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Abstract

Effective utilization of multiprocessors requires that a program be partitioned for parallel
execution, and that it execute with good data locality and load balance. Although auto-
matic compiler-based techniques to address these concerns are attractive, they are often
limited by insufficient information about the application. Explicit programmer participa-
tion is therefore necessary for programs that exploit unstructured task-level parallelism.
However, support for such intervention must address the tradeoff between ease of use
and providing a sufficient degree of control to the programmer.

In this thesis we present the programming languageCool, that extends C++ with
simple and efficient constructs for writing parallel programs.Cool is targeted towards
programming shared-memory multiprocessors. Our approach emphasizes the integra-
tion of concurrency and synchronization with data abstraction. Concurrent execution is
expressed through parallel functions that execute asynchronously when invoked. Syn-
chronization for shared objects is expressed through monitors, and event synchronization
is expressed through condition variables. This approach provides several benefits. First,
integrating concurrency with data abstraction allows construction of concurrent data struc-
tures that have most of the complex details suitably encapsulated. Second, monitors and
condition variables integrated with objects offer a flexible set of building blocks that can
be used to build more complex synchronization abstractions. Synchronization operations
are clearly identified through attributes and can be optimized by the compiler to reduce
synchronization overhead. Finally, the object framework supports abstractions to improve
the load distribution and data locality of the program.

Besides these mechanisms for exploiting parallelism,Cool also provides support
for the programmer to address the performance issues, in the form of abstractions that
can be used to supply hints about the objects referenced by parallel tasks. These hints
are used by the runtime system to schedule tasks close to the objects they reference,
and thereby improve data locality. The hints are easily supplied by the programmer in
terms of the objects in the program, while the details of task creation and scheduling are
managed transparently within the runtime system. Furthermore, the hints do not affect the
semantics of the program and allow the programmer to easily experiment with different
optimizations.
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Coolhas been implemented on several shared-memory machines, including the Stan-
ford DASH multiprocessor. We have programmed a variety of applications inCool,
including many from the SPLASH parallel benchmark suite. Our experience has been
promising: the applications are easily expressed inCool, and perform as well as hand-
tuned codes using lower-level primitives. Furthermore, supplying hints has proven to
be an easy and effective way of improving program performance. This thesis therefore
demonstrates that (a) the simple but powerful constructs inCool can effectively ex-
ploit task-level parallelism across a variety of application programs, (b) an object-based
approach improves both the expressiveness and the performance of parallel programs,
and (c) improving data locality can be simple through a combination of programmer
abstractions and smart scheduling mechanisms.
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Chapter 1

Introduction

Application programs exhibit a seemingly unquenchable thirst for ever higher compute
power. As computers become faster, more applications become computable within a
reasonable amount of time, further driving the need for high performance computing.
With the increasing availability of fast and cheap microprocessors, parallel processing
has emerged as a way of obtaining high performance in a cost-effective manner. Sev-
eral computer vendors, such as Intel [43, 56], Encore [34], Silicon Graphics [12, 39],
Sun [22, 37], IBM [2], and Convex [27] now offer a variety of commercial multipro-
cessors that include both shared-memory and message-passing systems, and range in size
from a few to thousands of processors. However, the increasing availability of such
multiprocessors has not been matched by an equally rapid acceptability by the user com-
munity, primarily due to the difficulty of programming these computers. Harnessing the
performance potential of these systems requires that programs be partitioned to efficiently
utilize the parallel resources of the machine, which can be a difficult problem.

Parallelism can be exploited at several levels in an application program, including
instruction-level, loop-level, and task-level parallelism (see Figure 1.1). Both instruc-
tion and loop-level parallelism can be successfully exploited through automatic tech-
niques: compiler/hardware mechanisms can identify independent instructions and ex-
ploit instruction-level parallelism [36, 68, 79, 86, 97, 98, 102] while sophisticated com-
piler analysis techniques have been developed to identify independent loop iterations
and thereby exploit loop-level parallelism [108, 112]. However, many codes, including
many scientific and numerical applications, require the exploitation of unstructured task-
level parallelism that is not amenable to such compiler-based parallelization, and must
be indicated by the programmer. In this thesis we address the problem of exploiting
coarse-grained parallelism at the task-level that is explicitly specified by the programmer.

We focus in particular on programming shared-memory multiprocessors. Compared
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Figure 1.1: Exploiting parallelism at different levels in a program.

to message-passing systems where communication between processors must be speci-
fied through explicit messages between processors, shared-memory architectures are eas-
ier to program since inter-processor communication can be specified implicitly through
load/store operations to shared memory locations. In addition, concerns regarding the
scalability potential of shared-memory architectures have been successfully addressed
by recent research prototypes such as the Stanford DASH multiprocessor [74], the MIT
Alewife machine [1], the Kendall Square Research KSR multiprocessor [64], and the
Convex Exemplar [27].

While there has been much previous research on providing explicit support for par-
allel programming (e.g., the ANL macros [18], CST [59], Concurrent C/C++ [40, 41],
HPF [78], Linda [5], Multilisp [46], and PRESTO [14], to name just a few), the increas-
ing availability of commercial multiprocessors in recent years has generated substantial
new interest in parallel processing. Furthermore, it has enabled us to evaluate our ideas
in the context of a fully implemented programming system on the Stanford DASH mul-
tiprocessor [74]. This experience has been instrumental in the development of our ideas
and in focusing our research on the important problems in exploiting parallelism.

1.1 The Problem

Exploiting task-level parallelism requires that the program be partitioned for parallel
execution on a target multiprocessor. The programmer first develops a parallel algorithm,
either by designing an entirely new algorithm, or adapting an existing sequential algorithm
for parallel execution. The parallel algorithm specifies the design of the data structures,
the partitioning of the algorithm into the concurrent activities (tasks), and the coordination
necessary between the parallel tasks. The algorithm is then expressed in the target parallel
language.

To express parallelism as described above, we need language mechanisms to specify
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both concurrent execution as well as the communication and synchronization between the
parallel tasks. The design of these language features is driven by multiple goals, primary
amongst which are efficiency and expressiveness.Efficiency is important in that the
language constructs should be efficiently implementable, and a parallel program should
not incur the overheads of features that it does not use. Furthermore, the language must
beexpressiveto flexibly support different concurrency patterns, thereby allowing various
decompositions of a problem and supporting a wide variety of applications. However,
these goals often conflict with each other. For instance, low-level primitives (such as
the test-and-set instruction for synchronization) provide very efficient execution but can
be cumbersome to use. On the other hand, high-level abstractions (such as the guarded
command [30] for synchronization) are very expressive but can incur high implementation
overheads. The design of a language, therefore, is usually a balancing act between
multiple desirable goals.

Expressing the concurrency in the program is enough to get parallel execution, but is
often not sufficient for good performance. Obtaining high speedups requires good data
locality and load balance in the execution of the program. This is particularly important
in modern multiprocessors where the performance of an application is severely affected
by the high latency of memory references. Modern multiprocessors, such as the Stanford
DASH [74] and the MIT Alewife [1], typically have deep memory hierarchies consisting
of per-processor caches and distributed global memory (see Figure 1.2), and are termed
NUMA architectures (for Non Uniform Memory Access). Achieving high performance
on such machines requires that the computation (tasks) and the data structures (objects) in
the program be appropriately assigned to the underlying processors and memory modules
respectively, so that (a) the work is distributed uniformly across processors for good
load balancing, and (b) tasks execute close to the data they reference in the underlying
memory hierarchy for good data locality. Therefore, a parallel programming system must
not only provide support for expressing parallel execution but must also address these
performance issues. Furthermore, a solution should cover the range of optimizations
necessary for good performance, and should be portable and robust across architectures
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with different memory hierarchies.

1.2 Our Approach

We have designed theCool programming language (Concurrent Object Oriented
Language) to exploit task-level parallelism on shared-memory multiprocessors. Fur-
thermore,Cool provides support to address the performance issues of data locality and
load balancing. We elaborate on each of these components in this section.

The design ofCool has two main themes. First, as mentioned above,Cool must
balance the goals of expressiveness and efficiency in the abstractions that it presents to
the programmer. SinceCool is meant for high-performance parallel programming, we
have chosen to emphasize efficient execution, sometimes at the cost of ease of use.Cool

therefore provides simple and efficient constructs that allow straightforward applications
to be expressed easily, yet enable the programmer to get full control over the parallel
execution of applications that have more complex requirements. This applies to the
constructs for expressing parallelism, as well as to the mechanisms for improving data
locality.

Second,Cool is designed to explore the benefits of an object-based approach to
writing parallel programs. Object-oriented programming has been shown to offer many
benefits—it enhances the expressiveness of programs and makes them easier to under-
stand and modify. However, organizing concurrency and synchronization around the
objects in a program also has advantages that are particular to parallel programming.
For instance, it enables us to build abstractions that encapsulate concurrency and syn-
chronization within the object while providing a simple interface for its use, thereby
enhancing the expressiveness of the language. Second, the synchronization operations
(and the data protected by the synchronization) can be clearly identified by the compiler,
enabling optimizations for efficient synchronization support. Finally, by associating tasks
with the objects they reference (either automatically or through programmer supplied
information), the runtime system can move tasks and/or data close to each other in the
memory hierarchy, and thereby improve both data locality and load balance. An object-
based approach, therefore, has the potential to improve both the expressiveness and the
efficiency of a parallel program.

Overall, this research is not tied to any particular ideological approach. Rather, as
we shall see throughout the thesis, our approach is pragmatic in nature. Our emphasis
is on identifying the key problems in writing high-performance parallel programs, and
addressing them in an effective programming system. As the language has evolved, we
believe that the final design ofCool adequately addresses the important requirements
for high-performance parallel programming.

Finally,Cool is designed for exploiting unstructured task-level parallelism. Regular
programs that exhibit loop-level parallelism are usually more easily handled through
automatic compiler-based parallelization, explicit programmer-supplied directives, or the
use of data-parallel languages such as HPF [78].Cool is meant for irregular programs
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that are not amenable to such loop-level parallelization.

1.2.1 Expressing Parallelism

Rather than designing an entirely new language, we chose to extend an existing language
with mechanisms for expressing parallel execution. This has the advantage of offering
concurrency features in a familiar programming environment. We chose C++ [99] as
our base language because of its support for defining abstract data types, its widespread
use, and the availability of good compilers. However,Cool is not tied to C++, and its
ideas could easily be applied to any programming language with support for abstract data
types. Furthermore, our emphasis is on designing the individual constructs inCool to
exploit the data abstraction mechanisms in C++; their interaction with inheritance, while
important, is not our primary concern.

The constructs inCoolare provided within the class mechanism of C++, and thereby
exploit the object structure of a C++ program. Concurrent execution inCool is ex-
pressed through the invocation ofparallel functions that execute asynchronously when
invoked. Parallel functions execute in the same address space and therefore communicate
through load/store references to shared data. Synchronization between parallel functions
is through monitors and condition variables [55] for mutual exclusion and event synchro-
nization respectively.

The majority of the constructs inCool have individually been proposed before in
other languages, such as ConcurrentPascal [47], Mesa [70], and Modula-3 [21]. Our
contribution has been to bring together a small and simple set of features that mesh well
together, and afford the programmer flexibility and control.Cool offers a combi-
nation of different features that set it apart from previous languages. For instance, the
original monitor-based languages were designed for operating systems programming on
uniprocessor systems (e.g., ConcurrentPascal [47, 48]), where the primary requirement
was coarse-grained sharing of resources between heavy-weight operating system pro-
cesses that execute in their own private address space. In contrast, we have integrated
these constructs into a language designed specifically for writing parallel programs that
require fine-grained sharing of data between tasks executing in the same shared address
space. We have also studied the issues that arise in implementing monitors and condition
variables on a shared-memory multiprocessor, and developed compiler techniques to op-
timize their overheads. Together, the language design and implementation has enabled us
to evaluate the usefulness of these constructs for writing high-performance parallel pro-
grams. In addition, theCool constructs are designed to exploit the object structure of
the underlying program for expressing parallelism. Finally,Cool offers language-level
support for improving data locality, which is described next.
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1.2.2 Improving Data Locality and Load Balancing

Good data locality and load balancing are essential for high performance in a parallel
program, and require a careful distribution of tasks and data across the machine. Auto-
matic compiler or operating system techniques to perform these optimizations have had
only limited success so far, since the optimizations usually require knowledge about the
program that is beyond the scope of automatic analysis. To avoid being limited by the
capabilities of current techniques, it becomes important to consider programmer help in
improving performance. Most current systems, however, provide minimal support for
programmer participation, typically consisting of low level machine-specific primitives
to schedule a process onto a particular physical processor, or to allocate data from a par-
ticular processor’s memory. As a result, achieving high performance usually requires that
these optimizations be explicitly hand-coded directly in terms of the underlying physical
processor/memory modules.

The support provided inCool for performing these optimizations is both easy-
to-use and portable across a range of memory hierarchies, including those found in
bus-based machines [39], COMA architectures [64], and NUMA multiprocessors [74].
Cool provides abstractions for the programmer to supply hints about the data objects
referenced by parallel tasks. These hints are used by the runtime system to appropriately
schedule tasks and migrate data, and thereby exploit locality in the memory hierarchy
without affecting the semantics of the program. With this partitioning of functionality
the programmer can focus on exploiting parallelism and supplying hints about the object
reference patterns, leaving the machine-specific details of task creation and scheduling
to the implementation and the runtime system. The hints inCool provide a hierarchy
of control, so that most common optimizations are easily obtained, yet at the same time
providing full control over a range of optimizations if necessary.

1.2.3 Potential Drawbacks

Our approach does have some potential drawbacks. First, since it favors giving control
to the programmer,Cool is sometimes not as expressive as other languages that provide
more elaborate constructs, and some applications that can be directly expressed in other
languages require theCool programmer to explicitly build the desired synchronization.
In this regard, therefore,Cool represents a particular design point in the tradeoff between
expressiveness and efficiency. Other, perfectly reasonable languages, may well choose to
make a different tradeoff, and emphasize ease-of-use at the cost of efficient execution.

Second, although the object-based approach is usually beneficial, there are applica-
tions where there is a mismatch between the object granularity and the desired concur-
rency, synchronization, and/or communication granularity. In such situations the object
structure is useless (at best) and may even be cumbersome. InCool, therefore, we
provide the programmer the flexibility to circumvent the object structure when necessary.

Finally, the mechanisms inCool to improve locality and load-balance only make it
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easier to actuallyperformthe desired task and data distribution optimizations. Determin-
ing the useful optimizations requires an understanding of both the application structure
as well as the memory hierarchy, and continues to be incumbent upon the programmer.

1.3 Evaluation

To evaluate the ideas presented in the thesis we have implementedCool on several
shared-memory multiprocessors and programmed a variety of applications in the lan-
guage. The machines we have ported to include the SGI workstations [12] (8 processors),
the Encore Multimax [34] (32 processors), and the Stanford DASH multiprocessor [74]
(64 processors). Our applications have been chosen from the SPLASH [96] suite of
parallel benchmarks. These are important classes of applications from the scientific and
engineering domain that are likely to benefit from the performance potential of parallel
processing. Most of these applications are irregular in structure and not amenable to
automatic compiler-based parallelization. The programs are large, ranging from 3,000 to
9,000 lines of code, and are coded using the ANL macros [18] to express parallelism.

Having a set of realistic applications implemented on a modern multiprocessor has
enabled us to do a thorough evaluation of the design, implementation, and performance
of the language. We evaluate the effectiveness of the language constructs in expressing
different forms of concurrency and synchronization. We evaluate the efficiency of the
language by analyzing the performance of theCool programs on the DASH multiproces-
sor. We evaluate the effectiveness of our approach to improving data locality by applying
it to theCool version of the applications, monitoring the programmer effort involved,
and measuring the performance gains. Along with measuring overall improvements in
application performance, we use the hardware performance monitor on DASH [75] to
monitor the effects on the cache and memory system behavior in detail. We also compare
the performance of theCool applications to that of equivalent codes hand-tuned using
the ANL macros [18] in the SPLASH suite.

Cool has been operational for over two years and has been used in research projects
by several undergraduate and graduate students. In addition, it has been used in a graduate
class that attracts students from many engineering departments and includes a substantial
parallel programming project.Cool has also been distributed to other university and
industrial sites. Feedback from the diverse set of users has been integral to the evolution
of the language.

1.4 Contributions of the Thesis

In this thesis we describe the design and implementation ofCool, as well as our pro-
gramming experience and performance evaluation using a variety of parallel applications.
Based on this experience, this thesis makes the following contributions.
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The most important lesson we have learned is the importance of simplicity and effi-
ciency in designing constructs for parallel programming. We show that simple constructs
that provide the control and flexibility to build application-specific abstractions can offer
programming ease as well as enable efficient programs.

Previously it was shown that monitors and condition variables were good for operating
systems programming. In this thesis we show that these constructs are also effective for
writing high-performance parallel programs. They are appealing because they can directly
express the requirements of most parallel applications, as well as serve as flexible building
blocks for expressing more complex applications. Furthermore, they can be implemented
very efficiently.

We show that an object-based approach that integrates concurrency and synchroniza-
tion with data abstraction improves both the expressiveness and the efficiency of the
language. The programmer can build abstractions that encapsulate the details of concur-
rency and synchronization within the object. A compiler can analyze the operations on
monitor objects, and optimize their implementation to substantially reduce the synchro-
nization overheads in the program.

We develop a new approach to improving data locality that combines programmer
supplied pragmas with scheduling mechanisms in the runtime system. We show that this
approach is very effective—it is easy to use and portable across different architectures.
Yet, as demonstrated by our results,Cool programs optimized in this fashion perform
as well as hand-tuned codes.

1.5 Organization of the Thesis

In Chapter 2 we present the design ofCool. We outline the basic design philosophy
behind the language, describe each of the constructs, and illustrate them through example
programs that include small kernels as well as large applications.

In Chapter 3 we describe the support provided inCool for improving data locality
and load balance in parallel programs. We present the abstractions provided to the
programmer, and the scheduling heuristics used by the runtime system.

In Chapter 4 we describe theCool implementation, indicating the techniques em-
ployed to support each construct efficiently. We then describe several compiler techniques
that we have developed to optimize the overheads associated with the synchronization
constructs. Finally, we describe the runtime task-queue structures to support the schedul-
ing optimizations.

In Chapter 5 we present case-studies of several applications written inCool. We
present performance results on the Stanford DASH multiprocessor [74], and evaluate
the effectiveness of our approach to improving data locality and load balance in these
applications.
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In Chapter 6 we present related work. We compareCoolwith other parallel program-
ming languages, and compare our approach to exploiting locality with other automatic
and manual techniques.

Finally, in Chapter 7 we present concluding remarks and discuss directions for future
research.
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Chapter 2

Language Design and Programming
Experience

In this chapter we describe theCool parallel programming language. Our presentation
is organized as follows. We first describe the runtime execution model for aCool

program. We then describe the constructs inCool and show how they are integrated
within the class mechanism of C++. We illustrate the constructs through small examples
and then describe how we programmed several large parallel applications inCool. In
light of this programming experience, we discuss the strengths and limitations of the
Cool constructs and evaluate the benefits of our object-based approach. Finally we
present some alternate choices that we considered (and discarded) during the design of
the language.

2.1 Runtime Execution Model

An executingCoolprogram creates units of work calledtasks(commonly referred to as a
threadof execution), with multiple tasks executing within the same shared address space.
The execution of these tasks is implemented in theCool runtime system asuser-level
or light-weight threads[28, 31]. The runtime system manages the execution of tasks in a
manner analogous to the management of processes by the operating system, except that
the creation and scheduling of tasks is managed entirely within user space. As a result
tasks are implemented very efficiently—the overhead of creating and then executing a
task in aCool program is about 400 machine instructions on a MIPS R3000 processor
(see Chapter 4). This is far more efficient than either Unix processes or kernel-level
threads.

Programming with light-weight threads is significantly easier than programming in
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process-oriented models such as the ANL macros [18]. The abstraction presented to the
programmer in these process-oriented models is that of multiple heavy-weight operating
system processes executing concurrently, with operations such as creating a process (fork)
or switching contexts from one process to another consuming several thousand instruc-
tions. In this programming model, therefore, the programmer creates processes only at
the start of the program and thereupon explicitly manages the allocation of work across
these processes, in effect building an explicit task management system. Even though this
allows the programmer to hand-tune the allocation of work to be very efficient, explicitly
managing the creation and scheduling of tasks can be very cumbersome in practice. In
contrast, light-weight threads handle the details of task management automatically within
their runtime system.

An important consideration in expressing concurrent execution is the granularity of
a parallel task. There is an inherent tradeoff between task granularity and load balance:
large numbers of small tasks allow for good load balancing of the work across processors,
but if the tasks are too small then the overheads of concurrency may be excessive. On
the other hand, large tasks (perhaps to the extreme of a single task per processor) incur
minimal overhead, but variations in the amount of work within each task can result in
poor load balancing. The granularity of tasks must therefore be chosen carefully and
may require the programmer to divide large tasks into smaller ones, or aggregate several
small tasks into a larger task. We shall see instances of these different scenarios later in
this chapter when we discuss our experience writing parallel applications inCool.

2.2 Language Constructs

Writing a parallel program has three basic components: specifying the concurrency, the
communication, and the synchronization between the concurrent activities. InCool

concurrencyis expressed through parallel functions;communicationbetween parallel
functions is through shared variables; and the two basic elements ofsynchronization—
mutual exclusion and event synchronization—are expressed through monitors and condi-
tion variables respectively. In addition, we also provide a construct to express fork-join
style synchronization at the task level. We discuss each of these components in detail
below.

2.2.1 Expressing Concurrency

The only way to specify concurrent execution in aCool program is through the invoca-
tion of parallel functions. Both C++ class member functions and C-style functions can
be declared parallel by prefixing the keywordparallel to the function header. An
invocation of a parallel function creates a task to execute that function; this task executes
asynchronously with other tasks, including the caller. In addition, the task executes in the
same shared address space as all other tasks and can access the program variables like
an ordinary sequential invocation. TheCool runtime system automatically manages the
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creation and scheduling of these tasks. Since tasks are light-weight threads of execution,
they can be dynamically created to express medium to fine-grained concurrency, making
it easier to specify parallelism at a level that is natural to the problem.

It is useful to have certain invocations of a parallel function execute serially within
the caller when the default of parallel execution results in unnecessary parallelism. For
instance, in an implementation of mergesort, one may wish to invoke the sort on the left
half of the array in parallel, while the sort on the right half is invoked serially. This is
because the caller must wait for both halves to be sorted anyway before merging them. We
therefore allow a parallel function to be invoked serially by specifying the keywordserial
at the invocation. However, the serial specification must be used carefully: depending on
the synchronization requirements in the program, executing a parallel function serially
can sometimes lead to deadlock.

Since a parallel function executes asynchronously with the caller, what should be
the semantics of returning a value from a parallel function? The solution adopted in
Multilisp [46] is for a parallel function to return aplaceholderfor the return value. This
placeholder remains unresolved until the parallel function completes, at which point it
becomes resolved with the value returned by the parallel function. Non-strict operations
on the placeholder (those that only need areferenceto the value, rather than the value
itself) execute without delay, while strict operations (those that need the actual value) au-
tomatically block until the parallel function has completed. We describe our experiments
with language constructs to support returning general values from parallel functions later
in Section 2.5.1. For now, we observe that fully-general futures incur high implementa-
tion overheads, whereas future-like solutions can result in complicated semantics, such as
returning a value that may be modified by the calling task even while a parallel function
is still executing to produce the return value.

In Cool, therefore,all parallel functions implicitly return a pointer to an event of
type condH (described later in Section 2.2.3). When the parallel function is invoked an
event isautomaticallyallocated and a pointer to it returnedimmediatelyto the caller. To
synchronize for the completion of the parallel function, the caller can store this pointer and
continue execution, then later wait on this event for the parallel function to complete. The
called parallel functionautomaticallybroadcasts a signal on this event upon completion,
thereby resuming any waiting tasks.

Returning a pointer to an event is a simple mechanism to synchronize for the comple-
tion of parallel functions. Synchronization is automatically provided by the implemen-
tation within the caller, without requiring the programmer to modify the called function.
This features does not allow parallel functions to return a value other than a pointer to an
event. The results produced by a parallel function must be communicated through global
variables and pointer arguments to the function. We illustrate this through an example in
Section 2.3.2.

It is the programmer’s responsibility to free the storage associated with the event
returned by a parallel function once it is no longer required. The compiler performs
simple optimizations such as (a) not allocating the event at all for invocations of parallel
functions where the return value is ignored, and (b) deallocating the event once it is no
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longer accessible in the program (e.g., exiting the scope of an automatic variable that
stores the only pointer to the event). The compiler performs the optimizations safely,
i.e., it ensures that an event is not deallocated by both the programmer and the compiler.
Although the compiler can optimize simple situations, the ultimate responsibility for
deallocating the event rests with the programmer.

2.2.2 Mutual Exclusion

The next key functionality needed is for parallel functions to communicate and to have
controlled access to shared data. Just like ordinary functions in a C++ program, parallel
functions inCool communicate through variables in the shared address space. Con-
trolled access to shared data is provided through monitors for mutual exclusion, and
condition variables for event synchronization. We describe the mutual exclusion support
in this section, and event synchronization in the following section.

With traditional monitors [55] synchronization for a shared object (an instance of a
class) is expressed by specifying the class to be a monitor. All the operations on that class
are assumed to modify the object and must acquire exclusive access to the object before
executing. WhileCool monitors provide the same basic synchronization as traditional
monitors, they differ in the following three respects. First, monitor synchronization in
Cool is specified at the granularity of individual operations rather than the entire class.
Second,Cool supports recursive calls on the same monitor object. Finally,Cool

allows the programmer to access a monitor object without synchronization. We elaborate
on each of these differences below.

First, instead of specifying aclass to be a monitor, synchronization for a shared
object inCool is expressed by specifying an attribute, either mutex or nonmutex, for
the individual member functionsof that class. A function so attributed must acquire
appropriate access to the object while executing, thereby synchronizing multiple accesses
to the object. Amutex function requires exclusive access to the object instance that
it is invoked on; it is therefore assured that no other function (mutex or nonmutex)
executes concurrently on the object. Anonmutexfunction does not require exclusive
access to the object; it can therefore execute concurrently with other nonmutex functions
on the same object but not with another mutex function. Typically, functions that modify
the object are declared mutex while those that reference the object without modifying
it are declared nonmutex, automatically providing the commonly used multiple reader
(nonmutex) single writer (mutex) style synchronization for the shared object. Functions
with neither attribute execute without synchronization like ordinary C++ functions; their
behavior and usefulness is discussed later in this section.

The mutex and nonmutex attributes provide synchronization between functions on
the sameobject, unaffected by functions on other instances of the class. Furthermore,
since this synchronization is based on objects, C style functions cannot be declared
mutex or nonmutex. A C++ class member function can have only one of the mutex
and nonmutex attributes. However, these two attributes are orthogonal to the parallel
attribute. A function that is both parallel and mutex/nonmutex executes asynchronously
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when invokedandappropriately locks the object before executing. Finally, invocations of
monitor operations can rely on not beingstarved. The implementation guarantees that a
blocked monitor operation is not indefinitely overtaken by subsequent monitor operations,
and is ultimately serviced.

The second difference between traditional andCool monitors is that in a traditional
monitor recursive monitor calls to the same object by a task result in deadlock, since
the task is trying toreacquire an object. However, inCool such recursive monitor
calls proceed without attempting to reacquire the object, since the task has already sat-
isfied the necessary synchronization constraints. Along with immediate recursion, this
includes calls to other methods on the same object, as well as indirectly recursive calls
that may go through methods on other objects before invoking a method on the initial
object. Furthermore, if a task invokes a mutex function on an object on which it is
already executing a nonmutex function, then it (a) waits for other executing nonmutex
functions to complete, (b) acquires a mutex lock on the object and executes the mutex
function, and (c) reverts back to the nonmutex lock upon completion. These semantics
for monitor functions provide reasonable behavior while still maintaining the necessary
synchronization requirements, and avoid obscure deadlock situations in perfectly reason-
able programs. However, deadlock is still possible in aCool program when two tasks
attempt to acquiremultipleobjects in a different order. This is a common problem when
acquiring multiple resources; we discuss solutions to it in Section 2.3.3.

Finally, Cool allows the programmer to bypass the synchronization on a monitor
object. Often the programmer knows that certain references to a shared object can be
performed safely without synchronization. For instance, a task may wish to simply ex-
amine the length of a queue object to decide whether to dequeue an element from this
queue or to move on to another queue. Although unsynchronized accesses violate the
synchronization abstraction offered by the mutex and nonmutex attributes, they avoid
the synchronization overhead and serialization when they can be performed safely. We
permit unsynchronized accesses in two ways. First, we do notrequire functions to have
a mutex/nonmutex attribute. Those without an attribute can execute on the object with-
out regard for other concurrently executing functions—mutex or nonmutex. Second, we
maintain the C++ property that the public fields of an object may be accessed directly
rather than through member functions alone, again independently of executing functions.
When performed safely, these unsynchronized references avoid the synchronization over-
head and enable additional concurrency. Although the burden for determining when these
unsynchronized references can be performed safely is left entirely to the programmer, we
believe that such compromises are frequently necessary for efficient execution. This is
illustrated by several applications (e.g., Water, Barnes-Hut, Panel, and Block Cholesky)
later in this chapter.

2.2.3 Event Synchronization

Waiting for an event is a common requirement of parallel programs. For instance, a
consumer may need to wait for a value to be made available by a producer. InCool
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this synchronization is expressed through operations on condition variables. A condition
variable is an instance of a predefined classcond in the language. The main operations
on condition variables are wait, signal, and broadcast. Await operation always blocks
the current task until a subsequent signal. Asignal wakes up a single task waiting on
the event, if any. It has no effect otherwise. Abroadcastwakes up all tasks waiting for
that event, and is useful for synchronizations like barriers that resume all waiting tasks.

Within a mutex/nonmutex function, a task may need to wait for an event that is
signaled by another function on the same object instance. This is expressed through
the releaseoperation on a condition variable. The release operation atomically blocks
the function on an event and releases the object for other functions. Invoking a wait
operation may lead to deadlock since the function has locked the object, preventing the
signaling function from acquiring access to the object. When the event is signaled, the
function resumes execution at the point that it left off after (a) waiting for the signaling
function to complete, and (b) reacquiring the appropriate lock on the object. Thus the
synchronization requirements of mutex and nonmutex functions are maintained.

The condition variables just described do not have history, i.e., a wait operation is
resumed by subsequent signals only. In some situations, such as a wait operation on the
event returned by a parallel function, the wait should obviously continue without blocking
if the event had been signaled before the wait operation. Although this functionality
can be implemented with the existing mechanisms in the language, for convenience we
provide the classcondH (cond+History) in which a signal operation is never lost; if a
task is waiting then it is resumed, otherwise the signal is stored in the condition variable.
A wait operation blocks only if there is no stored signal, otherwise it consumes a signal
and continues without blocking. The broadcast operation is equivalent to infinitely many
signals; all subsequent wait operations continue without blocking. We provide anuncast
operation to reset the stored signals to zero, and a nonblockingcount operation that
returns the number of stored signals. The latter operation is useful while writing non-
deterministic programs, that test an event and take different actions depending on whether
the event has been signaled or not.

In traditional monitors condition variables are allowed only as private variables within
a monitor. Their wait operation is like our release—it releases the monitor and blocks
until a subsequent signal is performed. This behavior is desirable in traditional monitors
since another thread can signal the waiting thread only by acquiring exclusive access to
the monitor. In contrast, an event can also be accessed directly inCool (i.e., outside
of a monitor object), hence both the wait and the release operations are useful. These
differences in condition variables between traditional monitors andCool are not funda-
mental, however. For instance, an abstraction that behaves like an event and is globally
accessible can easily be built using traditional monitors and condition variables. We sim-
ply provide global events as a built-in language feature inCool for convenience, since
condition variables are often useful outside a monitor for general event synchronization
between tasks.
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Figure 2.1: Task-level synchronization using the waitfor construct.

2.2.4 Task-Level Synchronization

Application programs that exhibit phase-structured computation—such as a simulation
performed over several time steps—often exploit parallelism within each phase. Rather
than synchronizing for each individual object to be produced by the different parallel
tasks in the phase, it is often simpler and more efficient to wait for all the tasks in that
phase to complete. InCool, this task-level synchronization can be expressed using
the waitfor construct, by attaching the keyword waitfor to a scope wrapped around the
block of statements of that phase. The end of the scope causes the thread executing the
statements in the scope to block until all tasks created within the scope of the waitfor
have completed. This is precisely the dynamic call graph of all functions invoked within
the scope of the waitfor, and it includes all parallel functions either invoked directly by
the task, or invoked indirectly on its behalf by other functions.

