FAST VOLUME RENDERING
USING A SHEAR-WARP FACTORIZATION
OF THE VIEWING TRANSFORMATION

Philippe G. Lacroute

Technical Report: CSL-TR-95-678

September 1995

This research has been supported by ARPA/ONR under contracts
N00039-91-C-0138 and 175-6212-1, NSF under contract CCR-9157767, and
grants from Software Publishing Corp., Softimage, and the sponsoring companies
of the Stanford Center for Integrated Systems.

FAST VOLUME RENDERING USING
A SHEAR-WARP FACTORIZATION
OF THE VIEWING TRANSFORMATION

Philippe G. Lacroute
Technical Report: CSL-TR-95-678
September 1995

Computer Systems L aboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, CA 94305-4055
e-mail: pubs@shasta.stanford.edu

Abstract

Volume rendering is atechnique for visualizing 3D arrays of sampled data. It has applica
tionsin areas such as medical imaging and scientific visualization, but its use has been lim-
ited by its high computational expense. Early implementations of volume rendering used
brute-force techniques that require on the order of 100 seconds to render typical data sets
on aworkstation. Algorithmswith optimizationsthat exploit coherence in the data havere-
duced rendering timesto the range of ten seconds but are still not fast enough for interactive
visualization applications. Inthisthesiswe present afamily of volumerendering algorithms
that reduces rendering times to one second.

First we present a scanline-order volume rendering algorithm that exploits coherence
in both the volume data and the image. We show that scanline-order algorithms are funda-
mentally more efficient than commonly-used ray casting algorithms because the latter must
perform analytic geometry cal cul ations (e.g. intersecting rayswith axis-aligned boxes). The
new scanline-order algorithm simply streams through the volume and the image in storage
order. We describe variants of the algorithm for both parallel and perspective projections
and a multiprocessor implementation that achieves frame rates of over 10 Hz.

Second we present a solution to a limitation of existing volume rendering algorithms
that use coherence accelerations: they require an expensive preprocessing step every time
the volume is classified (i.e. when opacities are assigned to the samples), thereby limiting
the usefulness of the algorithms for interactive applications. We introduce a data structure
for encoding spatial coherence in unclassified volumes. When combined with our render-
ing algorithm this data structure allows us to build a fully-interactive volume visualization
system.

Key Words and Phrases: Volume Rendering, Scientific Visualization, Medical Imaging,
Software Algorithms, Parallel Algorithms.

Copyright (© 1995

Philippe Lacroute

Acknowledgements

Many people have contributed to this work and provided support during my years at Stan-
ford. First of al, I would like to express my sincerest gratitude to my advisor, Marc Levoy,
who sparked my interest in computer graphics and provided encouragement at key times.
Marc always staysinvolved with his students, whether during marathon brain storming ses-
sions or on canoeing expeditions in the swamps of Florida. | would also like to thank Pat
Hanrahan and Sandy Napel for serving on my reading committee and for their interest in
my work. Their comments greatly improved this manuscript. | am also indebted to Mark
Horowitz who provided guidance during my first few years at Stanford and who helped
shape my interest in computer systems.

Next, | would like to thank my colleagues in the Stanford Graphics Group for provid-
ing a stimulating and fun research environment. In particular, | thank Brian Curless, Reid
“Ankles’ Gershbein, Craig Kolb, Matt Pharr, and especialy Eric Veach for their comments
on this manuscript. Maneesh Agrawala contributed to the implementation of the parallel
volume renderer described in Chapter 6.

| would also like to thank the members of the DASH, FLASH and TORCH groups. In
particular, J.P. Singh helped me to make sense of my parallel performance results, and Mar-
garet Martonosi, Steve Woo, Mark Heinrich, and Dave Nakahira answered my countless
guestions about their cache simulators and the DASH multiprocessor.

Many thanksto Charlie Orgish, the only system administrator | know who lets the stu-
dents mis-administer the machines and then is always on call to fix the problems. Thanks
also to Sarah Beizer for cheerfully dealing with the University bureaucracy.

Silicon Graphics, Inc. provided time on the Challenge multiprocessor for the perfor-
mance results in Chapter 6. The volume data sets used in this work were provided by Pat

Hanrahan, Sandy Napel, Siemens Medical Systems, Inc., and the North Carolina Memo-
rial Hospital. My graduate work was supported by ARPA/ONR under contracts NOOO39-
91-C-0138 and 175-6212-1, NSF under contract CCR-9157767, and grants from Software
Publishing Corp., Softimage, and the sponsoring companies of the Stanford Center for In-
tegrated Systems.

Finaly, | would like to thank my parents, Bernard and Ronni Lacroute, who have pro-
vided love, encouragement, and home-cooked mealswhenever my fridge wasempty. | ded-
icate this dissertation to them.

Contents

Acknowledgements i
1 Introduction 1
1.1 VolumeRendering 3
1.1.1 TheVolumeRendering Equation 3

1.1.2 TheVolumetric Compositing Approximation 8

1.1.3 DataRepresentationand Sampling 11

114 TheVisudizationProcess 13

1.2 A New Family of Fast Volume Rendering Algorithms 15
1.3 Organization 16

2 Prior Work 18
2.1 VolumeRendering Algorithms. 18
211 RayCasting 19

212 Splatting 20

213 CdlProjection. 21

214 MultipassResampling 22

2.2 AccderationTechniques, 24
221 Spatial DataStructures 24

222 EalyRay Termination. 26

23 Chapter Summary 28

3 The Shear-Warp Factorization 29
3.1 AnOverview of the Factorization 30

3.2 TheAffineFactorization 33
3.3 ThePerspective Factorization 35
3.4 Propertiesof theFactorization 39
3.5 Exigting Shear-Warp Algorithms.. 40
3.6 Chapter Summary 43
Three Fast Volume Rendering Algorithms 44
4.1 Pardld Projection Rendering Algorithm 44
4.1.1 Overview of the Parallel Projection Algorithm 44
4.1.2 TheRun-LengthEncodedVolume. 47
413 TheRun-LengthEncodedIlmage 49
414 ResamplingtheVolume 53
415 WarpingtheIntermediatelmage 54
4.1.6 Opacity Correction 54
4.1.7 Implementation of the Parallel Projection Algorithm 56
4.2 Perspective Projection Rendering Algorithm. 60
4.2.1 Overview of the Perspective Projection Algorithm 61
422 ResamplingtheVolume 62
4.2.3 Opacity Correction 62
4.2.4 Implementation of the Perspective Projection Algorithm 63
4.25 Limitations of the Perspective Projection Algorithm 66
4.3 Fast Classification Algorithm 68
4.3.1 Overview of the Fast Classification Algorithm 69
432 TheMin-MaxOctree 71
433 TheSummed-AreaTable 74
4.3.4 Implementation of the Fast Classification Algorithm 76
435 Limitationsof the Fast Classification Algorithm 79
44 SwitchingBetweenModes oL 81
45 Chapter Summary 83
Performance Analysis 84
5.1 Performance of the Shear-Warp Algorithms 86

Vi

6

511 Speed and Memory Performance
512 ImageQuality
5.2 Comparison of Coherence-Accelerated Volume Rendering Algorithms . .
521 AsymptoticComplexity
5.2.2 Experimenta Methodology
5.2.3 Comparison of Speedups from Algorithmic Optimizations
524 Costsof Coherence Accelerations
525 MemoryOverhead
5.2.6 Analysisof the Shear-Warp Coherence Data Structures
53 Low-CoherenceVolumes,
53.1 Categoriesof VolumeData
532 Voxe Throughput
5.3.3 Thelmpact of Coherence on Rendering Time
534 TheRoleof Coherencein Visudization
54 Chapter Summary

A Multiprocessor Volume Rendering Algorithm

6.1 Multiprocessor Rendering Algorithm
6.1.1 Imageand Object Partitions
6.12 TaskShape.
6.1.3 LoadBaancing
6.1.4 DataDistribution L
6.1.5 Ovedl Algorithm

6.2 Implementation
6.2.1 Hardware Architectures

6.3 Results.
6.31 RenderingRates
6.3.2 Performance Limitson the Challenge Multiprocessor
6.3.3 Performance Limitson the DASH Multiprocessor
6.3.4 Memory Performance

Vil

103
105
110
114
116
119
119
121
123
126
127

8

6.35 LoadBaancing
6.3.6 ReaedWork
6.4 Chapter Summary

Extensions
7.1 FexibleShadingWithLookupTables
711 ShadeTreesandLookupTables
7.1.2 Implementation of Shading Functions
713 General ShadeTrees.
72 FastDepthCueing
721 DepthCueing
7.2.2 Factoring the Depth Cueing Function
7.2.3 Implementation of Fast DepthCueing
7.3 Rendering Shadowswitha?2D Shadow Buffer
7.3.1 Algorithmsfor Rendering Shadows
7.3.2 Implementation of the Shadow Rendering Algorithm
7.3.3 Performance of the Shadow Rendering Algorithm
7.4 Rendering Mixturesof Volume Dataand Polygons
75 ClippingPlanes
7.6 Chapter Summary

VolPack: A Volume Rendering Library

8.1 SystemArchitecture
8.2 VolumeRepresentation
8.3 Classificationand Shading Functions
84 ViewingModel
85 Functionality Provided by VolPack
86 ChapterSummary

Conclusions
91 FnadSummary
9.2 Future Directionsfor Performance Improvements

viii

152
153
153
155
160
160
160
162
164
165
165
167
169
173
175
176

177
178
180
181
182
182
183

9.3 Hardware Support for VolumeRendering 188

9.4 InteractiveVolumeRendering 190

A Mathematics of the Shear-War p Factorization 192
A.1 Coordinate Systemsand Definitions 192
A.2 TheAffineFactorization 194
A.21 FindingthePrincipleViewing Axis 194

A.2.2 Transformation to Standard Object Coordinates 196

A23 TheShearandWarpFactors 197

A.2.4 ProjectiontotheIntermediatelmage 199

A.25 The Complete Affine Factorization 201

A.3 ThePerspective Factorization 202
A.3.1 FindingthePrincipleViewing Axis 202

A.3.2 Transformation to Standard Object Coordinates 204

A.33 TheShearandWarpFactors 205

A.34 Projectiontotheintermediatelmage 207

A.3.5 The Complete Perspective Factorization 209
Bibliography 211

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4

7.1
7.2

Characteristics of the data sets used for performancetesting.
Rendering parameters used for performancetesting.
Rendering timeand memory usageresults.
Timingresultsforthe2D warp.
Speedup of the shear-warp algorithmrelativeto aray caster.
Timing breakdowns for coherence-accelerated rendering algorithms. . . .

Characteristics of the multiprocessors used for performance testing.
Rendering rates and tasks sizeson the SGI Challenge.
Rendering rates and task sizes on the Stanford DASH Multiprocessor.

Comparison of load balancing algorithms.

Performance resultsfor the shading algorithm.
Performanceresultsfor fast depthcueing.

111

136
140
140
149

List of Figures

11
12
13
14
15

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Exampleof avolumerendering. 2
A physical moddl for volumerendering.

A simplified model for volumerendering. 7
Examplesof samplinggridsin2D.. 11
Thevisuadlizationprocess. 14
Sheared object space for aparale projection. 30
Sheared object space for a perspective projection. 31
The brute-force shear-warp algorithm. 32
Determining the affine shear coefficients. 34
The perspective shear transformation. 36
The perspective scaletransformation. 38
Resampling atrandated voxel dlice. 40
Ray casting with the template optimization. 42
Run-length encoding the intermediateimage. 45
Resampling and compositing run-length encoded scanlines. 46
Run-length encoding thevolume. 48
A tree data structure to represent an opaque pixel run. 50
The path compression optimization. 51
Opacity correction. 55
Plot of the opacity correction function.. 56
Pseudo-code for the parallél projection algorithm. 57
Sampling the volume in the perspective projection algorithm. 61

Xi

4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

Pseudo-code for the perspective projection algorithm.
Splitting the volumeto support awidefieldof view.
Visiblity errors in the perspective rendering algorithm.
Goal of thefast classification algorithm.
Data structures for the fast classification algorithm.
Diagramof amin-max octree.
Diagram of a2D summed-areatable.
Pseudo-code for thefast classification algorithm.
A family of volumerendering algorithms.

Volumerendering of an MR scanof abrain.
Volumerenderingof aCT scanof ahead.
Timing resultsfor arotationsequence.
Executiontimefor each stageof rendering.
Color volumerenderingof aCT scanof ahead.
Color volumerendering of aCT scan of anengineblock.
Color volumerendering of aCT scan of ahuman abdomen.
Perspective volume rendering of a CT scan of anengineblock.
Image quality comparison of the shear-warp algorithm with aray caster.

Image quality comparison of abilinear filter with atrilinear filter.
Timing breakdowns without coherence optimizations.
Timing breakdowns with coherence optimizations.
Comparison of timing breakdowns for several datasets.
Pseudo-code for tracing aray throughanoctree.
Memory overhead without coherence optimizations.
Memory overhead with coherence optimizations.
Impact of individual coherence optimizations.
Categoriesof volumedata.
Results of the voxel throughput experiment.
Test volumes for the voxel coherence experiment.
Results of the voxel coherenceexperiment.

Xii

70

87

93

115

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10

8.1

Al
A2
A3
A4
A5

Pseudo-code for the multiprocessor algorithm.
Block diagramof a2x2DASHsystem.
Test data setsfor the multiprocessor algorithm.
Interactive user interface for the multiprocessor algorithm.
Timing results for a rotation sequence on the DASH multiprocessor.

Speedup curve on the Challenge multiprocessor.
Overhead vs. task size on the Challenge multiprocessor.
Overhead vs. number of processors on the Challenge multiprocessor. . . .
Speedup curve onthe DASH multiprocessor.
Overhead vs. number of processors on the DASH multiprocessor.

Anexampleshadetree.
Quantizing normal vectors.
Volumerenderingwithdepthcueing.
Factoring the depth cueing function.
Diagram of Grant’s shadow mask sweep algorithm.
Pseudo-code for the shadow rendering algorithm.
Volume rendering with the shadow rendering algorithm.
Limitations on the sampling rate in the shadow rendering algorithm. .
Aliasing intheshadow buffer.
Rendering mixtures of volumedataand polygons.

Schematic diagram of a VolPack renderingcontext.

Coordinate systems used in the derivation of the shear-warp factorization.

Determining the affine shear coefficients.
Definition of the intermediate image coordinate system.
The shear transformation in the perspective shear-warp factorization. . . .
The scale transformation in the perspective shear-warp factorization. . . .

Xiii

155
158
161
162
166
167
170
171
172
174

179

193
198
200
205
206

Chapter 1
| ntroduction

Three-dimensiona arrays of data are a convenient and widely-used representation for in-
formation. Medical imaging technol ogies such as magnetic resonance (MR) and computed
tomography (CT) can produce 3D arrays of data containing detailed representations of in-
ternal organs, allowing doctors to make a diagnosiswithout invasive surgery. Confocal mi-
croscopy can produce data revealing the 3D internal structure of individual cellsin a bio-
logical samplewith details as small as 0.1 microns. In seismic exploration, acoustic waves
triggered by an explosive can be used to produce 3D maps of geologic structures below the
surface of the Earth. Asafinal example, simulations based on computational fluid dynam-
ics produce data on a 3D grid that can be used to predict the aerodynamics of a proposed
automobile design or the regional weather.

All of these measurement and simulation techniques can produce very large arrays of
numbersthat are difficult to understand due to the sheer quantity of data. Data visualization
techniques specialized for large 3D arrays are necessary. One emerging technique is vol-
ume rendering, a method for producing an image from a 3D array of sampled scalar data.
Figure 1.1 shows a volume rendering produced from a CT scan of a human head. Volume
rendering is arobust and versatile method for visualizing 3D arrays, but it has one key dis-
advantage that has prevented its widespread use: existing volume rendering algorithms are
computationally expensive.

The high computational cost of volume rendering stems from the large size of typical

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Example of a volume rendering produced from a CT scan of a human head. The input
data contains 15 million samples.

datasets. Arrayscontaining many megabytesof dataare common, and rendering such quan-
tities of data quickly enough for interactive applications requires large amounts of process-
ing power and high memory bandwidth. Past approaches to speeding up volume rendering
haveincluded trading off image quality for speed, or using large, expensive multiprocessors
or special-purpose hardware.

This thesis presents a family of new volume rendering algorithms with lower compu-
tational costs and improved memory performance. The performance improvements stem
from high-level algorithmic optimizationsthat expl oit coherencein the datamore efficiently
than previous approaches. The new agorithms achieve rendering ratesthat are fast enough
for interactive applications on desktop workstations, without using specialized hardware
and without significantly compromising image quality. Parallel versions of the new al-
gorithms running on small- to medium-scale multiprocessors achieve real-time rendering
rates.

The rest of this chapter describes volume rendering in more detail, motivates the need
for fast algorithms, and summarizes the contributions of thisthesis.

CHAPTER 1. INTRODUCTION 3

1.1 VolumeRendering

The basic stepsin any volume rendering algorithm consist of assigning acolor and an opac-
ity to each sample in a 3D input array, projecting the samples onto an image plane, and
then blending the projected samples. The foundation of this visualization technique is a
physically-based model for the propagation of light in a colored, semi-transparent material.
In Section 1.1.1 we develop the model by writing an energy balance equation and reducing
it to the volume rendering equation. In Section 1.1.2 we show how to simplify the volume
rendering equation to a form known as the volumetric compositing approximation. This
approximation is the starting point for the algorithmsin this thesis.

1.1.1 TheVolume Rendering Equation

The input to a volume rendering algorithm is a 3D array of scalars (as opposed to vectors
which have a directional component). The array is caled a volume and each element of
the array is called avoxel. Although some volume rendering algorithms assume that each
voxel represents asmall cube in space with aconstant scalar value, we will assume a voxel
represents a point sample of a continuous scalar function.

Volume rendering is an approximate simulation of the propagation of light through a
participating medium represented by the volume (Figure 1.2). The medium can be thought
of asablock of colored, semi-transparent gel in which the color and opacity are functions
of thescalar valuesin theinput array. Aslight flowsthrough the volumeit interactswith the
gel viasevera processes. light can be absorbed, scattered or emitted by the volume. Many
other types of interactions are also possible, such as phosphorescence (absorption and re-
emission of energy after a short time delay) and fluorescence (absorption and re-emission
of energy at a different frequency). However since the goal of volume rendering is data
visualization, not accurate simulation of the physics, we will omit many parts of the full
optical model that are not necessary for the visualization. Given asimplified optical model,
a volume rendering algorithm produces an image by computing how much light reaches
each point on an image plane.

Light transport is governed by a special case of the Boltzmann equation from transport
theory, whichisthe study of how astatistical distribution of particles(such asphotons) flows

CHAPTER 1. INTRODUCTION 4

1 .
. S~ 4 viewer
light ’,O\ /
k .
image
II
\\ I'
\‘,
volume

Figure 1.2: A physica mode for volume rendering: A light ray propagates through a cube of semi-
transparent gel and scatters onto the image plane.

through an environment. Arvo[1993], Glassner [1995, Ch. 12] and Cohen & Wallace[1993,
Ch. 2] containintroductionsto transport theory and itsapplication to computer graphics, and
Siegdl & Howell [1992] contains amore detailed treatment of the underlying physics. Here
we summarize the major results.

The flow of photonsin afixed environment rapidly reaches equilibrium, so the number
of photons flowing through a given region of space in a particular range of directions must
be constant over time. Thusif we consider the photonsin adifferential volume about a point
r traveling in a differential range of angles about a direction < and we sum the change in
the number of photons due to each possible type of interaction with the volume then the net
change must be zero.

Instead of counting photons we will write an energy balance equation in terms of ra-
diance, designated by L(r,). Radiance describes the density of power transmitted by the
photonsat aparticular point inagivendirection. More precisely it isthe power per unit area
(projected onto the direction of flow) per unit solid angle, and it has units' of W/m?-sr.

LUnitswill be expressed using the MK S system. The meter (m) is the unit of distance and the watt (W) is
the unit of power (energy per unit time). The steradian (sr) isthe unit of solid angle.

CHAPTER 1. INTRODUCTION 5

The energy balance equation statesthat the directional derivative of theradiance along a
particular ray equalsthe sum of three termsrepresenting losses and gainsdueto interactions
with the volume:

&-VL(r,d) = —¢y(r)L(r,d) + e(r,d) + | k(r,d" = I)L(r,d")dw' (11)
S2

¢¢(r) isthe extinction coefficient (with units of m=") which equal s the probabil -

ity per unit distancethat a photon traveling along the ray will be either absorbed

or scattered into a different direction by the volume.

¢(r, d) isthe emission function (with units of W/m3-sr) that accounts for pho-
tons emitted within the volume.

k(r,&' — &) isthescatteringkernel (with unitsof sr—! m—1) whichisthe prob-
ability per unit solid angle per unit distance that a photon moving in direction
&' will scatter into direction . Weintegrate this function against the incoming
radiancefrom all directions(denoted by S?) to account for the photons scattered
into theray.

Equation 1.1 isafirst order differential equation known as the differential form of the equa-
tion of transfer. It can be written in an equivalent integral form as follows:

L(I’, (.3) = B_T(r’rB)LB(I'B, u_J)) + / 6_7'(1‘,1")62(['/7 Jj’) dr’ (12)
I(r,rg)

7(r,s) istheintegra of the extinction coefficient along the straight-line path
between pointsr and s:

7(r,s) = /F(r) o (x") dr’

The path between the two pointsis denoted by I'(r, s). We notethat e=7("%) is
the integrating factor used to convert Equation 1.1 into Equation 1.2.

L (r, &) isafunction specifying boundary conditionsover aclosed surface sur-
rounding the volume. The point rg isthe intersection between the closed sur-
face and theray from r in direction <.

CHAPTER 1. INTRODUCTION 6

Q(r, o) isshort-hand for the sum of the emission and scattering terms:

Qr,d) =€(r,d)+ | k(r,d' = J)L(r,&")d'
82
This function can be thought of as a generalized source function that accounts
for al of the gainsin the energy balance equation.

Theintegral form of the equation of transfer states that the radiance at any point along aray
equalsa contribution from the radiance entering at the boundary of the volume plusasum of
contributions from the source terms along the ray. All of these contributions are multiplied
by an exponential attenuation function that depends on the distance between the source and
the measurement point (located at r).

Equation 1.2 is a generalization of many equations used in rendering. Kgjiya's render-
ing equation [Kajiya 1986] is equivalent to the equation of transfer specialized for envi-
ronments consisting of surfaces (represented by boundary conditions) separated by empty
space, in which case volume absorption, emission and scattering drop out of the equation.
Zonal radiosity isamethod for solving the equation of transfer assuming that the scattering
and emission functions are isotropic, i.e. independent of & [Rushmeier & Torrance 1987].
Finally, with a different set of assumptions we arrive at the volume rendering equation.

First, we only model single scattering, i.e. al of the photons reaching the image are as-
sumed to have scattered only once after leaving alight source. Second, we ignore absorp-
tion between the light source and the scattering event (but not between the scattering event
and theimage plane). Third, we assumeisotropic absorption. Fourth and finally, we choose
a simple boundary condition: we assume that the only energy entering the volume comes
from afinite set of point light sources.

The first two assumptions allow us to drop the scattering integral from the equation of
transfer since we can use the emission term to model the single scattering event. In this
model the light sources deposit energy at each voxel and the voxelsthen re-emit the energy.
The emission function describes the amount of re-emitted energy as afunction of the view-
ing angle. Typical volumerendering algorithms compute the value of the emission function
at avoxe using aloca illumination model that isafunction of the voxel’s scalar value and
the positionsof thelight sources. Sincewe haveignored absorption between thelight source

CHAPTER 1. INTRODUCTION 7

. sample
points

volume

viewing ray

Figure 1.3: A simplified model for volume rendering: Each voxe in the volume emits light (com-
puted using a local illumination model) and absorbs a fraction of the light passing through it, but
scattering isignored. The vaue of apixel is computed by sampling the voxel values along a view-
ing ray from a point 2 on the imageto a point 2 g on the opposite boundary of the volume and then
numerically evaluating the volume rendering integral.

and the voxel thismodel cannot be used to produce shadows. We discuss volume rendering
algorithms that correctly render shadows in Chapter 7.
With all four assumptions Equation 1.2 reduces to the volume rendering equation:

L(z) = /wB e Je (@) (1)l (1.3

In this equation we have reparametrized the radiance in terms of aone-dimensional position
variable x representing distance along a viewing ray. The upper limit of integrationiszp,
the point at which the ray exits the volume.

A simpleray casting algorithm based on the volumerendering equation operates by trac-
ing rays into the volume parallél to the viewing direction as shown in Figure 1.3. The ren-
dering algorithm then numerically evaluatestheintegral in Equation 1.3 alongeachray. The
user of the volume renderer specifies a mapping from the scalar val ue associated with each
voxel to the parametersin the physical model, such as the absorption coefficient and the pa-
rameters of theillumination model for computing the emission function. In the next section
wewill describe acommon method for evaluating the integral, called volumetric composit-
ing, and we will refine the ray casting algorithm.

CHAPTER 1. INTRODUCTION 8

The volume rendering equation derived in this section is equivalent to the volume ren-
dering models proposed by Blinn [1982], Levoy [1989] and Sabella[1988]. Other volume
rendering models based on the more general equation of transfer, which includes multiple
scattering, have also been proposed: Kajiya & Von Herzen [1984] derive an approxima-
tion for the case of a volume containing high-albedo (highly-reflective) particles, Kriger
[1990] evaluates the full equation using Monte Carlo integration techniques, and Sobiera-
jski & Kaufman [1994] perform volumetric ray tracing including ideal specular reflections
at isosurfacesin the volume.

A key advantage of volume rendering isthat the volume data need not be thresholded, in
contrast to surface rendering techniques. Surface rendering techniques for volume data op-
erate by fitting polygons to an isosurface in the volume (using, for instance, the marching
cubes algorithm [Lorensen & Cline 1987]), and then rendering the polygonal model with
traditional polygon rendering techniques. The surface-fitting process requires making bi-
nary decisions, i.e. the volume must be threshol ded to produce regionsthat are either inside
or outside the isosurface. If the volume contains fuzzy or cloud-like objects then a polyg-
onal surface will be a poor approximation. In contrast, volume rendering algorithms never
explicitly detect surfaces so they naturally handle fuzzy data aswell as sharply-defined sur-
faces.

1.1.2 TheVolumetric Compositing Approximation

In the previous section we began with an energy balance equation, we ssmplified the equa-
tion by ignoring some of the physical interactions, and we arrived at the volume rendering
equation. In this section we derive an approximate numerical solution to the volume ren-
dering equation called the volumetric compositing equation. Many volume rendering algo-
rithms use this approximation, including the new algorithmsin this thesis.

The volume rendering equation derived in the previous section is:

L(z) :/ P e I (1 gy

CHAPTER 1. INTRODUCTION 9

The integralsin this equation can be evaluated using the rectangle rule:

n—1 o1 n—1 i—1
L(z)=> e Lm0 AT Ay = YoeiAa- [[e®8"
=0

i=0 3=0

where

€& = e(lx+iAn)
i ¢e(x +iAx)

for some sample spacing Ax along the viewing rays. The expression on the right side of
the equation can be written using the “over” operator from digital compositing [Porter &
Duff 1984] as we can see by making the following substitutions. First define:

a; = 1—e %2 theopacity of samplei
C; = (¢/a;)-Ax thecolor of samplei
¢ = Ci the premultiplied color and opacity

The premultiplied color and opacity isaconvenient quantity for digital compositing [Porter
& Duff 1984]. We have defined the “color” of a sample to be proportional to its emission
normalized by its opacity. Intuitively a voxel with vanishing opacity must contain empty
space so its emission should also vanish and this ratio is well-defined. This definition of
color has no rigorous physical interpretation but it does have the same units as radiance
(mapping radiances to displayable colors is a genera problem in physically-based render-
ers, most of which perform some form of ad-hoc scaling just before displaying an image).
Given these definitions the volume rendering equation can be rewritten as follows:

n—1 =1
Lz) = Y e J[1-q
=0 7=0
= Co+61(1—&0)+Cg(1—a0>(1—&1>+"'
+ Cn,1(1 — Oé[)) te (1 — Oénfg)

= ¢y OVEr ¢; OVEr ¢, OVEr --- OVEl ¢, (1.4)

CHAPTER 1. INTRODUCTION 10

Equation 1.4 isthe volumetric compositing equation. It describes amethod for numerically
evaluating the volume rendering equation.

If we incorporate the volumetric compositing equation into the ray casting algorithm
introduced in the previous section, we can render a volume as follows:

1. For each image pixel, cast aray through the volume.

2. At regularly-spaced sample points along the ray compute a color C; and an opacity
«; from the scalar value in the volume.

3. Combine the colors and opacities along the ray using Equation 1.4.

Thisisasimple brute-force algorithm. If the volume contains n voxels per side and theim-
ageiscomputed by casting n? rayswith n sample points per ray then the algorithm requires
O(n?) operations. In thisthesis we will propose methods to compute the same image with
lower computational costs.

Severa other compositing equations have been proposed for volume rendering. Up-
son & Keeler [1988] use the trapezoid rule and Novins & Arvo [1992] use higher-order
guadrature rules to evaluate Equation 1.3 more accurately. There are also two common
alternatives to volumetric compositing that model neither absorption nor scattering: X-
ray projections and maximum intensity projections (MIP) [Laub & Kaiser 1988, Keller
et al. 1989, Laub 1990]. In an X-ray projection the value of a pixel equalstheintegral of the
emissionfunction, andin aMIP rendering the value of apixel equal sthe maximum emission
of al samples along the ray.

X-ray projections can be computed rapidly using atheorem from Fourier analysiscalled
the Fourier projection-slicetheorem [Dunne et al. 1990, Malzbender 1993]. The advantage
of the method isitslow computational complexity: O(n?logn) operationsto project an ar-
bitrary n* voxel volume onto an arbitrary image plane. The greatest disadvantageisthat the
algorithm cannot be used to render images with occlusions as in conventional volume ren-
dering since absorption is ignored, although algorithms to introduce aternative depth cues
have been proposed [Levoy 1992, Totsuka& Levoy 1993]. Thealgorithmsinthisthesiscan
be adapted to use X-ray projectionsand MIP, but we will focus on methods for accel erating
volume rendering algorithms based on the volumetric compositing equation.

CHAPTER 1. INTRODUCTION 11

(a) regular grid (b) curvilinear grid (c) unstructured grid

Figure 1.4: Examples of sampling gridsin 2D: (a) regular grid, (b) curvilinear grid, (c) unstructured
grid.

1.1.3 Data Representation and Sampling

In the previous discussion we have implicitly assumed that the physical parameters associ-
ated with a volume, e.g. the emission and absorption coefficients, are defined everywhere
within the volume. In practice volume data is usually represented as an array of discrete
samples, and the samples in the volume do not in general correspond to the sample points
required to evaluate the volumetric compositing equation. Thuswe must consider the rep-
resentation of the volume and the method for determining values at arbitrary sample points
within the volume.

There are several common sampling grids used for volume data (Figure 1.4). A regular
grid consists of uniformly-spaced sample points located on a rectangular lattice. A curvi-
linear grid isaregular grid that has been warped with a non-linear transformation so that
the sides of each cell need not be straight. Such grids are often used in computational fluid
dynamicsto conform the shape of the grid to the surface of an arbitrary object. An unstruc-
tured gridisan arbitrary collection of sample pointswith noimplicit connectivity (although
connectivity may be specified explicitly). Hybrid grids, in which several different gridsare
stitched together, are aso possible.

In thisthesis we restrict our attention to volume rendering algorithmsfor regular grids,
which are the simplest grids and hence lead to the fastest algorithms.

Volumes sampled on other grid types can be resampled to aregular grid, although errors
introduced during resampling may be a concern. Another problem is that multi-resolution
hybrid grids used in computational fluid dynamics often have cellswhich rangein size over
many orders of magnitude. In this case a fixed-resolution grid with a sampling rate suf-
ficiently high to accurately represent the highest-resolution regions of the volume would

CHAPTER 1. INTRODUCTION 12

result in an impractically large resampled data set.

A possible solution to both of these problemsisto choose aregular grid with the same
resolution as the display device and to resample a subset of the data set that contains the
user’scurrent region of interest. If theuser zoomsin or out (requiring achange of resol ution)
or pansto a new region of interest then the appropriate portion of the original data set must
be resampled to theregular grid. Thelossof accuracy dueto resampling should be no worse
than the inherent limits of the display device. Volume rendering algorithmsfor curvilinear
and unstructured grids exist but are significantly slower than algorithms for regular grids
[Wilhelmset al. 1990, Garrity 1990] so the computational cost of on-the-fly resampling may
not be prohibitive.

Given avolume defined on aregular grid we must now find a way to determine values
at arbitrary sample points within the volume. Suppose the volume was originally produced
by sampling a continuous function. A basic theorem from sampling theory statesthat if the
sampling frequency isat least twice the maximum spatia frequency in the continuousfunc-
tion (called the Nyquist rate) then the continuous function can be reconstructed perfectly
from the samples [Bracewell 1986]. If the sampling rate is too low then aliasing artifacts
such as jagged edges appear in the reconstructed volume.

In practice two problems prevent perfect reconstruction. First, the continuous function
must be band limited, meaning that it cannot contain arbitrarily-high frequencies. To guar-
antee this property the original function must be low-pass filtered before sampling, and we
can only reconstruct the low-pass filtered version of the original function. Many sources of
volume data, such as medical imaging scanners, produce a sample by averaging their input
signal over asmall region of space (thereby applying alow-pass filter). We will therefore
assume that the samplesin avolume represent a band-limited continuous function.

The second problem is that the ideal reconstruction procedure (using a sinc filter
[Bracewell 1986]) is expensive. The sinc filter uses a weighted contribution of every in-
put sample to compute one output value. Cheaper, less-accurate filters use a small number
of samplesin the vicinity of the output location to compute each output value. The number
of samplesrequired by thefilter iscalled the support of thefilter, and thelocation of the sam-
plesin theinput array is called the footprint of the filter. The most common reconstruction
filters used for volume rendering are the nearest-neighbor and trilinear interpolation filters,

CHAPTER 1. INTRODUCTION 13

which produce acceptable results provided the frequencies in the band-limited signal are
well below the Nyquist rate.

Reconstruction is one part of the procedure used to calculate samples along a viewing
ray from samplesin the original volume. The complete process is called resampling. We
call the coordinate system of the volume samples object space and the coordinate system of
the viewing ray samplesimage space. Resampling consists of four conceptual steps: (1) re-
construction of the continuous signal from the obj ect-space sampl es, (2) warping of the con-
tinuous signal to image space, (3) band limiting the warped signal (only if the image-space
sampling rateislessthan the object-space sampling rate), and (4) sampling the band-limited
signal to produce image-space samples. In real implementations the image-space samples
are usually computed directly from the object-space samples without explicitly computing
the intermediate signals. The four steps are combined by convolving the two filtersinto a
singlefilter and then evaluating the combined filter at the image-space sample points.

Sampling issues will become important in Chapter 5 when we discuss image quality.

1.1.4 TheVisualization Process

Since the goal of thisthesisisto enable interactive volume rendering applicationsit isim-
portant to understand the steps involved in visualizing adata set. Figure 1.5 is aflow chart
that shows the actions a user performsin atypical visualization session.

First the user acquiresan array of input data. The acquisition process may include prepa-
ration steps such as resampling the volume to a regular grid, interpolating missing voxel
values, and applying image processing operators to improve contrast.

Next the user classifiesthe volume. Classification isthe process of assigning an opacity
to each voxel (« in Equation 1.4). We will focus primarily on classification algorithmsin
which the user chooses a transfer function to compute the opacities from the scalar values.
An dternative method isto partition the volume into specific structures (using a segmenta-
tion algorithm) and then to assign opacities to each structure.

Proper choice of the classification function is difficult. A good classification function
reveals structures in the volume or highlights some subset of the volume in an informative

CHAPTER 1. INTRODUCTION 14

User Action Result

acquire 3D
@ > | scalar field |
/., choose classification cIassmed volume |
function
choose shading shaded, classn‘led
function volume
" . \
choose viewing > [image
parameters |—£|

- J

<

Figure 1.5: The visuaization process is a feedback loop involving the user and three steps in the
volume rendering algorithm: classification, shading, and rendering an image.

way. The appropriate choice depends both on the dataitself and on the goalsof theuser. Un-
successful classification can result in an image portraying a cloud-like fog which provides
little information about the data. Experimentation with different classification functionsis
often necessary to produce an informativevisualization, and interactive exploration can a so
lead to unexpected discoveries about the data.

After classifying the data the user chooses a shading function. The shading function
specifies the illumination model and a rule for determining the color of each voxel. The
rendering algorithm uses this information to compute C' in Equation 1.4. Proper choice of
the shading function is also a subjective process, depending partly on the information the
user wishesto convey and partly on characteristics of the human visual system. Careful use
of visual cues, such as specular highlights, depth cueing and shadows can greatly improve
the effectiveness of avisualization.

Finally the user chooses viewing parameters. the viewpoint, the type of projection (par-
allel or perspective), clipping planes, and so on. With thisinformation and the shaded, clas-
sified volume, the rendering algorithm produces an image.

At thispoint the user will almost certainly want to adjust the parametersto changeor im-
prove the image, asindicated by the feedback arcsin Figure 1.5. Because of the subjective

CHAPTER 1. INTRODUCTION 15

choicesinvolved in classification and shading it is difficult to decide on a set of parameters
a priori, so the user must rely on trial and error to produce a good visualization. Further-
more, the user often does not know exactly what information existsin anew data set before
exploring it with a visualization tool. The visualization application should support explo-
ration of the parameter spacein search of new insights about the data. User interaction with
immediate visual feedback is essentia for this process.

In the past, applications have used 2D slices or low-quality 3D renderings to give users
visual feedback during selection of classification and shading parameters, coupled with a
slow non-interactive volume renderer to produce final images. However, direct interaction
with a 3D volume viaa high-quality rendering provides better feedback and a simpler user
interface. Our goal isto support interactive manipulation of al rendering parameters while
immediately updating the rendered image. We wish to achieve thisgoal for high-resolution
volumes using readily-available hardware. Given the current state of technology, we define
our canonical problem as follows: we want to render a volume with 2562 eight-bit voxels
on a mid-range desktop workstation? in less than one second. Achieving this goal requires
avolume renderer that isan order of magnitude faster than the best previous methods.

1.2 A New Family of Fast Volume Rendering Algorithms

Many acceleration techniques for volume rendering have been proposed. The most suc-
cessful have used spatial data structures to reduce the number of voxels processed, thereby
reducing the computational cost of volume rendering by an order of magnitude compared to
brute-force methods [Levoy 1990a, Subramanian & Fussell 1990, Zuiderveld et al. 1992].
Such agorithms achieve rendering times of several seconds to several tens of seconds for
our canonical problem on current workstations. While an improvement, these algorithms
are still not fast enough for afully interactive application. Multiprocessors can deliver real-
time volume rendering, but only very large and expensive machines have the necessary pro-
cessing power.

2Current mid-range machines haveinteger performanceratings of about 100 SPECint92 and floating point
performance ratings of about 100 SPECfp92. The machine we use for our performanceresultsisa150 MHz
SGI Indigo2.

CHAPTER 1. INTRODUCTION 16

The primary contribution of this thesisis a new family of fast volume rendering algo-
rithms. The algorithms achieve sub-second rendering times on a desktop workstation with-
out graphics accelerators, and can generate images at real-time frame rates on small- to
medium-size general-purpose parallel processors. The a gorithms achieve these speed im-
provements through high-level agorithmic optimizations that reduce computational costs.
Asin previouswork we use spatial datastructuresto exploit coherenceinthevolume. How-
ever, the new algorithms use an efficient scanline-order traversal to stream through the data
structuresin storage order, thereby reducing overhead incurred by accessing the data struc-
tures. These scanline algorithmsrely on a factorization of the viewing transformation into
a 3D shear, aprojectionto form a2D intermediate image, and a2D warp. Thefactorization
enables simultaneous scanline-order access to both the volume and the image.

We also introduce separate algorithms optimized for different stages in the rendering
process. an algorithm for rendering while experimenting with classification functions, an
algorithm for rendering while experimenting with shading functions and viewpoints, and
variants of the algorithms for rendering parallel and perspective projections. The family
of algorithms proposed in this thesis addresses each step of the visualization process and
enables an interactive volume visualization system on general-purpose hardware.

1.3 Organization

Chapter 2 beginswith a brief survey of previous volume rendering algorithms and acceler-
ation techniques. We present a simple taxonomy of volume rendering algorithms and high-
light the advantages and disadvantages of each classin the taxonomy.

Next, in Chapter 3 we describe the technique that formsthe basis of our new algorithms:
volume rendering using the shear-warp factorization. The factorization allows us to com-
bine the advantages of the different classes of existing algorithms. We describe previous
uses of the factorization for rendering parallel projections and present a new extension to
perspective projections.

