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Abstract

This report presents an approach to creating an executable standard for the SPARC-

V9 instruction set architecture using Rapide-1.0, a language for modeling and prototyping

distributed systems. It describes the desired characteristics of a formal speci�cation of the

architecture and shows how Rapide can be used to build a model with these characteristics.

This is followed by the description of a simple prototype of the proposed model, and a

discussion of the issues involved in building and testing the complete speci�cation (with

emphasis on some Rapide-speci�c features such as constraints, causality and mapping).

The report concludes with a brief evaluation of the proposed model and suggestions on

future areas of research.
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Chapter 1

Introduction

This report describes an implementation-independent model of the SPARC-V9 instruction

set architecture standard[WG94] using the Rapide prototyping language. The model de-

scribed here is intended for multiple use. First, it is to be an on-line executable manual to

help developers understand the standard. Second, it should serve as a design-veri�cation

tool, to which actual implementations will be compared in order to verify conformance to

the standard. Finally, it is an exploration tool, enabling the user to easily modify the model

in order to create di�erent versions of the standard.

An instruction set architecture (ISA) is a description of a processor. It de�nes the

processor as a series of state storage units (the registers), a list of opcodes, explanations of

how the opcodes a�ect the state of the machine, and how it reacts to other forms of input

such as interrupts and reset signals. Usually, ISA descriptions concentrate on de�ning the

behavior of the architecture, leaving actual implementation issues (the width of the data

bus, for example) to the processor designer.

The SPARC-V9 instruction set architecture speci�cation[WG94] uses plain English,

along with diagrams to explain how the instruction set architecture behaves. Even though

that is the usual way of explaining things, the English language is, by nature, ambiguous.

Some descriptions may be misinterpreted, possibly leading to an erroneous implementa-

tion of the architecture. This makes it necessary to come up with a speci�cation that is

preferably both unambiguous and easy to understand.

An approach to this problem is to use a formal speci�cation language to describe the

standard. By using a formal speci�cation, one avoids ambiguity problems since the lan-

guage constructs that describe the model are completely speci�ed and their meaning is

unambiguous. This should remove any questions or doubts introduced by the use of the

English language.

There is, of course, a price to pay for using a formal speci�cation language to describe

the standard. First, in order to make it well-de�ned, it is necessary to restrict the meaning

of each language construct. The resulting code will have to be more verbose and complex

when describing something, so that understanding it will take more e�ort. Second, the

precise, well-de�ned behavior of the language makes it hard to implement non-determinism
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in the model, should it be so desired. This non-determinism contradicts the concept of

complete formal speci�cation and the result is that it is not present in the languages most

commonly used for describing hardware: Verilog [TM91] and VHDL[VHD87]. This is not to

say that non-determinism cannot be emulated; it can, but usually requires complex coding

to circumvent the language's limitations.

A third issue related to speci�cation languages is the choice of the domain. One can

specify a model through several di�erent domains. In the case of hardware design, for ex-

ample, the common domains are behavioral, structural and geometric[GT88]. A behavioral

speci�cation describes a model in terms of what it does; a structural speci�cation de�nes a

model in terms of the structures that have to be present and how they interconnect; a geo-

metric speci�cation describes a model in terms of the geometric layout of its components.

Each has a di�erent use, depending on the objective of the speci�cation. Speci�cation lan-

guages are geared towards di�erent domains and the issue is choosing one that is adequate

for the correct model description.

Even within a domain, there is still the issue of at which level one wants to look at the

model. Suppose one wants to write a hardware model of a processor, describing only its be-

havior. One can do it by describing the model at the register-transfer level, indicating which

operations result in changes to the model's registers; one could use traditional programming

language constructs such as if and case statements to help describe the 
ow of information.

One could also describe the model as a series of logic equations, which would re
ect more

thoroughly an implementation, but be much more complex to understand. Clearly, it is

necessary to choose which level of abstraction is desired and choose a language that favors

that choice.

Still, there are advantages to using hardware description languages for describing archi-

tectures. A formal speci�cation provides a framework for verifying the correctness of an

implementation. It states the expected behavior/structure/layout of the system and it is up

to the designer, maybe with the help of some tools, to check if the implementation conforms

to the speci�cation. To achieve this goal, many speci�cation languages are accompanied by

compilers, browsers and other tools that simplify their use in simulation and veri�cation.

Since instruction set architectures are usually implemented as hardware, they are often

described by hardware description/simulation languages, since these languages serve as the

framework for building actual implementations. Verilog and VHDL are the most common

languages for hardware description. They are powerful and versatile, allowing mixed-mode

(containing both structural and behavioral parts) descriptions of a model. Unfortunately,

they are strongly geared towards simulation, thus requiring too much detail in their de-

scriptions, and forcing the designer using such a model as the speci�cation to worry about

bit-level design and implementation issues much earlier than one should have to.

Another language commonly used for instructions set speci�cation is ISPS[Bar81]. ISPS

is a register-level language designed speci�cally for describing instruction set architec-

tures, and has been used in previous versions of the SPARC instruction set architecture

de�nitions[Int92]. Though it did a good job of describing the standard, at that time it

lacked executability. This made it hard to debug and verify ISPS models for correctness.

In order to formally specify the SPARC-V9 instruction set architecture it is necessary
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to use a language that is both high-level and executable. This will lead to a model that is

veri�able and easy to understand. Rapide, as will be seen in section 1.2, has the necessary

characteristics for this.

In the next pages we propose an implementation of the SPARC-V9 instruction set

architecture standard using Rapide. The rest of this chapter describes the SPARC-V9

standard and the Rapide Prototyping language. Chapter 2 describes the suggested approach

for creating the executable standard, while chapter 3 shows the results of a small exercise

in creating the model using Rapide-0.2, a previous version of the language. Chapter 4

comments on the results and uses of the model, and chapter 5 presents our conclusions.

Finally, the appendices present the guidelines for coding the model and the code for the

interface of some basic types.

1.1 The SPARC-V9 Instruction Set Architecture Standard

SPARC-V9 is an instruction set architecture standard for a RISC style processor[WG94].

Among its major characteristics are 64-bit integers, 64-bit virtual addresses, support for

superscalar and multiprocessor implementations (through its instruction set), and fast

context-switching. There are approximately 20 control/status registers, 32 double-precision


oating-point registers and up to 528 integer registers. There are 154 di�erent instructions.

The reference [WG94] describes the SPARC-V9 standard by �rst de�ning some terms in

order to provide a common language with the reader. It then goes on to broadly de�ne two

units, an integer and a 
oating point unit. This is followed by a de�nition of the operations

on the architecture, the data and instruction formats it uses, the registers that have to be

present and the behavior of instructions and traps, as well as the memory model.

All this explanation is done with as little detail as possible. Arithmetic operations are

not de�ned in any detail, other than saying that they are there; if something causes a state

change in a register, the exact mechanism of how the state is changed is not mentioned.

Take, for example, the case of memory access1. Instead of describing each and every in-

struction for memory access and how they a�ect the state of the machine, memory access is

described by lumping these instructions together and stating what kinds and sizes of trans-

fers there are; from register to memory, from memory to register, in 8-bit, 16-bit, 32-bit and

64-bit sizes. There are no references, at this point, to the exact format of each instruction,

its exact operation or possible side-e�ects.

More rigorous de�nitions come with the appendices, with their sets of norms. In them,

each instructions is treated separately (or in small groups) in one to three pages. These

pages specify the instructions' opcode, the suggested assembly syntax and a more detailed

explanation of the behavior. The de�nition of the LDUW instruction2, for example, shows

the opcode and suggested assembly language syntax for the command, speci�es how the

instruction works, indicating which registers are a�ected and even mentioning the required

memory alignments. It ends with a list of the possible exceptions that this instruction might

1Weaver and Germond, The Sparc Architecture Manual, Version 9, page17
2Weaver and Germond, The SPARC Architecture Manual, Version 9, pages 175-176
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cause. All in all, a much more detailed description of the instruction than that found in the

body of the text.

It should be noted that, though the manual tries to be as detailed as possible, it never

tries to tie the standard to any particular implementation. It suggests only the existence

of two loosely de�ned units, the integer unit and the 
oating point unit mentioned earlier.

These units are de�ned with respect to the expected state transformations, and no reference

is made as to how these transformations are to be accomplished. Instructions, when grouped

together at all, are done so solely on the basis of similar functionality. Conditional branches,

for example, are grouped together since their behavior only varies in what condition is being

tested.

Another aspect that the standard treats by omission is concurrency. It avoids tying

in together the behavior of di�erent instructions and, even within one instruction, avoids

imposing any order on events. The same LDUW instruction described above, for example,

makes no reference as to the order in which the operands that help in computing the e�ective

address are returned; provided that the address is computed correctly, the order in which

that is done is not important.

The only attempt at imposing some ordering in the model is made at the inter-instruction

level. The standard states that any implementation should behave as if it were a serial

model3. That is, any implementation should behave as if it executed in program order,

completing an instruction before starting the next one. How this e�ect is to be achieved is

left open.

So, though the manual does a good job in specifying the architecture, it has some weak

points. First, it avoids several issues by describing things at the highest possible level and

not getting into necessary detail. Second, it avoids tying in parts of the architecture, unless

absolutely necessary. Finally, its use of the English language, though useful for gaining an

overall understanding of the model, leaves some details unanswered and provides potential

for misinterpretation.

1.2 The Rapide Prototyping Language

In order to satisfactorily implement the executable standard, the language used has to have

several important characteristics. First, it should have mechanisms that allow abstraction

and encapsulation, so that the user does not have to worry about implementation details.

Second, it should be executable so that it is easy to simulate the model in order to verify its

correctness and functionality. Finally, it should allow behavioral modeling, since this is how

the standard de�nes the instruction set architecture and avoids implementation-dependent

issues. Rapide-1.0 satis�es all these requirements.

Rapide is a programming language framework designed with the objective of making

it easy and fast to build prototypes of distributed systems. It is an event-driven simu-

lation language with constructs that facilitate the description of concurrency and timing.

Among its features there are such object-oriented paradigms as inheritance and opera-

3Weaver and Germond, The SPARC Architecture Manual, implementation note, page 61
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tor overloading. Rapide consists of four sublanguages: types, constraints, executable and

architecture[Tea94d, Tea94c, Tea94b, Tea94a].

A Rapide model consists of a set of modules connected by an architecture description.

Each module has an interface and a body. The interface de�nes the type of the object,

specifying how an object of that type communicates with the rest of the world. The body

of a module is speci�ed by module generators, which are pieces of Rapide code implementing

the actual behavior of the module. An architecture connects several modules together to

form either a model or, in a hierarchical manner, another higher-level module.

Models written in Rapide can be compiled and executed. Part of the model construction

consists of de�ning event-generating actions. When these actions are triggered, they gen-

erate events which can then be used to trigger other actions, thus executing a simulation.

It is important to note at this point that, in reality, patterns of events are used to trig-

ger actions, allowing for very complex designs. Rapide simulations also use Fidge-Mattern

vectors[Fid91, Mat88] in order to collect dependency and causality information between

events.

The result of executing a model is a �le containing a set of events and dependency

relations between them. This simulation output, also known as a partial-order event set

(poset), can be represented as a directed acyclic graph, where each node corresponds to an

event and each directed edge represents a causality relationship between the nodes. For

example, �gure 1.1 shows a possible result of the simulation of an ADD instruction using a

Rapide model. In the �gure, each ellipse corresponds to an event while the arrows indicate

dependency relations between them. This example shows that an ADD operation consists of

several events: decoding the instruction, fetching the data from the register set, adding the

operands, and storing the result in the appropriate register. Notice that the poset shows no

ordering relationship between the two operand fetches; they can be executed in any relative

order, even in parallel. All it shows is that the addition operation requires two operands

which must be be obtained before the sum can be computed.

Thus, a poset contains more information than the traditional linear traces provided

by most simulators. Actually, it can be said that a poset is a compact representation

for all valid linear traces corresponding to a simulation. In �gure 1.1, for example, the

poset represents two possible linear traces: decode; fetchR1; fetchR2; add; storeR3 and

decode; fetchR2; fetchR1; add; storeR3. A poset with n events may correspond to a set

of up to n! equivalent linear traces.

There are currently several tools available for analyzing posets. The twomost useful ones

are, without a doubt, the partial order browser (pob) and the Rapide animator (raptor).

The pob allows one to display and analyze the poset interactively. One can easily rearrange

how the nodes are displayed, trace the dependency chain of an event, inspect the parameters

of a node and much more. The other tool, raptor, allows one to get an animation of the

simulation and observe the event executions. This makes it a very good tool for answering

the question of what happened, while the pob is more suited for explaining why things

happened.