In a process-oriented programming model such as the ANL macros [18], synchro-
nization for the completion of such phase-structured computation is usually expressed
using barriers. The waitfor construct inCool offers greater flexibility compared to
a barrier. For instance, consider the example in Figure 2.1 that shows two independent
parallel phasesA andB, followed by the phasesC andD respectively. While a waitfor
can express synchronization independently for each individual phase, the same is quite
difficult using barriers. We can partition the available processors across the two phases
and have two independent barriers at the end of each phase, but this does not allow a
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Table 2.1: Summary ofCool constructs.

Purpose Construct Syntax

Concurrency Parallel functions parallel condH* egClass::foo ()
Mutual exclusion Mutex and nonmutex functions mutex int egClass::bar ()
Mutex with concurrency Parallel mutex functions parallel mutex condH* egClass::baz ()

Condition variables condH x; cond y;
Wait for an event x.wait ()
Signal an event x.signal ()

Event synchronization Wait and release monitor x.release()
Broadcast an event (condH) x.broadcast ()
Reset an event (condH) x.uncast ()
Number of stored signals (condH) x.count ()

Task-level synchronization Waitfor waitfor f . . .g

processor to service tasks from another phase. In contrast, the waitfor construct does not
have any of these problems and offers greater flexibility.

2.2.5 Summary

Table 2.1 summarizes theCool constructs. As we can see,Cool offers a small
and simple set of constructs additional to C++: parallel functions to express concurrency,
monitors and condition variables for mutual exclusion and event synchronization respec-
tively, and the waitfor construct for expressing task-level synchronization. The constructs
are designed to exploit the data abstraction features of the underlying language (in this
case C++). Furthermore, the language makes deliberate allowances for programmers to
leverage their knowledge of the code for additional expressiveness and/or performance
benefits. For instance, we allow the programmer to bypass the abstraction provided by
monitor operations and reference the public fields of a monitor object directly without
synchronization (see Section 2.2.2). Such allowances are not desirable from safety con-
cerns, but offer sufficient performance benefits to justify offering them in a controlled
fashion.

2.3 Examples

We now illustrate the language through some example programs. We first present the
basic concurrency and synchronization features ofCool with a particle-in-cell code
(PSIM4 [81]). We then demonstrate the ability to build synchronization abstractions in
Cool with some examples that perform object-level synchronization. The first example
implements synchronization for multiple values produced by a parallel function (taken
from the Water [96] application). The second example shows how to acquire exclusive
access to multiple objects without causing deadlock (common in database applications).
Besides these code fragments, we describe our experience with implementing several
applications from the SPLASH [96] benchmark suite inCool in the following section.
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Figure 2.2: A wind tunnel in PSIM4, with particles contained in space cells.

2.3.1 Illustrating the Constructs

PSIM41 is a three dimensional particle-in-cell code that is used to study the pressure
and temperature profiles created by an object flying through the upper atmosphere (see
Figure 2.2). The program containsparticle objects that represent air molecules andspace
cell objects that represent the wind tunnel, the flying object, and the boundary conditions.
It evaluates the position, velocity, and other parameters of every particle over a sequence
of time steps. The main computation in each simulated time step consists of amovephase
and acollide phase. The move phase calculates a new position of the particle using the
current position and velocity vectors, and moves the particles to their destination cell
based on their new position. The collide phase models collisions among particles within
the samespace cell.

Concurrency is organized around space-cell objects in the parallel version of the
algorithm, as shown in Figure 2.3. Within the move phase particles in different space
cells can be moved concurrently, as expressed through the parallelmovefunction on a
space cell. In the collide phase, based on the semantics of the application, only particles
in the same space cell may collide with each other, so collisions in different space cells
can be modeled concurrently through the parallelcollide function on a space cell.

During the course of the simulation, particles that move from one space cell to
another are removed from their present space cell and added to the destination space
cell, by invoking theaddParticlefunction on the destination cell. Each cell maintains a
list of incoming particles (incomingPartList) that provides the mutex functionadd; the
addParticlefunction calls theaddfunction to enqueue particles on this list. The incoming
particles are incorporated with the other particles in the space cell in the beginning of
the collide phase. While transferring the new particles, the incomingParticleList can be
manipulated directly without synchronization since all cells have already completed their

1An improved version of the more widely known MP3D program from the SPLASH [96] benchmarks
suite.
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classParticleListc f main () f
. . . . . .

public: while (timeStep> 0) f
mutex void add (Particle*); //For each time step do

g; . . .
waitfor f

// Move particles in each cell concurrently.
classCell c f for (i=0; i<N; i++)

. . . Cell[i].move ();
ParticleListc incomingParticleList; g // Wait until move phase completes.

public:
. . . waitfor f

// Perform the move phase for particles in this cell. // Model collisions in each cell concurrently.
parallel void move ()f for (i=0; i<N; i++)

. . . Cell[i].collide ();
// If the particle ‘p’has moved beyond a cell g // Wait until collide phase completes.
// boundary then add it to the cell ‘dest’
Cell[dest].addParticle (p); timeStep-- ;

g g
g

// Model collisions for particles in this cell.
parallel void collide () f

// Transfer particles from the incomingParticleList
// and add them to the list of particles in this cell.
// incomingParticleList can be accessed without
// synchronization.
. . .

g

void addParticle (Particle* p)f
incomingParticleList.add (p);

g
g Cell[N];

Figure 2.3: Expressing concurrency and synchronization in PSIM4.
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move phase. Finally, since each phase must complete before going on to the next phase,
the synchronization is naturally expressed by wrapping the waitfor construct around each
phase.

This example shows the basicCool constructs in action within the context of a real
application, a particle-in-cell simulator. This is all theCool code required to express
the concurrency and synchronization in this application, and includes parallel functions,
monitor functions, and the waitfor construct. This example also illustrates the usefulness
of ‘attribute-less’ functions on a monitor object, since accesses to the incomingParticleList
must be serialized in the move phase, but can proceed without synchronization during
the collide phase.

2.3.2 Object-Level Synchronization

The previous example showed how a straightforward application of theCool con-
structs could be used to express an interesting application in parallel. We now use the
Water code [96] to illustrate how the constructs can be used to build more complex
synchronizations. This example also illustrates the benefits of C++: we use the data
abstraction mechanisms in C++ to build an abstraction where the synchronization details
are encapsulated within the object, providing a clean interface for its use.

The water code is an N-body molecular dynamics application that evaluates forces
and potentials in a system of water molecules in the liquid state. Several molecules are
processed together as a group (a task on an individual molecule is too fine-grained; this
is discussed later in Section 2.4.1), with a parallel functionstats on a molecule group
to compute various internal statistics like the position, velocity, and potential energy of
the molecules in that group. In this example we show how to synchronize for individual
values produced by a parallel function as they become available, rather than waiting for
the entire function to complete, thus enabling the caller to exploit additional concurrency.

In Figure 2.4 we show the synchronization for the variablePotEnergy, representing
the potential energy of a molecule group. This example exploits the ability in C++ to
define type conversion operators that are automatically invoked to construct values of the
desired type. We define a classdoubles that adds a condition variable for synchronization
to a double. This class has two operators. The first is an assignment operator invoked
when a value of typedouble is assigned to a variable of typedoubles. The operator
stores the value in the variable and broadcasts a signal on the condition variable. The
second is a cast operator invoked when a value of typedoubles is used where adouble
is expected. The operator waits for the event to be signaled and then returns the value.
With these operators adoublecan be safely used in place of adoubles and vice versa.

The caller passes the address ofPotEnergyto the stats function and continues ex-
ecution. When it later references the value ofPotEnergy, it invokes the cast operator
which automatically blocks until the value is available. The pointer toPotEnergycan be
passed to other functions without blocking, thus exploiting additional concurrency. The
called function computes the potential energy and stores it in the supplied variable—this
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classdoubles f main () f
double value; moleculeGroup mg;
condH x; double totalEnergy = 0;

public: doubles PotEnergy;
// Initialize the value to be unavailable. // The value is initially unavailable.
doubles () f . . .

x.uncast (); //Parallel invocation.
g mg.stats (&PotEnergy, ...<other arguments> ...);

// Operator to cast a double to a doubles. . . . perform other useful computation. . .
// Called when a double is assigned
// to a variable of this type. // Now the value of PotEnergy is required.
void operator= (double v) f // The reference to PotEnergy blocks if the

value = v; //corresponding function has not completed.
x.broadcast (); //e.g. Compute the total energy.

g totalEnergy += PotEnergy;
// Continue after the value becomes available.

// Operator to cast a doubles to a double. . . .
// Called when the value is referenced. g

operator double () f
x.wait ();
return value;

g

g;

// Function to compute internal statistics of the molecules
// in the group, like position, velocity, and potential energy.
parallel void moleculeGroup::stats (double s* poteng, ...)f

double subtotal;
. . . Compute local potential energy into subtotal. . .
*poteng = subtotal;
. . . Continue - compute position, velocity etc. . .

g

Figure 2.4: Object-level synchronization in the Water code.
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classsh obj f main () f
objtype value; shobj x, y;
enum f FREE, BUSYg status;
cond sync; //Begin Transaction:
. . . // Acquire exclusive access to both objects.

public: // To avoid deadlock, objects must be claimed
mutex void claim () f // in the same order by all transactions.

if (status != FREE) x.claim (); y.claim ();
// Release mutex and wait until the object
// becomes available. . . . Reference and modify the two objects. . .
sync.release ();

// The object is now available; continue. // End Transaction: Release the objects.
status = BUSY; x.surrender (); y.surrender ();

g g

mutex void surrender ()f
status = FREE;
// Wake up a task waiting for this object, if any.
sync.signal ();

g

g;

Figure 2.5: Acquiring access to multiple objects in a transaction based system.

assignment invokes the assignment operator which stores the value and signals all tasks
waiting on the condition variable. The functionstatscontinues execution to compute the
other parameters.

This example builds an abstraction of a shared object with synchronization. This
abstraction allows the caller (consumer) to execute asynchronously until it needs the
value, and allows the called function (producer) to execute independently, making the
various parameters available as they get computed. In addition, we use the ability to
define operators in C++ to build adoubles abstraction; the synchronization details are
encapsulated within the object, with the object being used like an ordinary double. This
enables us to integrate synchronization as a property of the shared object, similar to
‘future’ variables in MultiLisp [46] (discussed later in Section 2.5.1).

2.3.3 Exclusive Access to Multiple Objects

Mutex and nonmutex functions protect access to a single object instance. However,
there are situations where a program updates two (or more) objects and requires exclusive
access to all of them at the same time. For instance, in a hash-table moving an object
from one bucket to another requires exclusive access to both buckets (otherwise another
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task may find none/duplicate copies of that object). Another example is a transaction
based system in which updates to several objects must be performed atomically. This
synchronization can be easily built by the programmer using mutex functions and condi-
tion variables, by explicitly maintaining the status of the objects and providing operations
to acquire and release them (see Figure 2.5). Aclaim operation acquires the object if it
is free and blocks otherwise. Thesurrenderoperation grants access to a waiting task, if
any. Exclusive access to all the objects is obtained by claiming each individual object.
However, all tasks must claim the objects in the same order to avoid deadlock—this
can be ensured through macros or functions that claim the objects in order of increasing
virtual addresses, for example. This simple protocol can be easily extended to support
specific application requirements like operations to test if an object is available and either
blocking or retrying immediately/later.

2.4 Experience with Applications

The previous sections have described how various common synchronizations can be
expressed inCool. For a more thorough evaluation of the language, we have rewritten
several of the SPLASH [96] applications inCool. The SPLASH suite is a collection
of large scientific and engineering applications that are quite representative of important
parallel applications. These applications have been explicitly hand-parallelized, and are
therefore good candidates to evaluate both the programmability and the performance of
the language.

All of the SPLASH applications were originally written in C (with the exception of
Ocean, which is written in Fortran), and use the ANL macros [18] for concurrency. Lo-
cusRoute [89] is an application to route wires in a VLSI circuit. Panel Cholesky [91] per-
forms Cholesky factorization of a sparse matrix using a Panel decomposition of a matrix.
Block Cholesky [92] also performs Cholesky factorization of a sparse matrix, but uses a
block decomposition of the matrix and therefore requires a different algorithm. Ocean [95]
is an application that studies the influence of eddy and boundary currents on large-scale
ocean currents. Water [96] and Barnes-Hut [93] are N-body applications—Water simu-
lates various physical parameters in a system of water molecules, while Barnes-Hut uses
a hierarchical algorithm to simulate the evolution of galactic systems.

We now provide a detailed description of our experience programming each of these
applications inCool. Our starting point for each application was the parallel version
developed by the original authors using ANL macros [18], which we then coded in
Cool. For each application we describe the basic structure of the parallel algorithm, and
then describe how the desired concurrency and synchronization was expressed using the
Cool constructs. Table 2.2 summarizes the object decomposition, and the concurrency
and synchronization features ofCool employed in each application. Performance results
of these applications running on the Stanford DASH multiprocessor [74] are presented
later in Chapter 5.
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Table 2.2: Summary of experience with SPLASH applications.
Program Object Structure Concurrency Synchronization

(Parallel Function)

Water
Molecules,
Molecule
Groups

Operate on a
Molecule group

� waitfor tasks on molecule groups

� synch for values from functions

� serialize updates to shared values

Ocean Grids, Regions Process a Region
� waitfor region operations to com-

plete

LocusRoute Wires Route a Wire � waitfor all wires to be routed

Panel Cholesky Panels Update a Panel

� serialize updates to a panel

� synch for source panel to be ready

� waitfor updates to complete

Block Cholesky Blocks Update a Block

� serialize updates to a block

� synch for source block to be ready

� waitfor updates to complete

Barnes-Hut Bodies, Space Cells Process a Body
� serialize updates to space cells

� waitfor tasks on all bodies

2.4.1 Water

Water [94, 96] is an N-body molecular dynamics application that models forces and
potentials in a collection of water molecules over a period of time-steps. The application
consists of about 2000 lines of code. The main data structures are various physical
properties such as position, velocity, and potential/kinetic energy for each molecule in
the system. These properties are organized into a molecule object, and there is an array of
such molecule objects in the program. (The original SPLASH version of this application
had a different organization of the data structures, consisting of a separate array for each
different physical property.) The computation in each time step consists of several phases
(see Figure 2.6), with each phase computing various properties of the molecules in the
system.
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classatomc; main () f
classmol c f . . .

atomc atom[3]; for (all time steps do)f
. . . physical properties of the molecule. . . // Perform the different phases.

public: waitfor f

. . . functions to process a molecule. . . // process all the molecule groups in parallel.
void predic (); for (all molecule groups ‘i’)
// Update molecule during interf phase molGroup[i].predicintraf ();
mutex void interf update (); g

g;
waitfor f

classmolGroupc f for (all molecule groups ‘i’)
mol c* mymols; // molecules within this group. molGroup[i].interf ();
. . . g
// Predict values of displacement and its derivatives.
void predic (); waitfor f

// Calculate intra-molecular force/mass on each atom. for (all molecule groups ‘i’)
void intraf (doubles*); molGroup[i].divForcecorrecbndry kineti ()
// Divide the final forces by the mass. g
void divForce (); g

// Correct the predicted values based on the forces. . . .
void correc (); g

// Check boundary conditions on the position.
void bndry ();
// Compute kinetic energy in each dimension.
void kineti ();

public:
// Parallel functions to process molecules within a group.
parallel condH* predic intraf (doubles* poteng)f

predic ();
intraf (poteng);

g
parallel condH* interf ();
parallel condH* divForce correcbndry kineti () f

divForce ();
correc ();
bndry ();
kineti ();

g
. . .

g *molGroup;

Figure 2.6: Water code expressed inCool.
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2.4.1.1 Exploiting Concurrency

Since the values computed in one phase are typically used in the following phase, we
cannot exploit concurrency across phases. Instead we exploit concurrency within each
phase by processing the various molecules concurrently. However, the computation as-
sociated with processing a single molecule is too small to be usefully executed as a
concurrent task. We therefore introduce the notion of amoleculeGroupor a collection
of molecules. We exploit concurrency at the granularity of a group, expressed through
parallel functions on a moleculeGroup object.

The size of a moleculeGroup (i.e., the number of molecules) must be chosen care-
fully to balance both granularity and load-balancing concerns. Since the computation is
uniform and the same work is performed for each molecule, processing an equal number
of molecules on each processor results in a good load distribution. We therefore have as
many moleculeGroups as processors, each containing an equal portion of the molecules.
This partitioning is done based on the runtime value of a variable that maintains the total
number of processors employed in that particular execution of the program.

2.4.1.2 Expressing Synchronization

The first synchronization requirement is that the phases must be performed in sequence on
each moleculeGroup. The processing of different moleculeGroups can in general proceed
independently, with the exception of those phases that require communication between
moleculeGroups (e.g., divForce). These phases can proceed only after the previous phase
has finished onall moleculeGroups. These requirements are expressed by (a) calling a
parallel function to perform each set of independent phases (e.g., predic followed by intraf,
and divForce followed by correc then bndry then kineti), and (b) synchronizing for a set
of phases (such as predic-intraf) to finish using the waitfor construct (see Figure 2.6).

The second requirement is the accumulation of some global parameters such as the
potential energy of the entire system. Each moleculeGroup accumulates the potential
energy of the molecules within that group into a local variable and then assigns it to the
parameter poteng of type doubles (described earlier in Section 2.3.2). The main thread
automatically synchronizes for these values to be computed as it accumulates them into
the global potential energy. An initial version of the program in which the potential energy
of each molecule was accumulated directly into the global value performed poorly due
to severe contention; the local accumulation within each group does not require any
synchronization, and performs much better.

The final requirement arises while modeling pairwise interaction between each pair of
molecules in the system within theinterf function. This function models the interaction
of each moleculem within its group with exactly half of the other molecules in the
system, starting from the molecule to the immediate right ofmin a linear ordering of the
molecules and wrapping around if necessary; this keeps the same interaction from being
modeled twice. The interf function clearly references molecules in other moleculeGroups
and must therefore acquire exclusive access to each molecule before updating it.
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Since a mutex function operates on only one molecule at a time, this would ordinar-
ily require the protocol for acquiring exclusive access to multiple objects simultaneously,
described earlier in Section 2.3.3. However, in this particular instance it turns out that
the values examined during a pairwise interactions (position and velocity) are entirely
disjoint from the values that are updated based on the interaction (force and accelera-
tion). Furthermore, the update is actually an increment, so that multiples updates to a
molecule are commutative. The desired synchronization can therefore be implemented
quite easily. Rather than acquiring exclusive access to both molecules together, the interf
function acquires exclusive access to one molecule at a time, implemented by label-
ing the interfupdate method on a molecule to be mutex. In addition, since the values
being examined are not modified during this phase, we allow direct unsynchronized ac-
cess to the internals of a molecule so that both interacting molecules can be examined
together. Finally, although a molecule is now a monitor object, only the interf phase
actually performs a synchronized update to the molecule. The other phases require no
synchronization and reference/update the molecule through ordinary (i.e., non-monitor)
functions.

2.4.1.3 Performance and Summary

Coding the application as described above was sufficient to exploit the desired parallelism
in the program. In contrast to theCool code described above, the original code written
using ANL macros statically partitions the molecules equally across processors. Each
processor operates on its assigned set of molecules, with barrier synchronization between
phases and lock/unlock operations to enforce the mutual exclusion requirements.

In addition to exploiting parallelism, achieving high performance required some sim-
ple scheduling optimizations to improve data locality; these are described in detail in
Chapter 5.2. We ran the program (with these optimizations) on an input of 512 molecules
on a 32-node Stanford DASH multiprocessor [74]. The application performed nearly as
well as the original code written using ANL macros, achieving a speedup of over a factor
of 20 on 32 processors.

To summarize, the objects (molecules) in this application were too fine-grained to
be processed concurrently, so we aggregated several molecules into a moleculeGroup
object. Although this involved extra programmer effort, it was quite straightforward
to express. Regarding the synchronization requirements, a waitfor was used to wait
for a phase to complete; the data abstraction mechanisms were used in building the
synchronized double object; and the flexibility ofCool monitors was helpful both in
expressing the synchronization during the interf phase, and in bypassing it during the
other phases to avoid unnecessary overhead. Finally, the object structure proved useful
in several ways—the data structures were organized hierarchically and included atom,
molecule, and moleculeGroup objects; concurrency was expressed by labeling methods
on a moleculeGroup as parallel; synchronization was encapsulated within the doubles
object; and the updates to a molecule were synchronized by labeling the updateinterf
method to be mutex.
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2.4.2 Ocean
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Figure 2.7: Grid structure in Ocean.

Ocean [95] is a program to study the influence of eddy and boundary currents on large-
scale ocean movements. It simulates flows in a cuboidal basin over a series of time steps,
solving a set of spatial partial differential equations within each step. The main data
structures in the application are twenty-five double-precision floating-point grids. Each
grid is a two-dimensional array, representing the value of a state variable at different
locations in the ocean basin. The computation involves various regular grid operations in
each time step (see Figure 2.8), including intra-grid operations such as nearest neighbor
computation and inter-grid operations such as adding the corresponding elements of two
grids. The application consists of about 3300 lines of code.

2.4.2.1 Exploiting Concurrency

We can exploit concurrency eitheracrossdifferent operations that work on distinct
grids orwithin an operation by processing different portions of a grid in parallel. The latter
turns out to be much simpler for this application. We therefore exploit concurrency within
each grid operation and wait for the entire grid to be updated before proceeding to the
next operation. However, the work associated with an individual grid element is typically
just a few arithmetic operations and is too small to perform concurrently. Therefore,
similar to the Water code in the previous section, we aggregate several grid elements
into a larger group that is processed concurrently with other groups. Each aggregate
is simply a collection of rows or arowGroup2 (see Figure 2.7). Furthermore, since
the computation involved is uniform across the various grid elements, each rowGroup
is a simple partitioning of the rows across the processors, with as many rowGroups as

2For larger numbers of processors other partitionings such as a blocked decomposition of the grid
may be more appropriate. However, each grid decomposition may well require a completely different
organization of the data structures.
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classrow c f

double element[size];
g;

classrowGroupc f

row c myrow[numrows];
. . . other data, such as row indices. . .

public:
parallel condH* laplace (rowGroupc*);
parallel condH* sub (rowGroupc*, rowGroupc*);
parallel condH* mult add (int, rowGroupc*, int, rowGroupc*);
parallel condH* jacobi (rowGroupc*);
. . .

g;

classgrid c f

rowGroupc rowGroup[numgroups]; //grid composed of rowGroups
. . .

public:
void laplace (gridc* p) f

waitfor f

for (all rowGroups ‘i’ do)
// Process all the rowGroups in parallel.
rowGroup[i].laplace (&(p–>rowGroup[i]));

g // wait for the operations to complete over all rowGroups.
g
. . . other grid operations. . .

g;

main () f
grid c A, B, C, D;
. . .
for (all time steps)f

A.laplace (B);
C.jacobi (D);
. . . other grid operations. . .

g
g

Figure 2.8: Ocean code expressed inCool.
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processors. A grid, therefore, is a collection ofrowGroup objects, a rowGroup is a
collection ofrow objects, and a row contains the actual elements of one row of the grid
in a one-dimensional array of elements. Parallel execution is expressed by invoking a
parallel function on each rowGroup within the grid being updated (e.g., the function
laplace in Figure 2.8).

As mentioned above, the grid operations include both inter-grid and intra-grid op-
erations. An intra-grid operation only references the one grid that it is invoked upon,
while inter-grid operations—such as adding two grids and storing the result in a third—
must reference one or more additional grids along with modifying the grid that they are
invoked upon. We allow the functions to directly access the internals of other grids in
an inter-grid operation. While direct access to the elements within a grid object does
compromise the modularity of objects in the program, it is useful when objects are shared
at a fine-granularity, as in this application.

2.4.2.2 Expressing Synchronization

Synchronization for a grid operation to complete is expressed by wrapping the parallel
rowGroup operations within a waitfor. This is the only synchronization requirement—the
operations on individual grid elements are fully parallel and can proceed without synchro-
nization. One grid operation that performs relaxed SOR (successive over relaxation) on
a grid does contain nearest-neighbor communication between adjacent grid elements, but
the algorithm is robust and converges even when these accesses are performed without
synchronization.

2.4.2.3 Performance and Summary

We exploited concurrency in this fashion within each of the grid operations in the program
in a fairly mechanical manner. The original code written using ANL macros statically
partitioned the rows across processors in a similar fashion. Each processor operated on
its assigned set of rows and synchronized using a barrier at the end of each phase.

Besides expressing the concurrency and synchronization, the program also required
task and data distribution optimizations to achieve high performance. These optimizations
are described in detail in Chapter 5.1. We ran the program on a 196x196 grid. The
application performed well, achieving a speedup of over a factor of 22 on 32 processors.
The ANL code was written in Fortran, and since the ANL Fortran macros had not been
ported to DASH we could not compare the performance of theCool program with the
original code. However, we expect their performance to be similar.

To summarize, this application afforded concurrency down to the finest-granularity
of an individual grid element. We aggregated several elements into a larger collection,
a group of rows, that defined the grain of concurrent execution. The synchronization
requirements were very simple and only required a waitfor around each grid operation.
Finally, the data abstraction mechanisms of C++ were used to build a hierarchy of objects
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struct f
int xcost;
int ycost;

g CostArray [XMAX][YMAX];

classWire f
. . .

public:
// Functions to manipulate a wire.
// Determine the cost of a route.
int findCost ();
// Parallel function to route a wire.
parallel condH* Route ();
. . .

g;

main () f
. . .
while (not converged) f

waitfor f

for (all wires ‘w’ do) f
// route the wires in parallel.
w–>Route ();

g

g // Wait for all wires to be routed.
g
. . .

g

Figure 2.9: LocusRoute expressed inCool.

including elements, rows, rowGroups, and grids. We also exploited the flexible object
structure inCool to directly reference multiple objects during the inter-grid operations.

2.4.3 LocusRoute

LocusRoute [89] is a parallel algorithm for standard-cell placement and routing in in-
tegrated circuits. Given a circuit consisting of modules and connections, and a placement
of the circuit modules, the program doesrouting to determine the paths of the connecting
wires. The objective is to find a route that minimizes the area of the circuit. The program
consists of about 9000 lines of code.

The two main data structures areWires and theCostArray. A wire object contains
the list of pin locations to be joined, where a pin location corresponds to a routing cell
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in the circuit. The CostArray keeps track of the number of wires running through each
routing cell and contains two values: the number of wires that pass horizontally and
vertically through the routing cell. These values are updated as wires are routed. The
cost of a route is given by the sum of the CostArray values for all the routing cells that
it traverses. The program iteratively converges to a route for each wire. Within each
iteration, LocusRoute invokes the functionRouteon each wire object (see Figure 2.9).
This function rips out the previous route of a wire, generates the possible alternate routes,
and chooses the lowest-cost route. After all wires have been routed in an iteration, this
process is repeated in the next iteration.

2.4.3.1 Exploiting Concurrency

The primary source of parallelism in the program is to route different wires concurrently
within an iteration.3 In contrast to the previous two applications, exploiting wire par-
allelism is appropriate from both granularity and load-balancing viewpoints—routing a
wire is a coarse-grained operation, and typical input circuits contain thousands of wires
thereby generating sufficient parallelism. We therefore exploit wire parallelism in the
Cool program, easily expressed by annotating the Route function to be parallel.

2.4.3.2 Expressing Synchronization

The only synchronization required in the application is that all wires be routed in an
iteration before proceeding to the next iteration; this is expressed by wrapping a waitfor
around an iteration. Although routing multiple wires concurrently may generate simulta-
neous updates to the CostArray, the algorithm is robust enough that it converges in spite
of some inconsistencies in the CostArray. These inconsistencies are also present in the
original SPLASH code.

2.4.3.3 Obtaining Private Per-Task Storage

In coding LocusRoute we encountered a problem that related to private per-task storage,
and affected both programmability and performance. In theCool programming model
all the data is allocated from within the same shared-address space. In contrast, in
programming models such as the ANL macros that use a ‘fork’ model of parallelism, all
data is private by default unless explicitly allocated using a shared-malloc routine. In
these latter programming models, if the task executes to completion on the same process
without migrating to another process (as is the case in LocusRoute), then per-task storage
can be allocated from within the private address space of each process. LocusRoute uses
two different kinds of private scratch data structures while routing a wire—those that are
dynamically allocated based on the wire parameters and others that are of fixed size and
can be allocated statically. Both of these data structures can be allocated from within the

3There are secondary sources of parallelism as well [89], such as segment parallelism, route parallelism,
and iteration parallelism. However, we focus on the primary source of parallelism, i.e., wire parallelism.
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private space of a process when using the ANL macros; we now discuss how they are
each handled in aCool program.

The dynamically allocated data can continue to be implemented as before—‘malloc’ed
when a wire is selected, and ‘free’d once the wire has been routed. Although allocating
such data from the shared space is unnecessary, it is not erroneous. However, the initial
Cool program with this scheme performed terribly! It turned out that memory allocation
was a severe bottleneck and all the tasks were lined up waiting to execute malloc. The
original ANL program did not encounter this problem because calls to malloc/free allocate
data from the private address space of each process and can therefore execute concurrently.
In theCool program, however, these calls to malloc allocate data from the single shared
address space and must execute serially.

A general solution to this problem is to write a distributed memory allocator, where
calls to malloc/free from a processor continue to allocate data from within the shared
address space, but from within some preallocated free space belonging to that particular
processor, thereby avoiding contention. Occasional global communication may some-
times be necessary if either a processor runs out of free storage and has to go to the
global allocator to allocate some more memory, or if a processor has too much free
memory and wants to share it with other processors by (say) adding it to a global free
pool. However, such global communication is likely to be infrequent. We did not imple-
ment this general solution, but instead implemented a distributed (i.e., per processor) free
list for each data structure that was being heap-allocated during the routing of a wire.
This scheme successfully avoided the contention encountered in the original version of
the program. We have since implemented a distributed memory allocator inCool.

The statically allocated data structures present a harder problem. In the original ANL
program these data structures were declared as static variables, so that each process had
its own private copy. However, since all the data in aCool program—including global
data—resides in the same address space, references by different processes to this scratch
storage now resolve to the same location, which is an error.

There are two possible solutions to this problem. The first is an extension of the
scheme used in the ANL macros of declaring the variables to be global, except that
we now declare anarray of such variables, one per processor. This array may be sized
statically if the number of processes is known statically, otherwise it can be heap-allocated
upon program startup. This solution, however, does require each process to have a unique
identifier that can be used to index into this array for the private copy of that particular
process. The problem is not over, though: how do we get a private copy of the identifier
for each process—that was the problem we were originally trying to solve. The solution
we use exploits an operating system feature of the SGI IRIX operating system (running
on the Stanford DASH) that provides precisely one page in the shared virtual space that
is mapped to a distinct physical page for each process. We use a location in this page
to store a global variablemyid that has the same virtual address for each process but
resolves to a different physical location when referenced. References to this variable
return the unique identifier of the process. Having this one private location per process
is sufficient for our scheme—we can now use the value of myid to index into a global
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array and thereby obtain per-process private data.

This solution does have some limitations, however. First, it provides private space on
a per-processbasis, not per-task. Therefore, it works fine if tasks execute to completion
without blocking (as in LocusRoute), but if a task blocks leading to a context switch
to (say) another wire-task then references to this scratch storage may conflict with the
incomplete processing of the just suspended task, potentially leading to obscure program-
ming errors. The second limitation is that references to static variables have now been
replaced by references through a pointer to the array of such private storage, incurring the
cost of an extra indirection at runtime. Depending on the usage of this scratch storage,
this effect can potentially be a serious performance problem. However, the biggest draw-
back of this solution is that it violates the task-queue abstraction inCool by exposing
the underlying process-based implementation to the programmer.

An alternative to using arrays indexed by a process-id is to allocate the necessary
storage elsewhere, such as on the stack of the Route function or within the Wire object.
(In the latter case we would probably declare a pointer within the Wire object and allocate
the storage dynamically when the wire was actually fetched for execution, rather than
incur the storage overhead of the scratch data structures for all wires in the program.) This
scheme does not have a problem with blocked tasks since the data is associated with the
wire being routed, but may still incur the overhead of an extra indirection. However, the
bigger problem with this scheme has to do with the accessibility of these data structures.
In the previous schemes the scratch storage is global and can be accessed directly by all
functions in the program. However, if the storage is allocated on the stack of the Route
function then it must be explicitly passed to any function that needs access to these data
structures. This is actually a severe problem in LocusRoute since this storage is used
by tens of procedures and allocating it on the stack would require an extra parameter to
all of these procedures, sometimes for the sole purpose of passing the pointer down to
another procedure. Allocating the scratch storage within each Wire object (when it is
fetched for routing) is another possibility, but this has the same problem that a Wire object
is not globally accessible across the various procedures that need the storage, although
to a much lesser extent than before. This solution would likely have been reasonable,
although we ultimately used an array of global variables since that minimized the changes
required to the original code.