Chapter 4 introduces three new volume rendering algorithms based on the shear-warp
factorization. The algorithms use the shear-warp factorization and spatial data structuresto
maximize efficiency with minimal loss of image quality.

CHAPTER 1. INTRODUCTION 17

Chapter 5 contains a performance analysis of the shear-warp algorithms, including ade-
tailed comparison to brute-force algorithms and an octree-accel erated ray casting a gorithm.
This chapter uses an optimized ray caster as an example to show how the shear-warp algo-
rithms eliminate overheads inherent in other volume rendering algorithms. Chapters 3-5
expand on material previously published in Lacroute & Levoy [1994].

Chapter 6 describes a parallel volume rendering algorithm for shared memory multi-
processors based on the new serial algorithms. We describe implementations for two mul-
tiprocessors, the SGI Challenge and the Stanford DASH Multiprocessor, and analyze the
performance of the algorithms. This chapter appears in sightly-modified form in Lacroute
[1995].

Chapter 7 describes a collection of extensions to the basic rendering algorithms. The
extensionsincludeafast, flexible shading system based onlookup tables, afast depth cueing
algorithm, and a method for rendering shadows with the shear-warp algorithm. The chapter
also sketches algorithms for rendering volumes with clipping planes and mixed data sets
containing both volume data and polygons.

Chapter 8 gives an overview of the design of VolPack, a volume rendering software li-
brary based on the algorithmsin this thesis. The chapter focuses on the tradeoff between
flexibility and speed when designing an application programmer’sinterface for volumeren-
dering.

Finally, Chapter 9 summarizes the conclusions of this work and discusses the implica-
tions for future research.

Chapter 2

Prior Work

Existing volume rendering algorithms fall into four classes: ray casting algorithms, splat-
ting algorithms, cell projection a gorithms and multi-pass resampling a gorithms. The two
characteristics that distinguish each class are the order in which an agorithm traverses the
volume and the method an algorithm uses to project voxels to the image. Each class of al-
gorithms has performance advantages and disadvantages, and furthermore, some classes of
algorithms are more amenabl e than others to particular accel eration techniques.

The volume rendering literature is too large to summarize here, so in this chapter we
will focus on some representative algorithms and acceleration techniques to illustrate the
differences. In Chapter 3 we will describe a method for combining the advantages of ray
casting and splatting algorithms. volume rendering with the shear-warp factorization.

2.1 VolumeRendering Algorithms

We begin by describing the four classes of existing volume rendering algorithms: ray cast-
ing, splatting, cell projection and multi-pass resampling.

We will use ataxonomy based on loop orderings. Most volume rendering algorithms
consist of six nested loops: three loops that iterate over the volume and three loops that it-
erate over the resampling filter kernel. The loops can be interchanged (subject to ordering
constraintsimposed by the volume rendering equation) to producedifferent algorithms. The

18

CHAPTER 2. PRIOR WORK 19

loop orderings are important for our purposes because they impact the performance charac-
teristics of each algorithm.

2.1.1 Ray Casting

Ray casting algorithms produce an image by casting aray through the volume for each im-
age pixel and integrating the color and opacity along the ray, as already described in Sec-
tion 1.1.2 [Levoy 1988, Sabella 1988, Upson & Keeler 1988]. Ray casters are called image
order algorithms since their outer loops iterate over the pixelsin the image:
for y; = 1 to ImageHeight
for x; = 1 to ImageWidth
for z; = 1 to RayLength
foreach x, in ResamplingFilter(x;, vi, 2;)
foreach y, in ResamplingFilter(x;, v;, z;)
foreach z, in ResamplingFilter(x;, y;, z:)
add contribution of Voxel[x,, Yo, 2,] t0 ImagePixe[x;, y;]

The outer two loopsiterate over theimage pixels. The next loop iterates over sample points
along a viewing ray in image space. Finaly, the inner three loops iterate over the voxels
required by the resampling filter to reconstruct one image-space sample. The body of the
loop multiplies the value of avoxel by aresampling filter weight and adds the result to an
image pixel.

Ray castersare also called backward projection algorithms since they cal cul ate the map-
ping of voxels to image pixels by projecting the image pixels along viewing rays into the
volume. Light rays flow forward from the volume to the image whereas viewing rays flow
backward from the image into the volume.

The main disadvantage of ray castersis that they do not access the volume in storage
order since the viewing rays may traverse the volumein an arbitrary direction. Asaresult,
ray casters spend more time cal culating the location of sample points (e.g. the voxel indices
in theinnermost |oop body) and performing addressing arithmetic than other classes of vol-
ume rendering algorithms. Acceleration techniques based on spatial data structures further
aggravate this problem. For example, when used with aray caster some acceleration tech-
niques require the cal culation of intersections between rays and bounding boxes, aswe will

CHAPTER 2. PRIOR WORK 20

see below.

A second problemisthat ray casters may have higher memory overhead because they do
not have good spatial locality. They do not accessthe volumein storage order, so the caches
in modern processors are less effective at hiding memory latency. However, this problem
isusually of secondary importance for software implementations because the overhead due
to memory latency isinsignificant compared to the amount of computation.

2.1.2 Splatting

In contrast to ray casting al gorithms, splatting algorithms operate by iterating over the vox-
els [Westover 1990]. This class of algorithms computes the contribution of a voxel to the
image by convolving the voxel with afilter that distributes the voxel’s value to a neighbor-
hood of pixels, a process that is called splatting [Westover 1989]. Algorithms of thistype
are called object order algorithms since the outer loop iterates over voxelsin the object be-
ing rendered:

for z, = 1 to VolumeDepth
for y, = 1 to VolumeHeight
for x, = 1 to VolumeWidth
foreach z; in ResamplingFilter(z,, y,, o)
foreach y; in ResamplingFilter(z,, yo, o)
foreach x; in ResamplingFilter(z,, yo, 2o)
add contribution of Voxel[x,, yo, 2,] t0 ImagePixe[x;, y;]

Compared to the ray caster, the inner and outer loops have been interchanged. The three
outer loops iterate over the voxels. The next loop iterates over the extent of the resampling
filter kernel in the image-space depth dimension. Finaly, the two inner loops iterate over
the pixels affected by asingle voxel.

Splatters are also called forward projection algorithms since voxels are projected di-
rectly into the image, in the same direction as the light rays.

Because splatting algorithms are object-order algorithms they can stream through the
volume in storage order, an advantage compared to ray casters. However, accurately com-
puting thefilter footprint and the resampling weightsis expensive because thefilter isview-
dependent. In aforward-projection algorithm thefilter footprint must be scaled, rotated and

CHAPTER 2. PRIOR WORK 21

transformed arbitrarily depending on the viewing transformation. Moreover, in a perspec-
tive view thisfootprint changes from voxel to voxel. Thefilter kernel must also be chosen
carefully to avoid gaps or excessive overlap between adjacent voxels after projection into
theimage. Thusit is difficult to implement afilter that is both efficient and that produces
high quality results.

In theory, the splatter can produce exactly the same image as aray caster provided both
algorithms use the same filter weights. In practice, since it is difficult to compute the fil-
ter weights in the splatting algorithm, approximations must be used. Westover proposes a
technique based on precomputed lookup tables for rotation-invariant Gaussian resampling
filters. The method can be adapted for either fast execution or high image quality, but not
both simultaneously [Westover 1990].

An dternative splatting algorithm uses 2D image warping techniques. Many volume
renderers use this algorithm, including the commercial VoxelView package [Vital Images
1994] and methods based on texture mapping hardware [Cabral et al. 1994]. Thisagorithm
partitions the volume into 2D slices and transforms each slice into image space by apply-
ing a 2D warp. The warped dlices are then composited together to form the final image.
This algorithm uses the same loop ordering as the standard splatting algorithm above ex-
cept that the loop over the third dimension of the resampling filter kernel (z;) is omitted
since the resampling filter is two-dimensional. The 2D resampling filter is an approxima-
tion, but high-quality images can still be produced if the input volume has a high resolution.
By using a 2D filter the algorithm reduces the complicated 3D resampling in Westover’s al-
gorithm to the well-understood problem of 2D image warping. However, thefilter footprint
and resampling weights are still view-dependent, so it isdifficult to achieve afast software
implementation that does not compromise on image quality.

2.1.3 Cdl Projection

A third class of algorithms consists of the cell projection techniques[Upson & Keeler 1988,
Max et al. 1990, Shirley & Tuchman 1990, Wilhelms & Van Gelder 1991]. These methods
are often used for volumes sampled on anon-regular grid. Thefirst step isto decomposethe
volumeinto polyhedrawhaose vertices are the sampl e points (using a Delauney triangulation

CHAPTER 2. PRIOR WORK 22

for instance). The algorithm then sorts the polyhedra in depth order and scan converts the
polygonal faces into image space. Finally, the algorithm evaluates the volume rendering
integral between the front and back faces of each polyhedron to compute a color and an
opacity at each pixel, and these values are composited into the image.

Cdll projection algorithms are similar to splatting algorithms except that the former use
polygon scan conversion to perform the projection. Software implementations of thisalgo-
rithm are computationally expensive, but the polygon scan conversion can be accelerated
with special-purpose graphics hardware.

In this thesis we concentrate on efficient software-only algorithms, which have the ad-
vantages of portability and flexibility, so wewill not consider cell projection agorithmsfur-
ther.

2.1.4 Multipass Resampling

The fourth class of volume rendering algorithms operates by resampling the entire volume
to the image coordinate system so that the resampled voxels line up behind each other on
the viewing axis in image space. The voxels can then be composited together along the
viewing axis asin aray caster, except that in the resampled volume the viewing rays are
always axis-aligned.

This class of agorithms uses multipass methods to resample the volume: the viewing
transformationisfactored into asequence of simple shearsand scal eswhich are then applied
tothevolumein separate passes. Each shear or scal e of the volume can beimplemented with
ascanline-order agorithm and a1D resamplingfilter. For example, an affine transformation
can be implemented using three passes. The first pass resamples scanlinesin the = dimen-
sion of thevolume. The new volume becomestheinput to the second pass which resamples
scanlinesin the y dimension. Theresult then feedsinto the third pass which resamples scan-
linesin the = dimension. In terms of the loop-order taxonomy, multipass methods perform
aseries of object-order traversals of the volume each of the form:

CHAPTER 2. PRIOR WORK 23

OutputWidth = VolumeWidth X xgcale
for z = 1 to VolumeDepth
for y = 1 to VolumeHeight
for x = 1 to OutputWidth
for ¢ = tmin t0 timax
add contribution of Voxel[z/xscae + t, y, 2] to Output[z, y, =]

The three outer loops iterate over the volume and the inner loop iterates over a 1D filter
kernel.

If the size of the filter kernel is m voxels then an n-pass algorithm requires nm oper-
ations per voxel whereas a single-pass resampling algorithm with a 3D filter requires m?
operations per voxel. Thus with afilter kernel size greater than one, a three-pass resam-
pling algorithm requires fewer operations than a single-pass algorithm.

Catmull & Smith [1980] introduced multipass resampling for warping 2D images, and
the technique wasfirst applied to volume rendering at Pixar [Drebin et a. 1988]. Hanrahan
[1990] derived an efficient three-pass algorithm for volume rendering with affine viewing
transformationsand Vézinaet al. [1992] extended it to afour-pass algorithm for perspective
viewing transformations.

Multipass resampling methods are appropriate for certain types of specialized parallel
hardware that take advantage of the regular communication patterns of a scanline-oriented
algorithm, such as the Pixar Image Computer [Drebin et al. 1988] and SIMD array proces-
sors[Vézinaet al. 1992]. However, thisclass of algorithmsisnot optimal for use on awork-
station. Thefilter footprint of the trilinear interpolation filter used in most software volume
renderersistwo voxelswide, so multipassresampling haslittle performance advantage (23
operations versus 2* operations). Furthermore, multipass al gorithms must use more expen-
sive, higher-quality resampling filters to avoid image degradation (such as blurring) caused
by the three or more resampling steps. Finally, this class of algorithmsrequires visiting ev-
ery voxel multiple times and the volume must be transposed as the viewpoint changes (to
avoid “bottleneck” problems [Catmull & Smith 1980]), leading to high costs for looping
and memory overhead.

CHAPTER 2. PRIOR WORK 24

2.2 Acceleration Techniques

Many algorithmic optimizations have been proposed to speed up volumerendering. Wewill
focus on accel eration techniques for ray casting and splatting since we saw in the previous
section that they are the most appropriate methodsfor rendering regul arly-sampled volumes
on general-purpose hardware. In thisthesiswe also concentrate on accel eration techniques
that do not trade off image quality for speed. For example, we do not consider subsam-
pling the volume [Laur & Hanrahan 1991] or adaptive sampling [Levoy 1990a, Danskin &
Hanrahan 1992]. Both of these techniques can miss or blur small features, although Laur
& Hanrahan [1991] and Danskin & Hanrahan [1992] provide error bounds so that error can
be controlled. In the rest of this section we consider two important optimizations that do
not affect image quality: coherence acceleration using spatial data structures, and early ray
termination.

2.2.1 Spatial Data Structures

An established acceleration technique for volume rendering is to exploit coherence in the
volume by using a spatial data structure. For a given visualization of a data set, typically
thereare clusters of voxelsthat contribute useful information to theimage and other clusters
that areirrelevant. The purpose of aspatial data structureisto encode thistype of coherence
in such away that the irrelevant voxels can be culled efficiently.

Spatial data structures are often used to encode the location of high-opacity voxelsin
a classified volume. Data structures that have been used for this purpose include octrees
and pyramids [Meagher 1982, Levoy 1990a], k-d trees [Subramanian & Fussell 1990], run-
length encoding [Reynoldset al. 1987, Montani & Scopigno 1990], shells[Udupa& Odhner
1993] and distancetransforms[Zuiderveld et al. 1992]. Rendering algorithmsusethese data
structures to skip transparent voxels rapidly.

Spatial data structures have also been used to encode other types of coherence. They
have been used to accelerate isosurface renderings by building an octree containing min-
max bounds [Wilhelms & Van Gelder 1992] or Lipschitz bounds [Stander & Hart 1994]
for the scalar values within avolume, and to encode statistical information about the voxel

CHAPTER 2. PRIOR WORK 25

opacities so the sampling frequency on a viewing ray can be reduced in homogeneous re-
gions of the volume [Danskin & Hanrahan 1992].

Algorithms that rely on spatial data structures require a preprocessing step in order to
compute the data structure. Often the cost of preprocessing is acceptable if it can be amor-
tized over many renderings. However, none of the existing coherence optimizations can
be used for interactive classification of avolume since they al require preprocessing every
timethe voxel opacitieschange. Wilhelms & Van Gelder [1992] and Stander & Hart [1994]
propose methodsthat allow the user to change athreshold valueinteractively during isosur-
face rendering but neither technique applies to general classification functions. While the
preprocessing step is a disadvantage of previous algorithms, in Chapter 4 we present anew
algorithm that eliminates the problem by supporting general classification functionswith a
classification-independent octree.

The speedup achievable with coherence optimizations is data-dependent, but typical
classified volumes have a high degree of coherence. Furthermore the percentage of vox-
els that are transparent is typically 70-95% [Levoy 1990a, Subramanian & Fussell 1990],
so the coherence can be used to eliminate a substantial fraction of work. Levoy reports that
for medical datasetsaray caster with an octreeto exploit coherence achieves a3-5x speedup
over abrute-force ray caster [Levoy 19904].

These speedups are substantial, but we will seein Chapter 5 that most spatial data struc-
tures are more effective when used with an object order rendering algorithm rather than an
image order algorithm. In the case of aray caster with an octree-encoded volume, every
ray must independently descend the octree, resulting in redundant computation. The costs
of intersecting rays with octree nodes and switching between levels of the octree are signif-
icant overheads and limit the speedup, aswe will seein Section 5.2. In contrast, a splatting
algorithm with an octree only traverses the volume once and requires | ess-complicated ad-
dressing arithmetic since it sweeps through each octree node in storage order. Efficient use
of spatial data structuresis an important advantage of object-order algorithms.

CHAPTER 2. PRIOR WORK 26

2.2.2 Early Ray Termination

A second common accel eration technique for volume rendering is atechnique called early
ray termination. This optimization is most easily implemented in aray casting agorithm:
the algorithm traces each ray in front-to-back order and terminatestheray as soon asthe ac-
cumulated ray opacity reaches athreshold close to full opacity. Any additional voxels that
would have been reached by the ray must be occluded, so they need not be rendered. Two
generalizations of early ray termination are Russian roulette [Arvo & Kirk 1990, Danskin &
Hanrahan 1992], which terminates rays according to a probability that increases with accu-
mulated ray opacity, and 3-acceleration [Danskin & Hanrahan 1992], which decreases the
sampling rate along the ray as optical distance from the viewer increases.

The goal of these optimizationsis to reduce or eliminate samples in occluded regions
of the volume. Levoy reports that aray caster rendering medical data sets with early ray
termination using athreshold of 95% opaque achieves speedups of 1.6-2.2x, and combined
with an octree the overall speedup is5-11x [Levoy 19904].

Efficient implementation of early ray terminationistrivial for aray caster but isdifficult
for an object-order agorithm. The naiveimplementation of early ray termination in asplat-
ting algorithm isto check each pixel’sopacity before compositing avoxel into it. However,
the algorithm would still haveto visit every voxel in the data set. Thisoptimization reduces
the number of shading, resampling and compositing operations, but does not reducethetime
spent traversing occluded portions of the volume.

Meagher [1982] proposes a more sophisticated algorithm that exploits coherencein the
image. The agorithm uses a quadtree data structure to encode regions of the image with
high accumulated opacity, in addition to an octree to encode coherence in the volume. To
render avolumethealgorithm traversesthe octree nodesin front-to-back order and splatsthe
voxelsin each node into the image. Before splatting, the algorithm computes the visibility
of a given octree node by scan-converting the silhouette of the node into image space and
checking the accumulated opacity in the quadtree nodes that overlap the silhouette. If the
guadtree nodes are opague then the voxelsin the octree node can be culled.

The octree and quadtree data structures significantly reduce the complexity of the algo-
rithm. Instead of individually examining each voxel as in the naive algorithm, Meagher’s

CHAPTER 2. PRIOR WORK 27

algorithm can cull an occluded octree node of arbitrary size by checking a small number of
guadtree nodes. Greene et a. [1993] use Meagher’s image-space quadtree technique in a
rendering algorithm for very large polygonal models. However, the method is less appro-
priate for interactive volumerendering because the overhead required to scan convert octree
nodes and traverse the quadtree data structureislikely to be large compared to the rendering
time. This overhead eliminates much of the gain achieved by culling the occluded octree
nodes.

Reynolds et al. [1987] propose a more efficient technique, called a* dynamic screen,”
for implementing early ray termination in an object-order volume rendering algorithm. In-
stead of using an octree and a quadtree, the technique uses run length encoding to encode
coherence in both the volume and the image. Furthermore, the authors make the following
observation: if theviewing transformation isaparallel projectionthenit transforms parallel
linesin object space into parallel linesin image space. Asaresult, for some rotation of the
image every voxel scanline projectsonto alinethat isparallel to therotated image scanlines.

This observation leads to an efficient rendering algorithm: for each voxel scanline (in
front-to-back order) the algorithm simultaneously traversesthe voxel scanlineand theimage
scanlines it projects onto. During the traversal, the algorithm uses the run length encoding
of the voxel scanline to skip transparent voxels and the run length encoding of the image
scanline to skip occluded voxels. The algorithm only composites voxelsin runs containing
non-transparent voxels that project onto non-opaque pixels. After the algorithm finishes
traversing all of the voxel scanlinesit rotates the 2D image to the correct orientation.

This algorithm never visits voxels that are occluded, which isthe goal of early ray ter-
mination. It aso has less overhead than Meagher’s algorithm because it is less expensive
to compute intersections between 1D runs than to scan-convert octree nodes and descend
a quadtree. The implementation reported by Reynolds is fast compared to contemporary
results but uses binary thresholding of the voxel data and point sampling, resulting in low-
quality images. The algorithm is also limited to parallel projections. In Chapter 4 we will
expand on this ideato support both high-quality images and perspective projections.

CHAPTER 2. PRIOR WORK 28

2.3 Chapter Summary

In this chapter we have seen that previous algorithms appropriate for volume rendering on
general -purpose workstationsfall into two classes, image-order ray castersand object-order
splatting algorithms. We al so observed that both types of algorithms have their own advan-
tages. Object-order algorithms can efficiently traverse a spatial data structure to find the
non-transparent voxels, but resampling is complicated because thefilter is view dependent.
Image-order algorithms must perform more work to traverse the spatial data structure but
resampling is much simpler and these algorithms can take full advantage of early-ray ter-
mination. In the next chapter we describe a method for combining the advantages of these
two classes of agorithms.

Chapter 3
The Shear-Warp Factorization

As we have seen in the previous chapter, image-order algorithms such as ray casters have
the advantages of efficient, high-quality resampling and a simple implementation of early
ray termination. On the other hand, object-order algorithms such as splatters use simpler
addressing arithmetic and they achieve greater speedupsfrom spatial datastructuresbecause
they traverse the volume in storage order.

The new agorithmsin thisthesis combine all of these advantages. The algorithmsrely
on afactorization of the viewing transformation that simplifies projection from the volume
to the image, allowing us to construct an object-order algorithm with the same advantages
as an image-order algorithm. We call the factorization the shear-warp factorization.

In this chapter we first define the shear-warp factorization and motivate its use with a
simplebrute-force volumerendering algorithm. Next we derive separate versions of thefac-
torization for affine viewing transformations and for perspective viewing transformations.
The affine factorization has been used before in several volume rendering algorithmsbut the
perspective factorization is new. We then discuss the properties of the factorization which
wewill useinthe next chapter to devel op our new volumerendering algorithms. Finally, we
close this chapter with a discussion of previous uses of the affine shear-warp factorization.

29

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 30

viewing rays shear

volume i project
slices :

Y

. warp

image
plane

Figure 3.1. To transform a volume into sheared object space for a parallel projection we trandate
each dice. In sheared object space we can project the voxel dices into an image ssmply and effi-
ciently.

3.1 An Oveview of the Factorization

Thearbitrary nature of the mapping from object space to image space complicates efficient,
high-quality filtering and projection in object-order volume rendering algorithms and re-
quires extra addressing arithmetic in image-order algorithms. This problem can be solved
by transforming the volume to an intermediate coordinate system. We will choose a coor-
dinate system with a simple mapping from the object coordinate system and which allows
efficient projection to a 2D image.

We call the intermediate coordinate system “sheared object space” and define it as fol-
lows:

Definition 1: By construction, in sheared object space all viewing rays are par-
allel to thethird coordinate axis.

Figure 3.1 illustrates the transformation from object space to sheared object space for apar-
allel projection. Thehorizontal linesin thefigure represent slices of the volumedata viewed
in cross-section. After transformation the volume has been sheared parallel to the set of
dlices that is most perpendicular to the viewing direction and the viewing rays are perpen-
dicular to thedices. Sincethe shear isparallel to the dlices, we can perform the transforma-
tion by simply translating each slice. For aperspective transformation the definition implies
that each slice must be scaled as well as trandlated as shown schematically in Figure 3.2.

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 31

viewing rays shear & scale
------------------ >
AAA
volume] project
slices » '
Y“ warp
)

center of
projection

Figure 3.2: Totransform avolumeinto sheared object space for aperspective projection wetrandate
and scale each dlice. In sheared object space we can again project the voxel dices into an image
simply and efficiently.

A simple object-order volume rendering algorithm based on the transformation to
sheared object space operates as follows (see Figure 3.3):

1. Transform the volume data to sheared object space by trandating each slice. For per-
spective transformations, also scale each slice. Of the three possible slicing direc-
tions, choose the set of dlicesthat is most perpendicular to the viewing direction. The
trandation and scaling coefficients are not necessarily integers so each voxel dlice
must be properly resampled.

2. Compositethe resampled slicestogether in front-to-back order using the “over” oper-
ator. This step projects the volumeinto a distorted 2D intermediate image in sheared
object space.

3. Transformthedistorted intermediateimageto image space by warping it. Thissecond
resampling step produces the correct final image.

Klein & Kubler [1985] and Cameron & Undrill [1992] proposed the parallel projection ver-
sion of this algorithm, while the extension to perspective projectionsis new.

The reason for first computing a distorted intermediate image is that the properties of
the factorization result in avery efficient implementation of the resampling and composit-
ing loop. In particular, scanlines of voxels in each voxel slice are paralel to scanlines of

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 32

1. sheaN

resample

intermediate
image scanline

|/

3. warp &

1 2. project > resample
/_ & composite T
voxel -
scanline

.
Lol

voxel slice intermediate image final image

Figure 3.3: The brute-force shear-warp agorithm includes three conceptua steps. shear and resam-
plethevolume slices, project resampled voxel scanlines onto intermediate image scanlines, and warp
the intermediate image into the final image. The shearing step shears the volume paralle to the vol-
umesdlicesin both the horizontal and vertical directions (although only avertical shear isshown here).
The horizontal shear accounts for rotation about the vertical axis and the vertical shear accounts for
rotation about the horizontal axis. Rotation about the third axis is incorporated into the fina warp.
This algorithm works for arbitrary viewing transformations.

pixelsin the intermediate image. Thus, the transformation from the object coordinate sys-
tem to the intermediate image coordinate system (sheared object space) isvery simple. We
will elaborate on the properties of the factorization in Section 3.4. Transforming the 2D in-
termediate image into the final image requires ageneral warp but thisoperationisrelatively
inexpensive since the 2D intermediate image is much smaller than the 3D volume.

The brute-force shear-warp algorithm fallsinto a new category of the loop-order taxon-
omy introduced in the previous chapter:

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 33

for z, = 1 to VolumeDepth
for y; = 1 to ImageHeight
for x; = 1 to ImageWidth
foreach y, in ResamplingFilter(x;, ;)
foreach x, in ResamplingFilter(x;, y;)
add contribution of Voxel[z,, y,, z,] to ImagePixe[x;, ;]

The outermost loop iterates over slices of thevolume. The next two loopsiterate over pixels
in theimage. Finally, the inner two loops iterate over the voxelsin the slice that contribute
to a particular image pixel. There are only two loops over the resampling filter kernel be-
cause the algorithm uses a 2D resampling filter. In this algorithm the outer loop traverses
the volume in object order, but the inner loops are similar to an image-order algorithm.

Thisloop ordering combined with the shear-warp factori zation enables an algorithm that
traversesthevolumein object order whileusing nearly the sameresamplingfilter implemen-
tation as animage-order algorithm. Theonly differencein thefilter isthat most image-order
algorithmsusea3D resamplingfilter. Thefilter differenceshavelittleimpact onimagequal-
ity aswe will demonstrate in Section 5.1.2.

3.2 The Affine Factorization

The shear-warp factorization for affine viewing transformations follows directly from Defi-
nition 1. Although the factorization has been used before, the derivation presented here has
not been previously described.

Let M,;.,, be a4x4 affine viewing transformation matrix that transforms points (repre-
sented as column vectors) from object space to image space. We want to factor M., into
two matrices:

Miew = Myarp2p * Mghearsp

Mgpearsp Must be a shear matrix that transforms object space to sheared object space. By
definition this requires shearing the coordinate system until the viewing direction becomes
perpendicular to the slices of the volume.

In image space the viewing direction vector iso; = (0,0,1). Let @, be the viewing

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 34

viewing
% direction
voxel 4
slices
+Vo,z
A, /L
X Vox

Figure 3.4: Determining the affine shear coefficients: Thisdiagram shows a cross-section of the vol-
ume and the viewing direction projected onto the x-z plane (for the case where the principal viewing
direction isthe +z axis). To transform the volume to sheared object space we must shear the volume
in the = direction by —v, /v, .. This shear causes the viewing direction to become perpendicular
to the slices of the volume.

direction vector transformed to object space. It obeys the linear system of equations:

77i - Mview73x3 . 2_}’0
where Mieyw 3x3 1S the upper-left 3x3 submatrix of M,.,,. We can solve this system analyt-
icaly for ¢, using Cramer’s Rule, yielding:

M12Ma23 — Mi2211113

Up = | M21M13 — M11M23

my11Mag — M211M12

where the m,; are elements of M,ie., .

We define the principal viewing axis to be the object-space axis that is most paralld to
the viewing direction. For ssimplicity we assume in this derivation that the principal view-
ing axisisthe +z axis of the object coordinate system as shown in Figure 3.4 (aderivation
without thisrestriction appearsin Appendix A). Inthe z-z plane the slope of 7, istheratio
of the and » components of the vector: v, /v, .. The shear necessary in the x direction
to make the viewing direction perpendicular to the constant-z slices equals the negative of
this slope (because if the Slope is zero no shear is necessary). A similar argument holds for

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 35

the shear inthe Y direction. Thus the shear coefficients are:

5 — Vo, Mi2M13 — M127M123
. = — =

Vo, z MmM11Mo2 — Ma1M2

Uoy M11MM23 — M211M13

y —
Vo,z mM11Ma2 — M211M12

We can now write the two factors of the view transformation matrix. Thefirst factor shears

the volume;
1 0 s, O
01 s, 0
Msp =
0O 1 0
00 0 1

Once this transformation has been applied to the volume the transformed voxel slices can
be composited together along the += axis. This operation forms an intermediate image.

The second factor of the viewing matrix describes how to warp the intermediate image
into the final image:

1 0 —s, 0
MwarpQD — Mview : Ms;llar3D — Mview . 1 o ’
00 1 0
00 0 1

This matrix is ageneral affine warp.
Appendix A contains a more detailed derivation of the affine factorization including
many implementation details.

3.3 The Perspective Factorization

The shear-warp factorization for perspective viewing transformations also follows from
Definition 1. Thisfactorization is new.
Let M., be a4x4 perspective viewing transformation matrix that transforms points

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 36

(0,0,0) \ (0,0,0

(e, €y, €)% X ¢(0,0,e)

Figure 3.5: The shear transformation in the perspective shear-warp factorization. After the shear the
viewing ray from the eyepoint (e, e,, e-) through the origin of the volume is perpendicular to the
dlices of the volume.

from object space to image space. We want to factor M., into two matrices:
Mview = MwarpZD . Mshear3D

The “shear” factor (Mgy..:) Must contain both a shear transformation and a transformation
that scaleseach volumedlicein such away that the viewing direction becomes perpendicular
to the slices.

We will choose the shear component of M., such that after it is applied to the volume
the ray from the eye (the center of projection) through the origin of standard object space
becomes perpendicular to the slices of the volume (Figure 3.5). For simplicity we assume
that the principal viewing direction isthe + = axis of the object coordinate system.

To compute the shear we must first determine the location of the eyein object space (¢,)
givenjust theviewing transformationmatrix.! Inimage space the homogeneouscoordinates
of theeyearee; = (0,0, —1,0). Theviewing transformation matrix must transform €, into
i

€ = Mview * €o

We can solve this system analytically using Cramer’s Rule, yielding an expression for each
component of the eyepoint expressed as a determinant:

'In the affine derivation we started by finding the viewing direction instead of the viewpoint. Alternatively,
we could have used the viewpoint by representing it with a point at infinite distance from the volume.

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 37

mi2 Mz My mi1r Miyz My
€ox = — | Moz Ma3z My €oy = | Ma1 M2z Moy
My M43 Mgy My Mgz Mgy
mi1r My My mir My M3
€o,z = T | Ma1 M2 Mas €ow = | Ma1 Ma2 M23
My My2 Mgy My Myg2 M43

These equations give the homogeneous coordinates of the eye point in object space. For
convenience, define the homogenized coordinates as follows:

€r = €ou/Comw
€y = eo,y/emw
€: = €o:/Couw

By inspection (from Figure 3.5) the shear transformation is:

__Cx
€z

€y
€z

Msh =

_ o O O

0
1
0 1
0 O

o O O

The second component of M., isthe scale component which scales the dlices of the
volume so that the sheared viewing rays become parallel. Thusthe required transformation
IS a pure perspective transformation (Figure 3.6). Without loss of generality we arbitrarily
choose to scale the voxel slice closest to the viewer (the = = 0 dlice) by afactor of one. To
find the required transformation, consider a particular viewing ray passing through point p’
inthe z = 0 dlice and point ¢ in some other dlice (Figure 3.6, left side). The perspective
transformation must scale the voxel slice containing ¢'by p../¢. inthez direction and p, /¢,
in the y direction (because if p, = ¢, and p, = ¢, then no scale is necessary). Using the

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 38

4 A A A A
/ (G Oy O)

(0, 0, 0) / 5 (0,0, 0)

(PuPy,0) :
: : ZL»

(0,0,&) SR ! -

Figure 3.6: The scale transformation in the perspective shear-warp factorization. Each sliceisscaled
uniformly, but adifferent scale factor is applied to each dice. After the scale all of the viewing rays
are perpendicular to the dlices of thevolume. Thistype of transformation is apure perspective trans-
formation.

similar triangles indicated by the dotted lines,

Pz - —€; -]-
qax q: — €z 1- QZ/ez

With adifferent set of similar triangles we can show that p, /¢, equals the same expression.
Thus the required perspective transformation is:

10 0 0
01 0 0
M, =
00 1 0
00 —L+ 1

€z

The shear factor of the perspective shear-warp factorization is the product of the pure
shear and the perspective scaling transformations. After substituting the homogeneous co-
ordinates of the eye location we obtain:

€0,z
€0,z
_Cow

€0,z

Mshear = Ms : Msh =

o o O =

o O = O
—

- o O O

€o,w

€0,z

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 39

This matrix specifies that to transform a particular slice of voxel data in the - =
zo plane from object space to sheared object space the slice must be trandated by
(—20€0.:/€0,2, —20€0.y/ €0,.) @Nd then scaled uniformly by 1/(1 — zpe,./€,,.). Thismatrix
reduces to the affine shear matrix if the viewing transformation is affine.

The warp transformation equal's the view transformation matrix multiplied by the in-
verse of the shear transformation matrix:

Mwarp = Mview ' M_l = Mview :

shear

o O O =

o O = O
o
— o |o
<

= o O O

Thistransformation is a general perspective warp.

We have now completed the derivation of the perspective shear-warp factorization. Re-
fer to Appendix A for amore detailed derivation, including a discussion of how to find the
principal viewing axis. In some casesit isimpossibleto choose asingle axis, for exampleif
the perspective projection specifiesawidefield of view, sincethere may beno singleslicing
direction that is compatible with all viewing rays. In this case the volume must be subdi-
vided, which is discussed with the implementation of the perspective rendering algorithm
in Section 4.2.5.

3.4 Propertiesof the Factorization

The projection from the volume to the intermediate image has several geometric properties
that smplify the rendering algorithm:

Property 1. Scanlinesof pixelsintheintermediateimageareparallel to scanlinesof voxels
in the volume array.

Property 2: All voxelsin agiven voxel slice are scaled by the same factor.

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 40

. . . '
e original voxel
o o o
o resampled voxel
® ‘\f ®
o Q o
® /\ °
o o o
° ® ® °

Figure 3.7: In the shear-warp agorithm for paralel projections each dice of the volume is simply
translated, so as shown here every voxel in the dlice has the same resampling weights.

Property 3 (parallel projectionsonly): Every voxel slice has the same scale factor when
projected into the intermediate image, and this factor can be chosen arbitrarily. In
particular, we can choose a unity scale factor so that for a given voxel scanline there
is a one-to-one mapping between voxels and intermediate-image pixels.

Property 1 followsfrom the fact that the shear matrix containsno rotation component. Prop-
erty 2 follows from the fact that the shear matrix scales each voxel slice uniformly.

A useful implication of these properties for parallel projectionsisthat every voxel ina
given slice of thevolumehasthe sameresampling weights (Figure 3.7). Each slice of voxels
issimply trandlated, so one set of resampling weights can be precomputed and then reused
for every voxel. Thisfact eliminates the problems associated with efficient resampling in
object-order volume rendering algorithms.

In the next chapter we will use these properties to develop efficient volume rendering
algorithms.

3.5 Existing Shear-Warp Algorithms

Earlier uses of the shear-warp factorization for parallel projections include three applica-
tions: reducing the cost of projection in object-order volumerendering algorithms, reducing
the cost of tracing raysin ray casting algorithms, and regularizing communication patterns
in parallel volume rendering algorithms for massively-paralel SIMD arrays.

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 41

Klein & Kubler [1985] and Yl&-Jaaski, Klein & Kubler [1991] describe an object-order
rendering algorithm for volume data using the shear-warp factorization. This early work
predates modern volume rendering, so the algorithm makes two simplifications that were
common at the time: it thresholds each voxel to a binary value, thereby reducing the com-
positing operation used in volume rendering to the simpler problem of rendering the front-
most non-transparent voxel, and it uses point sampling to resample the volume, thereby
eliminating the cost of aresamplingfilter. Apart from thesetwo differences, thealgorithmis
identical to the volumerendering algorithm for parallel projections presented in Section 3.1.

Yla-Jéaski, Klein & Kubler [1991] and Yagdl & Kaufman [1992] independently pro-
posed methodsthat use the shear-warp factorization to accelerate ray casting algorithmsfor
paralel projections. Both algorithms take advantage of Property 3 of the factorization to
reduce the amount of addressing arithmetic required for ray casting. A basic ray caster de-
termines the step from one sample point to the next along aray by adding a delta vector to
the current sample location, converting the new floating-point samplelocation to an integer
array index, and then computing resampling weights and looking up voxel valuesin thevol-
ume array. Alternatively, a discrete line drawing algorithm such as a Bresenham algorithm
can be used to eliminate some of the floating point arithmetic. In either case, the addressing
arithmetic calculations are a significant overhead in aray caster (unlike in an object-order
algorithm).

However, ray casters that use the shear-warp factorization simplify the computation by
casting rays in sheared-object space instead of in image space. Suppose we cast one ray
from the center of each intermediate image pixel (Figure 3.8). Then for agiven slice of the
volume each ray pierces the slice in such away that the resampling weights are the same
for every ray (recall Figure 3.7). Furthermore, if the array indexes (or memory offsets) of
the voxels pierced by oneray are stored in a“template,” that same template can be reused
for every other ray by ssimply adding an integer offset to each value in the template. The
precomputed template can be used to eliminate most of the computation associated with
finding sample points along a ray, computing voxel addresses, and computing resampling
weights. As in the object-order algorithm, the template-based ray casting algorithm com-
putes adistorted intermediate image that must be warped into the correct final image. Using
templates, Yagel reports speedupsof roughly 2-3x compared to abruteforce algorithmwhen

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 42

viewing rays
voxel / / / /
N A TA T # %/
mg'e 4 / / /
i o
Amcimbime 4
/ AR E/
intermediate image plane template

Figure 3.8: Ray casters based on the shear-warp factorization use a precomputed “template” con-
taining resampling weights and memory offsets for the sample points in the volume (after Yagel &
Kaufman [1992]).

discrete line drawing and nearest-neighbor sampling are used [Yagel & Kaufman 1992],
and 1.3-1.4x when continuous line drawing and trilinear interpolation are used [Yagel &
Ciula1994].

Cameron & Undrill [1992] use the shear-warp factorization in aparallel volume render-
ing algorithm for a SIMD massively parallel multiprocessor. They a so use the object-order
rendering algorithm described in Section 3.1. They parallelize the algorithm by assigning
each pixel in the intermediate image to a different processor. The volumeisloaded into the
processor memories in such away that each voxel in adlice of the volume is assigned to a
different processor. The voxelsin each dlice are shifted via a 2D mesh network to imple-
ment the shear and then composited into the intermediate image in paralel. The fact that
intermediate image scanlines and voxel scanlines are aligned (Property 1) guarantees that
the shift can be performed using the regular communication of a2D mesh network, and the
one-to-one mapping between pixelsand voxels (Property 3) ensuresthat the voxelsrequired
to compute a given intermediate image pixel are always available in the local memory or
theimmediately-adjacent memoriesin the 2D mesh. The shear-warp factorization therefore
enables the algorithm to work on a2D SIMD array because of the regular communication
patterns and the identical processing required for each voxel.

Schroder & Stoll [1992] describe a parallel volume rendering algorithm for a SIMD
massively-parallel multiprocessor that independently uses the same rendering algorithm as

CHAPTER 3. THE SHEAR-WARP FACTORIZATION 43

Yagel. Thealgorithm assignsone column of voxels(aligned with the principal viewing axis)
to each processor. As the algorithm projects rays from the intermediate image through the
volume the partially-computed ray colors and opacities are communicated to the processor
containing the next required voxel. This algorithm computes the ray template on-the-fly
during rendering. Because the templateisthe samefor every ray the processing for each ray
isidentical and the algorithm can communicate the partially-accumulated ray values using
nearest-neighbor shiftson a2D mesh network. Just asin Cameron and Undrill’sagorithm,
the shear-warp factorization makes the communication patterns very regular, although in
Schroder and Stoll’s a gorithm the ray values are communicated instead of the volume data.

