DESIGNING A MULTICAST SWITCH SCHEDULER

Balaji Prabhakar
Nick McKeown

Technical Report No.: CSL-TR-95-680

September 1995

This research has been supported by the Telecom Center at Stanford University.

DESIGNING A MULTICAST SWITCH SCHEDULER
Balaji Prabhakar* and Nick McKeown
Technical Report No.: CSL-TR-95-680

September 1995

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Gates Building, A-408
Stanford, California 84305-9040
pubs@shasta.stanford.edu

Abstract

This paper presents the design of an M x N input-queued multicast switch scheduler. Tt
is assumed that each input maintains a single queue for arriving multicast cells and that only
the cell at the head of line (HOL) can be observed and scheduled at one time. The scheduler is
required to be work-conserving, which means that no output port may be idle as long as there
is an input cell destined to it. Furthermore, the scheduler is required to be fair, which means
that no input cell may be held at HOL for more than M cell times (M is the number of input
ports). The aim is to choose a work-conserving, fair policy that delivers maximum throughput
and minimizes input queue latency.

When a scheduling policy decides which cells to schedule, contention may require that
it leave a residue of cells to be scheduled in the next cell time. The selection of where to
place the residue uniquely defines the scheduling policy. It is demonstrated that a policy which
always concentrates the residue, subject to the fairness constraint, always outperforms all other
policies. We present one such policy, called TATRA, and analyze it geometrically. We also
present a heuristic round-robin policy called mRRM that is simple to implement in hardware,
fair, and performs quite well when compared to a concentrating algorithm.

Key Words and Phrases: ATM, input-queued, multicast, scheduling algorithm

*Balaji Prabhakar is with the Basic Research Institute in the Mathematical Sciences (BRIMS),
Hewlett-Packard Labs, Bristol. Email: balaji@lion.statslab.cam.ac.uk.

Copyright (©1996
by

Balaji Prabhakar and Nick McKeown

1. INTRODUCTION

A growing proportion of traffic on the Internet is multicast, with users distributing a wide
variety of audio and video material. This dramatic change in the use of the Internet has been
facilitated by the MBONE [1], [2], [3]. It seems inevitable that the volume of multicast traffic
will continue to grow for sometime to come. So, if ATM switches are to find widespread use
in the Internet, either as standalone switches, or as the core of high performance routers, it is
important that they be able to handle multicast traffic efficiently. Although a number of different
architectures and implementations have been proposed for multicast switches [6, 7, 8], we restrict
our attention to input-queued switches. In particular, we consider how an input-queued switch
may schedule multicast cells so as to achieve a high throughput and hence efficient utilization.

Most of the work on input-queued ATM switches has concentrated on unicast traffic in
which cells are destined for only a single output. It is well known that when FIFO queues are
used, the throughput of an input queued switch with unicast traffic can be limited to just 58%
under relatively benign conditions [4]. When arrivals are correlated, the throughput can be
even lower [5]. However, numerous papers have indicated that by using non-FIFO input queues
and using good scheduling policies, much higher throughputs are possible [9, 10, 11, 12, 13,
15, 16]. In [17], Hayes et al. give an excellent queueing analysis of the performance of input-
queued multicast switches. To maintain tractability, they assume a random scheduling policy
for determining which cells are copied to each output during each cell time. Specifically, each
output randomly and independently selects one input from among those that request it.

In this paper we consider the performance of different multicast scheduling policies. As
may be expected, we find that the random scheduling policy is not the optimum policy. Instead,
we find that a better algorithm is one that concentrates the cells that it leaves behind (the
“residue”) on as few inputs as possible. In the next section we describe our model and various
scheduling policies in more detail. We then prove that for a 2xN switch, the concentrating
policy is the optimum policy. Following this, we present simulation results that demonstrate the
optimality of the residue-concentrating policy. Finally, we describe TATRA - an efficient M x N
multicast switch scheduler.

2. THE SwITCH MODEL

It is assumed that the switch has M input and N output ports and that each input
maintains a single FIFO queue for arriving multicast cells. The input cells are assumed to
contain a vector indicating which outputs the cell is to be sent to.

For example, the 2 input and N output switch shown in Figure la has a cell at the head
of each queue. Input queue @4 has an input cell destined for outputs {1,2,3,4} whereas input
queue @p has an input cell destined for outputs {3,4,5,6}. We shall refer to the size of the
vector as the fanout. In the figure, the input cell at the head of each queue has a fanout of
four. For clarity, we distinguish an arriving input cell from its corresponding output cells. In the
figure, the input cell at the head of queue Q) 4 will generate four output cells.