Up to now we have described the main characteristics of Rapide as a language for

building prototypes. There are two other features of the language, that make it well-suited
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decode

fetchR2

fetchR1

add storeR3

events
dependencies

Figure 1.1: Sample resulting poset

for describing instruction set architectures and aiding in design veri�cation: constraints and

maps. These, as the reader will see, are fundamental in making Rapide an useful language

for simulation and veri�cation.

A constraint is a description of some behavior, but not its implementation. It describes

what one expects to see in a simulation (or maybe what one never wants to see) but does

not enforce it to happen. It works as a checker, informing the user of when the behavior

deviates from the one speci�ed in the constraint. With Rapide's pattern language, it is

possible to describe complex event patterns that one wants to observe. For example,

match ( (?addr in SPARCint t, ?val in ReadWriteReg t)

Write(?addr, ?val) -> Read(?addr, ?val)^(� *) )^(->*);

is a Rapide constraint specifying register �le coherence. It states that when one reads a

register, the value returned should be the same as the the last value stored in that register.

One very nice feature of Rapide is that constraint veri�cation is automatic. During a

Rapide simulation, new events are continually being checked against the constraints. If some

event causes a pattern to match a \never" constraint or not match an \always" constraint,

a constraint violation event4 is generated. Using the pob tool described earlier, it is very

easy to locate these violations and trace them back to their cause. Figure 1.2 shows such

a case, corresponding to the constraint described above. The parameters shown for each

event are, in order, the register address and the value stored there. The value returned by

the second read to register 16 (0xFF) is di�erent than the one last stored on that register

(0xAA), so the inconsistent event is generated.

Mapping is the second feature of Rapide that makes it a very useful language for verifying

conformance to a standard. As was mentioned earlier, the main use of this model is as a

standard for design veri�cation. When actual implementations are coded, it should be

possible for them to be compared to this model to see if they do indeed conform to the

SPARC-V9 standard by obeying the constraints. To do so, it is necessary to be able to get

the poset (or linear trace) generated by some other model, and see if it is a valid poset for

a SPARC-V9 implementation.

4Constraint violation events sometimes are also called inconsistent events
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Write(16,0xFF)

Read(16,0xFF)

Write(16,0xAA)

Read(16,0xFF)

INCONSISTENT

Figure 1.2: Poset indicating a constraint violation

The one problem with this approach is that there might not be a one-to-one correspon-

dence between the events in the implementation and the ones described in the reference

model. For example, the implementation being tested might be designed at the gate level,

while the model is written at the register transfer level.

Rapide provides a mechanism for dealing with this kind of problem, known as mapping.

As can be seen in �gure 1.3, mapping is a translation of a sequence of events and patterns

in one domain to an equivalent event or pattern in another. In this way, a detailed model

can be written for a speci�c implementation, along with a map that would show how the

actions in this implementation correspond to actions in the standard. The implementation

being veri�ed can then be executed and the resulting poset automatically compared with

the reference model.

Constraints and maps make Rapide well-suited for the construction of models for design

veri�cation. The ease with which one can describe constraints and the powerful pattern

language make it simple to build complex rules. The executability of the model allows one

to verify its correctness automatically. Finally, mapping makes it very easy to get an actual

implementation and test its behavior.
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FetchR1

start

SetAddress

EnableRead

Data_on_bus LatchData

RTL Level

Signal Level

Figure 1.3: Example of mapping
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Chapter 2

The Model

2.1 Objectives

Before describing an approach to implementing the SPARC-V9 standard it is necessary to

de�ne what the desired characteristics of the model are. By describing what is expected of

the �nal model, these characteristics serve as guidelines for the actual implementation of

the standard.

In order to determine what are the model's desired characteristics, it is necessary to

understand what is its intended use. Since the model is to be an executable formal speci�-

cation of an instruction set architecture standard, it has to serve two di�erent purposes: it

is a reference source, and a template against which actual implementations are compared.

As a reference source, it is used to explain what makes up the system and how it works. In

order to do that it should provide a clear and complete description of what the architecture

does so as to leave no room for doubt. As a template, it should simplify the comparison

process to actual implementations.

In order to e�ciently perform these functions, the model should have the following

characteristics:

� correctness

� completeness

� clarity

� precision

� executability

� implementation-independence

Correctness is what assures the user that whatever is seen in the model should actually

be there. If something is present in the model, it should correspond to an actual con-

straint or speci�cation in the English language description. Care should be taken to avoid
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over-specifying the standard by adding restrictions that are not present in the original

documentation.

Completeness guarantees that everything that is in the architecture speci�cation is also

in the model. Completeness is, in a way, the dual of correctness. While the latter states

that if something is in the model it should also be in the manual, the former states the

opposite: if it is in the manual, it should also be in the model. This is, of course, a

necessary characteristic of any model, because if some part of the speci�cation is left out,

it cannot be said that the model corresponds to the standard.

Clarity is another fundamental characteristic of the model, since it is to be used as

a reference source, both in the source and executable code format. The standard should

de�ne the operations of the system not only correctly, but also in an easy to understand

fashion.

Precision is another of our requirements. While clarity is concerned with how easy it is

to read and understand the code and/or simulation results, precision has to do with how

well-speci�ed the description is. The manual was written in English, a natural language

which allows for misinterpretations and ambiguities. A formal speci�cation should not allow

this to happen and must, by necessity, be precise and exact in its statements. Precision

should not be confused with determinism; the latter is an implication that the model should

always behave in a speci�c way, while the former just implies that the description should be

unequivocal. Thus, it is possible to have a precise (well-de�ned and understood) construct

that is non-deterministic (may take one of several possible behaviors, without the reader

being able to determine which beforehand).

Executability is a desired characteristic of the model that adds a totally new dimension

to it. By making the model executable it is possible to use it as an on-line tool for queries

about the behavior and functionality of the instruction set architecture. It also allows one

to have animations of the model's behavior that make it easier to grasp some concepts, and

trace executions in order to get the order of events that led to an unexpected (or maybe

expected) result.

Implementation-independence is, perhaps, the most important characteristic of the mo-

del. This comes directly from the manual, which makes no mention of hardware implemen-

tation details. It does not imply in any way that an implementation of the architecture

should be pipelined, superscalar or anything; it just presents information on how the state

changes in response to speci�c input to the system. This lack of restrictions as to how

actual implementations of the architecture should behave is an intrinsic characteristic of

the standard and should be preserved, which makes it necessary for the reference model to

be 
exible enough so as not to restrict all possible architectural variations one might �nd

in an implementation.

The list of characteristics de�ned above describe what is expected of the Rapide-1.0

model of the SPARC-V9 instruction set architecture. It is necessary for the model to have

all these characteristics, in order to be an adequate tool for answering questions about the

standard. This implies that these characteristics should serve as guidelines for how the

model is to be built. The next section describes an approach to building the model based

on these desired characteristics.

10



2.2 Approach

In the previous section we de�ned several characteristics that the model must have in order

to be an adequate tool for answering questions about the standard. In this section we

present an approach to specifying the SPARC-V9 standard using Rapide-1.0 that, we hope,

will ful�ll all these requirements. These characteristics will be tackled, one at a time, with

methods and solutions being proposed for obtaining the desired goal.

There is, unfortunately, no simple method for guaranteeing completeness and correct-

ness. The only way to attain this goal is by careful programming, attention to detail

and extensive testing. There are many software engineering techniques that are of aid in

attaining this goal, such as top-down design, modularity of all the model's components,

object-oriented techniques, and well-de�ned interfaces for the several components of the

model.

Clarity, in this report's context, means the ability to make the source code readable and

the simulation results simple to understand. To attain this goal there are several orthogonal

approaches:

� Model decomposition: The �rst thing that can be done is to decompose the model

into several components, each dealing with a di�erent aspect of the standard. This will

break up the model into several small and less complex units which can be dealt with

independently. Since each component can then be studied in isolation, the amount of

information that has to be absorbed at a time by the user is much smaller. Rapide

has characteristics that make it suitable for this decomposition approach. Its type

language[Tea94d] allows not only for the de�nition of components with well de�ned

interfaces, but also the decoupling of the interface from the implementation of the

component's behavior. The issue, then, is how to break down the model. In section 2.4

the suggested decomposition of the model into its constituent components is discussed

in more detail.

� Uniform coding style: The second approach to dealing with readability is writing

the source code in a clear, consistent and uniform style. Such a commonality in coding

simpli�es the task of understanding the program, since several important attributes

of the source code will not change. The way to do this is by coming up with a series of

guidelines for writing the code to give it a uniform look. Such guidelines would deal

with several aspects of code writing like naming conventions, templates for common

pieces of code and the organization of the code itself. Guidelines are presented in

appendix A.

� Library of basic types: A third way to make the code easier to understand is to de-

�ne a series of basic, well-understood types that can be shared by all the components.

These basic types, implementing things like registers, stacks and 64-bit integers will

make the code simpler, since it will not be necessary to reinvent them for each com-

ponent in which they will be used. Another advantage of using this approach is that

it adds another level of abstraction to the model itself, freeing the user from having
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to worry about details such as how a register is implemented. Section 2.3 suggests a

collection of such basic types and presents their interfaces.

It is interesting to note that all three of the above suggestions do more than just improve

the clarity. Decomposition, abstraction through the use of basic types and uniformity of

code also simplify testing and make it easier to build correct programs.

Precision, as was de�ned earlier, is intended so as to avoid misinterpretations and ambi-

guities in understanding the architecture. Most of these arise out of the fact that English,

the language used to describe the architecture, is naturally ambiguous. By using a formal

speci�cation language such as Rapide-1.0, this requirement is ful�lled automatically. Rapide

is completely speci�ed and its constructs have well-de�ned meanings, so these ambiguities

should not appear. Rapide also has the advantage that it allows non-determinism in its con-

structs, so that any intentional non-determinism of the model can be easily implemented.

Executability was another required characteristic of the model, since that would simplify

testing of the model for correctness and completeness, as well as provide, through simu-

lation results, a new way to analyze and understand the model. Fortunately, the Rapide

speci�cation language comes with tools for compiling and analyzing Rapide models. In

order to make the model executable, then, all that is necessary is to construct a top-level

architecture connecting all the components of the model and then compile it.

The �nal, and probably most important characteristic of the model should be implemen-

tation-independence. The instruction set architecture manual attains this goal by avoiding

overspecifying. Whenever possible, it describes the behavior of some part of the architec-

ture without connecting it in any way to the rest of the standard. The same thing should

be done for the executable model. When de�ning the top-level architecture connecting all

the components, care should be taken to avoid tying the model down to a speci�c imple-

mentation. There are many ways that this can be done such as, for example, using generic

broadcast buses for communication between the components. By making this architecture

as generic as possible, it is possible to avoid adding constraints to the model that were not

in the original instruction set architecture.

In order for the model to be satisfactory it has to have the characteristics mentioned

in the previous section: correctness, completeness, clarity, precision, executability and

implementation-independence. These characteristics de�ne the basic approach to build-

ing the model. These involve guidelines for coding, the use of a set of basic types to add

a level of abstraction to the model, the break down of the model into several distinct com-

ponents and the de�nition of an architecture loosely connecting them. The model should

be coded in Rapide, which provides constructs and mechanisms for implementing all these

requirements, as well as adding precision and executability.

The next three sections explain in some more detail some of the concepts described in

this suggested approach. Section 2.3 describes the basic types used as building blocks for the

model, while section 2.4 de�nes the components that make up the model. Finally, section

2.5 describes the architecture connecting the components in order to form the complete

model itself.
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2.3 Basic Type Set

A basic type set is a collection of types implementing objects with a desired functionality,

that serve as building blocks for building more complex models. From the discussion in

the previous section, it should be obvious that there are several advantages in using a basic

type set. First of all, they provide basic blocks which can be reused throughout the model,

thus saving on development time. Second, they make the code more uniform and thus

improve its clarity and precision. Third, they provide a layer of abstraction, freeing the

user and/or developer from having to worry about low-level implementation details. These

are all desired characteristics of the SPARC-V9 model, and using a basic type set in the

model's development is, thus, very useful.

Earlier on it was mentioned that Rapide has the necessary object-oriented paradigms,

such as interface/implementation isolation and inheritance. Together with Rapide's behav-

ioral constraint constructs, these facilities make it easy to build basic types with well de�ned

behavior. The question left to be answered is, then, what these basic types should be.