To summarize, Klein, Kubler and Y& Jaaski’s object-order algorithm uses the shear-
warp factorization to simplify projecting voxelsinto an image. Their ray casting algorithm
and Yagel's template method both use the factorization to reduce the cost of tracing aray.
Cameron and Undrill’s algorithm and Schroder and Stoll’s algorithm both use the factor-
ization to construct volume renderers with regular communication patterns appropriate for
brute-force SIMD parallel implementations.

We extend this work by introducing a factorization for perspective projections and by
exploiting the properties of the factorization in new ways to improve the performance of
coherence optimizations. These topics are the focus of the next chapter.

3.6 Chapter Summary

The shear-warp factorization allows us to incorporate the advantages of ray casting algo-
rithms into an object-order algorithm. In this chapter we presented an existing version of
the factorization for parallel projections and a new version for perspective projections. In
the next chapter we will combine the factorization with the optimizationsfrom the previous
chapter to devel op three new volume rendering algorithms. Wewill exploit the properties of
the factori zation to maximize the benefit of spatial datastructuresand early ray termination.

Chapter 4

Three Fast Volume Rendering
Algorithms

This chapter describes three new volume rendering al gorithms using the shear-warp factor-
ization. They are all based on the object-order algorithm presented in Section 3.1 of the pre-
viouschapter: trandate each dlice of the volume, compositethe slicestogether, and warp the
result. In this chapter we add data structures that allow the rendering algorithms to exploit
coherence. Thefirst new algorithmisoptimizedfor parallel projectionsand assumesthat the
opacity transfer function does not change between renderings. The second algorithm sup-
ports perspective projections. Both of these algorithms are suitablefor interactively manip-
ulating a previously-classified volume's viewing and shading parameters. Finaly, the third
algorithm is designed for interactively classifying volumes. It allows the opacity transfer
function to be modified as well as the viewing and shading parameters, with a moderate
performance penalty.

4.1 Parallel Projection Rendering Algorithm

4.1.1 Overview of the Parallel Projection Algorithm

Property 1 of the shear-warp factorization states that voxel scanlinesin the sheared volume
are aligned with pixel scanlines in the intermediate image, which means that the volume

44

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 45

offsets to next opaque
non-opaque pixel pixel
/ NN / / NN ll
non-opaque
pixel
Figure 4.1: Offsets stored with opague pixels in the intermediate image alow occluded voxels to be
skipped efficiently.

and image datastructures can be traversed simultaneously in scanline order. Scanline-based
coherence data structures such as run-length encoded representations are therefore anatural
choice.

Thefirst data structure we use is a precomputed run-length encoding of the voxel scan-
lines. This data structure allows us to skip over transparent voxels during rendering. A
run-length encoding of a scanline consists of a series of runs represented by a run length
and a data value for each run [Foley et al. 1990, Ch. 17]. In our data structure the encoded
scanlines consist of two types of runs, transparent and non-transparent, defined by a user-
specified opacity threshold. We build this data structure during a preprocessing step that
scans through the original volume, classifies each voxel (i.e. assigns an opacity), compares
the voxel opacities to the threshold, and outputs the run-length encoded representation.

During rendering we usetherun-length encoding to determine which parts of thevolume
are transparent. The rendering algorithm traverses the encoded volume slice-by-dlice, just
asinthe brute-force shear-warp algorithm described earlier. At the beginning of the datafor
each voxel dlice the algorithm uses the shear matrix to compute the transation for the slice.
Thealgorithm then streamsthrough the encoded runs, trand ates and resamples only the vox-
elsin the non-transparent runs, and composites the resampled voxels into the intermediate
image. Using this algorithm the run-length encoded volume can be decoded, sheared, re-
sampled and composited into an image in a single loop without explicitly constructing the
undecoded volume or the sheared volume. Furthermore, the algorithm eliminates work in
the transparent portions of the volume.

Second, to take advantage of coherence in the image, we use a run-length encoding of
theintermediateimage. Thealgorithm constructsthisdatastructure asit computestheinter-
mediate image during rendering. The run-length encoding consists of an offset stored with

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 46

resample and
composite

image scani I
image scanline: :

— e —— - — ——

skip ©work skip .+ work | skip
transparent voxel run - opaque image pixel run
- non-transparent voxel run non-opague image pixel run

Figure 4.2: Resampling and compositing are performed by streaming through both the voxels and
the intermediate image in scanline order, skipping over voxels that are transparent and pixelsthat are

opaque.

each opaqueintermediateimagepixel (Figure4.1). The offset pointsto the next non-opague
pixel inthe same scanline. Animage pixel isdefined to be opaque when its opacity exceeds
a user-specified threshold, in which case the corresponding voxels in yet-to-be-processed
dlices are occluded. The offsets associated with the image pixels are used to skip runs of
opaque pixels without examining every pixel. We store an offset with every pixel, not just
thefirst pixel inarun, sinceit is possible to jump into the middle of arun of opaque pixels
after traversing arun of transparent voxels.

Thesetwo datastructuresand Property 1 of thefactorization lead to afast scanline-based
rendering algorithm (Figure 4.2). The agorithm streamsthrough both thevoxelsand thein-
termediate image in scanline order, using the data structures to avoid work. By marching
through the volume and the image simultaneously in scanline order we reduce addressing
arithmetic. By using the run-length encoding of the voxel datato skip voxelsthat are trans-
parent and the run-length encoding of theimageto skip voxel sthat are occluded, we perform
work only for voxels that are both non-transparent and visible.

For voxel runs that are not skipped we use a tightly-coded loop that performs shading,
resampling and compositing. Properties 2 and 3 of the factorization alow usto smplify the
resampling step in thisloop since the resampling weights are the same for every voxel ina
dlice. We use a shading system based on lookup tables to compute the color of each voxel,

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 47

as described in Chapter 7.

After the volume has been composited the intermediate image must be warped into the
final image. Since the 2D image is smaller than the volume this part of the computation is
relatively inexpensive.

4.1.2 TheRun-Length Encoded Volume

The run-length encoded volume must be constructed in a preprocessing step before render-
ing. The preprocessing agorithm traversesthe volumein storage order, computes the opac-
ity of each voxel, and then compares each voxel’sopacity to athreshold opacity to determine
if it istransparent or non-transparent. The algorithm uses the threshold only to determine
which voxels have negligible opacity; the unthresholded opacities are retained for render-
ing. As the preprocessing algorithm classifies voxelsit collects them into runs. A run con-
sists of a sequence of contiguous voxelsthat are al transparent or all non-transparent. The
algorithm stores the lengths of the runs along with the data for the non-transparent voxels.
The transparent voxels are discarded.

The data structure for the encoded volume consists of three arrays (Figure 4.3): an ar-
ray of run lengths, an array of non-transparent voxels, and an array of pointersinto thefirst
two arrays that is used to find the beginning of each dlice of the original volume. Inthe run
length array every other entry contains the length of arun of transparent voxels. The re-
maining entries contain the lengths of the intervening runs of non-transparent voxels. Each
run length is represented as an 8-bit byte. If the length of arun exceeds the maximum rep-
resentable length (255 in the current implementation) then the run is split into several runs
interspersed with zero-length runs of the opposite type. Runs are also split at the end of a
voxel scanline to ensure that every voxel scanline begins with anew run.

Thevoxel array smply containsall of the non-transparent voxels, packed contiguously.
The transparent voxels are not stored since they are not needed during rendering and mem-
ory consumption can be reduced by omitting them. The run length array makes it possible
to determine where transparent voxels must be inserted in the compressed voxel array to
reconstruct the volume.

Each voxel inthe voxel array contains an opacity and any datarequired for shading. The

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 48

run length voxel slice compressed
array pointer array voxel array
Ty e P Qe A
No o P Qe Vi
T e B, | Q, e v,
N, .
. L]
P, = pointer to the first
run length for the
i voxel slice
- ith
T, = length of the i*" run Q, = pointer to the voxel
of transparent voxels data for the i" voxel V. = voxel data for the ith
N,= length of the i run slice non-transparent voxel
of non-transparent
voxels

Figure 4.3: The run-length encoded volume consists of three data structures: an array of run lengths
(Ieft), an array of pointers that provides random access to voxel slices (middle), and an array con-
taining the non-transparent voxels (right).

shading datawill be used by the rendering algorithm to compute the color of the voxel. The
color cannot be precomputed since it may depend on the viewpoint and the location of the
light sources, both of which might change from frame to frame in arendering sequence. In
the current implementation the opacity dataisstored in one byte and the shading datais user-
configurable. Typically three bytes are used for shading data (two bytes for a precomputed
surface normal and one bytefor the original scalar value), for atotal voxel size of four bytes
per voxel.

Therun lengths and the voxel data are stored in separate arraysto avoid byte alignment
problems. On some processor architectures particular data types must be aligned to a par-
ticular byte boundary in memory. If single-byte run lengths were interspersed with voxels
containing larger data types then additional padding bytes would be required.

One difficulty introduced by run-length encoded representations is that random access
to the encoded datais not possible. The voxels must be decoded from the beginning of the
data structure. The third array in our representation, which contains pointers to the other
two arrays, solves this problem. Each entry in the third array points to the first run length

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 49

and thefirst non-transparent voxel for agiven slice of the volume, alowing random access
to any voxel slice. Random access to individua scanlines, which will be necessary for the
parallel rendering algorithm described in Chapter 6, can be supported by including oneentry
per voxel scanlinein this array.

A second difficulty with arun-length encoded volume representation is that the volume
can only betraversed in the order that the voxelsare encoded. Therendering algorithm may
need to use a transposed version of the volume data, depending on the principal axis of the
viewing transformation. To solve this problem we precompute three run-length encodings,
onefor each of thethree principal viewing axes. Therendering algorithm choosesthe appro-
priate copy depending on the viewing transformation. It is best to load all three copiesinto
memory simultaneously to avoid page faults when the viewing direction switchesto a new
principal axis, but maintaining three copiesin memory does not impact cache performance
since only one copy is heeded to render each frame. Furthermore, because transparent vox-
els are not stored the total size of the encoded volumeistypically smaller than the original
volume, even with three-fold redundancy.

The combination of the three transposes of the run-length encoded volumeform aview-
independent spatial data structure that can be precomputed before rendering, provided that
the classification functionisknown. Section 4.3 later inthischapter describesan aternative
data structure that does not require specifying the classification function.

4.1.3 TheRun-Length Encoded I mage

The intermediate image is aso a run-length encoded data structure: it encodes runs of
opagque and non-opaque pixels. However it has different requirements than the run-length
encoded volume data structure since the volume can be precomputed whereas the interme-
diate image must be modified during rendering. Wetherefore need adata structure that sup-
ports dynamic creation of opague pixel runs and merging of adjacent runs, aswell as afast
method to find the end of arun.

This problem is equivalent to the UNION-FIND problem (also called the digjoint-set
union problem) [Aho et a. 1974, Cormen et al. 1990]. The problem involves a collection
of objects grouped into digoint sets. In our case the objects are opaque pixels and the sets

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 50

offsets

P N S =\

transparent opague root
pixel run pixel run node

Figure 4.4. A tree data structure to represent an opaque pixel run: each opague pixel has an offset
that points to another pixel in the run or to the end of the run.

arerunsof opaque pixels. Each set containsasingle” representative” that servesasthe name
of the set. We will always define the last pixel in arun to be the representative. Three op-
erations are defined: (1) CREATE, which creates a new set containing asingle element, (2)
UNION, which merges two sets into a new set with a single representative, and (3) FIND,
which finds the representative associated with a set, given any element in the set.

A common datastructurefor representing the setsisaforest of trees. Inour algorithmwe
represent each opague pixel run by atree (Figure 4.4). We implement the trees using offsets
stored with each pixel in the intermediate image. The intermediate image data structureis
a 2D array of pixels. Each pixel contains a color, an opacity, and a relative offset. In the
current implementation the color and opacity are stored in single-precision floating point
format. The relative offset is a one-byte value containing the number of pixelsto skip to
reach the pixel’s parent node. The root of each tree is the non-opague pixel at the end of
the opague pixel run (although the non-opaque pixel is not actually part of the run). Each
non-opaque pixel has an offset equal to zero.

The rendering algorithm uses the intermediate image data structure as follows. The a-
gorithm initializes the intermediate image by making al of the pixel opacities transparent
and al of the offsets zero. During rendering, before the algorithm composites a voxel into
a pixel it checks the value of the pixel’s offset. If the offset is non-zero then the pixel is
opaque, so the algorithm performsaFIND operation to find the end of the run and then skips
toit. On the other hand, if the offset is zero then the algorithm compl etes the compositing
operation. After the compositing operation, if the new opacity exceeds the maximum opac-
ity threshold then the algorithm performs a CREATE operation to create anew opague pixel
run, and possibly a UNION operation to merge the run with adjacent runs.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 51

starting point for

FIND operation \

o

before path
compression

e o

after path
compression

Figure 4.5; After the rendering agorithm traverses a chain of offsets to find the end of an opaque
pixel run (top), it traverses the same chain a second time and updates each offset to point to the end
of the run (bottom). This optimization is called path compression.

The CREATE operation has a simple implementation: to create a new run when a pixel
becomes opaque the algorithm just sets the pixel’s offset to one. Furthermore, the UNION
operation is free. If there is aready a run of opague pixels to the left of the new run then
itsfinal offset already pointsinto the new run. Similarly, the offset in the new run pointsto
the next pixel; if that pixel is opague then the new run automatically becomes part of the
following run.

The algorithm uses the FIND operation to find the end of a run starting from any pixel
within the run. This operation can be accomplished by following the chain of offsets up
to the first non-opaque pixel, which is the first pixel with an offset of zero. However this
implementation is inefficient because the CREATE and UNION operations only produce
offsets equal to one, resulting in long chains. There is avery effective optimization called
path compression that greatly reduces the average length of the chains[Cormen et al. 1990].
The optimization can be implemented as follows:. after the algorithm traverses a chain of
offsetsto find the end of arun, it traverses the same chain a second time and updates each of
the offsets to point to the end of the run (Figure 4.5). Thisoptimizationis effective because
it shortens paths that are later reused.

Without path compression the asymptotic complexity of updating and traversing thein-
termediate image is O(m?) operations per scanline, where m is the total number of calls
to CREATE, UNION and FIND. However, with path compression the complexity dropsto

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 52

O(ns10g(1 1, /n,) nc) Wheren, isthe number of CREATE operations and 1 is the number
of FIND operations [Cormen et a. 1990]. Furthermore, our performance measurementsin
Chapter 5 show that in areal implementation the cost of traversing opaque pixel runs drops
to anegligible fraction of overall execution time.

An additiona optimization, called union by rank, can be used to further reduce the
asymptotic complexity (although for common problem sizes the real execution time is
dightly worse). This optimization applies to the UNION operation: when two sets are
merged the smaller set should be made to point to the larger set. The size (or rank) of the
set is defined to be the number of levelsin the tree representing the set. This optimization
tends to keep the trees balanced, thereby reducing the maximum number of steps from a
leaf node to the root. To add the union-by-rank optimization to our algorithm the rank of
each tree must be stored in the pixel located at the root of the tree and the implementation
of UNION must be changed.

The combination of path compression and union-by-rank results in an asymptotic com-
plexity of O(m a(m, n.)) where a(m, n.) istheinverse of Ackermann’s function—afunc-
tion that grows so slowly it equals at most four for al reasonable problem sizes. However,
the additional cost of the UNION operation resultsin a higher constant in the cost polyno-
mial for the algorithm. With both optimizations our overall rendering algorithm is 5-15%
slower than with path compression alone. Furthermore, for volumeswith 256 or 512 voxels
per side, alog term isno worse than a(m, n..) in the complexity expression: both grow ex-
tremely slowly for practical problem sizes. We therefore use only path compression in our
current implementation.

The dynamic screen datastructure proposed by Reynoldset al. [1987] (described in Sec-
tion 2.2.2) hasthe same function as our array of opague pixel links but useslinked listswith
explicit pointersto represent runs of image pixels. Intheir implementation each image scan-
line consists of alinked list of opaque and non-opaque runs, initially containing a single
non-opaque run. Their rendering algorithm simultaneously scans the linked listsfor a run-
length encoded voxel scanline and the corresponding image scanline to avoid compositing
trangparent or occluded voxels, just asin our algorithm.

However, the linked list must be accessed sequentially unlike our array of offsetswhich
can be indexed in random order. As aresult their algorithm must traverse every run in an

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 53

image scanline even if most of the voxels projecting onto the scanline are transparent. Fur-
thermore, updating the linked list requires using a dynamic memory allocator. The cost of
maintaining a pool of free memory blocks adds overhead, and the linked lists are not likely
to have good spatial locality. Thustheir algorithm may have more computational and mem-
ory overhead than ours.

Our agorithm does have somewhat more overhead than early ray termination in aray
caster since our algorithm must traverse the run-length encoded data structures even in oc-
cluded regions of the volume. Furthermore, the effectiveness of the opaque pixel links de-
pends on coherence in the opaque regions of theimage. The runs of opaque pixels are typi-
cally large, so many pixelscan be skipped at once and the number of pixelsthat areindividu-
ally examinedisrelatively small. In Chapter 5 we present quantitative resultsdemonstrating
that our algorithm compares favorably to aray caster with early ray termination.

4.1.4 Resampling the Volume

The rendering algorithm must resample each voxe slice when it trandates the dice into
sheared object space. The current implementation uses abilinear interpolation filter, so two
scanlinesof voxel dataare required to produce oneresampled voxel scanline. Therendering
algorithm uses a gather-type convol ution (backward projection), which requires that the al-
gorithm traverse and decode the two input scanlines simultaneously. Asaresult, each voxel
scanline must be traversed twice (once for each of the resampled scanlinesto which it con-
tributes).

An alternative implementation is to use scatter-type convolution (forward projection):
thealgorithm traverses each input voxel scanlineonce and splatsits contributioninto two re-
sampled voxel scanlines. However the partially-computed resampl ed voxel s must be stored
in atemporary buffer until they have been completely computed to avoid reordering the
compositing and reconstruction filtering steps. Moreover, thetemporary buffer must berun-
length encoded to retain the benefit of the other coherence data structures.

During resampling the rendering algorithm skips over regions where both input scan-
lines contain transparent runs. Furthermore, the algorithm uses the opague pixel links to
skip over occluded voxels, so only voxels that are non-transparent and non-occluded are

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 54

actually resampled. The cost of resampling can be further reduced since the resampling
weights are the same for every voxel in the dlice, allowing the algorithm to compute the
weights only once per dlice.

We will discuss filter quality issuesin Section 5.1.2.

4.1.5 Warpingthelntermediate | mage

The image computed by the compositing phase of the algorithm is an oblique projection of
the volume. In general, an arbitrary affine warp must be applied to the intermediate image
to produce the correct final image. The second factor of the shear-warp factorization deter-
mines the necessary transformation (Section 3.2).

Implementation of the 2D image warp is straightforward (see the surveys by Heckbert
[1986] and Wolberg [1990]). The current implementation uses aone-pass gather (backward
projection) agorithm with a bilinear filter.

4.1.6 Opacity Correction

In our algorithm the resolution of the volume determines the sampling rate that is used to
evaluate the volumetric compositing equation (Equation 1.4). As aresult the distance be-
tween samples along a viewing ray is constant in object space, but varies in image space
depending on the current view transformation. This fact leads to a problem. Recall from
Section 1.1.2 that the opacity at a sample point is defined as:

a; =1 — e %iA®

where Ax is the sample spacing in image space. Since the sample spacing changes with
viewpoint so must the opacities, and thus the precomputed opacities stored in each voxel
must be corrected for aparticular viewing direction.

Figure 4.6 illustrates the problem. Consider a cube-shaped volume filled with identical
low-opacity voxels. If aviewer looks straight at the center of one face of the volume the
distance between sample points in image space aong the viewing ray equals the length of
one side of avoxel. If the viewer rotates the volume 45 degrees around its center axis then

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 55

4

\/EAX(?/\
Axo{_ N

Figure 4.6: The spacing between samples on a viewing ray depends on the viewing direction, so
voxel opacities must be corrected to account for the sample spacing.

—eot+eot+eo1> >

the number of samples staysthe same but the di stance between sample pointsinimage space
increases (unlike with most ray casters, which maintain the same sampl e spacing regardless
of theviewing direction). Theattenuation along theray should also increase, hencetheneed
for opacity correction. Other object-order volume rendering algorithms must also correct
opacities for the viewing angle [Laur & Hanrahan 1991].

Let Az, be the width of avoxel and assume that the opacity computed by the opacity
transfer function and stored with avoxel (agioreq) UseS Axg as the sample spacing:

—pAx
Olstored = 1—e A0

Then for some other sample spacing Ax the corrected opacity can be computed as follows:

—pAx
Qlcorrected = l1—e ¢
Az
- 1 [€—¢A€B0] Azg

Az
= 1- []- - astored] Azg

The corrected opacity is a function of the stored opacity and the sample spacing ratio
Ax/Axg, but the function is the same for every voxel. Figure 4.7 shows a plot of the cor-
rection function for several values of the sample spacing ratio. Without opacity correction
a cube-shaped voxel appears 30% more transparent than it should when viewed from a 45
degree angle, adifference that is visually significant.

The rendering agorithm performs opacity correction on each voxel just before resam-
pling the voxel. The correction can be implemented efficiently with a precomputed lookup

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 56

Corrected Opacity

[] Sample Spacing =5
O Sample Spacing = 3
W Sample Spacing =+[3
@® Sample Spacing =1

00 02 04 06 08 10
Stored Opacity

Figure 4.7. Plot of the opacity correction function. Unless the volume has been scaled non-
uniformly, the sample spacing lies between 1 and /3 (corresponding to viewing angles of 0 and
45 degrees in each direction relative to the voxel dlices). Plotsfor larger sample spacings are shown
only to emphasize the shape of the curve.

table that maps uncorrected opacities to corrected opacities. The table must be recomputed
whenever the viewpoint changes, but the same table can be used for every voxel.

4.1.7 Implementation of the Parallel Projection Algorithm

Figure 4.8 is a pseudo-code description of the shear-warp volume rendering algorithm for
paralel projections. The RenderVolume routine is the highest-level routine. It first calls
Factor to compute the shear and warp factors of the view transformation matrix, and Init-
OpacityTable to precompute the lookup table for opacity correction. The call to Clear ini-
tializes the intermediate image, Tmplmage. Then the loop on line 5 composites each slice
of the volumeinto theintermediate image in front-to-back order by calling CompositeSice.
Finally, RenderVolume warps and displays the image.

CompositeSice implements the core of the rendering agorithm. It begins by initializ-
ing voxel _ptr, an array containing pointers to two adjacent scanlines of run-length encoded
voxel data. These two scanlines will befiltered to produce one scanline of resampled vox-
els (aligned with the intermediate image grid). The routine FindVoxel Runs uses the voxel
slice pointer array in the run-length encoded volume to find the first two voxel scanlinesin

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS

1

10

15

20

25

30

procedure RenderVolume()
Factor(ViewMatrix);
InitOpacity Table();
Clear(Tmplmage);

for (k =1to VolumeSize[Z])
CompositeSlice(k);

Image = Warp(Tmplmage);

Display(Image);
end

procedure CompositeSlice(k)
voxel _ptr[1..2] = FindVoxelRuns(k, 2);
for (v=1to VolumeSizeY])
(im_x, im_y) = (XTrandate(k), Y Trandate(k) + v);
while (not EndOfScanline(voxel _ptr))
if (1sOpague(Tmplmage[im_x][im_y]))
SkipPixelRun(im_x, im_y, voxel _ptr);
else
run_length = min(voxel _ptr[1].run_length, voxel _ptr[2].run_length);
if (IsTransparent(voxel _ptr[1]) and IsTransparent(voxel _ptr[2]))
SkipVoxelRun(im_x, voxel _ptr, run_length);
else
ProcessvVoxel Run(im_x, im_y, voxel _ptr, run_length);
endif
endif
end
end
end

procedure SkipVoxel Run(im_x, voxel _ptr, run_length)
AdvanceVoxel Ptr(voxel _ptr, run_length);
im_x =im.x + run_length;

end

Figure 4.8: Pseudo-code for the parallel projection agorithm (continued on next page).

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 58

procedure SkipPixel Run(im_x, im_y, voxel _ptr)
run_length = 0;
while (Tmplmage[im_x + run_length][im_y].offset > 0)
35 run_length = run_length + Tmplmage[im_x + run_length][im_y].offset;
end
path_length = 0;
while (Tmplmage[im_x + path_length][im_y].offset > 0)
offset = Tmplmage[im_x + path_length].offset;
40 Tmplmage[im_x + path_length].offset = run_length - path_length;
path_length = path_length + offset;
end
AdvanceVoxel Ptr(voxel _ptr, run_length);
im_x =im.x + run_length;
45 end

procedure ProcessVoxel Run(im_x, im_y, voxel _ptr, run_length)
for (i = 1to run_length)
if (1sOpaque(Tmplmagelim_x][im_y]))
return;
50 (color, apha) = Sample(voxel _ptr);
CompositeVoxel (im_x, im_y, color, apha);
AdvanceVoxel Ptr(voxe _ptr, 1);
imx=imx+1;
end
55 end

procedure CompositeVoxel (im_x, im_y, color, apha)
if (not IsTransparent(al pha))
Tmplmageim_x][im.y] = Tmplmage[im_x][im_y] over (color, apha);
if (1sOpague(Tmplmagelim_x][im_y]))
60 Tmplmage{im_x][im_y].offset = 1;
endif
end

Figure 4.8 (cont.): Pseudo-code for the parallel projection algorithm.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 59

aparticular dlice of the volume.

The outer loop iterates over the scanlines of the voxel slice. Line 13 computes the co-
ordinates of the top-left intermediate image pixel that the current pair of voxel scanlines
projects onto. Then the inner loop resamples and composites runs of voxel data onto the
intermediate-image scanline until it reaches the ends of the voxel scanlines. The body of
the loop contains three cases: skip arun of opagque pixels, skip a run of transparent vox-
els, or do useful work. If the current intermediate image pixel is opague then the loop calls
SkipPixel Run to skip over arun of opaque pixels and the corresponding voxels. Otherwise,
the algorithm computes run_length, the number of voxelsuntil the end of the next voxel run
in either of the two voxel scanlines. If both of the current runs are transparent then Com-
positeSice calls SkipVoxel Run to skip over the voxels; otherwise, it calls ProcessVoxels to
resample and composite the voxelsinto the intermediate image.

Once the inner loop terminates, the pointers in voxel _ptr have each advanced by one
voxel scanline and thus they are ready for computing the next intermediate image scanline.
The outer loop continues processing scanlines until all of the voxelsruns in the slice have
been traversed.

SkipVoxel Run is the routine that skips over a run of transparent voxels. It simply calls
AdvanceVoxel Ptr to advance the pointers for the two voxel scanlines and then advances the
current position in the intermediate image scanline.

SkipPixelRun is the routine that skips over arun of opaque pixels. The loop on line 34
followsthe opaque pixel offsets until the next non-opaque pixel (which must have an offset
equal to zero). Theloop online 38 performs path compression asdescribed in Section 4.1.3.
Finally, SkipPixel Run advances the voxel pointers and the current pixel index (im_x) by the
length of the opagque pixel run.

ProcessVoxel Run isthe routine that resamples and compositesarun of voxels. Theloop
iterates over the sample pointsin the resampled voxel scanline. First it checksif the sample
point projects to an opague pixel, in which case the beginning of an opaque pixel run has
been reached and the routine returns to CompositeSice. Next, ProcessVoxel Run computes
the value of the volume at a sample point by calling Sample. This routine loads four vox-
els (two from each of the voxel scanlines), performs opacity correction and shading, mul-
tiplies the colors and opacities by the precomputed resampling filter weights, and returns

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 60

the resampled voxel’s color and opacity. Sample uses the information in the run-length en-
coded voxel data structure to avoid processing any of the four voxels that may be transpar-
ent. Next, the CompositeVoxel routine compositesthe resampled voxel into theintermediate
image. Finally, the loop advances to the next voxel sample point.

CompositeVoxel simply usesthe“over” operator to compositeavoxe intotheintermedi-
ateimage. It only compositesavoxel if itsresampled opacity exceeds the opacity threshold
that was used to create the run-length encoded volume. The procedure also creates a new
opaque pixel runif the intermediate image pixel becomes opague.

The a gorithm we have presented in this section usesthe shear-warp factorization to take
advantage of optimizations from both image-order and object-order algorithms, thereby
benefiting from the performance advantages of both. In the next section we will general-
ize the algorithm to support perspective projections.

4.2 Perspective Projection Rendering Algorithm

Most volume rendering research has focused on parallel projection algorithms. However,
perspective projections provide additional cues for resolving depth ambiguities [Novins
et al. 1990] and are essential to correctly compute occlusions in such applications as radi-
ation treatment planning, which requires computing an accurate image from the viewpoint
of aradiation source [Levoy et a. 1990]. Perspective projections present a problem be-
cause the viewing rays diverge so it is difficult to sample the volume correctly. Two types
of solutions have been proposed for perspective volume rendering using ray-casters. asthe
distance along a ray increases the ray can be split into multiple rays [Novins et a. 1990],
or each sample point can sample alarger portion of the volume using amip-map [Levoy &
Whitaker 1990, Sakas & Gerth 1991]. A mip-map isahierarchical data structure that con-
tains prefiltered copies of sampled data (the volume in this case) at several resolutions, so
it is possible to compute one sample covering an arbitrarily large portion of the volumein
constant time. The application of a mip-map to 3D arrays is a straightforward generaliza-
tion of the 2D mip-maps introduced for texture filtering applications by Williams [1983].
The object-order splatting algorithm can also handle perspective, but the resampling filter

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 61

boundary of space sampled
by each viewing ray

volume and viewing rays volume and viewing rays
in object space in sheared object space

Figure 4.9: Sampling the volume in the perspective projection algorithm: The left diagram shows
the sample locations and filter footprint boundaries in object space. The right diagram shows the
sample locations in sheared object space.

changes for every voxel [Westover 1990]. This section describes a new algorithm for per-
spective volume rendering based on the shear-warp factorization.

4.2.1 Overview of the Per spective Projection Algorithm

The shear-warp factorization provides asimple and efficient solution to the sampling prob-
lem for perspective projections, as we saw in Section 3.1. The rendering algorithm trans-
forms each dlice of the volume to sheared object space by atrandation and auniform scale,
and the algorithm then resampl es and compositesthe dlicestogether. These stepsare equiv-
alent to aray-casting algorithm in which rays are cast to uniformly samplethefirst slice of
volume data, and as each ray hits subsequent (more distant) slices a larger portion of the
dliceis sampled (Figure 4.9). The key point is that within each dlice the sampling rate is
uniform (Property 2 of the factorization), so thefilter isrelatively easy to implement.

The perspective algorithm is nearly identical to the parallel projection algorithm. The
only substantial difference is that each voxel must be scaled as well as trandated during
resampling. We always choose a factorization of the viewing transformation in which the
slice closest to the viewer is scaled by afactor of one and more distant slices are decimated,

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 62

so no dliceis ever enlarged.

4.2.2 Resampling the Volume

To resample the voxel slices we use abox reconstruction filter and a box low-passfilter, an
appropriate combination for both decimation and unity scaling. In the case of unity scaling
the two filter widths are identical and their convolution reduces to the bilinear interpolation
filter used in the parallel projection agorithm.

Theimplementation of theresampling loop differsfrom the parallel projectionagorithm
because the filter footprint may cover more than two voxel scanlines, so a variable number
of voxel scanlinesmust betraversed to produce agiven intermediate scanline. Furthermore,
the voxel scanlines cannot be traversed at the same rate as the image scanlines and the re-
sampling weights must be recomputed for each sample point.

4.2.3 Opacity Correction

Opacity correction is more difficult for perspective projections than for parallel projections
because not every voxel requires the same correction and it is expensive to compute the
corrections individually (an exponentiation would be required for each voxel). However,
two observations allow the calculation to be smplified. First, every sample point along a
viewing ray requires the same correction since the sample spacing is constant along the ray
(Figure4.9). Second, the sample spacing for adjacent raysis nearly constant. It istherefore
possibleto use aset of opacity correction lookup tables precomputed for a subset of therays
and to interpolate between tables for the remaining rays.

An algorithm to correct the voxel opacitiesworksasfollows. First, we precompute sev-
eral opacity correctiontablesusing theformuladerivedin Section 4.1.6 with different values
of Az (the sample spacing along the viewing ray). Each table maps the opacity storedin a
voxel to an opacity corrected for the particular value of Ax. We organize thetablesasa2D
array indexed by the sample spacing and the uncorrected opacity:

Qcorrected — Opml tyTabl e[AZI?] [astored]

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 63

Once the viewing transformation has been fixed but before rendering begins our algo-
rithm calculates Ax for the viewing ray emanating from each intermediate image pixel and
storesthevaluewiththepixel. Thealgorithm computes Az exactly for asubset of thepixels,
and the values for the remaining pixels are interpolated from exact values at nearby pixels.
Then during rendering when a voxel is about to be projected onto an intermediate image
pixel the voxel sampling routine (Sample) uses the value of Az from the pixel to select a
precomputed opacity correction table. Suppose Az isin between two of the values used for
the precomputed tables, Ax; and Ax,. Then the algorithm computes the corrected opacity
(veorrectea) from the opacity stored with the voxel (ov.r.q) @nd the opacity correction tables
by indexing the two tables with the stored opacity and linearly interpolating the results:

a; = OpacityTable[Az;][astored]
ay = OpacityTable[Azs][(stored]
AZL‘Q — Ax
W= S
AZL‘Q — AZEI

Qcorrected — Q1 ¢ W + Qo - (1 - W)

Thisagorithm isfast and allows us to trade off memory (to store additional tables) for ac-
curacy if necessary.

4.2.4 Implementation of the Perspective Projection Algorithm

Figure 4.10 is a pseudo-code description of the shear-warp volume rendering algorithm for
perspective projections. The figure only includes routines that differ from the paralel pro-
jection agorithm.

The perspective projection al gorithm usesamodified version of the CompositeSicepro-
cedurethat can decimatevoxel slicesbefore compositingthem. Thevoxel _ptr array contains
pointersto all of the voxel scanlinesthat contribute to a single intermediate image scanline.
The maximum number of scanlinesthat can contribute equals the size of the filter footprint
(footprint). In the parallel projection algorithm the size of the footprint is always two.

The outer loop of CompositeSice iterates over the intermediate image scanlines onto

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 64

1 procedure CompositeSlice(k)
footprint = 1 + ceiling(1 / ScaleFactor(k));
voxel _ptr[1..footprint] = FindVoxelRuns(k, footprint);
for (v=1to VolumeSize]Y] x ScaleFactor(k))
5 (im_x, im_y) = (XTrandate(k), Y Trandate(k) + v);
while (not EndOfScanline(voxel _ptr))
if (IsOpague(Tmplmage[im_x][im_y]))
SkipPixelRun(im_x, im_y, voxel _ptr);
else
10 (color, alpha) = DecimateArea(im_x, im_y, voxel _ptr, footprint);
CompositeVoxel (im_x, im_y, color, apha);
imx=imx+1;
endif
end
15 AdvanceVoxel Ptr(voxel _ptr, (footprint—2) x VolumeSize[X]);
end
end

procedure DecimateArea(im_x, im_y, voxel _ptr, footprint)
(color, apha) = (0, 0);
20 for (j = 1to footprint)
voxels_left = footprint;
while (voxels_left > 0)
run_length = min(voxe _ptr[j].run_length, voxels_left);
if (IsTransparent(voxel _ptr[j]))
25 AdvanceVoxe Ptr(voxel _ptr[j], run_length);
else
AccumulateVoxelRun(im_x, im_y, voxel _ptr[j], run_length, color, alpha);
voxels_left = voxels left — run_length;
end
30 end
return(color, alpha);
end

Figure4.10: Pseudo-code for the perspective projection algorithm. Thisfigureonly includes changes
to the parallel projection agorithm in Figure 4.8 (continued on next page).

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 65

procedure AccumulateVoxel Run(im_x, im_y, voxel _ptr, run_length, color, alpha)
for (c=1to run_length)
35 (vox_color, vox_apha) = LoadVoxel (voxel _ptr);
weight = ComputeWeight(im_x, im_y, voxel _ptr);
(color, apha) = (color, alpha) + (vox_color, vox_apha) x weight;
AdvanceVoxel Ptr(voxe _ptr, 1);
end
40 end

Figure 4.10 (cont.): Pseudo-code for the perspective projection agorithm.

which the voxel slice projects. Theinner loop (line 6) iterates over intermediate image pix-
els until the ends of the voxel scanlines are reached. The algorithm skips runs of opaque
pixels using SkipPixelRun just like the parallel projection agorithm. When the loop finds
a non-opaque pixel it calls DecimateArea to filter the voxels that project onto the pixel. It
then composites the resampled voxel value into the pixel and proceeds to the next pixel.
When the loop terminates, the call to AdvanceVoxel Ptr advances all of the voxel pointers
to the beginnings of the scanlines required for the next intermediate image scanline. If the
reciprocal of the scale factor is not an integer then the filter footprint may decrease by one
for some iterations of the loops, but the details are not shown here.

DecimateArea loops over the set of voxels that project onto one intermediate image
pixel and sums their contributions. The outer loop iterates over voxel scanlines. For each
scanline, the inner loop skips over transparent voxel runs and calls Accumul ateVoxel Run to
composite the non-transparent runs. Accumul ateVoxel Run steps through each voxel in the
run, first calling LoadVoxel to perform opacity correction and shading, then calling Com-
puteWeight to calculate the filter weight for a particular voxel and image pixel, and finally
adding the contribution of the voxel to the color and opacity accumul ators.

Compared to the parallel projection algorithm the perspective projection algorithm has
somewhat more control overhead and spends moretime cal cul ating resampling weights, but
nevertheless the algorithm is efficient compared to other methods. The properties of the
shear-warp factorization still allow the algorithm to traverse the volume and the interme-
diate image scanline-by-scanline while performing work only for visible, non-transparent

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 66

Ay Ay
. A~

volume
45° plane

through eye

eye

Figure 4.11: For the situation shown on the |eft thereis no single principal viewing axisthat is con-
sistent with al viewing rays. Thevolume must be split along aplane through the eyepoint (the center
of projection) at a45 degree angle to the voxel dices so the subvolumes can be rendered separately,
as shown on the right.

voxels, and the resampling filter can be implemented efficiently despite the diverging ray
problem.

4.2.5 Limitationsof the Perspective Projection Algorithm

A potential problem with the perspective projection algorithm is that for some viewing
transformations there is no single principal viewing axis that is consistent with al view-
ing rays. Figure 4.11 shows an example. Whileit ispossible to use the rendering algorithm
even if some of the viewing rays intersect the voxel slices at greater than a 45 degree an-
gle, asthe rays approach 90 degreesimage quality degrades severely. The problem is most
likely to occur during afly-through in which the viewpoint isinside the volumeand thefield
of view approaches 90 degrees or greater.

The solution to the problem is to subdivide the volume by splitting it along planes ori-
ented at 45 degree angles relative to the slices. At most six subvolumes are necessary to
render afield of view covering the entire sphere of possible directions (i.e. the volume can
be decomposed into six pyramids with their apexes located at the eyepoint). Each subvol-
ume must be rendered separately with the al gorithm described above and then the subimages
must be tiled to form the complete image. To prevent discontinuities at the seams between
tiles each subvolume should contain afew voxels of overlap with the adjacent subvolumes.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 67

The subimages will then overlap dlightly, and the overlapping pixels can be averaged to
produce a smooth transition. This modification to the rendering algorithm introduces some
complexity and has not yet been implemented.

A second problem with the perspective rendering algorithm is that visibility is not cor-
rectly computed. Visibility along each viewing ray must be determined before averaging
valuesfrom the raystogether to compute a pixel value, but our algorithminterchangesthese
two operations. Theresponse R(i, j) of apinhole-camerasensor spanning apixel ontheim-
age planeis proportional to the incident radiance L integrated over the solid angle 2 sub-
tended by the pixel:

R(i,j) = /Q(ij)L(i,j, @) cos O dw

(where # isthe angle between & and the image plane normal). The radiancein theintegrand
can be found by evaluating the volume rendering integral:

R(i,j) = /Q(ij)/xef@(”,)d’:,e(x) cos) dx dw

Thusthe correct way to compute the responseisto first integrate along each viewing ray and
then integrate over the solid angle. The perspective shear-warp agorithm filters the voxel
slices before compositing them together, which is equivalent to integrating over the solid
angle before integrating along the rays:

I - - (2")dz! .
R'(i,j) = /:Ue J ea") /Q(i,j) é(x) cos § dw dx

Thus the order of the integrals has been incorrectly interchanged.

