

(c) Code with Adaptive Prefetching

pf_A_miss_count = 0;
/* issue the first several prefetches */
for (i = 0; i < 10; i+=2) {

informing_prefetch(&A[i]);
[pf_A_miss_count++;] /* if A[i] misses */

}
/* have the A[i] prefetches hit so far? */
if (pf_A_miss_count < SMALL_NUMBER) {

/* if so, stop prefetching */
for (i = 0; i < 1000; i++)

sum = sum + A[i];
} else {

/* otherwise, continue prefetching */
for (i = 0; i < 990; i+=2) {

prefetch(&A[i+10]);
sum = sum + A[i];
sum = sum + A[i+1];

}
for (i = 990; i < 1000; i++)

sum = sum + A[i];
}
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statically prefetches the blocks all the time actually performs worse than the original case, due to the large instruction

overhead of the many unnecessary prefetches. The adaptive code (shown as the righthand bar) offers the best perfor-

mance, since it prefetches the data only when appropriate. The other two cases in Figure 4.4 show larger block sizes

that do not fit in the cache. For these cases, stopping to check miss counts is pure overhead, since the best strategy is

to prefetch all the time; however, we see that this overhead has a negligible impact on overall performance. Therefore

we enjoy the benefits of adaptiveness without paying additional run-time costs.

4.2.2  Adapting Irregular Codes by Taking Active Measures Under a Miss

Irregular codes containing pointers, linked lists, etc. pose a much greater challenge to adaptive memory optimi-

zations, since it is unclear how to detect sustained trends in the miss patterns or that such trends even exist. Therefore,

in contrast to our coarse-grained approach for array-based codes (where we check and react to dynamic behavior only

once in a given pass through a loop), a more fine-grained approach may be appropriate for irregular codes (where we

might want to adapt our strategy as frequently as every load miss). For example, on each load miss, we may wish to

launch prefetches to avoid future misses. On a multithreaded architecture, we may wish to switch threads or spawn

new threads in response to a given miss. The overhead of such fine-grained reactions would normally be prohibitive,

but we can hide much (if not all) of this overhead by scheduling instructions thatactively improve performance in the

|0

|20

|40

|60

|80

|100

|120

|140

|160

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100
 116

  74

 100

  58   58

 100

  32   32

N S D N S D N S D
500x10 10000x10 100000x3

memory access stalls
instructions

FIGURE 4.4. Results with adaptive version of BCOPY (N = no prefetching, S = statically prefetch all the time,
D = adapt prefetching dynamically). “BxT” means that the same B-byte block is copied to the same destination
T times. Performance is renormalized for each case.



14

informing load delay slots. Therefore if the majority of references turn out tohit in the cache, the code will still exe-

cute at maximum speed since the adaptive code will not be invoked.

To experiment with this active approach, we modified the compiler developed for TORCH [Smi92] to fill

informing load delay slots with a prefetch of the next likely load address whenever possible. Figure 4.5 shows the

resulting performance of the compress SPEC benchmark, along with the case where those same prefetches are

inserted just ahead of the same preceding loads (thus allowing misses to be pipelined). Note that for these experi-

ments, we assume that if an informing load hits, its slot instruction does not waste any execution cycles.6 While this

is more aggressive than the base model presented in Section 5.1, it would be typical of most modern processors where

instruction fetching is decoupled from execution. As we see in Figure 4.5, adaptively issuing prefetches in response

to individual load misses offers twice the overall performance improvement of statically issuing those same

prefetches all the time, since it results in significantly less instruction overhead.

This section has shown a number of ways that informing loads can be used to improve the performance of soft-

ware-controlled prefetching. The low-overhead, selective notification of informing loads provided a building block

that was used to collect the needed information with minimal performance overhead. We expect that these capabilities

will also benefit other automatic memory optimizations such as cache blocking and page coloring.

5.0  Hardware Implementation
The previous sections have shown that informing loads are a useful primitive for measuring and reducing mem-

ory overhead in programs. This section describes how an informing load could be implemented in current processors.