QA QA
555% a4a3a2al|_
4
- \ v\\v\\v
ééég b4b3b2bl|_
6
Q, Qg [TT-T1
@ (b)
Figure 1:

The input queues are necessary because cells at different inputs may wish to copy cells
to the same output port. At the end of each cell time, a scheduling policy decides which input
cells to copy to which output ports. The policy selects a conflict-free match between input and
output ports such that each output receives at most one cell. Thus, at the end of every cell
time, the scheduling policy discharges some output cells, possibly leaving behind some residual
output cells at the head-of-line (HOL) of the input buffers. For example, in the situation
depicted in Figure 1 the “discharge” will consist of output cells for outputs {1,2,3,4,5,6}, and
the “residue” will consist of output cells for outputs {3,4}. Therefore, the scheduling policy
now has to decide on where to place the residue. It may elect to place the residue on both
inputs (i.e., it “distributes the residue”), or it may place the residue on either Q)4 only or on
Qp only (i.e., it “concentrates the residue”). It is the purpose of this paper to argue, based
on theoretical results and simulations, that a scheduling policy that always “concentrates the
residue” performs better (improves output utilization, reduces input queue latency, etc.) than
one that does not always concentrate residue.

To reduce the implementation complexity, we assume that an input cell must wait in line
until all of the cells ahead of it have gained access to all of the outputs that they requested.
Furthermore, it is assumed that the scheduling policy observes only the cell at the head of each
input queue, without further knowledge of the contents of individual input buffers behind the
HOL and traffic arrival patterns. Perhaps the simplest way to service the input queues is to
replicate the input cell over multiple cell times, generating one output cell per cell time. However,
this service discipline does not take advantage of the multicast properties of the crossbar switch.
So instead, we assume that one input cell can be copied to any number of outputs in a single
cell time for which there is no conflict.

Following the description in [17], we distinguish two different service disciplines. The first
is full multicast in which all of the copies of a cell must be sent in the same cell time. If any of
the output cells loses the contention for an output port, none of the output cells are transmitted
and the cell must try again in the next cell time. The second discipline is partial multicast in
which case output cells may be delivered to output ports over any number of cell times. Only
those output cells that are unsuccessful in one cell time continue to contend for output ports
in the next cell time. Because partial multicast is work conserving, it enables a higher switch
throughput, for little increase in implementation complexity. Therefore, we consider only partial

multicast policies here.

3. SOME DEFINITIONS

Residue: The residue is the set of output cells that lose contention for output ports and remains
at the HOL of the input queues at the end of each cell time. It is important to note that given
a set of requests, every work-conserving policy will leave the same residue. However, it is up to
the policy to determine how the residue is distributed over the inputs.

Concentrating Policy: A multicast scheduling policy is said to be concentrating if, at the end
of every cell time, it leaves the residue on the smallest possible number of input ports.

Distributing Policy: A multicast scheduling policy is said to be distributing if, at the end of
every cell time, it leaves the residue on the largest possible number of input ports.

A Non-concentrating Policy: A multicast scheduling policy is said to be non-concentrating
if it does not always concentrate the residue.

Fairness Constraint: A multicast scheduling policy is said to be fair if each input cell is held
at the HOL for no more than M cell times.

Note that in the two input case this definition of fairness means that the residue alternates
between the two inputs. As will be seen, the fairness constraint leads to a sort of round robin
priority among the various inputs which is used to resolve contention between them. It can be
seen that the above definition of fairness leads to a deterministic bound (of M cell times) on the
latency of input cells at HOL.

4. MAIN RESuULT

We state and briefly discuss the main results of the paper. The basic tenet of the paper
about multicast switch scheduling policies is expressed below.

A work-conserving multicast switch scheduling policy that always “concentrates residue”
at every possible instant subject to the fairness condition, leads to a higher output utilization
than any other policy under arbitrary input processes.

Our goal is to demonstrate this observation and to use it to design an efficient multicast
switch scheduler. Simulations are presented in Section 6 in support of this observation under
various arrival process distributions; and a sample path proof is presented for the 2x N case.
Specifically, we outline a proof of the following theorem.

Theorem 1: A scheduling policy for a 2 x N multicast switch that always “concentrates residue”
at every possible instant subject to a natural fairness condition, performs better than any other
policy.