This problem is not unique toCool; obtaining private storage is an issue in any ‘fully
shared’ programming model. Such programming environments should provide a private
identifier such as themyid variable, since it cannot be improvised by the programmer
in a fully shared environment in general. Having such a variable would allow the pro-
grammer to make the appropriate choice between the two solutions outlined above based
on programmability. However, our initial experience suggests that although allocating
per-task storage on the stack may sometimes be a little cumbersome, it is preferable to
the process-based solution since the latter violates the task-based abstraction, makes pro-
grams difficult to understand, and can lead to obscure bugs. Regarding the performance
overhead of the indirection, the reverse problem exists in ‘fork’ based programming mod-
els such as the ANL macros, but forshared data. Since all shared data is heap-allocated
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through the shared-malloc call, it must be accessed indirectly through a pointer. For
instance, the CostArray is a static data structure inCool, but is heap-allocated through
shared-malloc in the ANL macros.

2.4.3.4 Performance and Summary

The original ANL code exploits the same wire-parallelism by building explicit task queues
and performing the task scheduling and execution functions within the user code. In
contrast, this functionality is provided automatically by theCool runtime system, and
the programmer can simply label the Route method to be parallel.

After addressing the problems relating to per-task storage, we ran the application
coded as described above, on an input circuit consisting of wires. Detailed performance
results, as well as some task-scheduling optimizations that were performed to improve
data locality, are presented in Chapter 5.3. TheCool version of LocusRoute performs
better than the original ANL code, although the overall speedups (a factor of 12.5 on 28
processors) are low due to the high degree of communication.

To summarize, in contrast to the previous applications, parallelism at the granularity
of wire objects was suitable from both granularity and load-balancing concerns. The
additionalCool code required to express this application in parallel was very little: the
Route function on a wire was annotated to be parallel, and each iteration was wrapped
within a waitfor for synchronization. The object structure was useful with the primary
computation organized around wire objects in the program. This application also illus-
trated the synchronization bottleneck of centralized memory allocation and the problem
with obtaining private data structures in a shared programming environment.

2.4.4 Panel Cholesky

Panel−panel reductions

Panel

Figure 2.10: Panel reduction structure in Cholesky.
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classpanelc f

int remainingUpdates;
. . .

public:
// Update this panel by the given source panel.
parallel mutex condH* updatePanel (panelc* src) f

. . .
remainingUpdates-- ;
if (-- remainingUpdates == 0)f

// This panel is now ready.
completePanel ();

g

g

// Perform internal completion of the panel.
parallel condH* completePanel ()f

. . . perform internal completion. . .
// Produce updates that use this panel.
for (all panels ‘p’ modified by this panel)

panel[p].updatePanel (this);
g

g *panel;

main () f
. . .
waitfor f

// Start with the panels that are initially ready.
for (all panels ‘p’ that are initially ready)

panel[p].completePanel ();
g // Wait for all updates to complete.

g

Figure 2.11: Panel Cholesky expressed inCool.
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The next application, Panel Cholesky, performs parallel Cholesky factorization of a
sparse positive definite matrix [91]. It consists of about 2500 lines of code. Given a sparse
matrixA, the program finds a lower-triangular matrixL, such thatA= LL T . The primary
operation in a column-oriented sparse Cholesky factorization is the addition of a multiple
of one column ofAinto another column to its right in order to cancel a non-zero in the
upper triangle. This operation is typically referred to as a column modification. Rothberg
and Gupta [91] have suggested a matrix representation in which columns with identical
non-zero structure are organized intopanels, as shown in Figure 2.10. Operations are
performed between panels—each panel has updates performed to it by relevant panels
to its left, and onceall the updates to a panel have been performed, the panel becomes
‘ready’ and can be used to update other panels to its right.

2.4.4.1 Exploiting Concurrency

Parallelism in this algorithm consists of performing the panel-panel updates concurrently.
The partitioning of the matrix into panels tries to balance these granularity and load-
balancing concerns by splitting large panels into smaller ones and aggregating small
panels into larger ones. As a result the concurrency in this algorithm—that of panel-panel
updates—is suitable from both a granularity and a load-balancing perspective. Typical
inputs have tens of thousands of coarse-grained tasks.

TheCool code expressing this computation is shown in Figure 2.11. The main data
structures in the program are panel objects, representing the partitioning of the matrix into
panels. A panel object offers two methods of interest, updatePanel and completePanel.
The updatePanelmethod is invoked on a destination panel—it updates the destination
panel using the supplied source panel, and invokes completePanel if all updates have
completed. ThecompletePanelmethod performs internal completion on the panel and
generates updates that use this panel as a source. Concurrent execution is expressed by
labeling both these functions to be parallel. The computation is initiated in themain
procedure by calling completePanel on those panels of the matrix that are initially ready.

2.4.4.2 Expressing Synchronization

The concurrent execution of multiple updates is subject to the synchronization constraints
that (a) since an update modifies the destination panel, only one update can proceed on
a destination panel at any time, and (b) all updates that are due to be performed on a
panel must complete before that panel can itself be used to perform other updates. The
overall computation finishes when all the updates have completed.

These synchronization requirements are expressed as follows. Multiple updates to
a destination panel are serialized by simply annotating the updatePanel function to be
mutex as well; it therefore has exclusive access to the panel being modified. (Updates to
a destination panel are commutative and can therefore be performed in any order.) The
second synchronization requirement, that all updates to a panel must complete before it
can be used to perform other updates, is a little more complex. During the initial setup
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phase, the algorithm counts the number of updates that must be performed on each panel
and stores that number within each panel object. This number is decremented by each
update operation. Once it reaches zero then all updates have been performed and the
panel is ready. Although this is a specialized synchronization scheme that is explicitly
constructed by the programmer, it is very efficient and easily coded inCool. Finally,
synchronization for the overall computation is expressed using the waitfor construct as
shown.

Synchronization for a panel is necessary only when it is being updated; after all the
updates have been performed, the panel can be read without any synchronization. For
instance, the updatePanel method reads the values from the supplied source panel and
updates the destination panel (the one it is invoked on). Since all updates to the source
have already been performed, we allow the updatePanel method to directly reference
the values within the source panel, thereby bypassing any synchronization. Similarly,
the completePanel method is invoked after all updates have been performed and can
execute without synchronization as well. These optimizations exploit the flexibility in
Cool by enforcing synchronization for those panels being updated and bypassing the
synchronization for the ready panels.

2.4.4.3 Other Performance Issues

This application exposed a potential problem in our implementation when we first ran
it on large inputs that have a large number of updates performed to each panel. Recall
that the updatePanel method is both parallel and mutex. As a result invocations of the
function create a task, and the first thing this task does upon being dequeued is try to
acquire exclusive access to the destination panel. If multiple tasks try to acquire access
to the same destination panel then one of them will succeed while the others will block
waiting to enter the monitor object, the destination panel. The underlying processes will
then fetch other tasks, perhaps on the same panel, in which case these tasks will block as
well, and the cycle continues. Apart from the overhead of suspending these tasks, the real
problem is that suspended tasks consume precious stack resources (see Chapter 4). In
this application the updatePanel function declares a large amount of scratch storage on its
stack, and a stack size of 500KB is common for medium to large input matrices. Because
of the large stack size, excessive numbers of suspended tasks result in several tens of
mega-bytes of storage consumed just in stack resources, leading to severe thrashing and
sometimes simply running out of swap space on the machine.

The problem in this application is the large numbers of suspended tasks consuming
expensive stack resources. This problem cannot be completely solved in general, since
an application could always be constructed to precisely contrive this situation. However,
the problem can be alleviated to a large extent. TheCool implementation optimizes the
support for parallel monitor functions by delaying the allocation of the stack untilafter the
task has acquired access to the monitor object that it is invoked on (see Chapter 4.2.2.6
for details). This ‘fix’ solved the problem for Panel Cholesky, and the problem has not
arisen in any other application. However, this solution will not suffice for applications
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that invoke a synchronization operation later within a task. For those applications the
programmer may just have to restructure the application to avoid this problem. We
may also consider providing additional support in the language, such as allowing the
programmer to identify the synchronization operations that occur within a task and can
be acquired before the task begins execution.

2.4.4.4 Summary

Having optimized the implementation of parallel mutex functions, we coded the program
as described above. Compared to theCool code, the original program written using
ANL macros built an explicit task-queue structure within the application, where each
task corresponded to a panel-panel update. The synchronization requirements were built
using locks/unlocks to serialize multiple updates, by maintaining explicit counts of the
remaining updates for each panel, and by using a barrier to wait for the computation to
finish. In contrast, the concurrency and synchronization were relatively easier to express
in Cool by annotating methods on panels to be parallel or mutex.

To achieve good performance the application required both task and data distribution
optimizations that are described later in Chapter 5.5. We used the matrix BCSSTK33
from the Boeing-Harwell set of sparse matrix benchmarks [32] as an input. This matrix
has 8738 columns organized into 1201 panels with approximately 7.28 columns per panel.
With the locality optimizations the application performed nearly as well as the original
ANL code (that also performed similar optimizations), achieving a speedup of a factor
of 14 on 24 processors.

To summarize, compared to the previous applications, Panel Cholesky had relatively
complex concurrency and synchronization requirements. All the important computation
was organized around panel objects—concurrent execution was expressed by labeling
methods on panels to be parallel, while mutual exclusion for a panel was expressed by
labeling the update method to be mutex. Our implementation of waiting for a panel to
become ready illustrated how the programmer can build application-specific synchroniza-
tions inCool. Finally, we exploited the flexibility ofCool monitors to synchronize
accesses to a panel during the update phase and bypass the synchronization once a panel
became ready.

2.4.5 Block Cholesky

The Block Cholesky code [92] performs the same computation as the Panel code,
namely Cholesky factorization of sparse matrices. However, the Block code attempts to
address some performance limitations of the Panel code, such as high communication
and limited scalability, through a different matrix decomposition strategy (the details of
these limitations are discussed in [92]). Rather than representing the matrix as a set
of columns (which are then organized into panels), the matrix is represented as a set of
rectangularblocks(see Figure 2.12). The basic operation is to update a destination block
by two source blocks, rather than updating an entire panel by another panel, and affords
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Two source blocks interact

Block

To update this block

(i, j)

(k, j)

(k, i)

Figure 2.12: A matrix partitioned into blocks.

greater concurrency. As shown in the figure, blocks(i; j) and(k; j) (in the same column
j, i < k) interact to reduce the destination block in the position(k; i). Similar to the
Panel code, a block is updated by blocks to its left until all modifications to it have been
performed. Thereafter the block become ready and is used to update other blocks to its
right. The application consists of about 5500 lines of code.

2.4.5.1 Exploiting Concurrency

TheCool version of Block Cholesky is shown in Figure 2.13. Similar to the Panel code,
multiple updates can execute concurrently in Block Cholesky as well. The main data
structures in the program are block objects that make up the sparse matrix. The block
class offers two methods of interest—thecompleteBlockmethod first performs internal
completion of that block and then updates each block that is modified by this block
by invoking the function updateBlock. TheupdateBlockmethod updates the destination
block that it is invoked on, using the two source blocks supplied as parameters to the
method. The main program sets the computation rolling by invoking completeBlock on
all blocks that are initially ready.

2.4.5.2 Expressing Synchronization

The synchronization requirements in the application are (a) only one update on a desti-
nation block can execute at any time, (b) all updates to the source blocks must complete
before they can be used to update other blocks, and (c) the overall computation completes
only when all updates have been performed.

Multiple updates to a destination block are serialized by declaring the updateBlock
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classblock c f

. . .
int remainingUpdates;
condH ready;

public:
// Update this block by the given source blocks
parallel mutex condH* updateBlock (blockc* src1, blockc* src2) f

. . . update the block. . .
if (-- remainingUpdates == 0)

completeBlock ();
g

// Perform internal completion of a block
parallel condH* completeBlock ()f

. . . perform internal completion. . .
// I am now ready. Signal others that may be waiting.
ready.broadcast ();
// Generate updates that use this block.
for (all blocks ‘b’ above ‘this’ in this column) f

// Wait for that block to become ready.
block[b].ready.wait ();
dest =block updated by ‘this’ and ‘b’;
block[dest].updateBlock (this, block+b);

g
g

g *block;

main () f
. . .
waitfor f

for (all blocks ‘b’ that are initially ready)
block[b].completeBlock ();

g
. . .

g

Figure 2.13: Block Cholesky expressed inCool.
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function to be mutex. The update operation is commutative, hence simple mutual exclu-
sion is sufficient. The completeBlock method is invoked only when all other updates to
the block have been performed and can therefore execute without synchronization. Fur-
thermore, synchronization for a block is necessary only when the block is being updated,
and references to the source blocks can proceed without synchronization as well.

Synchronization for a block to become ready is implemented in the following fashion.
Each block maintains a count of the number of updates remaining to be performed
(remainingUpdates) before the block becomes ready. Once a block becomes ready, it
generates updates only with those blocks(i; j) that areaboveit within the same column
j of the matrix; this avoids generating duplicate updates, one from each of the two
source blocks required by the update. However, with this scheme an update may be
generated before the other source block is ready. Waiting for the other source block
to become ready is implemented using a condition variable within each block. This
condition variable is broadcast once all the updates have been performed to that block. A
source block(k; j) performs a wait operation for the other source block(i; j) to become
ready before generating the update, thereby ensuring that both source blocks can now
be used to perform the update. Finally, synchronization for the overall computation is
expressed using the waitfor construct.

Waiting for the other source block requires a wait operation in the middle of the
completeBlock function. As we saw in the previous application, synchronizing in the
middle of a task can lead to large numbers of blocked tasks during the execution of the
program and consume precious storage resources. In Panel Cholesky we had addressed
this problem by optimizing the implementation of parallel mutex functions, but no such
optimizations are possible here since the wait operation occurs in the middle of a parallel
function. However, although we do get several blocked tasks in this application, each
task requires very little stack storage to execute (less than 1 KB); therefore the application
executes with hundreds (or even thousands) of blocked tasks without any problems.

2.4.5.3 Performance and Summary

The Cool program exploits the same concurrency as the original code using ANL
macros. However, the ANL code builds explicit task-queues within the application,
whereas inCool we simply label methods on a block to be parallel. Furthermore,
synchronization for the two source blocks is much more easily expressed inCool—the
ANL code maintains a separate data structure to identify the blocks that have become
ready so far and continually examines this data structure to determine those updates
whose source blocks are ready and can therefore proceed. In contrast, inCool this
synchronization is expressed by performing a wait on the condition variable within each
block.

As the results in Chapter 5.6 show, the application as coded above performs better
than the original ANL code (after both have been optimized for good locality and load-
balance), achieving a speedup of a factor of 18 on 28 processors with dense matrices
(input DENSE1000 of size 1000x1000), and 12 on 24 processors with sparse matrices
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(input BCSSTK15 with 3948 columns organized into 3661 blocks).

To summarize, the basic structure of Block Cholesky application is similar to the
Panel code discussed previously, although the synchronization requirements are a little
more complex. Concurrency was expressed by annotating block methods to be parallel,
and mutual exclusion was expressed by annotating the update method to be mutex.
Synchronization for a block to become ready required a condition variable within each
block. Furthermore, accesses to a block were synchronized while it was being updated
but could proceed directly once the block became ready. These various synchronization
requirements were significantly more complex in the original ANL code. Overall, the
object structure proved useful, with both concurrency and synchronization organized
around operations on block objects.

2.4.6 Barnes-Hut

(b)    Quadtree Representation(a)    The Spatial Domain

Body

Space Cell

Figure 2.14: Physical space with bodies, and the corresponding tree representation (Figure
courtesy of J. P. Singh).

Barnes-Hut [93] is a 3000 line N-body program that simulates the evolution of a
system of bodies under the influence of gravitational forces. All bodies in the system
are modeled as point masses and exert force on the other bodies. Rather than modeling
the interaction between all possible pairs of bodies (O(n2)), the application uses a more
efficient hierarchical algorithm (O(nlogn)) due to Barnes-Hut, in which groups of distant
bodies are instead approximated by their center of mass. Consequently, the interactions
of a body with nearby bodies are modeled individually, while interactions with distant
groups of bodies are modeled as an interaction with the center of mass of that group.
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// Space cell object.
classcell c f

. . . pointers to child nodes in the tree. . .
public:

mutex void addBody (bodyc*);
parallel condH* cofm ();
void completecofm ();
. . .

g *cell;

// Body object.
classbody c f

. . .
public:

parallel condH* addtoTree ();
parallel condH* computeInteraction ();
parallel condH* update ();

g *body;

main () f
. . .
for (all time steps)f

// Build the tree of space cells.
waitfor f

// Process each body in parallel
for (all bodies ‘i’)

body[i].addtoTree ();
g
// Compute the center of mass of each space cell
waitfor f

// Determine subtrees of space-tree to process in parallel
for (subtrees of the space cells ‘i’)

cell[i].cofm ();
g
// Compute the center of mass of the remaining cells serially.
for (remaining cells)

cell[i].completecofm ();
// Compute the N-body interactions.
waitfor f

for (all bodies ‘i’)
body[i].computeInteraction ();

g

// Update the values in each body.
waitfor f

for (all bodies ‘i’)
body[i].update ();

g

g
g

Figure 2.15: Barnes-Hut expressed inCool.
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The program is based on a hierarchical tree representation of space (see Figure 2.14).
Physical space is recursively subdivided into smaller subcells until there is exactly one
body per cell. A space cell corresponds to a node in the tree, and its subcells correspond
to the child nodes in the tree. The root node of the tree corresponds to the entire space,
while the leaves are the bodies themselves. The simulation is carried out over a period
of time-steps, with several phases in each time step. The tree representation is rebuilt in
the first phase, the center of mass computations are performed for each space cell in the
second phase, the force computation is done in the third phase, and it is used to update
the position and velocity of each body in the fourth phase.

2.4.6.1 Expressing Concurrency and Synchronization

In the parallel version of this application we exploit concurrency within each phase and
wait for that phase to complete before moving on to the next phase (see Figure 2.15).
We describe the concurrency and synchronization within each phase in turn.

Building the Tree: In the tree-building phase we start with a single root node repre-
senting the entire (empty) space and add the bodies by calling the functionaddToTreeon
each body. This function traverses the tree to locate the space cell node containing that
body and calls addBody to add the current body to that cell. If the cell is empty, then the
body is directly added to that cell, otherwise addBody creates four children in the space
cell (representing a partitioning of physical space in two-dimensions) and adds the body
to the appropriate child cell.

Parallelism in this phase consists of processing multiple bodies concurrently, ex-
pressed by labeling theaddtoTreefunction to be parallel. Since adding a body modifies
the space cell, we serialize multiple updates by declaring the addBody method (that actu-
ally inserts the body into a space cell) to be a mutex function. The tree traversals within
addtoTree can proceed without synchronization since they only read the space cells; even
nonmutex synchronization is unnecessary since space cells once divided do not change
any further.

The ANL version of this code partitions the set of bodies across processors, with
each processor working on its assigned set of bodies. Since the work involved in adding
each body is sufficiently coarse, theCool version of the code exploits concurrency at
the granularity of an individual body through the parallel addtoTree function.

Computing Center of Mass: The next phase computes the center of mass of each
space cell in the tree by starting from the bodies at the leaves and computing the center
of mass of each space cell in a bottom-up fashion. The order of computation is important
since the center of mass of a space cell is computed using the center of mass of each of
its child cells.

In the ANL version of the code, each processor is said toown the space cells that
it created in the previous tree-building phase, and parallelism consists of each processor
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computing the center of mass of the cells that it owns. TheCool program, on the
other hand, does not have the notion of owned cells and instead exploits concurrency by
conceptually partitioning the tree into several subtrees that are processed concurrently.
This is expressed by labeling thecofm(center of mass computation) method to be parallel.
We use a waitfor to wait for all subtrees to be processed, and then (serially) compute
the center of mass for the remaining space cells at the higher levels of the tree. Overall,
however, this phase takes very little execution time, and different parallel schemes offer
only marginal gains compared to just processing this phase serially.

Force Computation: The third phase performs the main processing, the force compu-
tation based on the interaction between bodies. The ANL version of the program exploits
parallelism similar to the first phase in which the bodies are partitioned across processors.
TheCool program instead exploits parallelism at the granularity of individual bodies by
labeling the functioncomputeInteractionon a body to be parallel. This function traverses
the cells in the space tree to compute the interaction of this body with other bodies in the
system. These traversals can proceed without synchronization since the tree is no longer
modified during this phase. Furthermore, computeInteraction can update the body object
without synchronization as well since each body is processed just once in each phase,
and no other processor could be modifying the body concurrently.

Update Values: Finally, the fourth phase updates values within each body based on the
force computation in the previous phase. It is similar to the third phase and parallelism
in this phase is again exploited across bodies. No synchronization is required during this
phase as well.

2.4.6.2 Summary

We coded the application as described above and ran it on an input of 32K bodies over
two time-steps. The application performed nearly as well as the original ANL code and
achieved a speedup of a factor of 28 on 32 processors.

Overall, while the Barnes-Hut application had complex data structures compared to the
previous applications (bodies and space cells organized into a tree), the concurrency and
synchronization requirements were quite simple and expressed by annotating methods
on bodies and cells to be parallel (for concurrency) or mutex (for mutual exclusion).
We also exploited the flexibility inCool to bypass the synchronization on space cell
monitor objects in the later phases of the program. Finally, the object structure helped in
organizing all the important computation around cell and body objects, so that parallelism
could be easily exploited based on those objects as described above.
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2.4.7 Discussion

As this detailed look at several applications written inCool has shown, the language
has worked well in exploiting parallelism within these applications. We now review the
effectiveness of the language constructs in expressing concurrency and synchronization
and evaluate the benefits of exploiting the object structure.

2.4.7.1 Exploiting Concurrency

The task-based model of concurrency inCool, provided through parallel functions,
mapped directly onto the structure of several applications. This included routing wires
concurrently in LocusRoute, updating a panel or a block in Panel/Block Cholesky, or
processing a body in Barnes-Hut. Expressing concurrent execution in these applications
was a simple matter of annotating a method to be parallel. The original versions of
these applications using ANL macros built explicit task-queues within the program to
exploit the same concurrency. In the Water and Ocean applications, granularity and load-
balancing concerns required that several elements be aggregated together to form a larger
unit of concurrency. While explicit programmer control was necessary, the flexibility of
the language constructs enabled us to easily build these collections of elements. Further-
more, using the data abstraction mechanisms in C++, we expressed these collections as
concurrent abstractions that encapsulated the parallelism within the object.

2.4.7.2 Expressing Synchronization

Amongst the synchronization constructs, the waitfor proved to be a simple way of waiting
for a parallel phase to complete and was heavily used in all the applications. The monitor
mechanism was most often used to serialize multiple updates to shared objects in the
program, such as molecules in the Water code, panels/blocks in Panel/Block Cholesky,
and space cells in Barnes-Hut. In each of these applications this synchronization was
easily expressed by annotating the appropriate method on the shared object to be mutex.
Furthermore, the flexibility of the monitor mechanism inCool that allowed us to bypass
the synchronization on a monitor object (either through direct access or through ordinary,
non-monitor methods) proved extremely useful. Several applications, including Water,
Panel, Block, and Barnes-Hut used this facility to synchronize accesses to the shared
objects only during the phases in which the objects were being modified and bypassed the
synchronization entirely in other phases where either the objects were read without being
modified (e.g., Panel, Block, Barnes-Hut) or if some other synchronization ensured that
there are no conflicting accesses (e.g., Water). None of the applications used nonmutex
functions, instead preferring to bypass the synchronization entirely. Condition variables
were used in building synchronization abstractions, such as the synchronizing double in
the Water code, or the barrier abstraction in a version of the Ocean code. Finally, the
data abstraction features in C++ helped us in building shared object abstractions that
encapsulate the details of synchronization within the object.
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One drawback of providing synchronization based on monitor objects is that object-
based systems provide exclusive access to one object at a time (see Section 2.3.3).
Therefore, task that naively try to acquire exclusive access to two different monitor
objects may deadlock. We encountered this problem in the Water code while processing
the pairwise interaction between each pair of molecules. Although a simpler solution
sufficed in the Water application, other applications may well need the more general
solution outlined in Section 2.3.3.

2.4.7.3 The Object-Based Approach

In all of these applications the computation has been organized around the main objects in
the program. This has significantly eased the job of exploiting parallelism—for instance,
expressing concurrency has often been as easy as annotating an object method to be
parallel (e.g., routing a wire in LocusRoute, or updating a panel/block in Panel/Block
Cholesky), while synchronization was usually expressed simply by declaring a method
that modified a shared object to be mutex (e.g., updating a panel/block, modifying a
molecule in Water). Furthermore, the data abstraction facilities of C++ have enabled
us to hide the details of concurrency/synchronization within an object. We can thereby
build concurrent abstractions such as rowGroups in Ocean or moleculeGroups in Water,
or synchronization abstractions such as the synchronized double in Water.

On the other hand, there were situations when the ‘natural’ objects in the application
did not represent the appropriate concurrency/synchronization grain in the program. For
instance, the objects in the Water code (a molecule) and Ocean (a single grid element)
were simply too fine-grained (alternatively, an entire grid object in Ocean was too coarse-
grained) to be processed concurrently; we therefore used a collection of these elements
as the unit of concurrency.

Another limitation of object-based systems arose while expressing fine-grained com-
munication between objects. In object-based systems methods operate on a single object
at a time. Furthermore, it is desirable (and required in many languages) that an object be
referenced through access methods only. This model works fine if the computation can be
expressed through coarse-grained operations on individual objects, but it is not suitable
when objects are shared at fine granularities. In all the applications that we considered,
there were situations when a particular piece of computation required intimate access to
multiple objects. For instance, pairwise interaction between molecules in the Water code
required access to two molecule objects, inter-grid operations in the Ocean code require
access to several grid objects, routing a wire in LocusRoute required access to both the
wire object and the CostArray, updating a panel or a block in Cholesky required access to
both the destination and the source panel/block, and finally, processing the interaction of
a body with other bodies in Barnes-Hut required access to both the space cells in the tree
as well as other bodies in the system. If all accesses are required to be through interface
operations, each access to a value within a second object must instead be replaced by a
method invocation on that object, which can be very cumbersome.
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(defun func (a, b)
(. . .))

(let (a ...) (b ...)
(setq x (future (func a b))) ;parallel invocation of func
(setq y x) ;simple assignment, non-strict access. do not block
(foo x) ; parameter passing, non-strict access. do not block
(+ (car x) 2)) ;strict-access — block until the value is available

Figure 2.16: Illustrating futures in Multilisp.

Several aspects of the object structure inCool have greatly simplified the program-
ming task in the above situations. Similar to C++,Cool allows us to use objects where
they help in structuring the program and to revert to ordinary C style data structures when
there is no particular benefit from using objects. Furthermore, C++ is not as strict as some
of the other object-oriented languages and provides mechanisms for the programmer to
directly access an object from within a method on a different object. Although this vio-
lates the modularity of objects and places the burden for correct usage on the programmer,
we have found that such compromises are often necessary from both programming ease
and performance considerations.

2.5 Alternate Design Choices

In our design of the language, there were primarily two places where we struggled with
alternative semantics. The first concerned returning values from parallel functions and
synchronization for their completion. The second issue was the design of the waitfor
construct. We discuss each of these below.

2.5.1 Return Value of Parallel Functions

Parallel functions inCool are restricted to return a pointer to an event, and any values
must be communicated through parameters or global variables. While designing the
language, we considered two alternate schemes to support future-like [46] synchronization
for the return value of a parallel function. However, we discarded these schemes because
they complicated the semantics of the language in several situations. In this section we
first review the future mechanism and then describe our two schemes.

The future construct in Multilisp [46] can be attached to a function invocation signi-
fying that the function should be executed concurrently (see Figure 2.16). The parallel
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invocation returns afuture objectto the caller as a placeholder for the return value.
Strict operations on a future object—those that need the value—automatically block until
the parallel function has completed, while non-strict operations—those that only need a
reference to the object, such as passing a pointer—execute without delay. Futures are
particularly attractive because synchronization for the return value isentirely transparent
to the programmer—an invocation of a parallel function and access to its return value
look syntactically the same as for serial functions.

This transparency comes at a cost, however, and requires a runtime check of the status
of an object at each reference. These checks are much easier to implement in Multilisp
because of the extreme simplicity of data types—everything is either a primitive element
or a list of elements, and all functions return a pointer to a list. Providing the same level
of transparency in a language like C++ with its rich variety of primitive and user-defined
types is both complex and incurs high overheads. In the designs that we consider below,
therefore, we expose the synchronization to the programmer in controlled ways so that
synchronization can be provided only when necessary.

2.5.1.1 A Variation of the Current Design

We considered a variation of the currentCool design that allows parallel functions
to return a value of any arbitrary type, and handles the invocation of a parallel function as
follows. If the caller invokes the parallel function parFn through a simple assignment such
asx =parFn() (or if the return value is ignored), then parFn executes asynchronously
with the caller. The caller continues execution after creating a task to evaluate parFn.
Furthermore, the assignment statement itself,x=parFn(), is now executed by the
parallel taskexecuting parFn upon its completion, rather than being executed by the caller.
If, on the other hand, the caller invokes the parallel function as part of an expression
that requires the return value before it can proceed—i.e., a strict access such asx=

parFn()+31—then parFn is executedserially within the caller’s context. This behavior
is appropriate since the return value of parFn is required before the caller can proceed.

With this behavior, although the parallel function parFn stores the return value in the
appropriate variable upon completion, the caller cannot determine when the parFn has
completed. We now describe how the programmer can return a value with synchroniza-
tion using this base semantics (see Figure 2.17). The programmer first defines a new
synchronizing type(similar to the synchronizing double in Section 2.3.2) that extends the
return value with a condition variable and provides operators to cast both to and from
the base type along with appropriate synchronization. Second, the caller invokes parFn
with the return value being assigned to a variablerv of the synchronizing type (int s in
the figure) rather than a variable of the base return type. As a result the caller continues
execution after creating a task to execute parFn. Upon a subsequent strict access torv,
the caller automatically invokes the cast operator and blocks until the parallel function
completes. The called functionparFn, meanwhile, executes to completion and then exe-
cutes the assignmentrv=return value. This assignment invokes the assignment operator
that stores the return value and signals a waiting thread (e.g., the caller), if any.
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parallel int parFn ()f
int retval;. . .
return retval;

g

classint s f

int val;
condH x;

public:
// Operator that casts an int to an ints.
// Automatically called when the function completes,
// and the assignment is executed.
void operator= (int v) f

val = v;
x.signal ();

g
// Operator that casts an ints to an int.
// Called to return the value once it becomes available.
operator int () f

x.wait ();
return val;

g

g;

main () f
int s rv;
int x;
rv = parFn ();
. . . continue without waiting for function to complete. . .
x = rv + 31; // Block until the value becomes available, then continue.

g

Figure 2.17: Synchronization for the return value of a parallel function.
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This scheme allows the programmer to implement synchronization for the return value
of a parallel function on top of the simple base semantics provided in the language. A
parallel invocation now looks syntactically similar to a serial invocation, and the caller
can refer to the return value as a value of the base type, with the synchronization being
encapsulated within the object. Another advantage of this scheme is that synchronization
for the return value can be implemented entirely within the caller’s context without
requiring any modification to parallel function, which continues to return a value of the
base type.

Although this feature is useful when used in the stylized fashion described above,
it presents problems in other situations. A potential problem occurs when the parallel
function executes the assignment after the caller has completed and deallocated its stack,
while the variable on the left-hand side of the assignment had been allocated within
the caller’s stack and is no longer accessible. However, a more serious problem is
that while this design provides the illusion of a serial function call, the variable (on
the left-hand side of the assignment) remains accessible and can be manipulated by the
caller (and perhaps other threads) even while the parallel function is executing. This
can lead to unexpected/unnatural behavior when two threads try to assign a value to
the same variable. For instance, the caller could invoke a parallel function (storing its
return value inrv) and subsequently decide to store a different value inrv through direct
assignment. If the assignment is executed before the parallel function completes, then
the parallel function will, upon completion, assign its return value torv. This would
unexpectedly destroy the value that had been stored inrv subsequentto the invocation
of the parallel function. Several scenarios that exhibit similar non-intuitive behavior
can be easily constructed. Since returning values from a parallel function can be easily
implemented (with synchronization) through function parameters (see Section 2.3.2), we
decided that the additional complexity of this feature was not worthwhile.

2.5.1.2 Future Types in oldCool

An earlier version of the language (we shall call it oldCool) described in [24] offered
explicit futuredata types in the language. A future in oldCool was a type attribute that
added synchronization when attached to a base type. An instance of a future type (a future
variable) behaved like a value of the base type except with additional synchronization.
The difference was that a future variable could beunresolved, signifying that its value
was currently not available, but would be available later. An access to an unresolved
future variable automatically blocked until the value wasdetermined. A common way
of using future variables was as placeholders for the return value of a parallel function.
These placeholders could be passed around to other functions, synchronizing only when
the return value was actually required, i.e., upon astrict access.