Most of the mechanisms needed for informing loads are already present in processors that support lockup-free caches

and squashing branches. To demonstrate this fact, this section describes how to implement an informing load instruc-

tion in a number of different machine pipelines. We begin by describing a simple, single-issue RISC pipeline that is a

simplification on the MIPS R3000 pipeline [HP90]. After reviewing this basic pipeline and machine organization, we

discuss the changes needed to support informing loads. We first look at several implementations of the informing load

functionality in this simple machine, and we then move our description to implementations for more complex

6.  We do model all instruction cache penalties accurately. They appear as part of the “instructions” category, but hap-
pen to be negligible for this case.
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machines. Although there is a spectrum of possible implementations in each case, ours are representative of the hard-

ware and software costs of an informing load instruction.

5.1  Base Machine Model
Our base machine has a five stage pipeline: instruction fetch (IF), instruction decode and register fetch (RD),

ALU execution (EX), data memory access (ME), and register write back (WB). All instructions “complete” in the

WB phase of the pipeline and can besquashed (or turned into a null operation) by asserting a suitable signal before

WB. Squashing of instructions in the pipeline is necessary to support precise exceptions [HP90]. In a normal load

operation, the pipeline calculates the effective address of the load during EX and accesses the cache using this

address during ME. The load data returns to the CPU before the end of the ME stage so that we can write the data to

the register file during WB. Figure 5.1 illustrates this pipeline with some of the important instruction timings.

If the load misses in the cache, the pipeline generally stalls until the load data is brought into the cache and

returned to the processor. There are two options on when to stall the machine. The simplest option,stall on miss,

stalls the machine when the miss is detected and holds the pipeline until the data is returned. This stall model is actu-

ally a little conservative, since if the instructions after the load don’t use the load data, the processor could execute

them during the processing of the cache miss. The other stall model allows the machine to continue to operate until

the missing data is referenced. This option,stall on use, is becoming more common [D+92, Gwe94] because of its

potential performance benefits. The principle cost of this alternative stall model is that the cache must be able to han-

dle references while the miss is being serviced. This requires alockup-free cache—i.e. a cache that can handle

requests while a miss is outstanding. In the simplest case the cache can only handle one miss, while in more sophisti-

cated designs the cache can handle multiple outstanding misses [Kro81,Lau94].

A machine with informing loads must execute instructions during a cache miss, and therefore the machine must

stall onuse rather than stall on miss. Changing the stall model (if necessary) is the hardest part of implementing an

informing load; the stall circuitry and lockup-free cache design are complex. But since most modern machines

already implement this stall model, we will focus on the other changes that are required. These changes mostly relate

to how and when the instruction in the informing load delay slot is squashed.

5.2  Squashing the Slot Instruction
An informing load differs from normal squashing instructions (like squashing branches in the SPARC architec-

ture or nullifying operations in the HP PA-RISC) because the miss signal comes late—not until the end of ME at the

earliest. However for this simple machine, if the miss condition arrives before the end of ME, we can easily cancel

the effects of the instruction in the informing load delay slot. In this pipeline all changes (both from branches and

ALU operations) do not occur until EX of the slot instruction, which is ME of the informing load. Since we already

RDIF EX ME WB

data returns
cache hit/miss signalled
exceptions taken

branch condition determined
effective address available

FIGURE 5.1. Pipeline of our simple machine showing when various instructions and signals occur.
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have the hardware to cancel the effects of this instruction due to an exception in a normal load operation, cancelling

the slot instruction is not difficult.7 Similarly, since exceptions are not signaled until the ME stage of an instruction,

the instruction in the delay slot of an informing load cannot cause an extraneous exception.