Outline of proof: An outline of the proof of Theorem 1 is given under the static input
assumption. That is, it will be assumed that at time 0 both input queues have an infinite

number of packets placed according to some (possibly random) packet configuration. Fix one
such configuration and suppose that the cells in inputs 1 and 2 are labelled {a;}i=12,.. and
{bi}i=1,2,... respectively; where, for all i, packet a; is ahead of packet a;11 in Q4 and packet b; is
ahead of packet b;11 in QQp. See Figure 1b.

The fairness constraint now reduces to the following: the cell (or residue) at the HOL of
each input buffer is discharged alternately. That is, no two cells belonging to the same input
can depart in successive cell times without there being an input cell departure from the other
queue. This leads to the following ordering of input cells: (1) a1 <g b1 <g a2 <gbo..., if a1 is
the first cell to depart; and (2) by <g a1 <gb2 <gas...,if by is the first cell to depart.

Without loss of generality, we will adopt the first contention resolution scheme and link
input cells in a vertical or oblique fashion as shown in Figure 1b. The directions of the arrows on
the links denote where the residue is to be concentrated, should a policy choose to concentrate
residue at some time. We are only interested in fair scheduling policies as defined above, and so
restrict our attention to such policies in this paper. Let the vertical link between a; and b; be
labelled l9; 1 and the oblique link between b; and a;4; be labelled ls;. The following facts now
follow easily.

Fact 1: All scheduling policies work their way through links 11,1213, ... in that order releasing
no links (when there is contention between cells at HOL and residue is distributed), one link
(when there is contention between cells at HOL and residue is concentrated), or two links (when
there is no contention between cells at HOL) in one cell time.

Fact 2: The time at which an input cell is completely served is exactly equal to the time at
which the link emanating from it is released.

To prove the theorem, it is therefore sufficient to show that a fair concentrating policy 7*
releases each link ¢ before any other fair policy m. The details of how this is accomplished may
be found in [14].

Discussion: We now offer an intuitive explanation as to why a policy that always concentrates
the residue outperforms one that does not. Referring to Figure 1, consider the options faced
by a work-conserving scheduling algorithm at this time (¢1). Note that whatever decision the
algorithm makes, the residue will be the same. The scheduling algorithm just determines where
to place the residue. If at time ¢;, the algorithm concentrates the residue on Qp then all
of a1’s output cells will be sent and cell as will be brought forward at time to. At time to,
the algorithm selects between as and the residue leftover from ¢;. If on the other hand, the
algorithm distributes the residue over both input queues at ¢1, then at ¢2 the algorithm can only
schedule the residue leftover from ¢;. No new cells can be brought forward. So, on average, a
concentrating policy will bring new work forward sooner, increasing the diversity of its choice.
This enables it to schedule more output cells in the next cell time.

To demonstrate that the fairness constraint is necessary, consider the example of Figure 1
again. Assume that the concentrating policy is not fair and concentrates the residue at Q4
at both times ¢; and t2. From then on, only one input cell can be completed per cell time.
An algorithm that distributes residue at time #; would actually perform better. However, if
the concentrating policy is fair and at time to concentrates the residue at g, it will, in this

case, complete input cells at the same time as the distributing policy. Thus, in addition to
being socially correct, the fairness constraint provides a means for comparing scheduling policies
pathwise, instantaneously.

5. SIMULATION RESULTS

The following simulations support the observation that a “concentrating policy”

forms other fair policies.

outper-

Scheduling Policies: The four scheduling policies that we compare are as follows:

CONCENTRATE: This policy always concentrates the residue onto as few inputs as possible. This
is achieved by performing the following algorithm at the beginning of each cell time.

1. Determine the residue.

2. Find the input with the most in common with the residue. If there is a choice of inputs,
select the one with the input cell that has been at the HOL for the shortest time. This
ensures some fairness though not in sense of the definition of Section 3 (see remark below).

3. Concentrate as much residue onto the input as possible.
4. Remove the input from further consideration.
5. Repeat steps (2)-(4) until no residue remains.

Remark: The allocation of residue uniquely defines which input queues are served. This algo-
rithm does not guarantee that each input cell will remain at HOL for no more M cell times. In
Section 6 we outline an algorithm, TATRA, which offers this guarantee in addition to concen-
trating residue in an efficient manner.

DisTRIBUTE: This policy always distributes the residue onto as many inputs as possible. This
is achieved by the following algorithm.

