
A COMPARISON OF HARDWARE

PREFETCHING TECHNIQUES FOR

MULTIMEDIA BENCHMARKS

Daniel F. Zucker, Michael J. Flynn, and Ruby B. Lee

Technical Report: CSL-TR-95-683

December 1995

This work was supported by NASA under contract NAG2-842 and Hitachi
America, Ltd. with equipment provided by Hewlett-Packard under gift No.
23487.



A Comparison of Hardware Prefetching Techniques For Multimedia

Benchmarks

by

Daniel F. Zucker, Michael J. Flynn, and Ruby B. Lee

Technical Report: CSL-TR-95-683

December 1995

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

Data prefetching is a well known technique for improving cache performance. While several
studies have examined prefetch strategies for scienti�c and commercial applications, no
published work has studied the special memory requirements of multimedia applications.
This paper presents data for three types of hardware prefetching schemes: stream bu�ers,
stride prediction tables, and a hybrid combination of the two, the stream cache. Use of the
stride prediction table is shown to eliminate up to 90% of the misses that would otherwise
be incurred in a moderate or large sized cache with no prefetching hardware. The stream
cache, proposed for the �rst time in this paper, has the potential to cut execution times by
more than half by the addition of a relatively small amount of additional hardware.

Key Words and Phrases: prefetching, cache, multimedia, mpeg



Copyright c 1995

by

Daniel F. Zucker, Michael J. Flynn, and Ruby B. Lee



Contents

1 Introduction 1

2 Related Work 1

3 Methodology 2

3.1 Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
3.2 Simulation Techniques : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
3.3 Performance Metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
3.4 Memory Bandwidth : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4 Stream Bu�ers 5

5 Stride Prediction Tables 8

6 Stream Caches 11

7 Additional Stream Cache Improvements 12

7.1 Transient Data Isolation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16
7.2 Truncated Table Size : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

8 Execution Time 16

9 Conclusions 17

iii



List of Figures

1 Baseline miss rates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
2 Hit rates for 4 and 8 way stream bu�ers : : : : : : : : : : : : : : : : : : : : 6
3 Hit rates for 16 way stream bu�ers : : : : : : : : : : : : : : : : : : : : : : : 7
4 5-way Stream Bu�er Architecture : : : : : : : : : : : : : : : : : : : : : : : : 7
5 Hit rates caches employing various size stride prediction tables : : : : : : : 9
6 Hit rates caches employing various size stride prediction tables : : : : : : : 10
7 Stride Prediction Table Architecture : : : : : : : : : : : : : : : : : : : : : : 11
8 Stream Cache Architecture : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
9 Hit rates for 128 and 256 entry stream caches using 128 entry stride prediction

table : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
10 Hit rates for 512 entry stream caches using 128 entry stride prediction table 14
11 Modi�ed stream cache architecture : : : : : : : : : : : : : : : : : : : : : : : 14
12 Hit rates for 128 and 256 entry modi�ed stream cache using 128 entry stride

prediction tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
13 Relative execution times for 128 entry modi�ed stream cache with 128 entry

stride table : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
14 Absolute execution times for mpeg play-hula with 128 entry modi�ed stream

cache and 128 entry stride table adjusted for extra area required. : : : : : : 18

iv



List of Tables

1 Benchmark Image Characteristics : : : : : : : : : : : : : : : : : : : : : : : : 2

v



1 Introduction

As multimedia datatypes and applications become ubiquitous, new processors and archi-
tectures will have to support these applications as a matter of course. Our objective is
to �nd low-cost enhancements for standard processor architectures to support multimedia
applications. This paper focuses on the memory hierarchy as a means for providing this
kind of performance enhancement.

Our earlier work [15] has focused on arithmetic enhancements aimed at improving the
computational aspect of multimedia applications. Our current work is targeted at the
memory hierarchy, which is of fundamental importance to multimedia system performance.
While there has been much work studying memory performance for scienti�c and general
purpose applications, there has been little work on the needs of multimedia applications.
Our results show that relatively simple prefetching techniques can signi�cantly improve
the memory hit rates for multimedia applications. As processors become faster and utilize
increasing instruction level parallelism, memory performance will have a dominating e�ect
on overall processor performance. Improvements in memory performance can eventually
result in performance increases of up to 2x with relatively little additional hardware.