In some machines that use a direct-mapped cache, the miss signal becomes valid after the data, and this means it

does not settle until the beginning of WB. Since these machines start executing the WB cycle of load before a miss is

indicated, they must provide some way to re-execute this cycle if a cache miss occurs. This facility is needed to han-

dle the situation, shown in Figure 5.2, where the instruction in the EX phase is using the result of the load. Since the

later instruction received the wrong value, it has to be re-executed when the correct data is returned. We can use the

same mechanism to implement the informing load. Since the common case is a cache hit, we squash the load delay

slot instruction by default before its ME. If the informing load misses, we re-execute that cycle to allow the slot

instruction to complete its ME. The overhead of this approach is one lost cycle when a miss occurs. In many

machines, this extra cycle is not even necessary since one could make the nullification decision at the end of the

informing load slot’s ME. A store in the informing load slot might seem like it would change state too soon under this

model, but in fact, most stores take two memory cycles (i.e. tag probe then store data), so the memory state is not

actually changed until WB.

The simple pipeline in Figure 5.1 has a branch delay of two cycles. In many machines, including the R3000 and

the R4600, the branch point is sooner and occurs after RD. For these machines a branch, or other control transfer

instruction (CTI), is troublesome because it changes state early in the pipeline, in particular before hit/miss is deter-

mined for the informing load (see Figure 5.3). Since we do not want to update the program counter with the outcome

of the branch in the informing load delay slot unless the informing load misses, we have a dilemma. The solution is

similar to the one proposed for late miss signals. When a CTI is encountered in the slot, it is ignored (assumed

squashed), but a bit is set indicating that the instruction in the slot was a CTI. If the informing load does miss and the

slot instruction was a CTI, the instructions in the pipeline behind the informing load are all squashed, and the

machine starts fetching the CTI instruction and treats it normally. The bulk of the hardware needed to support this

approach (keeping the addresses of the instructions in the pipeline and squashing all the instructions currently needed

for execution) is already present to support exception handling. The only additional hardware is the state bit which

indicates whether the slot instruction is a branch.

7.  We are ignoring subtle but important effects on performance like the small amount of extra capacitive loading on the squash
signal due to the extra squash condition. Also, like all architectural mechanisms with slots, handling exceptions around an inform-
ing load requires some care to ensure that the machine always knows whether to execute the slot instruction or not. For informing
loads this is easy, since if an interrupt occurs when the load completes, one can set the return PC to the correct location (slot or
slot+1) depending on the status of the load.
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FIGURE 5.2. Pipeline diagram showing a machine with a late miss signal.
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The cost of this simple solution is that the machine loses three cycles while the branch instruction is re-executed.

This overhead only occurs when the informing load misses; this is the infrequent case and the small overhead can be

tolerated since the miss has already disrupted the pipeline. Still, we could reduce this delay by the inclusion of an

additional register in the PC unit of the machine. This register would store the calculated target of the CTI when it is

executed. If a miss occurs, rather than restarting at the CTI instruction, the machine would load this register into the

PC and restart from the target of the branch.

The situation for in-order issue superscalar machine is similar to the scalar processor. In fact our ability to deal

with late miss information allows the slot instruction to be issued eitherwith the informing load or in the cycle fol-

lowing the load. The informing-load delay-slot instruction is assumed to be squashed, and then re-executed after the

informing load misses. Surprisingly, the situation for out-of-order issue machines is in some ways even simpler.

These machines do dependency analysis and scheduling in hardware, so the issue of the informing load slot instruc-

tion can be held until the cache hit/miss resolution is known. At this point the instruction is either issued (on a miss)

or squashed. Since the instruction is not issued to the execution unit until the miss is known, we never need to back up

the pipeline when a miss occurs. The complexity in this case is forming the dependency between the informing-load

slot instruction and the load, since it is different than the standard case. While this is not hard in principle, adding any-

thing to an out-of-order machine is not trivial.

Overall, the addition of an informing load instruction to an architecture that already supports squashing branches

and hit-under-miss caches is not difficult. The only complexity arises in situations where the hit/miss information is

not available as early as desired. Here, the appropriate approach is to assume that the informing load will hit and opti-

mize the pipeline actions for this common case.