Futures in oldCool supported two kinds of synchronization. First, they provided
synchronization for the return value of parallel functions in the caller—a future variable
became unresolved when assigned to the return value of a parallel function, and was
resolved with the return value when the function completes. However, in addition,
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Task T1 Task T2
qx = parFn ();
// parFn is a parallel function
// Therefore qx becomes reserved
. . .
z = qx;
// Strict access: block until parFn completes.

qx = 2;
// What should this assignment do
// if parFn has not completed yet?

Figure 2.18: Potential problems with future data types.

futures in oldCool provided operations to explicitly resolve and unresolve the future
object. These operations enabled futures to be used for general event synchronization,
and helped separate synchronization granularity from task granularity.

A future type could be in one of three possible states—setor resolved with a value,
reservedor unresolved waiting for the return value from a parallel function, andclear or
unresolved by an explicit clear operation and therefore not associated with the return value
of any parallel function. The semantics of some common operations on future types were
as follows. (We use names starting with a ‘q’ for future variables.) An assignment such as
qx=3 automatically resolved qx with the given value and resumed any blocked threads
waiting for qx to be resolved. An invocation of a parallel function,qx=parFn(), made
qx reserved awaiting the return value of the parallel function. Astrict access such as
z =qxblocked the thread until qx was resolved and continued with the value thereupon.
An assignment of one future variable to another,qx=qy, had the following behavior: if
qy was resolved then qx became resolved with the value of qy; if qy was reserved then
qx became reserved awaiting the return value of the same function as qy; and if qy was
clear then qx became clear as well. Finally, operations to explicitly resolve/unresolve a
variable (i.e.,set, clear, waitset, andwaitclear) were useful when implementing producer-
consumer style synchronization between two (or more) concurrent tasks. The producer
resolved a future variable with the produced value, while the consumer cleared the future
variable upon consuming a value.

The various operations on future variables described above enabled the programmer
to express different kinds of synchronizations in a program, such as returning values from
a parallel function as well as more general producer-consumer style synchronization be-
tween tasks. However, we ran into several problems with future variables. The main
problem was providing reasonable behavior in situations when a future that was unre-
solved awaiting the return value of a parallel function was subsequently modified before
the parallel function could complete. For instance, consider the code fragment shown in
Figure 2.18. With the assignmentqx=2 in task T2, qx itself will be resolved with the
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value 2, irrespective of whether parFn has completed or not. However, what should be
the effect of this assignment on the strict access,z=qx, that is suspended waiting for
parFn to complete? We could wake up task T1, in which case execution could proceed
past the assignment even though parFn was still executing. Or, we could let task T1 wait
for the return value from parFn even though qx gets resolved. The problem then is that
the behavior ofz=qx is different depending on whether qx is reserved or clear. In the
former case it is unaffected by subsequent assignments to qx, while in the latter case it
is made resolved with subsequent assignments to qx.

Now consider that task T2 had executed the statementqx=qy rather thanqx=2.
If qy is resolved then the situation is similar to the previous case. But if qy is clear, then
should qx become clear, or should it continue to be reserved awaiting the value from
parFn (note that both states are unresolved). And, if qy is reserved waiting for a parallel
function parFn2, then qx should clearly await the return value of parFn2 as well. But,
should the suspended strict-accessz=qxcontinue to await the value of parFn, or should
it switch to waiting for the value from parFn2?

In this fashion we can construct several situations where the desired behavior is
ambiguous and non-intuitive. Although these are corner cases where the programmer
is using future variables in a decidedly muddled fashion—such as performing multiple
unsynchronized assignments to a future variable—we felt that it was important to have
sound and simple principles that could be used to determine the behavior of future
variables in all situations. We found that providing these various kinds of functionality
within future variables opens up loopholes in the language that make it all too easy to
write bad programs that are difficult to reason about.

Besides these situations where the semantics of future variables gets complex, the
other drawback of future variables is that supporting all of the necessary functionality
can become quite expensive, both in terms of the storage required as well as the runtime
overhead of the various operations. These overheads become particularly intolerable in
programs that use futures in a simple fashion, yet have to pay for the more general
(unused) functionality. For instance, a future variable that was only used for return
value synchronization had to also support the possibility of being explicitly unresolved
through the clear operation. Or, a future variable that was only being used for event
synchronization continued to incur the overhead associated with supporting the unused
facility for return value synchronization.

Based on the experiences outlined above, we came to the conclusion that we were
overloading futures and trying to provide too much functionality all in one construct.
We used futures for pure event synchronization as well as for integrating synchronization
with shared data. In addition, we used futures for return value synchronization from
parallel functions as well as for general event synchronization between tasks. In trying
to simplify the constructs, we converged on the simple events or condition variables
provided inCool and described earlier in this chapter. The new design has several
advantages. The most important benefit is that condition variables are simple constructs
with all the operations having very straight-forward semantics. Furthermore, although
condition variables themselves provide pure event synchronization only, they are easily
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coupled with data abstraction mechanisms in C++ to build shared object abstractions that
provide future-like synchronization, with the synchronization details encapsulated within
the implementation of the object (e.g., the synchronizing double abstraction described
in Section 2.3.2). Finally, because of their simple semantics, condition variables can be
implemented very efficiently, and their implementation can be further optimized by the
compiler in several situations that are outlined in Chapter 4. AlthoughCool no longer
supports future style synchronization for the return value of parallel functions, values can
be easily obtained through an extra argument to the function as shown in Section 2.3.2.

2.5.2 Waitfor

The waitfor construct is useful to wait for a phase of a program to complete and must
be wrapped around the block of code representing the program phase; it is therefore
syntactically restricted to be within the lexical scope of a function. However, if the code
for the phase spans parts of two functions (e.g., the last half of one function and the
first half of another) then a waitfor cannot be used, since the waitfor must obviously be
entirely within a function.

We considered an alternatefenceconstruct that can be invoked as a function call
anywhere within the program, with the semantics that the taskT invoking the fence
blocks until the completion of all previous tasks created byT, either directly or indirectly.
Therefore a fence is not identified with a static region of code, but instead waits for all
the code dynamically executed within the context of that task to complete. This addresses
the syntactic restriction in the waitfor construct.

However, we chose not to include this construct, primarily because supporting a fence
operation adds a constant overhead to all task creation and completion operations. Since
the invocation of a parallel function may at any time be followed by a fence, the runtime
system must keep track of all tasks that have been created by a task at all points. In
contrast, the waitfor construct explicitly identifies the code that must be synchronized
for, allowing the runtime to only keep count of the tasks created within that scope. In
addition, a fence can sometimes be tricky to use, leading to obscure bugs. For instance,
a function that calls the fence operation may be invoked from multiple sites, most of
which use the fence synchronization, but other invocations may end up executing the
fence inadvertently, perhaps with disastrous results. The problem arises because the
fence operation is not tied to the scope of a function, compared to the waitfor operation
where the phase of the program being synchronized for is clearly identified. Finally,
in our experience, synchronization in most programs could be easily expressed with the
waitfor construct and did not require a fence.

2.6 Summary

The emphasis in the design ofCool has been to choose a simple and compact set of
constructs that can be implemented efficiently. As we have shown, the simple constructs
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chosen inCool work very well in exploiting task-level parallelism over a variety of
parallel applications. The requirements of most applications map directly onto the con-
structs inCool. For other applications, although the programmer has to explicitly build
additional concurrency and synchronization abstractions, these are easily expressed using
the basic constructs.

The features inCool are designed to exploit the object structure of the underlying
C++ program. This object-based approach ofCool works particularly well when the
computation is organized around the primary data structures in the program; in such
applications both concurrency and synchronization are orchestrated around the main ob-
jects in the program. However, we have also found that being bound to a strict object
structure can sometimes be quite restrictive. In such situations the flexibility to bypass
the modularity of the object structure is often necessary to improve both programming
ease as well as efficiency.

Finally, in this chapter we have explored the expressiveness of theCool constructs in
exploiting parallel execution.Coolalso provides support in the language to optimize the
placement of tasks and data and thereby improve data locality in the program’s execution.
This support is described in the following chapter.
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Chapter 3

Data Locality and Load Balancing

Exposing the concurrency and the accompanying synchronization doesn’t automatically
ensure great speedups; obtaining good performance on a multiprocessor requires (a) good
load balance so that processors do not sit idle for lack of available work and (b) good data
locality so that individual processors do not waste time waiting for memory references
to complete. The latter problem is particularly severe on modern multiprocessors where,
with rapid improvements in processor speeds, the memory system is increasingly the
limiting factor in the performance of computer systems. The latency of memory accesses
can be especially high in large-scale shared memory multiprocessors which typically have
deep memory hierarchies. For example, in the Stanford DASH multiprocessor [74], while
the local cache access takes only a single clock cycle, a miss serviced by the local portion
of shared memory takes about thirty clock cycles, and a remote miss takes over a hundred
clock cycles. Improving data locality in parallel programs can reduce the time spent by
a processor waiting for data and is critical for achieving good performance. Therefore,
any parallel programming system must address these performance issues.

Data locality in parallel programs can be improved by scheduling computation and
distributing data structures with an awareness of the underlying memory hierarchy, so
that tasks execute close to the objects they reference. Several automatic techniques
have been explored in the literature—for instance, the operating system can perform
optimizations such as affinity scheduling for better cache reuse [23, 44, 76, 80, 105]
or automatic page migration for better memory locality [16, 23, 71, 72]. A compiler
can perform optimizations such as scheduling the iterations of a loop for cache locality
or distributing individual elements of an array for memory locality [7, 45, 65, 77, 107,
108, 112]. These automatic techniques are usually limited in their effectiveness since
determining an appropriate distribution of tasks and objects requires knowledge about
the program that is usually not available to the operating system or the compiler. This
application specific information is often readily known to the programmer. However,
the programming support for the programmer to explicitly perform these optimizations
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is very primitive. In most parallel programming systems today, these optimizations must
be performed in a highly machine specific fashion—they are hard-wired to the particular
memory hierarchy on a multiprocessor and use the runtime libraries provided on that
machine. This effectively limits the portability of the parallel applications.

Cool provides explicit support in the language to address these performance is-
sues [25]. In addition to support for expressing parallelism,Cool provides abstractions
for the programmer to supply hints about the data objects referenced by parallel tasks.
These hints are used only by the runtime system to appropriately schedule tasks and
migrate data, and thereby exploit locality in the memory hierarchy. Furthermore, as hints
these abstractions do not affect the semantics of the program. This approach provides a
clear separation of functionality: the programmer can focus on exploiting parallelism and
supplying hints about the object reference patterns, leaving the details of task creation and
management to the implementation. Furthermore, this approach enhances the portability
of Cool programs since the machine-specific portion is entirely encapsulated within the
implementation.

In this chapter we first review the characteristics of the memory hierarchies found
in modern multiprocessor systems. We outline our approach towards improving data
locality, and present the abstractions provided inCool to support programmer interven-
tion, including the constructs for specifying the distribution of objects across processors’
memories. We describe the scheduling optimizations performed by the runtime system,
but defer a detailed discussion of the implementation to Chapter 4. We also postpone
evaluation of the effectiveness of our approach through example programs to Chapter 5.
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Figure 3.1: Multiprocessor memory hierarchy.

3.1 Exploiting the Memory Hierarchy

In this thesis we assume a three-level memory hierarchy (see Figure 3.1) consisting of (a)
per processor caches, (b) local portion of shared memory, and (c) remote shared memory.
We believe that this is a reasonable abstraction for many large scale multiprocessors,
such as the Stanford DASH [74], MIT Alewife [1], and the KSR-1 [64]. In these
multiprocessors the ratio of the latencies of local to remote references is usually much
more significant than variations in the latencies to different remote processing elements.
The memory hierarchy shown in Figure 3.1, therefore, captures the essential components
of the memory hierarchy for such multiprocessors, while still allowing for a high-degree
of machine independence.

For these deep memory hierarchies, the primary mechanisms to improve data locality
in a parallel application aretask schedulingand object distribution. The latency of
references to an object can be reduced by scheduling computation and distributing objects
so that a task executes on a processor that is close (in the memory hierarchy) to the objects
referenced by the task. However, scheduling tasks to improve data locality often conflicts
with the simultaneous goal of scheduling to achieve good load balance. Therefore, it is
important to weigh the tradeoff between locality and load balance when determining a
task schedule.

Given a specific task decomposition for an application, we can exploit two forms of
locality—cache locality and memory locality. We can exploitcache locality(i.e., reuse
in the cache) by scheduling tasks that reference the same objects on the same processor.
Cache locality can be further enhanced by scheduling these tasksback to backto reduce
possible cache interference caused by the intervening execution of other unrelated tasks.
When cache locality alone is insufficient for good performance, we can exploitmemory
locality by identifying the primary object(s) referenced by a task and executing the task
on the processor that contains the object(s) in its local memory. Thus, references to
the object that miss in the cache will be serviced in local rather than remote memory,
resulting in lower latency. However, ensuring a good load balance while exploiting
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memory locality requires both task scheduling and an appropriate distribution of objects
across the local memories of processors. Finally, the impact of long-latency memory
references can be further reduced by dynamically migrating the object or byprefetching
the object closer to the processor.

3.2 Our Approach

Determining an efficient task and object distribution requires knowledge about the pro-
gram that is often beyond the scope of a compiler but may be readily known to the
programmer. InCool we therefore provide abstractions for the programmer to supply
hints about the data objects referenced by parallel tasks. These hints are used by the run-
time system to appropriately schedule tasks and thereby exploit locality in the memory
hierarchy; they do not affect the semantics of the program. Since our approach involves
programmer participation, it is important that the abstractions be intuitive and easy to
use. At the same time the abstractions should be powerful and general enough to exploit
locality at each level in the memory hierarchy, without compromising performance. We
address these goals through the following key elements of our design. The abstractions
are integrated with the task and object structure of the underlyingCool program so
that the hints are easily supplied. Next, the abstractions are structured as a hierarchy
of optional hints so that simple optimizations are easily obtained as defaults while more
complex ones require incremental amounts of programmer effort. Finally, the hints for a
task are dynamically evaluated each time a task is created, enabling the programmer to
easily experiment with different optimizations.

Thehierarchyof control provided inCool ranges from smart defaults to simple hints
to very specific hints. Smart default scheduling policies provide the basic optimizations
without any programmer effort. When programmer participation becomes necessary,
we have abstractions for providing simple hints about object usage. These hints are
sufficient for most programs. For programs that require more complex optimizations, we
have abstractions that provide greater control over task scheduling and data placement.
These latter abstractions require a greater degree of understanding of the application and
the memory hierarchy, but are simple extensions of the simpler abstractions and therefore
require incremental amounts of additional programmer effort.

The programmer-supplied hints only influence the scheduling of tasks. In addition,
we also provide support in the language for explicit data distribution.Cool provides
constructs for allocating an object from a particular processor’s memory and for dy-
namically migrating an object from one processor’s memory to another. Ongoing com-
piler [7, 45, 65, 77, 107] and operating systems [17, 73] research has enjoyed some success
in automatically distributing objects and could reduce this burden on the programmer.

3.3 The Abstractions
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classcolumnc f
. . .

public:
. . .
// Parallel function to update ‘this’ column
// by the given ‘src’ column.
parallel mutex void update (columnc* src)

// Code specifying affinity hints. The runtime executes
// this code whenever the function is invoked, to determine
// how to schedule the corresponding task.
[

// By default the task has affinity for the column
// being reduced (‘this’).
affinity (this);

// To instead express affinity for the column ‘src’
// being used to reduce the column.
affinity (src);

];
g *column;

main () f
int i, j;
. . .
for (i=0; i<N; i++) f

for (j=0; j<i; j++) f
// Invocations of the parallel function.
// The corresponding tasks are scheduled
// based on the specified affinity hints (or default).
column[i].update (column+j);

g

g
g

Figure 3.2: Illustrating the affinity hints.
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In Cool, information about the program is provided by identifying the objects that are
important for locality for a task. To do so, along with a parallel function the programmer
can specify a block of code that containsaffinity hints. Figure 3.2 illustrates how this
block of code may be supplied for a parallel function; the individual affinity hints are
discussed later in this section. This block of code is executed when the parallel function
is invoked and a corresponding task is created. The affinity hints themselves are simply
evaluated by the runtime system to determine their effect on the scheduling of the task;
they do not affect the semantics of the program (this can be automatically enforced by
the compiler). We present the hierarchy of the affinity abstractions in this section.

3.3.1 Defaults

Parallel functions inCoolhave a natural association with the object that they are invoked
on. So by default, tasks created by the invocations of a parallel function are scheduled on
the processor that contains the corresponding object in its local memory. (Tasks created
by invocations of parallel C style functions—as opposed to C++ member functions—are
scheduled on the server that created them). The task is therefore likely to reference the
object in local rather than remote memory. In addition, if there are several tasks that
operate on that object, then only the first task will need to fetch the object from memory;
the rest are likely to find the object in the cache. The runtime system executes such tasks
back-to-backon that processor to reduce the cache interference caused by the execution
of unrelated intervening tasks. This further improves cache locality.

The following examples illustrate this default heuristic. Figure 3.2 presents the code
to perform column-oriented Gaussian elimination of a matrix, in which the parallel update
method is invoked on a destination column to reduce it using a given source column.
Based on the heuristic described above, the update task is scheduled to exploit both
cache and memory locality on the destination column. Considering the Panel and Block
Cholesky applications described earlier in Chapter 2, the default heuristic schedules the
updatePanel/updateBlock tasks to exploit locality on the destination panel/block respec-
tively (see Figures 2.11 and 2.13). As we see later in Chapter 5, scheduling based on
the default heuristic alone often leads to substantial performance improvements.

3.3.2 Simple Affinity

When a parallel function would benefit from locality on an object other than the base
object, the programmer can override the default by explicitly identifying that object
through anaffinity specification for the function. When affinity for an object is explicitly
identified, the runtime system schedules the task in a manner similar to the default
described above, except that the scheduling is based on the specified object rather than
the default object. As a result, the object is likely to be referenced in the cache, and
references to the object that miss in the cache are serviced in local rather than remote
memory. For instance, as shown in the example in Figure 3.2, the programmer can
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supply an affinity hint to override the default affinity for the destination column and
exploit locality on the supplied source column instead.

3.3.3 Task and Object Affinity

We have shown how to exploit each of cache and memory locality by simply specifying
the objects referenced by the parallel function. It is often useful tosimultaneouslyexploit
memory locality on one object and cache locality on a different object.

We illustrate this need using an algorithm that performs column-oriented Gaussian
elimination on a matrix. In the algorithm, each column of the matrix is updated by the
columns to its left to zero out the entries above the diagonal element. Once the column has
received all such updates (i.e., all entries above the diagonal element are zero) it is used
to update other columns to its right in the matrix. A task in this algorithm is an invocation
of the parallel functionupdate(see Figure 3.3) that updates a destination column by a
given source column. A desirable execution schedule and object distribution for this
column-oriented algorithm are as follows (see Rothberg [91]). The algorithm executes
an update on the processor where the destination column is allocated, thereby exploiting
memory locality on the destination column (the number of columns per processor is so
large that they are not expected to fit in the cache). Since tasks need locality on the
destination column, distributing the columns across the local memories of processors in a
round-robin fashion results in good load distribution. In addition, each processor executes
multiple updates that involve the same source column; by executing these updates in a
back-to-back manner the algorithm can exploit cache locality on the source column as
well, by avoiding the execution of other tasks that might flush the source column from
the cache.

The above example clearly shows that we wish to exploit cache locality on the source
column and memory locality on the destination column. We therefore allow the keywords
OBJECTandTASKto be specified with an affinity statement. TheTASKaffinity statement
identifies tasks that reference a common object as atask-affinityset; these tasks are
executed back-to-back to increase cache reuse. TheOBJECTaffinity statement identifies
the object for memory locality; the task is collocated with the object. As shown in
Figure 3.3, we can simultaneously exploit cache locality through task affinity on the source
column, as well as memory locality through object affinity on the destination column.
This exactly captures the way the algorithm was hand-coded using ANL macros [18] to
run on the Stanford DASH multiprocessor; the same scheduling is very simply expressed
in Cool.

3.3.4 Processor Affinity

Finally, for load balancing reasons it sometimes becomes necessary todirectly schedule
a task on a particular processor (in practice the corresponding server process), rather
than indirectly through the objects it references. We therefore provideprocessor affinity
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classcolumnc f
. . .

public:
. . .
// Parallel function to update ‘this’ column by the given source column.
parallel mutex void update (columnc* src)

[
// Object affinity for ‘this’ exploits
// memory locality on the destination column.
affinity (this, OBJECT);

// Task affinity for ‘src’ exploits
// cache locality on the source column.
affinity (src, TASK);

];
g;

Figure 3.3:Cool code illustrating TASK and OBJECT affinity in Gaussian elimination.

through thePROCESSORkeyword that can be specified for an affinity declaration. An
integer argument is supplied instead of an object address, and its value (modulo the
number of server processes) is used as the server number on which the task is scheduled.

3.3.5 Multiple Affinity Hints

If affinity is specified for multiple objects then the runtime system simply schedules the
task based on the first object. It is the programmer’s responsibility to supply appropriate
affinity hints for tasks that would benefit from locality on multiple objects. For instance,
to exploit memory locality on multiple objects, the programmer can allocate all the objects
from the memory of one processor and supply an object affinity hint for any of those
objects. To exploit cache locality on multiple objects, the programmer can pick one of
the several objects and supply a task affinity hint for that particular object consistently
across the various tasks. Greater experience with using these affinity hints may suggest
heuristics to automatically make an intelligent scheduling decision when multiple affinity
hints are supplied, such as determining the relative importance of objects based on their
size and scheduling the task on the processor that has themostobjects in its local memory.

3.3.6 Task Stealing

While the runtime system schedules tasks based on the affinity hints, tasks may be stolen
by an idle processor for better load-balance. While this is desirable in most applications,
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Table 3.1: Summary of affinity specifications.

Affinity Construct Description Effect
affinity (obj-addr) Simple affinity Collocate with object, schedule back-to-back
affinity (obj-addr, OBJECT) Object affinity Collocate with object
affinity (obj-addr, TASK) Task affinity Schedule tasks in task-affinity set back-to-back
affinity (num, PROCESSOR) Processor Affinity Schedule on specified processor

there are codes where a good load-distribution can be determined statically. In such
applications it is often useful for the programmer to control load-balancing explicitly
by scheduling tasks directly onto processors (using processor affinity, for example) and
disabling automatic task stealing. We therefore allow task stealing to be explicitly disabled
by exposing aCool runtime flag (callednoStealing) to the programmer. This flag can
be toggled freely—a non-zero value disables task stealing in the entireCool runtime,
while a zero value (default) keeps task-stealing enabled. We see instances where this
support is useful in the following chapter on case studies.

3.3.7 Summary of Affinity Hints

The various affinity hints are summarized in Table 3.1. They are used by the runtime
scheduler hints to schedule tasks as described above. In addition to scheduling tasks for
good locality, the scheduler employs several heuristics to maintain good load balancing
at runtime. For instance, an idle processor steals tasks from other processors. An idle
processor will also try to steal anentire task-affinity set, since the set can execute on any
processor and benefit from cache locality. Several processors can execute tasks from the
same task-affinity set if the common object is not being modified; modifications to the
object will invalidate it in other processors’ caches.

3.4 Object Distribution

In addition to affinity hints for a task, we also allow the programmer to distribute ob-
jects across memory modules, both when they are allocated, as well as by dynamically
migrating them to another processor’s local memory. Since tasks with object affinity are
executed where the object is allocated, distributing objects across memory modules can
improve the load balance of the program.

By default, memory is allocated from the local memory of the requesting processor.
To allocate memory from within the local memory of a particular processor, a processor
number can be supplied as an additional argument to thenew operator (see Table 3.2).
To dynamically move an allocated object from one processor’s memory to another, we
provide themigrate function. The migrate function takes a pointer to an object and
a processor number, and it migrates the object to the local memory of the specified
processor (modulo the number of server processes). An optional third argument that
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Table 3.2: Summary of data distribution constructs.

Affinity Construct Description
x = new (P) type Allocate the object from the memory of processor P.
migrate (obj-addr, P) Migrate the object to the memory of processor P.
migrate (obj-addr, P, num) Migrate an array of ‘num’ objects to the memory of processor P.
home (obj-addr) Return the processor P that contains the object in its local memory.
distribute (x,M,1) Distribute elements ofx (1-D) round-robin.
distribute (x,M,b) Distribute elements ofx (1-D) blocked round-robin.
distribute (x,M,1,N,N) Distribute rows ofx (2-D) round-robin.
distribute (x,M,b,N,N) Distribute rows ofx (2-D) blocked round-robin.
distribute (x,M,M,N,1) Distribute columns ofx (2-D) round-robin.
distribute (x,M,M,N,b) Distribute columns ofx (2-D) blocked round-robin.
distribute (x,M,b1,N,b2) Distribute blocks ofx (2-D) round-robin.

specifies the number of objects to be migrated is useful to migrate an array of objects.
Finally, the programmer can determine where an object is allocated through thehome
function that returns the number of the processor that contains the given object allocated
in its local memory.

These constructs allow the programmer to describe the desired distribution (if any)
of objects in the program. The implementation cannot, however, guarantee this precise
distribution since the actual distribution is limited by the data allocation granularity in
the underlying architecture. For instance, the operating system on the Stanford DASH
supports data allocation only at the granularity of a 4-KB page. Object distribution on
these machines is therefore implemented through the migration of entire pages spanned
by the object, rather than by the object alone. Hence, in addition to specifying precise
object distributions, the programmer must also consider the interaction of the layout of
different objects in memory and the underlying granularity of data distribution.

The new and migrate operations express general object distributions. Many parallel
programs, especially scientific and engineering and numerical applications, have very
regular data structures such as matrices and arrays. For these programs we provide the
distributeconstruct that allows the programmer to easily specify the distribution of these
regular data structures. Besides the array object, the distribute function is supplied a
pair of values(N; b) for each dimension of the supplied array. In this pairNis the
declared size of that dimension, andb is the desired block size in that dimension. The
distribute function determines the blocking of the array and distributes the blocks in a
simple round-robin manner across the local memories of the processors.

Figure 3.4 presents a blocked distribution of a two-dimensional arrayx, of size
15x18, during a 16 processor execution. As shown in the figure, the statement
distribute(x;15;3;18;3) chooses blocks of size 3x3 and distributes them in a round-
robin fashion across processors. The number within each block denotes the processor
number to which the particular block is assigned. Table 3.2 presents other examples of
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distribute (x, 15, 3, 18, 3);
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objType x[15][18];

Figure 3.4: Blocked distribution of a two-dimensional matrix through thedistribute
statement.

several common distribution patterns specified using the distribute statement.

The distributefunction can be used to dynamically redistribute arrays as well, which
is useful when different phases of the program require a different object distribution.
The blocks identified to thedistribute function are distributed in a round-robin fashion
across alinear array of processors (with wrap-around), as shown in Figure 3.4. We cur-
rently do not support more complex processor configurations such as a two-dimensional
matrix of processors, although these basic constructs can be easily extended to sup-
port them. Furthermore, as before, the actual distribution may not precisely match the
specified distribution due to the allocation granularity on the machine. We also do not
consider transformations such as converting a blocked two-dimensional array into a four-
dimensional array so that the data within each block can be laid out contiguously in
memory. These transformations are usually performed explicitly by the programmer
since the analysis required for automating them is often beyond the scope of a compiler.
Finally, the distribute function does not provide any new functionality. Rather, it can
be easily implemented using the migrate operation as shown in Figure 3.5. This figure
presents an implementation of the distribute function for one and two-dimensional arrays
using the migrate call. The distribute function is therefore provided only to make it easier
to specify regular distributions for data structures such as arrays and matrices.

The distribute statement inCool specifies data distribution similar to the primitives in
HPF [78], but differs in the following respects. Most importantly, whereas the distribute
statement inCool is just a hint, the data distribution primitives in HPF are used by
the compiler to (a) extract parallelism from the serial HPF program, (b) schedule the
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// distribution of a 1-D array.
distribute (void* x, int M, int b) f

int i;
for (i=0; i<M; i+=b)

migrate (x+i, i/b, b);
g

// distribution of a 2-D array.
distribute (void* x, int M, int b1, int N, int b2) f

int i, j, k;
for (i=0; i<M; i+= b1)

for (j=0; j<b1; j++)
for (k=0; k<N; k+=b2)

migrate (&(x[i+j][k]), (i/b1)*b2 + k, b2);
g

Figure 3.5: Implementation ofdistributeusingmigrate.

parallel computation, and (c) manage the communication between the parallel tasks.
Furthermore,Cool is designed exclusively for shared-memory architectures, whereas
HPF can execute on both shared-memory and message-passing machines. As a result the
distribute statement inCool can be treated as a hint, with the communication of poorly
placed data being automatically handled by hardware (at worst resulting in a performance
penalty). In contrast, while HPF implementations on shared-memory machines can make
such assumptions, implementations on message-passing machines must distribute the data
precisely as specified, with the communication of data being handled by the software
runtime system. Finally, compared to the simple blocked distributions across an array of
processors expressed by theCool distribute statement, the HPF primitives can express
more general distributions across complex processor configurations. Such more general
distributions must be explicitly specified using the migrate statement inCool.

To summarize, the migrate and distribute constructs allow the programmer to dis-
tribute objects across the local memories of processors. The migrate call allows the
programmer to specify arbitrary and irregular object distributions, while the distribute
call allows regular round-robin distributions to be specified in a straight-forward fash-
ion. These constructs only affect the physical allocation of data and do not affect the
semantics of the program. Furthermore, the constructs serve only as hints since the actual
object distribution is inherently limited by the granularity of memory allocation in the
underlying architecture. Finally, the design of the data structures in the program is crucial
in performing these optimizations successfully.
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3.5 Summary

Exploiting data locality is crucial for high performance in modern multiprocessors. How-
ever, optimizations to improve data locality are difficult because they require both an
intimate knowledge of the application structure and an understanding of the underlying
memory hierarchy. As a result, in most systems today these optimizations are performed
explicitly by the programmer in a very machine-dependent fashion.

In this chapter we have described the support provided inCool to address these
performance issues. Our approach is attractive because it allows the programmer to
focus on supplying information about the application, leaving the low-level details of
task scheduling to the implementation. The abstractions are easy to use and supplied in
terms of the objects in the program. Furthermore, the abstractions are powerful enough
to exploit locality at each level in the memory hierarchy and port transparently across
a variety of shared-memory multiprocessor architectures. In Chapter 5 we apply our
approach to several parallel applications and evaluate its effectiveness in practice.
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Chapter 4

Implementation and Optimizations

We have implementedCool on the Stanford DASH multiprocessor [74] (32-64 proces-
sors), the SGI 4D-340 multiprocessor workstations [12] (8 processors), and the Encore
MultiMax [34] (32 processors). In this chapter we describe theCool implementation in
detail. We first give a high-level overview of the implementation, including the front-end
translation process and the runtime execution model. Next we describe the implemen-
tation of the individualCool constructs. We then present the techniques employed to
optimize the overhead of eachCool construct. We also describe some compiler tech-
niques that can very efficiently implement synchronization abstractions built using mon-
itors and condition variables. Finally, we outline the task queue structure and scheduling
support in the runtime system, and we present some base performance numbers of several
applications written inCool and running on the Stanford DASH multiprocessor [74].

4.1 Implementing the Constructs

Figure 4.1 shows the overall implementation and the compilation process for aCool

program. ACool program is first translated to an equivalent C++ program by a yacc-
based [61] source to source translator1 that replaces the individualCool constructs by
calls to library support routines. The generated C++ program is then compiled for the
target machine by a standard C++ compiler and linked with theCool runtime libraries
to produce an executable.

The Cool runtime system provides a task-queue model of parallelism [8, 26, 31,
28, 14] in which user-level tasks are scheduled onto a number of kernel-level processes
that execute in the same shared address space. When aCool program begins execution

1We used the yacc description of C++ provided with the GNU C++ compiler as our starting base, for
which we are grateful to the Free Software Foundation.
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Figure 4.1: Compilation of aCool Program.

several server processes are created, usually one per available processor. These server
processes execute for the entire duration of the application program. They correspond
to traditional heavy-weight UNIX processes and execute within the same shared address
space. Each server process is assigned to a processor where it executes for its entire
lifetime without migrating to another processor.2 An invocation of a parallel function
creates atask, a light-weight unit of execution. Tasks are implemented entirely within
theCool runtime system. They have their own stack and execute in the shared address
space. Each server continually fetches a task and executes it without preemption until
the task completes or blocks (perhaps to acquire a mutex object or wait on an event),
whereupon the server process goes back to fetching another task. The program finishes
execution when all tasks have completed.