The purpose of the basic type set is to provide the model designer with a homogeneous

and consistent collection of types that one can use to build the model. To be useful, this

set of basic types must have several properties. First, it must provide the desired level of

abstraction so that the designer is not bogged down with details. Second, it must contain

type de�nitions that correspond to hardware entities described in the manual. Finally, it

must contain a big enough variety of types so that the user does not have to build new ones,

possibly adding errors, just so as to complete the set of useful types.

Reading the SPARC-V9 standard[WG94], one notices that there is only one type of

structure de�ned in the whole text: registers. To be precise, most of the document consists

either of register de�nitions or descriptions of how instructions a�ect them. This makes a

register the natural candidate for the starting point of the type set.

All these registers are not equal. Not only do they vary in size, they also di�er in what

operations may be performed on them. Some registers, for example, can only be read,

while others can also be written to. There are also registers that store data with a speci�c

meaning, such as the integer registers and the 
oating point registers. This variety suggests

that it would be useful to list the main characteristics of each register and use that to group

similar registers together. The resulting list is shown in table 2.1, with each group of similar

registers separated by horizontal lines.

Table 2.1 suggests that an appropriate approach would be the creation of a register type

for each group. Since all groups share some characteristics, the best way to represent them

is as a tree, with the root consisting of a base type. New types are derived from the base

type by adding new functionality to the type interface. Figure 2.1 shows the resulting type

hierarchy. Each box has the type name on top. Inside the box can be found some sample

functions and an example of a SPARC register of that type. Arrows go from a supertype

to its derived subtype. As can be seen, ReadReg t is the only type that is not part of the

hierarchy.

In de�ning the several register types some conventions have been observed. They are:
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Name Size READ/WRITE Operations

r0..r527 64 RW arithmetic & logic

f0..f31 64 RW 
oating point arithmetic

PC 64 RW sign-extended addition

nPC 64 RW sign-extended addition

Y 64 RW

PSTATE 10 RW

PIL 4 RW

TBA 64 RW

CCR 8 RW

FPRS 3 RW

FPSR 64 RW

WSTATE 6 RW

ASI 8 RW

TICK 64 RW increment

TPC 64 RW push, pop

TNPC 64 RW push, pop

TSTATE 64 RW push, pop

TT 64 RW push, pop

VER 64 R

CWP 5 RW increment, decrement

CANSAVE 5 RW increment, decrement

CANRESTORE 5 RW increment, decrement

OTHERWIN 5 RW increment, decrement

CLEANWIN 5 RW increment, decrement

TL 5 RW increment, decrement

Table 2.1: SPARC-V9 register set characteristics
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Function Description

[] Returns the bit value stored at the position

speci�ed by the parameter.

�eld Returns the �eld value stored at the position

speci�ed by the parameters.

regsize Returns the size of the register.

intval Returns the integer value of the register.

sform Returns the contents of the register in hex

form.

Table 2.2: Function description for ReadReg t

� Bits in a register are ordered from least signi�cant (LSB) to most signi�cant (MSB)

in increasing order. The �rst bit has the index 0.

� Fields are referred to by providing two indices, index1 and index2. The �rst index is

the position in the register of the most signi�cant bit of the �eld, while the second

index is the position of the least signi�cant bit.

The following is the description of the types presented in �gure 2.1. Each entry gives

a brief description of what the type is like, what is its intended use, and a table with the

added functionality of each type. We follow the convention that all type names end with

` t'.

One thing that will be noticed in the description is that most of the types have an

intval function. This function returns an integer representation of the register's contents

and its intended use is in debugging, solely as a means to present the value in a form that

the programmer can easily read.

The basic types are:

� ReadReg t: This is a read-only register type. It describes the most basic of all reg-

ister types. As can be seen in �gure 2.1, it is the only type among the basic types that

is not part of the hierarchy. This happens because, being the only type that cannot be

written to, it is inherently di�erent from all other types. It was designed speci�cally

for implementing the VER register. Table 2.2 shows the associated functions.

� ReadWriteReg t: This is the base type for all subsequent types. Its form is very

similar to ReadReg t, except that it has been structured so as to allow writing to it.

The associated functions are shown in table 2.3. It is intended for the implementation

of the basic register structures like PSTATE.

� UpCounter t: This type is a subtype of ReadWriteReg t. It is the �rst type in

which the content of the register has a meaning other than just a collection of bits.

In this case, the register type is supposed to store an unsigned integer that can be
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Figure 2.1: Type hierarchy tree for register types
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Function Description

[] Returns the bit referenced by the parameter.

�eld Returns the �eld referenced by the parame-

ters.

� Toggles all bits in register.

## Register concatenation operator.

:= Assigns a value to the register.

regsize Returns the size of the register.

intval Returns the integer value of the register.

sform Returns the contents of the register in hex

form.

Table 2.3: Function description for ReadWriteReg t

Function Description

Reset Sets the register content to 0.

inc Adds 1 to the value of the register.

Table 2.4: Added functions for UpCounter t

incremented. There is no provision for over
ow; when the maximum value is exceeded

the counter wraps around to 0. It was speci�cally designed for implementing the TICK

register.

� UpDownCounter t: This type is almost the same as UpCounter t, of which it

is a subtype. Its functionality is the same, except that it counts both up and down.

Again, there is no over
ow or under
ow; the counter just wraps around. Table 2.5

shows the added functions. It may be used to implement CWP, CANSAVE and the

other registers related to register-window control.

� RegStack t: This type is a special type of ReadWriteReg t. As the name implies,

it is a stack. Writing to it does not make the previous value disappear, it only pushes it

further into the stack. This type was created for implementing the stack-like structures

used in trap handling, such as the TT and TPC registers.

Function Description

dec Decreases the value stored in the counter by

1.

Table 2.5: Added functions for UpDownCounter t

17



Function Description

push Adds an element to the top of the stack.

pop Removes the top element from the stack.

top Returns the value of the top element from the

stack.

Table 2.6: Added functions for RegStack t

Function Description

+ Adds a sign-extended value to the contents of

the register.

Table 2.7: Added functions for DispCounter t

� DispCounter t: This type stores an unsigned integer to which a displacement value

may be added. This displacement value is supposed to be in two's complement format

and is sign-extended for the operation. Note that there is no over
ow or under
ow,

just wraparound. It is intended for the implementation of PC and nPC.

� SPARCint t: This type is the subtype of the ReadWriteReg t type, and imple-

ments a 64-bit integer. Its intended use is in the 64-bit integer arithmetic module.

As such, you can perform all integer arithmetic functions with them, as well as the

standard logical ones. All arithmetic operations assume that the integers are in two's

complement format.

� SPARCreal t: This is the subtype of ReadWriteReg t intended for the imple-

mentation of the 
oating point unit. It is analogous to the SPARCint t type, but

deals with 
oating point arithmetic instead. It follows the IEEE standard for 
oating

point representation and operations mentioned in section 2.4. The basic arithmetic

and comparison operations are provided.

The types presented above are all variations of the basic concept of a register. They

vary in the functionality provided, which in turn is a result of the functionality required of

the registers de�ned in the SPARC-V9 instruction set architecture manual. This one-to-one

correspondence ensures that the basic type set presented here is more than adequate for

building the SPARC-V9 model with the desired level of abstraction. Appendix B presents

the code for the basic type interfaces.

2.4 Components

As suggested in section 2.2, it is interesting to break down the model into several distinct

components, each one dealing with a di�erent aspect of the instruction set architecture.
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Function Description

& Bit-wise logical and.

or Bit-wise logical or.

xor Bit-wise logical xor.

neg Two's complement negation.

+ Two's complement integer addition.

� Two's complement integer subtraction.

� Two's complement integer multiplication.

/ Two's complement integer division.

mod Two's complement integer remainder.

shr Shift right operator.

shl Shift left operator.

ashiftr arithmetic shift right operator.

= Equality comparison operator.

/= Inequality comparison operator.

> Greater-than comparison operator.

< Smaller-than comparison operator.

>= Greater-than-or-equal comparison operator.

<= Smaller-than-or-equal comparison operator.

Table 2.8: Added functions for SPARCint t

Function Description

+ Floating point addition.

� Floating point subtraction.

� Floating point multiplication.

= Floating point division.

sqrt Floating point square root.

= Equality comparison operator.

/= Inequality comparison operator.

> Greater-than comparison operator.

< Smaller-than comparison operator.

>= Greater-than-or-equal comparison operator.

<= Smaller-than-or-equal comparison operator.

Table 2.9: Added functions for SPARCReal t
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This decomposition allows one to study, debug and test the model one piece at a time,

which reduces the complexity of the problem and improves the model's correctness. It just

remains to be decided how this decomposition should happen.

One problem is that there are many possible decompositions of the model, all equally

valid in that they result in a working model. Choosing between them, then, is a matter of

functionality, i.e., �nding an organization that re
ects the kind of information one wishes

to convey.

A �rst step in deciding how to decompose the units is to de�ne what are the main

characteristics of any component. Basically, components can be �t into two broad categories:

state units and execution units. State units are those that consist of sets of registers that

store the state of the system, such as the integer registers, the program counter, etc. The

execution units are those responsible for actually performing operations that cause the state

of the model to change.

The SPARC-V9 architecture de�nes both state that has to be stored and operations

that change the state. Our suggested approach is, therefore, to divide the system into both

state and execution units. Having just one state unit and one execution unit, though, still

result in unmanageable chunks of code, so further decomposition is necessary. Here again

the English manual suggest a good approach; in its description of the opcodes, it groups

similar instructions together and we will borrow that concept.

This suggests the following decomposition for the units (all references are to chapter 5

of [WG94]):

� State units decomposition:

control/status registers: This unit contains all registers associated with processor

status and control such as the program counter, nPC, PSTATE, etc. Most, but

not all, of the control/status registers would be placed here. Those that are

intimately associated with some speci�c function, such as the register window

control registers, will be placed elsewhere.

integer register set: This unit contains the integer register set, as well as the reg-

ister window state registers de�ned in section 5.2.10 of [WG94]. Since the actual

size of the integer register set is implementation-dependent, the suggested ap-

proach is to use a parameterized module generator with the desired number of

register windows as the parameter. This way, any possible integer register set

implementation can easily be created. The behavior of this unit is quite simple,

consisting exclusively of actions for reading and writing its registers.


oating point register set: This register set contains the 32 single-precision / 32

double-precision / 16 quad-precision 
oating point registers de�ned in section

5.1.4 of [WG94] Care should be taken to implement the overlapping, or aliasing,

of registers de�ned by the standard. Like the previous two register sets, the only

actions associated with this unit consists of either reading or writing to it.

� Execution units decomposition:
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instruction fetch: This unit is responsible for triggering the execution of an instruc-

tion. When activated, either by a start event1 or by the completion of the last

operation, it accesses the program counter and initiates the fetching of the next

opcode from the outside environment. Once the opcode is obtained, it is made

available to all execution units in the model.

memory access: This unit, as the name implies, is responsible for controlling the

communication between the SPARC CPU and the environment. Like the in-

struction fetch unit described before, it is not an opcode executing unit. Instead,

it provides a service for all other execution units, through which they can access

the main memory.

interrupt/trap handling: This is another unit that is responsible for treating two

distinct, but related types of events. As an interrupt handler, it observes events

coming from the CPU environment (such as a RESET) and takes the appropriate

action. As a trap handler, it deals with all internally generated traps (such as

over
ow, software reset, etc.).

data movement: This unit is responsible for all opcodes related to moving data

from one place to another within the architecture. It deals with such simple

moves as from one register to another, as well as with loads/stores from/to main

memory. In order to perform its function it will have to work closely with the

memory access unit.

integer logic and arithmetic: This unit implements a 64-bit arithmetic and logic

unit. It performs all the integer operations de�ned on the standard, on both

32 and 64-bit data. It does not contain any registers for storing data, using

instead immediate data passed along with the opcode and/or data from the

integer register set.


oating point arithmetic: This unit is analogous to the integer logic and arith-

metic unit, the di�erence being that it operates on the 
oating point register

set. It implements operations such as FADD, FMUL and FDIV, and would

consist of a 128/64/32 (quad, double and single precision, respectively) bit 
oat-

ing point ALU conforming to the IEEE 754 binary 
oating-point arithmetic

standard[IEE85].

branch control: The branch control unit deals with all program 
ow related op-

codes. As such it processes commands like JMPL, BPcc and RETURN. It must,

by necessity, be able to access and change the value of nPC.

privileged operations: This is the unit that deals with all the privileged instruc-

tions. These instructions usually consists of reading and/or writing a set of

control registers that change the state of the CPU. Some examples of privileged

operations are RDPR, RDTICK and LDDA.

miscellaneous: This unit would group together any opcodes that do not �t into any

of the units above. It could, for example, deal with such opcodes as MEMBAR,

SIGM and WRCCR.