5.3  Performance Overhead
Section 5.2 showed that the hardware cost to support an informing load instruction is quite small. Unfortunately,

for simple single-issue pipelines, this simple implementation has a performance cost associated with it. For simple

scalar machines, this cost is set by the need to fetch the slot instruction of the informing load. Since these machines

can fetch and execute only one instruction per cycle, the usually-squashed slot instruction increases the instruction

count of any application that uses informing loads. The cost of adding this instruction is not quite one instruction per

informing load, since in some cases the load delay slot was already filled with a NOP instruction (or with a dependent

instruction that causes a load interlock).

We found that the actual overhead ranged from a high of 0.99 extra instructions per informing load for a program

like compress that has relatively few NOPs per load to a low of 0.08 extra instructions per informing load for a pro-

gram likegrep where the MIPS compiler cannot usefully fill the load delay slots. The overhead is slightly smaller

RDIF EX ME WB

hit/missbranch

RDIF EX ME WB
load

slot - branch

FIGURE 5.3. Diagram showing the problem in machines with early commit CTI instructions.
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than one gets from simply counting the fill rate of load delay slots since adding an instruction after a load may cause

the former load slot instruction to replace a NOP in a branch delay slot. For a collection of SPEC benchmarks and

UNIX utilities [Dix92,Smi92], we found that the overhead averaged around 0.6 instructions per informing load.

On a superscalar machine however, the informing load overhead is dramatically lower on average because data

dependences typically limit the average execution rate of instructions to a value below the peak rate of the machine.

This means that there exists many free fetch and execute positions for the informing load slot instructions. We used

an aggressive superscalar compiler that was built for TORCH [Smi92], a simple dual-issue machine with limited par-

allel resources. We then compared the cycle counts of the original code to code where we replaced all loads with

informing loads. For these cycle counts, we assumed that the caches always hit so that the informing-load slot instruc-

tions are pure overhead. The average cost was now much lower—0.31 instructions per informing load forcompress

and 0.03 instructions per informing load forgrep. Increasing the issue width of the superscalar machine to four and

providing wide variety of parallel functional units basically reduces the overhead to zero. Thus for current superscalar

machines, informing loads provide a truly low overhead method of monitoring memory system performance.

6.0  Conclusions
Many proposals have been made to provide software with feedback about memory system performance, each

directed at solving a particular problem. Rather than providing specific support for one particular application, inform-

ing loads provide programmers with a general mechanism for extracting detailed information about the memory sys-

tem, in particular notification that the load operation did not hit in the cache. The overhead of this general mechanism

is small enough (especially in superscalar machines) that informing loads can be used throughout a program in a fine-

grained fashion to collect information or react to a situation that requires a fast and extremely lightweight response.

As a primitive that is easily added to any architecture, informing memory operations allow the programmer to decide

what information is needed and how that information should be used.

To demonstrate the utility of an informing load instruction, this paper described how to improve the functionality

of two important software techniques: performance monitoring and software-controlled prefetching. We have shown

that detailed memory profiles can be captured with much less overhead (only 0.6% to 25% increase in execution time

over the un-instrumented code) than other methods. We have also demonstrated that informing loads can be exploited

in a variety of ways by the compiler to automatically improve the performance offered by software-controlled

prefetching beyond what is possible with only static information. Clearly more work can be done in both areas. For

example in performance monitoring, we could use informing loads to categorize cache misses by different data types

or to develop extremely efficient tools for parallel memory performance monitoring. We also expect other automatic

memory optimizations such as cache-blocking and page-coloring to benefit from informing loads.

Unlike other latency-hiding techniques that include other (potentially complex) functionality, we designed

informing memory operations as a primitive. The goal was to provide memory system information back to the user in

as simple a form as possible, giving each application the flexibility to choose both the information to collect and

actions to take. Our preliminary results indicate that we have been successful in achieving our goals. Informing loads

can provide software with information about memory system performance at a low cost. This paper has identified and

evaluated several ways in which software can take advantage of informing loads. We feel that the general availability

of informing loads in real hardware will spur even more innovative uses.
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