In the following sections we describe the implementation of eachCool construct.
We describe thetranslation process that generates the necessary calls to the runtime
library routines and theruntimesupport for each construct.

4.1.1 Concurrency: Parallel Functions

A parallel function inCool is implemented as follows. During the compilation process,
the translator recognizes each invocation of a parallel function and replaces it by a call to
a runtime routine to create a task. During execution this routine creates a task template
specifying the parallel function and the arguments, and it enqueues the template onto
a task queue. Finally, a server process dequeues the task template and executes the
corresponding parallel function. We describe each of these in turn below.

To recognize the invocation of parallel functions, the translator maintains two tables—
a table of all the parallel functions that have been declared so far and a table of all
the variables (including both globals and locals) that have been declared so far. As
the translator scans the inputCool program, it adds an entry to the table of parallel
functions whenever it encounters a declaration for a new parallel function. C++ allows
multiple functions to have the same name which are then disambiguated by the types of
their arguments; therefore the table also stores the type of each argument to each parallel

2This approach may not be desirable in a multiprogrammed environment where the machine is simul-
taneously shared between several applications.
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// C-style parallel functions. // C++ style parallel functions.
// serial function, integer argument. // serial function (global).
condH* foo (int ); condH* bar (int );

// parallel function of the same name classmyclassf
// but different argument. public:
parallel condH* foo (double); // parallel method, with the

// same name and argument types.
main () f parallel condH* bar (int );

. . . void baz ()f
foo (3); // invoke (serial) foo (int). // parallel invocation of the method.
. . . bar (2);
foo (1.2); // invoke parallel foo (double). // again, parallel invocation of the method.

this.bar (4);
g . . .

// serial invocation of the C function.
::bar (5);

g

g

Figure 4.2: Recognizing the invocation of a parallel function.

function. Since a parallel function may be a method belonging to a class, the table of
parallel functions also maintains the class name (if any) for each function. The table of
variable declarations maintains the type of each variable visible in the current scope, and
is updated at variable declarations as well as when a new scope is created or destroyed
in the program.

When the translator encounters a function invocation it performs a lookup in the table
of parallel functions to determine if that function has been declared to be parallel.3 A
function invocation in aCool program may either be a method invocation on an object
or a regular C-style function invocation (see Figure 4.2). For method invocations the
translator first performs a lookup in the table of variables to determine the class of the
variable and then performs a lookup in the table of parallel functions to determine if
the invoked function of the class was declared as a parallel function. A regular C-style
function invocation, on the other hand, may refer to either a C function (i.e., not a method)
or, if the function was invoked from within a method, it may refer to a method of the
enclosing class. For such function invocations the translator checks for a match based
on C++ scope-rules of the closest enclosing scope first. Therefore, it first checks for a

3This approach is facilitated by the ANSI C standard, which requires that a function must have been
declared (through a function header or prototype) before it can be invoked. In our current implementation,
if a parallel function is invoked before the function has been declared, then that invocation will result in
sequential execution.
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// Original COOL program. // Generated C++ program.
// Parallel function header.
parallel condH* foo (double); condH* foo (double);

// struct to hold arguments and return value
struct foodoubles f

double a0; //Argument
condH* rv; // Return value

g;
// Wrapper for parallel function
void foo doublew (foo doubles* sptr) f

// unmarshall arguments and invoke foo.
foo (sptr->a0);
// signal the completion of the function.
sptr->rv.signal ();

g

main () f main () f
condH* synch; condH* synch;
. . . . . .
// Invocation of a parallel function. // Invocation of a parallel function.
synch = foo (2.3); //Create task for the parallel function

f

// allocate template for arguments/return value.
foo doubles *sptr = new foo doubles;
// marshall the arguments.
sptr->a0 = 2.3;
// store the pointer to the return event.
synch = sptr->rv = new condH;
taskCreate (foodoublew, sptr);

g
. . . . . .

g g

Figure 4.3: Translating a parallel function invocation.

matching method in the current class and then checks for a matching C-style function
(see the invocation of the function bar on the right side of Figure 4.2).

Upon recognizing a parallel function, the translator removes the keyword parallel from
the function header and leaves the body of the parallel function unchanged. Furthermore,
it generates the following code for each parallel function (see Figure 4.3). For a parallel
function header (the first header for each parallel function), the translator generates a
struct to hold the arguments and the return value of the function. It also generates a
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wrapperfunction that takes a pointer to the above struct, unmarshalls the arguments, and
invokes the parallel function with the appropriate arguments. For each invocation of a
parallel function, the translator replaces the actual invocation by code to (a) allocate an
instance of the above struct, (b) marshall the actual arguments into the struct, and (c)
call a runtime routine to create and enqueue a task template. The task template consists
of a pointer to the wrapper function and a pointer to the struct containing the actual
arguments.

This general scheme supports parallel functions with parameters of any arbitrary type,
but incurs the overhead of invoking the intermediate wrapper function. Our implemen-
tation optimizes away this overhead in situations where the parameters of the parallel
function are of simple primitive types such as integers or pointers. For such functions we
do not use a wrapper function and instead store the function and the actual arguments di-
rectly in the task template; the runtime system subsequently invokes the function directly
on the supplied arguments rather than going through the wrapper function.4

To support the return value of a parallel function (a pointer to an event), the translator
generates code to allocate an event at the point of function invocation (see Figure 4.3).
A pointer to this event is stored in the variable that is assigned the return value of the
parallel function (the variablesynchin the figure). This pointer is also stored in the struct
containing the marshalled arguments. The former is used by the caller to synchronize for
the completion of the parallel function, while the latter is used by the wrapper function
to signal the event upon completion of the parallel function. A simple optimization
performed is that if the caller ignores the return value of the parallel function then the
event need not be allocated at all. Furthermore, as mentioned earlier in Chapter 2,
the compiler can often deallocate these events automatically once they are no longer
accessible, such as upon exiting the scope of a stack-allocated variable. However, our
current implementation does not perform these optimizations. In any case, since the
compiler is forced to be conservative, the ultimate responsibility for deallocating events
continues to rest upon the programmer.

The implementation employs several tricks to keep the overheads down. For instance,
the runtime system allocates a stack within which to run a task only after the task
template is actually dequeued for execution. Allocating a stack as late as possible as
in this scheme is important for applications that use large amounts of memory, since it
avoids wasting memory in stacks that are allocated but unused. In addition, we maintain
our own free-lists for all dynamically allocated data structures in the runtime system,
such as task templates, stacks, and structs for marshalling the arguments of a parallel
function. Allocation requests are therefore mostly satisfied from within the free-lists with
little overhead and only occasionally need to go to the operating system for additional
memory. Furthermore, an instance of every free-list is maintained for each processor,
thereby avoiding contention while allocating/freeing these data structures. To keep the

4This optimization is performed only when the argument types are simple, and the runtime is able to
pass the arguments to the parallel function in the processor registers. We exclude functions with arguments
that are floats/doubles, since those arguments must be passed in the floating point registers and follow a
more complex calling convention.
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free-lists from getting imbalanced, we also maintain a global instance of each free-list.
If the number of elements on a processor’s free-list exceeds a certain threshold (which is
different for different free-lists), then some excess elements are transferred to the global
instance of this free-list. Conversely, when a processor finds a free-list empty, it tries to
get elements from the global free-list before actually allocating more memory from the
system. Although accesses to the global free-lists must be synchronized, these accesses
are sufficiently infrequent that contention is not a problem.

Finally we address the issue of termination of aCoolprogram. As mentioned earlier,
an invocation of a parallel function creates a task that is enqueued onto a task queue, while
server processes continually fetch tasks from the task queue and execute them. The task
queue structure is described in detail later in this chapter; we now describe the algorithm
used to detect termination of the program within the runtime system. A straightforward
strategy is to keep a global count of the number of tasks still executing, increment
the counter when a task is created, and decrement the counter when a task completes
execution. The program can terminate when the counter reaches zero, signifying that
all tasks have completed. However, this single global counter needs to be referenced
(incremented/decremented) within a lock at each task creation and completion event, and
can become a bottleneck when using more than a few processors.

To reduce contention we implement a distributed termination algorithm built upon the
waitfor construct. In this scheme we simply wrap the entire body ofmainwithin a waitfor;
the semantics of waitfor ensures that execution resumes beyond the waitfor only after
all tasks have completed and the program can terminate. At this point all the processors
are directly notified that the program has terminated. This approach builds upon the
implementation of the waitfor construct described later in this chapter and is in effect
a distributed termination algorithm. Briefly, instead of the global counter, the runtime
system maintains a separate counter for each task to track the number of tasks directly
created by the task that are still executing. The counter for a task is incremented when it
invokes a parallel function and creates a task, and is decremented by each child task upon
completion. The program terminates once the counter for the main task reaches zero.
These distributed counters therefore provide us with an efficient termination algorithm.

4.1.2 Synchronization: Monitors

Monitors are implemented by wrapping each monitor operation within someentryandexit
code to perform the necessary synchronization for the object. When the monitor operation
is invoked, the entry code is executed to acquire access to the object before continuing,
waiting for the object to become available if necessary. Upon completion of the monitor
operation the exit code is executed, which surrenders access to the object and wakes up
a thread waiting to enter the monitor, if any. In this section we first describe the front-
end translation of monitor operations, and then we describe the runtime synchronization
algorithm.
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// Original COOL Program // Translated C++ program
classmonClassf classmonClassf

. . . data declarations . . . . . . data declarations . . .
mutexClassmutexObj;

public: public:
mutex void foo (); void foo ();
. . . void wfoo () f

mutexObj.mutexEnter ();
foo ();
mutexObj.mutexExit ();

g

g; g;

Figure 4.4: Translating a monitor function.

4.1.2.1 Translation of a Monitor

The translator modifies each monitor class (a class containing a mutex or a nonmutex
method) as shown in Figure 4.4. It declares an additional objectmutexObj of the
predefined typemutexClasswithin the monitor class. This object contains the runtime
data structures that maintain the status of the monitor and is described later in this section.
Next, for each monitor operationfoo in the class, the translator declares an additional
wrapper functionwfoo that invokes the actual functionfoowrapped within enter and
exit operations on themutexObject to perform the necessary synchronization. Finally,
each invocation of a monitor functionfoo is instead replaced by a call to the wrapper
function, wfoo. To perform these transformations on the originalCool program, the
translator must recognize all invocations of monitor functions similar to the implemen-
tation of parallel functions described earlier in Section 4.1.1. The translator therefore
maintains tables of the variables and mutex operations declared so far.

In contrast to this implementation, it would have been simpler to leave the invocations
unchanged and instead modify thebodyof each monitor operation to call the enter and
exit operations at the beginning and end of the function. However, our scheme allows the
compiler to optimize individual invocations of monitor functions, by statically identifying
those invocations that don’t need to synchronize, and calling the method directly rather
than the synchronizing wrapper function. These optimizations are described later in the
chapter.

One minor implication of this implementation is that declaring the additional object
mutexObject within a monitor changes the size of the object transparently to the pro-

grammer. Therefore, while the sizeof function works correctly, programs that do direct
address arithmetic to move from one object to another without using the sizeof functions
can get incorrect results. The compiler can address this problem by instead maintaining
each mutexObject as a separateshadow object. All monitor operations perform the
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necessary synchronization as before, but on the shadow object. This scheme can handle
pointers as well by maintaining a shadow pointer for each pointer to a monitor object.
All pointer manipulations would then be accompanied by corresponding manipulations
of the shadow pointers to point to the appropriatemutexObject. However, changing
the size of a monitor object is not a serious problem in practice, especially since the
problem already exists in C++ when the size of an object is modified transparent to the
programmer to include space for a virtual function table pointer.

4.1.2.2 The Synchronization Algorithm

We first describe the basic synchronization algorithm for monitors, i.e., the entry and
exit code for mutex and nonmutex functions and then describe the implementation of the
more complex features.

The main data structures and the synchronization operations for a monitor are provided
by the classmutexClass (see Figure 4.5). An instance ofmutexClass is declared
within each class in the user program with monitor functions. A monitor object can be in
one of three states—free(no monitor operation),shared(one or more nonmutex operations
executing), orlocked (a mutex operation is executing). The entry code for both mutex
and nonmutex operations is shown in Figure 4.6 and includes the more complex features
that are described later in this section. Since a mutex operation must have exclusive
access to the object, it can proceed only if the object is free and blocks otherwise. A
nonmutex operation can execute if the object is in the free or shared state, but it must
wait if the object is locked. The exit code for a monitor operation is shown in Figure 4.7.
Upon completion each monitor operation checks whether there is an operation waiting to
enter the monitor. If so, then the waiting operation is granted access as the completing
operation exits the monitor. If there was no waiting operation, then the monitor is reset
to be in the free state. To ensure fairness in execution, incoming monitor operations
are serviced in first-come-first-served order (nonmutex operations execute concurrently,
of course). In addition, to avoid the starvation of mutex operations, our implementation
ensures that if a mutex operation is waiting to execute on a object, then newly arrived
nonmutex requests do not jump over the waiting mutex thread.

If a monitor operation finds that the object is unavailable then the task executing
the entry code must wait until the object becomes available. This waitingmust be
implemented by blocking the task so as to free the underlying processor to fetch and
execute other tasks. (All synchronization operations in the task-based execution model
of Cool must, in general, be implemented by blocking the task.) Since a task in
Cool executes without preemption until it completes or blocks on synchronization,
implementing the waiting with busy-waiting can lead to deadlock in some programs. For
instance, consider the scenario where access to a monitor is implemented by pure busy-
waiting, and all processes (except the one inside the monitor) are spinning to acquire
the monitor. The process actually inside the monitor executes a wait operation, thereby
suspending the task still holding the monitor. The process then goes and executes another
task which (a) performs a signal on that condition variable and (b) invokes an operation

Chapter 4. Implementation and Optimizations 77



class mutexClassf
lock t lk; // lock to protect access to this structure
int status; //Monitor status—one of FREE, SHARED, and LOCKED
queuet Q; // Q for new monitor requests waiting to enter
queuet reenterQ; //Q for operations resumed after a release waiting to reenter
queuet upgradeQ; //Q for upgrade requests waiting to enter
int upgrade; //upgrade flag: set if the current function is an upgrade
int threadID; //threadID of currently executing mutex function
int threadIDList[MAX]; // threadIDs of currently executing nonmutex functions
int tidptr; // pointer into above array

public:
int mutexEnter (); //enter request for a mutex function
void mutexExit (int ); // exit for a mutex function
int nonmutexEnter (); //enter request for a nonmutex function
void nonmutexExit (int ); // exit for a nonmutex function

int upgradeEnter (); //call from nonmutex to mutex function to upgrade
void upgradeExit (int ); // completion of an upgrade mutex function

void releaseExit (); //called to exit a monitor function with a release
void releaseReenter (); //call to reenter monitor after a release and subsequent signal

mutexClass (); //constructor
˜ mutexClass (); //destructor

g;

Figure 4.5: Monitor data structures.

on the very same monitor and starts busy-waiting. We now have the situation where
all the processes are busy-waiting to enter the monitor. However, the task actually
inside the monitor, although enabled, will never get scheduled since all the processes are
busy-waiting for access to that monitor. Therefore, a monitor operation (and any other
synchronization) must in general block and surrender the processor if a monitor is not
available.

However, blocking a task and switching to another context has high overhead. While
blocking immediately on an unavailable monitor is efficient in situations where the op-
erations execute for long durations, it has excessive overhead for objects with small
operations. We therefore implement the entry to a monitor operation with atwo-phase
algorithm, in which the entry code busy-waits for a ‘while’ (heuristically chosen by the
runtime system) and then blocks if the monitor object is still unavailable. This context
switch is between user-level tasks and is analogous but orthogonal to the implementation

78 Chapter 4. Implementation and Optimizations



of locks in the context of operating system scheduling, where locks can be implemented
with pure spin or with blocking. This two-phase scheme is successful in reducing un-
necessary context switches for shared objects with small critical sections.

In addition to this basic synchronization, monitors inCool provide the following
additional functionality. First, access to an object must be on a thread basis, so that
both direct and indirect recursive calls on an object by the same thread execute without
deadlock. Second, if a nonmutex function invokes a mutex function, then it should
upgrade from shared to exclusive access for the duration of the mutex function and
revert back to shared state upon completion of the mutex function. Invocations of a
nonmutex function from within a mutex function should execute without any additional
synchronization. Finally, when a monitor function invokes a release operation on a
condition variable, the task should surrender the object and block. When the condition
variable is signaled, the task must reacquire the object before resuming execution inside
the monitor. We discuss each of these in turn below.

Recursive Calls: Recursive monitors calls to the same monitor object in aCool pro-
gram should execute without requiring any synchronization since the thread has already
acquired access to the monitor. For example, if a functionfoo invokes another monitor
operationbar (or evenfoo) on the sameobject, either directly or indirectly through
another function, then the second operationbar should not block since the thread has
already acquired access to the monitor object throughfoo.

To detect recursive monitor calls, our implementation identifies each task (or execution
thread) by a unique integer value. Each monitor object stores this identifier in the variable
threadID for the task that is currently executing within the monitor. This variable is
initialized to the thread identifier each time an operation first acquires an available monitor.
A subsequent monitor operation that finds the object unavailable compares its identifier
with the threadID stored within the monitor to determine if it already has access to the
object. If so, then it proceeds without further synchronization. Thus we can dynamically
handle both direct and indirect (daisy-chain) recursive calls on a monitor object. Indirect
or daisy-chain recursion occurs when a functionf does not contain the actual call to
f, but invokes another functiong which either invokesf or invokes a functionh that
invokesf, and so on. Upon exiting a monitor function, the object is surrendered only
if the object was actually acquired for that invocation of the monitor function. This
determination is made based on the value returned by the monitor enter operation: an
enter operation returns 1 if the object was actually acquired and 0 if it was a recursive
call (see Figure 4.6).

We detect recursive nonmutex calls in a similar fashion except that we now require
a list of threadIDs within each object, one for each nonmutex operation that may be
executing within the monitor. Thus a nonmutex operation checks whether the thread
already has access to the object, in which case it continues execution. As before, the
return value of the monitor operation is used while exiting the monitor to determine if the
object should be actually surrendered to waiting threads. Furthermore, while in general
we do not allow a nonmutex operation to jump ahead of a waiting mutex operation in
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// Entry code for a mutex operation.
// Return 0 if this thread already had the object, 1 if it needed to acquire access.
int mutexClass::mutexEnter ()f

if (recursive mutex) f
return 0;

g

if (object is free) f
. . . acquire object: initialize status, threadID . . .
return 1;

g

if (I already have nonmutex access—upgrade) f
if (there are other readers in the monitor) f

// wait for other readers to complete
upgradeQ.sleep ();

g

. . . acquire object: initialize status, threadID . . .
return 1;

g
Q.sleep ();
acquire object: initialize status, threadID
return 1;

g

// Entry code for a nonmutex operation.
// Return 0 if this thread already had the object, 1 if it needed to acquire access.
int mutexClass::nonmutexEnter ()f

if (recursive nonmutex) f
return 0;

g
if (status != LOCKED)f

// object is free or shared, so acquire object
. . . acquire object: initialize status, threadIDList . . .
++Nreaders;
return 1;

g

Q.sleep ();
. . . acquire object: initialize status, threadIDList . . .
return 1;

g

Figure 4.6: Entry code for monitor operations.
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void mutexClass::mutexExit (int t) f
if (t == 0) f

// recursive mutex
return ;

g

if (I am an upgrade) f
. . . restore status to shared . . .
. . . wake up readers on Q . . .

g

if notempty (reenterQ) renterQ.wakeup ();
else if notempty (Q) Q.wakeup ();

elsestatus = FREE;
g

void mutexClass::nonmutexExit (int t) f
if (t == 0) f

// recursive nonmutex
return ;

g
. . . delete from threadIDList . . .
Nreaders -= 1;
if (I’m the last nonmutex leaving) f

if notempty (upgradeQueue) upgradeQueue.wakeup ();
else if notempty (OldQueue) oldQueue.wakeup ();

else if notempty (NewQueue) NewQueue.wakeup ();
elsestatus = FREE;

g

g

Figure 4.7: Exit code for monitor operations.
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the interests of fairness, a recursive nonmutex operation executes before waiting mutex
operations to avoid deadlock.

Upgrade: When a nonmutex function invokes a mutex operation on thesameobject,
either directly or indirectly, ordinarily it would find the object shared and block, leading
to deadlock. However, a more natural behavior would be for the mutex operation to
acquire exclusive access to the object and execute, reverting to the shared state upon
completion (we call this anupgrade). Therefore, when a mutex operation is invoked, it
checks whether the current thread already has access to the object through a nonmutex
function, in which case it must upgrade. If so, then since a mutex operation requires
exclusive access to the object, it must also wait until any executing nonmutex operations
have exited the object before changing the object state to locked and executing. To
support upgrades each monitor object has a queue on which upgrade requests block
and wait. While the nonmutex operation is waiting to upgrade, new nonmutex requests
are barred from entering the monitor even though the object is available for nonmutex
functions; therefore new nonmutex requests cannot proceed if a thread is waiting on
the upgrade queue. When the last executing nonmutex operations exits the monitor, it
checks the upgrade queue, and resumes the waiting thread, if any. After the upgrade
mutex operation has completed, it restores the object state to shared so that the enclosing
nonmutex operation can continue. Furthermore, any nonmutex requests that arrived
while the upgrade mutex operation was executing are woken up so that they can execute
concurrently on the shared monitor object (however, nonmutex requests cannot jump over
previous mutex requests as before).

Release: When a release operation is invoked on an event within a monitor, it surrenders
the monitor if the event is yet to be signaled, resuming execution where it left off once
the event is signaled. The implementation of the release operation is shown in Figure 4.8
and is straightforward, except that upon being signaled, the thread must wait for all
executing monitor operations to complete before resuming execution inside the monitor
(see thereleaseRenter operation). In particular, if the event was signaled from within a
monitor operationfoo, thenfoomust complete execution before the signaled thread can
reenter the monitor, thereby ensuring that there is one mutex operation executes inside the
monitor at any time. However, in our implementation the signaled thread is given priority
over new monitor operations and therefore waits only for already executing operations to
complete. This is implemented by having another, high-priority queue (calledreenterQ)
for resumed threads that are waiting to reenter the monitor.

4.1.3 Synchronization: Condition Variables

A condition variable provides an event queue on which threads can block and signal.
The type cond therefore consists of a queue and a lock to serialize multiple operations
on the condition variable. A wait operation blocks on the queue, a signal wakes up the
first waiting thread, and a broadcast wakes up all waiting threads. A condition variable
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void condH::release ()f
if (event not signaled yet) f

mutexObject.releaseExit ();
. . . block on event . . .
mutexObject.releaseReenter ();

g
g

void mutexClass::releaseExit ()f
savedID = mythreadID; //to be restored upon reentry
mutexExit (); //give up the monitor

g

void mutexClass::releaseReenter ()f

if (monitor is FREE) f
// acquire monitor, continue
. . . Initialize monitor data structures . . .
threadID = savedID; //restore threadID
return ;

g

// Otherwise wait to reacquire access
reenterQ.sleep ();
. . . Initialize monitor data structures, continue . . .

g

Figure 4.8: Release code for monitor operations.

with history, condH, contains an additional counter that counts the number of signals
stored in the condition variable. If the number of stored signals is non-zero, a wait
operation decrements the counter and continues without blocking. A signal operation
either resumes a waiting thread (if any) or increments the counter of stored signals. A
broadcast wakes up all waiting threads as well as sets the counter to be a very large
value, while the uncast operation resets the counter to zero.

4.1.4 Synchronization: waitfor

The waitfor construct must keep track of all tasks created within the scope of the waitfor,
either directly or indirectly, and wait for them to complete before continuing executing
past the end of the scope of the waitfor. We first outline the implementation of a single
waitfor construct and then describe how nested waitfors are implemented.

The basic data structure to implement a waitfor consists of a counter, a queue, and
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struct waitfor t f // waitfor code, executed when a task is created
int count; . . .
LockType lock; if (current task is in a waitfor) f
QueueType queue; struct waitfor t* wf = current waitfor;

g AcquireLock (wf->lock);
wf->count++;

beginWaitfor ()f ReleaseLock (wf->lock);
// allocate a waitfor struct . . . store wf in template of created task. . .
struct waitfor t* wf = new waitfor t; g

wf->count = 0; . . .
. . . store wf in template of current task. . .

g // waitfor code, executed when a task completes
. . .

endWaitfor ()f if (current task is in a waitfor) f
struct waitfor t* wf = current waitfor; struct waitfor t* wf = current waitfor;
AcquireLock (wf->lock); AcquireLock (wf->lock);
if (wf->count)f if (-- wf->count == 0)f

// all tasks haven’t completed yet, so block // I am the last task
ReleaseLock (wf->lock); if (someone is waiting on the queue)
wf->queue.sleep (); wf->queue.wakeup ();

g g
else g

ReleaseLock (wf->lock); . . .
g

Figure 4.9: Implementing the waitfor construct.

a lock. The counter keeps track of the number of outstanding tasks that were created
within the scope of the waitfor. The queue is used by the thread to block if it reaches the
end of the waitfor and there are still some outstanding tasks. Finally, the lock is used to
serialize multiple accesses to this data structure. Upon entering the scope of a waitfor, the
runtime system allocates an instance of this waitfor structure and initializes the counter to
zero. When a task is created within the waitfor, the counter is incremented and a pointer
to the waitfor struct is passed to the created task. Upon reaching the closing scope of a
waitfor, the thread blocks on the queue if some tasks are still outstanding. The created
task upon completion decrements the counter in the waitfor struct; if the counter reaches
zero then it wakes up the blocked thread on the queue, if any. Furthermore, if the task
invokes a parallel function then a pointer to the struct is passed along to the child task
as well.

If a child task executes a waitfor as well then it repeats the above algorithm—it
allocates a new waitfor struct and passes a pointer to this new struct to any parallel tasks
that it might create. Since this task waits for its children to complete, it maintains the
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semantics of the original waitfor in its parent task as well. Similarly, multiple nested
waitfors within the same task are implemented as a simple extension of this scheme.
Each additional waitfor allocates a new struct, and subsequent child tasks are passed a
pointer to the closest enclosing waitfor. Again, this is sufficient to maintain the semantics
of each waitfor, since a waitfor cannot complete until all the waitfor constructs nested
within that waitfor have completed.

4.2 Overheads and Optimizations

We now examine the overheads in the implementation of theCool constructs described
above, and describe several optimizations that help implement the language efficiently.

4.2.1 Overheads

Since aCool construct typically executes within a few microseconds, it is difficult to
measure its execution time accurately. While some constructs can be measured by exe-
cuting them several hundreds (or thousands) of times, constructs that block the executing
thread cannot be measured in this way. We therefore use thepixie [82] profiling tool that
is available on machines based on the R3000 processors. Pixie provides an instruction
tracing option that allows us to count the number of machine instructions executed from
one point in the code to another in an actual execution of a program.5 Therefore, rather
than measuring the execution time, we measure the number of machine instructions (of
a R3000 processor) executed in the implementation of each construct.

The instruction overheads for eachCool construct are shown in Table 4.1. It takes
about 140 instructions in our implementation to create a task with one argument. These
instructions are broken evenly between allocating/initializing the task template and locat-
ing the appropriate queue and enqueueing the task. Since this operation does not block
we could time it by executing it thousands of times; we found that it took 16 microsec-
onds to create a task. On a 33MHz R3000 processor, assuming one instruction per cycle,
140 instructions would ordinarily take 4.2 microseconds; the additional time reflects the
penalty due to cache misses. To get an idea of the total overheads involved in performing
a piece of work in parallel, we also measured the overhead of creating, fetching, and ex-
ecuting an empty task with one argument. This took a total of 400 instructions as shown
in Table 4.1 and was measured to take nearly 30 microseconds. With these overheads,
therefore, individual tasks should roughly be over a thousand instructions to get gains
from parallel execution.

Table 4.1 also shows the overheads of the synchronization operations inCool, such
as entering and leaving a monitor object, wait and signal on a condition variable, and the
waitfor operation. As we can see, the synchronization operations have small overheads
if the operation can continue without blocking. Most of the overheads arise when a task

5We are grateful to Mike Smith for the utilities used in gathering the data.
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needs to wait for the desired event: this includes blocking the task (78-107 instructions),
waking up a task and placing it in the queue of ready tasks when the signaling event
occurs (90-158 instructions), and dequeueing the task and resuming execution (140-155
instructions). For operations on monitors and condition variables the cost of waking
up and enqueueing the waiting task on a ready queue is part of the monitor exit/signal
operation respectively. For the waitfor construct, the waiting task is woken up and
enqueued upon completion of the last task within the waitfor. This overhead is therefore
part of the task completion activities. In the table, however, we show this cost explicitly
for the waitfor construct.

Besides the overheads of the individual constructs, the bottom-line is the impact on
the performance of actual applications; as the results presented later in this and the next
chapter show, the overallCool overheads are low, usually around 2-3% of the total
execution time.

4.2.2 Optimizations

In the monitor implementation described above each monitor object requires 64 bytes of
additional storage, and the enter and exit operations can take over 100 instructions if a
thread needs to block. These overheads can be prohibitive in programs with fine-grained
synchronization. We now present some optimizations that help eliminate most of these
overheads. The optimizations also illustrate the benefits of integrating monitors with the
object structure. This integration enables the compiler to (a) identify the data associated
with the monitor synchronization and (b) identify the synchronization operations on an
object. The compiler can therefore analyze the synchronization operations and optimize
their implementation in various ways that we outline below.

Our optimization strategy is based on the observation that while the basic implemen-
tation is necessary in general, most applications built using monitors do not use all the
functionality offered by a general monitor. A compiler can therefore analyze each indi-
vidual monitor and tailor its implementation based on the features that it uses, thereby
avoiding overheads for the functionality unused by that monitor. Examples of this strat-
egy include a monitor that has only mutex functions and can therefore be implemented
without the support for multiple readers. Or, a monitor that has operations with small
critical regions is better implemented with pure busy-wait synchronization rather than
the more general two-phase algorithm described earlier. We elaborate on these and other
optimizations in this section. We have implemented several of the optimizations, while
those that are beyond the scope of our current implementation are identified as we go
along. With these optimizations, we show that synchronizations expressed using monitors
in Cool can often be implemented as efficiently as hand-coded versions using low-level
primitives.

86 Chapter 4. Implementation and Optimizations



Table 4.1: Instruction overhead of variousCool operations.
Construct Function Instr Count

Save registers 7
Allocate task template 16
Store values 6
waitfor 19
Store scheduling hints 15

Task creation Enqueue:
locate queue 20
locate bucket, lock/unlock 25
actual enqueue 15
link queues 15

Total 138
Create a task 140
Locate a non-empty queue 40

Create and execute Actual dequeue 80
a null task Allocate stack, load arguments and dispatch 70

Cleanup: free storage and check waitfor 70
Total 400
Enter an available monitor 43
Enter an unavailable monitor:

Monitor execute until block 107
wakeup and enter 140

Exit a monitor, no one waiting 45
Exit a monitor, wake up a waiting thread 158
Wait operation, no blocking 16
Wait operation, block:

Condition variable execute until block 78
wakeup and resume 150

Signal operation, no one waiting 14
Signal operation, wake up a waiting thread 90
Enter a waitfor 50
Exit a waitfor, no waiting 35

Waitfor Exit a waitfor, must wait:
execute until block 87
get woken up and enqueued 115
wakeup and resume 155
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4.2.2.1 Monitors with only Mutex Functions

It is common to find monitors in which the operations both read and modify the shared
object. These objects have all mutex functions and no nonmutex functions. For such
monitors the storage requirements can be considerably reduced. We can discard the
storage required to support multiple readers (such asthreadIDListand tidptr described
in Figure 4.5 in Section 4.1.2.2) as well as the data structures for upgrade (the fields
upgradeQand upgrade in Figure 4.5). This reduces the space requirements by over
50%, down from the original 64 bytes to 28 bytes. Furthermore, the runtime checks
upon monitor entry/exit for other readers and for an upgrade can also be discarded,
reducing the execution time a little as well.

4.2.2.2 Spin Monitors

Parallel programs frequently have shared objects with very small critical sections. A
typical example is a global counter on which the main operations are the increment and
decrement operators. The overheads of even a two-phase synchronization algorithm are
excessive for these shared counters: such monitors are best implemented with pure busy-
wait semantics that we callspin monitors. Spin monitors (see Figure 4.10) are protected
by a simple spin-lock which must be held for the entire duration of a monitor function.
They are therefore highly attractive for small shared objects since they have minimal
runtime and storage overhead—e.g., they require just a single word of extra storage for
the lock rather than the original 64 bytes, and the enter and exit operations take 5 and 3
instructions respectively in contrast to the nearly 50 instructions required by the regular
monitor. Therefore the potential savings with spin monitors are very large.