An initial problem is that there is no accepted suite of multimedia applications. New ap-
plications are constantly emerging and existing applications are undergoing rapid changes.
Our strategy, therefore, is to target fundamental kernels that are essential for all multimedia
applications. Speci�cally, we target a workload aimed at data compression. Because of the
vast amount of data required to manipulate audio, still images, and movies, data compres-
sion is fundamental for all types of multimedia applications. The MPEG and MPEG2 video
compression standards were chosen as benchmarks.

2 Related Work

A number of techniques exist for cache prefetching. The idea of prefetching is to predict
data access needs in advance so that a speci�c piece of data is loaded from the main memory
before it is actually needed by the application. While a number of papers have been written
studying both hardware and software prefetching techniques, no work has looked speci�cally
at the memory behavior of multimedia applications.

The earliest hardware prefetching work was reported by Smith [13] who proposed a one-
block-lookahead (OBL) scheme for prefetching cache lines. That is, when a demand miss
brings block i into the cache, block i+1 is also prefetched. Jouppi [7] expanded this idea
with his proposal for stream bu�ers. In this scheme, a miss that causes block i to be brought
into the cache, also causes prefetching of blocks i+1, i+2, ..., i+n into a separate stream
bu�er. Jouppi also recognized the need for multi-way stream bu�ers so that multiple active
streams can be maintained for a given cache. He reported signi�cant miss rate reduction.
Palacharla and Kessler [9] proposed several enhancements to the stream bu�er. They have
developed both a �ltering scheme to limit the number of unnecessary prefetches, and a
method for allowing variable length strides in prefetching stream data.

Another hardware approach to prefetching di�ers from the stream bu�er in that data
is prefetched directly to the main cache. In addition, some form of external table is used to

1



application image frame size number of frames frame pattern data memory
references

mpeg hula 2.mpg 352x240 40 IPPIPPI 6e+07
mpeg easter.mpg 240x176 49 IPBBIBBPBBI 6e+07
mpeg2 tennis.m2v 576x704 7 IBBPBBPP 8e+07
mpeg encode tennis.yuv 352x240 10 IPBBPBBPBB 3e+08

Table 1: Benchmark Image Characteristics

keep track of past memory operations and predict future requirements for prefetching. This
has the advantage of e�ciently handling variable length striding, that is data accesses that
linearly traverse a data set by striding through in non-unit steps. Fu and Patel [5] proposed
utilizing stride information available in vector processor instructions to prefetch relevant
data. They later [4] expanded the application to scalar processors by use of a cache-like
look-up table called the stride prediction table.

Chen and Baer [1] have proposed a similar structure called the reference prediction table.
Their scheme additionally includes state bits, so that state information can be maintained
concerning the character of each memory operation. This is then used to limit unnecessary
prefetching. Further analysis of this scheme [2] investigate the timing issues of prefetching
by use of a cycle-by-cycle processor simulation. Sklenar [12] presents a third variation on
the same theme of the use of an external table to predict future memory references.

A number of techniques also exist to do software prefetching. Porter�eld [11] proposed
a technique for prefetching certain types of array data. Mowry, et al [8] is generally rec-
ognized as having the most practical software prefetch scheme. While software prefetching
clearly has a cost advantage, it does introduce additional overhead to the application. Extra
cycles must be spent to execute the prefetch instruction, and the code expansion that is
often required may result in negative side e�ects such as increased register usage. Further-
more, software prefetching must be optimized for a given memory architecture and imple-
mentation. Despite these disadvantages, though, software prefetching is still a promising
technology.

3 Methodology

3.1 Applications

The applications we have chosen for performance measurement are mpeg play, mpeg2play,
and mpeg encode. Our objective is to choose fundamental algorithms necessary for a broad
range of multimedia applications. Because of the extraordinarily large amount of storage
volume necessary to store image and video data, data compression is a necessity for any
sort of multimedia application. MPEG is rapidly growing in acceptance as the standard for
video compression.