1Start events are events that are automatically generated in a Rapide program when an object is created.

They are used, as the name suggests, to start the simulation
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The memory access unit and the instruction fetch unit are special, in that they are not

directly related to any opcodes, but rather serve as auxiliary execution units for the model.

Their job is to isolate the model from the environment and provide it with the instructions

for execution. The rest of the execution units, on the other hand, are directly connected

to SPARC-V9 opcodes. Each opcode is processed totally by one of these execution units

(which may have to access some or all of the state units in order to do this), and thus,

there is a one-to-one correspondence between execution units and opcodes. This is shown

in table 2.10.

It should be emphasized at this point that this is a suggested organization, not a manda-

tory one. Many other equally good arrangements are possible. For example, both the

memory control unit and the interrupt/trap handling unit could be broken up into smaller

independent units. Another possible approach would be not to isolate the state from the

execution, but keep related operations and registers in the same unit (i.e., have the trap

registers inside the trap handling unit).

2.5 Architecture

The previous section described the units that make up the model. The next and �nal

step is to de�ne an architecture connecting these modules. In this case, we follow the

de�nition of architecture proposed in [LVM95], in that an architecture consists not only

of components and their interconnections, but also includes protocols de�ning how these

components communicate. This should provide a complete description of the instruction

set architecture, not leaving any ambiguities.

The de�nition of the architecture is a crucial part of the model's design, since that

is the point at which the model is usually bound to one speci�c implementation. In this

case, it is desirable to make this binding as loose as possible, so that the model remains

implementation-independent. The instruction set architecture manual achieves this goal by

avoiding de�ning any binding architecture at all; instead it keeps the opcode de�nitions

loosely coupled, describing how the architecture reacts to events without tying one event to

another.

This approach is, unfortunately, not one that can be used in the de�nition of the model's

architecture. One of the model's objectives is that it is to be used as an executable standard

and to attain this objective an architecture must be completely speci�ed. The challenge is,

then to make this speci�cation as 
exible as possible.

The best way to attain this goal is by making the communication mechanism between

modules as generic as possible. Instead of de�ning point-to-point communication between

the components, broadcasting should be used. By de�ning several specialized broadcast

channels to which a component can connect, an executable model can be built that retains

most, if not all, of the intended implementation-independence and 
exibility.

There are many possible such broadcast channel organizations, ranging from \one chan-

nel for everything" to the equivalent of point to point connections between modules. Neither

of the extreme solutions are ideal: the former complicates the interface of the components,
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unit opcode

ADD, ADDcc, ADDC, ADDCcc,

AND, ANDcc, ANDN, ANDNcc,

MULScc, MULX, OR, ORcc,

ORN, ORNcc, POPC, SDIV,

SDIVcc, SDIVX, SETHI, SLL,

Integer Arithmetic SLLX, SMUL, SMULcc, SRA,

SRAX, SRL, SRLX, SUB,

SUBcc, SUBC, SUBCcc, TADDcc,

TADDccTV, TSUBcc, TSUBccTV, UDIV,

UDIVcc, UMUL, UMULcc, XNOR,

XNORcc, XOR, XORcc

Branch Control BPcc, Bicc, BPr, CALL,

FBfcc, FBPfcc, JMPL, RETURN

FABS, FADD, FCMP, FCMPE,

FDIV, FdMULq, FiTO(s,d,q), FsMULd,

FP Arithmetic FSQRT, F(s,d,q)TOi, F(s,d,q)TOx, FMUL,

FNEG, F(s,d,q)TOx, FSUB, FxTO(s,d,q),

F(s,d,q)TO(s,d,q)

CASA, CASXA, FLUSHW, FMOV,

FMOVcc, FMOVr, LDD, LDDA,

LDDF, lDDFA, LDF, LDFA,

LDFSR, LDQF, LDQFA, LDSB,

LDSBA, LDSH, LDSHA, LDSTUB,

LDSTUBA, LDSW, LDSWA, LDUB,

LDUBA, LDUH, LDUHA, LDUW,

LDUWA, LDX, LDXA, LDXFSR,

Data Movement MOV, MOVr, MOVcc, RDASI,

RDASR, RDCCR, RDFPRS, RDPC,

RESTORE, RDY, RDTICK, SAVE,

STD, STDA, STDF, STDFA,

STB, STBA, STF, STFA,

STFSR, STH, STHA, STQF,

STQFA, STW, STWA, STX,

STXA, STXFSR, SWAP, SWAPA,

WRASI, WRASR, WRCCR, WRFPRS,

WRPR, WRY

Miscellaneous FLUSH, IMPDEP1, IMPDEP2, MEMBAR,

NOP, SIGM, STBAR

Priv. Operations SAVED RDPR PREFETCH, PREFETCHA,

RESTORED

Trap Handling DONE, ILLTRAP, RETRY, Tcc.

Table 2.10: Execution units and their related opcodes.
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while the latter removes all 
exibility from the model. Clearly, a middle-ground approach

would be best. By keeping in mind that the model consists of execution units responsi-

ble for changing state and state units responsible exclusively for storing state, the authors

considered the following bus partition to be adequate:

� control/status bus: Connects the control/status unit to all the execution units that

might want to access it.

� integer bus: Connects the integer register set to all units that might want to access

it.

� 
oating point bus: Connects the 
oating point unit to all units that might want to

access it.

� memory access bus: Connects the memory access unit to all units that might want

to access the main memory.

� instruction bus: Connects all units that might want to either issue or execute an

instruction.

� acknowledge bus: Connects all units that might want to signal or be aware than

an instruction has been executed.

This bus partition allows for a detailed enough description so that the model is man-

ageable and understandable, while not adding any implementation dependence.

Having determined what the necessary buses are, the next step is to decide which compo-

nents should be in the model. The suggested approach for its implementation in Rapide-1.0

is a minimalist one. There should be no more than one instance of each type of unit. One of

each type of the units described in section 2.4 is necessary, otherwise it would not be possi-

ble to build the model. More than one would make some coordination e�ort between them

necessary, and that would add unwanted implementation dependencies and constraints to

the model.

Figure 2.2 shows the architecture of the proposed system. The units are represented by

rectangles, with the execution units being white while the state units are shaded gray. The

vertical lines represent the communication buses described above, while the horizontal ones

represent the connections between the units and the buses, with the arrows indicating the

direction of the 
ow of information.

Once the components making up the model and the interconnection mechanism between

them is de�ned, the next step is to de�ne the protocol for the model's top-level behavior.

This protocol describes how the model should deal with the instruction \fetch-and-execute"

cycle, and should be generic enough so as to avoid adding any implementation dependencies.

Based on the broadcasting principles and buses de�ned in the previous paragraphs, the

behavior of the system is the following:

1. The instruction-fetch unit retrieves the current PC value from the control/status

register set and uses that to issue a memory access request.
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2. The memory access unit performs the required access and returns the opcode to the

instruction fetch unit.

3. The instruction fetch unit broadcasts the opcode to all execution units.

4. The execution unit that has this opcode in its domain decodes it and executes the

required operation. This may involve exchanging information with the control/status

register units and/or the integer and 
oating point register sets.

5. The execution unit signals the end of the opcode execution to the instruction fetch

unit, indicating that a new instruction cycle may begin.

This protocol preserves implementation-independence by loosely binding the individual

components' behaviors. The instruction fetch unit does not care where the instruction is

going to, and the execution units do not care where it comes from or if any other unit is

also processing it. This adds 
exibility, in that it allows for the actual computation to be

distributed in several di�erent ways.

Another major characteristic of this model is that it is sequential in nature, just like the

model described in in the instruction set architecture manual. This serialization, though,

is done entirely in the instruction fetch unit and is invisible to any other component of the

system. By changing the instruction fetch unit it is quite easy to create other implemen-

tations of the architecture, using a pipelined, superscalar or some other approach. Since

this is all done inside the instruction fetch unit, it is transparent to anyone looking at the

top-level model.

This chapter described what an implementation-independent model of the SPARC-V9

instruction set architecture should look like. It described the desired characteristics of such

a model and how one should go about building a model that satis�es these requirements. It

then described a basic type set to use as building blocks for constructing the model, as well

as the major components that the model should have. Finally, it described an architecture

for connecting these components in an implementation-independent way.

Rapide, as a prototyping and simulation language, has all the necessary constructs for

implementing the model as described here. It allows the designer to break down the model

into distinct components, connect them in the desired way and provides inheritance and

polymorphism mechanisms for creating the basic types.
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Chapter 3

Scaled-Down Rapide-0.2 Model

Before attempting to build the complete SPARC-V9 model, it is interesting to do a small

scale experiment, in order to check the validity of the concepts presented in the previous

chapter. This prototype can be used to test the broadcast-bus architecture concept, provide

an estimate of its 
exibility, and give an idea of what kind of results one can expect from

such a model.

The language used for implementing this scaled-down version of the SPARC-V9 is

Rapide-0.2[Bry92]. Rapide-0.2, a preliminary \proof of concept" version of Rapide. It

was chosen because, at that time the model was built, Rapide-1.0 was still in its early

design stages while the 0.2 compiler was complete and stable. Since both Rapide-0.2 and

Rapide-1.0 share the same philosophy and language constructs, using the former to create

this prototype in no way invalidates the result.

The rest of this chapter describes the scaled-down SPARC-V9 model. Section 3.1 de-

scribes the architecture of the model chosen for implementation, while sections 3.2 and 3.3

respectively describe the results of a simulation of a sequential and a pipelined implemen-

tation.

3.1 Model Architecture

The objective of this exercise was to build a prototype to test if the approach suggested in

the previous chapter is valid. To do so, the model must satisfy two requirements. First,

it has to be complete enough so that it can actually represent the SPARC-V9 architecture

described in the preceding chapter. On the other hand, it has to be simple enough so that

the designer can build it in a short amount of time. After all, the objective of this exercise

is only to verify if the approach is feasible, not to construct a full implementation.

Clearly, these two requirements contradict each other; the former implies the use of as

many components as possible (to closer approximate the suggested architecture), while the

latter tries to minimize the number of units so as to keep the model simple. A compromise

must be attained in order to satisfy both of these goals.
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The main characteristic of the suggested architecture is the principle of broadcasting

instructions and request-acknowledge pairs through a set of buses. This implies that the

prototype should have at least two units on the receiving end of any broadcast, otherwise the

architecture would correspond to a point-to-point connection and the broadcasting feature

would not be tested. This suggests that there should be at least two opcode execution units

in the prototype, executing two distinct opcodes. The authors arbitrarily chose ADD and

LOAD as the opcodes for testing.

In order to be able to execute these instructions, the model will require some other units,

either for interacting with the environment or just for storing information. This leads to

the following units being present in the prototype:

� instruction fetch unit: This unit is necessary in any model of the SPARC-V9. It is

the unit responsible for coordinating the behavior of the model and providing it with

a \heartbeat." It is by changing the behavior of this unit that one is able to create

several di�erent implementations, as will be seen later.

� memory access unit: This unit, like the previous one, is necessary for any imple-

mentation of the SPARC-V9 standard. The standard is based on the principle that

instructions are fetched from memory for execution and without this unit such a basic

task could not be accomplished.

� data movement unit: From table 2.10 in section 2.4, it is clear that this unit is

necessary for implementing the LOAD instruction.

� integer arithmetic unit: Again, table 2.10 indicates that this unit is necessary for

the implementation of the ADD operation.

� control/status register set: This unit is necessary because it contains, among

other registers, the program counter, which is used by the instruction fetch unit to

load the next instruction from memory.

� integer register set: The ADD and LOAD operations require operands from the

integer register set, and possibly cause changes to the state of one or more of these

registers. This makes the presence of the integer register set necessary.

The units mentioned above are the ones that make up the scaled-down model itself.

Other than that, only one more unit is necessary, a handler unit, responsible for the job

of representing the environment surrounding the prototype, such as the memory and the

user interface.

Figure 3.1 shows the detailed architecture of the scaled-down SPARC-V9 prototype

in the Rapide-0.2 system, excluding the handler unit. Each execution or status unit is

represented by a rectangle and the communication channels are represented by the lines

connecting modules. Each unit contains a series of in and out actions, (the incoming and

outgoing pen symbols), representing its communication mechanism with the outside world.

Each action has a speci�c function, described in table 3.1.
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module action type description

I Fetch RequestPC out Requests the current value of the PC.