We have developed compiler heuristics to automatically identify spin monitors, i.e.,
those monitors that are suitable to implement with pure busy-wait semantics. A monitor
can safely be implemented with busy-wait alone if none of the monitor functions call
an operation that could block, i.e., a monitor operation on another object or a wait on
an event. In addition, a monitor isworthwhile to implement as a spin monitor if all the
monitor operations have a ‘small’ body (determined heuristically). We use heuristics to
determine if a monitor operation issmall, such as the functions should not call a function,
and it should not contain any loops. One consequence of this optimization is thatall
monitor operations (of that particular monitor class), whether mutex or nonmutex, must
be implemented with the same busy-wait protocol; multiple readers can therefore no
longer execute concurrently as before. However, this should not be a problem in practice
since the critical sections are small.

To implement this optimization the compiler must examine all the monitor opera-
tions within a class (and ensure that all are “small”) before deciding the synchronization
algorithm. This would have required two passes in our compiler and is therefore not
implemented in our current system. Instead, the implementation supports an additional
function attribute in the language,cmutex, that can be supplied for the member function
of a class similar to the mutex and nonmutex attributes. This attribute is used by the
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// Original COOL Program // Translated C++ program
classmonClassf classmonClassf

. . . data . . . . . . data . . .
lock t lk;

public: public:
mutex void foo (); void foo ();
. . . void foo () f

AcquireLock ( lk);
foo ();
ReleaseLock (lk);

g

g; g;

Figure 4.10: Implementation of a spin monitor.

programmer to identify monitor operations as before and additionally specify that syn-
chronization for the monitor operations of that class be implemented with pure busy-wait
synchronization.

4.2.2.3 Private Condition Variables

Condition variables are implemented with a lock that protects access to their internal
data structures. However, this lock and the associated synchronization operations can be
optimized away in some situations. For instance, monitors and condition variables are
often used to build synchronization abstractions that are specific to an application; many
of these were presented as examples in Chapter 2, such as the synchronizing double
and the barrier abstraction. These abstractions typically consist of a monitor class with
some private status fields and a condition variable. Furthermore, these private fields are
referenced only within synchronizing mutex operations. The compiler can, in particular,
recognize the private event variables that are accessed only within mutex functions.
Operations on such condition variables, such as wait/signal, are therefore automatically
serialized through the enclosing mutex function, and the lock that is normally associated
with a condition variable to serialize multiple operations can be entirely discarded. This
reduces the synchronization overhead associated with the operations on these abstractions
by avoiding the redundant lock/unlock pair, resulting in several instructions worth of
savings.

This optimization can be safely performed with spin monitors as well, even when
they contain a release operation. Since accesses to a spin monitor are protected by a
lock, the release operation unlocks the lock (to surrender the monitor) and blocks itself
on the event. Upon being signaled on the event, the thread reacquires the lock (note
that a resuming thread does not have priority over new requests in this scheme). In fact,
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optimizing a private condition variable within a spin-monitor with a release constitutes a
common and useful scenario that is typical of many synchronization abstractions. This
optimization does require two-pass compilation and is not implemented in our current
system.

4.2.2.4 Directly Recursive Calls

As mentioned before, monitor operations must check at runtime to determine whether they
must acquire the object, since recursive operations execute within the access held by the
thread without reacquiring the object. However, a compiler can easily identify adirectly
recursive call where one monitor operation invokes another on the same object directly.
Such a recursive call is implemented like an ordinary function call with no synchronization
at all, optimizing the nearly 25 instructions incurred in the runtime check, i.e., invoking
the entry code and checking to determine if the thread already has the object.

This optimization is implemented in our compiler and is useful for concurrent data
structures with operations that call each other with indiscriminate abandon. Upgrades
and indirectly recursive monitor calls must still dynamically check whether they already
have access to the object, since that cannot be determined statically.

4.2.2.5 Tail Release Optimization

A common scenario in synchronization abstractions such as barriers is a monitor operation
that performs a release on an event as thelast statement in the function. If the monitor
operation blocks on the release, then upon being signaled it would ordinarily reacquire the
monitor object, only to exit it immediately. By recognizing the occurrences of such release
operations in the compiler, we can optimize the release to directly resume execution after
the monitor operation.

We do not currently implement this optimization in our compiler, since we do not
maintain sufficient information to perform this analysis of the control-flow graph. How-
ever, this optimization is important for many common synchronization abstractions, since
it saves the additional overhead of reentering and then exiting the monitor. This overhead
of reacquiring the monitor is about 58 instructions when the monitor is available and is
even larger otherwise.

4.2.2.6 Parallel Monitor Functions

The final optimization is targeted towards making efficient use of the stacks required for
parallel tasks. As described before, the underlying server process fetches and executes
tasks, allocating a stack each time a new task is fetched for execution. When the task
being fetched corresponds to a parallel monitor function, then the task will try to acquire
the monitor object as soon as it begins execution and perhaps block in the attempt.
Therefore, a program that invokes lots of parallel monitor functions contending for a few
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Figure 4.11: The effect of synchronization optimizations in the Water code.

monitor objects can easily find itself with hundreds or thousands of tasks suspended on a
monitor, with each task consuming (and wasting) a stack that may easily be a megabyte
or larger. We ran into this problem in the Panel and Block Cholesky applications and
were unable to execute the applications since they ran out of memory.

We address this problem in the following fashion. The runtime system, instead of
allocating a stack and finding that the task immediately attempts to acquire the monitor
object, first acquires the monitor object on behalf of the taskbeforeallocating the stack.
This ensures that the task doesn’t grab a stack and then immediately block while acquiring
the monitor. If the monitor object is unavailable, then the runtime system suspends the
task waiting for the monitor and continues executing other tasks. When the task finally
acquires the monitor and is woken up, then the runtime system allocates a stack for the
task and resumes executioninside the monitor.

We have implemented this optimization in our runtime system and have found it
useful for efficient storage management in programs such as Panel/Block Cholesky that
would otherwise consume huge amounts of memory.

4.2.3 Evaluating the Optimizations in Applications

We now examine the applicability of the optimizations proposed above to real application
programs and the corresponding performance benefits.

As discussed earlier in Chapter 2, monitors are most often used in two ways. First,
they are used to express synchronization for shared data by serializing multiple accesses
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Table 4.2: Time to execute a barrier for different numbers of processors (in microsecs).
Num Processors 1 4 8 12 16
Base Implementation 7.0 us 275 us 1280 us 2502 us 3780 us
After Optimization 2.6 us 80 us 385 us 690 us 1030 us

to a shared object. Second, monitors are used to build synchronization abstractions
such as a barrier, exclusive access to multiple objects (Chapter 2.3.3), and object-level
synchronization between tasks (Chapter 2.3.2). Monitors in this category typically consist
of small operations that check some status conditions and perhaps wait on an event. The
optimization techniques described above apply to each of these situations. For instance,
the Water, Panel, and Block Cholesky applications use monitors to protect shared data,
such as a molecule in Water and a panel/block of a matrix in Cholesky; these monitors are
optimized to be simple spin-monitors. The Ocean application, on the other hand, uses
monitors to build a barrier abstraction; such synchronization abstractions benefit from
several optimizations—they can often be implemented as spin monitors, synchronization
for private condition variables can be discarded, and the operations usually do not need
to reenter the monitor after a release operation.

We present performance results for two applications, Water and Ocean. In the Water
code each water molecule along with its many physical properties is declared to be a
monitor. Figure 4.11 shows the performance of the Water code executing on a thirty-
two processor DASH multiprocessor. We present three different versions of the code.
In the base implementation we use blocking monitors (i.e., a monitor operation blocks
immediately if a monitor is unavailable). In the two-phase implementation a monitor
operation spins for a while for an unavailable monitor and then blocks. Finally, in a
pure-spin monitor each operation keeps busy-waiting until it acquires the monitor. As
we can see, the two-phase implementation performs better than a blocking monitor. In
addition, since the critical sections of the monitor operations on a molecule are small,
implementing the monitor as a spin monitor further improves performance by over 20%
as compared to a blocking monitor.

The Ocean code uses a monitor to build a barrier abstraction as shown in Figure 4.12.
The monitor has a single mutex barrier function which counts the number of threads that
have arrived at the barrier. The firstN� 1 threads to arrive release the monitor and
wait for the other threads to arrive, while the last (N th) arriving thread wakes up all
the earlier threads and continues execution after reinitializing the barrier. As shown in
the right half of the figure, this abstraction can be implemented very efficiently. The
compiler determines that the mutex function is tiny and implements it as a spin monitor
with a single lock/unlock for the entry and exit operations. The condition variablesynch

is private to the class and is implemented as just a queue of tasks with no additional
synchronization. Finally, since the release statement is the last statement in the barrier
operation, threads resuming after the release operation do not need to reenter the monitor.
Incoming threads block on the condition variable until all the threads have arrived, at
which point they resume execution past the barrier.
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// Barrier abstraction inCool. // Optimized implementation of the barrier.
classbarrier t f classbarrier t f

int total, count; int total, count;
cond synch; Locktype lk;

Queuetype Q;
public: public:

void barrier t (int P) f void barrier t (int P) f
total = P; total = P;
count = 0; count = 0;

g g
mutex void barrier ()f void barrier ()f

// Entry code is just a lock.
AcquireLock (lk);

if (++count == total)f if (++count == total)f
// I am the last to arrive. // I am the last to arrive.
// reinitialize monitor. // reinitialize monitor.
count = 0; count = 0;
// wake everyone up // wake everyone up

// No synchronization needed for queue
synch.broadcast (); Q.broadcast ();

// Exit code is just an unlock
ReleaseLock (lk);

g g
// Wait for others to arrive // no need to reenter the monitor.
elsesynch.release (); elseQ.sleep (lk);

g g
g; g;

Figure 4.12: A barrier abstraction inCool and its implementation.

To evaluate the effect of these optimizations on the overheads of the barrier, we
measure the time taken for a set of processors to participate in a barrier. (For better
accuracy we measure the time taken by several thousand instances of encountering the
barrier: we create oneCool task per processor, where the task continually loops around
a barrier and does no other work, thereby avoiding any load imbalance.) Table 4.2
shows the average time taken to complete a single instance of the barrier before and after
optimization for different number of processors. As we can see, the optimized barrier is
more than three times faster than the general implementation.

The performance of the Ocean application with and without these optimizations of
the barrier abstraction is shown in Figure 4.13. The optimizations make a dramatic im-
provement in performance. Apart from the streamlined overhead, the gains are primarily
due to large reductions in the number of times that a task needs to block. From the
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Figure 4.13: The impact of optimizing the barrier abstraction in the Ocean code.

barrier abstraction in Figure 4.12,N� 1 tasks need to block at each barrier waiting for
the last task to arrive. In the naive implementation of the barrier, however, a task may
also block within (a) the entry code for acquiring access to the monitor, as well as (b)
the code to reenter the monitor when the task is resumed after the release operation. In
the optimized monitor, the entry code for the monitor is implemented with busy-waiting,
while the reentry code is discarded entirely and the task resumes execution directly be-
yond the barrier. The efficient synchronization, therefore, leads to large improvements in
performance in the Ocean application.

Finally, the performance results for the Water and Ocean applications present the
speedup of the parallel application relative to a serial version of the program running
on a single processor. Looking at the speedup on one processor, i.e., the performance
of a parallel program on one processor, gives us an indication of theCool overheads
incurred in the application. As we can see theCool overheads are quite low; these
Cool applications run about 3% slower than the corresponding serial version of the
application.

4.3 Runtime Scheduling Support for Locality Optimiza-
tions

In this section we give an overview of the task queue structure and the scheduling
mechanisms used in theCool runtime system to support the scheduling optimizations
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Figure 4.14: Task queue structure to support task and object affinity.

described in Chapter 3. The optimizations required are scheduling for each of object and
task affinity. When a task hasobject affinityfor an object, the runtime system should try
to execute it on the processor that contains that object allocated in its local memory. To
support object affinity we have a task queue per processor and a task with object affinity
is collocated with the object (see Figure 4.14). When several tasks havetask affinityfor
an object, the runtime system should try to execute these tasks in a back-to-back fashion
on a processor. To support task-affinity, each processor must distinguish tasks that have
affinity for the same object. Therefore each server actually has anarray of queues, with
each element of the array corresponding to a set of tasks.

Given the above task queue structure, when a task is created with affinity specified
for some object, we schedule it on the processor that has the object allocated in its local
memory. In addition, within the array of queues for that processor, the task is enqueued
on the queue determined by hashing the object’s virtual address onto an element of the
array. The hash function is a simple modulo operation of the object address with the
size of the array. If both task and object affinity are specified for a task, then the task is
scheduled on the processor determined by the object affinity hint, i.e., on the processor
that contains the specified object in its local memory. However, within that processor’s
array of task queues, it is scheduled within a bucket based on the object specified in
the task-affinity hint, thereby identifying tasks in that task affinity set. This allows us to
simultaneously exploit both cache and memory locality on different objects, as illustrated
by the example in Chapter 3.3. Tasks in the same task-affinity set therefore get mapped
onto the same queue, and can be serviced back-to-back. Collisions of different task-
affinity sets on the same queue can be minimized by choosing a suitably large array
size.
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To determine the processor where an object is allocated for object affinity, the runtime
system makes a call to the operating system. On DASH this system call takes a virtual
address and returns the number of the processor that contains the physical page corre-
sponding to the supplied virtual address. To avoid the cost of the system call, we can
implement auser-level cacheof the locations of the pages in the program. This cache
could be kept updated by invalidating the corresponding entry each time a page was
explicitly migrated from one processor to another, or swapped in or out by the operating
system. We do not currently implement this optimization, but this is a simple way to
avoid the overhead of expensive system calls.

This task queue structure is implemented efficiently. Determining where to schedule
a task simply requires two modulo operations. Within the task queue structure of each
processor, the non-empty queues in the array are linked together to form a doubly-linked
list and provide fast enqueue and dequeue operations.

4.4 Summary

In this chapter we have described theCool implementation and its two primary com-
ponents: the front-end translator that replaces eachCool construct with equivalent C++
along with calls to library routines, and the runtime system that provides the execution
environment and implements the concurrency and synchronization for eachCool con-
struct. We have also described the task-queue structures and scheduling mechanisms
that support the scheduling optimizations outlined in the previous chapter. Finally, we
have described the techniques employed in the implementation to support each construct
efficiently. We have outlined compiler techniques that analyze individual monitors in a
Cool application program and tailor the implementation of each monitor based upon the
functionality that it uses. As a result of these optimizations, the overheads of theCool

constructs are quite low; a parallelCool program on a single processor runs with only
2-3% slowdown.
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Chapter 5

Case Studies

In Chapter 2 we evaluated the expressiveness ofCool by studying several benchmark
applications coded in the language. We now evaluate the efficiency of theCool im-
plementation by analyzing the performance of these applications. We also evaluate the
effectiveness of theCool approach to improving data locality. For each of the appli-
cations described in Chapter 2, we analyze the locality and load balancing issues in the
application, and we show how the affinity hints can be used to optimize the distribution
of tasks and obtain good performance. We analyze the performance impact of supplying
these hints and contrast the programming effort required in our approach with performing
these optimizations explicitly, as is necessary in other systems such as the ANL macros.

Through this analysis we evaluate the following aspects of our approach. First, do
the hints provide the programmer with an adequate level of control over the optimization
process? Are they powerful enough to exploit locality at each level in the memory
hierarchy? Second, are the hints flexible—i.e., do they allow the programmer to easily
experiment with different optimizations? Finally, does the underlying task and object
structure of the program make it easier to supply these hints?

We present results from the six SPLASH [96] applications described earlier in Chap-
ter 2. The first application, Ocean, has a simple structure, and default affinity between
tasks and objects is sufficient to improve both cache and memory performance. In the
next three applications—Water, LocusRoute, and Barnes-Hut—memory locality is less
important and scheduling related tasks on the same processor is sufficient to get good
cache locality. However, these applications have very different structures—in Water the
computation is very regular and there is a direct mapping of tasks to processors; in con-
trast, in LocusRoute identifying related tasks to schedule for cache reuse is non-trivial
and requires a deep understanding of the application semantics; and in Barnes-Hut the
scheduling of related tasks is complicated by load-balancing concerns. The final two
applications, Panel and Block Cholesky, are more complex and each requires careful
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placement of objects and tasks to improve both cache and memory locality.

We present performance results running on a prototype of the Stanford DASH mul-
tiprocessor [74], consisting of thirty-two 33 MHz R3000 processors. The processors are
organized into (eight) clusters, with each cluster containing four processors and some
physical memory (28 MB each). Each processor has a 64 KB first level cache and a
256 KB second-level cache. References that are satisfied in the first-level cache take a
single processor cycle, while hits in the second-level cache take about 14 cycles. The
cache line size is 16 bytes. Memory references to data in the local cluster memory take
nearly 30 cycles, while references to the remote memory of another cluster take about
100-150 cycles. We measure the time spent in the parallel portion of the code and plot
its speedup with respect to the time taken by a serial version of the code running on one
processor. We also use the hardware performance monitor on DASH [75], that enables
us to monitor the bus and network activity in a non-intrusive manner. In particular, the
performance monitor allows us to track the number of local and remote cache misses
incurred during the execution of an application.

5.1 Ocean

We first study the Ocean [95] application, described earlier in Chapter 2.4.2. This case
study illustrates how a simple object distribution together with the default affinity works
well in improving data locality.

Figure 5.1 presents theCool code for Ocean along with the necessary locality
optimizations described below. As part of initialization, theCool programmer explicitly
distributes the rowGroups of the grids across the memories of the processors, so that
corresponding rowGroups of different grids are allocated within the same local memory
(see the functiondistribute). The runtime automatically schedules tasks for locality on
the rowGroup objects, based on their default affinity. As a result both intra-grid and
inter-grid tasks find the data they reference in local memory.

Upon running the application as described above, we found that although the tasks
were enqueued appropriately, they almost never executed on the desired processor. (The
Cool runtime system monitors the scheduling and stealing of tasks during the execution
of the program and prints out these aggregate statistics when the program completes
execution.) It turned out that most of the tasks were stolen within theCool runtime for
load-balancing. While the main thread was creating tasks on the queue of each processor,
an idle processor would steal another processor’s task even though its own task is either
on the way or perhaps had already arrived. Although heuristics such as not stealing from
an idle processor or spinning for a while after first noticing a remote task mitigate the
problem somewhat, they do not solve the problem entirely. For instance, not stealing from
an idle processor has the problem that the processor executing the main thread is not idle
and a task scheduled on its queue may get stolen before the processor finishes executing
the main thread. Given the limitations of such heuristics, we used thenoStealingruntime
flag (described earlier in Chapter 3.3.6) to disable task-stealing entirely.
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classrow c f
double element[numElements];

g;

classrowGroupc f

row c myrow[numRows];
. . . other data, such as row indices. . .

public:
parallel condH* laplace (rowGroupc*);
parallel condH* sub (rowGroupc*, rowGroupc*);
parallel condH* mult add (int, rowGroupc*, int, rowGroupc*);
parallel condH* jacobi (rowGroupc*);
. . .

g;

classgrid c f

rowGroupc rowGroup[numGroups]; //grid composed of rowGroups
. . .

public:
void distribute ()f

for (i=0; i<numGroups; i++)
migrate (rowGroup+i, i);

g
void laplace (gridc* p) f

waitfor f

for (all rowGroups ‘i’ do)
// Process all the rowGroups in parallel.
rowGroup[i].laplace (&(p–>rowGroup[i]));

g // wait for the operations to complete over all rowGroups.
g
. . . other grid operations. . .

g;

main () f
extern int noStealing;
grid c A, B, C, D;
A.distribute ();
B.distribute ();
C.distribute ();
D.distribute ();

// Disable task stealing
noStealing = 1;
. . .
for (all time steps)f

A.laplace (B);
C.jacobi (D);
. . . other grid operations. . .

g

g
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Figure 5.2: Performance improvement with affinity hints and noStealing for Ocean.

|0

|10

|20

|30

|40

|50

|60

 N
um

be
r 

of
 M

is
se

s 
(in

 M
ill

io
ns

)

Remote References

B Base

55.0 55.0

44.9 44.8

36.1 35.9

31.3 29.8
27.7

25.7
23.6 22.0

18.8
17.0 17.4 16.4

B DA  
P1 

B DA  
P2 

B DA  
P4 

B DA  
P8 

B DA 
P12 

B DA  
P16 

B DA  
P24 

B DA  
P32 

Number of Processors

Local References

DA Distr+Affinity

Figure 5.3: Cache miss statistics for Ocean, before and after affinity optimizations.
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Figure 5.2 shows the performance results for the Ocean code on a square grid of
194x194 points, which takes about 105 seconds on a single processor (the input problem
is kept fixed throughout).1 Performance improves dramatically (75-100%) with the hints
described above, compared to the base version in which tasks are scheduled on a single
task queue. The statistics gathered with the hardware performance monitor on the 32-
processor DASH are shown in the bar charts in Figure 5.3. The figure plots the total
number of cache misses before (labeled B) and after optimization (labeled DA) during
the execution of the parallel portion of the program, for different number of processors.
Each bar corresponds to the total number of caches misses and is partitioned into two
regions. The dark region represents the cache misses that were serviced in local memory
while the light region corresponds to misses that were to data in remote memory. As
shown in the figure most misses are to remote memory before optimization, but with the
optimizations nearly all (80-90%) of the cache misses are satisfied in local memory. Thus
the primary performance gains are due to the objects being referenced in local rather than
in remote memory.

Recall that we chose to partition a grid into a singlearray of rowGroups. However,
for some grid operations such as relaxed SOR that require inter-processor communica-
tion across rowGroups, the best communication to computation ratio is obtained if each
grid is partitioned into square blocks rather than groups of entire rows. In a blocked
decomposition, however, the elements of a block are no longer contiguous in memory
making it difficult to distribute them across processors’ memories. A common way of
addressing this problem is to organize a two-dimensional grid as a four-dimensional array,
with the first two dimensions referencing a particular block and the last two dimensions
referencing the particular element within the block. However, a blocked decomposition
is more complicated to express, regardless of the underlying language. We therefore used
a simpler decomposition in our experiments.

To summarize, even though the problem can be statically decomposed, this example
demonstrates the ease with which the program was optimized. TheCool program
is decomposed into tasks on rowGroup objects, and the default affinity successfully
improves both cache and memory locality. Explicit distribution of objects is required of
the programmer, but is easily expressed through the migrate statement. Finally, experience
with this example suggests an automatic object distribution strategy in which the objects
associated with a parallel function are distributed in a round-robin manner across the local
memories of processors. This appears to be a reasonable default and would be sufficient
for programs with a regular structure. For more complex programs the programmer could
always override this default with explicit object distribution.

5.2 Water

1The ANL version of the code has not been ported to DASH, hence we cannot compare its performance
to theCool program. However, the structure of the ANL code is similar: each processor operates on
a set of rows, with a global barrier at the end of each grid operation to synchronize the processors. We
therefore expect their performance to be similar as well.
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classmol c f
atomc atom[3];
. . . physical properties of the molecule. . .

public:
. . . functions to process the molecule. . .

g;

classmolGroupc f
mol c* mymols; // molecules within this group.
. . .
void predic ();
void intraf (doubles*);
void divForce ();
void correc ();
void bndry ();
void kineti ();

public:
// Parallel functions to process molecules within the group.
parallel condH* predic intraf (doubles* poteng)f

predic (); intraf (poteng);
g
parallel condH* interf ();
parallel condH* divForce correcbndry kineti () f

divForce (); correc (); bndry (); kineti ();
g
. . .

g *molGroup;

main () f
extern int noStealing; noStealing = 1; //Disable task stealing
. . .
for (all time steps do)f

// Perform the different phases.
waitfor f

// process all the molecule groups in parallel.
for (all molecule groups ‘i’)

molGroup[i].predicintraf () [ affinity (PROCESSOR, i);];
g

waitfor f

for (all molecule groups ‘i’)
molGroup[i].interf () [ affinity (PROCESSOR, i);];

g

waitfor f
for (all molecule groups ‘i’)

molGroup[i].divForcecorrecbndry kineti () [ affinity (PROCESSOR, i);];
g

g

. . .
g
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Figure 5.5: Performance improvement with affinity hints and noStealing for Water.

We next study the N-body Water application [94, 96], described earlier in Chap-
ter 2.4.1. This application does not require data distribution and illustrates how scheduling
related tasks for cache reuse is often sufficient to obtain good performance.

Figure 5.4 presents theCool code for Water along with the affinity hints as de-
scribed below. Since there is a uniform amount of work associated with processing
each molecule, the load-balancing concerns are addressed by creating as many molecule
groups as processors, each containing the same number of molecules. Regarding data
locality, in most of the phases the data references are to the values stored within the
individual molecule object being processed. In those phases each task primarily refer-
ences the molecules within its group. One exception is the pairwise interaction phase
that models the interaction between each pair of molecules in the system, and therefore
requires all-to-all communication. We would like to exploit cache locality by processing
tasks on the same molecule group on the same processor across different phases of the
program, thereby reusing the molecule objects in the cache. To determine whether we
need to exploit memory locality as well we do the following simple calculation. Each
molecule consists of about 700 bytes of data, and typical inputs consisting of hundreds
of molecules consume less than a mega-byte of data. Therefore the data set for each
processor (a molecule group) is expected to fit within the processor’s cache (64KB first-
level cache, 256KB second-level cache); locality within the cache should be sufficient,
and no data distribution appears to be necessary.

In the previous application (Ocean), row groups were distributed across processors and
tasks were automatically scheduled based on default affinity. No special data distribution
is performed in Water, however, and the desired scheduling must be explicitly specified
through affinity hints for the tasks. Since we create one task per processor in each phase,
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Figure 5.6: Cache miss statistics for Water, before and after affinity optimizations.

it is simplest to schedule the tasks directly onto processors using processor affinity. A
task on theith molecule group is therefore scheduled on theith processor using the
affinity hint shown in Figure 5.4. Multiple tasks on the same molecule group across
different phases therefore execute on the same processor and benefit from cache reuse.
The affinity hint is more easily supplied at the invocation of the parallel function rather
than its declaration since the index of the molecule group (i) is trivially accessible at
the function invocation. Finally, similar to the Ocean code, since the load-distribution is
determined statically with one molecule group per processor, any task stealing can wreck
the careful distribution of tasks described above. We therefore use the noStealing flag to
disable task stealing during the execution of the program. As shown in Figure 5.4, the
affinity hints and toggling the noStealing flag are all that is required to obtain the above
scheduling optimizations.

The ANL version of the code differs from theCool program in two aspects. First,
since the program can be statically partitioned, in the ANL code a molecule group is
assigned to a process for the entire computation. Synchronization for a phase to complete
is expressed using a barrier between all processes in the system. In contrast, theCool

program creates tasks in each phase and waits for them to complete using a waitfor. A
second difference is the organization of the molecule data structures. Compared to the
array of molecule objects inCool, the ANL code instead has multiple arrays, one for
each physical property of the molecules. The latter organization exhibits better spatial
locality within a cache-line, since the phases typically reference a few properties for all
the molecules rather than referencing several properties for each individual molecule.

We evaluate the performance of the Water code on an input of 512 molecules over
a period of 4 time steps. This problem takes about 110 seconds on a single processor.
Figure 5.5 plots the speedup of the program over the serial version of the code and
presents three curves: the Base version is theCool program without any affinity hints
in which tasks are scheduled based on default affinity. The molecule groups are allocated
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from the memory of the processor that first initializes them during the serial startup
portion of the program, hence all tasks subsequently get scheduled in the queue of that
particular processor. The Affinity curve presents the performance of the program with the
affinity hints described above, and the last curve presents the performance of the ANL
version of the code.

As shown by the figure, the application performs well and exhibits good speedups
(over a factor of 20 on 32 processors). Performance improves significantly (over 30%)
with affinity scheduling compared to the Base case, reflecting the improved cache reuse.
Finally, the performance of the ANL andCool codes is comparable, with the ANL code
starting to perform better for larger numbers of processors. This reflects the two reasons
outlined earlier—the task creation overhead inCool and the improved spatial locality
in the ANL code.

Figure 5.6 presents the cache miss statistics for the twoCool versions of the code,
with and without affinity optimizations. The total number of cache misses decreases by
20-30% with affinity scheduling, reflecting the improved cache locality on the molecule
groups. The total number of cache misses is quite low and consume less than 10 seconds2

in a program that executes for over a 100 seconds on a single (33MHz R3000) processor.
Many of these remaining misses are likely to be true communication misses in the pairwise
interaction phase of the computation, that cannot be optimized by either cache or memory
locality. Therefore, data distribution is not likely to help in this application.

In summary, the Water code is an example of an application that can work well in
its cache. For such applications simply scheduling related tasks on the same processor
is sufficient for good cache reuse, and no data distribution is necessary. The desired
scheduling was easily expressed using processor affinity inCool. The water code had
a one-to-one mapping of tasks to processors, and the ability to disable task stealing
was necessary for affinity scheduling to be effective; this level of control appears to be
essential for applications where a good load-distribution can be determined statically, and
the programmer is willing to control load-balancing directly, as in Ocean and Water.

5.3 LocusRoute

LocusRoute [89] is a parallel routing algorithm for standard cell circuits and was described
earlier in Chapter 2.4.3. Similar to the Water code, scheduling of related tasks is important
for cache locality. However, this application is one where tasks are related indirectly
through aportion of a shared object (the CostArray), and identifying the related tasks
requires a semantic understanding of the application.

Figure 5.8 reproduces the code to express LocusRoute inCool from Chapter 2.4.3,
augmented with the locality optimizations described below. The algorithm spends most of
its time in evaluating the cost of different routes for a wire, so locality on the CostArray is
important. We can express this by viewing the CostArray as partitioned into geographical

2Less than 10 million misses, with each miss taking approximately 1 microsecond to service.

Chapter 5. Case Studies 105



A B
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Region−4 Region−5 Region−6 Region−7

A, B, C: Wires within the CostArray

Figure 5.7: The CostArray composed of regions.

regionsthat correspond to a spatial partitioning of the circuit as shown in Figure 5.7 and
have each processor route wires that lie within its region of the CostArray. Executing
tasks within a region on the same processor will hopefully reuse that region of the
CostArray in the cache. To simultaneously distribute the load across processors as well,
we actually exploit this locality using processor affinity: each region of the CostArray is
(conceptually) assigned to a processor, and tasks within that region are directly scheduled
on the corresponding processor. Besides reusing the same region in the cache, each region
is likely to be referenced by only one processor, thereby reducing the invalidations of
the CostArray in caches of other processors. Finally, depending on the degree of reuse,
physically distributing the regions of the CostArray across the memories of different
processors may further improve performance, since the misses to the CostArray will be
to local rather than remote memory.

The code to express these hints is shown in Figure 5.8. The functionRe-
gion(CurrentWire)computes the midpoint of the wire and returns the region number
that the midpoint lies within, which is then used as the server number in the processor-
affinity hint. Partitioning the CostArray into a few large regions (say one per processor)
will have better locality but perhaps poorer load balance, while larger numbers of smaller
regions will have better load balance at the expense of data locality. These tradeoffs can
be easily explored in theCool program by varying the Region function. Finally, task
stealing remains enabled to correct any load imbalance across regions.

Since we had only small input circuits available to us, we demonstrate our technique
using a synthetically constructed input consisting of a dense network of wires within
the regions of the circuit. This circuit consists of 8160 wires uniformly distributed in
a circuit that is 1760 cells wide and 20 channels deep. The circuit can be thought of
as composed of 32 regions of size 110 cells by 10 channels, with 255 wires distributed
within each region. This problem takes about 100 seconds on a single processor. The
performance results in Figure 5.9 show (a) theBaseversion of the program in which
the wire tasks are scheduled across processors in a round-robin fashion without regard
for locality, (b) theAffinity version in which processor affinity hint is supplied so that
wires in a geographical region are likely to be routed by the associated processor, and
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// Function to determine the CostArray region that the
// wire lies in, based on the mid-point of the wire.
int Region (Wire*);

classWire f

. . .
public:

// Parallel function to route a wire.
parallel condH* Route ()

[ affinity (Region (this), PROCESSOR); ];
g;

main () f
. . .
while (not convergedf

waitfor f

for (all wires ‘w’ do) f
// route the wires in parallel.
w–>Route ();

g

g // Wait for all wires to be routed.
g

g

Figure 5.8: Specifying affinity hints in LocusRoute.

(c) theAffinity+ObjectDistrversion in which the regions of the CostArray are physically
distributed across processors’ memories as well. Overall speedups are small due to the
high degree of communication of shared data. However, with the affinity hints most of the
wire tasks (over 80%) in a region are routed on the corresponding processor, resulting
in significant performance improvements. As shown by the cache miss statistics in
Figure 5.10, affinity scheduling nearly halves the number of cache misses. Distributing
the CostArray improves performance further, although the gains are smaller. The number
of cache misses remain unchanged but more of them are serviced in local rather than
remote memory.