1. Determine the residue.

2. Find the input with at least one cell but otherwise the least in common with the residue.
If there is a choice of inputs, select the one with the input cell that has been at the HOL
for the shortest time.

Place one output cell of residue onto that input.

Remove the input from further consideration.

Repeat steps (2)-(4) until no inputs remain.

S Ot w

If residue remains, consider all the inputs again and start at step (2).

RANDOM: This policy is motivated by the work of Hayes et al. in [17], which is the multicast
version of the algorithms described in [4] and [9]. Each output in turn, and independently of
the other outputs, randomly selects one input from among those that request it.

2x8 Switch with i.i.d. arrivals, uniform MCAST

2x8 Switch with 'bursty’ arrivals, uniform MCAST

1e+03 T T . i . 1e+03 T T T 1 T .
| i Distribute | i Distribute
| i o | i .
! i Random | i Random
I i o-a I i o-a
! i mMRRM } I mMRRM
¢ /
[H Concentrate /// M ,/’ Concentrate
I b B I
1004 i i E 1004 | e
| i S Vi
! i 7
H ;
> | [> P A
%) i - g
2 N 5 o
% ! H Q A
- | H 3 o
— ! i — 5 -
© ' i | © e T
g 104 g B O 104 g E
; !
) / i)
I / a ©
= h / =
2 L 2
z A / >
f/ X /'ﬁ <
X /i'
A g
A s
1 P E 1 E
- e
g
e
S
P - /./.’./'
r"/
0.1- T T T T 0.1- T T T T
30 40 50 60 70 30 40 50 60 70
Percentage Offered Load Percentage Offered Load

Figure 2: Graph of average cell latency as a function of offered load for a 2z8 switch. Uncorre-
lated arrivals (left). Correlated arrivals (right).

MurticAsT ROUND ROBIN (mRRM): This policy is motivated by the algorithms described
in [10]. A single round-robin pointer is collectively maintained by all of the outputs. Each
output selects the next input that requests it at, or after, the pointer. At the end of the cell
time, the pointer is moved to one position beyond the first input that is served. Designed to
be simple to implement in hardware, mRRM tends to concentrate the selection onto a small
number of inputs, yet maintain fairness. Note that for a 2xN switch this algorithm performs

almost identically to the concentrate algorithm.
Traffic Types: We compare each scheduling policy for two different arrival processes:

UNCORRELATED ARRIVALS: At the beginning of each cell time, a cell arrives at each input with
probability p independently of whether a cell arrived during the previous cell time.

CORRELATED ARRIVALS: Cells are generated using a 2-state Markov process which alternates
between BUSY and IDLE states. The process remains in each period for a geometrically dis-
tributed number of cell times. The expected duration of the BUSY state is fixed at 32 cells
(corresponding approximately to the maximum length of a segmented Ethernet packet). When
in this state cells arrive at the beginning of every cell time and all with the same set of destina-

tions. No cells arrive during the IDLE state.

For both types of traffic, each arriving multicast cell has a multicast vector that is uni-
formly distributed over all possible multicast vectors. As a result, for an M x N switch, the

average fanout is N/2.

2x8 Switch: Figure 2 compares the four scheduling policies for a 2x8 switch, with uncorrelated
and correlated arrivals. As predicted by our theorem, the concentrate algorithm leads to an
average cell latency that is much lower than for the distribute algorithm. In fact, as intuition
suggests, the distribute algorithm is always the worst algorithm: it maximizes the HOL blocking.

Note that mRRM performs identically to concentrate, as expected for a 2x8 switch.

8x8 Switch with 'bursty’ arrivals, Uniform MCAST

8x8 Switch with i.i.d. arrivals, Uniform MCAST
1e+03; T le+04 T T
! + + | i o
! Distribute ! ,‘/ : Distribute
[i 1. ! i
| Random : /’, 4 Random
! B -0 ! i -0
! ! mRRM . i mRRM
i ! /
"' Concentrate " j/ Concentrate
1004 ! | 1 [
I i i !
| ’! | [
2 b > le+03 A ;
c ! $ c A
o o S Ll
% [! et / F
- LA 3 Aokl
- B = SR
o) / i o) ‘ s
O ’/ O 7’ N ! ",
)) , /
g) = < X’/,d:’,,
100 : 1
0.1 T T 10 T
14 20 25 14 20 25
Percentage Offered Load Percentage Offered Load

Figure 3: Graph of average cell latency as o function of offered load for an 8x8 switch. Uncor-

related arrivals (left). Correlated arrivals (right).