RequestI out Requests the next instruction.

BroadcastI out Broadcasts instructions to other execution units.

ReceivePC in Retrieves the current value of the PC.

NewI in Retrieves current instruction.

CS Reg SendPC out Broadcasts the current value of the PC.

SendCarry out Broadcasts the current value of the carry 
ag.

ReadPC in Receives requests for the value of the PC.

ReadCarry in Receives requests for the value of the carry 
ag.

CCRXccIcc in Updates the current value of the carry 
ag.

Mem Access SendI out Broadcasts the current instruction.

SendMM out Broadcasts the current data from memory.

ReadI in Receives address for requested instruction.

ReadMM in Receives address for requested data.

Int ALU FetchOpr1 out Requests operand 1 of arithmetic operation.

FetchOpr2 out Requests operand 2 of arithmetic operation.

StoreOpr out Stores result of arithmetic operation.

CCRUpdate out Broadcasts new value of the carry 
ag.

AddDone out Signals end of operation.

LoadOpr1 in Receives operand 1 of arithmetic operation.

LoadOpr2 in Receives operand 2 of arithmetic operation.

ALUInstr in Receives opcode for execution.

LoadCarry in Receives current value of the carry 
ag.

Int Reg SendOpr1 out Broadcasts the value of operand 1.

SendOpr2 out Broadcasts the value of operand 2.

ReadOpr1 in Receives requests for operand 1.

ReadOpr2 in Receives requests for operand 2.

WriteOpr in Receives request for writing to a register.

Data Move FetchData out Broadcasts request for data from memory.

FetchAddr1 out Requests �rst part of e�ective address.

FetchAddr2 out Requests second part of e�ective address.

StoreData out Sends result to Int Reg for storage.

LoadData in Receives requested data from memory.

MoveInstr in Receives opcode for execution.

LoadAddr1 in Receives �rst part of e�ective address.

LoadAddr2 in Receives second part of e�ective address.

Table 3.1: action de�nitions for SPARC-V9 prototype
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The set of units described above require the presence of all but one of the broadcast

buses previously de�ned. The one that is not necessary is the 
oating point bus, since

no 
oating point operations are performed. Its absence does not invalidate the prototype,

since it is analogous to the integer bus in form and function. If the integer bus behaves

according to expectations, so should the 
oating point bus.

This model was designed to allow the user to load a program into the prototype's main

memory and have it executed. This loading operation, as well as handling the interaction

between the user and the model, is done by the handler unit.

In order to study how 
exible the architecture and language are, two scaled-down models

were created. The �rst one is sequential in nature and follows the approach described in

the previous chapter. The second is pipelined and shows how simple it is to modify the

original architecture in order to obtain di�erent implementations.

In the following two sections, we will show the results of running these models. They

show typical computer execution cycles: instruction-fetch, decode, operand-fetch, execute

and operand-store. Each run generated a poset, which was analyzed using the pob, the

graphic browser tool described in section 1.2.

3.2 Sequential Execution in Rapide-0.2

The �rst model built and tested was the sequential one, since it is the one that is the

closest approximation of the architecture suggested in the previous chapter. After it was

ready, a program consisting of an ADDcc instruction followed by a LOAD instruction was

loaded into the model and a simulation was run. Figure 3.2 shows the poset of the resulting

computation. In the �gure, each node represents an event and each directed edge represents

a dependency or causality relationship between nodes (an arrow going from event A to event

B implies that A causes B). The time axis1 
ows vertically, with events that happened later

in time appearing below those that happened before. Events happening at the same time

are all shown in the same row.

Even though this is quite a simple example, there is much information that can be

obtained from it. This is due not only to the nature of the model, but also because of

Rapide's properties: the causality and dependency relations contained in the simulation

add another dimension of information to the linear traces found in traditional simulators.

First, the �gure clearly shows the sequence of events that happen during the execution

of an ADDcc followed by a LOAD, specifying what events have to happen, and in what

order. From the �gure one sees that:

1. The instruction fetch unit requests and receives the current PC value from the con-

trol/status unit (indicated by the RequestPC event).

2. The instruction fetch unit requests and receives the desired instruction from the main

memory (indicated by the RequestI event), obtained through the memory access unit.

1The time units necessary to complete an operation, shown in the top right corner of �gure 3.2 is arbitrary
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3. Once the instruction fetch unit obtains a new instruction, it broadcasts the instruction

to all other execution units through the BroadCastI event, making the new instruction

available to them.

4. The proper unit (the integer arithmetic unit in this case) decodes the instruction

(indicated by the DecodeALU event).

5. The integer arithmetic unit requests and obtains the necessary data through the

FetchOpr1, FetchOpr2 and NoCarry events2.

6. The integer arithmetic unit performs the actual addition (indicated by the SparcADD

event).

7. The integer arithmetic unit stores the result back in the integer register set (indicated

by the StoreOpr event).

This ends the execution of the �rst instruction. It is immediately followed by the

execution of the LOAD instruction, which has the following format:

1. The instruction fetch unit requests and receives the current PC value from the con-

trol/status unit (indicated by the RequestPC event).

2. The instruction fetch unit requests and receives the instruction from the main memory

(indicated by the RequestI event), obtained through the memory access unit.

3. Once the instruction fetch unit obtains a new instruction, it broadcasts the instruction

to all other execution units through the BroadCastI event, making the new instruction

available to them.

4. The proper unit (the data movement unit) decodes the instruction, indicated by the

DecodeMove event.

5. The data movement unit fetches the proper data values, indicated by the FetchAddr1

and FetchAddr2 events.

6. The data movement unit fetches the data from memory (indicated by the FetchData

event), using the memory access unit.

7. The data movement unit sends the resulting data to the integer register set, indicated

by the StoreData event.

At this point it should be pointed out that the poset shown is not the entire poset

generated by the simulation. Some of the events have been removed in order to simplify the

visualization of the results. The pob graphical browser tool allows one to easily accomplish

this task, as well as determining which units generated or received the events, and even to

look at the parameters associated with each event.

2The NoCarry event is necessary due to limitations in Rapide-0.2's pattern language. This limitation no

longer exists in Rapide-1.0
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A second interesting point about the poset is that, unlike linear traces, it can be used to

identify potential parallelism in the model. In �gure 3.2 one notices that once a DecodeALU

event of an ADD instruction has been performed in the integer arithmetic unit, the following

events, FetchOpr1, FetchOpr2 and NoCarry, can be performed in any order, since there is

no causal relationship between them. These execution 
ow is synchronized again at the

SparcADD event later on, since it depends on all these three events. This means that these

data fetches could have been carried out in sequence, implying a one-port register �le, or

in parallel, implying a multi-port register �le. In this example, the potential parallelism

between fetches can represent 6 conventional linear traces. In this way, implementation-

independence is maintained, since the resulting simulation is not bound to any speci�c

model.

The sequential model presented in this section has shown that the suggested approach is

feasible and has the potential for not tying the model down to any speci�c implementation,

as was seen by the fact that it did not constrain the integer register set to have one or two

read ports.

The next section describes a pipelined implementation of the sequential model presented

in this section. This way, it is possible to determine how 
exible and adaptable the suggested

approach might be, as well as what additional information might be obtained from posets.

3.3 Pipelined Execution in Rapide-0.2

The sequential model served to show the validity of the approach suggested in the previous

chapter. It was able to prove that the architecture presented works and gave an idea of

what kind of results can be obtained from the model. The only question that remains to be

answered is whether such an architecture is 
exible enough to serve as a the starting point

for other implementations.

To answer this question, the authors decided to create a pipelined version of the model.

The pipelined model created was simple, and the only modi�cation consisted of changing

the instruction fetch unit so that it would start fetching the next instruction immediately

after having broadcast the �rst, instead of waiting for the completion signal3 event (through

the acknowledge bus) from one of the other execution units.

In the actual code, this modi�cation consisted of changing just one line of the source

code. The original sequential model had the following line in the instruction fetch unit,

describing when to start a new instruction:

when Complete do Execute;

This line basically says that whenever the instruction fetch unit receives a Complete event,

signalling that the processing of the last issued instruction is complete, it should generate

a new Execute event, starting the processing cycle again.

3
StoreOpr in the ADD instruction and StoreData in the LOAD instruction were used as the completion

events in the previous example.
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In the pipelined model, this line was modi�ed to:

when BroadcastI do Execute;

This modi�cation ensures that the model does not wait until the processing of the previous

instruction is complete. Instead, as soon as the BroadcastI event is generated (indicating

that the instruction fetch unit has �nished retrieving the instruction and has sent it along

its way), the unit immediately starts fetching another instruction.

This approach does not deal with the problem of data dependency between instructions,

since that would be time consuming work, and unnecessary for verifying if the modi�ed

example works. The solution, though, is not complicated. All that would be necessary

would be for the instruction fetch unit to decode the instruction and identify which registers,

if any, have to be written to. When another instruction wants to read one such register, the

instruction fetch unit can then stall the pipeline until it guarantees that the desired register

has been updated.

Once the model was modi�ed and compiled, the authors ran an example consisting of

three ADD instructions without any data dependency between them. The result of the

simulation is shown in �gure 3.3. The �gure represents the result in much of the same way

as before, with nodes representing events and lines the causality relationship between them.

Again, time 
ows vertically, with events in the same row happening simultaneously, while

events in lower rows happen later in time. In order to reduce the complexity of the example

some of the events are not shown, as well as the parameters of each event. These, though,

can be easily accessed using the pob poset analysis program.

Looking at the �gure one immediately recognizes three sets of events, connected by edges

going from the BroadcastI node of one group to the RequestPC node of the other group.

Each of these sets corresponds, respectively, to the execution of the ADDC, ADDCcc, and

ADDcc instructions. Like the one linear ADDcc instruction in the previous example, the

behavior is the following:

1. The instruction fetch unit requests and receives the current PC value from the con-

trol/status unit (indicated by the RequestPC event).

2. The instruction fetch unit requests and receives the desired instruction from the main

memory (indicated by the RequestI event), obtained through the memory access unit.

3. Once the instruction fetch unit obtains a new instruction, it broadcasts the instruction

to all other execution units through the BroadCastI event, making the new instruction

available to them.

4. The proper unit (the integer arithmetic unit in this case) decodes the instruction

(indicated by the DecodeALU event).

5. The integer arithmetic unit issues requests and obtains the necessary data through

the FetchOpr1, FetchOpr2 and FetchCarry events.
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6. The integer arithmetic unit performs the actual addition, indicated by the SparcADD

event.

7. The integer arithmetic unit stores the result back in the integer register set (indicated

by the StorOpr event).

8. The integer arithmetic unit updates the contents of the condition code registers (CCR)

through the CCRUpdate event.

The edge connecting each group is a result of the code described in the beginning of this

section, with the instruction fetch unit being responsible for initiating the next instruction

fetch when it has �nished the current one.

The time axis4 serves to show the parallelism of the model. Since events in the same row

happen at the same time, it can be clearly seen that fetching the next PC (RequestPC) and

processing the current instruction (DecodeALU) happen simultaneously, as well as the data

fetching (FetchOpr1, FetchOpr2 and FetchCarry) and the fetching of the next instruction

(RequestI).

There is much that can be learned from the simulation, having to do with both under-

standing the behavior of the model, as well as analyzing simulation results through a poset.

First of all, there is the same information about potential parallelism as before, indicated

by all the events happening simultaneously in the �gure. This same parallelism is observed

both within an instruction (i.e, the data fetches mentioned in the previous paragraph), as

well as between instructions (with the instruction fetch unit fetching the next instruction

while the ALU is processing the �rst one).

Another interesting point to note is that analyzing the poset is considerably simpli�ed

by how the data is presented. The human brain is good at recognizing patterns and patterns

are what the result consists of. By looking at the poset one can immediately perceive which

events are part of which instruction, as well as the relationship between the instructions

themselves. Since the pob allows for cropping and �ltering of events and edges, this makes

the process of �nding the events of interest much faster than looking through a table of

numerical data or lines representing waveforms in a graphical representation of the results.

To make the �gure clearer, some edges between events were deleted. The original poset

contained edges between pairs of FetchOpr1's, FetchOpr2's (or SignExtOpr's),FetchCarry's,

StoreOpr and SparcADD events. These edges are there because of limitation in Rapide-0.2,

that makes events inside the same unit always be ordered, a problem that does not occur in

Rapide-1.0. In this model, this can be looked upon as a resource contention problem, since

there is only one access path for the status or integer registers. The poset representation,

thus, leads one quite naturally to observe the problem of resource contention/bottleneck in

the model.