Figure4.12illustratesthe problem: objects A and B should fully occlude object C. How-
ever, the rendering agorithm down-samples the voxel slices before compositing them to-
gether. The area of the voxel dlice containing object A and its neighborhood are averaged
intoasingle, partially opague sample. Similarly, object B isaveraged into apartially opagque
sample. When the two samples are composited together theresult isnot fully opaque, so ob-
ject Cincorrectly appears partially visible.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 68

boundary of space sampled

/ by each viewing ray

Figure 4.12: Visibility errors can occur in the perspective rendering algorithm because it filters the
volume before compositing. In this case object C should be occluded by objects A and B (assuming
A and B are fully opague). However, the rendering algorithm averages objects A and B with the
surrounding empty space before compositing the voxel slices together so object C shows through.

This problem can occur in both parallel and perspective renderings, but its likelihood
is exacerbated in the perspective case by the divergence of the rays. The problem is fun-
damental to the shear-warp volume rendering algorithm and any other algorithm that deci-
mates the volume before compositing, such as algorithms employing mip-mapping [Levoy
& Whitaker 1990, Sakas & Gerth 1991] and splatting algorithms employing a sheet cache
[Westover 1990]. In contrast, the algorithm proposed by Novinset a. [1990] computesvis-
ibility more accurately becauseit castsraysthat split into multiplerays as the distance from
the viewer increases, so the filter kernel size remains constant along each ray.

In practice the artifacts caused by this problem are small except in cases of very severe
perspective distortion.

4.3 Fast Classification Algorithm

The run-length encoded data structure used by the previous two a gorithms must be recom-
puted whenever the opacity transfer function changes. This preprocessing timeisinsignif-
icant if the user wishes to generate many images from asingle classified volume, but if the
user wishesto interactively adjust the transfer function then the preprocessing step is unac-
ceptably slow. In this section we present athird variation of the shear-warp agorithm that

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 69

non-transparent
region

a = f(d, |Od)]) >
Od
scanline + T — m"’-‘X e [_/?
|Dd| min ||:|d| v

d —> mind maxd

volume

Figure 4.13: Goal of the fast classification algorithm: Given a scanline of voxels, shown on the
left, we must determine which voxels are transparent. The classification function f(d, |Vd|) shown
in the middle of the diagram partitions a two-dimensiona feature space into transparent and non-
transparent regions. The voxels in the scanline are contained in some bounding box within the fea
ture space, shown on theright. If the bounding box and the non-transparent regions do not intersect
then the voxels must be transparent.

evaluates the opacity transfer function during rendering and is only moderately slower than
the previous algorithms.

4.3.1 Overview of the Fast Classification Algorithm

A run-length encoding of the volume based upon opacity is not an appropriate datastructure
when the opacity transfer function is not fixed. Instead we apply the algorithms described
in Sections 4.1 and 4.2 to unencoded voxel scanlines, but with a new method to determine
which portions of each scanline are non-transparent.

We allow the opacity transfer function to be any scalar function of a multi-dimensional
scalar domain:

a=f(p.gq,-)

For example, the opacity might be a function of the scalar field and its gradient magnitude
[Levoy 1988]:
a = f(d,|Vd])

Thefunction f essentially partitionsa multi-dimensional feature space into transparent and
non-transparent regions, and our goal isto decide quickly which portions of agiven scanline
contain voxelsin the non-transparent regions of the feature space (Figure 4.13).

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 70

min-max octree summed-area table

L G]
Zfs» R |2 ~2feazo
/ N E :

pmi n pmax

Figure 4.14: Data structures for the fast classification algorithm: A min-max octree is used to de-
termine the range of the parameters p, ¢ of the opacity transfer function f(p, ¢) in a subcube of the
volume. A summed-area table is used to integrate f over that range of p, ¢. If the integral is zero
then the subcube contains only transparent voxels.

We solve this problem with the following recursive al gorithm which takes advantage of
coherence in both the opacity transfer function and the volume data:

Step 1: For some block of the volume that contains the current voxel scanline, find the ex-
trema of the parameters of the opacity transfer function (min(p), max(p), min(q),
max(q), . ..). These extremabound arectangular region of the feature space defined
by the domain of f.

Step 2: Determine if the region is transparent, i.e. f evaluated for all parameter pointsin
the region yields only transparent opacities. If so, then discard the scanline since it
must be transparent.

Step 3: Subdivide the scanline and repeat this algorithm recursively. If the size of the cur-
rent scanline portion is below a threshold then render it instead of subdividing.

This algorithm relies on two data structures for efficiency (Figure 4.14). First, Step 1
uses aprecomputed min-max octree [Wilhelms & Van Gelder 1990, Wilhelms & Van Gelder
1992]. Each octree node contains the extrema of the parameter values for a subcube of the
volume. Second, to implement Step 2 of the algorithm we need to integrate the function
f over the region of the feature space found in Step 1. Assume for now that the opacity
threshold is zero, so only voxels with opacity equal to zero are transparent. If the integral

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 71

of f over theregion of feature space covered by the subcubeiszero then all voxelsin the sub-
cube must be transparent. Thisintegration can be performed in constant time using amulti-
dimensional summed-areatable [Crow 1984, Glassner 1990a]. The voxels themselves are
stored in athird data structure, asimple 3D array.

The overall algorithm for rendering unclassified data sets proceeds as follows. When
avolumeisfirst acquired or loaded into memory the algorithm precomputes the min-max
octree, which is independent of the opacity transfer function and the viewing parameters.
Next, just before rendering begins the algorithm uses the opacity transfer function to com-
pute the summed-areatable. This computation isinexpensive provided that the domain of
the opacity transfer functionisnot too large. Wethen use either the parallel projection or the
perspective projection rendering algorithm to render voxels from an unencoded 3D voxel
array. We traverse the array scanline-by-scanline as usual. But, for each scanline we use
the octree and the summed-area table to determine which portions of the scanline are non-
transparent. The algorithm classifies voxels in the non-transparent portions of the scanline
using a lookup table and then renders them as in the previous agorithms. The algorithm
skips opague regions of the image just as before. Voxels that are either transparent or oc-
cluded are never classified, which reduces the amount of computation.

The main advantage of thisalgorithmisthat the min-max octree can be precomputed be-
fore fixing the classification function. Along similar lines, two agorithmsthat use a spatial
data structure for generating isosurfaces from volume data have been proposed: Wilhelms
& Van Gelder [1992] use a min-max octree, and Stander & Hart [1994] use an octree con-
taining a Lipschitz constant which bounds the variation of the scalar value. Both of these
data structures can be precomputed before the user selects an isosurface threshold. How-
ever neither algorithm is appropriate for more general classification functions, whichisthe
advantage of our algorithm.

4.3.2 TheMin-Max Octree

Anoctreeisarecursive subdivision of space organized asatree (Figure 4.15). Each node of
an octree represents a cubic region of space and has eight children. The children represent a
subdivision of thenode’' sspaceinto eight smaller octants. A min-max octreeisan octreethat

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 72

root node

FEINCICINNNN

—

DN e fe NININNIN [o INNINININININ INININININNNN

o 3

NINININININNIN INISNININININNIN INANISNININNNN

123456738

Figure 4.15; Diagram of amin-max octree. Each node contains the minimum and maximum values
of each argument to the opacity transfer function over a subcube of the volume.

is used to store the minimum and maximum values of some parameter associated with the
region of space represented by each node. Theroot node containsaminimum and maximum
value of the parameter for the entire volume. Each additional level of the tree contains min-
max values for smaller regions of the volume, resulting in a more detailed description of
parameter variationsinsidethevolume. The smallest octree node size can be chosento trade
off the maximum level of detail versus the amount of time it takes to traverse the octree
during rendering. At some point the benefit of increased detail no longer outweighsthetime
required to traverse the octree nodes while extracting the information.
Each node in the min-max octree contains the following information:

e The minimum and maximum value of each classification parameter over al of the
voxels represented by the octree node.

e Storage for caching a result after classifying the octree node. This field indicates
whether the voxels represented by the node are al transparent, all non-transparent,
or acombination. In the latter case the children of the octree node contain more de-
tailed information.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 73

e A pointer to the children of the octree node. All eight children are stored in acontigu-
ous block of memory so each octree node contains only one pointer that pointsto the
first of its children (as shown in Figure 4.15). Some octree nodes have no children,
inwhich case the pointer is set to NIL. Nodes at the lowest level of the octree contain
no pointer field at all (to conserve memory).

The octree does not contain the original volumedata. The volumeisstored as aseparate 3D
array of voxels.

An aternative data structure for storing the same information is a forest of min-max
binary trees with one tree for each voxel scanline. Binary trees appear to be the natural
choice given that we used run-length encoding rather than an octree for the fast rendering
algorithm described earlier. We decided against this alternative because binary trees would
require eight times as much memory for the same number of levels, and three copies of the
data structurewould be required (onefor each principal viewing axis). Therequired storage
can exceed the size of the volume even in practical cases, whereas the min-max octree is
always significantly smaller than the volume.

The algorithm for computing the octree operates as follows. First, the algorithm builds
afull octree (an octree in which every node has children except for the nodes in the most
detailed level; this data structure is also known as a pyramid). The octree is constructed
bottom-up: the algorithm computes the base of the octree by looping over the voxelsin the
volumeto compute the min-max datafor the most-detailed octree nodes, and then each node
at the next higher level is computed by combining the values from its eight children. This
process continues until the root node has been computed.

Second, the algorithm prunes octree nodes for which the difference between the mini-
mum and maximum parameter valuesfalls below a user-defined threshold. For example, if
the minimum and maximum values are equal for all parametersin a particular octree node
then no additional informationisprovided by the children of the node, so they can be pruned.
Even if the minimum and maximum values are not equal but are nearly so it may be advan-
tageous to remove the children: the more nodesin the tree the longer it takesto traverse the
tree during rendering. The user-defined thresholds can be adjusted to optimize the tradeoff
between level-of-detail and traversal time.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 74

Figure 4.16; Diagram of a 2D summed-area table (after Crow [1984]). The table can be used to
integrate a function of two variables over any rectangular region of its domain.

4.3.3 TheSummed-Area Table

A summed-areatableisaconvenient data structure for integrating a discrete function over a
rectangular region. It was proposed by Crow [1984] for down-sampling texture maps. Fig-
ure4.16illustratesan example of a2D summed-areatable used to integrate atwo-parameter
discretefunction. Let f(p, ¢) beafunction defined at discreteattice points on arectangular
domain. The summed-areatable for thisfunctionisa2D array of values S(p, ¢) computed
from f. Each entry in S istheintegra of f over arectangular region with its bottom-left

corner at the origin:
p q

Sp.g)=> > flp'.d)

p'=0¢'=0

Theintegral of f over an arbitrary rectangular region can be found from at most four entries
inthe table. Consider theregion R shown inthefigure. S(puax, dmax) 0ivestheintegral of
f over R plustheregion to theleft of R and below R. Theintegrals over these two “ extra’
regions must be subtracted. Theintegral over the region below R iSS(pmax; ¢min — 1) and
the integral over the region to the left of R iS S(pmin — 1, ¢max)- |f both of these are sub-
tracted then theintegral over the region that is both below and left of R is subtracted twice,
SO S(Pmin — 1, gmin — 1) Must be added back. The integral over an arbitrary rectangular
region can therefore be computed in constant time using the following formula:

Pmax dmax

Z Z f(p7 Q) = S(pnlaX7 Qmax> - S(pnlaX7 qmin - 1) -
P=Pmin §=¢min

S(pmin - 17 qmax) + S(pmin - 17 Gmin — 1)

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 75

Similar formulae can be derived for summed-area tables with an arbitrary number of di-
mensions as described in Glassner [1990a]. An algorithm to compute the table operates as
follows: first compute S(0,0), which is egqual to f(0,0), and then compute S(p, ¢) from
f(p,q) andentries S(p — 1,¢q), S(p,q — 1) and S(p — 1,q — 1).

In the context of the fast classification volume rendering algorithm, the summed-area
table is used to integrate the opacity transfer function over the voxels represented by an
octree node. The result of the integral indicates whether or not the voxels are transparent.
The agorithm operates as follows. When the user selects a new opacity transfer function
f(p,q, . ..) the dgorithm computes a transparency function fr(p, ¢, . ..) by evaluating the
opacity transfer function for each (p, ¢) and comparing the result to the minimum opacity
threshold a7:

]- Iff(p7Q7)>aT
0 otherwise

frp.q,...) = {

If fr evaluatesto onefor aparticular point in the parameter space then the function f maps
that point to a non-transparent opacity. (Here we have removed the earlier restriction that
the opacity threshold must equal zero.)

Next theal gorithm computesasummed-areatable S(p, q, . . .) for thetransparency func-
tion f7. If there are n parameters to the opacity transfer function then the table must have n
dimensions. Each table entry contains the number of parameter tuplesin a given region of
parameter space that map to a non-transparent opacity. Computing the table requires time
proportional to the number of entriesin the table, which isthe size of the domain of f.

To determine whether or not the voxels represented by an octree node are transparent,
the algorithm uses the summed-area table to integrate the transparency function f; over
the voxelsin an octree node. The minimum and maximum values of p, ¢, . .. stored in the
octree node give the bounds of the region of integration. These bounds are used to index the
summed-area table. 2" table |lookups are required to compute the integral, where n is the
number of parametersto f7. If theintegral equals zero then all of the voxels represented by
the octree node must be transparent and need not be rendered. Otherwise, a more detailed
level of the octree can be used to refine the estimated classification. When the algorithm
reachesthelowest level of theoctreeit classifiesthe voxelsin the potentially-nontransparent
octree nodes (using the original opacity transfer function f) and then renders them.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 76

Thisagorithm never discardsanon-transparent voxel, but it may cause transparent vox-
els to be rendered. The run-length encoding used in the previous two agorithms exactly
represents the subset of the voxels that are transparent whereas the fast classification algo-
rithm computes a conservative approximation. However, if the volume has a high degree
of coherence then the approximation will be good enough to achieve a substantial speedup.

The algorithm also takes advantage of coherence in the opacity transfer function. This
type of coherence arises because users often choose transfer functions that partition feature
gpace into a small number of transparent and non-transparent regions, e.g. only the voxels
within a certain range of scalar values become non-transparent. During rendering, any oc-
tree subcube with parameters lying entirely within one region of the partition can be tested
for transparency without visiting more detailed levels of the octree. Thus the agorithm
can exploit coherence in the opacity transfer function to classify octree nodes with widely-
varying parameter values in constant time.

4.3.4 Implementation of the Fast Classification Algorithm

The parallel projection rendering algorithm and the perspective projection rendering algo-
rithm can both be modified to use the data structures described in this section (a min-max
octree, a summed-area table, and an unencoded volume array) instead of a run-length en-
coded volume. In the current implementation each voxel in the volume array contains an
explicit value for each parameter to the opacity transfer function aswell as any parameters
required for shading. Figure 4.17 is a pseudo-code description of the routines that imple-
ment thefast classification algorithm. They must be combined with one of thetwo rendering
algorithms described earlier.

The first step during rendering is to compute the summed-area table from the opacity
transfer function and to use the table to determine which nodes of the min-max octree rep-
resent transparent voxels. The routine ClassifyOctree performs these operations. 1t should
be called from the beginning of the Render Volume procedurein either the parallel projection
algorithm or the perspective projection algorithm.

ClassifyOctreefirst calls ComputeSummedAreaTabl e to build asummed-areatablefrom
the current classification function, as described in Section 4.3.3. Then ClassifyOctree calls

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 77

1 procedure ClassifyOctree
ComputeSummedAreaTable();
ClassifyOctreeNode(octree_root);

end

5 procedure ClassifyOctreeNode(node)
integral = LookupSummedA reaTable(node.minima, node.maxima);
if (integral = 0)
node.status = TRANSPARENT;
elseif (node.children = NIL)

10 node.status = NON_TRANSPARENT;
else
node.status = SUBDIVIDE;
for i=1to8)
ClassifyOctreeNode(node.children[i]);
15 endif
end

procedure ComputeVoxel Runs(node, node size, j, k)
CurrentRunType = NIL;
CurrentRunindex = 0;
20 if (node.status = SUBDIVIDE)
child =0;
if ((j mod node_size) > node size/2)
child = child + NEXT_J;
if ((k mod node_size) > node_size/2)
25 child = child + NEXT K;
ComputeVoxel Runs(node.children[child], node_size/2, j, k);
ComputeVoxel Runs(node.children[child + NEXT_I], node_size/2, |, k);
else
if (CurrentRunType = node.status)
30 RunL engths[CurrentRunindex] = RunLengths CurrentRunindex] + node_size;
ese
CurrentRunlndex = CurrentRunindex + 1;
RunL engths[CurrentRunindex] = node_size;
CurrentRunType = node.status;
35 endif
endif
retur n(RunLengths);
end

Figure 4.17: Pseudo-code for the fast classification algorithm.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 78

ClassifyOctreeNode which performs a preorder depth-first traversal of the min-max octree.
At each node during thetraversal ClassifyOctreeNode calls LookupSummedAreaTabletoin-
tegrate the transparency function (derived from the opacity transfer function) as described
in Section 4.3.3. If theintegral equals zero then the routine marks the node as transparent.
If the integral is nonzero and the node has no children then the routine marks the node as
potentially non-transparent, meaning that the node will be considered by the rendering rou-
tine. The remaining case is that the integral is nonzero but the node is not a leaf node, so
ClassifyOctreeNode recursively visits the eight children. After the recursion unwinds, the
status fields in the octree nodes indicate which nodes represent transparent voxels.

Thelast routinein the fast classification algorithm is ComputeVoxel Runs which usesthe
octree to computealist of transparent and non-transparent runsfor any voxel scanline. The
list of runsis stored in an array just like the RunLengths array in the run-length encoded
volume (Figure 4.3). The rendering routines call ComputeVoxel Runs to compute the run
lengthson-the-fly and then they usethearray of run lengthsand ascanline of voxelsfromthe
unencoded voxel array instead of the precomputed run-length encoded volume. Otherwise,
the rendering algorithms do not change. The parallel projection agorithmin Figure 4.8 can
be modified to use the fast classification algorithm by removing the call to FindVoxel Runs
on line 11 and inserting two calls to ComputeVoxelRuns just before line 14 (one for each
voxel scanline). The perspective projection agorithm in Figure 4.10 can be modified by
removing the call to FindVoxelRuns on line 3 and inserting calls to ComputeVoxel Runs for
each voxel scanlinejust before line 6. The call to AdvanceVoxel Ptr on line 15 must also be
removed.

ComputeVoxel Runs operatesasfollows. Itisarecursiveroutinethat must be called from
CompositeSice with the root node of the octree, the number of voxels per side in the root
node, and the coordinates of the current voxel scanline (k isthe slice number and j isthe
scanline number). ComputeVoxelRuns first examines the status field of the current node.
Thisfield contains the result computed by ClassifyOctree. If the field indicates that the oc-
tree node should be subdivided then ComputeVoxel Runs computes which two of the eight
children of the node intersect the scanline. Since scanlines are always aligned with an axis
of the volume, exactly two of the children must intersect and the arithmetic to determine
which two is simpler than in aray caster (lines 21-25). Once the two children have been

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 79

determined, ComputeVoxel Runs calls itself recursively on each one.

When ComputeVoxel Runs finds a node that should not be subdivided it adds arun to the
array of runlengthsfor the current scanline. If thetype of the current run and the node match
(i.e. if both are transparent or both are non-transparent) then the length of the current runis
extended by the size of one side of the octree node (line 30). Otherwise ComputeVoxel Runs
creates anew run.

When the recursion unwinds the RunLengths array contains a list of run lengths indi-
cating which voxels are transparent and which are potentially non-transparent. When the
rendering loop in CompositeSice encounters apotentially non-transparent voxel run it must
retrieve the voxels from the unencoded voxel array and classify them individually just be-
fore they are resampled and composited.

Adjacent voxel scanlines often intersect the same set of octree nodes, so the array of run
lengths can sometimesbereused for several adjacent scanlines. If thesizeof the smallest oc-
tree node visited by ComputeVoxel Runsis n,,;, then the next n,,,;, voxel scanlines can reuse
the same array of run lengths. CompositeSice keeps track of when to call ComputeVoxel -
Runs and when to reuse the existing run lengths.

4.3.5 Limitationsof the Fast Classification Algorithm

The fast classification algorithm places two restrictions on the opacity transfer function.
First, it must be possibleto precompute the parametersto the classification function for each
voxel. Thefunctionitself need not be specified in advance, but the parameters must be fixed
so that the min-max octree can be precomputed. For example, atransfer function that maps
the scalar value and the gradient magnitude of the scalar value into an opacity is acceptable
because both the scalar value and the gradient magnitude can be precomputed and stored
with the voxel. An example of a classification function that does not satisfy this property
is a segmentation algorithm based on a 3D flood fill. In order to compute the opacity of a
particular voxel, aflood fill function must examine the values of many neighboring voxels.
Thusthe “parameters’ of the function include a non-precomputable subset of the voxelsin
the volume.

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 80

The second restriction is that the cardinality of the domain of the opacity transfer func-
tion must not betoo large. The cardinality of the domain depends on the number of param-
eters of the opacity transfer function and the number of possible discrete values for each
parameter. The summed-areatable must have one entry for every parameter tuple, so if the
domain is too large then the table will take excessive time to compute and will occupy a
large amount of memory. Classification functions with more than two or three parameters
are not likely to be feasible.

Compared to the algorithms based on run-length encoding, the fast-classification algo-
rithm has one primary disadvantage: it requires more memory, which can have animpact on
the maximum feasible volume size and on rendering time. Thefast classification algorithm
uses an uncompressed 3D array of voxels, and each voxel contains precomputed values for
each classification parameter and each shading parameter. For example, in the current im-
plementation each voxel containsthe scalar value (one byte), the gradient magnitude of the
scalar value (one byte), and a precomputed surface normal vector for shading (two bytes).
Thus avolume containing 5123 voxels occupies 512 Mbytes of memory, too large to fit into
main memory on most workstations. A run-length encoded classified volume often occupies
much less space, so the previous two rendering algorithms are practical for larger volumes.

Furthermore, because of the size of thevoxel array, itisnot practical to build threetrans-
posed copiesof thearray. Asaresult, if themajor viewing axischangesthen thevolumedata
must be accessed against the memory storage stride and therefore performance degrades.
Other volume rendering algorithms are also prone to this problem as we will seein the next
chapter. The performance degradation may be acceptably small depending on the speed of
thememory system. If memory performanceisaproblem it can be combated by transposing
the 3D array of voxels, but doing so resultsin adelay during interactive rotation sequences.
It is better to use a small range of viewpoints that does not require transposing the volume
while modifying the classification function, and then to switch to the run-length encoded
representation for rendering with arbitrary viewpoints. The next section describes an effi-
cient algorithm for switching between the two representations.

Another solution isto first eliminate portions of the volume that will never be of inter-
est by classifying the volume with a conservative opacity transfer function. This crudely-
classified volume can be stored using the run-length encoded representation. Therun-length

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 81

encoded volume can then be used in conjunction with the min-max octree and the fast clas-
sification agorithm. For example, it is straightforward to choose a transfer function that
maps air in a CT scan to transparent opacity, eliminating a large fraction of the volumein
many medical data sets. The user could then use the fast classification algorithm in con-
junction with arun-length encoded volumeto refine the classification function. Thishybrid
algorithm is a potential areafor future research.

4.4 Switching Between M odes

We have built ademonstration application based on the algorithmsin thisthesisthat hastwo
modes, onefor classification and onefor viewing and shading (Figure 4.18). The classifica
tion mode uses the min-max octree and summed-area table, and the viewing mode uses the
run-length encoded volume. These two modes address different parts of the visualization
process outlined in Section 1.1.4.

However, users of the application will want to switch between the two modes at will.
Since the min-max octree is independent of all user-selectable classification and rendering
optionsit can be precomputed when the user |oads a volume and therefore the data required
for thefast classification modeisawaysavailable. But when the user wishesto switch from
the classification modeto the viewing mode the run-length encoded volume must be recom-
puted for the current classification function. A fast agorithm to create the data structureis
necessary so that the user can switch modes quickly.

The datastructures and pseudo-code fragments devel oped in the previous section can be
used to construct such an algorithm. A brute-force algorithm to compute a run-length en-
coded volume operates by streaming through the unencoded volume data in scanline order,
classifying each voxel and collecting the classified voxelsinto runs. To optimize this algo-
rithm we use the min-max octree and the summed-area table to determine which voxelsin a
voxel scanline must be transparent before traversing the scanline. Then the transparent runs
can be skipped without classifying individual voxels. The routine ComputeVoxel Runsfrom
Section 4.3 computes exactly the required information to enable the run-length encoding
algorithm (Section 4.1.2) to skip transparent regions of the volume.

One way the rendering algorithmsin this chapter can be integrated under a unified user

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 82

volume

Preprocess Data Set

..

\/ © Switch
volume + . Modes . | run-length
octree : | encoding
L4 L/
intermediate intermediate
image : : image
L \/
final : | final
image image
New Classification New Viewpoint

Figure 4.18: A family of volume rendering algorithms: When the user loads a new volume we pre-
process the data to produce a min-max octree. The user can then interactively adjust classification
parameters using the fast classification algorithm (left side). When the user settles on a classifica
tion function we use the min-max octree to compute a run-length encoded volume and the user can
interactively adjust the viewing and shading parameters (right side).

interface is to automatically choose the appropriate rendering mode based on the rendering
parameters the user adjusts. When the user adjusts a classification parameter the applica-
tion usesthefast classification algorithm to render the volume and then starts a background
process to compute the corresponding run-length encoded volume. If the user continuesto
adjust the classification parameters then the application interrupts the background process,
rerendersthevolumeusing thefast classification algorithm, and restarts the background pro-
cess with the new parameters. If the user decides to adjust the viewing or shading param-
eters, the application pauses momentarily until the background process finishes computing
the run-length encoded volume and then the application switches to viewing mode.

For very large volumes the fast classification mode is less efficient and the rendering
time may be unacceptably slow. A solutionisto use the fast classification algorithm to ren-
der asmall subcube of the volume while using the most-recently computed run-length en-
coding to render the rest of the volume. The user can then select a subcube of the volume
(say, 128% voxels) to focus on during classification, but the rest of the volume would still

CHAPTER 4. THREE FAST VOLUME RENDERING ALGORITHMS 83

bevisibleto provide context. The application can provide faster feedback using this hybrid
algorithm than it can if it rerenders the entire volume using the fast classification algorithm.
If the user pauses for along enough time then the background process can finish recomput-
ing the run-length encoded volume and the main application can rerender the entire volume
with the new classification.

45 Chapter Summary

In this chapter we developed three new volume rendering algorithms based on the shear-
warp factorization: arendering algorithm for parallel projections, arendering algorithm for
perspective projections, and a classification algorithm that can be incorporated into either
rendering algorithm.

Unlike previous uses of the shear-warp factorization, the new algorithms exploit the
properties of the factorization to combine the advantages of image-order and object-order
algorithms. As in other object-order algorithms the new algorithms make efficient use of
coherence data structures because they traverse the volume only once and they traverse the
data structuresin storage order, so thereisvery little overhead due to addressing arithmetic
or inefficient memory access patterns. Asinimage-order algorithmsthe resampling filter is
accurate and simpleto implement, and the new algorithmsinclude the early ray termination
optimization.

Furthermore, we introduced coherence data structures for the fast classification algo-
rithm that allow it to determine which portions of the volume are transparent without eval-
uating the classification function for each voxel. Unlike previous volume rendering algo-
rithmsbased on spatial datastructuresthe new algorithm allowsauser to interactively adjust
classification functions and see the results immediately.

Thisfamily of algorithms covers all phases of the visualization process outlined in Sec-
tion 1.1.4. The next chapter examinesthe performance of the new agorithms and compares
them to existing algorithms.

Chapter 5
Performance Analysis

Spatial coherenceisawell-known meansfor accel erating volume rendering without degrad-
ing image quality. Although speedups of more than an order of magnitude over brute-force
algorithms have been reported, the sources of these speedups and the rel ative merits of com-
peting algorithms are not well-understood. This chapter presents a detailed performance
analysis of the shear-warp algorithms and compares them to other coherence-accelerated
algorithms.

In thefirst part of the chapter (Section 5.1) we report on the speed and image quality of
the new shear-warp volume rendering algorithms. The results show that the parallel pro-
jection algorithm can render 2563 voxel medical data setsin less than one second on a 150
MHz R4400-based workstation without sacrificing image quality.

In the second part of the chapter (Section 5.2) we compare the shear-warp algorithmsto
image-order algorithms, both with and without coherence accelerations. We use an octree-
accelerated ray caster as arepresentative exampl e of image-order algorithms. We first show
that the observed computational growth rates of a brute-force volume rendering algorithm,
the octree-accelerated ray caster, and the shear-warp algorithm are n?, n? log, n and n? re-
spectively. We then show that the performance of each algorithm is governed not by its
complexity, but by the associated constants. We do so by decomposing execution time into
categories that distinguish between essential computation, overhead due to the coherence
data structures, and memory overhead. This information allows us to pinpoint the differ-
ences between the algorithms.

CHAPTER 5. PERFORMANCE ANALY SIS 85

Finally in the third part of the chapter (Section 5.3) we analyze and measure the perfor-
mance of the shear-warp algorithms with low-coherence data.

From this analysis we make four observations regarding coherence-accel erated volume
rendering algorithms:

e Thetime spent traversing spatial data structuresis at least as great as the time spent
resampling and compositing voxels.

e Octree-accelerated image-order algorithms spend more time traversing spatial data
structures than object-order algorithms because the former must perform analytic ge-
ometry calculations (e.g. intersecting rays with axis-aligned boxes). As aresult, the
shear-warp agorithm is 4-10x faster than the octree-accelerated ray caster.

e Memory overhead is important in brute-force algorithms but not in coherence-
accelerated algorithms,

e Coherence-accelerated volume rendering algorithms can be made to degrade grace-
fully in the presence of low data coherence.

These observations suggest that scanline-order volume rendering algorithms such as the
shear-warp agorithm are likely to dominate over other algorithms, at least for software im-
plementations.

CHAPTER 5. PERFORMANCE ANALY SIS 86

5.1 Performanceof the Shear-Warp Algorithms

511 Speed and Memory Performance

Table 5.1 shows the characteristics of our test data sets, including the sizes and the percent-
ages of non-transparent voxels. The “brain” data set is an MR scan of a human head (Fig-
ure 5.1) and the “head” data set isa CT scan of a human head (Figure 5.2). The “brains-
mall” and “headsmall” data sets are decimated versions of the larger volumes. The tests
use classification functions that produce opague surfaces and shading functions based on
the Phong illumination model implemented with alookup table. The lookup table maps a
precomputed surface normal vector to a color, as described later in Section 7.1. We report
rendering times that include the cost of recal culating the entries in the lookup table (which
must be performed every time the viewpoint changes).

Table 5.2 lists some additional rendering parameters used in the experiments. All of
the results in this chapter were measured on a 150 MHz SGI Indigo2 R4400 workstation
without hardware graphics accelerators. This machine has an integer performance rating of
90 SPECint92 and a floating point performance rating of 87 SPECfp92.

The performance resultsfor the three new algorithms are summarized in Table 5.3. The
“Fast Classification” timings are for the fast classification algorithm with a parallel projec-
tion. Therendering timesincludeall stepsrequired to render from anew viewpoint, includ-
ing shading, compositing and warping, but the preprocessing step to compute the spatial
data structure is not included. The “Avg. Time’ field in the table is the average time per

Data set Size (voxels) Memory before | Non-transparent | Image
classification (Mb) voxels (%)
brainsmall | 128x128x84 1.3 18
headsmall | 128x128x113 1.8 6
brain 256x256x167 10 11 Fig. 5.1
head 256x256x225 14 5 Fig. 5.2
head (skin) | 256x256x225 14 11 Fig.5.5
engine 256x256x110 6.9 8 Fig. 5.6
abdomen 257x257x159 10 11 Fig. 5.7

Table 5.1: Characteristics of the test data sets for the results in this chapter.

CHAPTER 5. PERFORMANCE ANALY SIS 87

Figure 5.1: Volume rendering of an MR scan of a human brain using the shear-warp a gorithm with
aparalel projection (0.86 sec.).

Figure 5.2: Volume rendering of a CT scan of a human head with a parallel projection (0.80 sec.).

CHAPTER 5. PERFORMANCE ANALY SIS

Minimum opacity threshold

Early ray termination threshold
Min-max octree parameter threshold
Smallest min-max octree node size

Image size

0.05
0.95
4

43 voxels
2562 pixels

88

Table 5.2: Rendering parameters used for the performance tests in this chapter. The minimum opac-
ity threshold determines whether or not avoxel istransparent. Both opacity thresholds are specified
on ascale of 0.0 (transparent) to 1.0 (fully opague). The min-max octree parameter threshold isthe
largest variation alowed for the parameters of the opacity transfer function in an octree leaf node;
nodeswith larger variations are subdivided until the size reachesthe smallest allowed node size. The

octree parameters are described in Section 4.3.2.

| Dataset | Avg. Time | Min/Max Time | Memory |
Parallel projection algorithm
brainsmall | 0.22 sec. | 0.19-0.26 sec. 4 Mb.
headsmall | 0.25 0.23-0.28 2
brain 0.86 0.69-1.06 19
head 0.87 0.77-0.98 13
Perspective projection algorithm
brainsmall | 0.48 sec. | 0.42-0.54 sec. 4 Mb.
headsmall | 0.57 0.53-0.62 2
brain 2.04 1.67-2.46 19
head 2.35 2.12-2.55 13
Fast classification algorithm
brainsmall | 0.40 sec. | 0.35-0.47 sec. 8 Mb.
headsmall | 0.54 0.49-0.61 8
brain 1.94 151-2.36 46
head 2.19 1.92-2.39 61

Table 5.3: Rendering time and memory usage on a 150 MHz SGI Indigo2 workstation. Timesin-
clude shading, resampling, projection and warping. The fast classification times include rendering
with a paradld projection. The “Memory” field is the total size of the data structures used by each
algorithm; thefirst two a gorithms use a compressed run-length encoded volume while the fast clas-

sification algorithm uses an uncompressed voxel array. Table 5.1 describes the data sets.

CHAPTER 5. PERFORMANCE ANALY SIS 89

Image Size 642 | 1282 | 2562
Warp Time (msec.) 5.0 17 64
% Time, 64 volume 7| 20| 48
% Time, 1282 volume 11| 31
% Time, 2562 volume 9

Table 5.4: Execution time for the 2D warp. The time is expressed both in milliseconds and as a
percentage of total rendering time for several image and volume sizes. Unless the image is much
larger than the volume, the percentage is small.

frame for rendering 360 frames at two-degree-angle increments, and the “Min/Max” times
are for the best and worst case angles. The “Memory” field gives the size in megabytes of
all data structures. For the first two algorithms the size includes the three run-length en-
codings of the volume, the image data structures and lookup tables for shading and opacity
correction. For the third algorithm the size includes the unencoded voxel array, the octree,
the summed-area table, the image data structures, and the lookup tables.

For comparison purposes, we rendered the same datasetswith aray caster that usesearly
ray termination and a pyramid to exploit object coherence. Because of its lower computa-
tional overhead the shear-warp algorithmis4-10x faster. In Section 5.2 we compare thetwo
algorithmsin more detail.

Cost of the2D Warp Table 5.4 showsthetimerequired to warp images of three different
sizes and expresses the time as a percentage of total rendering time for three different vol-
umesizes. Theseresultsarefor aparallel projection of the MR *brain” volume prefiltered to
thethreeresolutions. Theimplementation of the 2D warp usesbilinear interpolation. These
results show that unless the image resolution is much larger than the volume resolution the
performance overhead incurred by the warp isasmall percentage of overall rendering time.
Images with sizes much larger than the volume are not useful sincethe rendering algorithms
sample the volume at object resolution. The volume should always be prescaled to roughly
match the desired image size.

Dependence of Rendering Time on Viewing Angle Rendering time depends on view-
ing angle, primarily because the effectiveness of the coherence optimizationsmay vary with

CHAPTER 5. PERFORMANCE ANALY SIS 90

Time (msec.)
1500

1250 Sphere
_/K-—-—-’\//"*—s—-——)\'w (1194 msec. +6%)
1000 M CT Head
+ 0,
750 (874 msec. +13 %)

500 [

250

0 1 1 1 J
0 90 180 270 360

Rotation Angle (degrees)

Figure 5.3: Rendering time versus viewing angle for a parallel projection of the CT head data set
and a256° voxel data set containing a sphere.

viewpoint. Figure 5.3 showsthe rendering time as afunction of viewing angle with the par-
alel projection algorithmfor the 256® CT “head” dataset and for a256° voxel synthetic data
set containing asingle large sphere. Since the sphere looksidentical from al directionsthe
effect of the coherence optimizations does not change with viewpoint, and the rendering
time varies by only 6%. For the “head” data set the complexity of the rendered image does
change and the variation in rendering timeis 13%. There are secondary coststhat also vary
with viewpoint (for example the size of the intermediate image increases as the rotation an-
gleapproaches 45 degrees so thetimerequiredtoinitially clear it increases), but these effects
are negligible.

Figure 5.3 also shows that there is no jump in rendering time when the major view-
ing axis changes. Thisfact holds true provided the three run-length encoded copies of the
volume fit into real memory simultaneously. In the current implementation each copy of
the volume contains four bytes per non-transparent voxel and one byte per run. For the
256x256x225 voxel head data set the three run-length encodingstotal only 9.8 Mbytes. An
increase in rendering timewould occur only if main memory were not large enough to hold
the compressed volume, which would cause paging from the disk.

One might expect cache performance to degrade when the major viewing axis changes,

CHAPTER 5. PERFORMANCE ANALY SIS 91

but the results in Figure 5.3 show that there is no impact on overall performance. Thisre-
sult can be explained by two effects. First, asin other volume rendering agorithms [Nieh
& Levoy 1992], theratio of voxel memory references to executed instructionsislow. Even
ignoring the complicated control logic for traversing the coherence datastructures, theinner
loop of the rendering algorithm contains about 100 R4400 machine instructions to resam-
ple four voxels and composite the result into the image. Only eight of those instructions
load voxel data (four opacities and four surface normal vectors for shading). Second, the
volume is always traversed in scanline order so the accesses to the volume data have very
good spatial locality. Thus these eight load instructions are likely to hit in the cache.

If all eight voxel load instructions resulted in cache misses then the memory overhead
could be non-negligible, since miss penalties of 50-100 cycles are becoming common in
modern processors. Thefast classification agorithm suffers from this problem if the voxel
array is not properly transposed, in which case the algorithm does not traverse the volume
in scanline order. For examplethefast classification algorithm rendersthe 2562 sphere data
Setin 2.7 seconds if it is properly transposed versus 4.0 secondsif it isnot.

Cost of Preprocessing and Switching Modes Figure 5.4 gives a breakdown of thetime
required to render the brain data set with a paralel projection using the fast classification
algorithm (left branch) and thefast rendering algorithm (right branch). The* Switch Modes”
arrow shows the time required for all three copies of the run-length encoded volume to be
computed from the unencoded volume and the min-max octree once the user has settled on
an opacity transfer function.

Thediagram also showsthetimefor preprocessing thevolume. Thisstep isindependent
of both the viewpoint and the classification function. The preprocessing includes computing
the gradient of the scalar field, the surface normal vectors (an encoded representation of the
gradient), and the min-max octree.

Rendering Timefor Color Images Compared to gray scale renderings, color renderings
take roughly twice as long when using a parallel projection and 1.3x longer when using a
perspective projection because of the additional resampling and compositing required for
the two extra color channels. The slowdown isworse in the paralel projection algorithm

CHAPTER 5. PERFORMANCE ANALY SIS 92

volume

Preprocess Data Set

65 sec.

Y + Switch
: volume + . Modes | | run-length
; octree © 6sec. ! | encoding .
{ 2040 msec. : 4 760 msec.
+ | intermediate + | intermediate
! image ! : image
{ 100 msec. { 100 msec.
5 final : i final
: image : : image

New Classification New Viewpoint

Figure 5.4: Execution time for each stage of rendering the brain data set with aparallel projection.
Theleft side usesthe fast classification algorithm and the right side usesthe fast rendering agorithm.

because in the perspective projection agorithm alarger percentage of the overall rendering
time goes to control overhead and computing resampling weights, and these overheads are
not affected by the number of color channels.