MPEG [6] extrapolates JPEG-style compression for motion images. JPEG [14] is a lossy
still image compression standard based on discrete cosine transform (DCT). Image data is

2



� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.02

|

0.04

|

0.06

|

0.08

|

0.10

|

0.12

 baseline miss rates -- associativity 1

 Cache Size (Bytes)

 M
is

s 
R

at
e

�

�

�

�

�
�

�
�

�
�

�

�

�

�

�
� � � �

�

�

�

�

�

�
�

�

�
� �

�

�

�

�

�
�

� � � �

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|
0.02

|

0.04

|

0.06

|

0.08

|

0.10

|

0.12

 baseline miss rates -- associativity 4

 Cache Size (Bytes)

 M
is

s 
R

at
e

�

�

�

�
� � �

�

�

�

�

�

�

�
� � � � �

�

�

�

�
� � �

�

�
� �

�

�

�

�
� � � � � �

Figure 1: Baseline miss rates

�rst broken down into 8x8 arrays and is then DCT transformed to convert to the frequency
domain. The results of the transform coe�cients are then quantized. This is the lossy step
in the algorithm. The coe�cients are then zig-zag ordered and run-length encoded so that
long strings of zeros can be e�ciently represented. Finally, these results are encoded using
variable length coding. The reverse process is used for decoding.

MPEG uses motion vector techniques in order to take advantage of repeated information
between frames for compression. There are three types of frames: I, P, and B frames. I
frames are essentially JPEG encoded frames that don't relay on information from any other
frames. P frames are forward predicted frames that use motion estimation to extrapolate
from previous I frames, while B frames result from a linear combination of predictions from
both preceeding and ensuing frames. The MPEG implementations used in this paper are
mpeg play and mpeg encode from the Berkeley MPEG Group [10]. Mpeg play was executed
using the -dither ordered option for dithering.

MPEG2 is an enhancement of MPEG to allow for an extended range of applications.
The primary application intended for MPEG2 was digital television, but it is considered an
improvement over MPEG for a number of reasons. The implementation used in this paper
is mpeg2play from the MPEG Software Simulation Group's MPEG2 release [3]. Speci�c
characteristics of the images used in our benchmarks are shown in table 1. Memory ref-
erences refer to both data loads and data stores. Instruction accesses were not simulated.
Although the number of frames for each application might seem small, since the miss rate
rapidly converges to a stable average after only a few frames, the applications perform sim-
ilarly to movies with many more frames. Miss rates for these applications run in a baseline
cache with no enhancements are shown in �gure 1.

3



3.2 Simulation Techniques

Trace driven simulations are used to model memory behavior in order to determine per-
formance results. Application code was compiled to an assembly language format with
the commercially available HP C Compiler version A.09.75. Maximum optimization was
set by using the +O3 option. This assembly code was then instrumented using the RYO
instrumentation tool for PA-RISC architecture [16]. The instrumentation added additional
assembly code so that external library functions are called for every memory access instruc-
tion.

To save both execution time and disk space, discrete traces are not written to disk �les.
Instead, the cache simulator is executed concurrently with the instrumented executable so
that address references are dynamically simulated. Because new traces are dynamically
generated every execution, variables returned from system calls may cause slightly di�erent
traces at each run and may result in some run-to-run variation. The simulator provides data
over a wide range of data cache sizes and associativities. A line size of 16 bytes was chosen
for all simulations. This line size was chosen so as to better expose the potential bene�ts
of prefetching. Because only a single process was simulated for each cache con�guration, it
is expected that the performance for the cache sizes reported corresponds to a larger cache
size in a real system. Instruction memory accesses are not modelled.

3.3 Performance Metrics

Fraction of misses eliminated is the primary performance metric. This metric judges the
performance of a given prefetch scheme independent of the particular cache implementa-
tion. A perfect prefetching scheme would eliminate all memory misses. This would have
a fraction of misses eliminated value of 1.0 since all misses have been eliminated. Simi-
larly, an architecture that eliminates half of all the misses of a cache with similar size and
associativity would have a fraction of misses eliminated value of 0.5.

In the case of a second level cache, the fraction of misses eliminated metric is identical
to the hit rate for the second level cache. Of all the misses that occur in the �rst level cache,
the fraction of those that hit in the second level cache is, by de�nition, equal to the fraction
of misses eliminated. The reason for using fraction of misses eliminated instead of second
level hit rate is for those con�gurations such as the stride prediction table and modi�ed
stream cache, discussed in sections 5 and 7, where no discreet second level cache exists. In
this way, comparisons with a common metric can be used across all cache con�gurations in
the study.