The model presented in this section shows that the original architecture is 
exible enough

that it can be easily modi�ed to create a pipelined implementation of the standard. This

model also shows that the resulting poset contained a great amount of easily analyzable

4As with the example in the previous section, the time values chosen are arbitrary
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data, with more information content than one �nds in a linear trace, even for such simple

cases.

The results presented here are enough to validate the approach and justify the investment

in time and resources necessary for constructing the actual SPARC-V9 model. There are

some issues related to building such a large model, though, that have to be dealt with.

They will be discussed in the next chapter.
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Chapter 4

Observations

Designing an executable standard involves more than just specifying the model's com-

ponents and architecture. There are several related issues concerning how the model

can/should be used, the procedure for testing it, the design's limitations, etc. This chap-

ter will tackle some of these issues, describing problems that might be encountered and,

whenever feasible, proposing solutions for them.

4.1 Testing

Once the executable standard is ready, the next step is testing it. Testing will have to

accomplish two purposes. First, it should aid in debugging the model and assuring the design

team that it behaves according to what they believe the SPARC-V9 standard states. Second,

it should satisfy others, notably SPARC International, that this is indeed an executable

model of the SPARC-V9 architecture, conforming to the standard. These two objectives in

testing, though similar, require slightly di�erent approaches.

When testing and debugging the model, the developers' main concern is whether the

model works or not, and whether its behavior is what they expect it to be. At this point

one wants to make sure that each unit is working correctly and that the generated posets

show the desired implementation-independence. At this phase of the testing, it is perfectly

feasible to test the model's components separately, if necessary, and integrate them to form

the �nal model. Using simple test vectors for the model is perfectly valid at this point.

When testing to verify if the model is actually a SPARC-V9, the objectives are slightly

di�erent. It is no longer important how the model accomplishes its tasks, but only whether

the �nal results are those that would be expected for such an architecture. At this stage

one is more concerned with the �nal state1 of the model than anything else.

One example might help clarify this point: when checking whether an ADD operator

was implemented correctly, the designers would be interested in examining the poset and

making sure that it in no way implies how the addition operation is being performed (ripple

1By state we mean the contents of the registers and the main memory
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adder, carry-lookahead adder, etc.). For conformance to the standard, that is not an issue;

all that is important is that the result of the addition is the expected one.

To verify that the model does indeed conform to the standard, the more straightforward

approach would be to treat it as if it were a SPARC-V9 processor implemented in hardware.

One could then give a copy of the model to SPARC International and let them run it through

the same battery of tests to which they submit all projects they receive. This should be

enough to have the model declared to be SPARC-V9 compliant.

There are, however, some problems with this approach. First, the poset generated by the

model, when executing thousands of instructions, is huge. Browsing through over 100,000

events in order to identify any possible bugs is time consuming and error prone. Constraints

do help in detecting and debugging errors, but it still is necessary to go over the posets

manually in order to check for errors for which one forgot to write constraints.

A second problem is resource availability. There has to be enough hard disk space to

store such a poset, as well as RAM and processing power for laying out the corresponding

graph. A poset with 100,000 events, for example, would require about 250 Megabytes of

hard disk space to store. Laying out the corresponding graph with the pob would take over

3 hours2.

These problems arise due to the size of the test vector. And the reason the vector

is so big is because it has to take into account pipelined, multiprocessor and superscalar

implementations of the architecture. These implementations may have several incomplete

instructions being processed simultaneously, all perfectly able to a�ect each others' outcome

(generally through exceptions).

In order to simplify testing, it is important to take into account the characteristics of

the model proposed in this report. The most important one is that the executable standard

executes each instruction completely before starting the next one, and does not run into

the problems that such a complex test vector is designed to detect. It is still a SPARC-

V9 model, since the English standard states that any implementation of the architecture

should behave as if it were sequential. In fact, it is the simplest of all possible SPARC-V9

implementations.

Since the conditions that lead to complex tests do not occur in this model, it might

be possible to test it by running each opcode (instruction variation) through it once, or at

least a small number of times. This corresponds to part of the actual SPARC test suite,

more speci�cally the level 0 tests[Sys93]. If it can be proved that in the Rapide model

the outcome of one instruction does not a�ect the execution of the next one (other than

through changes in the state units inbetween executing instructions), then the approach

should work. The resulting test vector would be smaller, and each opcode could be treated

as a completely independent test, simplifying the veri�cation of the model's correctness.

It should be pointed out that this proposed test vector does not substitute the SPARC

International test suite. Rather, its use is in verifying that the generated posets are correct.

Thus, when the SPARC test suite is used, there is no need to check the posets themselves,

but rather one needs only to observe the �nal state of the registers instead.

2Using a SPARCStation 2 with 32 MBytes of memory.
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With this in mind, the next step is determining what the test vector should be. Clearly

some instructions can have only one possible outcome and thus do not need to be tested

more than once. Other instructions, on the other hand, have so many possible outcomes that

studying them all is infeasible. Thus, in order to come up with a thorough, but realizable

test vector, a series of assumptions and guidelines are necessary. They are:

� Each opcode should be executed at least once.

� If an opcode has more than one possible decoding (for example, two register operands

vs. register+immediate), all such decodings must be tested.

� If the behavior of an opcode depends on the state of one or more 
ags, all possible


ag combinations have to be tested.

� If the behavior of an opcode may change the state of one or more 
ags, variations of

it that change the 
ags (or keep them from changing) should be tested.

� If the operation works for one data value, one may assume they work for all values.

For example. if it adds two numbers correctly, one can assume that it will add all

numbers correctly.

These assumptions were applied to the instructions de�ned in appendix A of [WG94] in

order to determine the test vector. Table 4.1 lists the number of instructions that have to be

executed to test each opcode thoroughly. Together with tests for the exception conditions,

this leads to a test that is approximately one tenth the size of the original SPARC vector.

The proposed test vector should take care of all the necessary testing for debugging and

satisfying the designers as to the correctness, completeness and implementation indepen-

dence of the model. It should also serve as basis for simplifying the conformance testing,

in that it makes looking at the complete poset unnecessary. Instead, all that is necessary

is for the user to verify the �nal state of the model. Tools are currently being developed to

allow one to easily do this, most notably snoop, a register browser for SPARC-V9 log �les.

4.2 Readability

The issue of readability is, possibly, one of the hardest ones to deal with, mostly because

there is no absolute measure of how readable something is. Di�erent people are used to

di�erent styles and what might be readable to one is not necessarily readable to someone

else. Identifying which is the best style is not simple.

There are several things that contribute to making the code more or less readable. They

range from simple topics such as naming conventions for variables and types to complex

issues like the generic structure of the code for the several module generators. Finding out

which is the best approach is not easy.

One way to deal with this problem is by trial and error. One should try di�erent coding

styles and show the code to as many di�erent people as possible. This should help determine
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Instruction Group Count Instruction Group Count

Add 36 FMOVcc 60

BPr 12 FMOVr 12

FBfcc 30 MOVcc 176

FBPfcc 60 MOVR 24

Bicc 30 Multiply and Divide 6

BPcc 60 Multiply (32-bit) 8

Call and Link 1 Multiply Step 2

Compare and Swap 8 No Operation 1

Divide 44 Population Count 2

DONE and RETRY 2 Prefetch Data 20

FP Add and Subtract 6 Read Privileged Register 17

FP Compare 24 Read State Register 8

Convert FP to INT 6 RETURN 2

Convert FP to FP 6 SAVE and RESTORE 4

Convert INT to FP 6 SAVED and RESTORED 2

FP Move 9 SETHI 1

FP Multiply and Divide 8 Shift 24

FP Square Root 3 Software Reset 1

Flush Instruction Memory 2 Store Barrier 1

Flush Register Window 1 Store FP 10

Illegal Instruction Trap 1 Store FP in Alternate Space 6

Impl. Dependent Inst. 2 Store INT 10

Jump and Link 2 Store INT in Alternate Space 10

Load FP 10 Subtract 36

Load FP from Alt. Space 6 Swap Reg. w/ Memory 2

Load INT 16 Swap Reg. w/ Alt. Space Mem. 2

Load INT from Alt. Space 16 Tagged Add 6

LDSTUB 2 Tagged Subtract 6

LDSTUB from Alt. Space 2 Trap on INT cond. codes 116

Logical Operations 108 Write Privileged Register 30

Memory Barrier 1 Write State Register 16

Exceptions 37 Total 1178

Table 4.1: Test vector count for suggested approach
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ReadRegister (3)

ReturnRegVal (3, value)

WriteRegister (4, value)

Figure 4.1: Ideal poset for the r[4] := r[3] operation

which styles are, if not better, at least more widespread and thus easier to understand by

a larger part of the community. Appendix A presents a set of coding guidelines that have

been de�ned for the coding of this project. This is a tentative series of guidelines that will

probably have to be re�ned as the model is built.

So far, we have discussed what can be done to improve the readability of the source

code, for when it is to be used as a reference source. There is also the issue of how to make

the generated poset itself readable. This problem is more complex than it seems, as will be

shown in the following example.

Suppose one wants to write code for assigning the values stored in the integer register

r3 to integer register r4. The �rst suggestion is to write the following piece of code for the

assignment:

r[4] := r[3];

Supposing that r is an object of the integer register set type and that [ ] is the function for

accessing the respective register, this code is quite readable, and its meaning in unambiguous

(a copy of the contents of register 3 is stored in register 4). This statement, though simple,

does not generate any events that would appear in a poset3. This makes it necessary to

add more statements to the source code, in order to make the corresponding poset useful.

An interesting poset for the operation described above is shown in �gure 4.1. In this

poset we see that the act of assigning the value of r[3] to r[4] consists of three parts: asking for

the desired register value (ReadRegister), retrieving the value of register r[3] (ReturnRegVal),

and then writing the result to register r[4] (WriteReg). The corresponding code is:

3The events that appear on a poset are events corresponding to actions de�ned in the language. Function

calls generate corresponding call and return events, but these are not seen in the �nal poset
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ReadRegister(3);

await (?val in SPARCint t)

ReturnRegVal(3,?val) =>

WriteRegister(4,?val);

ReadRegister(3) is an event sent to the Integer Register Set requesting the contents of

register r[3]. The code then speci�es that one should wait until getting the ReturnRegVal

event, which contains the requested value. This value is then assigned to the new register

through the WriteRegister event. This code generates the poset in �gure 4.1 and causes

the same state change as the previous piece of code. But, as can be seen, it is much more

complex and harder to understand.

This, then, is the main problem with readability. The coding technique that makes

the source code readable does not necessarily contribute to making posets readable, and

vice-versa. A compromise must be achieved, so that the resulting source code and poset

are, if not ideal, at least understandable.

4.3 Constraints

A constraint is a rule or condition that checks, restricts, or compels a system to avoid or

perform some speci�c action. In this paper's context, the emphasis is on the word checks.

A constraint is, thus, a rule that states how a system should or should not behave. It does

not force the desired behavior, but instead de�nes the space of allowed behaviors over which

an implementation may vary.

Constraints can be used to completely specify and build a totally new class of models

known as constraint-based models. Unlike executable simulation models, such as the one

described in this report, constraint-based models do not show how an implementation is

expected to behave, but just list all the rules that the implementation must satisfy if it is to

be considered valid. For this to be possible, the constraints must be su�cient to correctly

and completely specify the desired behavior. It is also helpful if the constraints could be

used to automate the veri�cation of an implementation's correctness. As was mentioned

before, Rapide has all the necessary characteristics for making this happen.

In the context of hardware modeling, it is interesting to come up with a taxonomy for

constraints, categorizing them according to what aspect of the architecture they refer to. In-

struction set architectures are usually speci�ed by stating the registers and functional units

present in the model, the expected behavior whenever certain inputs occur, and conditions

that are recognized as error conditions. This suggests three di�erent classes of constraints:

� Structural constraints: Specify the structural attributes of the constituents of the

model, indicating their existence and providing information about their size. This

includes things like the data width, the size of the register �le and the size of the

address space.

� Behavior constraints: Specify the expected or desired behavior of some part of
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the model, such as, for example, how a processor should react to a division by zero

exception.

� Error constraints: Are used to specify behaviors which should never be observed in

a correct implementation. An example of this would be a sum operation that yields

a wrong result.

There are several ways to represent such constraints in a form that can be processed

by a computer. Structural constraints, for example, can be represented as variables with

limits on the values they can store. This is already found in many programming languages.