Figures 5.5-5.7 show several examples of color volume renderings produced with the
parallel projection rendering algorithm. Figure5.5isarendering of the“head” dataset clas-
sified with semitransparent skin which took 2.8 sec. to render. Compared to Figure 5.2,
630 msec. of the increased time results from using a different classification, 950 msec. of
the increase is due to resampling and compositing RGB colors instead of gray scale, and
450 msec. of theincrease is due to a more complicated shading function (separate shading
lookup tables were used for voxels representing skin and voxels representing bone). Fig-
ure5.6isarendering of a256x256x110 voxel engine block, classified with semi-transparent
and opague surfaces; it took 2.0 sec. to render. Figure 5.7 isarendering of a257x257x159
voxel CT scan of a human abdomen, rendered in 2.2 sec. The blood vessels of the sub-
ject contain a radio-opague dye, and the data set was classified to reveal both the dye and
bone surfaces. The anatomical structures were segmented manually (a drawing program
was used to tag each voxel with an identifier so that the kidneys, blood vessels and bone

CHAPTER 5. PERFORMANCE ANALY SIS 93

Figure 5.5: Color volume rendering of the CT head data set with aparallel projection, classified with
semitransparent skin (2.8 sec.).

Figure 5.6: Color volume rendering of an engine block with a parallel projection, classified with
semitransparent and opague surfaces (2.0 sec.).

CHAPTER 5. PERFORMANCE ANALY SIS 94

Figure5.7: Color volumerendering of aCT scan of ahuman abdomen with aparallel projection (2.2
sec.). The blood vessels contain aradio-opaque dye.

Figure 5.8: Color volume rendering of the engine data set with a perspective projection (2.6 sec.).

CHAPTER 5. PERFORMANCE ANALY SIS 95

Figure 5.9: Image quality comparison of an image rendered by the shear-warp algorithm (Ieft) with
an image rendered by aray caster using trilinear interpolation (right). The data set is a 256> voxel
CT scan of ahead, oriented at 45 degrees relative to the axes of the volume.

structures could be shaded differently).
Figure 5.8 isa color volume rendering of the engine data set using the perspective pro-
jection algorithm. It took 2.6 sec. to compute.

5.1.2 Image Quality

Figure 5.9 shows two volume renderings, one computed with the shear-warp a gorithm and
one computed with aray caster using trilinear interpolation. The two images are virtually
identical.

Nevertheless, the shear-warp algorithm imposes severa limitations on thefilter used to
resampl e the volume and these limitations can potentialy result in image degradation. The
first [imitation is that two resampling steps are required: the algorithm resamples the vol-
ume slices and then resamples the intermediate image to produce the final image. Multiple
resampling steps can potentially cause blurring and loss of detail. However in practice this
problem is not severe. Even in the high-detail regions of Figure 5.9 there is no noticeable
blurring.

CHAPTER 5. PERFORMANCE ANALY SIS 96

@ (b) (©)

Figure5.10: Comparison of image quality with bilinear and trilinear filtersfor aportion of the engine
data set. The images have been enlarged by replicating pixels. (a) Bilinear filter with binary classi-
fication. (b) Trilinear filter with binary classification. (c) Bilinear filter with smooth classification.

A second limitation is that the shear-warp algorithm uses a 2D rather than a 3D re-
construction filter to resample the volume data. A high-quality filter can be used to accu-
rately reconstruct each voxel slice, but the algorithm does not interpol ate data between voxel
dlices. Aliasing artifacts can appear if the opacity or color attributes of the volume contain
high frequencies in the dimension perpendicular to the slices (although if the frequencies
exceed the Nyquist rate then these artifacts are unavoidable).

Figure 5.10 shows a case where a trilinear interpolation filter outperforms abilinear fil-
ter. The left image is a rendering produced with the shear-warp agorithm of a portion of
a data set that has been classified with extremely sharp ramps to produce high frequencies
in the volume's opacity. The viewing angle is set to 45 degrees relative to the axes of the
data set—the worst case—and aliasing is apparent. For comparison, the middle image is
arendering produced with aray caster using trilinear interpolation and otherwise identical
rendering parameters; here there is virtually no aliasing. However, with a smoother opac-
ity transfer function these filtering artifacts can be reduced. The right image is arendering
using the shear-warp algorithm and aless-extreme opacity transfer function. Herethe alias-
ing isbarely noticeabl e because the high frequenciesin the scalar field have effectively been
low-pass filtered by the transfer function.

In practice, if the original volumeis band-limited and the opacity transfer function does

CHAPTER 5. PERFORMANCE ANALY SIS 97

not result in a binary classification (so that high frequencies are not introduced) then the
bilinear filter produces good results. Synthetic data sets that have not been properly an-
tialiased do not always satisfy these conditions and may result in renderings with artifacts.
Real-world sampled datagenerally does satisfy these conditionsaslong asbinary classifica-
tion is not used, and as shown in the figures the resulting images are of comparable quality
to those produced with trilinear interpolation. Binary classification could be supported by
band-limiting the volume after classification, i.e. blurring the opacities.

Finally, athird limitation of the shear-warp rendering algorithms is that the resolution
of the input volume fixes the sampling rate during rendering, regardless of the image res-
olution. If the image resolution is much greater than the volume resolution then the image
will be either blurry or blocky, depending upon the filter used for the 2D warp. The quality
of the rendering could be improved by supersampling each slice of voxel dataasit istrans-
formed into sheared object space. However theincreased algorithmic complexity caused by
the supersampling would result in reduced performance, and it isimpossibleto supersample
in the dimension perpendicular to the voxel slices without significant changes to the algo-
rithm. A better alternative isto prescale the volume by resampling it to a higher-resolution
grid beforerendering. A high-quality filter can be used to prescal e the volume since the cost
would be incurred only once instead of during each rendering. The main disadvantage of
prescaling is that the upsampled volume requires more memory.

The volume should also be prescaled if the voxel spacing in the original volume is not
isotropic (i.e. the spacing between samples is not the same in al three dimensions). Oth-
erwise the sampling rate in image space will be non-uniform, potentially resulting in either
aliasing artifacts or an excessively high voxel sampling ratein some parts of theimage. Ray
casters do not have this problem because the sample locations along a viewing ray can be
distributed uniformly, independently of the volume resolution.

The renderings in this chapter show that the three filtering limitations do not have a
significant effect on the quality of still images. However, subtle aliasing artifacts in a till
image can become more apparent in movie sequences. pixels scintillateif their brightness
changes from frame to frame. We have used the shear-warp algorithm to generate anima-
tions from the data sets shown in Figures 5.5-5.7 and we found no objectionable artifacts.

CHAPTER 5. PERFORMANCE ANALY SIS 98

The shear-warp rendering algorithms produce smooth rotation sequences without notice-
able aliasing. Furthermore, the image sequences are continuous even when the principal
viewing axis changes.

5.2 Comparison of Coherence-Accelerated
Volume Rendering Algorithms

The shear-warp algorithms achieve substantially improved performance compared to exist-
ing volume rendering algorithms. The primary reason for the performance gainsis that the
shear-warp algorithm traverses the coherence data structures and the volume data in scan-
line order, resulting in low computational overhead. In contrast, most existing high-quality
coherence-accel erated volumerendering algorithmsare based onray casting. Intheremain-
der of this chapter we use an octree-accelerated ray caster as a representative example of
existing methods and compare it to the shear-warp algorithms. The comparison illustrates
the performance differences between scanline-order algorithms and ray casters.

Our experiments use the optimized ray casting algorithm described by Levoy [1990a]
augmented with the template optimization described by Yagel & Kaufman [1992]. The al-
gorithm usesafull octree (apyramid) to encode aclassified volume. Each nodeintheoctree
includes a flag indicating whether the node or any of its children contain at least one non-
transparent voxel. During ray casting the algorithm uses the information in the octree to
determine the largest step that can be taken along a viewing ray before reaching the next
non-transparent voxel. When the agorithm finds a non-transparent voxel it enters a stan-
dard ray casting loop that steps along the ray at fixed intervals, sampling the volume and
compositing the samples together, until atransparent voxel is reached. Then the algorithm
again uses the octree to find the next non-transparent voxel. The template optimization is
used to reduce the costs of tracing rays and computing resampling weights as described in
Section 3.5. The agorithm aso uses the early ray termination optimization.

CHAPTER 5. PERFORMANCE ANALY SIS 99

5.2.1 Asymptotic Complexity

Brute-force volume rendering algorithms operate by resampling and compositing all of the
voxelsinavolume. Two examplesarethe shear-warp a gorithm without run-length encoded
data structures and the ray casting agorithm without an octree or early ray termination. In
these algorithms the work per voxel is constant, so assuming that the volume contains n?
voxels (n voxels per side) and the image contains n? pixels, and that the ray caster casts
oneray per pixel with n samplesalong the ray, the asymptotic complexity of the brute-force
agorithmsis O(n?) operations.

Coherence optimizations reduce the number of voxels processed. For some classes
of volumes containing significant coherence, e.g. scenes consisting of voxelized surfaces,
these optimizations also reduce the asymptotic complexity. However, accesses to the co-
herence data structures also have a cost. This section analyzes the complexity of an octree-
accelerated ray caster, the shear-warp agorithm with run-length encoded data structures,
and the shear-warp agorithm with a min-max octree data structure.

Complexity of Octree-Accelerated Ray Casting The octree data structure in the
coherence-accelerated ray caster allows the algorithm to avoid shading, resampling and
compositing the transparent voxels in the volume. In the worst case all voxelsin the vol-
ume have asmall but non-negligible opacity such that they all contribute to the image. In
that case neither the octree nor early ray termination helps, so the worst-case asymptotic
complexity of the rendering algorithm is still O(n?) operations.

However, typical classified volumes have structure that can be exploited with the oc-
tree. In practice a common case is a scene consisting of surfaces, some of which may be
transparent or fuzzy. For instance, doctors and engineers who use CT and MR scanners to
examine physical objectsare generally interested in the boundaries between different tissues
or materials, so they often choose a classification function that exposes these surfaces. The
octree can efficiently encode the large regions of transparent space lying between individual
surfaces.

Suppose the classified scene consists of a collection of opaque surfaces. In thiscase, the
number of visible voxels equal sthe projected surface area of the visible surfaces (at most n?
voxels) multiplied by the average thicknesst of the surfaces. The thickness of a voxelized

CHAPTER 5. PERFORMANCE ANALY SIS 100

surface depends only on the support of the band-limiting filter used when creating the vol-
ume, not on the resolution of the volume (since the true surface isinfinitesimally thin). In
the case of acquired data the characteristics of the measurement equipment determine the
support of the band-limiting filter.

If the scene contains semi-transparent surfaces then the maximum number of visible
voxelsincreases by afactor d which isthe depth complexity of the scene (the average num-
ber of surfaces intersected by a viewing ray before the maximum ray opacity threshold is
reached). The depth complexity is also independent of the resolution of the volume. Thus
in the case of a classified volume representing either opagque or transparent surfaces, the
maximum number of visible voxelsisdtn? (where d = 1 for strictly opaque surfaces). The
ray casting algorithm with an octree processes only the visible voxels, so the asymptotic
complexity of resampling and compositing the volumeis O(dtn?) operations.

The octree-accelerated ray caster also incurs costs due to the optimizations. The algo-
rithm implementsearly ray termination by checking the accumulated ray opacity every time
avoxel is composited, so the number of checksis dtn?. Descending the octree to find the
intersection of aray with a surface incurs a cost of O(log, n) operations. If the number of
surfacesismuch smaller than the number of voxels, d < n, thenthe cost to find all surfaces
intersecting aray is O(d log, n) (dthoughif d ~ n then the cost of descending the tree can
be amortized over many surfaces and the total work isO(n)). Finally, thereisan additional
cost due to grazing rays which pass near a surface. For these rays the rendering algorithm
must still descend the octree in the vicinity of a surface even though the ray does not inter-
sect the surface. It isdifficult to analyzethiscost rigorously sinceit depends on how smooth
or convoluted the surfaces are (which isrelated to depth complexity). In practice our mea-
surements have shown that the cost of grazing rays roughly doublesthetotal cost of casting
rays through the octree. We therefore conclude that the overall asymptotic complexity of
the optimized ray casting algorithmiis:

O(dn*log, n + dtn?)

Thisresult is a significant improvement over the O(n?) brute force agorithm.

CHAPTER 5. PERFORMANCE ANALY SIS 101

Complexity of the Shear-Warp Algorithm The shear-warp rendering algorithms also
process only the non-transparent, non-occluded voxels. Just asfor the optimized ray caster,
inthe case of a scene containing surfacesthe cost of resampling and compositing the volume
is O(dtn?) operations. The shear-warp agorithm has four additional costs. It must warp
the 2D image, costing O(n?) operations, and there are costsincurred by the coherence data
structures: traversing voxel runs, and performing the UNION-FIND operations associated
with the image pixel runs.

The cost of traversing voxel runsis c,n? operations, where n? is the number of voxel
scanlinesinthevolumeand ¢, isthe average number of runsper scanline. Unlikearay caster
the shear-warp rendering algorithm always traverses every run in the volume, athough it
doesnot processindividual voxelsin thetransparent runs. If the volume consists of surfaces
then the number of runs per scanlineis proportional to the number of surfaces (whichisalso
an upper bound on the depth complexity).

The cost of traversing and maintaining the opaque pixel runs depends on the number
of times a new run is created (n.) and the number FIND operations () as described in
Section 4.1.3. Consider an intermediate image scanline containing n pixels. On average,
the number of voxels composited into the image scanline over the course of rendering the
entire image equal s the average number of surfaces per scanline times the average thick-
ness of each surface, which equals %cvt. This number is an upper bound for the number of
opague pixel runs created (). An upper bound for the number of FIND operations () is
the maximum number of opaque pixel runs times the number of times the image scanline
istraversed, which equals 1 c,tn. The cost of the UNION-FIND operations for asinglein-
termediate image scanlineis O(ny logy ., /., nc) [Cormen et a. 1990]. Thusthe total cost
for all n scanlinesintheimageis O(c,tn*10g, ., . /. Cot)-

The result of this analysis is the following worst-case asymptotic complexity for the
shear-warp algorithm, under the assumption that the scene consists of opaque or semi-
transparent surfaces:

O([dt + cut10g1 11, /. cot]n?)

In practice we observe execution timegrowth rates consistent with thisanalysisaswe saw in
Table5.3: an eight-fold increasein the number of voxelsleadsto only afour-foldincreasein

CHAPTER 5. PERFORMANCE ANALY SIS 102

timefor the compositing stage of the algorithm and just under afour-fold increasein overall
rendering time.

To placetherelativeimportance of each term into context, for the CT head data set (Fig-
ure 5.2) the rough breakdown of computational costsin our implementationis: 40% for re-
sampling and compositing voxels, 30% for traversing voxel runs, 10% for the 2D warp, and
5% for the UNION-FIND operations. These are percentages of computational costs only,
ignoring memory overhead. We will analyze the measured resultslater in this chapter. For
this data set, n/n. = 2.5, ¢, = 5.8, t = 2.4, and d ~ 1 since most surfaces are opague.

Then? growth rate of the shear-warp algorithmisbetter thanthen? log, n growth rate of
the octree-accel erated ray caster. However, an improvement by afactor of log, n does not
result in alarge performance gain. The more important improvement is that the cost poly-
nomial for the shear-warp algorithm also has lower constant factors. Experimental results
later in this chapter validate this claim.

Complexity of the Fast Classification Algorithm The fast classification algorithm has
the same costs as the basic shear-warp rendering algorithm analyzed in the previous sec-
tion, plus additional costs to compute the summed-area table and traverse the min-max oc-
tree. Computing the summed-area table requires one operation for every combination of
arguments to the opacity transfer function. If the function has p parameters each of which
can take on m values then the computational complexity for computing the table is m? op-
erations. Typically the number of parameters p equals one or two, and the value of each
parameter is stored in an eight-bit byte (m = 256).

The cost for one traversal of the min-max octree (to compute the run lengths for one
voxel scanline) is O(c,tlog, n) operations assuming that the number of non-transparent
voxelsruns per scanline(c,) ismuch lessthan n, just aswe argued for the octree-accel erated
ray caster. Sincethere aren? voxel scanlinesthe cost of the octreetraversal for all scanlines
isO(c,tn*log, n). Adding up all of the terms, the asymptotic complexity of the fast clas-
sification agorithmis:

O([dt + cutlogy .y, n, cot]n® + c,tn*log, n + mt)

CHAPTER 5. PERFORMANCE ANALY SIS 103

In our implementation the cost of classifying, resampling and compositing the non-
transparent voxel sdominates (70% of the computation required to compute Figure5.2). The
octreetraversal and summed-area-tableinitialization account for 10% of the computational
costs.

5.2.2 Experimental Methodology

Operation counts and asymptotic complexities do not give a complete picture of an algo-
rithm’sperformance. Inthe case of optimized volumerendering algorithmsthe constant fac-
tors associated with accessing coherence data structures and executing control logic are the
dominant influences on performance. The only way to determine these costs is to measure
the execution times of real implementations. The disadvantage of comparing algorithms by
measuring execution times is that the relative performance depends on the specific imple-
mentations and on how carefully the implementations have been tuned. However, we are
still able to draw some general conclusions from the results.

Implementation of the Algorithms The experiments in this section compare the ray
caster and the shear-warp rendering algorithm for parallel projections. The results include
timings for both brute-force versions and optimized versions of the algorithms. The opti-
mizations fall into two classes: optimizations that reduce the number of voxels processed,
and optimizationsthat reduce the cost per voxel actually processed. Theformer category in-
cludes early ray termination and coherence optimizations based on spatia data structures.
Theoptimizationsin thelatter category have been chosen so that theray caster and the shear-
warp algorithm have nearly identical costs per voxel. These optimizationsinclude:

filter kernel Different filter kernels have different costs. We use the ray caster to compare
the costs of trilinear interpolation and bilinear interpolation. When bilinear interpola-
tion is enabled the ray caster restricts each sample point to lie in the plane of a voxel
gdlice, just like the shear-warp algorithm.

template-based ray casting Yagel's template algorithm [Yagel & Kaufman 1992, Yagel
& Ciula1994] (discussed in Section 3.5) uses the shear-warp factorization to reduce
the cost of computing samplelocations and filter weightsin theray casting a gorithm.

CHAPTER 5. PERFORMANCE ANALY SIS 104

With bilinear interpolation and the template optimization in the ray caster the cost of
resampling is nearly identical to the cost of resampling in the shear-warp agorithm.

resampled opacity threshold When thisoptimizationisenabled, if the opacity of aresam-
pled voxel falls below a user-defined threshold then the renderer does not composite
the voxel into theimage. Both algorithms use this optimization to reduce the number
of unnecessary compositing operations.

The performance results later in this section show that the cost-per-voxel optimizations are
important when spatial data structures are not used, but are not nearly as important in the
coherence-accel erated algorithms.

To alow for a fair comparison both implementations have been tuned at the source
code level for the architecture on which the tests were run (an SGI Indigo2 R4400-based
workstation). Except where otherwise noted, we show results for the shear-warp algo-
rithm with run-length encoded data structures. The fast classification algorithm and the
octree-accelerated ray casting algorithm are not directly comparable since the latter is not
classification-independent.

Timing Tests Our experiments measure both the wall clock execution time of each ago-
rithm on a set of benchmark data sets and a breakdown of the execution times into cate-
gories. The categories have been chosen to highlight the primary sources of overhead in
each algorithm. The categories include:

resampling and compositing Time spent resampling voxels and compositing them into
the image (or intermediate image). Thiswork is essential to compute the image; al
other categories represent overhead.

looping Time spent on control overhead (updating |oop counters, advancing pointers, etc.)
and traversing coherence datastructures while searching for the next voxel to process.

early ray termination Time spent updating data structures required for early ray termina-
tion in the shear-warp algorithm. Early-ray termination has negligible cost in a ray
caster.

CHAPTER 5. PERFORMANCE ANALY SIS 105

fixed costs Miscellaneousfixed costs (costs that are independent of the size of the volume)
required to initialize data structures and precompute lookup tables. For the shear-
warp algorithm and the template-based ray caster this category includes the cost of
warping the intermediate image into the final image.

memory overhead Stall time associated with memory references. The other categoriesin-
clude computation time and processor stalls due to hardware interlocks (such as in-
struction dependencies) but not memory stall time.

Most of these cost categories involve operations that are implemented with short code
fragments. Interval timers cannot be used to time such short code fragments since the over-
head of querying thetimer would perturb theresults. Instead, the method we use to measure
execution timesis based on basic-block counting. First, we instrument the volume render-
ing program’s binary executable to count the number of times each basic block is executed
(using the Pixie program [Smith 1991]). We then run the instrumented program and use
a post-processor to tabulate the number of times each instruction was executed along with
the number of cycles the instruction took to execute (including pipeline stalls). Using in-
formation in the program’s symbol table each instruction can be attributed to an individual
source file line, and thus the instruction cycle counts can be grouped into the categoriesin
the list above. Finally, given the speed of the processor, the cycle counts can be converted
into execution times.

The basic-block timing method accountsfor all costsin the program except for memory
stalls. To measure memory overhead we run the uninstrumented program with the same
parameters asthe instrumented program on an otherwise-idle machine and measurethetotal
execution time of the program with an interval timer. The difference between thetotal time
and the time measured by basic block counting gives the time spent on memory overhead.
We have automated the entire process of collecting cycle counts, attributing cycle countsto
categories, and computing memory overhead so that data collection is easy and reliable.

5.2.3 Comparison of Speedups from Algorithmic Optimizations

Figure5.11 givestiming breakdownsfor theray caster and the shear-warp al gorithm without
coherence optimizations or early ray termination. Since the coherence optimizations have

CHAPTER 5. PERFORMANCE ANALY SIS 106

Brainsmall Data Set Brain Data Set
(128 x 128 x 113) (256 x 256 x 167)
Time (sec.) Time (sec.) Il Fixed Costs
6 50 r I Memory Overhead
[] Looping
5F 40 | I Resample/Composite
4 o
30
3 L
) shear-warp 20 shear-warp
1 " }
0 0
1 2 3 4 5 1 2 3 4 5
Test Number Test Number
(TessNumber | 1 | 2 | 3 | 4 | 5 |
Renderer ray caster | ray caster | ray caster | ray caster | shear-warp
Opacity none 0.05 0.05 0.05 0.05
threshold
Filter trilinear | trilinear | bilinear | bilinear bilinear
Template no no no yes N/A
Time (sec.) 5.2 4.8 3.8 18 11
brainsmall
Time (sec.) 43 39 31 16 8
brain

Figure5.11: Timing breakdowns for the ray casting algorithm and the shear-warp agorithm without
coherence optimizations.

CHAPTER 5. PERFORMANCE ANALY SIS 107

been disabled the results are not view-dependent or data-dependent, but timings are shown
for two different data set sizes. Each bar is broken down into components corresponding to
the cost categories. For theray caster the figure shows a sequence of measurements starting
on the | eft with the most basic brute-force algorithm and progressively adding the cost-per-
voxel optimizations. For the shear-warp algorithm the figure shows a single measurement
(Test 5) with all of the cost-per-voxel optimizations.

Theseresults show that when coherence optimizationsare not used the dominant compu-
tational cost comes from resampling and compositing voxels. Asaresult the cost-per-voxel
optimizationssignificantly reduce executiontime. Using abilinear interpolationfilter rather
than atrilinear filter resultsin a speedup of 1.3x, and the template optimization resultsin an
additional speedup of 2.0x (slightly better than theresultsreportedin Yagel & Ciula[1994]).

With these two optimizations the computation time for the ray caster (Test 4) iswithin
15% of the computation time for the shear-warp agorithm (Test 5), so the cost per voxel in
thetwo algorithmsisnearly identical. Thisfact will makeit easier toisolatethe effectsof the
coherence data structures in the fully-optimized algorithms. However the volume traversa
order is different for the two algorithms. The ray caster does not traverse the volume in
storage order so it has higher memory overhead than the shear-warp algorithm, resulting in
the difference in overall execution time. Memory overhead will be discussed later in this
chapter. The looping overhead is also dlightly higher in the ray caster, athough compared
to the total rendering time the difference is not significant enough to merit investigation.

Figure 5.12 gives timing breakdowns for the ray caster and the shear-warp agorithm
with both coherence optimizationsand early ray termination. These timingswere measured
for asingle representative viewpoint (Figures 5.1 and 5.2). The figure shows the same pro-
gression of cost-per-voxel optimizationsasin Figure 5.11. These results show that resam-
pling and compositing voxelsis no longer the dominant cost. Looping (including traversal
of the spatial data structures) is more significant, and in the case of the ray caster it accounts
for the overwhelming majority of the computational costs. As a result the cost-per-voxel
optimizations make very little difference. On the other hand, comparing the results for the
brute-force algorithms and the coherence-accel erated a gorithms shows that the coherence
data structures provide speedups of roughly an order of magnitude as previously reported
in Levoy [1990a].

CHAPTER 5. PERFORMANCE ANALY SIS

Brainsmall Data Set
(128 x 128 x 113)

Time (sec.)

0.8

0.6

0.4

0.2

0.0

shear-warp

|

1 2 3 4 5
Test Number

Time (sec.)

108

Brain Data Set
(256 x 256 x 167)

[] Early Ray Termination
Il Fixed Costs

[Memory Overhead
[] Looping

Il Resample/Composite

shear-warp

|

1 2 3 4 5
Test Number

[TestNumber [1 | 2 3 | 4 || 5 |
Renderer ray caster | ray caster | ray caster | ray caster | shear-warp
Opacity none 0.05 0.05 0.05 0.05
threshold
Filter trilinear | trilinear | bilinear | bilinear bilinear
Template no no no yes N/A
Time (sec.) 0.69 0.67 0.66 0.52 0.15
brainsmall
Time (sec.) 4.3 4.2 3.8 2.8 0.82
brain

Figure 5.12: Timing breakdowns for the ray casting algorithm with an octree and early ray termina-
tion, and for the shear-warp agorithm with run-length encoding.

CHAPTER 5. PERFORMANCE ANALY SIS 109

] Early Ray Termination

Time (sec.
6I (sec.) M Fixed Costs

B B Memory Overhead
s L] Looping

I Resample/Composite

RC SWwW RC SwW RC SwW RC SW
brain head (bone) head (skin) engine

Figure 5.13: Comparison of timing breakdowns for several datasets. Theleft bar of each pair shows
results for the coherence-accelerated ray casting agorithm with the template optimization and bilin-
ear interpolation, and the right bar shows results for the coherence-accel erated shear-warp agorithm.
All renderings are gray scale.

Figure 5.12 also shows that the cost of the early ray termination implementations is
small. For the ray caster the cost is so small it is difficult to measure reliably and does not
show on the scale of thefigure. For the shear-warp algorithm the cost is slightly higher. We
will discuss this cost in the next section.

Since the coherence optimizations are data-dependent these results depend on the spe-
cific dataset. Figure5.13 showsresultsfor thelarger MR brain data set and three other data
sets: the 256x256x225 CT head data set classified to reveal bone (Figure 5.2), the same data
set classified to reveal semitransparent skin and bone (a gray scale version of Figure 5.5),
and the 256x256x110 CT engine data set (a gray scale version of Figure 5.6). This fig-
ure shows results only for the fully-optimized versions of the ray casting algorithm and the
shear-warp algorithm. Again, the cost of processing voxels accounts for a small fraction of
rendering time.

Finally, Table 5.5 showsthe speedups achieved by the fully-optimized shear-warp algo-
rithm relativeto two versions of the octree-accel erated ray caster, one with trilinear interpo-
lation and the other with bilinear interpolation and the templ ate optimization. These results

CHAPTER 5. PERFORMANCE ANALY SIS 110

Data set Shear-warp Ray caster w/ octree Ray caster w/ octree,
and trilirp bilirp and template
Time (msec.) | Time(msec.) | Shear-warp | Time (msec.) | Shear-warp
Speedup Speedup
brainsmall 154 622 4.0 524 3.4
headsmall 192 1201 6.3 990 5.2
brain 824 4124 5.0 2803 34
head (bone) 764 9459 12.4 4962 6.5
head (skin) 1194 9100 7.6 5849 49
engine 924 7617 8.2 3935 4.3

Table5.5: Speedup of the shear-warp algorithm relative to an octree-accel erated ray caster. Thetable
includes results for two versions of the ray caster: a standard ray caster with trilinear interpolation,
and aray caster with bilinear interpolation and the template optimization.

are for the same data sets used in Figure 5.13. Relative to the standard ray caster the shear-
warp algorithm achieves speedups of 4-12x, and relative to the template-based ray caster
the speedups are 3-6x.

The resultsin this section have shown that cost-per-voxel optimizations are not impor-
tant in coherence-accelerated volume rendering algorithms. The results have al'so shown
that the dominant cost in the brute-force algorithmsis resampling and compositing voxels,
but in the coherence-accel erated al gorithms the overhead of looping and accessing the data
structures is more important. The next section compares this overhead for the shear-warp
algorithm and the ray caster in more detail.

5.2.4 Costsof Coherence Accelerations

Table 5.6 contains timing information in tabular form (but otherwise identical to Fig-
ure 5.13) for two of the data sets and shows the percentage of total execution timefor each
category of overhead.

The most important observation from thisdataisthat the ray caster spendsfar moretime
looping than does the shear-warp algorithm. For theray caster 70% of thetimein the“loop-
ing” category comes from traversing the octree, and the remaining 30% comes from over-
heads in the loop that iterates over a span of non-transparent voxels within an octree |leaf

CHAPTER 5. PERFORMANCE ANALY SIS 111

Data Set brain head (skin)

Algorithm Ray Caster | Shear-Warp | Ray Caster | Shear Warp
Total Time (msec.) 2802 824 5850 1194

Early Ray Termination 0 (0%) | 216 (26%) 0 (0%) | 124 (10%)
Fixed Costs 427 (15%) | 108 (13%) | 641(10%) | 110 (9%)
Memory Overhead 847 (30%) | 157 (19%) | 1465 (25%) | 277 (23%)
L ooping 1332 (47%) | 142 (17%) | 3288 (56%) | 196 (16%)
Resample/Composite | 197 (7%) | 202 (24%) || 457 (7%) | 487 (40%)

Table 5.6: Detailed timing breakdowns for coherence-accelerated rendering algorithms (same data
asin Figure 5.13). These results are for aray caster with the template optimization and bilinear in-
terpolation.

node. The source of the overhead in the octreetraversal comesfrom the complexity of com-
puting the intersection of an arbitrarily-oriented ray with the axis-aligned sides of the octree
nodes.

Figure 5.14 is a pseudo-code description of the algorithm for tracing a ray through an
octree. The agorithm begins by finding the first intersection of the ray with the top-level
node of the octree. The loop on line 5 descends to the lowest non-transparent octree node
containing the current sample point. The notation “Octreg[level, X, y, z]” refers to the oc-
tree node at the specified level that contains the specified voxel coordinates. The call to
NextIntersection calculates the intersection of the ray with the far side of the octree node.
The agorithm then renders samples aong the ray up to the intersection point. The loop on
line 11 ascends back up the octree until the current octree node and the next nodeintersected
by the ray both have the same parent (so that the next call to Render Segment can take the
longest possible step). Finally, the algorithm moves to the next octree node along the ray
and repests until the ray exits the volume (or until the accumulated ray opacity reaches the
early ray termination threshold, although this test is not shown).

This algorithm contains a substantial amount of control logic (loops and conditionals),
and the Nextl nter section routine must compute the intersection of the ray with each of the
three possible cubefacesit might hit. Floating point arithmetic must be used to compute the
intersection pointsin order to maintain aconsi stent sample spacing and to correctly compute
resampling weights (unless the rendering algorithm uses a nearest-neighbor filter). These
costs are inherent in an octree-accel erated ray caster. In contrast, the shear-warp algorithm

CHAPTER 5. PERFORMANCE ANALY SIS 112

1 procedure TraceRay()
level =top_level;
(X, Y, 2) = FirstIntersection();
while ((X, y, z) € Volume)
5 while (level < bot_level and Octreg[level, X, y, Z] # transparent)
level = level + 1;
end
(dx, dy, dz) = NextIntersection(level, x, v, 2);
if (Octreg[levd, X, Y, Z] # empty)
10 RenderSegment(X, v, z, dx, dy, dz);
while (level > top_level and
Parent(leve, X, vy, z) # Parent(level, x+dx, y+dy, z+dy))
level =level —1;
end

15 x, ¥, 2 =(x,y,2) + (dx, dy, dz);
end
end

Figure 5.14: Pseudo-code for tracing aray through an octree.

simply loads a run length and increments a pointer to advance to the next non-transparent
voxel.

The ray caster has a second extra cost: the cost of tracing rays that graze but do not in-
tersect surfacesin thevolume. A ray that passes close to anon-transparent object causesthe
ray caster to descend to the leaf nodes of the octree, only to determine that the ray does not
intersect the object. We have performed measurements indicating that the cost of grazing
rays amountsto half of thetotal cost of looping in the ray caster. The shear-warp algorithm
with arun-length encoded volume never wastes time sampling transparent voxels so it does
not incur any additional cost for grazing rays.

Most other coherence-accel erated volume rendering algorithms al so trace rays through
an octree [Meagher 1982, Wilhelms & Van Gelder 1992, Danskin & Hanrahan 1992,
Stander & Hart 1994] or a similar data structure such as a k-d tree (constructed using a
median-cut algorithm to partition the volume with axis-aligned planes) [Subramanian &
Fussell 1990]. Thesealgorithmsall have overheads dueto thetreetraversal. Thefast classi-
fication algorithm proposed in Chapter 4 does not suffer from these overheads even though

CHAPTER 5. PERFORMANCE ANALY SIS 113

it usesan octree because the algorithm alwaystraversesthe data structure along axis-aligned
rays, so the traversal algorithm is more efficient.

Zuiderveld proposes an alternative ray casting algorithm that uses distance transforms
instead of a hierarchical data structure [Zuiderveld et al. 1992, Zuiderveld 1995]. During a
preprocessing step the algorithm computes the distance from each voxel to the nearest non-
transparent voxel. Therendering algorithm usesthe distance stored in avoxel at aparticular
sample point to determinethe longest step size before the next interesting voxel. Zuiderveld
shows that the computational overhead required to access the distance array and increment
the sample location is less than the overhead of traversing an octree.

However, the algorithm has two disadvantages. First, the algorithm requires enough
memory to store the entire volume and the distance array. Second, the distance transform
only produces a conservative approximation of the distance to the next sample point. A ray
caster using the distance transform steps by shorter and shorter distances as it approaches
anon-transparent voxel, and at each step it must sample the volume to determine if the ad-
jacent voxels are transparent (similar to the grazing-ray costs in the octree-accelerated ray
caster). The shear-warp algorithm is more memory-efficient and spends | ess time searching
for non-transparent voxels.

Returning to the table of timing breakdowns (Table 5.6), we see that the cost of early
ray termination in the shear-warp agorithm is small but non-negligible. About 60-80% of
thetimein the“early ray termination” category is due to traversing the run-length encoded
voxel scanlines when skipping occluded voxels. The individual voxels need not be visited,
but the algorithm must step through the runs in sequence to reach the next non-occluded
voxel. Inaray caster the octree nodes associated with occluded voxels are never visited, so
there is no corresponding overhead. The remaining 20-40% of the timeis spent traversing
and coalescing the opaque image pixel links (Section 4.1.3).

Thefixed costsfor theray caster are somewhat higher than for the shear-warp algorithm.
Since this category accounts for only 10-15% of overall execution time the differences are
not significant, but most of theincreaseisdueto initializing theray template and performing
clipping calculations for each ray cast into the volume.

Thefina cost category is memory overhead, which we consider in the next section.

CHAPTER 5. PERFORMANCE ANALY SIS 114

5.25 Memory Overhead

To demonstrate the impact of memory overhead we performed an experiment in which we
rotated the CT head volume over a 90 degree range of angles and rendered it with both the
ray caster and the shear-warp agorithm. We performed the experiment with both the brute-
force and coherence-accelerated algorithms. We chose the viewpoint such that at theinitial
angle the viewing rays coincided with the direction of the voxel scanlinesin the data struc-
tures used by the ray caster, and at the final angle the viewing rays were perpendicular to
the voxel scanlines.

When the viewing raysline up with the voxel scanlinestheray caster benefitsfrom good
gpatial locality, meaning that when the algorithm references avoxel the voxelsimmediately
adjacent in memory will soon be referenced. When the viewing rays are perpendicular to
the voxel scanlinesthereisno spatial locality. However, in the experiment we cast the rays
in asequence that maximizestemporal locality, meaning that when the algorithm references
avoxe the same voxel may be referenced again soon. The algorithm does this by casting
adjacent rays in sequence so that each ray reuses some of the same voxels as the previous
ray during resampling.

Spatial and temporal locality improve memory performance because the cost of fetching
a cache line from memory can be amortized over several voxel accesses, whereas an algo-
rithm that references memory randomly causes a cache missfor every reference [Hennessy
& Patterson 1990]. The shear-warp algorithm always benefits from good spatial locality
because it traverses the volume in scanline order regardless of the viewing direction.

Figure 5.15 shows the results of the experiment for the brute force algorithms, and Fig-
ure 5.16 shows the results for the coherence accelerated algorithms. The timings were per-
formed on an SGI Indigo2 workstation with a 16 Kbyte direct-mapped primary cache with
16 byte lines and a 1 Mbyte two-way associative secondary cache with 128 bytelines. The
long cache linesin the secondary cache result in a significant benefit from spatial locality.

The brute-force shear-warp algorithm has constant memory overhead of only 15% for
the entire range of angles. For the brute force ray caster the memory overhead increases by
afactor of 2.5x asthe viewing angle changesfrom 0 to 90 degrees, causing a 1.25x increase
in rendering time. Because of the long secondary cache line the benefit of spatial locality

CHAPTER 5. PERFORMANCE ANALY SIS 115

Il Fixed Costs
[Memory Overhead

1 Looping
Time (sec.) Il Resample/Composite
15 -
10
[[[[[[I [I [
5 —
RCSW RCSW RCSW RCSW RCSW RCSW RCSW RCSW
0 degrees Rotation Angle 90 degrees

Figure5.15: Comparison of memory overhead intheray caster and the shear-warp a gorithm without
coherence optimizations. The ray caster uses the template optimization and a bilinear interpolation
filter. The data set isthe 256 x 256 x 225 voxel CT head. Asthe viewpoint changes over a90 degree
range of angles the memory overhead increases significantly for the ray caster but remains small for
the shear-warp agorithm.

Time (sec.)] Early Ray Termination
6 — Il Fixed Costs

[Memory Overhead
S [] Looping

Il Resample/Composite

RCSW RCSW RCSW RCSW RCSW RCSW RCSW RC SW
0 degrees Rotation Angle 90 degrees

Figure5.16: Comparison of memory overhead in the coherence-accelerated ray caster and the shear-
warp algorithm. Memory overhead does not vary significantly as the viewpoint changes, athough
the overhead incurred by the octree does change.

CHAPTER 5. PERFORMANCE ANALY SIS 116

is greater than the benefit of temporal locality. However, temporal locality still provides a
significant benefit: whentheraysare cast in adifferent order to eliminatethetemporal local -
ity the memory overhead increases by 10x relative to the case with optimal spatial locality,
and the overall rendering time increases by 2.6x. The current trend in processor design is
towards longer cache lines to cope with the increasing gap between processor speeds and
memory latencies, so agorithmsthat benefit from spatial locality are important.

Figure 5.16 shows that for the coherence-accelerated algorithms memory overhead is
not so significant: 20% of execution time for both agorithms. Most of thetimein these al-
gorithmsis spent traversing data structures rather than processing voxels, so loading voxels
from memory isavirtually insignificant overhead. The variationsin memory overhead are
small and are caused by variations in the accesses to the spatial data structures rather than
the voxel array. Most likely the good memory performance in the ray caster is due to tem-
poral locality when accessing the octree since many adjacent rays traverse the same octree
nodes.

We conclude that when coherence optimizations are disabled or do not work effectively
(dueto low-coherence data sets) the shear-warp a gorithm haslower memory overhead than
the ray caster. In practice, the coherence optimizations are effective and both algorithms
have excellent memory behavior.

5.2.6 Analysisof the Shear-Warp Coherence Data Structures

Figure 5.17 demonstrates the impact of each of the data structures used in the shear-warp
algorithms. In the table the row labeled “ Samples’ gives the number of resampling opera-
tions, therow labeled “ Time” givesthetotal timein seconds, and the row labeled “ Speedup”
gives the speedup relative to the brute-force algorithm (Test 1).