This metric is desirable for a number of other reasons as well. In this way, performance
improvement can be judged independently of other cache design considerations such as
main cache size and associativity. The size of the main cache will have a dominating e�ect
on miss rate, so that if results were simply compared in terms of absolute miss rates, the
variation due to cache size would tend to mask out the variation due to prefetching scheme.
Furthermore, performance can also be judged independently of memory implementation
parameters such as time to access main memory. If this were not the case, varying memory
parameters such as cycles to �ll a main cache line could have a signi�cant impact on results.

4



Results are also reported for execution time in numbers of cycles. For these results,
an aggressive memory-limited processor model is assumed. An n-way superscalar processor
is assumed such that there are su�cient resources to perform any non-memory operation
in a single cycle. Therefore, the only limit to computation time is the number of memory
operations. This model shows the maxium impact that the memory system architecture
has on performance.

3.4 Memory Bandwidth

For the purposes of this study, memory bandwidth is assumed to be large enough such that
this is not a limiting factor on performance. This assumption is made to study the e�ects of
di�ering prefetch strategies independent of memory bus architectures. It is recognized that
this assumption may not be valid in terms of today's architectures. However, the trend for
wider bandwidth to memory indicates that this may not be a problem in the future.

All architectures studied in this paper rely on signi�cantly increasing accesses to main
memory in the form of increased prefetching. Techniques for �ltering ([9] and [2]) exist to
address this issue. However, they may have a negative impact on total number of misses
captured. Since the goal of this paper is to compare the upper limit of cache performance
between the di�ering cache con�gurations, these �ltering techniques have not been imple-
mented in the cache models used.

4 Stream Bu�ers

The stream bu�er architecture simulated is shown in �gure 4. As proposed by Jouppi,
the stream bu�er is a FIFO type queue that sits on the re�ll path to the main cache. A
new stream is allocated at each successive data cache miss. When all stream bu�ers are
allocated, the next data cache miss will replace the stream least recently accessed (LRU
replacement). A memory access that misses in the main cache, but hits in the stride bu�er
is counted as a hit. Since the re�ll time from the stream bu�er can be an order of magnitude
faster than a re�ll from main memory, this assumption should not signi�cantly a�ect the
reported results.

Our simulations assume 16 parallel stream bu�ers. This number is selected to be large
enough so that the the number of stream bu�ers is not a limiting factor in performance. We
also simulate a stream bu�er depth of 5 entries. Palarcharla [9] proposed an enhancement
to the stream bu�er to �lter unnecessary excess prefetches. However, because memory
bandwidth is not a limiting factor in our model, this could only potentially hurt performance
and was therefore not included. He also proposed a mechanism to allow non-unit striding
through the data. This requires a software bit mask that must be individually adjusted
for a given application and architecture. Due to the impracticality of doing this for a real
system, this was also not included in the model.

Performance data across a range of cache sizes and with direct mapped and 4-way
associativities are shown in �gure 2 and �gure 3. For most applications, the stream bu�er
tends to peak out at eliminating about 50% of the misses. Mpeg play playing easter.mpg is

5



|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 4-way stream buffer -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�
� �

�

�

�
�

�

� � �

�

�

�

�
�

�
�

�
�

� �
�

�

�

�

�

�

�

�

�
�

�
�

� �

�

�

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 4-way stream buffer -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�
�

� �
� �

�

�

�

�

�

�

�

�

�
� � � � �

�

�
� � � �

�

�

�

�

�

� � �
�

�
� �

�

�

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|
0.40

|

0.60

|

0.80

|

1.00

 8-way stream buffer -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�
� �

�

�

�

�
�

�

�

�

�
�

� �

�

�

�

�
�

�

�

�

�

�

�
�

�

�
� �

�
�

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 8-way stream buffer -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�
�

�

�

�
� �

�

�

�

�
�

�

�

�
� � � �

�

�

�

�

�
� �

�

�

�
�

�

�
� �

� �
� �

�

�

Figure 2: Hit rates for 4 and 8 way stream bu�ers

6



Figure 4: 5-way Stream Bu�er Architecture

7



the single exception and can eliminate 80% of the misses for very large caches. This seems
to be an outlying data point, however.

Thus, in the best case, only 50% of misses are eliminated with the stream bu�er. This is
because the relatively complicated algorithms involved tend to access the data in a non-unit
strides, and the stream bu�er is designed to aid only in cases of unit strides. This shows
that even with a 16-way stream bu�er at most 50 % of misses are eliminated, and therefore
the stream bu�er is not an e�ective prefetching technique.