C, for example, allows one to de�ne a variable to be of type enum, listing all the pos-

sible values that the speci�ed variable may store[KR88]. Error and behavior constraints

can be expressed in several di�erent ways including temporal logic[Fuj87] and �nite state

machines[BEP93].

Through the use of an adequate programming/speci�cation language one can use con-

straints such as the ones described above to build a model of a system. This model can �nd

many uses, but the most important one is in design veri�cation. An actual implementation

can be built and its simulation results can then be checked against the constraint-based

model for compliance. If the constraint-based model is correct and complete, conformance

to it guarantees that the implementation being veri�ed is also correct. Note that this model

is not a tool for formal veri�cation, i.e., it does not check the state space of an implementa-

tion and guarantees its correctness. Instead, it speeds up the design process by guaranteeing

that simulation results are valid and do not violate the standard.

There is a straightforward relationship in Rapide between interfaces and constraints.

The several parts of an interface correspond directly to speci�c types of constraints:

� Declaration part: This part is used to specify all the components of the interface

that are provided or required by an object of that type so that it can communicate

with other objects. Thus, it describes the structural constraint specifying which re-

sources have to be available (such as register), and/or mechanisms for accessing these

resources.

� Behavior part: This part describes a set of reactive programming rules, that indicate

how an object of that type should behave, which are nothing more than the behavior

constraints de�ned earlier. One important observation is that a module generator

should be used to code the actual behavior of an object of the type. If no generator

is de�ned, the behavior part will be used to automatically generate one; otherwise it

will be used as a constraint.

� Constraint part: This part is used to de�ne patterns that must always (or never)

occur in a Rapide simulation of an object of that type. It is used for the error

constraints, which indicate patterns that one never wants to �nd in a simulation.

The structure and architecture of a constraint-based model of the SPARC-V9 would be

very much like the one described previously in this report. Most of what would change
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is that what was before written as the behavior of a module now becomes a constraint

as to how it should behave. Since the original model is implementation-independent, this

characteristic should be maintained, resulting in a model that can be used as an automatic

veri�cation tool for actual designs.

What remains to be seen is how powerful Rapide's constraint language is, and how it

can be used to e�ciently describe a constraint-based model of the SPARC-V9. Each kind

of constraint has intrinsic characteristics that may make them easier or harder to code

e�ciently. The following subsections will show examples of each kind of constraint, and

determine how easily they can be implemented in Rapide.

4.3.1 Example 1: Error Constraint

The SPARC-V9 standard speci�es some limits on the addresses for accessing data stored

in memory. This requirement is a good example for an error constraint, since it speci�es

conditions that one never wants to see. To be more precise:

� There are no restriction on the addresses of byte accesses.

� Halfword (16-bit) accesses must be aligned on 2-byte boundaries.

� Word (32-bit) accesses must be aligned on 4-byte boundaries.

� Doubleword (64-bit) accesses must be aligned on 8-byte boundaries.

� Quadword (128-bit) accesses must be aligned on 16-byte boundaries.

This condition can be expressed as four error constraints speci�ed in the memory access

unit, stating that one does not want to see unaligned memory accesses. In Rapide, this

takes the following form:

never (?a in SPARCint t, ?m in AccessMode)

ReadReq(?a, ?m) where (?m = HALFWORD and (?a mod 2) /= 0);

never (?a in SPARCint t, ?m in AccessMode)

ReadReq(?a, ?m) where (?m = WORD and (?a mod 4) /= 0);

never (?a in SPARCint t, ?m in AccessMode)

ReadReq(?a, ?m) where (?m = DOUBLEWORD and (?a mod 8) /= 0);

never (?a in SPARCint t, ?m in AccessMode)

ReadReq(?a, ?m) where (?m = QUADWORD and (?a mod 16) /= 0);

These constraints are all stating that, in a poset, there should never be a read request to

memory of the proper kind (HALFWORD, WORD, DOUBLEWORD and QUADWORD)

with a non-valid memory address. There are no constraints for byte accesses because there

is no alignment condition for that kind of access.

Figure 4.2 shows the poset resulting from a simulation that violates these constraints.

Notice the presence of the inconsistent event, indicating that a constraint has been violated.
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ReadAck(255)

ReadReq(100, HALFWORD)

ReadAck(1000)

ReadReq(102, WORD)

INCONSISTENT

ReadReq(101, BYTE)

Figure 4.2: Example of an error constraint violation

In this case, the violation happened because the third ReadRequest event had a word address

(address 102) that was not properly aligned (it is not a multiple of four).

This kind of error is detected automatically by the simulation, and the tools can easily

identify it. The causality edges in the poset can then allow one to trace the inconsistent

event back to its cause, determining the sequence that generated the error.

4.3.2 Example 2: Behavior Constraint

The SPARC-V9 manual consists mostly of behavior constraints, specifying what an in-

struction should do, and which state changes have to be made. The branch instructions are

an example of this. They all di�er in the exact condition they check, but they share one

common template: they all evaluate a condition, calculate the e�ective address and then

possibly update the nPC register with that new value when the branch takes place. This

condition is written in Rapide in the following way:

match(Decode !

(Condition Evaluation � E�ective Address Calculation) !

(Update nPC or Empty) !

Executed )^(� *);

Decode and Executed are the events that mark the boundary of execution of any spe-

ci�c opcode in the model. What the constraint above says is that, if the instruction is

identi�ed as a branch instruction, it should be followed by an evaluation of the condi-

tion (the Condition Evaluation event) and a calculation of the e�ective address (the E�ec-

tive Address Calculation event) in no particular order (that's what the `�' binary pattern

operator means) and that should result in the nPC register being updated or not. This

particular constraint does not check if the branch should have been taken or not depending

on the condition being evaluated (there should be other constraints for that). Instead, it

just speci�es the general form of the behavior of such opcodes.

Figure 4.3 shows an example of this constraint being violated. In the poset, one sees

that the implementation erroneously wrote the e�ective address to the PC register instead

of the nPC register, and that is a pattern not expected by the constraint.

Just as in the case of error constraints, this constraint can be used to automatically

check both complete implementations and components being developed. Straightforward
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DECODE

CONDITION_EVALUATION

EFFECTIVE_ADDRESS_CALCULATION

UPDATE_PC

EXECUTED

INCONSISTENT

Figure 4.3: Example of behavior constraint violation

mapping could be applied to the complete implementation, while module generators could

be plugged into the model when one just wants to test components.

4.3.3 Example 3: Structural Constraint

Structural constraints are a little bit harder to check. There are two ways a structure

can violate the speci�cation: either it is not present when it should be, or it has the

wrong format(wrong size, for example). Unexpected structures that are present are not a

problem, since having something extra does not invalidate an architecture (unless speci�cally

prohibited by the standard, which is not the case here). Unfortunately, these are static

characteristics and posets show the dynamic behavior of a model so there is no way for the

structural constraints to actually generate inconsistent events when a simulation is run.

Structural constraints should, therefore, be checked during the phase when the model

is being compiled, since at this point the compiler can check the structure of the suggested

implementation and see if it conforms to that which is de�ned in the interface. Take, for

example, the structural constraint expressing the need for the presence of both a program

counter (PC) and a next program counter (nPC) in a SPARC-V9 implementation. Both

should be 64-bit registers that can be both read from and written to. This is how one could

express such a constraint in Rapide, in the declaration part of an interface:

PC : ReadWriteReg t is ReadWriteReg g(64); -- 64-bit wide

nPC : ReadWriteReg t is ReadWriteReg g(64); -- 64-bit wide

ReadWriteReg t is one of the basic types presented in section 2.3 that specify the struc-
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ture and behavior of 64-bit registers. Any implementation of the model should have these

registers present. Compilation of a module which does not have these components, or has

the wrong structures associated to them would generate compilation errors, thus indicating

a violation of the constraint.

This approach is, unfortunately, limited to modules that are being designed using the

executable model described in this paper as their basis. They would also have to use the

basic types de�ned in 2.3. That is, if one is following this general architecture and creating

separate units for the control/status registers, 
oating point registers and integer registers,

checking structural constraints could be performed automatically. Fortunately, the only

units that would have to conform to this format are the state units (see section 2.4) since

it is there that all structural constraints are located.

If an implementation chose not to follow this organization for the several modules,

there would be no way to easily verify the model's structural correctness. An approach to

solving this problem would consist of having a tool for comparing the source code of the

implementation and the model, extract the relevant structures and see if they match or not

(graph-isomorphism algorithms come to mind here). This would probably require the use

of annotation languages, along the lines of ANNA[KBL80] and VAL/VHDL[ALG+90] in

order to provide a formal speci�cation of the desired structures. A tool for this has not yet

been written.

This section presented three kinds of constraints: error, behavior and structural. Rapide

has mechanisms for checking the �rst two automatically, with no more inconvenience to

the designer than de�ning maps from his implementation to the constraint-based model.

Checking structural constraints is more complicated, since straightforward mapping does

not work here. Still, tools can be developed to perform this task.

4.4 Mapping

In section 1.2 we presented mapping as a mechanism for translating a set of events in one

domain into events in another. In Rapide this is done by describing event patterns in one

domain and binding them to patterns in the second. These patterns can be arbitrarily

complex, allowing one to do something as simple as mapping an event to another event, or

as complex as mapping entire computations to a single event (and vice-versa). Mapping is

a very 
exible and powerful concept.

There are many uses for mapping, but in the context of modeling instruction set ar-

chitectures and standards, there are two applications which are of interest to us. First,

mapping can be used to allow one to use already existing modules in the design without

having to modify them at all. Second, it allows one to check complete designs against the

standard automatically, thus verifying their conformance to the speci�cation.

Using mapping to connect pre-constructed modules accelerates the design process. Since

the module has already been written and debugged, no time is lost in rediscovering algo-

rithms or verifying if they have been implemented correctly. By using maps, it is possible to

get around idiosyncrasies in the code that would force one to change one's model in order to
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be able to use the package. For example, if one has a 
oating point package available that

requires sequential events for loading the data into the 
oating point unit, but the model

issues independent events for loading the data, mapping would take care of changing the

independent requests into a fully ordered one in one simple step.

The second use of mapping is, as was mentioned above, in verifying the correctness of

a complete model. Suppose, for example, that one builds a pipeline model of the SPARC-

V9 architecture using Rapide and wants to check it against the standard (either the ex-

ecutable one, or the constraint-based model suggested in the previous section). Because

of its implementation-speci�c nature, there might be events in the pipeline module that

do not correspond exactly to the standard, or vice-versa. For example, it is common in

pipeline architectures to forward a value to other pipeline stages in order to diminish the

number of stalls in the pipeline[HP90]. This event does not appear in a sequential model

and, therefore, mapping would be necessary to mask it when doing the veri�cation against

the standard. This feature makes mapping a useful mechanism in design veri�cation.

The same features that make mapping a powerful mechanism also make it a problem.

Namely, one has the freedom to map any event pattern to another, without any restrictions.

This enables one to make the model of a clock, for example, look like a car or even a

distributed database. Through mappings, it is very easy to inadvertently mask or introduce

errors in a computation.

The authors do not yet have much experience with mapping in order to provide an

e�ective solution to this problem. Techniques, guidelines and possibly software tools have

to be developed to help designers in constructing correct mappings from one domain to

another. Until this is done, careful coding and painstaking veri�cation are the only way to

guarantee the correctness of results when mapping is used.

Mapping makes it easy to verify the correctness of an implementation by de�ning rules

that map it to the standard and then checking for constraint violations. The same features

that enable one to do this, though, also allow one to introduce or mask errors in a model

unless careful attention is paid to the mapping process. Mapping, though a powerful mech-

anism for design veri�cation, should be used with care until a better understanding of the

process is attained.
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Chapter 5

Conclusion

This report described an approach to building an implementation-independent model of

the SPARC-V9 instruction set architecture. This model was designed to be used as an exe-

cutable reference tool, helping designers in understanding the intricacies of the architecture.

In order to be an executable standard, the model must have several important charac-

teristics. It has to be complete and correct in order to be a valid reference source; it has to

be readable in order to be accessible to designers; it has to be executable so as to provide

on-line help in understanding the model; it has to be precise so that there would be no mis-

understanding as to what each aspect of the architecture did; it has to be implementation-

independent so as not to add any conditions to the architecture which were not speci�ed in

the English language manual. Rapide-1.0 was chosen as the language for implementing this

model because it has all the necessary features to satisfy these objectives.

The architecture proposed consisted of de�ning basic building blocks for constructing

the model, as well as grouping opcodes according to their functionality into components.

These components were then connected through loosely coupled buses and a communication

protocol was de�ned, creating the model's architecture. There were a total of eight basic

building blocks, twelve components and six buses.