Theleft column givesresultsfor the brute-force algorithm without early ray termination
or a spatial data structure. The second column is for the brute-force algorithm with early
ray termination enabled. The optimization has virtually no impact by itself because for this
data set most of the transparent voxels are not occluded, so amajority of the voxels must be
processed. Thethird column showsthe effect of using arun-length encoded volumewithout
early ray termination. This optimization yields a 3-4x speedup. If early ray termination is

CHAPTER 5. PERFORMANCE ANALY SIS

Brainsmall Data Set
(128 x 128 x 113)

Time (sec.)
12

10
08
06
04r

0.2

0.0

l

shear-warp

fast
classification

1

117

Brain Data Set
(256 x 256 x 167)

Time (sec.) [] Early Ray Termination/Octree
10 r Il Fixed Costs
I Memory Overhead
8 F |:| Looping

- Resample/Composite

fast
classification

1

shear-warp

1

1 2 3 4 5 1 2 3 4 5
Test Number Test Number
Render Only Classify
Test Number 1 2 | 3 | 4 5
Spatial Data Structure none none run-length | run-length || min-max
encoding | encoding octree

Early Ray Termination no yes no yes yes
brainsmall | Samples 1,397,844 | 1,021,395 | 301,138 32,495 90,391

Time (sec.) 11 1.0 0.38 0.15 0.33

Speedup 1.0 11 2.9 7.1 3.3
brain Samples 11,030,183 | 8,556,478 | 1,760,992 305,127 | 629,080

Time (sec.) 8.2 8.4 2.0 0.82 1.94

Speedup 1.0 0.97 4.1 9.9 4.2

Figure 5.17: Impact of individual coherence optimizations in the shear-warp agorithm.

CHAPTER 5. PERFORMANCE ANALY SIS 118

also enabled (Test 4) then an order-of -magnitude speedup isachieved. Early ray termination
helpsin this case because one-half to one-third of the non-transparent voxels are occluded,
so a significant fraction can be culled.

The fifth column shows results for the fast classification agorithm using the min-max
octree, the summed-areatable and early ray termination. As shown earlier in Table 5.3 this
algorithm is about twice as slow as the algorithm based on a precomputed run-length en-
coded volume. There are two reasons for the increase in time: the renderer samples more
voxels, and it performs more work for each sample since the voxels must be classified.
The increase in the number of samples occurs because the min-max octree and summed-
area table data structures produce a conservative estimate of the regions containing non-
transparent voxels.

CHAPTER 5. PERFORMANCE ANALY SIS 119

5.3 Low-CoherenceVolumes

5.3.1 Categoriesof Volume Data

The classification functionswe used in the previous sectionsresulted in volumeswith ahigh
degree of coherence and voxels with relatively high opacity, so both of the optimization
techniques in the shear-warp algorithm (coherence acceleration and early ray termination)
were effective. However, there are other types of volumes for which the optimizations will
fail.

The different types of classified volumes can be categorized along three axes (Fig-
ure 5.18):

1. Theamount of coherencein the volume, which ismeasured by counting the number of
runsin arun-length encoded representation of the classified volume. If there are only
afew runs per voxel scanline then the volume contains alot of coherence, whereasiif
each voxel scanline has many short runs of transparent voxelsinterspersed with short
runs of non-transparent voxels then the volume has low coherence.

low coherence high coherence

small fraction|large fraction |small fraction| large fraction
transparent | transparent | transparent | transparent

low opacity

090 OO0
99800300
igh opacity ‘ ... O OOO
0%% 550

Figure 5.18: Classified volume data can be categorized aong three axes. the amount of coherence
in the volume (measured by the number of runsin arun-length encoded representation), the fraction
of voxels that are transparent, and the average opacity of the non-transparent voxels. The diagram
shows schematic cross-sections of volumes at eight points within the categorization.

CHAPTER 5. PERFORMANCE ANALY SIS 120

2. Thefraction of voxels that are transparent. Given sufficient coherence, these voxels
can be skipped efficiently using a spatial data structure.

3. The average opacity of the non-transparent voxels. This quantity determines the ef-
fectiveness of early ray termination. The higher the average opacity, the earlier each
pixel becomes opaque.

This categorization can be used to make first-order predictions about rendering perfor-
mance. In the remainder of this section we discuss performance qualitatively, and in the
next two sections we present some quantitative results for our implementation of the shear-
warp algorithm.

There are four performance regimes. In the first regime neither of the optimizationsis
effective. Early ray termination is ineffective if the average opacity of the non-transparent
voxelsislow, since few (if any) image pixels become opaque. Spatial data structures may
be ineffective for either of two reasons. Firgt, if there islittle coherence then the rendering
algorithm cannot skip over large regions of the volume, so the spatial data structure can-
not reduce the time spent traversing the volume. Second, if the volume does have high co-
herence but most of the voxels are non-transparent then the rendering algorithm must till
traverse most of the volume. These situations correspond to the first three cases in the top
row of Figure 5.18. In this regime the rendering time is proportional to the number of vox-
elsin the data set, and the optimized shear-warp algorithm cannot outperform a brute force
algorithm.

In the second performance regime early ray termination is ineffective but spatial data
structures do improve performance. Thisregime appliesto volumesthat have low average
opacity, high coherence, and a large fraction of transparent voxels (the last case in the top
row of Figure 5.18). The rendering algorithm can use a spatial data structure to efficiently
skip over the transparent voxels, so the rendering time depends linearly on the number of
non-transparent voxels (which is proportional to the size of our run-length encoded repre-
sentation). Thereisaso overhead dueto traversing the spatial datastructure. In the case of
the shear-warp algorithm the overhead is proportional to the number of runs.

In the third performance regime spatial data structures are ineffective but early ray ter-
mination improves performance. For this regime to apply the average voxel opacity must

CHAPTER 5. PERFORMANCE ANALY SIS 121

be relatively high. Furthermore the side of the volume facing the viewer must be covered
with high-opacity voxels so that viewing rays do not penetrate far into the volume before
they are terminated. These conditions apply to the first and third cases on the bottom row
of Figure 5.18. The second case on the bottom row may bein this performanceregimeor in
the first regime depending on whether or not the spaces between the non-transparent voxels
leave “holes’ that can be penetrated by viewing rays. For the third regime rendering time
depends linearly on the number of non-occluded voxels.

Finally, in the fourth performance regime both optimizationsare effective. Thelast case
inthe bottom row of Figure 5.18 fallsinto thisregime, asdo all of the data setsin the perfor-
mancetests described earlier (except the CT engine dataset which haslow average opacity).
Rendering time depends linearly on the number of visible voxels (voxels that are neither
transparent nor occluded). For thistype of volume the number of visible voxelsis propor-
tional to the projected surface area of the objectsin the volume, so the rendering algorithm
only processes O(n?) voxels.

5.3.2 Voxed Throughput

To demonstrate the characteristics of the shear-warp algorithm in each performance regime
we conducted two experiments. For both experiments we used the parallel projection algo-
rithm with a run-length encoded volume.

The first experiment measures how rendering time depends on the number of visible
voxels. Inthisexperiment theamount of coherence and the number of transparent voxelsare
constant, but the average voxel opacity varies. Thisexperiment also measurestherenderer’s
voxel throughput.

To perform the experiment we constructed a series of 256x256x256 voxel volumeswith
constant opacity. Each volume had a different opacity, ranging from 0.0 (entirely transpar-
ent) to 1.0 (entirely opague). Since the volumes had constant opacity all of the run-length
encoded data structures contained exactly one non-transparent run per voxel scanline, re-
sulting in aconstant (high) amount of coherence and a constant (low) fraction of transparent
Voxels.

In this experiment the opacity associated with each volume determines the number of

CHAPTER 5. PERFORMANCE ANALY SIS 122

Time (sec.)
20

® 2563 voxels

m 2563 voxels, brute force
15 ® = m a4 128%voxels

0 20 40 60 80 100
Visible Voxels (%)

Figure 5.19: Results of the voxel throughput experiment for a 256 voxel volume with the shear-
warp algorithm, a256 voxel volume with abrute-force algorithm, and a128* voxel volumewith the
shear-warp algorithm. In each experiment the amount of coherence is held constant while the voxel
opacity is varied so that the number of visible voxels changes. The results show that the rendering
time using the optimized shear-warp agorithm is proportional to the number of visible voxels (voxels
that are neither transparent nor occluded).

visible voxels (since we a so hold the minimum opacity threshold constant). Only the front
dlices of the high-opacity volumes are visible, while all of the voxelsare visiblein the low-
opacity volumes. We expect rendering timeto vary linearly with the number of visible vox-
els since the overhead due to the coherence data structures is constant.

Figure 5.19 shows the results of the experiment. When plotted against the number of
visiblevoxels, thetimingsfor the optimized shear-warp algorithm do in fact lie on astraight
line. The slope of the line indicates that the voxel throughput is 880 Kvoxels/sec. (on a 150
MHz R4400 SGI Indigo2).

The figure also shows the rendering time for a brute-force shear-warp algorithm with
both early-ray termination and run-length encoding disabled (the same algorithm aswe used
for Test 5in Figure 5.11). The crossover point at which the brute-force algorithm matches
the optimized algorithm occurswhen 80% of thevoxelsarevisible. When all voxelsarevis-
ible the optimized algorithm is about 25% slower than the brute-force algorithm. The addi-
tional cost in the optimized algorithmisdueto early-ray termination tests, but theworst-case

CHAPTER 5. PERFORMANCE ANALY SIS 123

Figure 5.20: Test volumes for the voxel coherence experiment: Each volume in a series contains
a checkerboard pattern constructed from blocks half as big as in the previous volume. The white
blocks represent transparent voxels and the gray blocks represent voxels with a constant, non-zero
opacity. The number of visible voxels is constant but the number of voxel runsincreases by afactor
of two in each volume.

25% performance degradation is small compared to the order-of-magnitude performance
increase for more typical volumes. The only disadvantage of the shear-warp agorithm for
low-coherence volumes is that the algorithm requires more memory than a brute-force al-
gorithm since it stores three copies of every non-transparent voxel. However, as we argue
later in Section 5.3.4, volumes with high percentages of visible voxels result in cluttered,
fuzzy images and are therefore not useful.

5.3.3 Thelmpact of Coherence on Rendering Time

The second experiment measures how rendering time depends on the amount of coherence
in the volume data. In this experiment the amount of coherence varies, but the number of
transparent voxels is constant. We aso keep the average voxel opacity constant, although
we repeat the experiment for several opacity values.

To perform the experiment we construct several series of 256x256x256 voxel volumes
containing checkerboard patterns (Figure 5.20). Half of the blocks in each checkerboard
contain transparent voxels and the other half contain voxelswith a constant, non-zero opac-
ity. We use a different opacity for the non-transparent voxels in each series. For a given
series, the non-transparent voxelsin the different volumes all have the same opacity but we
vary the size of the blocksto produce different numbers of voxel runs. For aviewing direc-
tion perpendicular to one face of the volume the number of visible voxelsis constant over
an entire series of volumes since exactly 50% of the voxelsin each dlice of each volumeare
transparent.

CHAPTER 5. PERFORMANCE ANALY SIS 124

Time (sec.)

20 r
O brute force

O 50% visible voxels
A 25% visible voxels
® 12% visible voxels
B 5% visible voxels

15

10

0 1 1 1 J
0 64 128 192 256

Runs per scanline

Figure 5.21: Results of the voxel coherence experiment: with a fixed number of visible voxels, the
rendering time using the optimized shear-warp agorithm is proportional to the number of voxel runs
in the volume. A small number of runs per scanline corresponds to high coherence.

In thisexperiment the number of blocksin the checkerboard pattern determinesthe num-
ber of voxel runsin the run-length encoded volume. We expect rendering timeto vary lin-
early with the number of runs since the cost of rendering the voxels is the same for every
volume in a given series. The number of runs per scanline includes both transparent runs
and non-transparent runs, and every scanline has an even number of voxel runs as described
in Section 4.1.2 (so a completely-transparent voxel scanline contains two runs, including a
zero-length non-transparent run).

Figure 5.21 showsthe results of the experiment. Asexpected, the plot of rendering time
versus number of runsyields a straight line. From the slope of the line we deduce that the
overhead incurred by traversing the run-length encoded data structuresincreases at arate of
400 nsec./run on our test machine.

Typical datasets such astheclassified CT and MR scans used earlier in this chapter have
5-15 rung/scanline. We can compute the overhead incurred by the spatial data structures by
multiplying the number of runs, the runs per scanline, and the cost per run. The overhead
for these data sets ranges from 130 msec. to 180 msec., a small fraction of total rendering
time.

CHAPTER 5. PERFORMANCE ANALY SIS 125

For volumes with 40% or less of the voxel s visible the optimized a gorithm always out-
performs the brute-force agorithm, regardless of the number of voxel runs. For avolume
with 50% of the voxels visible the crossover point occurs at 192 rung/scanline. In the worst
case, with 256 runs/scanline (implying 50% of the voxels visible), the optimized algorithm
isonly 15% slower than the brute force algorithm. Furthermore, volumes with such large
numbers of runs are unlikely to occur in practice: the number of runsis proportional to the
depth complexity, and useful classification functionsrarely produce volumeswith such high
depth complexity.

From the two experimentswe concludethat even for volumeswith worst-case coherence
(only one voxel per run) the optimized shear-warp agorithm never performs significantly
worse than a performance-tuned brute-force algorithm.

These results also provide uswith an empirically-derived first-order cost polynomial for
the shear-warp algorithm:

N,
800 Kvoxels/sec.

+ N, - 400 x 10™? sec.

render —

where Tienqer 1S the time to render a volume, N, is the number of visible voxels (voxels
that are neither transparent nor occluded) and 1V, is the number of voxel runsin the entire
volume. The constants in this equation assume a 150 MHz SGI Indigo2 workstation and
that shading is implemented with a gray scale lookup table. Second-order effects such as
the cost of the 2D warp have not been included, so this equation is most valid when the
rendering timeislarge.

Thecost polynomial isuseful for estimating whether or not avolumefallsinto acategory
that can berendered at interactiverates. For example, the CT head data set (Figure5.2) con-
tains 800,000 non-transparent voxels and about half of them are visible (the average opacity
is high and the depth complexity is about two) so N, = 400, 000. The number of runsis
N, = 340, 000. Thusthe predicted rendering timeis about 0.6 sec. The CT engine data set
(Figure5.6) has about 600,000 voxels, most of which are visiblesincetheaverage opacity is
relatively low, and the number of runsis 300,000. Thusthe predicted performanceis about
0.9 sec. for agrayscale rendering.

CHAPTER 5. PERFORMANCE ANALY SIS 126

5.34 TheRoleof Coherencein Visualization

In this chapter we have shown how the shear-warp algorithm exploits coherence in clas-
sified volumes to achieve fast rendering rates. Coherence is also important for producing
an informative visualization: an effective classification function emphasizes structure and
eliminates clutter.

This statement does not imply that the original volume data has obvious structure or co-
herence. Visualization is an art that requires choosing appropriate visual representations of
the information in the underlying data. Haber & McNabb [1990] and Delmarcelle & Hes-
selink [1995] propose frameworksfor scientific visualization based on three steps: data pre-
processing, visualization mapping, and rendering. Visualization mapping is the process of
choosing an appropriate “icon” that representstheinformationin adataset. Anicon should
efficiently convey the essential information and avoid clutter that obscures the information.

In volume rendering, the icon is the classified volume. The visualization mapping step
consists of choosing a classification function and the rendering step consists of transform-
ing the classified volume into an image. Good classification functions expose structure,
thereby guaranteeing coherence that we can take advantage of. Examples of structure in-
clude opague or translucent surfaces, fuzzy surfaces, or small, indistinct clouds in alarger
structured context.

Volume rendering is often called “direct volume rendering” to emphasize the fact that
the volume is not first mapped to polygons, in contrast to surface rendering. Nevertheless,
volume rendering does not eliminate the fundamental need for careful visualization map-
ping. The human visual system cannot extract useful information from afuzzy, translucent
cloud.

Useful classifications functions produce high-coherence classified volumes, precisely
the type of volume that can be rendered at interactive rates with the shear-warp algorithm.

CHAPTER 5. PERFORMANCE ANALY SIS 127

5.4 Chapter Summary

The performance resultsin this chapter |ead to several general conclusionsabout coherence-
accelerated volume rendering algorithms. Most importantly, the cost of traversing spatial
data structuresisthe primary overhead. The shear-warp agorithm achieves speedups of 4x
or more relative to octree-accelerated ray casters by reducing this cost: the ray caster must
perform analytic geometry calculations to traverse octree nodes, whereas the shear-warp
algorithm simply traverses run-length encoded scanlines in storage order.

We also demonstrated that the performance of coherence-accel erated volume rendering
algorithms degrades gracefully for volumes with lower coherence, and that in these cases
the scanline-order shear-warp a gorithm has better memory performance than aray caster.

These performance gains come without sacrificing image quality, provided that the vol-
ume data is band-limited and properly classified. For these reasons, scanline-order volume
rendering algorithms such as the shear-warp algorithm are likely to dominate.

Chapter 6

A Multiprocessor Volume Rendering
Algorithm

The new volume rendering a gorithms described in the previous chapters enable interactive
visualization applications on current-generation workstations, but they are not fast enough
to provide real-time frame rates (10-30 Hz). Real-time rendering allows smooth user inter-
faces and instantaneous feedback when exploring adata set. Furthermore, afast update rate
during arotation sequence provides strong depth cues that can greatly aid the human visual
system to understand a data set.

Four approaches have been proposed in the literature to achieve high frame rates for
volumerendering. Thefirst approach isto trade off image quality for speed, for instance by
using low-resolution versions of the data during user interaction [Laur & Hanrahan 1991].
Such methods allow rough manipulation of the data but the loss of resolution eliminates
many perceptual cues. The second approach is to rely on special-purpose hardware de-
signed either for graphics applications or specifically for volume rendering. Recent work
in this area includes volume rendering algorithms for the Pixel-Planes 5 graphics architec-
ture[Yoo et a. 1992] and for 3D texture mapping hardware [Cabral et a. 1994], a custom
accelerator board for volume rendering [Knittel & StraRer 1994], and the Cube-3 architec-
ture[Pfister et al. 1994]. Designssuch asthese can deliver high-quality imagesat high frame
rates; however, agorithmsthat are implemented in hardware lose flexibility.

The third approach is to paralelize a brute-force volume rendering algorithm for a

128

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 129

large multiprocessor. Many volume rendering algorithms have been reported for massively-
paralel SIMD multiprocessors [Cameron & Undrill 1992, Schroder & Stoll 1992, Vézina
etal. 1992, Hsu 1993, Wittenbrink & Somani 1993]. These architectures perform best when
communication patterns are regular and uniform, so the best speedups are achieved with
simple brute-force rendering algorithms. Brute-force parallel algorithms for large MIMD
machines have also been reported [Ma et a. 1993, Corrie & Mackerras 1993b, Montani
et al. 1992]. Thissolutionrequiresalarge number of processorsto achieve acceptableframe
rates.

The fourth approach is to paralelize a fast rendering algorithm that relies on agorith-
mic optimizations, such as spatial data structures, to reduce the computational costs [Nieh
& Levoy 1992, Neumann 1993]. A MIMD multiprocessor must be used since intricate al-
gorithms with many specia cases do not map well onto SIMD arrays. The disadvantages
of this approach are that the optimizations are data-dependent and preprocessing is often
necessary. However, less-expensive hardware is required to achieve the same frame rates
as with the other approaches, so using an optimized algorithm is more cost effective. This
is the approach we adopt.

In this chapter we describe a new parallel volume rendering algorithm that performs
well dueto threefactors. First, the computational costsare lower than previously-published
paralel algorithms because the algorithm is based on the seria shear-warp rendering algo-
rithms described in Chapter 4. Furthermore, we have designed our parallelization using an
image partition that takes full advantage of the optimizationsin the rendering algorithm.

Second, we control synchronization and idle waiting costs by using the dynamic load
balancing method described by Nieh & Levoy [1992]. Our task partition also minimizes
the number of synchronization events, thereby making load balancing easier.

Third, our algorithm has low data communication costs because it is implemented for
cache-coherent shared-memory multiprocessors. Thistype of parallel architecture supports
fine-grain low-latency communication, unlike message-passing machineswhich require ex-
pensive operating-system intervention for every message and therefore demand careful data
distribution [Neumann 1993, Montani et al. 1992, Corrie & Mackerras 1993b].

We have implemented our algorithm for two different MIMD shared-memory architec-
tures: the Silicon Graphics Challenge multiprocessor, whichisabus-based architecture, and

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 130

the Stanford DA SH Multiprocessor, a scalable distributed shared-memory multiprocessor.
Our implementation on a 16 processor Challengerendersa 2563 volumeat 13 Hz and a128?
volume at 31 Hz. Theserates are comparable to results reported for special -purpose graph-
ics hardware [Yoo et a. 1992] and exceed the best reported results for massively-parallel
SIMD machines[Hsu 1993, Wittenbrink & Somani 1993] and much larger MIM D message-
passing machines [Neumann 1993]. On a 32-processor configuration of DASH the algo-
rithm renders a 2563 volume at 5.9 Hz, six times faster than the results for DASH reported
by Nieh & Levoy [1992].

Our performance results|ead to several conclusions. First, asothers have noted, datare-
distribution and communication costs do not dominate rendering time on a shared-memory
machine [Nieh & Levoy 1992]. Second, we find that cache locality requirements impose a
limit on parallelism in volume rendering algorithms. Caches hide latency by exploiting lo-
cality of reference, but locality is destroyed if thetask sizeistoo small. In our experiments
our a gorithm approachesthislimit, and we believethat for any volumerendering algorithm
based on an image partition shared-memory machines with hundreds of processors would
be useful only for very large data sets.

Section 6.1 of this chapter describes the multiprocessor algorithm and the design trade-
offs we considered. Section 6.2 describes the architectures of the Challenge and DASH
multiprocessors and the details of our implementation for these machines. We then present
performance results for the parallel agorithm in Section 6.3 and discuss the limitations on
parallelism. Finally we discuss related work and our conclusions.

6.1 Multiprocessor Rendering Algorithm

Designing a parallel algorithm for a shared-memory multiprocessor consists of choosing
a partition of the computation into tasks for each processor and choosing appropriate syn-
chronization mechanisms. The serial algorithm contains three phases, each of which must
beparallelized: computing the shading lookup table, projecting thevolumeinto theinterme-
diate image, and warping the intermediate image. We begin by focusing on the projection
of the volume data since that phase dominates the cost of the serial algorithm, and then we
consider the issue of data distribution and the complete parallel algorithm.

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 131

6.1.1 Imageand Object Partitions

Thetwo general types of task partitionsfor parallel volume rendering algorithms are object
partitions and image partitions. In an object partition each processor is assigned a specific
subset of the volume data [Neumann 1993, Ma et al. 1993]. The processors first resample
and composite the voxels assigned to them, and then the partially-computed image pixels
must be composited with results from other processorsto form the final image pixel values.
In contrast, in an image partition each processor’s task is to compute a specific portion of
theimage[Nieh & Levoy 1992, Corrie & Mackerras 1993b]. Each image pixel iscomputed
by only one processor, but the volume data must be moved to different processors as the
viewing transformation changes. The choice of animage partition versus an object partition
isindependent of the choice of an image-order or object-order rendering algorithm.

Neumann [1993] showsthat object partitions require less data redistribution than image
partitions because only the image is communicated, while the much larger 3D volume is
never redistributed. On a message-passing machine the cost of communication is high due
to operating-system involvement in every message, so object partitions appear attractive.
However, on shared-memory machines the cost of communication may not be dominant
[Nieh & Levoy 1992] and therefore other factors are aso important. One disadvantage of
object partitionsis that early ray termination becomes less effective as the number of pro-
cessors increases. An increasing percentage of the processors are assigned occluded por-
tions of the data and therefore either perform unnecessary computation or have no work to
do. Early ray termination can result in 2-3x performance improvements as we saw in Chap-
ter 5, so 50% or more of the processing power of alarge parallel machine may be wasted
with an object partition.

A second potential disadvantage of object partitionsisthat increased synchronization is
necessary. In an object partition multiple processors must write to the same portion of the
image, so the processors must explicitly synchronizethese writesto avoid erroneous results.
L ess synchronization isrequired in an image partition because only one processor writesto
a given portion of the image; the only shared data structure is the volume data, which is
read-only and therefore requires no synchronization.

Algorithmsthat requirefine-grain synchronization often suffer from high percentages of

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 132

idle waiting time and load-balancing difficulties. For example, in an early attempt to par-
allelize the shear-warp agorithm we used an object partition in which each processor was
assigned a portion of each slice of voxels[Agrawala 1993]. To maintain the required com-
positing order all of the processors were required to synchronize at a barrier after each dice
had been composited into theintermediate image. The result was poor speedup due primar-
ily toidlewaiting time at the barriers. Load balancing could not compensate because of the
small amount of work between each synchronization event. Challinger [1992] reports re-
sultsfor an object partition on a shared-memory machine that agree with these conclusions.

The binary-swap image compositing algorithm proposed by Ma et al. [1993] also ap-
pears to have high synchronization overhead: the image-compositing phase suffers from
low speedups. Masoverall parallel volumerendering algorithm has good speedups because
the cost of compositing isfar lessthan the cost of rendering, but the lower cost of rendering
in our agorithm makes the cost of compositing more significant.

We therefore choose an image partition, which requires no synchronization until the en-
tire volume has been composited.

6.1.2 Task Shape

There are several choicesfor the unit of work in animage partition: individual pixels, scan-
lines of pixels[Challinger 1992, Yoo et al. 1991], or rectangular tiles[Nieh & Levoy 1992].
Generally, tile-shaped tasks are best in order to maximize temporal cache locality [Nieh &
Levoy 1992, Corrie & Mackerras 1993b]. However, two factors unique to the run-length
encoded data structures in the shear-warp agorithm lead us to partition the intermediate
imageinto groups of contiguous scanlines. First, the run-length encoded volume data struc-
ture makes it difficult to find the voxels associated with an image tile. Finding the data as-
sociated with an arbitrary voxel requires decoding the run-length encoding for all of the
voxels preceding it. In a scanline-based task partition we can precompute pointers to the
beginning of each scanline of voxel datato eliminate all decoding overhead, as mentioned
in Section 4.1.2. In atile-based task partition pointers would be required for every voxel
since in an object-order rendering algorithm an image tile can potentially map to any voxel
(depending on the view transformation).

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 133

The second reason for choosing scanline-shaped tasks instead of tiles is to maximize
spatial locality in both the intermediate image and the run-length encoded volume data. If
the compression ratio in the run-length encoded volume is high then several scanlines of
voxelsmay fitin asingle cache line and it is advantageous to process a contiguous group of
scanlines as a unit. The optimal number of scanlinesin atask depends upon the cache line
size and will be discussed further in Section 6.3.

6.1.3 Load Balancing

Given that the fundamental unit of work isagroup of contiguous scanlines of the intermedi-
ate image, we must choose how to assign the scanlinesto processors while minimizing load
imbalances. We consider three options. a static contiguous partition, a static interleaved
partition, and a dynamic partition.

In astatic contiguous partition the image is divided into large fixed blocks of scanlines,
oneblock per processor. Such aschemeworkswell only if the execution timefor each block
can be accurately predicted so that each processor has the same amount of work. However,
view-dependent variationsin the effectiveness of the coherence optimizations makesit dif-
ficult to predict performance. Our experiments with a simple measure of work, the number
of nonzero voxels in a scanline, showed it to be an effective predictor of execution time
[Agrawala1993].

In a static interleaved partition the image is divided into small blocks of scanlines and
the blocks are distributed in round-robin order to the processors. This scheme introduces
a tradeoff between load balancing and memory performance. If the image is divided into
a small number of large tasks then it is likely that some processors will be assigned more
expensivetasksthan othersand theload balancewill bepoor. Onthe other hand, if theimage
is divided into alarge number of small tasks then spatial locality is reduced and memory
overhead rises.

In adynamic partition tasks may be reassigned to different processors during rendering
to optimize the load balance. This method results in the best load balance, but care must
be taken to avoid overhead caused by redistributing tasks. The method we consider em-
ploys a distributed task queue and dynamic task stealing [Nieh & Levoy 1992]. Theimage

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 134

isfirst partitioned using one of the static partitioning methods and the tasks are placed on
task queues associated with each processor. If a processor completes all of itstasks then it
may “steal” atask from one of the other queues. Distributed queues are used rather than a
single centralized queue in order to avoid a bottleneck.

We implemented all of the above methods and found that dynamic task stealing with a
moderately interleaved initial task distribution performed best, as our performance results
will show. Theinterleaved partition increases the probability of agood initial load balance,
and dynamic task stealing compensates in cases where the initial partition is not optimal.

6.1.4 DataDistribution

Explicit data distribution isa difficult problem when an image partition is used because the
portion of the volume required by a particular processor depends on the viewpoint. One
solution isto replicate the data on every processor’s memory, but this design severely lim-
its the maximum size of the volume. However, explicit data distribution is not necessary
on a shared memory machine with caches. Because all of the processors share the same
address space, data in any memory can be accessed transparently by any processor. The
performance penalty for remote accesses is small provided the cache hit rate is sufficiently
high and there are no memory hot spots. To avoid hot spotting we use a round-robin distri-
bution of all large data structures to the different physical memories. On a shared-memory
machine the hardware caches automatically replicate the subset of the datarequired by mul-
tiple processors. The memory performance of the algorithm will be analyzed in the results
section.

6.1.5 Overall Algorithm

The pseudo-code in Figure 6.1 shows the flow of control for each processor in the parallel
algorithm. First, each processor selects a portion of alookup table used for shading voxels
(parallelized with a static contiguous task partition) and then waits at a barrier for the other
processorsto finish. Next, each processor computes aportion of theintermediateimage (im-
age_scans) by choosing atask from one of the task queues (FindTask()). Each task entails

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 135

1 procedure MultiRenderVolume()
ComputeShadingL ookupTable(); { static contiguous partition }
barrier
while (not done)
5 image_scans = FindTask(); { dynamic partition }
if (image_scans # NIL)
Clear(image_scans);
foreach (voxel_dlice from front to back)
voxel_scans = Intersect(image_scans, voxel _dlice);

10 image_scans = image_scans over Resample(Shade(voxel _scans)));
end
ese
done=1,
endif
15 end
barrier
image = Warp(); { static interleaved partition }
barrier
Display(image);
20 end

Figure 6.1: Pseudo-code for the multiprocessor agorithm.

looping through the slices of the volume, finding the voxel scanlines (voxel_scans) that in-
tersect the assigned portion of theintermediateimage, and then resampling and compositing
thevoxel scanlines. When all of thetaskshave been completed each processor synchronizes
at the second barrier, warps aportion of theimage (parallelized with a static interleaved par-
tition consisting of rectangular tiles of the final image), and synchronizes again. Then the
imageis displayed.

Apart from the three barriers, the only synchronization required is a set of locksto gov-
ern access to the task queues in the FindTask() function. Each queue has its own lock, and
processors request tasks from their own queue except when stealing, so the contention for
thelocksis negligible.

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 136

| Architecture | SGI Challenge | Stanford DASH |
Nodes 16 32
Processor 150 MHz R4400 | 33 MHz R3000
1st Level D-Cache 16 Kbytes 64 Kbytes
2nd Level D-Cache 1 Mbytes 256 Kbytes
2nd Level Line Size 128 bytes 16 bytes
Interconnect Type Global Bus 2D Mesh
Interconnect Bandwidth || 1.2 Gbytes/sec. | 960 Mbytes/sec.

Table 6.1: Characteristics of the parallel architectures used for the performance measurements. Both
machines are shared-memory multiprocessors with hardware cache-coherence.

6.2 Implementation

6.2.1 Hardware Architectures

We have implemented the algorithm for two architectures, the Silicon Graphics Challenge
and the Stanford DA SH Multiprocessor. Table 6.1 lists the characteristics of the machines.

The SGI Challengeis a bus-based symmetric shared-memory multiprocessor. A global
bus alows any processor to access any memory bank with the same latency. DASH is
an experimental prototype of a scalable distributed shared-memory architecture. The ma-
chine consists of processor clusters connected by a 2D mesh network (Figure 6.2). Each
cluster contains four CPUs and a memory module on a local bus. The processor caches
are kept consistent by the hardware using a distributed directory-based protocol [Lenoski
et al. 1993]. The mesh network in thisdesign isscalable, whereas in abus-based design the
bus saturates if too many processors are attached.

From the parallel programmer’s perspective, both architectures implement a shared-
memory model. However, the memory hierarchies are significantly different. The sec-
ondary cache on the Challenge has along cache line size (128 bytes) so that programs with
good spatial locality benefit from a prefetching effect which helps to mask the latency of
main memory accesses. The short cache lines on DASH lessen the benefit of spatial lo-
cality. The caches on DASH are also much smaller. Finaly, since DASH is a distributed
shared-memory machine the memory latency increases if an access must be serviced by a
remote memory.

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 137

cccccccc

1st level
| and D cachg

Nt
7

Directory
&

Ir
Interface

Figure 6.2: Block diagram of a2 x 2 DASH system (courtesy of Daniel Lenoski, Computer Systems
Laboratory, Stanford University).

6.2.2 Softwarelmplementation

We implemented the algorithm using the C language and the ANL parallel programming
macro package [Boyle et al. 1987]. Because of the shared-memory programming model
the parallel codeisamost identical to the original serial code. The only additions are func-
tionsto compute task partitionsand afew callsto the synchronization primitives. The same
source code runs without modification on both the Challenge and DASH architectures and
is portable to other shared-memory machines.

All of thelarge data structures, including the run-length encoded volume, the intermedi-
ate image, the final image, and the shading lookup table are allocated in the shared address
space. In order to avoid hot spotting, on DASH we distribute the shared data structures to
the different memories by assigning pages (4096 byte blocks) to memories in round-robin
fashion. On the Challenge the memory system is eight-way interleaved, so round-robin dis-
tribution of the data structuresis performed automatically at cache-line granularity.

The memory requirements of our implementation are four bytes per non-transparent
voxel (including a precomputed opacity and normal vector for shading) and twelve bytes
per pixel for a gray scale intermediate image (including an intensity and an opacity stored
in floating point format, and storage for the run lengths). Three copies of the volume data
are stored in memory, one for each possible transpose, asin the serial algorithm.

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 138

We shade the voxels using the Phong illumination model implemented with an 8192-
entry lookup table (further described in Chapter 7). The table is recomputed at the start of
each frame to allow view-dependent directional lighting effects.

The task sizes for the compositing phase and the warping phase of the algorithm are
parameters which can be changed at run-time. The task sizes must be adjusted to find the
optimal tradeoff between load balancing and memory overhead on each architecture.

Our current implementation only supports parallel projections and preclassified vol-
umes. The perspective version of the rendering algorithm and the fast classification algo-
rithm can be parallelized using the same method described here.

6.3 Reaults

Wetested our algorithm using two datasets. a256x256x225voxel CT scan of ahuman head
and a 128x128x109 voxel MR scan of ahead. These are the “head” and “brainsmall” data
setsdescribed in Table 5.1. Figure 6.3 showsrenderings of thetest data sets. Theimagesare
gray scale and contain 2562 pixels (although the rendering times are rel atively independent
of theimagesize, just asintheserial agorithm). Onthe Challengewe parallelized theimage
warp using tiles with 8x256 pixels and on DASH we used 16x16 tiles. We used an early
ray termination opacity cutoff of 95%. The total memory usage of the paralld agorithmis
the same as the serial algorithm (Table 5.3). Figure 6.4 illustrates a graphical interface that
allowsthe user to rotate the volume in real time by dragging on the rendered image.

6.3.1 Rendering Rates

Tables 6.2 and 6.3 give our performance results on the Challenge and on DASH. Thesere-
sults do not include image display and preprocessing to compute the run-length encoded
volume. On the Challenge our display routine (implemented with Tcl/Tk [Ousterhout 1994]
and GL [Silicon Graphics 1991]) requires 3 msec. to display a 2562 image. The preprocess-
ing time is 65 sec. on asingle processor for the 256 volume. The frame rates in the tables
are averages for a 180-frame animation with a two-degree rotation of the volume between

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 139

@ (b)

Figure 6.3: Test data sets for the multiprocessor algorithm: (a) CT head data set (256 x 256 x 225
voxels) (b) subvolume extracted from the CT head data set (128 x 128 x 128 voxels) (¢) MR brain
data set (128 x 128 x 109 voxels).

Figure 6.4 Theinteractive user interface for the multiprocessor algorithm. Theuser interface allows
the volumeto berotated in real time by direct manipulation with amouse. Sliders (not shown) allow
interactive adjustment of shading and lighting parameters.

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 140

Data set Processors
1 2 4 8 16

CT Head (128x128x128)
Frame Rate (Hz) 25 53 99 18 31
Task Size(scanlines) |256 8 8 8 8

CT Head (256x256x225)
Frame Rate (Hz) 11 22 43 75 13
Task Size (scanlines) | 512 20 20 20 13

Table 6.2: Rendering rates and tasks sizes on the SGI Challenge. The task size is the number of
intermediate image scanlines per task for the projection stage of the parallel algorithm.

Data set Processors
1 2 4 8 16 32

MRI Brain (128x128x109)

Frame Rate (Hz) 12 24 44 70 12 18

Task Size (scanlines) 32 20 12 12 5 3
CT Head (256x256x225)

Frame Rate (Hz) 033 067 13 21 34 59

Task Size (scanlines) 32 20 12 12 8 3

Table 6.3: Rendering rates and task sizes on the Stanford DASH Multiprocessor.

each frame. The fastest rates are achieved with the Challenge (which has more total com-
putational power than DASH): 13 Hz for the 2562 volume.

The speedup curvesfor the algorithm are not ideal, aswill be discussed later in this sec-
tion. Nevertheless, these rendering rates are among the fastest reported. In comparison to
the results reported by Nieh & Levoy [1992] on the DASH architecture, our parallel algo-
rithmis faster by afactor of six for a 32-processor machine. It isaso competitive with re-
sultsfor much more expensive massively parallel processors and specia -purpose hardware.
The multiprocessor shear-warp agorithm achieves these results only for data sets with high
coherence, but as we argued earlier in Section 5.3.4 classification functions that produce
low coherence aso produce poor visualizations.

Color renderings take roughly twice as long as gray scale renderings, just asin the se-
rial algorithm. We rerendered the color images shown in Figure 5.5-5.7 on DASH with 32
processors. The CT head (256 x 256 x 225 voxels) was rendered at arate of 2.0 Hz, the CT
engine (256 x 256 x 110 voxels) was rendered at arate of 2.8 Hz, and the CT abdomen (256

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 141

Time (msec.)
250
200 |-
150 MM
100 F Max: 201 msec.
Min: 147 msec.
Avg: 169 msec.
50 -
O 1 1 1 J
0 90 180 270 360

Rotation Angle (degrees)

Figure 6.5: Rendering time for the 2563 gray scale head on DA SH with 32 processors as the viewing
angle changes.

X 256 x 159 voxels) was rendered at arate of 2.4 Hz.

Figure 6.5 shows how the rendering time varies with viewing angle during a continuous
360-degree rotation sequence. The variations are due to data-dependent changes in image
complexity. There is no discontinuous jump in rendering time when the volume is rotated
past a45-degree point, even though the renderer must switch to adifferent transposed copy
of the run-length encoded volume. Neither isthere any visual discontinuity in the rendered
images. The rendering time does not change if the rotation angle between frames is in-
creased, indicating that the performance results do not depend on cache coherence between
frames.

6.3.2 Performance Limitson the Challenge Multiprocessor

Figure 6.6 shows the speedup curve for the Challenge multiprocessor. While the agorithm
achieves high frame rates, the speedup for 16 processorsis only about 12 (an efficiency of
75%). Therearetwo potential sources of overhead |eading to the non-linear speedup: mem-
ory stall time caused by cache misses, and processor idle time caused by load imbalances.
Figure 6.7 illustrates how the task size can be adjusted to minimize the total overhead
by balancing the tradeoff between memory stall time and processor idle time. The figure

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 142

Speedup

16 - \66;&/
0 256% CT head - g

12F & 128%CT head P

0 1 1 1 J
0 4 8 12 16

Processors

Figure 6.6: Speedup curve on the Challenge multiprocessor.

shows a breakdown of the overheads for afixed number of processors (16) asthetask size
isvaried. The total length of each bar represents the sum of the time spent by all of the
processors to render asingle frame (wall clock time would be found by dividing the length
of the bar by the number of processors). Each bar isbroken down into sections representing
computation time, memory stall time, and idle time (synchronization overhead). Idle time
was measured using high-resolution interval timers at each barrier, computation time was
measured using a cycle-counting profiler (Pixie [Smith 1991]), and memory stalls account
for the remaining time. The figure showsthat small tasks result in larger memory overhead
while large tasks result in poor load balancing.

The optimal task size depends on the data set and the number of processors (see Ta
ble 6.2). Figure 6.8 shows the magnitudes of the overheads for the 2563 CT head data set
with the optimal task size on arange of machine sizes. There are two observationsto make
fromthefigure. First, with optimal task sizesthe memory overhead for the 16 processor run
isonly 9% more than the overhead for the uniprocessor algorithm. Thisresult indicates that
data redistribution and communication costs do not dominate rendering time.

Thesecond observationisthat the overhead duetoidletimedoesincrease. But from Fig-
ure 6.7 we know that the load balancing algorithm is not the problem since theidle time can
bereduced to anegligibleamount by reducing thetask size. Infact, the decreasing efficiency

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 143

g 20 - idle time
GEJ |:| memory
£ 15
- i
02) - computatlon
&
S 1.0
=
5
(@)

0.5

0.0
2 4 6 8 10 12 14 16 18 20 Task Size (scanlines)

Figure 6.7: Breakdown of execution time into computation cycles, memory overhead, and idletime
due to synchronization on a 16-processor Challenge as the task size varies. The time is cumulative
over dl processors. Thereis atradeoff between the two types of overhead.