In contrast to theCoolprogram where the programmer only had to supply the affinity
hints, the ANL version requires the programmer to explicitly maintain task queues per
processor and manage task creation and scheduling based on the geographic locality
described above. TheCool program outperforms the ANL code due to some additional
optimizations for dynamic memory allocation—as discussed earlier in Chapter 2.4.3,
several items of scratch storage are dynamically allocated using malloc/free in the ANL
version of the code, while in theCool code we maintain a free-list of such scratch
storage. TheCool code is therefore more efficient in this regard. To factor out the effect
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Figure 5.9: Performance improvements in LocusRoute with affinity hints.
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of these optimizations, we present self-relative speedup for the ANL code in Figure 5.9.
Even so, theCool program exhibits better speedup, especially for larger number of
processors.

While the actual affinity hints supplied are simple, it is important to realize that the
hints are based on insights about the semantics of the application and would be impossible
for a compiler to deduce. For instance, a compiler simply cannot infer that wire objects
have end-points corresponding to a region in the CostArray and have affinity for that
region. Programmer intervention is therefore necessary for such programs.

5.4 Barnes-Hut

We next discuss the N-body Barnes-Hut [93] application, described earlier in Chap-
ter 2.4.6. This application performs well with good cache locality, and data distribution—
which is difficult in this application—is not necessary. However, Barnes-Hut has complex
load-balancing requirements, and it was necessary to explore several scheduling alterna-
tives to study the tradeoff between locality and load-balance in this application; we show
how the affinity hints inCool enabled the programmer to easily experiment with dif-
ferent strategies.

Figure 5.11 presents theCool code to express Barnes-Hut along with affinity hints
as described below. We focus on the force computation phase since that is where the
program spends most of its time. The two main data structures in the program are body
objects that represent the bodies in the system and the tree of space cells representing
a hierarchical partitioning of physical space. Concurrency during the force computation
phase is exploited by processing different bodies in parallel. Computing the force on
a body mainly requires references to (a) the bodies that interact with the current body,
and (b) the space-cells in the tree as the tree is traversed to locate the nearby and distant
bodies. Cache locality on these data structures can be improved by processing bodies that
are close together in space on the same processor—nearby bodies are likely to interact
in the same manner with other bodies (i.e., either directly or with the center of mass),
so that the force computation for nearby bodies is likely to reference the same bodies
as well as the same portions of the tree. However, the bodies move in space as the
system evolves over a period of time-steps, therefore the “nearby” relationship changes
over time. Furthermore, while assigning nearby bodies to the same processor, we must
be careful to simultaneously distribute the load uniformly across processors.

The ANL code determines a partitioning of bodies across processors at the beginning
of each time-step. The code experiments with a variety of partitioning schemes based on
the criteria outlined above. However, the bodies remain assigned to the same processor
for the entire duration of the time-step. In contrast, theCool code exploits concur-
rency at the granularity of an individual body, and tasks may be stolen dynamically for
load-balancing reasons. We now describe each of those schemes, show how they were
expressed inCool (the ANL versions are mimicked by disabling task-stealing), and
compare their performance based on the speedups presented in Figure 5.12. This figure
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classbody c f
. . .

public:
parallel condH* computeInteraction ();

g *body;

main () f
. . .
for (all time steps) f

. . .
// Compute the N-body interactions.
waitfor f

for (all bodies ‘i’)
body[i].computeInteraction ()

// Static/Random: noStealing and the following affinity hint
[ affinity (i/numProcs, PROCESSOR);];

// Static/CountZones: noStealing and the following affinity hint
[ affinity (i/(numBodies/numProcs), PROCESSOR);];

// Static/CostZones: noStealing and the following affinity hint
[ affinity (proc[i], PROCESSOR);];

// Dynamic/CountZones: the following affinity hint
[ affinity (i/(numBodies/numProcs), PROCESSOR);];

g
. . .

g
g

Figure 5.11: Expressing concurrency and affinity in Barnes-Hut.
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Figure 5.12: Barnes-Hut: The performance of different scheduling schemes.

presents results on an input of 32K bodies over two time-steps, that takes about 250
seconds to run on a single processor. (We did not collect cache miss statistics for this
application.)

The first schemeStatic/Randompartitions the bodies equally across processors in a
random fashion. As shown in Figure 5.11, this is expressed by the processor affinity hint
with the tasks on each body being scheduled across processors in a round-robin fashion.
Task stealing is disabled to mimic the assignment for an entire time-step. This scheme
achieves reasonable load-balance but does not address any locality concerns.

The next schemeStatic/CountZonesaddresses data locality by assigning nearby bodies
to the same processor and divides the bodies equally among processors for load-balancing.
This is expressed by the second processor affinity hint shown in Figure 5.11. The body
array is organized based on the position of the body in space, so that bodies that are
nearby in space are also close to each other within the body array. Therefore assigning
adjacent elements of the body array to the same processor achieves the desired effect.
However, although this scheme has good data locality, the amount of work associated with
each body is not uniform, and partitioning the bodies equally across processors results in
poor load-balance. The performance of this scheme is therefore only marginally better
than the previous scheme.

TheStatic/CostZoneswas proposed to simultaneously address both locality and load-
balancing concerns. This scheme assigns nearby bodies to the same processor similar
to CountZones and at the same time tries to achieve good load-balance based on a fair
partitioning of work rather than a simple body-count. It maintains a profile of the amount
of work (specifically, a count of the number of body-body and body-cell interactions)
performed for each body in the previous time-step and uses this work profile as a predictor

Chapter 5. Case Studies 111



for the next time-step. Based on this work profile, nearby bodies are assigned to the same
processor for good locality, and the load is balanced by choosing partitions with roughly
the same amount of work rather than a body-count. This partitioning is maintained in
theproc array in Figure 5.11, and expressed using processor affinity. Because it attempts
to balance locality and load distribution in the program, the Static/CostZones scheme
performs better than the other schemes described above.

The relatively complex CostZones scheme becomes necessary in the ANL code since
bodies are assigned to processors for the duration of the entire time-step. In contrast, the
Cool program exploits concurrency at a finer granularity (i.e., an individual body) and
can benefit from dynamic load-balancing through task stealing. We therefore implemented
the Dynamic/CountZonesscheme, which is similar to Static/CountZones in that nearby
bodies are processed on the same processor, but at the same time task-stealing is enabled
to automatically correct any load-imbalance. This scheme is expressed by the last affinity
hint in Figure 5.11 and is the same as the Static/CountZones hint but without disabling
task-stealing. As shown in Figure 5.12, Dynamic/CountZones performs as well as the
Static/CostZones scheme. Furthermore, compared to the CostZones scheme where the
programmer explicitly maintains work profiles for each body, distributing bodies through
task scheduling offers greater flexibility in experimenting with different partitionings as
well as provides automatic load-balancing through task-stealing.

Finally, we also present results from the manually hand-tuned CostZones scheme in
the ANL code in Figure 5.12. The performance of theCool programs is slightly lower
than that of the ANL code because theCool program experiences poorer cache behavior
in the center-of-mass computation phase due to differences in the organization of some
data structures. However, within the different schemes, the automatic load-balancing
in Cool is an attractive alternative to manual load distribution through explicit work
profiles.

Overall, the example illustrates how the affinity hints inCool allow easy experi-
mentation with the various scheduling optimizations. It also illustrates how exploiting
concurrency at the granularity of individual bodies enables better dynamic load-balancing.

5.5 Panel Cholesky

Our next case study is the Panel Cholesky application [91], which was described
earlier in Chapter 2.4.4. This application requires careful task and data distribution to
benefit from cache and memory locality; we illustrate how these requirements are met
using theCool constructs.

The Cool code expressing Panel Cholesky, along with locality hints, is shown in
Figure 5.13. Most of the work is done in the updatePanel method, which reads the source
panel and modifies the destination panel. By default, tasks corresponding to updatePanel
have affinity for the panel that they are invoked on (the destination panel) and are auto-
matically scheduled to exploit both cache reuse and memory locality on the destination
panel. In addition, by distributing the panels across processors’ memories we can both

112 Chapter 5. Case Studies



classpanelc f
int remainingUpdates;
. . .

public:
// Update this panel by the given source panel.
parallel mutex void updatePanel (panelc* src)

[ affinity (src, TASK);affinity (this, OBJECT);]f
. . . Update this panel by the given src panel. . .
if (-- remainingUpdates == 0)f

// This panel is now ready.
completePanel ();

g

// Perform internal completion of the panel.
parallel condH* completePanel ()f

. . . perform internal completion. . .
// Produce updates that need this panel.
for (all panels ‘p’ modified by this panel)

panel[p].updatePanel (this);
g

g *panel;

main () f
. . .
// Distribute panels across processors memories,
// in a round robin fashion.
for (i=0; i<MaxPanels; i++)migrate (panel+i, i);
waitfor f

// Start with the initially ready panels.
for (all panels ‘p’ that are initially ready)

panel[p].completePanel ();
g // Wait for all updates to complete.

g

Figure 5.13: Expressing concurrency and affinity in Panel Cholesky.

Chapter 5. Case Studies 113



 Ideal
� � ANL Code

 
 Distr+Affinity+ClustSteal
� � Distr+Affinity
� � Distr
� � Base

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|0

|4

|8

|12

|16

 Number of Processors

 S
pe

ed
up

�
�

�

�

�

�

�

�

























�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

Figure 5.14: Performance improvement with affinity hints for Panel Cholesky (matrix
BCSSTK33).

distribute the associated work and distribute the memory bandwidth requirements.

This scheme should perform well. Since the destination panel is being modified, it is
preferable that modifications to a panel be performed on the processor that contains the
destination panel in its local memory; otherwise the destination panel will continually
be invalidated in different processors’ caches. However, similar to the column-oriented
Gaussian elimination example discussed in Chapter 3.3.3, we can also simultaneously
exploit cache reuseon each source panel by identifying tasks with the same source panel
as a task-affinity set. Each processor usually has multiple panels assigned to it that need
to be modified by any given source panel. Executing these updates back-to-back on the
processor will reuse the source panel in the cache.

These scheduling optimizations are easily obtained with the affinity hints shown in
Figure 5.13. The panels are distributed across processors’ memories in a round robin
fashion. The default affinity for the base object automatically collocates tasks with the
destination panel, while a task affinity hint supplied with updatePanel exploits reuse on
the source panel.

The performance results are shown in Figure 5.14.3 We use the matrix BCSSTK33
from the Boeing-Harwell set of sparse matrix benchmarks [32]. This matrix has 8738
columns organized into 1201 panels with approximately 7.28 columns per panel. This
input runs for nearly 250 seconds on a single processor. TheBaseversion is executed with
no optimizations.Distr includes round-robin distribution of panels across processors, but

3We present results on up to 24 processors due to limitations in the amount of physical memory on the
machine.
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the tasks are scheduled randomly across processors. The improvement in performance is
due to a better distribution of the memory bandwidth requirements. Performance further
improves with scheduling tasks with affinity for the source and destination panels as
described above, as shown by the plotDistr+Aff.

We now discuss an experiment we did with cluster-based scheduling. This experi-
ment demonstrates the benefits of exploiting specific architectural features in improving
data locality; the necessary optimizations, however, may require additional programmer
abstractions and/or runtime support. Recall that although tasks are collocated with the
destination panel on a particular processor, all processors within that cluster (in DASH)
share the local memory containing the destination panel. We therefore ran the pro-
gram with an idle processor allowed to steal tasks only from other processors within
the same cluster; the stolen tasks would therefore continue to reference the destination
panel in local rather than remote memory. This effect is controlled through a runtime
flag that can be dynamically manipulated by the programmer. As shown by the plot
Distr+Aff+ClusterStealing, stealing only within a cluster further improves performance.

Although in our experiments cluster scheduling was explicitly manipulated by the
programmer, perhaps this effect can be automated within the runtime system. For in-
stance, a runtime scheduler could try to always steal tasks from processors within the
same cluster before trying to steal tasks from remote processors. Or, the scheduler may
decide to steal tasks from remote processors based on the relative latencies of local and
remote memory references. However, more experience is required before good defaults or
automatic strategies can be developed; this example simply demonstrates the usefulness
of such mechanisms.

As shown in the figure, the performance of the finalCool code is less than 10%
slower than a hand-coded version of the code written using the ANL macros. Figure 5.15
displays the effect of the optimizations on the cache miss behavior of the program. Simply
distributing the panels improves performance due to better utilization of the available
memory bandwidth without affecting the cache performance. However, the proportion of
misses that are serviced in local memory decreases somewhat from base to distr. Since
data is allocated on a first-touch basis in the base case, most of it gets allocated from
within one cluster. All tasks that execute within that cluster will therefore find their
data in local memory. In the distr case, however, although the data is distributed across
processors the tasks are distributed randomly. Hence the chances of a task finding its
data in local memory are decreased. However, affinity scheduling and cluster scheduling
significantly reduce the number of cache misses; in addition, since the tasks are collocated
with the panel, more of the misses are serviced in local rather than remote memory.

In the second experiment we monitored the effect of task-affinity hints. We noticed
that the program performed equally well with or without task affinity on the source panel
(recall that task-affinity can be turned on with a simple affinity hint). So we took a closer
look at the order in which tasks are executed on each processor. In the particular input
matrix that we used, there just were not that many modifications per source panel (about
40). Furthermore, these modifications get split across different processors, based on the
destination panel. Finally, even all these tasks don’t necessarily execute back-to-back
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Figure 5.15: Cache miss statistics for Panel Cholesky, and the affect of the affinity
optimizations.

since there are synchronization requirements. We instrumented the application to record
a trace (over time) of the source panels used by tasks on each individual processor.
This trace was post-processed to measure the number of consecutive tasks that used the
same source panel, called therun-length. The run-lengths across all the processors were
then averaged into a single number. We found that although the average run-lengths
improved with task-affinity, the improvements were quite small. For instance, on 12
processors the run-length improved from 2.36 per source panel to 3.06 with task-affinity.
The corresponding numbers for larger number of processors were—16 processors (up
from 2.01 to 2.52), 20 processors (up from 1.77 to 2.17), and 24 processors (up from
1.60 to 1.96). With these small run-lengths—that get smaller as the number of processors
increases—it is not surprising that we did not see significant performance gains. However,
the scheduling hints were easily supplied and did achieve the desired effect; this effect
may well be important for larger inputs to this application.

To summarize, the program was naturally expressed in terms of panel objects and
panel-panel operations. While panels were explicitly distributed across processors, the
scheduling defaults were sufficient to improve memory performance. Additional task
affinity optimizations were easily expressed to simultaneously exploit cache reuse on
source panels. Finally, the automatic object distribution strategy that we suggested for
the Ocean code in Section 5.1 could adequately distribute panels across processors in this
program as well.
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5.6 Block Cholesky

Our final case study is the Block Cholesky code [92], discussed earlier in Chapter 2.4.5.
Similar to Panel Cholesky, this application also requires a careful distribution of tasks
and data to achieve good performance. In addition, there are several different scheduling
options worth exploring in this code; we show how these requirements are met using the
affinity hints inCool.

Figure 5.16 presents the Block code expressed inCool along with the locality
optimizations described below. Based on default affinity tasks are collocated with the base
object. Therefore invocations of the parallel completeBlock method are collocated with
the block that becomes ready. The completeBlock method then invokes the updateBlock
method to reduce each destination block that must be updated using the current source
block. These updates are likely to reference this source block in local memory, but may
reference the other source block and the destination block in local or remote memory.
This is called thesource-basedscheme, in which we exploit locality on one of the source
blocks. In contrast, another appealing strategy is thedestination-basedscheme, where
we exploit locality on the destination block by performing the update on the processor
that contains the destination block in its local memory.

We show how each strategy can be obtained within the same basic computational
structure shown in Figure 5.16. Blocks are distributed across processors’ memories in
a round-robin fashion. The default affinity of a task for the base object provides the
source-based scheme, as mentioned earlier. To express the destination-based scheme, we
declare updateBlock to be a parallel function invoked on the destination block. As a
result, invocations of updateBlock are automatically collocated with the corresponding
destination blocks, thereby implementing the destination-based scheme. Although the
destination scheme has some additional overhead, the extra concurrency may help load
balance. Furthermore, the cache performance may improve since modifications to a block
are likely to execute on the same processor.

TheCool version of Block Cholesky is similar to the original ANL version of the
code [90], and exploits the same concurrency. However, rather than the round-robin
distribution of blocks as inCool, the ANL code treats theP processors as organized
into a two-dimensional

p
P by

p
P grid. This grid is then used in a ‘cookie-cutter’

fashion to map sections of blocks to processors, as shown by the example in Figure 5.17
for four processors. Besides achieving a reasonable distribution of work, this scheme has
the advantage that a row of blocks is mapped onto a row of processors, and a column of
blocks is mapped onto a column of processors. This helps to reduce communication of a
ready block because, since a ready block is used to reduce other blocks only in the same
row and in the same column, it is now referenced only by the processors in the same
row/column rather thanall the processors. However, recall from Chapter 2.4.5 that the
execution order of tasks in the ANL code must be carefully managed to avoid deadlock.
Therefore the task distribution is determined statically and no task stealing is possible.
In contrast, theCool version distributes the blocks (and tasks) in a simple round-robin
fashion and depends on dynamic task-stealing to improve load-balance. Furthermore,
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classblock c f
. . .
int remainingUpdates;
condH ready;

public:
// update this block by the given source blocks
// Make this function parallel for the destination-based scheme.
mutex condH* updateBlock (blockc* src1, blockc* src2) f

. . . update the block. . .
if (-- remainingUpdates == 0)

completeBlock ();
g

parallel condH* completeBlock ()f
. . . perform internal completion. . .
// I am now ready. Signal others that may be waiting.
ready.broadcast ();
// Generate updates that use this block.
for (all blocks ‘b’ above ‘this’ in the same column)f

// Wait for that block to become ready.
block[b].ready.wait ();
dest =block updated by ‘this’ and ‘b’;
block[dest].updateBlock (this, block+b));

g

g
g *block;

main () f
int i;
for (i=0; i<B; i++)

migrate (block+i, i);
. . .
waitfor f

for (all blocks ‘b’ that are initially ready)
block[b].completeBlock ();

g
g

Figure 5.16: The Block Code.

118 Chapter 5. Case Studies



P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

Processor
Number

Figure 5.17: A 2-D round-robin distribution of blocks used in the ANL code (shown for
four processors).
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Figure 5.18: Performance improvement with affinity hints for Block (DENSE1000).

the ANL code must maintain per-processor task-queues and perform all task distribution
optimizations in an explicit fashion.

We present performance results on a dense matrix (of size 1000x1000) in Figure 5.18,
and on a sparse matrix in Figure 5.19. The cache miss statistics for the two inputs are
presented in Figures 5.20 and 5.21 respectively. The sparse matrix is BCSSTK15 from
the Boeing-Harwell set of sparse matrix benchmarks [32]. This matrix has 3948 columns
organized into 3661 blocks. The DENSE1000 matrix takes about 38 seconds, while
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Figure 5.19: Performance improvement with affinity hints for Block (BCSSTK15).

BCSSTK15 takes about 28 seconds on a single processor. We present results for three
variations of the program: the first is the base source-based scheme in which data is
allocated on a first-touch basis and tasks are scheduled based on default affinity; the
second is the source-based scheme with the blocks distributed across processors and
tasks scheduled based on affinity for the source block; and finally the destination-based
scheme with both block distribution and affinity scheduling. The speedups are much
higher on the dense matrix compared to the sparse matrix, but the relative performance
of the different scheduling schemes is similar. Block distribution and affinity scheduling
provide substantial performance improvements over the base version of the program.
The improvements in the cache miss behavior, however, are small, suggesting that the
improvement are likely due to better memory bandwidth with the distribution of data.
Exploiting locality on the destination block (which is being modified) is clearly more
beneficial than the source-based scheme. Performance improves significantly, and there
are fewer cache misses with more of the misses serviced in local memory. Finally, we also
present the performance of the destination-based scheme coded using the ANL macros.
Although the two codes (Cool and ANL) perform block distribution and scheduling
optimizations, the ANL code uses a “cookie-cutter” distribution of blocks as described
above while theCool code has a simple round-robin distribution of blocks. In the range
of machine-sizes that we consider, the round-robin distribution scheme exhibits better
load-distribution. Hence theCool code outperforms the ANL program, as shown in the
Figure.

To summarize, this application offered several potentially interesting optimizations.
We could easily express both the source and destination based schemes within the same
computational structure of the program. Optimizations such as object distribution for
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Figure 5.20: Cache miss statistics for Block Cholesky (Dense matrix DENSE1000).
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Figure 5.21: Cache miss statistics for Block Cholesky (Sparse matrix BCSSTK15).

better memory bandwidth, and task distribution for better memory locality were naturally
expressed within the object structure of the program and the scheduling defaults. The
default affinities scheduled the tasks appropriately, and the programmer only needed
to distribute blocks across processors. It may be possible to automate even the block
distribution based on the default object distribution strategy that we have described before.
In contrast, the ANL version of the code had to perform all the task management and
scheduling chores explicitly.
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5.7 Summary

Having studied the performance of the various applications inCool in detail, the most
important observation is thatCool is efficient. The performance of theCool ver-
sions of the applications is comparable to that of the hand-tuned codes written using the
ANL macros (and often better). We can therefore conclude that the constructs can be
implemented efficiently and are suitable for high-performance parallel programming.

Let us now consider the questions posed in the beginning of this chapter regarding the
affinity hints provided inCool. In all the applications that we studied, both data locality
and load-balancing were critical factors in achieving high performance. The applications
required a range of optimizations—Ocean, Panel, and Block Cholesky required both task
and data distribution to exploit cache and memory locality, while Water, LocusRoute,
and Barnes-Hut required affinity scheduling for cache reuse. In all cases, we found
that the affinity hints inCool provided a sufficient degree of control for exploiting the
desired locality—whether in the cache, in local memory, or both. Supplying the affinity
hints resulted in substantial performance improvements, ranging from 60-135%. More
importantly, the programs tuned using the affinity hints inCool performed as well as
the corresponding programs hand-optimized using the ANL macros.

Supplying the hints clearly requires programmer effort, including an understanding
of the application structure and the underlying memory hierarchy. The real benefit from
our approach is that the scheduling mechanisms for exploiting locality are built within
theCool runtime system, allowing the programmer to control the optimizations using
the locality abstractions. As we have shown, the abstractions are easily supplied as
annotations on parallel functions or as distribution of objects. Furthermore, they do not
affect the semantics of the program, allowing programmers to easily experiment with
different scheduling optimizations while tuning their program, as shown by the Barnes-
Hut and Block Cholesky applications. Finally, actually performing the optimizations was
very simple and required only a few lines of additional code in each application.

To summarize, the locality support provided inCool is as effective in achieving high
performance as explicitly hand-coding the optimizations but is a whole lot easier for the
programmer. It seems difficult to entirely automate these optimizations—for instance, in
applications such as LocusRoute the optimizations were based on an understanding of
the application semantics. However, as our experience with applications such as Ocean,
Panel, and Block Cholesky suggests, smart default strategies for object distribution and
task scheduling can significantly reduce the burden on the programmer.
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Chapter 6

Related Work

The design of new languages for parallel programming has been an area of active research
for over two decades. A large variety of parallel languages have been proposed in the
literature. Apart from languages likeCool for exploiting task-level parallelism, there
are languages for exploiting data-level parallelism in dense matrix computations (e.g.,
High Performance Fortran (HPF) [78] and DataParallel C [53]), languages for exploiting
parallelism in symbolic Lisp [60] programs (e.g., Multilisp [46] and Qlisp [38]), languages
for parallel logic programming (e.g., Parlog [42]), and languages for writing distributed
client-server style applications (e.g., Concert C [10]). Furthermore, this list is by no means
exhaustive and only serves to demonstrate the diversity of parallel language research.

Given the variety of work in this area, we narrow our discussion of related work
based on the two primary aspects ofCool—the support for expressing parallelism and
the support for improving locality in a program’s execution. Therefore, of the various
parallel languages in the literature, we focus on those languages designed to exploit task-
level parallelism for achieving high-performance. In particular, we compareCool with
other monitor-based languages that are similar in terms of the individual constructs that
they provide but differ in other important aspects such as the flexibility of the monitor
mechanism or the integration of the constructs with the underlying object structure of
the program. We then contrast theCool approach for improving data locality and load-
balancing with some other techniques, including automatic techniques such as operating
system scheduling and page migration, and explicit techniques such as those provided by
the ANL macros or by programming languages such as HPF [78].
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6.1 Other Parallel Languages

The individual constructs inCool are by no means novel—for instance, monitors and
condition variables were proposed by Hoare in 1974 [55] and have since appeared in a
multitude of languages such as Turing [58], Concurrent Euclid [29, 57], PRESTO [14],
Emerald [15, 63, 85], and Capsules [40] (to name a few).Cool differs from these
languages in different aspects of the overall design which we evaluate below.

First, we compareCool with some of the early monitor-based languages such as
Concurrent Pascal [47, 52] and Mesa [70, 83]. These languages were initially proposed
for programming operating systems; we explore their suitability for writing parallel ap-
plications.

Next, we evaluate the tradeoffs in exploiting parallelism using the same basic con-
structs asCool, but with the constructs provided through runtime libraries rather than
integrated into the base language [13, 14, 28, 31].

Third, we discuss monitor-based languages that provide additional synchronization
features over the basic monitor construct [19, 35, 40, 84]. We examine the utility of
these features versus the simpler monitors ofCool.

Fourth, recall that while theCool constructs are integrated with the C++ class
mechanism, the programmer can violate the modularity of objects when desirable for
programmability or performance reasons. We contrast this aspect ofCoolwith thestrict
object approach taken by languages such as Emerald [15, 63, 85] and Orca [11, 100],
where the modularity of individual objects is rigorously enforced by the language.

Finally, we compareCool with languages that exploit task-level parallelism while
maintaining the sequential execution paradigm of the original uniprocessor program.

In our discussion in this section we focus on the language support for expressing
concurrency, communication, and synchronization.Cool is distinct from these languages
in the support that it provides for performing locality related optimizations. We discuss
other approaches to improving data locality in the following section.

6.1.1 Early Monitor-based Languages

Monitors were originally proposed by Hoare [55] as a synchronization mechanism for
coordinating concurrent processes on a uniprocessor. The original monitor mechanism
is quite similar to that provided inCool: in a language with abstract data types, the
programmer can declare a shared data type (e.g., a C++ class) to be a monitor. A monitor
object (an instance of a monitor class) has the property that only one operation (member
function of that class) can execute on the object at any one time, thereby serializing
multiple simultaneous operations on the object. This ensures exclusive access to the
object for the individual operations. Event synchronization is provided through instances
of a special type called condition variables, that provide operations to wait and signal
on the event.Cool monitors are very close to Hoare’s monitors, except that they allow
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somewhat greater flexibility—multiple reader methods can execute concurrently on a
monitor object, and the programmer has the flexibility to bypass the abstraction offered
by the synchronizing monitor operations to access the shared object directly.

Languages like Concurrent Pascal [47, 48, 52], Mesa [70, 83], and Modula [106]
have integrated monitors with support for data abstraction in the language. Concurrent
Pascal was amongst the first monitor-based languages; we therefore describe it in detail
and compare it withCool.

Concurrent Pascal extends Pascal with the notion of processes, monitors, and queues
(or condition variables). Concurrency is specified through the notion of a process, which
corresponds to a separate thread of execution along with a set of data structures that are
private to the process. A process cannot operate on the private data of another process, and
monitors are the only mechanism for inter-process communication. Therefore any shared
data must be specified to be a monitor and is operated upon only by monitor methods
that are guaranteed exclusive access to the object while executing. Furthermore, the
only permissible parameters to a process or a monitor method are constants or monitor
objects. This, coupled with the restriction that both a process and a monitor method
cannot access anything other than local data or a parameter, ensures that all inter-process
communication is through monitors alone. Monitors in Concurrent Pascal are strict and
allow only one method within a monitor at any time. Concurrent Pascal also provides
queues that support operations such as waiting for an event and releasing the monitor, or
signaling an event.

The primary focus of languages such as Concurrent Pascal and Mesa has been con-
current programming on a uniprocessor, rather than parallel programming on a mul-
tiprocessor. For instance, as recently as 1980, Mesa [70] contemplated implementing
mutual exclusion simply through a non-preemptive scheduler, although this solution was
ultimately rejected for several reasons, one of them being the “possibility of a multi-
processor execution environment.” This bias towards operating systems programming
is further reflected by several aspects of the design of Concurrent Pascal—for instance,
concurrency is provided through heavy-weight operating system processes that execute
in their own private address space; the communication mechanisms are designed for
coarse-grained communication between processes since they do not share data directly
but communicate through global monitors in the program; and finally, the synchronization
mechanisms are designed only to support mutual exclusion for shared resources such as
a disk buffer, whereas parallel applications also need control synchronization such as a
barrier or theCool waitfor construct.

Clearly, therefore, these languages were not originally intended for parallel program-
ming. Furthermore, based on the analysis presented below, we find that several aspects
of their design make them unsuitable for exploiting parallelism. The primary drawback
is the low degree of coupling between multiple processes, with all inter-process commu-
nication restricted to be through shared monitor objects. Since monitor objects are strict
in Concurrent Pascal and can only be operated upon by a monitor method, it becomes
difficult to express computation that refers to more than one shared object. For instance,
routing a wire in the LocusRoute application [89] requires the task to access both the wire
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object as well as the global CostArray (see Chapter 2.4.3). Or, the inter-grid operations in
the Ocean code [95] require a task to reference multiple grids simultaneously while pro-
cessing the inter-grid operation (see Chapter 2.4.2). Finally, the update operations in both
Panel and Block Cholesky require access to both the source and destination panel/block
being updated.

The second drawback of Concurrent Pascal is that the synchronization model is quite
strict, with all accesses to shared data synchronized through a monitor operation. The pro-
grammer therefore cannot bypass the synchronization when desirable for programmability
or performance reasons. Examples where this flexibility is useful include unsynchronized
accesses to the CostArray in LocusRoute (see Chapter 2.4.3), relaxed SOR computation
in the Ocean code (Chapter 2.4.2), and unsynchronized access to objects during certain
phases in each of the other four applications. In contrast, these accesses to shared data
would all have to be performed through expensive monitor operations.

The third drawback of Concurrent Pascal for exploiting parallelism is that synchro-
nization support is restricted to monitors and queues, with no control synchronization
such as a waitfor (as inCool) or a barrier. Recall that each of the six applications
studied in Chapter 2 used the waitfor construct to wait for a set of tasks to complete; this
synchronization would need to be explicitly built in Concurrent Pascal.

Finally, the concurrency abstraction in Concurrent Pascal is similar to that provided
in the ANL macros, i.e., heavy-weight processes executing in their own private address
space. This execution model requires the programmer to explicitly schedule work across
the processes. This can be quite cumbersome in practice as well as having other draw-
backs discussed in Chapter 2.1.

In a follow-up to Concurrent Pascal, Brinch Hansen designed the Edison [49, 50, 51]
language that addressed some of the above concerns by building in greater flexibility
into the language. Rather than the heavy-weight processes of Concurrent Pascal, Edison
allows the programmer to dynamically specify concurrent execution using the structured
cobegin-coend construct. Rather than communicating only through monitor objects as
in Concurrent Pascal, these parallel tasks communicate through shared variables in the
program. Finally, there are no monitors or condition variables in Edison; instead, it
provides thewhen construct (a simpler form of the conditional critical region [54]).
Given a conditional expression and a statement list, the ‘when’ construct ensures that
(a) the statements are executed only after the condition evaluates to true and (b) only
one ‘when’ statement list executes at any one time in the entire program. The former
property allows the programmer to provide a high-level expression, rather than explicitly
managing the low-level queueing of processes using condition variables (at the expense
of efficiency, however). The latter property is used to express mutual exclusion, although
it synchronizes over the entire program rather than a particular monitor object. Overall,
Edison deliberately compromises some of the safety properties of Concurrent Pascal in
return for the flexibility provided by the new constructs. Some of these features are also
similar to constructs such as Capsules [40], discussed later in Section 6.1.3.

To summarize, while the early monitor-based languages offered similar constructs as
Cool, several aspects of their design were directed towards concurrent programming on
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uniprocessors making them unsuitable for exploiting parallelism.

6.1.2 Parallel Runtime Libraries

Several researchers have proposed support for exploiting parallelism through run-
time libraries, such as C-threads [28], Presto [14], Brown threads [31], and the
ANL [18]/Parmacs [13] macros from the Argonne National Lab. A typical runtime
library consists of multiple light-weight tasks that execute in the same address space,
communicate through shared memory, and synchronize through a variety of constructs
such as locks, monitors, condition variables, barriers, and atomic integers.

Providing these constructs through a runtime library has the advantage of not requiring
any changes to the compiler, and the constructs can be quickly and easily prototyped by
implementing them within the runtime system. However, simply leaving the constructs
as library routines rather than integrating them within the base language can adversely
affect the readability, security, and efficiency of the language, as we describe below.