8x8 Switch: Figure 3 compares the four scheduling policies for an 8x8 switch, with uncorrelated
and correlated arrivals. Once again, the concentrate algorithm leads to an average cell latency
that is much lower than for the distribute algorithm. This supports our argument, not proved

in this paper, that the concentrate policy outperforms other algorithms.
Note that for an 8x8 switch mRRM performs worse than concentrate. This is because it

does not necessarily concentrate the residue on as small a number of inputs.

6. TATRA: AN M x N MULTICAST SWITCH SCHEDULING ALGORITHM

In this section we describe a multicast scheduling algorithms - TATRA. This algorithm

achieves maximum residue concentration and is thus optimal among the class of fair, work-
conserving algorithms. Due to limitations of space, we only provide a brief description of TATRA

and show how it can be analyzed by mapping it onto a Tetris-like game. A more detailed analysis

of its performance will be presented in forthcoming publications.

We begin by observing that the operation of a multicast switch can be mapped into a
Tetris-like game in the following sense. Input cells will be mapped into Tetris blocks and since
each input cell is composed of a set of output cells, this Tetris block will be an amalgamation
of smaller blocks, one for each output cell. Suppose that an M x N switch begins processing
input cells at time 1 having been idle before that time. At the beginning of time 1, input cells
at HOL are dropped into an empty box which has N slots, one for each output. This is similar
to Tetris where blocks are dropped into a bin and the aim is to achieve maximum packing. The
main difference here is that whereas Tetris blocks are rigid and cannot be decomposed, work
conservation will require that an input cell be broken down into its constituent output cells.

We now explain what work conservation and fairness mean in this context. If an input
has a cell destined to output j, then this output cell is dropped into the slot corresponding to
the j** output. The output cell will drop to the lowest unoccupied position in that slot. This
ensures work conservation, since gaps in the output slots lead to an idling of outputs. The order
in which input cells are dropped is given by the priority rule arising from the fairness constraint.
All scheduling policies must obey these rules. Figure 4 traces the evolutions of a 5x 5 switch
operating under a sub-optimal policy 7 (picture on the left) and the optimal policy TATRA
(picture on the right). Consider the evolution of the switch under 7. At the beginning of time
1 input 1 drops cells for outputs 1, 3 and 5 into the corresponding output slots. After input
1, input 2 drops its output cells into slots 2, 3, 4 and 5. (Without loss of generality, we have
assumed that input ¢ has priority over input i+ 1). Proceeding thus, all 5 input cells are dropped
into the box.

At the end of time 1, all output cells at the bottommost layer of the box are discharged.
That is, they are assumed to be served. Again, for the example in the left hand side of Figure 4,
this means that input 1 is completely served and can advance a new cell to HOL at time 2.
Input 2 manages to discharge cells to outputs 2 and 4 and is left with a residue for outputs 3
and 5. Note that the discharge at any time is the set of output cells in the bottommost layer
and the residue is everything that’s left behind.

At the beginning of time 2, all residue cells drop down one level. The new cell at input
1 drops into the box taking its place behind the residue in the manner described above. In
Figure 4 the shaded cells are new input cells. Under 7w, at the end of time 2, input cell 2 is
completely discharged along with a part of input cell 3. This goes on until in four cell times «
discharges all five original input cells and at least one fresh input cell (from input 1).

Meanwhile, during the first time instant, TATRA advances input cell 5 all the way to the
bottom giving it priority over cells from inputs 2, 3 and 4; thus allowing it to depart at the end
of time 1. Note that this does not conflict with the priority rule since it is impossible for inputs
2, 3 and 4 to leave at the end of time 1.

At the beginning of time 2, under TATRA, two new cells (from inputs 1 and 5) are brought
forth. Suppose that the order in which they drop down is again given by the priority rule (that
is, 1 before 5). (It turns out that this ordering does not matter, since there is never more than M
input cells in the box.) Again, without delaying the departure of the original cells from inputs
2, 3 and 4, the priority of new cells from inputs 1 and 5 can be bumped up as shown in Figure 4.