=
(Y
1

I icle time
|:| memory
- computation

=
o
T

Cumulative Time (sec.)
o o
(o] o

©
N

o
(N

0.0 1 2 4 8 12 16 Processors

Figure 6.8: Breakdown of execution time into computation cycles, memory overhead, and idletime
on the Challenge as the number of processors varies.

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 144

isdueto alimit ontheavailable parallelismin our task partitioning algorithm. Asmore pro-
cessors are added the intermediate image must be partitioned into alarger number of tasks
to achieve good load balancing, but as aresult the tasks are smaller and memory overheads
rise. At some point thereis no net gain from making the tasks smaller. Beyond that point,
since the tasks are not made smaller the overhead due to |oad imbal ances increases as more
processors are used, and eventually the speedup curve becomes flat. Therefore, cache lo-
cality requirements impose a limit on the maximum useful number of parallel tasks.

We suspect that other algorithms for volume rendering on shared-memory machines
have similar limits. For example, Nieh's parallel ray caster benefits from good temporal 1o-
cality since adjacent rays access datafrom the same cachelines[Nieh & Levoy 1992, Singh
et al. 1994]. The algorithm uses an image partition, so as the number of paralel tasksin-
creases the size of the image tiles assigned to a processor must decrease. If alarge number
of processors is used the likely result is a degradation in temporal locality and an increase
in memory overhead.

However, our goal isto achieveinteractive rendering rates, and on the Challenge our al-
gorithm achievesthat goal for moderately-large data sets. Thelimit on available parallelism
isless of aproblem for larger data sets since they can be divided into more tasks, so larger
machines are useful with our algorithm provided that larger data sets are rendered. Another
factor affecting the available parallelism is the architecture of the memory system, which
determines the minimum practical task size. DASH, which we consider next, has a much
smaller optimal task size and therefore alarger number of processors can be used. We will
discuss memory performance in more detail later in this section.

6.3.3 Performance Limitson the DASH M ultiprocessor

Figure 6.9 shows the speedup curve for the DASH multiprocessor. Compared to the results
for the Challenge, the efficiency on DASH ismuch lower (60% for 16 processors, and about
50% for 32 processors). The source of the overhead, shown in Figure 6.10, isalso different:
memory stall time is the dominant overhead. In the rest of this section we will show that
on DA SH the memory overhead increases due to an increase in remote memory references,

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 145

Speedup
N
— You
32 \6@/ 4
o 256° CT head - g
24 | A 128% MR brain Phd

Processors

Figure 6.9: Speedup curve on the DASH multiprocessor.

indicating that the caches are not completely hiding the latency of memory. In the next sec-
tion we will analyze the cache behavior in more detail and show that the performance on
the Challenge is better because the caches are larger, so the working set fits, and the cache
line sizeislonger, so the benefit of spatial locality is greater.

The first step to understanding the increased memory overhead on DASH is to recall
the structure of the memory hierarchy: the machine consists of clusters of four processors
connected by abusto aloca memory, and accesses to memory on remote clusters require
communication via a 2D mesh network. The latency for remote accesses is roughly four
times longer than for local accesses. Thisfact explains the jump in memory overhead from
the four-processor run to the eight-processor run: the average latency for memory accesses
rises abruptly. Asthe number of processors increases further, a larger fraction of the data
structuresrequired by a particular processor reside on remote memory and so the average la-
tency increases even further. We used a hardware performance monitor to count the number
of remote references and found that it doesincrease slowly: when the number of processors
isdoubled from 16 to 32 the number of remote memory references increases by about 10%.
To prove that the memory overhead is due to an increasing fraction of remote references
and not to an increasing total number of memory references, we moved all data structures
to remote clusters. In this experiment the memory latency is amost constant since almost

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 146

ST I idle time

Cumulative Time (sec.)

1 4 8 12 16 20 24 28 32 Processors

Figure 6.10: Breakdown of execution timeinto computation cycles, memory overhead, andidletime
on DASH as the number of processors varies.

every reference is remote. As expected, we found that the memory overhead also became
nearly constant (the algorithm achieved efficiencies of 85-90% for 16 processors).

Unlike our results on the Challenge, the memory overhead cannot be significantly re-
duced by increasing the task size. The reason is that on DASH the cache line sizeis much
shorter (16 bytesinstead of 128 bytes on the Challenge), so spatial locality islessimportant.
The optimal task sizes shown in Table 6.3 are significantly smaller than for the Challenge.
However, because the optimal task sizes are smaller, more parallelism isavailable and more
processors can be used.

From thisline of reasoning we conclude that the sub-linear speedup on DASH is caused
by the caches not completely hiding the latency of remote memory accesses, and by thein-
creasing averagelatency asthe datastructuresare spread over alarger number of processors.
Next, we consider the reasons for sub-optimal cache performance.

6.3.4 Memory Performance

Nieh & Levoy [1992] report that memory overhead for an optimized ray caster on shared-
memory multiprocessors such as DASH isasmall fraction of execution time, partly dueto
the effectiveness of the caches and partly due to the high ratio of computation to memory

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 147

accesses. Our algorithm eliminates a considerabl e fraction of the computation time associ-
ated with traversing data structures, so we might expect the impact of memory overhead to
be moreimportant. Toinvestigate further, and to explain the different results on the two ma-
chines, we used a memory system simulation tool [Martonosi et al. 1992] to qualitatively
understand the memory behavior. The simulator does not model all of the details of the
memory System so it cannot be used to predict miss rates on the real machines, but it does
allow us to determine which data structures miss most often and the dominant causes of the
Mi SSes.

With the cache parameters adjusted to roughly approximate the caches at the cluster
level on DASH, the simulator indicates two dominant causes of cache misses. The first
cause is communication (invalidation misses) resulting from the redistribution of the inter-
mediate image and to a lesser extent the shading lookup table. These misses result from
inherent communication in the parallel algorithm. The intermediate image is redistributed
during the 2D warp since each processor is responsible for assembling rectangular pieces
of the final image from pieces of the intermediate image computed by other processors. It
is difficult to reduce this cost since a warp inherently requires moving pixels to different
parts of the image. The communication cost slowly increases as the number of processors
increases because smaller fractions of the intermediateimage and the shading table are com-
puted on the same processor as they are used.

When the cache line size is increased to 128 bytes (to match the line size on the Chal-
lenge) the simulator reportsthat the number of misses due to communication drops by more
than afactor of five. Thisresult indicates that our algorithm has significant spatial locality.
Therefore, on architectures with long cache lines the cost of communication misses can be
masked by the caches.

The second source of misses on DASH is from capacity misses, which occur when the
cache is not large enough to capture the working set. The second-level caches on DASH
(256 Kbytes) are small by today’s standards. Increasing the cache size in the smulation
to 1 Mbyte per processor (to match the second-level cache size on the Challenge) causes
a significant drop in the number of capacity misses, so they should have a smaller effect
on the Challenge architecture. The simulator also shows that as the number of processors
increases the number of capacity misses decreases due to the increased amount of cache in

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 148

the machine.

To summarize the analysis for DASH, when the increasing cost of communication and
the decreasing cost of capacity misses are combined the net result is that the total number
of remote memory references increases slowly as the number of processors increases. This
result from the simulator matches the increase in remote references observed with the hard-
ware performance monitor. The memory overhead increases at a slower rate than the pro-
cessing power, so the speedup continues to rise as more processors are used, but the effi-
ciency goes down. In comparison to Nieh's parallel ray caster [Nieh & Levoy 1992], our
algorithm traverses the volume datain adifferent order that resultsin areduction in tempo-
ral locality and alarger working set.

On the Challenge, the combination of larger caches (which can capture a larger work-
ing set) and longer cache lines (which capitalize on spatial locality to reduce the number
of misses) result in good memory performance. The current trend in processor design is
towards increasing memory latency with longer cache lines to amortize that |atency over
many references. Scanline-based algorithms with good spatial locality, such as the shear-
warp algorithm, can effectively make use of the prefetching effect of long cache lines.

Asafina experiment to determine the impact of volume data redistribution, we elimi-
nated the cost of redistribution by replicating the 128* MR volume on all of the clusters of
DASH. The rendering time decreased by less than 5% with two processors and by |ess than
1% with 12 or more processors, indicating that volume redistribution costs are not the lim-
iting performance factor on shared-memory multiprocessors. The hardware handles com-
muni cation and caching of the volume dataautomatically with no performance penalty. Un-
fortunately the caches are less effective at hiding the latency of inherent communicationin
the algorithm, i.e. redistribution of the intermediate image, so the memory overhead is non-
negligible despite the low cost of accessing volume data.

6.3.5 Load Balancing

Table 6.4 compares the performance of the different task partitioning algorithmswe imple-
mented. The load imbalance is measured by timing the resampling and projection com-
putation (between the first and second barriers in Figure 6.1) on each processor and then

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 149

Task Assignment Load Rendering
Algorithm Imbalance | Time (msec.)
round-robin
stealing 7% 149
no stealing 18% 160
contiguous
stealing 32% 187
no stealing 169% 342

Table 6.4: Comparison of |oad balancing algorithms for the 2562 head on DASH with 32 processors.
Round-robin task assignment with dynamic stealing performs best.

computing the average time and the maximum deviation from the average time. The num-
bers reported in the table are the maximum deviations as a percentage of the average time.
A value of 0% indicates that all processors take the same amount of time, and a value of
100% indicates that at |east one processor takes 100% longer than the average time.

Thebest resultsare obtai ned with around-robin assignment and stealing (dynamic repar-
titioning); the load imbalance is amost negligible. When stealing is disabled the load bal-
ance increases significantly, although overall rendering time increases by only 7%. This
result indicates that the initial round-robin assignment is close to optimal, but stealing is
easy enough to implement on a shared-memory machine that even a small increase in per-
formance makes it worthwhile. The contiguous partition is a sub-optimal initial partition,
so stealing makes amuch bigger difference. But even with stealing, the contiguous partition
isworse than the round-robin partition. We theorize that because the round-robin partition
reduces the number of tasks that are stolen there is somewhat more temporal locality and
fewer cache misses.

6.3.6 Redated Work

We have argued that an image partition coupled with hardware caching resultsin low mem-
ory overhead. Most volume rendering algorithmsfor message-passing machines use object

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 150

partitions to minimize communication costs [Neumann 1993]. However, Corrie & Macker-
ras [1993b] propose an algorithm with an image partition that uses software caching to ex-
ploit data reference locality on a message-passing machine. The target application is non-
interactive rendering of very large data sets, so the granularity of communication is large
(datablocks of 8 Kbytes or larger) and the overhead of software caching is reasonable. But
for moderately-sized data sets and real-time rendering rates the granularity of communica-
tion is necessarily smaller and the overhead of software-controlled caching is likely to be
high. Furthermore, the method does not reduce the increase in message traffic incurred if
adynamic load balancing algorithm is used. In contrast, the hardware caches on a shared-
memory multiprocessor automatically hide most of the cost of communication in our algo-
rithm.

Our results corroborate the conclusionsof Nieh & Levoy [1992] and Singh et al. [1994],
both of which demonstrate the success of image partitions on shared-memory multiproces-
sors.

6.4 Chapter Summary

The multiprocessor shear-warp algorithm is capable of rendering 256° volumes at rates ex-
ceeding 10 Hz on readily-available hardware. We have achieved these speeds by using an
optimized rendering algorithm with low computational costs, and an image partition which
can take full advantage of the optimizations and which has lower synchronization costs
than object partitions. The memory performance of the algorithm is good because we use
cache-coherent shared-memory architectures. On the Challenge, which has a long cache
line, the spatial locality in our task partition results in negligible memory overhead. Even
on DASH, with a much shorter cache line and small caches, the memory overhead is ac-
ceptable. Shared-memory architectures work well for volume rendering because they effi-
ciently support fine-grain communication, and have the added benefit of a simple program-
ming model: the parallel code isvirtually identical to the serial code.

One disadvantage of the algorithm described in this chapter is the preprocessing step
required to run-length encode the volume whenever the user reclassifies the volume (i.e.

CHAPTER 6. A MULTIPROCESSOR VOLUME RENDERING ALGORITHM 151

reassigns voxel opacities). However, the same parallelization can be used for the fast-
classification algorithm, alowing rea-time classification and rendering. The perspective
projection algorithm can also be paralelized in the same way. Neither of these extensions
has yet been implemented, but we expect afactor of 2-3x slowdown compared to the results
presented here.

Another interesting area for future work isamore detailed analysis of the memory per-
formance of volume rendering algorithms for shared-memory multiprocessors. Unfortu-
nately, such studies are difficult because the shared-memory model encourages implicit
communication through shared variables rather than explicit calls to message-passing rou-
tines. Whileit takes little effort to produce a correct, efficient program, it is difficult to an-
alyze the source of performance bottlenecks deep in the memory system.

In the coming years, small-to-medium-scal e shared-memory multiprocessors based on
fast microprocessorsare likely to become commonplace. Theparallel shear-warp algorithm
iswell-suited to this type of architecture and enables a cost-effective solution for real-time
volume rendering.

Chapter 7
Extensions

Data visualization is a process that requires experimentation. To support this experimen-
tation a visualization application must provide flexible tools such as user-defined shading
functions and techniques for focusing attention on a particular region of interest. The more
control the user has, the more useful the application will befor awide range of visualization
problems.

The preceding chapters discuss the core component of avolume rendering application:
fast, flexible rendering algorithms for volume data. This chapter discusses a collection of
extensions to the rendering algorithms that provide a variety of visualization tools. Sec-
tion 7.1 describes a shading algorithm, i.e. amethod for computing the color of each voxel
inavolume. The algorithm uses atechnique proposed by Abram & Whitted [1990] to com-
bine the flexibility of a shade-tree language [Cook 1984] with the speed of a lookup-table
implementation.

Section 7.2 describes a fast depth cueing algorithm. Depth cueing is a technique for
simulating fog in arendered scene. The further an object is from the viewer the more the
fog obscuresit, thereby helping aviewer to distinguish between foreground and background
objects. We present a new algorithm that uses a factorization of the depth cueing function
to reduce the cost of computing the distance between the viewer and each voxel.

Section 7.3 describes a new agorithm for creating volume renderings with shadows.
It uses the shear-warp rendering algorithm both to compute the illumination at each voxel
and to render the image efficiently. Furthermore, it is a one-pass algorithm that requires

152

CHAPTER 7. EXTENSIONS 153

significantly lessmemory than traditional two-pass methodsthat requirea3D buffer aslarge
as the volume to store intermediate results.

Section 7.4 describes an extension of the shear-warp rendering algorithm for data sets
containing mixtures of volume dataand geometric data. Mixed datasetsare useful for appli-
cations in which some of the objectsto be rendered are analytically defined. The algorithm
presented in this section has not yet been implemented.

Finally, Section 7.5 describes how to add support for arbitrary clipping planes to the
shear-warp rendering algorithm. Clipping planes allow a user to render cut-away views of
the interior of avolume or to focus attention on a subset of a volume. This extension has
not been implemented either.

7.1 Flexible Shading With Lookup Tables

7.1.1 Shade Treesand L ookup Tables

Shading languages such as RenderMan [Upstill 1990] are widely used in photo-realistic ren-
dering systems because they allow the user to specify arich variety of shading functions.
In the context of avisualization system aflexible shading language can be used to tailor the
shading function for aspecific dataset. For example, auser might specify afunctionto high-
light important aspects of the data or to produce appropriate perceptual cues. Languages
that have been used for shading in volume rendering systems include a graphical network
editor [Abram & Whitted 1990] for building shade trees [Cook 1984], the C programming
language [Montine 1990], a specialized language called Vexpr that can be trandated into
C [Palmer et a. 1993], and an extension of RenderMan tailored for volume data [Corrie &
Mackerras 19933].

However, flexibility often comesat the price of slower execution. Most shading systems
that support ageneral shading language operate by compiling ashading language expression
into machine code or an intermediate language and then evaluating the compiled function
for every rendered voxel. Compiler optimizations help to reduce the cost of evaluating the
function [Hanrahan & Lawson 1990] but the cost increases as the number of operationsin

CHAPTER 7. EXTENSIONS 154

the expression increases. Unless the shading expression istrivial, this solution istoo com-
putationally expensive for interactive applications.

An optimization commonly used to reduce the cost of a shading function isto tabulate
values of the function in a precomputed lookup table. The cost of evaluating a tabulated
function depends only on the number of parameters to the function, not on the number of
operationsin the original function.

Implementing a shading function with alookup table has two potential problems. First,
thereisatradeoff between the size of thetableand the quality of theresultssincethe shading
function must be discretized. In practicethisproblemislessseverefor volumevisualization
applications because volume data is typically noisy, unlike analytically-defined polygonal
data, so the banding artifacts caused by quantization errors are less noticeable. Thuswe can
represent ashading function with asmaller table than would be necessary for polygon-based
applications.

The second problem with lookup table implementations is the combinatorial explosion
that results as the number of parameters to the shading function increases. A shading func-
tion with alarge number of parameters requires alookup table with many dimensions, re-
sulting in excessive memory consumption and high computational costs whenever thetable
must be recomputed.

We adopt the following solution: instead of using a single multi-dimensional table, we
precompute severa tables with low dimensionality and at run time we evaluate a ssimple
expression to combine values from the individual tables.

We will represent a shading function by a tree called a shade tree [Cook 1984]. Each
leaf nodeinthetreerepresentsaconstant or avoxel parameter, each internal node represents
an operator that combines its children into a single value, and the root node represents the
final value produced by the shading function. Before rendering the volume we precompute
lookup tables for selected subtrees of the shade tree. Theresult is a collapsed shade treein
which many of the nodes have been replaced by the lookup tables so the cost to evaluate the
tree at rendering timeis small. Thismethod was proposed by Abram & Whitted [1990] and
used for volume rendering by Westover [1990].

CHAPTER 7. EXTENSIONS 155

C,[n] Wild] C4[n] W,[d]

Figure 7.1: Anexample shadetreefor the multiple-material shading model with two materials. Each
leaf node is alookup table indexed by either the scalar value d or the normal vector n stored with a
voxel.

7.1.2 Implementation of Shading Functions

This section illustrates our implementation of shading functions with a specific example
from our volume rendering system. The implementation described here is also the shader
we used in our performance tests in Chapter 5.

We have used the combination of shade trees and lookup tables to implement the
multiple-material shading model proposed by Drebin et al. [1988]. This shading model as-
sumesthat each voxel consists of amixture of several material types, for instance skin, bone
and fat in amedical data set. We use a lookup table indexed by the scalar value of avoxel
to produce a set of weightsindicating the fraction of each material typein the voxel. Next,
we use one lookup table per material type to produce the color of that material. Finally, to
compute the color of avoxel the shader |ooks up the color of each material type present in
the voxel and then combines the colorsin proportion to the weights.

Figure 7.1 shows a shade tree for the multiple-material shading model with two mate-
rials. The leaf nodes labeled C; are the lookup tables containing colors for each material
and the leaf nodes labeled 1W; are the lookup tables containing material weights. To shade
avoxel the shader looks up one value from each table, multiplies each color by its associ-
ated weight, and adds all of the weighted colors. Our implementation supports an arbitrary
number of materials.

The lookup tables containing material weights are defined by the user. The lookup ta-
bles for computing the color of each material contain values precomputed with the Phong

CHAPTER 7. EXTENSIONS 156

illuminationmodel [Foley et a. 1990]. Thesetables areindexed by the surface normal vec-
tor associated with the voxel, which we will describe below. The equation used to compute
each color is:

L=0L,+Y Likin L)+ Liky(n - hy)°

where;

L isthe radiance reflected by the material from the light sources to the viewer. The value
of the color C' used in the volumetric compositing equation (Equation 1.4) equals L.

n isthe normalized surface normal vector at the voxel.
1; isaunit vector specifying the direction to light source .

h; isaunitvector equal to the surface normal that resultsin the maximum specular highlight

for light sourcei:
. li +v
N |1l + V|

where v isaunit vector that specifies the direction from the voxel to the viewer.
L; istheradiance emitted by light source .
L, isthe radiance reflected by the material from ambient light.
kq isthe diffuse reflection coefficient for the material.
k. isthe specular reflection coefficient for the material.
s isthe shinyness exponent for the material.

For color imagesthis equation is evaluated once for each color channel to produce an RGB
lookup table. Each material type has a different set of material parameters (L., k4, ks and

We make the assumption that all of the light sources are infinitely distant so that the
vectors I; are constant for every voxel. For parallel projectionsthe viewer is aso infinitely
distant, so v and hence h; are also constant. For perspective projections we can define v to
be the direction of the central viewing ray; this definition will result in inaccurate specular

CHAPTER 7. EXTENSIONS 157

highlights but the approximation may be acceptable unless the viewer is close to or inside
the volume. Under these assumptions the value of L and hence the value of C; in each of
the subtrees depends on only one variable, the surface normal vector n. Thus each subtree
can be tabulated in a one-dimensional lookup table indexed by the surface normal vector.

The surface normal at any point in the volume is defined to be a unit vector parallel to
the local gradient of the voxel scalar value d(z, y, 2):

n(x,y,z) =

The gradient is approximated using the central difference gradient operator:

1
1 .
+ 3 [d(z,y+1,2) —d(x,y—1,2)]]
1
+ 3 [d(z,y,z+1) —d(z,y,z — 1) k

The surface normal vectors are precomputed and stored with the voxels. Instead of storing
all three components of the normal as floating point numbers we use an encoded representa-
tion that requires | ess storage and provides a convenient integer index for the lookup tables
[Glassner 1990b, Fletcher & Robertson 1993]. The general method for encoding normal
vectors works as follows:

1. Choose a set of unit vectors that are approximately uniformly distributed over al di-
rections.

2. Assign auniqueinteger code to each vector in the set.

3. Compute the gradient at each voxel and find the closest unit vector in the predeter-
mined set of unit vectors. Represent the normal by the integer code for the chosen
unit vector.

The set of unit vectors in our implementation is found by normalizing the solutions of the
equation:
2| 4 [ny| +n:| =1

CHAPTER 7. EXTENSIONS

158

Figure 7.2: Grid locations for quantizing normal vectors. Thegrid (lIeft) formsthe base of apyramid
(right) with equation |n,| + |ny| + |n.| = 1. Each vector is constrained to pass through the origin
and a point on the surface of the pyramid that projects along the z axis onto agrid point.

where n,, and n,, are constrained to locations on a grid centered at the origin and rotated 45

degrees, as shown in Figure 7.2. The solutions are of the form:

Ty

Y + @,

V2

Yr — T

&

. |yr+$f’| + |yr _$T’|

V2

)

for integers x;, y; and grid spacings Ax,., Ay, (shown in the figure). Each vector can be
encoded by concatenating x;, y;, and a bit indicating the sign of n.. This particular defini-
tionfor the set of quantized normal vectorsallowsfor easy conversion between the encoded
and unencoded representations and has anearly-uniform distribution of directions. We have

CHAPTER 7. EXTENSIONS 159

Shader Implementation | Shading Tota Normalized
Time(sec.) | Time(sec.) | Time

No Lookup Tables 13.3 14.5 5.2

Lookup Tables 2.3 34 1.2

Lookup Tablesw/ 16 2.8 1.0

Inlined Procedures

Table 7.1: Performance results for three implementations of the shading function in Figure 7.1 to
produce the image in Figure 5.5: evauation without lookup tables, evaluation with lookup tables,
and evaluation with lookup tables and an inlined shading procedure.

found that 13 bits (6 bits for each of =; and y; and 1 bit for n.) is sufficient to avoid objec-
tionable quantization errors.

The lookup tables for the color of each material (C;) are recomputed whenever the user
modifies any of the constants in the lighting model, such as the viewing direction or the
material parameters. Each table consists of 8192 entries (the total number of surface normal
vectors), so in large volumes the cost of computing the tables is significantly smaller than
the cost of shading every rendered voxel.

Table 7.1 compares the cost of three implementations of the shade tree shown in Fig-
ure 7.1 for the case of two materials, one light source, and a color (RGB) image. In the
first implementation, for every voxel the renderer calls a shading procedure that evaluates
the entire tree without using lookup tables for C;. In the second implementation the shad-
ing procedure uses the lookup tables. In the third implementation the lookup-tabl e shading
procedure is inlined into the rendering procedure to eliminate the overhead of a procedure
cal (including register spills due to the procedure calling conventions). Thefirst columnis
the time for shading aone, the second column is the total time to render an image, and the
third column is the total time normalized by the time to compute the image with the fastest
implementation.

For the case of the shading expression in this example the lookup table implementations
are five times faster than the implementation without precomputation, and the inlined pro-
cedure is about 20% faster than the non-inlined procedure. This example shows that even
with afairly simple shading model the computational costs can bevery highinaprocedural
implementation, but alookup-tableimplementation can reduce the cost to acceptable levels.

CHAPTER 7. EXTENSIONS 160

7.1.3 General Shade Trees

The current implementation allows shade trees of the form shown in Figure 7.1: a sum-of-
products expression with an arbitrary number of product terms and one-dimensional lookup
tables at the leaves. The implementation uses predefined macros that can be inlined into
the rendering code. Even with this limited model many shading functions can be speci-
fied by changing the contents of the lookup tables. More general shading expressions could
be supported in a straightforward manner by using a shading language system with a com-
piler and a dynamic linking facility as described in [Corrie & Mackerras 1993a]. The user
would specify hintsto indicate which subtrees should be tabul ated (as proposed by [Abram
& Whitted 1990]).

An area for future research is to develop automatic partitioning algorithms that can
choose an optimal set of subtrees for tabulation. An optimal set minimizes the number of
computationsin the collapsed tree and the total size of thetables. The compiler should pro-
duce two procedures. a procedure for precomputing the lookup tables, and a procedure for
rendering a volume with an inlined shading function implementing the collapsed shade tree
(along the same lines as the specializing shaders of Guenter et al. [1995]). Such a system
could providetheflexibility of existing shading languageswith nearly the same performance
as hand-optimized hard-wired shading systems.

7.2 Fast Depth Cueing

7.2.1 Depth Cueing

Depth cueing is a technique for simulating atmospheric attenuation of light, for instance
due to uniform absorbing, non-scattering fog. The fog causes objects far from the viewer
to appear darker than foreground objects. In visualization applications the technique can
be used to emphasize depth relationships between different parts of a data set. Figure 7.3
shows two volume renderings with and without depth cueing.

Depth cueing can be implemented in a straightforward manner by computing the dis-
tance from the viewer (the depth) for each rendered voxel and attenuating the voxel’s color

CHAPTER 7. EXTENSIONS 161

Figure 7.3: Theleft imageisarendering of a CT data set without depth cueing, and on theright is
the same rendering with depth cueing. The more distant surfaces are darker in the depth cued image.

by afunction of the depth. One standard depth cueing functionisan exponential decay func-
tion:
Trog(d) = Tye "

where Tt (d) isthefraction of light transmitted after traveling adistance d through the fog,
and T}, and p are user-defined constants. If the color of avoxel before depth cueingisC' then
after depth cueing the color is C' - Ti,,(d). To avoid the cost of evaluating the exponential
during rendering, the depth cueing function can be precomputed and stored in alookup table.

The computational cost of depth cueing is atable lookup and a multiply for each ren-
dered voxel plus the cost of computing the voxel depths. Either the depths can be com-
puted from the viewing transformation matrix for every rendered voxel, or the depths can
be computed incrementally by adding a delta every time the rendering algorithm moves to
anew voxel. The incremental approach is usually less expensive: for a parallel projection
the depth deltais constant, so a single addition per voxel isrequired. For a perspective pro-
jection adivideis aso necessary.

However, in the shear-warp algorithm and other object-order algorithmsthat use spatial
data structures the depth must be updated not only for rendered voxelsbut also every timea

CHAPTER 7. EXTENSIONS 162

Figure 7.4: Factoring the depth cueing function: The distance from avoxel to the image can be split
into two pieces, the distance from the voxel to the intermediate image and the distance from the in-
termediate image to the image. For a parald projection the distance to the intermediate image is
constant for every voxel inasdlice.

run of transparent voxels or opaque pixelsis skipped. The cost is therefore proportional to
the number of rendered voxels plusthe number of runs. When depth cueing isimplemented
using incremental calculation of the depth with floating-point arithmetic the time to render
the depth cued image in Figure 7.3 increases by 20% compared to rendering without depth
cueing.

7.2.2 Factoring the Depth Cueing Function

In this section we devel op afaster depth cueing algorithm using afactorization of the depth
cueing function. As shown on the left side of Figure 7.4, the distance d from a voxd to
the image plane can be broken into two pieces: the distance d, from the voxel to the front
voxel dlice, plusthedistance d; (i = 1, 2,...) from the front dlice to the image. The expo-
nential depth cueing function can be written as aproduct of two factorsinvolving these two
distances as follows:

Thog(d) = Toe " = &% - Tpe "

The right side of the figure shows that for a parallel projection the distance d, is con-
stant for every voxel inadlice. Asaresult, depth cueing can be performed using atwo-step
process:

CHAPTER 7. EXTENSIONS 163

1. During rendering, multiply the color of every rendered voxel in a given dlice by a
constant depth cueing factor. The factor is:

Tslice = eipdo

2. After all of the voxel dlices have been composited together, multiply the color of ev-
ery pixel in the intermediate image by a second depth cueing factor which must be
computed individually for every pixel:

~pd:
7ﬂpixel = T()@ P

Thefirst step of the algorithm accountsfor light attenuation as the voxels are projected onto
the plane of the intermediate image (which is coincident with the front voxel slice), and the
second step accounts for light attenuation from the intermediate image plane to the fina
image plane.

The advantage of the algorithm isthat the depths of individual voxels need not be com-
puted. During the projection stage of the algorithm 7;.. must be computed only once per
dlice. The cost to apply the depth cueing factor is asingle multiply for each rendered voxel.
During the warping stage the cost of applying the second depth cueing factor is proportional
to the number of pixelsin the intermediate image. The cost per pixel is one add (to incre-
mentally compute the depth of the pixel), onetablelookup (to retrieve the value of the depth
cueing function), and one multiply. The 2D intermediate image is generally much smaller
than the volume so the cost of applying the second depth cueing factor is also small.

For perspective projections the value of d, is not constant for every voxel in a dlice.
However, it can be computed inexpensively from the sample spacing used for opacity cor-
rection (see Section 4.2.3):

dog =k - Ax

where £ is the voxel slice number (counting from zero for the front slice) and Az is the
distance between dlices along aviewing ray in image space. Ax must be stored with each
intermediateimage pixel for the opacity correction algorithm. Thus the depth cueing factor
can be computed using one multiply and one table lookup per rendered voxel, in addition

CHAPTER 7. EXTENSIONS 164

Algorithm Depth Cueing | Total Normalized
Time(msec.) | Time(msec.) | Time

No Depth Cueing 0 780 1.00

Fast Depth Cueing 40 820 1.05

Standard Depth Cueing | 160 940 121

Table 7.2: Performance results for fast depth cueing compared to straightforward depth cueing and
rendering without depth cueing. Thefirst column isthe time for depth cueing aone, the second col-
umnisthetotal timeto render animage, and thethird columnisthetotal time normalized by thetime
to compute the image without depth cueing. These times are for rendering the data set in Figure 7.3
with aparallel projection.

to the work already required for opacity correction.

7.2.3 Implementation of Fast Depth Cueing

Table 7.2 shows the performance of the fast depth cueing algorithm compared to the stan-
dard depth cueing agorithm with incremental calculation of the voxel depths, and the ren-
dering algorithm without depth cueing. The overhead of the fast depth cueing algorithmis
only 5%, compared to 20% for the standard algorithm. Although the performance gain is
not large compared to the benefit of coherence accelerations and fast shading algorithms,
the simplicity of the fast depth cueing algorithm and the modest performance boost make it
worth implementing.

A potential pitfall in the implementation of the fast depth cueing algorithm is that the
intermediate image pixels must be represented using floating point numbers rather than a
fixed-point representation with asmall dynamic range. A large dynamic range is necessary
becausethefirst factor of the depth cueing equation sometimes* over attenuates’ the color of
avoxel, possibly resulting in avery small valuewhichwill later be restored to ahigher value
by the second depth cueing factor. This case occurs if the distance from the intermediate
image to the final image (d;) is negative for any intermediate image pixels. If an eight-bit
integer representation isused for intermediate image pixelsthen theintermediate intensities
may beincorrectly rounded to zero. We use afloating point representation both to eliminate
this problem and to reduce round-off errors while compositing voxelsinto the intermediate
image.

CHAPTER 7. EXTENSIONS 165

7.3 Rendering Shadowswith a 2D Shadow Buffer

7.3.1 Algorithmsfor Rendering Shadows

The volume rendering equation (Equation 1.3) and the local illumination models described
earlier in this chapter do not model occlusions between the voxels and the light sources. As
aresult, images produced using these methods do not contain shadows. Shadows are useful
in certain visualization applications because they help the user to perceive depth relation-
ships, and with properly-arranged lighting shadows can enhance small details by improving
contrast.

Shadows can be incorporated into the basic volume rendering model by adding a sec-
ond pass to the rendering algorithm: during the first pass through the volume the algorithm
computes the illumination reaching each voxel, and during the second pass the algorithm
generates an image. An additional pass is necessary for each light source if there is more
than onelight. Theoriginal version of thisalgorithmisdueto [Kgiya& Von Herzen 1984]
who used it in aray caster. First, for each light source their algorithm casts rays through
the volume from the light source and accumulates opacity along the rays. The accumu-
lated opacity at each sample point along a light ray determines the illumination reaching
that point in the volume. These illumination values (or equivalently, the accumul ated opac-
ities) are stored in a 3D array with the same dimensions as the volume. The array is called
a shadow buffer. During the final rendering pass the shader uses the illumination values
from the shadow buffer to compute the color of each voxel. Levoy [1989] also describesan
implementation of this algorithm.

The primary disadvantages of the algorithm are that it requires a 3D shadow buffer as
big as the volume to store the illumination values and it requires multiple passes through
the volume. However, Grant [1992] describes an aternative method for computing the il-
lumination using a much smaller 2D shadow buffer. This algorithm performs a single pass
through the volume, computing illumination and the image simultaneously.

Grant’s algorithm operates by sweeping the 2D shadow buffer through the volumein a
directionthat visitseach voxel in depth-sorted order with respect to both the light sourceand
theviewer, asshownin Figure7.5. Asin Kgjiyaand VVon Herzen’salgorithm the buffer con-
tainsilluminationvalues. The agorithm sweepsthe 2D shadow buffer through space until it

CHAPTER 7. EXTENSIONS 166

volume

sweep
direction

2D shadow

buffer / \
light ay/ \viewing ray

\l/

-O-

1\

Figure 7.5: Diagram of Grant’s shadow mask sweep algorithm [Grant 1992]. The 2D shadow buffer
stores the illumination reaching the current slice of voxels. The rendering agorithm sweeps the
buffer through the volume and updates the illumination values at the same time asthe image is com-
puted.

reaches anew dlice of voxels. It usestheillumination valuesin the buffer to shade the vox-
els and then projects the voxels into the image along the viewing direction. The algorithm
then projects the voxelsinto the shadow buffer along the light direction and updates the il-
luminationin the buffer. Because thetraversal order isdepth-sorted with respect to both the
light and the viewer, the information necessary for shading avoxel is aways present in the
depth buffer at the required time.

In order for the algorithm to work properly the volume must be traversed in front-to-
back order with respect to the light source. If the light source and the viewer are both on the
same side of the volumethanthetraversal order will aso befront-to-back with respect tothe
viewer, asshowninthefigure. If theangle between thelight direction and theview direction
is greater than 90 degrees then the traversal order may be back-to-front with respect to the
viewer, which would make it impossible to implement early-ray termination during image
formation.

Our shadow rendering algorithm combines the 2D shadow buffer with the shear-warp
volume rendering algorithm. The a gorithm sweeps the shadow buffer through sheared ob-
ject space paralld to the dlices of the sheared volume. The algorithm uses two shear-warp
factorizations simultaneously: one for the viewing transformation matrix, and one for the
light projection matrix. Each voxel slice must be translated and resampled twice, first to
composite it into the intermediate image for the image formation computation and then to

CHAPTER 7. EXTENSIONS 167

1 procedure RenderVVolumeWithShadows()
view_factors = Factor(ViewMatrix);
light_factors = Factor(LightMatrix);

Clear(Tmplmage);
5 Clear(ShadowBuffer);

foreach (voxel_dlice from front to back)
light_attenuation = Resample(ShadowBuffer, light_factors);
Tmplmage = Tmplmage over Resample(Shade(voxel _dice, light_attenuation), view_factors);

ShadowBuffer = ShadowBuffer over Resample(voxel _dlice, light_factors);
10 end

Image = Warp(Tmplmage);

Display(Image);
end

Figure 7.6: Pseudo-code for the shadow rendering agorithm.

compositeit into the shadow buffer for the illumination computation. The algorithm uses a
run-length encoded representation for the shadow buffer (the same data structure as for the
intermediate image) so that the illumination computation can take advantage of coherence
in the shadow buffer: voxels that are already in shadow need not by composited into the
shadow buffer.

7.3.2 Implementation of the Shadow Rendering Algorithm

Figure 7.6 is a pseudo-code description of the shadow rendering algorithm for an infinitely-
distant light source. First, the algorithm factors the viewing transformation matrix and the
lighting transformation matrix (which transformsthe light direction vector from the coordi-
nate system of the light source into the image coordinate system). The rendering algorithm
cannot proceed unless the principal axisisthe same for both factorizations, i.e. both factor-
izations shear the same set of dlices of the volume. We discuss this limitation later in this
section.

Next, the algorithm clears the intermediate image (Tmplmage) and the shadow buffer
(ShadowBuffer). The shadow buffer is used to store the accumulated opacity of the voxels

CHAPTER 7. EXTENSIONS 168

between the light source and the voxel slice currently being rendered; the illumination can
be easily computed from this opacity.

The algorithm then loops through the dlices in front-to-back order with respect to
the light source. Inside the loop the first step is to determine how much light reaches
each voxel. The algorithm determines the opacity between a voxel and the light source
(light_attenuation) by sampling a value from the shadow buffer. Because the algorithm is
based on the shear-warp factorization, the transformation from the shadow buffer to the
voxel dlice only requires atrangation. The factored lighting transformation (light_factors)
determines how much the shadow buffer must be trandated. Resampling is required since
thetrandlation distance might not be an integer (but no scaling or rotationisnecessary). Next
the algorithm uses the light attenuation to shade each voxel. Finaly the algorithm resam-
ples the shaded voxels and composites them into the intermediate image, which completes
the image formation step.

Theremainder of thevoxel processing loop handlestheilluminationstep. Thealgorithm
resamples the voxel slice using the factored lighting transformation and composites the re-
sult into the shadow buffer. When the compositing loop completes, the agorithm warps
the intermediate image and displaysthe result asin the standard shear-warp rendering algo-
rithm.

Either the parallel projection agorithm or the perspective projection agorithm can be
used in the image generation step inside the rendering loop. Similarly, the parallel projec-
tion algorithm can be used in the illumination step for infinitely-distant light sources or the
perspective projection algorithm can be used for finite-distance light sources. In the case of
finite-distance lights the transformation from the shadow buffer to the voxel sliceincludesa
uniform scale aswell as atrandation (since the shadow buffer must be scaled to larger sizes
as the distance from the light source increases), so the resampling step on line 7 becomes
more expensive than for the infinite-distance case. A potential problem occursif the size of
the volume is comparable to or larger than the distance to the light source, since the scale
factor may then become large enough to cause distortion. The current implementation does
not support finite-distance light sources.

Multiple light sources can be supported by the algorithm provided that the light direc-
tionsareal consistent with the same principal axisand a separate shadow buffer isused for

CHAPTER 7. EXTENSIONS 169

each light source.

All shadow rendering algorithms for volume data have a problem caused by surfaces
shadowing themselves. Voxelized surfaces in band-limited volumes are several voxels
thick, so voxels on the outer edge of a surface cast shadows on the partially-visible vox-
elsinside the same surface. As aresult the surfaces appear darker than expected, and self-
shadowing can also introduce severe aliasing artifacts. We solvethis problem by translating
the shadow buffer afew voxelsaway from the light source during the image formation step
[Williams 1978, Reeves et a. 1987, Levoy 1989].

Implementation of the shadow bias in the shear-warp shadow rendering algorithm is
straightforward: in the compositing loop, instead of compositing the same slice of voxels
(slicenumber £ for exampl e) into both the intermediate image and the shadow buffer, theal-
gorithm compositesslice number k into theintermediateimage and slicenumber £ — Ak into
the shadow buffer where Ak isthe shadow bias. The shift by Ak dlicesin theillumination
pass tranglates the slice along the direction of the light rays, as required. The shadow bias
reduces the accuracy of shadows produced by small objects, but it also reducesthe aliasing
artifacts associated with self-shadowing.