5 Stride Prediction Tables

The structure of the stride prediction table (SPT) simulated is shown in �gure 7. A table,
indexed by instruction address, is maintained for all memory operations and holds the
address of the last access. This requires access to the PC (program counter) and may
therefore be slightly disadvantageous compared to the stream bu�er. The stream bu�er,
since it relies only on external data requests, may be added more easily than the stride
prediction table to an existing commercial processor. When a subsequent memory access is
made by an instruction already contained in the stride prediction table, the current memory
access address is subtracted from the previously stored address to calculate a data stride
value. If this value is non-zero, the next predicted memory item, calculated by adding the
stride value and the current memory address, is prefetched into the main cache. When the
current instruction does not match an instruction stored in the stride prediction table, an
SPT miss occurs. The new entry is added to the SPT replacing the least recently used
entry (LRU).

Data obtained from simulations using a variety of stride table sizes is shown in �gure 5
and �gure 6. All applications perform very well with a stride cache of approximately 128
entries. For large main cache sizes, between 70% and 90% of misses are eliminated relative
to a cache with the same size and associativity, but no stride predicition mechanism. A
knee in the curve appears, however, at a cache size of approximately 32KB below which the
stride prediction table rapidly becomes less e�ective.

Surprisingly, this is not as major of a factor for mpeg encode, for which the performance
does not appreciably decay for small cache sizes. This is due to the memory intensive motion
estimation that must be done for mpeg encoding. The fairly large search space required
for motion vector encoding must be repeated for each 16x16 macro block in the image.
Although this requires a very large total number of memory references, the memory locality
is quite good, and the traditional cache structure performs well, even for very small caches.
Therefore, the smaller number of remaining misses that are not captured by the traditional
main cache are handled more easily by the stride prediction mechanism.

Finally, an interesting e�ect is observed for stride prediction tables of greater than
128 entries. In these cases, the stride prediction actually harms memory performance for
relatively small cache sizes. The large number of non-useful prefetches begins to remove
useful data from the cache. This problem could potentially be solved by the use of �ltering
techniques.

The stride prediction table works very well for middle and large cache sizes. Indeed, it

8



|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 64 entry stride table -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�
�

� �

�

� �

�
�

�
�

�

�

�

�

�

� �

�

�

�
� �

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 64 entry stride table -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed
�

�

�

�

�
� �

�

�

�

�

�

�

�

�

�

� � � �

�

�

�

�
� � �

�

�

�

�

�

� �

�
� �

� � �

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|
0.60

|

0.80

|

1.00

 128 entry stride table -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�

�

�

�
�

�
� �

�

�

�

�

�

�

�
�

� �

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

� �

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 128 entry stride table -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

� � � �

�

�

�

�

�
� � �

�

�

�

�

� �

�
� �

� �
�

Figure 5: Hit rates caches employing various size stride prediction tables

9



� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 512 entry stride table -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�
�

�

�

�

�

� �
�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

� �

�

�

�

�
� �

�

�
�

�

� �

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 512 entry stride table -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

� � � �

�

�

�

�

�
� � �

�

�

�

�

� �

�
� �

� �
�

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|
0.40

|

0.60

|

0.80

|

1.00

 1024 entry stride table -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�
�

�

� �

�

�

�

�

�

�

�

�
� �

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

� �

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 1024 entry stride table -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

� � � �

�

�

�

�

�

� � �

�
�

�

�

� �

�

� �
� �

�

Figure 6: Hit rates caches employing various size stride prediction tables

10



Figure 7: Stride Prediction Table Architecture

would be di�cult to do better than eliminating 90% of the misses. In this range, the SPT
is an e�ective means of prefetching. However, the stride prediction table has two signi�cant
problems with the smaller cache sizes. A large stride prediction table and small main cache
results in unpredictable performance and may be undesirable in a real system. Certain
applications may result in improvement, while other applications would be unpredictably
degraded. The second problem is that even when the performance of smaller cache sizes is
not degraded, it is hardly improved. It is the smaller cache range, where the main cache
is exhibiting a high miss rate, that has the most to bene�t by successful prefetching. The
larger caches, where the stride prediction table eliminates most of the misses, actually have
fewer misses to eliminate, so that total execution time would be less impacted. Thus, it is
this range where the is the most performance bene�t potential that the stride prediction
table is least e�ective.