Input ports Input ports
5| 4
HEEIE
3] 3] 2] 3] 2]
HEHREBR

BNEE

e]m]o]s]
o] w]e]
o [= [~ o]~

1 2 3 4 5 2 3 4
Output ports Output ports
(a (b)
Figure 4:

Thus, in four cell times TATRA discharges all five original input cells and at least two new
cells (from inputs 1 and 5). Furthermore, individual input cells are served earlier under TATRA
than under m. The following observation is the key aspect of multicast switching (subject to
fairness, work conservation and knowledge of HOL cells only) exploited by TATRA in scheduling
output cells:

No input cell is completely served until every output cell that belongs to it has been
discharged. This means that no input cell is completely served until the output cell belonging
to it that is furthest from the bottom of the box has departed. Call this furthest output cell
the peak cell. (In Figure 4 cells from input 1, 2, 3 and 4 destined to output 3 are peak cells.)
Therefore, it pays to bump the priority of a fresh input cell 7 over that of an input cell ¢+ which
is already in the box so long as the peak cell of i is not raised in the process.

7. CONCLUSION

Scheduling policies for input-queued multicast switches have been studied. We observed
that when designing a multicast scheduling policy, it is important to determine the placement
of the residue. Subject to a natural fairness constraint, it is shown that for a 2 x N switch the
optimum policy is one that always concentrates the residue. Our simulation results indicate that
the concentrating policy also outperforms a distributing or random policy for M x N switches.
In addition, we presented two algorithms: (1) mRRM which performs favorably when compared
to the concentrating algorithm, yet is simple to implement in hardware; and (2) TETRA which
achieves maximum residue-concentration and can be mapped onto a Tetris-like game.

References

[1] Paxson, V; “Growth trends in wide-area TCP connections,” IEEE Network, vol.8, (no.4):8-17. July-Aug 1994.
[2] Eriksson, H.; “MBone: the Multicast Backbone,” Communications of the ACM,vol.37, (n0.8):54-60. Aug 1994.

[3] Deering, S.E.; Cheriton, D.R.; “Multicast Routing in datagram internetworks and extended LANs,” ACM Transac-
tions on Computer Systems, vol.8, (no0.2):85-110. May 1990.

[10]

[11]

(12]

[13]

[14]

[15]

Karol, M., Hluchyj, M., and Morgan, S. “Input Versus Output Queueing on a Space Division Switch,” IEEE Trans.
Comm, 35(12) pp.1347-1356

Li, S.-Q; “Performance of a nonblocking space-division packet switch with correlated input traffic,” IEEE Trans.
Comm, vol.40, (no.1):97-108. Jan 1992.

Lee, T.T.; “Nonblocking copy networks for multicast packet switching,” IEEE J. Select. Areas Comm., vol.6, pp.1455-
1467. Dec 1988.

Turner, J.S.; “Design of a broadcast switching network,” Proc. IEEE INFOCOM ’86, pp.667-675.
Huang, A.; “Starlite: A wideband digital switch,” Proc. IEEE GLOBECOM ’84, pp.121-125.

Anderson, T., Owicki, S., Saxe, J., and Thacker, C. “High Speed Switch Scheduling for Local Area Networks,” Proc.

{7‘92]9%51 Intevg"rsmiiloonal Conference on Architectural Support for Programming Languages and Operating Systems Oct
y Pp. Jo— .

McKeown, N.; Varaiya, P.; and Walrand, J.; “Scheduling Cells in an Input-Queued Switch,” IEE Electronics Letters,
Dec 9th 1993, pp.2174-5.

Chen, M.; Georganas, N.D.; “A Fast Algorithm for multi-channel/port traffic scheduling,” Proc. IEEE Super-
comm/ICC ’94, pp.96-100.

Obara, H. “An Efficient Contention Resolution Algorithm for Input Queueing ATM Switches,”
Intl. Jour. of Digital €& Analog Cabled Systems, vol. 2, no. 4, Oct-Dec 1989, pp. 261-267.

Obara, H. “Optimum Architecture For Input Queueing ATM Switches,” Elect. Letters, 28th March 1991, pp.555-557.

McKeown, N. and Prabhakar, B. “Scheduling Multicast Cells in an Input-Queued Switch,” Technical Report: Com-
puter Systems Lab, Stanford University.

Obara, H., Okamoto, S., and Hamazumi, Y. “Input and Output Queueing ATM Switch Architecture with Spatial
and Temporal Slot Reservation Control” FElect. Letters, 2nd Jan 1992, pp.22-24.

Karol, M., Eng, K., Obara, H. “Improving the Performance of Input-Queued ATM Packet Switches,” INFOCOM ’92,
pp.110-115.

Hayes, J.F; Breault, R.; and Mehmet-Ali, M; “Performance Analysis of a Multicast Switch,” IEEE Trans. Commun.,
vol.39, no.4, pp. 581-587. April 1991.