Let us first consider the impact on the readability of parallel programs written using
runtime libraries. While a monitor operation inCool is expressed by labeling a method
on a class to be mutex or nonmutex, a runtime libary provides a predefined type called a
monitor on which the programmer can invoke entry and exit operations. The programmer
declares instances of the monitor type, and explicitly inserts calls to entry/exit operations
on these instances at the appropriate synchronization points in the code. Whereas the
class header in aCool monitor clearly identifies the shared data being protected and
the various operations that reference/modify it, with a runtime library all of these prop-
erties can be quite hard to infer from the program, making it difficult to understand the
synchronization structure of an application.

We experienced the above problem when trying to understand the Panel and Block
Cholesky applications written using the ANL macros [18]. Even though the mutual
exclusion synchronization for a panel/block during an update operation was expressed
through a simple lock/unlock operation, we could only guess at the data that was actually
being protected. Furthermore, the corresponding pair of lock and unlock operations were
invoked in different procedures, making it extremely cumbersome to trace the control
flow in the program and match the calls. There were numerous implicit assumptions
strewn about the program, and several sessions with the program’s author were necessary
to understand the synchronization structure of the program. Most of these problems are
addressed by the structured constructs inCool.

The second drawback of using runtime libraries—security—stems from factors similar
to those discussed above. Since the association between a monitor instance and the shared
data is implicit, it is all too easy to accidentally invoke entry/exit on the wrong monitor
instance, or invoke entry on one monitor instance and exit on a different monitor instance.
Second, since the entry and exit operations must be explicitly inserted into the code, it
is possible to forget one of the two calls. Or, since the calls can be inserted anywhere
(in particular across procedure boundaries), complex control flow between the entry and
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exit operations may cause a monitor operation to inadvertently be invoked multiple times
or perhaps skipped entirely. Although the structured design ofCool does not entirely
eliminate this class of errors, it is decidedly more secure than the same constructs offered
through runtime libraries.

A language-level design is not a panacea, of course, and convoluted programs can be
written in any language, includingCool. Conversely, a good programmer can follow
rigorous coding rules to write highly-structured programs using runtime libraries. How-
ever, the language abstractions should be designed to encourage good coding practices
and make programs easier to understand. In this regard a language level approach like
Cool is more desirable than runtime libraries.

The third benefit ofCool compared to runtime libraries relates to optimizations
that can be performed by a compiler to reduce the overhead of the synchronization con-
structs. With the structured design ofCool, the compiler can identify the shared data
being protected (monitor variables), the various operations that manipulate the shared
data (monitor methods), and even the actual code within each critical section (body of
a monitor method). It can therefore analyze how the object is being manipulated by
the various operations and optimize their implementation to reduce the synchronization
overheads. Chapter 4 presented various optimizations such as discarding the support for
multiple readers for monitors with only mutex functions and implementing monitors that
have small critical sections (such as atomic integers) with pure busy-wait synchroniza-
tion. As we showed, these optimizations substantially reduced both storage and runtime
overheads associated with the synchronization operations inCool applications; these
optimizations would not be possible with an approach based on runtime libraries.

Finally, there are several smaller benefits of the integrated approach inCool. For
instance, in a runtime library the programmer creates a task by passing it a pointer to the
functionparFnthat should be executed concurrently. Furthermore, theparFnfunction
can only take a single one-word argument, requiring the programmer to (a) marshall
multiple arguments into a struct, (b) pass a pointer to this struct when creating a task, and
(c) unmarshall the arguments withinparFn. InCool, on the other hand, the programmer
can simply label a function to be parallel and invoke it like an ordinary sequential function;
the implementation automatically handles the marshalling and subsequent unmarshalling
of arguments. Next, the runtime libraries typically provide a barrier construct whereas
theCool waitfor construct provides greater flexibility, as illustrated by the example of
synchronizing separately for two independent phases discussed in Chapter 2.2.4. Finally,
the language abstractions and runtime optimizations for improving locality described in
Chapter 3 exploit the integration of theCool constructs with the underlying object
structure of a program; this approach would be much less effective were these constructs
provided as runtime libraries.

For these various reasons, therefore, although the basic functionality of the constructs
provided inCool and the runtime libraries is similar, providing the constructs integrated
within the language offers substantial benefits for both the programmability and the
efficiency of the language.
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6.1.3 Variations in Monitor Design

The monitor construct inCool provides simple mutual exclusion and is used in com-
bination with condition variables to express general-purpose synchronization. However,
several researchers have argued that condition variables are a low-level queueing mech-
anism that can lead to error-prone programs. Furthermore, with condition variables the
synchronization code and the actual work get all mixed up together within the body of a
monitor operation. Therefore, rather than providing condition variables, some languages
have proposed constructs that instead provide the programmer with additional control
(i.e., beyond simple mutual exclusion) over the execution of monitor operations.

Examples of such constructs include guarded-commands [30] that allow the program-
mer to specify a precondition that must be true before an operation can proceed, or
path-expressions [20, 110] that use regular expressions to specify all legal orderings of
operations on an object. These various constructs are appealing since they allow the pro-
grammer to provide a high-level specification of the desired synchronization. Languages
that incorporate variations of these constructs include Capsules [40], PSather [35, 84],
uC++ [19], Edison [49, 50, 51], Orca [11, 100], Enabled-sets [103], and Guide coun-
ters [66]. We focus on a detailed comparison ofCool with one of these languages,
Capsules, since that incorporates both path-expression and guarded-command style con-
structs.

Capsules [40] are a monitor-like facility for controlling access to shared data, provided
within the Concurrent C++ language [41]. (Figure 6.1 presents a simple capsule example.)
A capsule is an extension of the C++ class mechanism with the keyword class replaced by
the new keyword capsule. A capsule is like a monitor in that all methods in the capsule
by default acquire exclusive access to the capsule instance before executing. There are
no condition variables. Instead, within a capsule specification the programmer can supply
a par and asyncsection (see Figure 6.1). The par section is used to specify the monitor
operations that can be executed in parallel. For instance, the first par specification in
the figure allows multiple reads to execute concurrently, while the second specification
allows a read to execute concurrently with a write that is to a different location—the latter
requirement is specified by thesuchthatclause as shown. The sync section enables the
programmer to (i) specify the conditions under which a method can proceed (using the
suchthatclause) and (ii) order the execution of multiple instances of a particular method
(using theby clause). For instance, the first sync specification allows a read to proceed
only when the buffer being read is non-empty, while the next specification allows a write
to proceed only when the location being written to is empty. Furthermore, theby clause
allows the programmer to order the execution of multiple enabled writes by accepting
writes with a lower value first. As shown by the example, the conditions within the par
and sync sections can reference local variables within the capsule as well as the actual
parameters to the monitor operation. However, they cannot contain any side-effects since
they may be repeatedly evaluated by the implementation to determine the eligibility of
each method.

Applying the capsule construct to the synchronization examples discussed earlier in
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// Definition of a capsule.
// (warning: doesn’t do anything useful).
capsuledictionaryf

struct f
double value;
int empty;

g *buffer;
public:

double read (int );
void write (int , double);

// par section: specify methods that can execute concurrently.
par:

// Allow multiple reads to proceed in parallel.
f read (int )* g;

// Allow reads and writes to different locations to proceed in parallel.
f read (int i), write (int j, double) g suchthat (i != j);

// sync section: specify preconditions and orderings for methods.
sync:

// A read can proceed only when the location is not empty.
accept read (int i) suchthat (!buffer[i].empty);

// Accept writes only when the location is empty.
// The “by” clause specifies that accept the lowest valued write first.
accept write (int i, double val) by (val) suchthat (buffer[i].empty);

g;

Figure 6.1: Example code illustrating Capsules.
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Chapter 2, we find that most of the previous applications can be easily expressed. For
instance, the synchronized double (Chapter 2.3.2) accepts a read only when the object is
not empty and allows multiple reads to execute concurrently. Acquiring exclusive access
to multiple objects (Chapter 2.3.3) can be coded similarly to the solution inCool, by
invoking the claim operations in an ordered fashion on multiple objects and accepting the
claim and surrender operations in an interleaved manner within each capsule. However,
the barrier abstraction cannot be easily expressed using capsules, since it needs two
synchronization points: the first to atomically update the count of the number of arrived
processes and the second to wait until the rest of the processes have arrived. Capsules
provide only one synchronization point, namely when a method is invoked on a capsule.
Furthermore, the suchthat clauses can query the state of the capsule but cannot have any
side-effects. Any updates to the number of arrived processes must be therefore done
within the protection of the capsule.

Therefore, while capsules allow the synchronization conditions to specified through
high-level boolean expressions, they do not allow side-effects to the synchronization
state. The solutions to some synchronization problems, therefore, can become quite
complex. Furthermore, the implementation of capsules requires the repeated evaluation
of the boolean expressions, which is inefficient. In contrast, although condition variables
require more explicit control on the part of the programmer, they provide greater flexibility
in expressing different synchronizations as well as lead to more efficient programs.

6.1.4 Concurrent Object-Based Languages

Several object-based parallel languages have been proposed in the literature. The basic
concepts of object-based concurrency are discussed in [3], while a survey of different ap-
proaches can be found in [109]. Examples of such languages include Emerald [15, 63, 85],
Orca [11, 100], POOL-T [6], Actors [4], CST [59], and ABCL/1 [111]. In these lan-
guages, mechanisms for specifying concurrent execution include explicit processes in the
program, independently executing active objects, or simply the asynchronous processing
of messages between objects. The object state is usually encapsulated within the object,
with both communication and synchronization through method invocations (messages) on
objects. Objects may be single-threaded (similar to monitors) in that operations on the
object are serialized, or they may be multi-threaded by allowing multiple operations to
execute simultaneously on the object. In the latter case synchronization must be explicitly
programmed through other mechanisms such as locks and semaphores.

We describe one of these languages, Orca [11, 100], in detail and compare it with
Cool. Orca is an object-based parallel language in which all inter-process communica-
tion is expressed through shared objects. Concurrent execution is expressed by “forking”
a procedure to execute in parallel. This procedure can be passed both input (value) and
output (shared) parameters. The shared attribute attached to a formal parameter signi-
fies that the actual argument should be passed by reference—there are no global objects
in the program and shared parameters are the only communication mechanism between
concurrently executing procedures. Objects arestrictly modularand must be referenced
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through methods. Orca deliberately omits pointer types to preserve the modularity of
objects and enhance security. An Orca object is a strict monitor and provides guarded
commands [9, 30] instead of condition variables. A method on a shared object can con-
tain a list of condition-statement pairs (guarded commands). The method blocks upon
invocation until at least one of the conditions evaluates to true, whereupon one true guard
is nondeterministically selected and its set of statements executed.

A strict object model is appealing from security purposes, but, as discussed earlier
in Chapter 2.4.7, can prove quite cumbersome while expressing fine-grained communi-
cation between objects. Requiring objects to be accessed through the interface methods
only is appropriate for expressing coarse-grained operations on individual objects but is
not suitable when some computation requires intimate access to multiple objects. We
have seen instances of this in several of the applications that we studied earlier, such
as Ocean, Panel, and Block Cholesky. Furthermore, Orca objects present a strict syn-
chronization model as well, in which all methods must acquire exclusive access to a
shared object before executing. In several of the applications discussed earlier (e.g.,
Panel/Block Cholesky, Water, LocusRoute), this results in unnecessary synchronization
that could potentially be optimized away by the programmer based on an understanding
of the program structure.

To summarize, there is a tradeoff between programming ease and performance on the
one hand, versus security and modularity on the other hand. The flexible approach in
Cool allows the programmer to make this tradeoff based on the particular application.
The programmer can choose to write a strictly modular program, or when useful, bypass
the method and/or the synchronization interface for certain objects in the program for
efficiency reasons.

However, while the strict modularity of these language makes them cumbersome for
shared-memory machines, this very same property makes these languages attractive for
programmingnon-sharedaddress space machines. Our discussion so far has assumed an
architectural base of hardware shared-memory. In contrast, message passing machines
such as the Intel iPSC [56], Intel Paragon [43], Intel Touchstone Delta [56], Ncube [33],
and CM-5 [101], do not provide hardware support for shared memory. In these environ-
ments a processor cannot directly reference data that resides in another processor’s local
memory, and all communication between processors must be specified by the programmer
through explicit messages. This can be very cumbersome compared to shared-memory
architectures where communication and coherence on shared data is maintained auto-
matically in hardware. A strict object model is quite attractive for programming such
architectures because all inter-process communication in the program is restricted to be
through interface operations on shared objects. Therefore the compiler/runtime system
can automatically translate a method invocation on a shared object into some runtime
code to (a) locate the object in the system, (b) invoke the method remotely, and (c)
return with the return value upon completion of the method—all entirely transparent to
the programmer. The programmer is provided a simple model of shared objects in the
program, with all the details of communication handled automatically within the runtime
system. Along with Orca, there are several other proposals of object-based systems for
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programming these loosely-coupled architectures such as Jade [69, 88], Linda [5], and
Emerald [15, 63, 85]. However, a detailed discussion of these software shared-object
systems is not relevant for this thesis.1

6.1.5 Languages Based on Serial Semantics

FX-87 [62] and Jade [69, 88] are languages designed to express parallel execution while
preserving the semantics of the corresponding sequential program. In Jade the program-
mer identifies tasks that are useful to execute concurrently in the program and specifies
the data usage information for each task. This data usage information identifies the shared
variables that are read or written by each task. Based on the data referenced by each task
and the implicit serial order of tasks in the program, the implementation executes tasks
concurrently while preserving the data dependences between tasks. Tasks synchronize for
the common shared objects in program order to ensure serial semantics. In FX the side
effects of expressions are specified through aneffect systemthat integrates type checking
and side effect analysis. This effect system is used by the compiler to determine the
functions that can execute concurrently.

While Jade enables synchronization based on the serial paradigm to be expressed nat-
urally, it is overly restrictive in other situations. For instance, many non-deterministic par-
allel computations (such as graph search algorithms) do not fit within the Jade paradigm.
Similarly, applications that require cyclic communication cannot be expressed efficiently
in Jade. Such programs must be written so that each communication cycle is instead
replaced by an additional producer and consumer task. Although task creation overhead
is small with light weight threads, it can become significant if the program has frequent
fine-grained synchronization in this fashion. Another restriction in Jade is that tasks must
be created in thesameorder in which the corresponding functions are executed in the
serial algorithm. However, this can be inefficient in some situations. For instance, in an
algorithm to perform the Gaussian elimination of a sparse matrix, the serial order requires
that all tasks corresponding to reductions by a column be created before proceeding to
the reductions due to the next column. For large input matrices the task creation can
become a significant bottleneck since most of these tasks are not immediately executable.
A better strategy may be to create the runnable tasks earlier, so that the processors do
not idle for lack of available work.

While Jade offers only one basic synchronization paradigm (through dependence
specification on objects), inCool we provide flexible support for the user to construct
differentkindsof synchronizations specialized to the application. Based on our application
experience, the efficiency gained through specialization is often worth the cost of the
programming effort required.

Similar to Orca, an interesting aspect of Jade is that it is designed to be portable across

1Our discussion of Jade in the following section focuses on how Jade exploits concurrency within the
serial execution paradigm rather than its portability to non-shared memory machines.
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both shared-memory and message-passing architectures. On a shared-memory architec-
ture the usage specifications are used for synchronization between multiple tasks. On a
message-passing architecture these same usage specifications double as communication
mechanisms as well. Since these usage specifications identify the objects referenced by a
task, on a message-passing architecture the runtime system automatically communicates
the referenced objects to the task. Thus a Jade program transparently ports across both
shared-memory and message-passing architectures.

6.2 Exploiting Locality

We next discuss some of the other proposed techniques for addressing data locality and
load-balancing in a parallel program. There has been relatively little work in addressing
these problems, most of it consisting of either providing bare-bones primitives and then
leaving it all up to the programmer, or ranging to the other extreme where the opti-
mizations are performed automatically by the operating system or the compiler with the
programmer having no control. In contrast, in theCool approach we build a range of
optimizations within the runtime system and provide a hierarchy of abstractions in the
language for the programmer to influence the optimization process.

In this section we give a brief overview of these different approaches. We first discuss
the automatic techniques, including operating system and compiler based approaches. We
then describe an explicit approach using ANL macros. Finally we compareCool with
scheduling in an object-based system.

6.2.1 Operating System Based Approaches

An operating system can try to improve data locality through process scheduling and
automatic page migration. While scheduling processes [44, 76, 105, 80, 23], the operating
system tries to improve cache reuse by techniques such as (a) giving a process affinity
for the processor where it last ran so that it is likely to reuse its data in the cache across
scheduling time slices and (b) increasing the duration of the scheduling time slice itself.
However, these scheduling optimizations help in reducing cache interferencebetween
different applications and are orthogonal to the task scheduling optimizations necessary
to improve localitywithin an application.

Several automatic page migration schemes have been proposed in the litera-
ture [16, 23, 71, 72], wherein the operating system tries to improve memory locality
by automatically migrating a page to a processor that is incurring the most cache misses
to that page. However, in most machines today there is no support for counting the actual
number of cache misses incurred to a page while the application is executing. Therefore
these page migration techniques typically use the number of TLB misses to a page as
an approximation to the number of cache misses. Future architectures (e.g., the Stanford
FLASH [67]) that provide hardware support for counting the number of cache misses to
each page can improve the robustness of these techniques.
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Automatic page migration is attractive because it can be performed within the operat-
ing system transparent to the programmer. However, its biggest limitation is the lack of
information about the application structure. This can be a particularly severe drawback
in applications that exhibit a dynamically varying sharing pattern, where, by the time the
operating system realizes that (i) a page needs to be migrated due to a high number of
cache misses or conversely (ii) realizes that a page needs to be frozen because it is being
migrated too often, the applications has moved on to a subsequent phase that exhibits
different sharing behavior. In the presence of these possibilities, any automatic technique
must perforce be conservative to avoid incurring unnecessary overheads. In contrast, the
programmer, based upon knowledge of the application structure, can always do a better
job at these scheduling and data placement optimizations.

6.2.2 Compiler Based Approaches

Compiler techniques to improve data locality consist of optimizations such as scheduling
iterations of a loop to improve cache reuse and distributing individual elements of arrays
across the local memories of processors for better memory locality [7, 45, 65, 77, 107, 108,
112]. Examples of this approach include compiler analysis to perform these optimizations
integrated with exploiting loop-level parallelism in sequential programs. Another related
approach is that taken by High Performance Fortran (HPF) [78]. In HPF the programmer
writes a serial program and annotates it with data distribution specifications. A rich set
of primitives is provided for this purpose and includes a variety of distribution patterns
such as interleaved, round-robin, blocked, cyclic, alignment, and dynamic redistribution.
HPF also provides primitives to identify concurrent computation, such as an intrinsic
data-parallel array operation or an explicitforall statement that identifies a loop as fully
parallel. Using the data distribution specifications, the compiler partitions the program
into parallel activities based on a owner-computes rule, and together the compiler/runtime
system manage the scheduling of the parallel computation and optimizations to reduce
the communication overheads.

However, compiler-based approaches are successful primarily in the context of ex-
ploiting loop-level parallelism in regular dense matrix computations. In contrast, our
focus is on exploiting task-level parallelism in programs with an irregular structure,
where such compiler analysis is much harder to perform. For instance, in the Locus-
Route application discussed in Chapter 5.3, the task scheduling optimizations necessary
to exploit cache reuse on the CostArray required an understanding of the semantics of
the application—that although a wire was being routed, most of the data misses were to
the shared CostArray.

6.2.3 Explicit Approaches

In contrast to these automatic techniques, at the other extreme we have the primitive
support provided in the ANL macros [18]. As we showed in Chapter 5, the only support
provided in the ANL macros are primitives to (a) lock a process to a particular processor,
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and (b) allocate data from the memory of a particular processor. Since the scheduling
of work across parallel processes must be explicitly managed by the programmer (see
Chapter 2.1), any further optimizations for either of cache or memory locality must be
explicitly programmed by the user through the low-level management of the details of
task scheduling. As we saw through the case-studies discussed in Chapter 5, the support
in Cool provides much greater flexibility and is substantially easier to use than the ANL
macros, without compromising either performance or the degree of control provided to
the programmer.

6.2.4 Scheduling in Object-Based Systems

Object-based systems have the potential to perform scheduling optimizations automat-
ically based on the objects referenced by tasks. In this section we discuss the task
scheduling mechanisms in Jade [87]. (The Jade system was developed concurrently with
Cool).

Recall from Section 6.1.5 that along with each task the programmer provides an
access specificationthat identifies all the shared objects referenced by that task. These
access specifications are used by the runtime system to synchronize the execution of the
program based on the serial semantics, but they also provide the runtime system with
information about the objects referenced by the task. They can therefore be used to
perform locality optimizations, as described below.

The Jade implementation [87] performs optimizations for both shared-memory and
non shared-memory systems; we focus on the optimizations for shared-memory systems.
The Jade runtime system assumes that a task wishes to exploit locality on thefirst object in
its access specification (termed thelocality object); the programmer can use this property
to control the object for which the runtime system performs locality optimizations. The
programmer can also allocate an object from the local memory of a particular processor
when the object is created. The runtime system tries to exploit both cache and memory
locality on the locality object for a task by (a) servicing multiple tasks on this object on the
same processor in an uninterrupted fashion for better cache reuse and (b) servicing these
tasks on the particular processor that contains the object allocated in its local memory
for better memory locality. A task is enqueued on the queue corresponding to its locality
object. There is anobject task queuefor each shared object that belongs to the processor
that contains the object allocated in its local memory. Each processor contains a queue
for each object allocated in its local memory. It services tasks from its own queues for
memory locality and further services tasks from the same queue in a back-to-back fashion
for better cache reuse.

An idle processor steals tasks from other processors to improve load-balance. The
runtime system provides two different scheduling heuristics—acache heuristicin which
an entire object queue is stolen from another processor and all tasks on the stolen executed
by the previously idle processor for good cache reuse on the locality object, and amemory
heuristic in which object queues are not stolen but always stay with the processor where
the data is allocated; instead, an idle processor steals just a single task from an object
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queue of another processor. The programmer must select one of these two scheduling
heuristics when compiling the program.

As we can see, these scheduling optimizations are similar to those provided in the
Cool, described earlier in Chapters 3 and 4. The primary difference is thatCool offers
a wider range of optimizations in the runtime system and provides the programmer with
a greater degree of control over these optimizations. In contrast, the Jade programmer
can only specify the particular object important for locality for a task, with all the op-
timizations entirely encapsulated within the runtime system. For instance, inCool the
programmer can choose to exploit only cache locality on an object regardless of where
the object is allocated. Furthermore, the particular locality may be different for different
objects/tasks in the program. In contrast, the Jade runtime system chooses one heuristic
for the entire program, that is determined when the program is compiled. This additional
control inCool also enables the programmer to exploit cache locality on one object and
memory locality on a different object, as illustrated by the Panel Cholesky application
discussed in Chapter 5.5.

Regarding data allocation, Jade provides constructs to allocate data from the local
memory of a particular processor when the object is initially allocated, but once allocated
an object cannot be moved from one processor’s memory to another, as is possible in
Cool. This is potentially useful when different phases of the same program require
a different object distribution (we did not need to dynamically redistribute data in the
Cool applications studied in Chapter 5, however). Finally, all scheduling optimizations
in Jade are based on the locality object of a task; however, sometimes it is useful to
distribute tasks and data directly in terms of the underlying processors, such as in the
Ocean and Water applications discussed in Chapter 5.1 and 5.2 respectively. This is
supported through the processor affinity abstraction inCool, but is not possible in Jade.

Overall, therefore, while both Jade andCool provide scheduling optimizations in
the runtime system to enhance data locality, in Jade these optimizations are performed
purely based on the task access specifications. In contrast, the hierarchy of abstractions in
Cool provides the programmer much greater flexibility in controlling the optimization
process.

6.3 Summary

As we have seen, there is a wide variety of parallel programming systems described in the
literature. Compared to this body of work, the notable aspect ofCool is the tradeoffs that
we make in the language design to provide the programmer full control over the parallel
programming process in as simple a fashion as possible. This is apparent in comparing
various aspects of the design with the alternate choices made in other languages. For
instance, in our design of monitors and condition variables, we provide a simple version
of the constructs that can be implemented efficiently. As a result, although the constructs
are ‘lower-level’ compared to some of the other languages, they allow the programmer
full flexibility and control in efficiently exploiting different kinds of parallelism. For
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instance, the Capsule construct is more expressive in several situations, but we chose the
simpler condition variables since (i) they provide greater flexibility in building different
synchronizations, and (ii) they avoid the overhead of repeated evaluation of the boolean
expressions. Next, while we provide the constructs integrated with the C++ class mech-
anism so as to exploit the object structure of the program, we are nevertheless not tied to
objects in contrast to other object-based concurrent languages such as Orca. This allows
theCool programmer the flexibility to enjoy the benefits of the object-structure when
useful, yet to bypass objects when they are more a hindrance than a help.

Finally, Cool is unique in providing support in the language to improve locality.
Our approach is structured so as to provide the performance-oriented programmer full
control over the necessary optimizations, yet at the same time allow these optimizations
to be performed through simple hints in the program. This approach has proven to be
very useful compared to the current extremes of either entirely automatic techniques or
explicit low-level primitives.
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Chapter 7

Conclusions

This research started several years ago when we initially set about exploring some simple
future-like synchronization constructs for parallel programming. The constructs evolved
and other features were added as they converged to the language described here. We then
set about implementing the language on whatever parallel machine we could find. With a
working system we could finally write and run real parallel programs. We implemented a
variety of parallel applications, chosen mostly from the scientific and engineering domain.
However, when we first ran the programs and looked for speedups, we did not find
much—instead, we found that most of the execution time was wasting away in the
memory system. So it was back to the drawing board as we added support both in the
implementation and in the language to address these performance concerns. With these
additions, though, we finally have a system that flies.

So what have we learned from all this work? A high-level lesson has been the special
importance ofsimplicityandefficiencyin providing support for high-performance parallel
programming. These are not the sole criteria, of course, since taken to the extreme they
might well argue for programming directly in assembly language. Furthermore, although
these are generic goals, we have found them to be particularly important for parallel
programming. Based on our programming experience inCoolwhat we have appreciated
most about the language is that (i) the constructs are simple and easy to understand, (ii)
they can directly express the requirements of most applications, and serve as flexible
building blocks for expressing more complex requirements, and finally (iii) they can be
implemented very efficiently. Like all explicit mechanisms, they do make it possible for
programmers to “shoot themselves in the foot”. However, we believe that they more than
compensate in return by providing greater flexibility and control to the programmer. As
a result, expressing the parallelism and the synchronization in all the applications that we
considered has generally been quite straight-forward.

We have addressed several questions along the way. We explored the viability of
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monitors and condition variables for parallel programming. These constructs have been
around for a while, and were originally proposed for concurrent programming of operating
systems on uniprocessors where the primary requirement was coarse-grained communica-
tion between operating system processes. They have subsequently been adopted by some
parallel languages as well. However, the requirements of parallel applications are quite
different—these applications are characterized by fine-grained sharing of data between
multiple tasks executing in the same address space. Little has been reported about the
usefulness of monitors, either their expressiveness or their efficiency, for real parallel
applications. We incorporated them into a complete language design, developed tech-
niques to optimize their implementation overhead, and used them to express a variety
of parallel applications. Based on our experience reported in this thesis we have found
them attractive on counts of both programmability and efficiency.

Another important aspect of our approach has been to exploit the object structure of
programs for expressing parallelism. To this end we chose C++ as our base language
and offered constructs integrated with the C++ class mechanism. We have found several
advantages of exploiting objects to write parallel programs. The first benefit is improved
expressiveness—as several examples have shown, the programmer can build abstractions
that encapsulate the details of parallelism or synchronization within the object and provide
a simple interface for their use. Given a shared object, for instance, the various methods
that manipulate it and the accompanying synchronization are clearly identified by the
monitor operations. Second, the synchronization operations (and the data protected by
the synchronization) can be clearly identified by the compiler and optimized to run very
efficiently. These optimizations were described in Chapter 4. Finally, in an object-based
program tasks have a natural association with objects enabling optimizations such as task
and data placement for improved locality and load-balancing.

On the other hand, beingconfinedto strictly modular objects can sometimes be quite
cumbersome. For instance, objects are typically expected to be accessed only through
methods on the object that operate on only one object at a time. As a result programs
that exhibit fine-grained sharing of data and require direct access to more than one object
simultaneously can be extremely cumbersome to express. Furthermore, synchronization
for these shared objects is typically restricted to be through monitor methods alone, often
resulting in unnecessary synchronization overheads. In both of these regards we have
appreciated the flexibility in theCool language design that enables programmers to
benefit from the object structure where useful yet allows them to bypass some of the
above restrictions for either ease of programming or efficiency reasons.

Finally we provide integrated language and implementation support for improving
data locality and load-balancing through task and object distribution. Most program-
ming systems today require the programmer to hand-code these optimizations in a very
machine-specific fashion. In our approach we build a variety of scheduling mechanisms
within the implementation and provide a set of abstractions that enable the programmer
to control and experiment with different optimizations. These abstractions are structured
as hints and are easy to use, and provide a range of control over the optimization process.
We have found this approach to be very effective—Cool programs optimized in this
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fashion perform as well as hand-tuned programs and are a whole lot easier to optimize.

7.1 Future Directions

There are several interesting research directions to pursue based onCool. First, the
support inCool for improving data locality can be enhanced in several ways. For
instance, the affinity hints provided by the programmer are only used to determine an
appropriate task distribution in our current implementation. However, these hints provide
valuable information about the objects referenced by tasks and can be used for a range of
further optimizations. For instance, we can build better task-stealing heuristics within the
runtime system such as stealing tasks scheduled for cache locality before stealing those
tasks that expect to reference the object in the local memory. Second, extensions to
the affinity abstractions that specify whether the locality object is read or written by the
task are also useful—for instance, if several tasks read an object then they can execute
on different processors and still reference the object in the cache, which is not possible
if the object is being modified (in which case perhaps those tasks should execute on
the same processor). Third, it would be useful if the programmer could supply multiple
affinity hints for a task and depend on runtime heuristics to make an intelligent choice
amongst the several objects based upon criteria such as the size of the individual objects.
Fourth, as demonstrated by some of the examples in Chapter 5 (e.g., Ocean, Panel, and
Block Cholesky), a simple round-robin distribution of arrays of locality objects can be
provided automatically and could be combined with default affinity scheduling to fully
optimize these programs entirely automatically. A round-robin distribution of the locality
objects therefore appears to be a reasonable default distribution of data, which could of
course be over-ridden by the programmer through explicit distribute constructs. Finally,
the runtime system could maintain the affinity hints for each task so that if a task is
stolen by another processor then that processor can automaticallyprefetchthose locality
objects that are in the remote memory of another processor.

Besides these enhancements for improving data locality, a second possible extension
of our work is to enhance theCool programming environment with better debugging
support for both correctness and performance. For instance, we have found it extremely
useful (while debugging aCool program) to generate a trace of various activities such
as the start/completion of parallel function or the entering/leaving of a monitor operation
during the execution of the program. Furthermore, to avoid being deluged by excess
information, it should be possible to restrict the generated traces to particular parallel
functions or individual monitor instances. In addition, regarding performance debugging
support, the runtime system can keep track of the manner in which tasks were initially
scheduled in the program, how many of them executed as scheduled, and how many were
stolen for execution by another processor. Such debugging support can go a long way in
enhancing both the debuggability and the performance tuning of parallel applications.

Finally, so far we have assumed that the application is running on a dedicated machine
in a stand-alone fashion. However, expensive parallel machines are commonly shared
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between multiple serial and parallel applications, destroying this abstraction of a dedi-
cated machine. A useful research direction is to develop parallel programming support
for multiprogrammed environments. One scheduling policy that has been explored is
process control [23, 44, 104] or scheduler activations [8]. This policy is based upon the
operating pointeffect, i.e., an application executes more efficiently (with better processor
utilization) with fewer processors, reflecting the penalties of increased communication,
synchronization, and load imbalance with increasing number of processors. In this ap-
proach the operating system partitions the machine into sets of processors, with each set
executing a single parallel application. The sets are dynamically resized based on the
system load. Furthermore, a parallel application dynamically adjusts its number of active
processes to match the number of processors assigned to its set of processors, thereby
executing at a more efficient operating point along its speedup curve.

Process control is attractive because it can be exploited entirely automatically within
the runtime system of applications written using the task-queue model of parallelism.
However, perturbations in the physical processors in the set or in the number of active
processes make it difficult for the programmer to perform the task and data distribution
optimizations that are essential for good data locality. Given the importance of these op-
timizations for high-performance applications, there is a need for a programming system
that allows the programmer to optimize the program for good data locality on the one
hand, yet at the same time provides the runtime/operating system the flexibility to exploit
the operating point effect.
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