A simple model was built, using Rapide-0.2, to test the validity of the proposed archi-

tecture. The authors were able to get the model up and running in a very short time, as

well as modifying it to create a pipelined version of the model. This satis�ed the authors

as to the feasibility of the approach.

The proposed approach does not deal with all the issues that might arise in the process of

creating the actual model. These various issues include: the de�nition of a testing procedure

to verify the correctness and adequacy of the module; the de�nition of guidelines for ensuring

the readability of both the source code for the model and the posets generated during a

simulation run; the speci�cation of constraints for the model's behavior and structure; and

the de�nition of guidelines for creating maps from actual implementations for comparison

against the executable standard. Partial solutions have been presented for some of these

issues, but others still need further exploration.

The authors have started working on the actual implementation of the model described
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in this report. It is estimated that this work will take about one man-year to complete and

that the model will have approximately 15,000 lines of code. Once the model is complete

a considerable amount of time will still have to be spent on developing testing procedures,

analyzing posets and redesigning the model so as to better satisfy the initial goals.

This project, though complex enough in itself, also opens the doors for several di�erent

areas of research. Some topics that might possibly be explored in the future in more detail

are:

� Interconnection with other simulation languages: Though Rapide is a very

powerful and useful prototyping languages, it is very high-level. It might be inter-

esting, as models develop, to use other languages more suited for speci�c domains

(for example, using Verilog or VHDL for a more precise description of a hardware

component of a model). In this case, it would be interesting to allow for the seamless

integration of something described in such a language with the original Rapide-1.0

high-level model.

� Exploration of di�erent architectures: This report has described an implemen-

tation-independent model of the SPARC-V9 instruction set architecture. It would

be interesting to use this model as a basis for implementation-dependent models,

that could then be used for performance/resource analysis. Some interesting models

to build would be superscalar models, pipeline models and a resource-exploration

model that would take advantage of Rapide's dynamic object creation facility to create

resources such as ALUs and register �les as they were needed. This model would be

quite useful in evaluating the maximum number of each type of resource needed for a

speci�c program.

� Poset analysis of hardware models: Posets, with the added causality information,

add a new aspect to the hardware simulation result. Algorithms have to be developed

to help understand what this extra information means. For example, one should be

able to identify which edges in a simulation result happen due to resource limitations

and which ones are due to program dependencies.

� Posets and linear traces: Posets and linear traces are two di�erent views of a

simulation result. To be more precise, a poset represents a set of possible linear

traces. There are many mathematical explorations and algorithms to be devised to

answer questions such as how many di�erent linear traces a speci�c poset represents,

whether a linear trace is contained in a given poset or not, generating all the linear

traces corresponding to a poset, or even generating a poset that satis�es a given set

of linear traces.

� Poset presentation: Posets with more than a few dozen events in them are not

easily presented on a computer screen. Methods and tools have to be developed to

allow people to easily scan huge posets and extract the information they desire from a

poset. Also, it would be interesting to have tools that would guide the user and help

one zero in on the areas of interest.
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The project described in this report will be useful in several di�erent ways. First, it will

provide a tool for helping designers understand the SPARC-V9 instruction set architecture

standard. Second, it will serve as a test case for the Rapide-1.0 toolset. Finally, it will

serve as the basis for much future work in exploring Rapide, posets and the SPARC-V9

architecture. The authors are proud to be part of this e�ort.
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Appendix A

Coding Guidelines

A.1 Observations

The model of the SPARC-V9 processor described in this paper is intended to be used as

an executable standard. As such, one of its necessary characteristics is readability. By that

we mean that the model should be clear; a reader should be able to understand the model

easily by looking at the code, and use that to answer questions. To make the code readable,

a series of guidelines have to be established, ensuring coherence and uniformity. If these

guidelines are followed, the resulting code should be both understandable and correct.

The guidelines presented here attempt to make the model readable at the source level

by dealing with several distinct aspects of the code. First, they try to de�ne a coding style,

ensuring that the whole code has a consistent look-and-feel. Second, they present some

templates (or ready-made solutions) for some parts of the design, which guarantee a correct

and uniform implementation of a particular part. Finally, these guidelines provide some

information about what should (or should not) be in the model.

These guidelines are not complete. For instance, they do not deal with the topic of

constraints, exceptions, or poset readability. It is expected, as the project develops and style

issues are brought forth, that these guidelines might change. Also, one should remember

that these are not cast-iron rules, but just ideas on how the actual coding should proceed.

Here, like in many other places, common sense should prevail.

A.2 Guidelines

The following are the current guidelines governing the coding of the model:

1. All type interface names should end with ` t'. The objective of this is to make sure

that the reader knows at a glance whether what he is reading is the description of a

type or an instance of an object of that type.
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2. All module generator names should end with ` g'. The objective here is the same as

in the previous item; uniformity in naming parts so as to simplify understanding of

the code.

3. Avoid elegant, but hard to understand algorithms. The objective here is having read-

able code, not clever solutions that are hard to understand. It does not matter if the

clever solution needs only one line of source code while the readable one needs �ve,

as long as the latter is easier to understand.

4. Type interface descriptions should not have a behavior part. Trying to put too much

information in one part is a guaranteed way to make the code complex and hard to

read. By eliminating the behavior from the type interface and putting it in the module

generator, one diminishes this complexity and makes the model easier to understand.

The interface should provide information about what a type has to o�er and what it

needs, with the constraints giving an idea of what the poset behavior should conform

to. If the reader feels the need to understand how some activity is actually executed,

he can look at the code of the corresponding module generator or the poset generated

by executing the model.

5. State units should have as little behavior associated to them as possible. State units, as

the name implies, are intended to model storage, not behavior implementation. Thus,

any behavior associated with them should be limited to either storing or retrieving

information stored in the unit. There are, of course, some cases where behavior has to

be added, such as is the case in the integer register set, in which a function is necessary

to map the requested register index to the actual register in the register �le.

6. The code for each execution unit (with the exception of the Instruction Fetch and

Memory Access units) should contain the following template in the beginning of its

behavior:

Trigger(?i) where valid(?i) => decode(?i); Issue(?i);;

Trigger is an in (public) action that should have as a parameter the instruction that

might possibly be executed by the unit. It is intended to be connected to the

Broadcast action generated by the Instruction Fetch Unit.

valid is an internal function returning a boolean. It is used to indicate if the instruc-

tion it receives as a parameter is to be executed by this unit or not.

decode is the function that actually decodes the instruction and sets the values of

several internal state variables such as rs1, rs2, etc.

Issue is the internal action which actually starts the internal execution of the in-

struction. It should be used as the pattern for several rules of the form `Issue()

where condition-for-instruction =>'

This structure has two important advantages. First, it gives a uniform look to the

execution units, allowing the reader to go directly to the execution of the instructions

themselves, without worrying about how they are decoded. The second advantage
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is that this kind of organization allows one to create a one-to-one correspondence

between each Issue trigger and body with an opcode, thus simplifying the cross-

referencing process between the English standard and the source code.

7. Whenever possible, mention the section of the English standard that the code refers to,

whether it is the de�nition of an object (i.e. register) or the description of a behavior.

The objective of this is to provide a mapping from the code to the manual, thus

making it easy for someone to verify the meaning of the code (if necessary). This

should also aid when debugging the code for correct behavior.

8. Keep event generation to the minimum necessary. Only events that are part of the

poset that one wants to produce, or those that are necessary in order to create the

desired causality relations, should be used. Events are what show up on posets and

the more of them there are, the more complex the poset will be. Thus, less events

mean greater readability.

These guidelines are su�cient as a starting point for constructing the model's source

code. As the model begins to take shape, other guidelines might be added to the ones

already here, and some of them might be modi�ed or even abandoned. This is one issue

that will only be fully resolved when the model is fully implemented.
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Appendix B

Rapide Interface for Basic Types

This appendix contains the formal de�nition of the basic types, written in Rapide. Each

section contains the interface de�nition for one of the basic types.

B.1 ReadReg t

{ { READREG T : read only register

{ {

type ReadReg t is interface

[ ] : function (index : integer) return ReadReg t;

�eld : function (hi, lo : integer) return ReadReg t;

regsize : function () return integer;

inval : function () return integer;

sform : function () return string;

end ReadReg t;

B.2 ReadWriteReg t

{ { READWRITEREG T : read and write register

{ {

type ReadWriteReg t is interface

{ { access functions

[ ] : function (index : integer) return ref(ReadWriteReg t);
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�eld : function (hi, lo : integer) return ref(ReadWriteReg t);

{ { arithmetic functions

� : function () return ReadWriteReg t;

## : function (tail : ReadWriteReg t) return ReadWriteReg t;

{ { attribute functions

:= : function (value : integer);

:= : function (value : ReadWriteReg t);

:= : function (value : string);

{ { miscellaneous

regsize : function () return integer;

intval : function () return integer;

sform : function () return string;

end ReadWriteReg t;

B.3 UpCounter t

{ { UPCOUNTER T : upwards counter

{ {

type UpCounter t is interface

include ReadWriteReg t;

reset : function ();

inc : function () return ReadReg t;

end UpCounter t;

B.4 UpDownCounter t

{ { UPDOWNCOUNTER T : bidirectional counter

{ {

type UpDownCounter t is interface

include UpCounter t;

dec : function () return ReadReg t;
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end UpDownCounter t;

B.5 DispCounter t

{ { DISPCOUNTER T : displacement counter

{ {

type DispCounter t is interface

include ReadWriteReg t;

{ { arithmetic functions

+ : function (value : ReadReg t) return ReadReg t;

+ : function (value : integer) return ReadReg t;

end DispCounter t;

B.6 SPARCint t

{ { SPARCint t : integer register type

{ {

type SPARCint t is interface

include ReadWriteReg t;

{ { arithmetic and logical operations

� : function () return SPARCint t;

neg : function () return SPARCint t;

& : function (value : SPARCint t) return SPARCint t;

or : function (value : SPARCint t) return SPARCint t;

xor : function (value : SPARCint t) return SPARCint t;

+ : function (value : SPARCint t) return SPARCint t;

� : function (value : SPARCint t) return SPARCint t;

� : function (value : SPARCint t) return SPARCint t;

/ : function (value : SPARCint t) return SPARCint t;

mod : function (value : SPARCint t) return SPARCint t;

& : function (value : integer) return SPARCint t;

or : function (value : integer) return SPARCint t;
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xor : function (value : integer) return SPARCint t;

+ : function (value : integer) return SPARCint t;

� : function (value : integer) return SPARCint t;

� : function (value : integer) return SPARCint t;

/ : function (value : integer) return SPARCint t;

mod : function (value : integer) return SPARCint t;

{ { shift operators

shl : function (shift count: integer) return SPARCint t;

shr : function (shift count: integer) return SPARCint t;

ashiftr : function (shift count: integer) return SPARCint t;

{ { comparison operators

= : function (value : integer) return boolean;

< : function (value : integer) return boolean;

> : function (value : integer) return boolean;

>= : function (value : integer) return boolean;

<= : function (value : integer) return boolean;

/= : function (value : integer) return boolean;

= : function (value : SPARCint t) return boolean;

< : function (value : SPARCint t) return boolean;

> : function (value : SPARCint t) return boolean;

>= : function (value : SPARCint t) return boolean;

<= : function (value : SPARCint t) return boolean;

/= : function (value : SPARCint t) return boolean;

{ { attribute functions

:= : function (value : SPARCint t);

end SPARCint t;

B.7 SPARCreal t

{ { SPARCreal t : 
oating point register type

{ {

type SPARCreal t is interface

include ReadWriteReg t;

+ : function (value : SPARCreal t) return SPARCreal t;

� : function (value : SPARCreal t) return SPARCreal t;
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� : function (value : SPARCreal t) return SPARCreal t;

/ : function (value : SPARCreal t) return SPARCreal t;

sqrt : function () return SPARCreal t;

{ { comparison operators

= : function (value : SPARCreal t) return boolean;

< : function (value : SPARCreal t) return boolean;

> : function (value : SPARCreal t) return boolean;

>= : function (value : SPARCreal t) return boolean;

<= : function (value : SPARCreal t) return boolean;

/= : function (value : SPARCreal t) return boolean;

{ { attribute functions

:= : function (value : SPARCreal t);

end SPARCreal t;

B.8 RegStack t

{ { REGSTACK T : register stack type

{ {

type RegStack t is interface

include ReadWriteReg t;

pop : function () return ReadReg t;

top : function () return ReadReg t;

end RegStack t;
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