The shadow rendering algorithm cannot be parallelized using the task partition in Chap-
ter 6 because of the additional ordering constraintsintroduced by interleaving the illumina-
tion and image formation steps.

7.3.3 Performance of the Shadow Rendering Algorithm

Figure 7.7 shows an image generated with the shear-warp shadow rendering algorithm. The
data set is the 256x256x225 voxel CT head data set. The image took 1.6 sec. to render,
which is 2x longer than the image without shadows. This slowdown istypical since each
voxel slice must be resampled and composited twice, athough the volume must only be
traversed once. The memory required by the algorithm is eight bytes per shadow buffer
pixel (for the opacity and opaque pixel links), in addition to the memory required for the
standard algorithm (see Table 5.3).

CHAPTER 7. EXTENSIONS 170

Figure 7.7: Volume rendering of a CT scan with the standard shear-warp rendering algorithm (left)
and the shadow rendering algorithm (right). These renderings are not depth cued.

Compared to Grant’s algorithm, the shear-warp shadow rendering algorithm is more ef-
ficient because filtering the values in the shadow buffer is less expensive. In Grant’s al-
gorithm, to compute the illumination required for shading a pixel fragment the algorithm
must project the pixel fragment into the shadow buffer and the projected area must be sam-
pled. Thisprocedure may require decimating an arbitrarily-large area of the shadow buffer.
Standard sampling acceleration techniques such as summed-area tables [Crow 1984] and
mip-maps [Williams 1983] cannot be used since they require precomputation, whereas the
shadow buffer is constantly modified during rendering. In the shear-warp algorithm the
shear-warp factorization produces a simple mapping from voxels to shadow buffer pix-
els. For infinite-distancelight sources the transformation issimply atranslation, so filtering
istrivial, and for finite-distance light sources the factorization guarantees that the shadow
buffer will only be scaled to larger sizes (which results in less-expensive resampling than
for the case of decimation).

Compared to a 3D shadow buffer algorithm the shear-warp shadow rendering algorithm
places restrictions on the viewing direction and the light direction. As noted above, the
shear-warp factorization for the view transformation matrix and the lighting transformation
matrix must have the same principal axis. This requirement leads to cases that cannot be

CHAPTER 7. EXTENSIONS 171

shadow buffer

Figure7.8: Limitations on the volume sampling ratein the shadow rendering algorithm: Astheangle
between the light vector and the principal viewing axis increases the volume shear increases. Asa
result the distance between samples along a viewing ray increases.

rendered. For example, if the view direction is perpendicular to one face of the volume and
the light direction is perpendicular to another face then there is no consistent choice for the
principal axis.

Furthermore, for a given viewing direction and a moving light source, as the light di-
rection approaches an unrenderabl e orientation the image quality degrades. A larger angle
between the light direction and the principal viewing axis corresponds to a larger shear in
the shear-warp factorization. A larger shear is equivalent to alower sampling rate along a
viewing ray in aray casting algorithm (Figure 7.8). As the sampling rate decreases below
the Nyquist ratefor the volume, aliasing artifacts appear in the shadow buffer and carry over
into the rendered image.

The maximum acceptabl e angle between the light source and the principal viewing axis
depends on the volume. For the CT head data set shown in Figure 7.7, the classified bone
surfaces are roughly 2-3 voxels thick so the distance between image-space samples must
not drop below about two voxels. This estimate agrees with our experiments. we achieve
high-quality renderings of the data set with light-direction angles up to 60 degrees, which
correspondsto asample spacing of two voxelsalongalight ray (Figure 7.9). Thisrestriction
specifies the maximum angle between the light vector and the principal viewing axis. The
maximum angle between the viewing direction and the principal viewing axisis45 degrees,
so for this volume the maximum angle between the light source and the viewing direction
may range between 15 degrees and 105 degrees, depending on the viewing direction.

CHAPTER 7. EXTENSIONS 172

Figure 7.9: Aliasing in the shadow buffer: The first column of images shows three renderings of the
CT head data set using the shadow agorithm. The viewing direction is constant for al threeimages
but the angle between the light direction and the principal viewing axis varies (0 degrees for the top
row, 60 degrees for the middle row, 78 degrees for the bottom row). The second column of images
shows the contents of the shadow buffer after rendering haf of the voxel dices in the volume. A
large angle results in a large shear between adjacent voxel dices, so as the light angle approaches
90 degrees artifacts appear: in the bottom rendering the shadow behind the eye socket in the center
of the image has stripes. The white stripes in the shadow buffer come from dlices of the volume
that have been trandated far enough relative to each other to reveal gaps. This problem cannot be
corrected unless a 3D resampling filter is used. However, up to an angle of 60 degrees there are no
severe dliasing artifacts.

CHAPTER 7. EXTENSIONS 173

The angle restriction limits the usefulness of the shear-warp shadow algorithm for ren-
dering arbitrary scenes. However, in a visualization application the user chooses the loca-
tion of light sources to achieve an informative visualization rather than to simulate a real-
world environment, so restrictions may be acceptable. Furthermore the speed of the algo-
rithm makes it attractive for an interactive visualization application.

7.4 Rendering Mixtures of Volume Data and Polygons

Visualization applications sometimes require rendering mixtures of volume data and poly-
gons. An example application area is radiation treatment planning: a radiation beam is
defined analytically and therefore can be represented by a polygon mesh, whereas patient
anatomy ismost easily described viaa scanned volume [Levoy et al. 1990]. Existing meth-
ods for rendering such mixed data sets include scan-converting the polygons into a vol-
umetric representation that can be rendered with a conventional volume renderer [Wang
& Kaufman 1994] and using a ray tracing algorithm adapted for both types of primitives
[Levoy 1990b].

The shear-warp volume rendering algorithm can be combined with a modified version
of ascanline polygon rendering algorithmto support mixed data setsdirectly. Thealgorithm
has not been implemented, but in this section we describe a possible design.

The algorithm operates by alternating between two phases: rendering aslice of volume
data, and rendering the portion of the polygon database lying between two voxel slices (Fig-
ure 7.10). The polygon rendering algorithm is a modified version of a scanline algorithm
which renders each polygon incrementally, so the renderer can suspend work on a poly-
gon after scan-converting the portion lying between two voxel slices. The algorithm also
requires special cases to properly render polygons that intersect non-transparent voxels.

Thestandard scanlinealgorithmfor rendering apolygonal sceneworksasfollows[Foley
et al. 1990]. The algorithm computes theimage one scanline at atime using two data struc-
tures: an edge table and an active edge table. The edge table is an array of buckets, one
bucket per scanline, each containing alist of polygon edges that start on a particular scan-
line. The active edge table is alist containing the edges that cross the scanline currently
being rendered. The algorithm processes each scanline in turn by updating the active edge

CHAPTER 7. EXTENSIONS 174

/1 .
4 =/ voxel slice

=
polygon

Figure 7.10: Mixtures of volume data and polygons can be rendered using an algorithm that alter-
nates between two phases. During one phase the algorithm renders adlice of voxel data. During the
alternate phase the algorithm incrementally scan-converts the portion of each polygon lying between
the current voxel dlice and the next.

table (adding newly active edges from the edge table and deleting completed edges) and
then painting the pixels between pairs of active edges from the same polygon. To compute
the intersection of each edge with the current scanline the algorithm uses the intersection
with the previous scanline and the slope of the edge, both of which are stored with the edge.
Visibility can be computed using the z-buffer algorithm or the painter’s algorithm.

The agorithm for rendering mixed data sets processes the volume slice-by-dlice, asin
the standard shear-warp algorithm. Each slice of voxelsrepresents a slab of the volume that
intersects a subset of the polygons. The rendering algorithm first shades and resamples the
voxel dlice, then scan converts the intersecting portions of the polygons, and finally com-
posites the resampled voxels and the scan-converted polygonsinto the intermediate image.
The polygons are scan converted using a scanline algorithm with two modifications. the
algorithm uses an additional active edge table to sort the polygons by the first intersecting
voxel dlice, and the endpoints of a horizontal pixel span for a particular polygon may be
bounded by either the polygon edges or by the intersections of the polygon with the current
voxel dab.

Two important issues must be addressed to produce high-quality images. First, the poly-
gon scan conversion algorithm must be designed to avoid aliasing artifacts. The fixed sam-
pling rate in the intermediate image may not be high enough to avoid aiasing, but the prob-
lem can be reduced by supersampling the polygons during scan conversion.

Second, visibility must be correctly computed when a polygon intersects a semi-
transparent voxel. One approximate solution isto divide the voxel into pieces based on the

CHAPTER 7. EXTENSIONS 175

location of the intersection and then to composite contributions from the pieces and from
the polygon into the image in front-to-back order [Levoy 1990b].

We expect thisalgorithm could achieverendering timescloseto therendering timeof the
standard shear-warp algorithm plusthe timeto render the polygonswith a standard scanline
algorithm implemented in software.

7.5 Clipping Planes

Clipping planes are commonly used in volume visualization applications to provide cut-
away views of interior structures in a data set or to remove extraneous information while
focusing on a particular part of a data set. Clipping planes with arbitrary orientations can
be added to the shear-warp volume rendering algorithm by using a 3D scan conversion al-
gorithm to convert the clipping planesinto bounds for the rendering loops.

The 3D scan conversion algorithm can use data structures similar to the mixed-data-set
rendering algorithm: an edge table and active edge tables to keep track of which clipping
planes intersect the current voxel scanline. The slopes of the clipping planes can be used
to calculate the intersection pointsincrementally as the algorithm iterates through the voxel
scanlines. Theintersection pointsdeterminetheboundsfor theloop that iterates over voxels
inavoxel scanline.

Voxels that intersect or abut a clipping plane must be treated specialy. In particular,
to avoid aliasing the clipping algorithm must not cause voxel opacities to drop abruptly to
zero. A suitable solution is to attenuate voxels as afunction of their distance from the cut-
ting plane using a smooth ramp afew voxelswide. It is also useful to let the user apply a
special shading function to voxelsnear acutting plane. Levoy et al. [1990] identifies several
possibilities, including texture-mapping the original voxel values onto the cutting plane or
recomputing voxel gradients after applying the cutting plane.

We have not yet implemented clipping planes. With clipping planes enabled the num-
ber of rendered voxels may decrease, resulting in improved rendering performance. The
fast rendering algorithm must still traverse all of the voxel runs in the run-length encoded
volumeregardless of thelocation of the clipping planes, but aswe saw in Chapter 5 this cost
accounts for only asmall fraction of the overall rendering time.

CHAPTER 7. EXTENSIONS 176

7.6 Chapter Summary

Thischapter has discussed anumber of extensionsto the shear-warp volumerendering algo-
rithm. These extensions show that the basic shear-warp a gorithm can support awide range
of visualization options, including flexible user-defined shaders, fast depth cueing, shad-
ows, mixed data sets and clipping planes. The implementations described in this chapter
also show that complex shading and lighting effects can be achieved without sacrificing the
fast rendering performance provided by the shear-warp agorithm.

Chapter 8
VolPack: A Volume Rendering Library

This chapter describes the design of an experimental software library called VolPack. The
library provides a high-performance implementation of the algorithmsin thisthesiswith a
simple, flexible programmer’s interface.

A fundamenta problem when designing a volume rendering package is that rendering
speed and flexibility are conflicting goals. The fastest rendering speed can be achieved by
hardwiring all options, including the layout of a voxel and the functions for shading and
classification, and carefully hand-tuning the code for a particular hardware platform. The
most flexible system can be achieved by providing many rendering options and allowing
the user to change any of them at run time.

Existing volume rendering packages generally fall at one of the two extreme ends of
this spectrum. Montine [1990] proposes a flexible architecture for a volume rendering
library based on user-defined callback functions for shading and classification. Alterna-
tively, a general class of shading functions can be supported by letting the user specify a
shading language procedure that is compiled and dynamically linked at run time[Corrie &
Mackerras 19934a]. These approaches maximize flexibility but make it difficult to optimize
specific cases sincethe renderer and the callback functions are devel oped and compiled sep-
arately and must adhereto apredefined interface. Rigid interfaces often|ead to performance
bottlenecks.

A number of existing systems take the opposite approach by providing a set of visual-
ization “tools” with powerful but fixed functionality [Brittain et al. 1990, Avilaet al. 1994].

177

CHAPTER 8. VOLPACK: A VOLUME RENDERING LIBRARY 178

The only way to extend such systems, for instance to add a new shading algorithm or to
support anew voxel datatype, isto modify the source code for an existing tool or towritea
new tool. Typicaly the systems are designed with multiple layers of abstraction and mod-
ules with well-defined interfaces to facilitate adding new functionality, but extending the
system still requires substantial effort. On the other hand, this architecture allows each tool
to be fully optimized.

Finally, a number of commercial visualization systems (including AVS [Upson et al.
1989], DataExplorer [Lucaset a. 1992] and IRIS Explorer) are based on adata flow model:
the system contains a collection of data processing and visualization modules that may be
connected in a data flow network. Each module in a data flow system is independent and
has ageneral interface to maximize reusability, so the system cannot optimize computation
acrossmodules. Asaresult, one can either implement asingle monolithic volume rendering
module with afixed set of options and optimal rendering speed, or a flexible collection of
interoperabl e shading, classification and rendering modules with significantly lower perfor-
mance. However, there are no intermediate points in the flexibility/performance spectrum.

Vol Pack was designed to provide asflexiblean interface as possible without significantly
sacrificing performance. Specifically, the goalsinclude avoiding hardwired formats for the
volume, the shading function, and the classification function. Another goal isto provide a
simple application programmer interface (API).

8.1 System Architecture

VolPack consists of alibrary of software routines for volume rendering and a specification
of the interface between an application program and the library routines.

The softwarelibrary includes acollection of core routinesfor specifying parametersand
rendering avolume, plusacollection of utility routinesthat implement common shading and
classification algorithms. These routines are designed to be building blocks for creating an
application. The library does not specifically support a graphical user interface but can be
combined with general user-interface toolkits.

The interface between the application program and the volume rendering library is the
most critical part of the design since the interface impacts flexibility and performance. The

CHAPTER 8. VOLPACK: A VOLUME RENDERING LIBRARY 179

. rendering
context

viewing
transformation

precomputed
data structures

classification
function

volume
specification

shading
function

application
data structures

volume classification shading
data lookup tables lookup tables

Figure 8.1: Schematic diagram of a VolPack rendering context. The context encapsulates user-
specified parameters and internal precomputed data structures, as well as pointers to external
application-specific data structures.

two aspects we focus on in this chapter are volume representation (i.e. the specific layout of
the datain a volume) and specification of the shading and classification functions.

A volumerendering application built on top of Vol Pack first callsseveral library routines
to set rendering parameters and then calls a rendering routine. The rendering parameters
and all of theinternal state required to render avolume are stored in a data structure called
arendering context (Figure 8.1). All of the library routines require a context as one of the
parameters, except for the routine to create a new context.

Most of the routines in VolPack operate by transforming the state in a rendering con-
text, a model inspired by the OpenGL interface [OpenGL Architecture Review Board
et al. 1993]. The library routines allow the programmer to set options in the context, and
the optionsremain in effect until they are disabled by the programmer. Most of the options
have reasonable defaults, simplifying the programmer’s job. The context also provides a
placefor routinesto store precomputed data structures (e.g. amin-max octree or arun-length
encoded representation of avolume).

The specific information stored in the rendering context is not visible to the program-
mer and is not defined by the Vol Pack interface. The context abstraction allowsthe library

CHAPTER 8. VOLPACK: A VOLUME RENDERING LIBRARY 180

to store information in the best format for use during rendering without burdening the pro-
grammer with a complicated interface. All necessary state is stored in the context rather
thanin global variablesinternal to the library so that the library code is reentrant.

The rendering context abstracts the internal implementation of the library’s data struc-
turesinaway similar to object-oriented systems. However, in contrast to such systemsVol-
Pack defines only asingle type of object (the rendering context) that contains all necessary
state. Partitioning the state of a volume rendering system into a deep hierarchy of objects
with well-defined interfaces has been shown to result in poor performance since the inter-
faces lead to overhead and hinder optimization [Zuiderveld & Viergever 1994]. Encapsu-
lating the entirelibrary in an object for inclusionin alarger system may be practical, but the
potential benefits of the object-oriented model are dubiousfor the internal implementation.

8.2 Volume Representation

The volume rendering algorithms described in this thesis apply to volumes sampled on a
regular grid and stored asa 3D array of samples, so Vol Pack does not currently support other
data representations. However, the library does allow an arbitrary format for the voxelsin
the 3D array.

The application must define a volume by specifying its dimensions (width, height, and
depth), a pointer to an array containing the voxel data, and a description of the layout of a
voxel. Each voxel may contain a sequence of fixed-size fields. Every voxel in a volume
must have identical fields, but the application defines all aspects of the layout including the
number of fields, the sizes of the fields, and the interpretation of each field. For example,
the representation can support voxels containing the following types of information:

e 8-bit, 16-bit or 32-bit scalar values

e multiplescalar values per voxel, e.g. dataacquired using different scanning technolo-
gies

e precomputed data in addition to the original scalar values, e.g. normal vectors and
gradients

CHAPTER 8. VOLPACK: A VOLUME RENDERING LIBRARY 181

In an application the layout of avoxel can be described using acompound datatype such as
a C-language structure or a Pascal record. The programmer then describes the voxel layout
to the library using a set of routines provided by Vol Pack.

In theinternal implementation theselanguage constructs cannot be used since the layout
of avoxel is not known when the library is compiled. Instead, the size of each field (in
bytes) and the offset of each field from the beginning of the voxel are stored in an array in
the rendering context. Each field can be identified by itsordinal index in the array. Library
routines that must access the datain a voxel, such as classification and shading functions,
take afield index as an argument and use thefield offset array to find the location of thefield
within the voxel.

This design allows a single library routine to render volumes with arbitrary voxel lay-
outs. It is possible to write shading and classification functions that are independent of a
specific voxel layout. It is also possible to define the format of a voxel at run time based
on user input or information in the header of adatafile. The overhead of the extralevel of
indirection is small: to compute the address of a voxel field the renderer need only add the
field offset to the address of the voxel.

8.3 Classification and Shading Functions

Vol Pack uses the flexible lookup-table shading algorithm described in Section 7.1 for both
voxel classification and shading. The application specifies a shade tree and a set of lookup
tables for each of the classification and shading functions. The speed of the method was
demonstrated in Section 7.1.2.

Inthe current implementation of Vol Pack the shading treeislimited to asum-of-products
expression with lookup tables at the leaves, and the classification treeislimited to aproduct
of the valuesfrom the lookup tables. Even with these restrictions awide variety of shading
functions can be implemented since an application can initialize the tables arbitrarily.

The method extendsto more general shading functions as described in Section 7.1.3. To
achieve optimal performance with user-defined shading functionswe envision asystem that
operatesasfollows. The shadetree can betranslated automatically into a C-language macro
that implements the shading function. The trandlator can also provide alist of input values

CHAPTER 8. VOLPACK: A VOLUME RENDERING LIBRARY 182

required by the function, such as values from particular voxel fields. The system can then
dynamically compile and link a specialized rendering routine with the shading macro in-
lined. Thelist of input values can be used to tailor the rendering routine so that computation
that is not required can be omitted. For instance, if the user wishesto generate a maximum
intensity projection instead of atrue volumerendering then the shader will not reference the
opacity of avoxel, so the code to compute and resample opacities can be omitted from the
renderer.

Vol Pack currently contains predefined macros implementing asmall number of shading
functions. Specialized renderers for each of these shaders are generated by inlining these
shading functions at compile time. We have not yet implemented the dynamic compilation
and linking facility but this technique has been used by others. Corrie’s implementation of
data shaders [Corrie & Mackerras 1993a] uses dynamic linking to support shaders defined
at run time and implemented via callback functions. We propose going one step further by
inlining the shader in the renderer, customizing the renderer for the shader, and then com-
piling and linking the optimized renderer.

8.4 Viewing Model

Vol Pack uses four-by-four homogeneous transformation matrices to specify viewing trans-
formations, giving the application writer theflexibility to construct viewing transformations
with any 3D viewing model. For convenience Vol Pack also provides routines to construct
matrices using the viewing models defined in the OpenGL standard [OpenGL Architecture
Review Board et al. 1993] and the PHIGS standard [Foley et a. 1990, Chapter 6].

8.5 Functionality Provided by VolPack

The previous sections have described the architecture of VolPack and the techniques used
to provide a flexible, efficient programmer’s interface. This section briefly describes the
categories of routines provided by the library:

CHAPTER 8. VOLPACK: A VOLUME RENDERING LIBRARY 183

context manipulation Routines to create and destroy a rendering context and to retrieve
state variables from a context.

volume specification Routines to define the size and layout of a volume and to attach an
array of volume data to a context.

classification Routines to define a classification function (including the lookup tables and
the shadetree) and to precompute data structuresfor fast classification (i.e. amin-max
octree) and fast rendering (i.e. arun-length encoded volume).

shading Routines to define a shading function. A higher-level routine to build a shading
lookup table for the commonly-used Phong illumination model is included for con-
venience.

view transformation Routinesto construct afour-by-four viewing transformation matrix.
The current transformation matrix for avolume is stored in the rendering context.

image specification Routines to define the size of the rendered image, the format of the
pixels, and an array for storing the image data.

rendering Routines to invoke one of the volume rendering algorithms and to set options
specific to arenderer. The options are stored in the rendering context.

utilities Routines for file 1/0, volume reformatting (extracting and inserting subvolumes,
resampling, and transposing), and linear algebra.

Given these building blocks, a simple volume rendering application can be written using
30-50 lines of C code.

8.6 Chapter Summary

In this chapter we have discussed approaches to designing avolume rendering library inter-
facethat strikesabal ance between speed and flexibility. VolPack usesaprocedural interface
and encapsulates all internal statein arendering context rather than using an object-oriented

CHAPTER 8. VOLPACK: A VOLUME RENDERING LIBRARY 184

interface or a data flow model. VolPack’s high-level interface eliminates the overhead as-
sociated with alarge collection of independent objects or modules.

Vol Pack’s volume representation supports volumes with arbitrary datadefined on areg-
ular grid. The flexible voxel format does not impact performance.

We have proposed a shading and classification system based on rendering routines that
are automatically specialized for a particular shade tree through dynamic compilation and
linking. This method supports avery general class of shading functions and provides good
performance. Rendering functionsthat have been hand-tuned for a particular set of shading
parameters and a specific voxel layout are likely to perform marginally better, but with a
great lossin flexibility.

The current version of VolPack only partially implements the architecture described in
this chapter, but the existing interface requires little modification to incorporate all of these
features. Combined with the shear-warp rendering algorithms, VolPack provides fast ren-
dering with substantial flexibility.

Chapter 9

Conclusions

9.1 Final Summary

Many volume rendering algorithms have been proposed in the last decade, yet volume ren-
dering has not become a widely-used visualization technique because of the lack of inter-
active systems. By a system we mean an algorithm combined with the hardware it runs
on. Existing algorithms are too slow to provide interactive response on a workstation, and
multiprocessors with sufficient computational power are too expensive for general-purpose
use. Interactive rendering rates are essential because the process of visualizing volume data
requires experimentation.

This thesis describes a family of new volume rendering algorithms that delivers inter-
active rendering rates on current-generation workstations. The algorithms improve on ex-
isting methods by combining the advantages of two classes of algorithms: image-order
ray casting algorithms and object-order splatting algorithms. Like other object-order al-
gorithms, the new shear-warp algorithms stream through the volume data in storage order
so they incur little overhead due to addressing arithmetic and data structure traversal. In
contrast, these overheads constitute a substantial fraction of rendering time in image-order
coherence-accel erated algorithms.

The shear-warp algorithms al so benefit from synchronized scanline-order accessto both
the volume data and the image, making it possible to use coherence in the image to imple-
ment early ray termination. Most previous uses of early ray termination have been restricted

185

CHAPTER 9. CONCLUSIONS 186

to ray casting algorithms. Furthermore, implementing efficient, high-quality resampling fil-
tersin the shear-warp algorithmsis as straightforward as in image-order algorithms.

The technique that alows us to traverse both the volume and the image in storage or-
der is the shear-warp factorization: a factorization of the viewing matrix into a 3D shear,
a projection into a distorted 2D intermediate image, and a 2D warp that transforms the in-
termediate image into the correct final image. We showed how to use the factorization and
coherence data structures based on run-length encoding to devel op aparallel-projection vol -
ume rendering algorithm for classified volumes. We then showed how to extend the fac-
torization to perspective projections and devel oped afast perspective volume rendering al-
gorithm. Finally, we developed coherence data structures based on a min-max octree and a
summed-areatabl e that, when combined with either rendering algorithm, allowsinteractive
classification of volumedata. These three algorithms complement each other by addressing
different phases of the visualization process.

Performance tests show that on current desktop workstationsthe new parallel projection
algorithm can render 256 medical datasetsinlessthan one second and 1283 datasetsat over
5 frames per second. These speeds are over fivetimesfaster than previously reported results
for aray caster with an octree. The fast classification algorithm can classify and render a
1283 volume in under a second. None of these algorithms use any specialized hardware
so the rendering rates will continue to improve as faster workstations appear on the market,
and the algorithmsare portable to any general-purpose machine. Rendering speed no longer
limits the usefulness of volume rendering.

We have a so parallelized the rendering algorithmsfor shared-memory multiprocessors.
On a 16-processor SGI Challengethe parallel projection algorithm renders 256 data sets at
over 10 frames per second and 128% data sets at over 25 frames per second. Inexpensive
small- to medium-scal e shared-memory multiprocessors based on fast microprocessors are
likely to become common in the coming years, and the multiprocessor shear-warp volume
rendering algorithm is well-suited to this type of architecture.

Finally, we have demonstrated that the different shear-warp algorithms can beintegrated
into apractical interactive volumerendering system. We have presented an efficient method
for precomputing the necessary data structures when switching between the rendering al-
gorithms, and we have presented extensions for rapidly rendering a variety of visua cues:

CHAPTER 9. CONCLUSIONS 187

depth cueing, shadows, clipping planes, and lookup-table based shading functions. These
visual cues help to produce informative, easily-interpreted visualizations.

The rendering algorithms presented in thisthesis have severa limitations. Most impor-
tant is that the speed of the algorithms depends on the degree of coherence in the volume.
Classified volumes containing large transparent regionsor large opaqueregionsresult in fast
rendering rates. The algorithms exhibit slower performance if a substantial fraction of the
volume consists of low-opacity voxels. However, such data sets typically result in fuzzy,
indistinct images that do not convey useful information. Even if the original volume con-
tains little apparent coherence, in our experience properly-classified volumes expose inher-
ent structurein the volume. Thus substantial performance gains can be achieved by exploit-
ing coherence.

The shear-warp al gorithmsal so restrict the choice of resampling filter since 3D filter ker-
nels cannot be supported. In practice the algorithms produce high-quality images provided
the volume datais alias-free, so image quality isnot amajor limitation. The fast classifica-
tion agorithm al so placesrestrictions on the classification function. The algorithm supports
multi-feature classification based on user-specified transfer functions.

9.2 FutureDirectionsfor Performance | mprovements

Our performance measurements lead to two important observationsthat impact future work
on high-performance volume visualization algorithms. First, we have found that object-
order scanline-based algorithms are inherently more efficient than image-order algorithms.
Streaming through the volume in storage order will always be faster than traversing the
volume in an arbitrary view-dependent direction, and we have shown that in coherence-
accelerated algorithmsthe performance difference between these two alternativesis signif-
icant. For thisreason scanline-order algorithms are likely to dominate volume rendering in
the future.

Scanline-order algorithms can yield performance gainsin other volume-processing op-
erations as well. For example, one application is to combine a series of range images (ac-
quired with a laser range scanner) into a 3D volumetric model called an occupancy grid.
One existing method operates by shooting rays from the range image pixels into a 3D

CHAPTER 9. CONCLUSIONS 188

grid and storing occupancy information at the lattice points [Connolly 1984]. However, a
scanline-order algorithm based on the shear-warp factorization would be faster than a ray
casting agorithm.

Even for a volume sampled on a non-rectangular grid, such as a curvilinear grid, we
speculate that the fastest rendering algorithm may be an object-order algorithm that first re-
samplesthevolumeto arectangular grid and then uses a scanline-order rendering algorithm.

The second important observation is that there is no single performance bottleneck re-
maining in the shear-warp volume rendering algorithm. The rendering time is divided
roughly equally between essential computation (shading, resampling and compositing vox-
els), overhead due to the coherence datastructures and control |ogic, and memory overhead.
It will therefore be difficult to further improvethe algorithm. Remembering Amdahl’sLaw,
we observe that optimizations that improve on any one of these areas will not have a ma-
jor impact on overall execution time. Optimizations that reduce the cost per voxel, more
efficient coherence data structures, and faster memory systemswill not individually reduce
rendering time by more than about 10-20%.

The most likely approach for improving performance is to trade off image quality for
speed by further reducing the number of voxels processed, thereby potentially reducing all
three cost categories. Techniques such as adaptive sampling [Levoy 1990a] and subsam-
pling the volume [Laur & Hanrahan 1991] have been proposed and could be applied to the
shear-warp algorithm. Approaches such as these or techniques based on rendering com-
pressed volume data [Ning & Hesselink 1993, Muraki 1994] may also be effective ways of
handling very large data sets, an important topic not addressed in this thesis.

9.3 Hardware Support for Volume Rendering

Our performance resultsalso haveimplicationsfor hardware designers. Specializedinstruc-
tion setsfor graphics appear not to be useful for volumerendering. Thisclassof instructions
isdesigned for accelerating inner loopsthat operate on pixels. Theinstructions perform op-
erationsin parallel on several pixelsor color channels packed into one machine word. The
processor includes specia hardware to perform the packing and unpacking operations, and
to perform arithmetic on the independent components in parallel. Such instructions may

CHAPTER 9. CONCLUSIONS 189

be useful for brute-force resampling and compositing loops, but we have shown that only
asmall fraction of the time in coherence-accel erated volume rendering algorithmsis spent
processing voxel data. By Amdahl’s Law the overall speedup achievable with graphicsin-
structionsis negligible.

In abroader context, we speculate that many graphics algorithms can be accel erated by
using high-level algorithmic optimizations and data structures that have the side effect of
eliminating opportunities to use special-purpose graphics instructions. Unless the graphics
instructions provide better speedups, the software solution is the preferred alternative.

High-performance hardware-accel erated volume rendering has recently become feasi-
ble with the advent of 3D texture mapping hardware in high-end graphics workstations
[Cabral et al. 1994]. A volume can betreated asa 3D solid texture. To render thevolumean
application generates a sequence of polygonsthat slice through the volume and are parallel
to the plane of theimage. The graphics hardware then shadesthe polygons using thevolume
as atexture and composites the polygonstogether. Classification can be performed in hard-
ware by mapping the voxel values through a lookup table containing the opacity transfer
function.

Using this algorithm, current-generation high-end graphics workstations can achieve
sub-second rendering rates and can support interactive classification. However the hard-
ware is expensive and cannot support sophisticated shading or classification. The only type
of shading availableisamapping from the original scalar valueto acolor (implemented via
a hardware lookup table). The Phong illumination model, which requires the gradient of
the scalar value, cannot be implemented. Assuming that the cost of the hardware dropsin
the future, thislack of flexibility isthe chief short-coming of 3D texture mapping hardware
used for volume rendering. Nevertheless, for some specialized applications supported by
the hardware this approach may be an effective solution.

However, a second argument against the widespread use of brute-force graphics hard-
ware for volume rendering isthe large performance difference between brute-force and op-
timized algorithms. For example, compared to the brute-force ray caster, the optimized
shear-warp algorithm is 25-50x faster (as shown in Chapter 5). Hardware solutions require
large amounts of hardware just to match this speedup. This situation is different than for

CHAPTER 9. CONCLUSIONS 190

the case of polygon rendering hardware since the speedups achievable with software opti-
mizationsare not as high. Polygon rendering algorithmsthat computevisibility prior to ras-
terization (such as Watkins' scanline algorithm and Warnock’s area-subdivision algorithm
[Foley et al. 1990, Ch. 15]) can reduce the cost of rasterization, but even if we ignore the
costs of computing visibility the maximum possible speedup equals the depth complexity
of the scene. A rule of thumb for the average depth complexity in typical polygonal scenes
isthree to four [Molnar et a. 1994], so the speedup necessary to make hardware solutions
attractive is much lower for polygons than it is for volumes. Thus even though polygon
rendering hardware is becoming widely available, it islesslikely that hardware for volume
rendering will become cost effective.

Specia -purpose hardware implementati ons of a specific algorithm will always be faster
than a software-only implementation, but fully-custom hardware is too expensive for gen-
eral use. We believe the most cost-effective platform for volume rendering consists of sim-
ple, fast, general-purpose microprocessors combined with optimized software algorithms.
I nexpensive small-scal e shared-memory multiprocessorsbuilt from general -purpose micro-
processors will continue this trend.

9.4 Interactive Volume Rendering

A fast volume rendering system is the first step towards the widespread use of volume ren-
dering. Thenext stepisto create effective user interfacesthat provide control over the many
parameters required by the rendering algorithm without overwhelming the user. Choosing
classification functions that expose the information in avolume and tuning shading param-
eters to highlight that information are complicated tasks.

In the past, much research has been devoted to the automatic choice of parameters. In
particular, many algorithms have been proposed for automatic classification by segment-
ing volume data (e.g. distinguishing individual organs and tissue types in a medical data
set). With aslow rendering system it is not practical to require a user to choose parameters
interactively, so an automatic algorithm is attractive. Unfortunately, with the exception of
methodsfor certain restricted applications (such as classification of high-contrast structures
in CT data), automatic algorithms are not robust and do not produce reliabl e results.

CHAPTER 9. CONCLUSIONS 191

Fast volume rendering enables a new approach to processing and visualizing volume
data. Instead of using complicated, unreliable batch algorithms, an application can provide
a set of simple controls that can be adjusted by the user. Aslong as the user can immedi-
ately see the result while adjusting a control, the feedback loop created by the rendering
system and the user creates a much more robust and stable system than an automatic batch
algorithm.

As an example, medical CT datais often classified by specifying a“window”: atarget
data value and a width indicating a tolerance around the target value. The target value can
be adjusted to select atissuetypewithaparticular CT value, and the window width excludes
tissues with different values. A user interface with two controls tied to the window value
and width, combined with a fast volume rendering system, would allow a user to rapidly
select tissues of interest.

A fast volume rendering system also enables new applications. Morphing of 3D vol-
umetric models is now computationally feasible [Lerios et al. 1995]. 3D morphs are su-
perior to traditional 2D morphs because occlusions and lighting changes can be accurately
rendered in the intermediate frames, but a fast rendering system is necessary to make the
technique practical. Another new application is simplification of complex geometry via3D
scan conversion into a volumetric model, which is a useful method for manipulating and
visualizing complex scenes [Wang & Kaufman 1994]. In the near future, real-time visual-
ization in the operating room using open-magnet MR scanners and fast volume rendering
may become practical.

In this thesis we have provided appropriate algorithms for the rendering system. The
next step isto create ssmple yet powerful user interfaces that harness the power of volume
rendering.

Appendix A

Mathematics of the Shear-Warp
Factorization

This appendix contains complete derivations of the shear-warp factorization for rendering
avolume with either a parallél or a perspective projection. The derivations assume that we
are given only an arbitrary four-by-four viewing transformation matrix and the dimensions
of the volume to be rendered. The results of the derivations are the shear and warp matrix
factors.

A.1 Coordinate Systemsand Definitions

We will use the four coordinate systemsillustrated in Figure A.1: object coordinates, stan-
dard object coordinates, sheared object coordinates (also called intermediate image coordi-
nates), and image coordinates. All are right-handed coordinate systems.

The object coordinate system is the natural coordinate system of the volume data. The
originislocated at one corner of the volume. The unit distance along each axis equals the
length of one voxel along that axis. The axes are labeled z,, y, and z,.

We form the standard object coordinate system by permuting the axes of the object co-
ordinate system so that the principal viewing axis becomes the third coordinate axis. The
principal viewing axisisthe object-space axisthat ismost parallel to the viewing direction.
The standard object coordinate system axes are labeled i, 7 and £, where £ is the principal

192

APPENDIX A. MATHEMATICS OF THE SHEAR-WARP FACTORIZATION 193

W /:ntermediate z
image
% k u X
V” y Y
> > |

% i

Zo" J Y
voxel
volume slices image
object coordinates standard object sheared object image
coordinates coordinates coordinates

Figure A.1: Coordinate systems used in the derivation of the shear-warp factorization.

viewing axis.

We form the sheared object coordinate system by shearing the standard object coordi-
nate system with the shear matrix from the shear-warp factorization. The sheared object
coordinate system is aso the coordinate system of the intermediate image. The origin is
located at the upper-left corner of the intermediateimage. The axes are labeled «, v and w.

Theimage coordinate system isthe coordinate system of thefinal image. Thewarp ma-
trix of the shear-warp factorization transforms sheared-object coordinates into image coor-
dinates, and the original viewing transformation matrix transforms object coordinates into
image coordinates. The origin of the image coordinate system is located at the upper-left
corner of the image. The axes are labeled z;, y; and z;.

In the following derivations © represents a vector and v, represents a component of .
The viewing transformation matrix isafour-by-four matrix M., that transforms homoge-
neous points from object space to image space:

X Lo
Yi Yo
= Mview
24 Zo
wW; Wo

All vectors are column vectors.

APPENDIX A. MATHEMATICS OF THE SHEAR-WARP FACTORIZATION 194

A.2 TheAffine Factorization

In this section we derive a factorization for affine viewing transformations. Affine trans-
formationsinclude uniform and non-uniform scales, trand ations and shears used in parall el
projections. Thegoal of thederivationisto factor an arbitrary affine viewing transformation
matrix M., asfollows:

Myiew = Miarp - Mshear

Mipear 1S @ shear matrix and M., is an affine transformation matrix. The matrix factors
must be chosen such that we can project a volume from 3D to 2D between the shear and
warp transformations and still produce a correct image.

A.2.1 FindingthePrinciple Viewing Axis

We define the principal viewing axis as the object-space axis that forms the smallest angle
with the viewing direction vector.! In image space the viewing direction vector is:

Let 7, betheviewing direction vector transformed to object space. 1t obeysthelinear system

of equations:
0 mip M1z Mg Vo,
0| =1 mar mo mo3 Voy
1 Mgy M3z Mg3 Vo2

where the m,;; are elements of the viewing transformation matrix M,.... Only the upper-
left 3x3 submatrix of M., iISnecessary sincev; and 7, are vectors. In the remainder of this
section let Miew 313 b€ the 3x3 submatrix.

! This definition is not equivalent to choosing the normal vector for the set of voxel slices most perpen-
dicular to the viewing direction. If the viewing transformation includes non-uniform scaling then for some
viewing directions this aternative definition results in larger (sub-optimal) shear coefficients.

APPENDIX A. MATHEMATICS OF THE SHEAR-WARP FACTORIZATION 195

By Cramer’s Rule the solution to the linear systemis:

0 myz M3
0 may Mmao3 M12Ma23 — M22M3
Uo,m — - |M |
1 M3 M33 view,3x3
|Mview,3x3|
myp 0 my3
mao; 0 mog Ma1My3 — M11M23
v07y = = |M |
msy 1 mas view,3x3
|Mview,3x3|
myr myz 0
Moy Moy 0 MM — M21MM12
/UO,Z = = |M |
msy M3 1 view,3x3

frem—
Since the denominator isthe samefor al three components of v, it can be eliminated, yield-
ing:
M121M23 — M2271M13

Uo = | Ma21M13 — M11Ma3 (A.1)

My1Ma2 — M21M2

The cosine of the angle between the viewing direction and each object-space axis is pro-
portional to the dot product of %, with each of the object-space unit vectors. The largest
dot product corresponds to the smallest angle. Thus we find the principal viewing axis by
computing:

¢ = max([vo.), [tog |, lvo) (A2)

If ¢ = |v,.| then the principal viewing axisisthe z, axis. If ¢ = |v,,| then the principal
viewing axisisthe y, axis. Otherwise, the principal viewing axisisthe z, axis.

APPENDIX A. MATHEMATICS OF THE SHEAR-WARP FACTORIZATION 196

A.2.2 Transformation to Standard Object Coordinates

The shear-warp rendering algorithm operates by resampling and compositing the set of
voxel dicesthat is perpendicular to the principal viewing axis. To eliminate special cases
for each of the three axes in the remainder of the derivation we first transform the volume
into standard object coordinates. If the principal viewing axisisthe x, axisthen the permu-
tation matrix is:

S = O O
oS O O =
o O = O
_ o o O