6 Stream Caches

The stream cache potentially overcomes the problems of the stride prediction table by
improving performance for the small cache sizes. A stream cache is a hybrid that combines
the best features of the stream bu�er and stride prediction table. The stride prediction
table does a good job of predicting which data to prefetch, but fails for smaller cache sizes
because it prefetches a large amount of unnecessary data. The stream cache uses the stride
prediction table to prefetch data not to the main cache, but to a small stream cache that
is on the re�ll path to the main cache. Because the data is not prefetched directly to the
main cache, polluting the main cache is not a problem. Only useful data is copied from
the stream bu�er to the main cache, less useful data is eliminated from the main cache.
The stream bu�er only works well for unit strides and is inherently con�gured for a �xed
number of streams. If a 16-way stream bu�er is used, there should be 16 separate streams
of application data for the cache memory to be e�ciently utilized.

11



Processor

Memory

Cache

SPT Stream Cache

Figure 8: Stream Cache Architecture

The stream cache solves the problems of the stream bu�er by uniting the separate
FIFOs of multiple stream bu�ers into one relatively small fully associative stream cache.
The stride prediction table is used as before to predict which data to prefetch, but the
data is prefetched to the stream cache instead of the main cache. The stream cache is then
queried after a main cache miss, and is used to �ll the main cache with the desired data.
Because the stream cache is uni�ed, the speci�c number of streams in the application is
irrelevant.

Once the data has been copied from the stream cache to the main cache, it is unlikely
to be used again in the stream cache. Therefore, a most recently used (MRU) replacement
policy is used when fetching new data into the stream cache. The stream cache architecture
is shown in �gure 8.

Performance data for a 128, 256, and 512 entry stream cache are shown in �gure 9 and
�gure 10. The 512 entry stream cache appears large enough to give a fairly uniform perfor-
mance improvement of between 60 and 80% across most cache sizes and both associativities.
Performance for main cache sizes of less than approximately 32KB is signi�cantly improved
over the same cache con�gurations using only a stride prediction table.

This region on the left part of the graph is signi�cant, since this is where the smaller
main caches are not performing as e�ciently and memory performance is a much higher
percentage of execution time. The 512 entry stream cache, however, would require 8KB of
additional memory and may be impractical. The next section introduces modi�cations to
further improve performance for the small caches with the addition of less extra hardware.

7 Additional Stream Cache Improvements

12



� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 128 entry stream cache -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�

�

�
� � �

�

�

�
�

�

�
�

�
� � � �

�
�

�

�

�

�
�

�

�

�

�

�

� �
�

�
� �

�

�

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|
0.40

|

0.60

|

0.80

|

1.00

 128 entry stream cache -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

� �

�

�
� � �

�

�
�

�
�

�

�

�
� � � � �

� �

�

�

� � �

�

�

�

�

� � � � �
� � �

�

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 256 entry stream cache -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�
�

�

� � �

�

�

�
�

�

�
�

�
� � � �

�
�

�

�

�

�

�

� �

�

�

�
� � �

� � �

�
�

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 256 entry stream cache -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

� �

�

�
� � �

�

�

�

�

� �

�
�

� � � � �

�
�

�

�
� � �

�

�

�

�
�

� � � �
� � �

�

Figure 9: Hit rates for 128 and 256 entry stream caches using 128 entry stride prediction
table

13



� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 512 entry stream cache -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�
�

� �

�
�

�

�

�
�

�
� �

� � � � �

�

�
� � �

�

�

� �

�

�

� � � �
� � �

�

�

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 512 entry stream cache -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�
� �

�
� � �

�
� �

�

� � �
�

� � � � �

�

�

�
�

� �
�

�

�

�

� �
� � � �

� � �

�

Figure 10: Hit rates for 512 entry stream caches using 128 entry stride prediction table

Processor

Memory

Cache Stream Cache

Figure 11: Modi�ed stream cache architecture

14



� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 128 entry modified stream cache -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�
�

�

� � � �

� �

�

� �
�

�
� �

�
�

�
�

�
�

�
�

�

�

�

�

�

�

� �

�
�

�
�

�

�

� �

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|
0.40

|

0.60

|

0.80

|

1.00

 128 entry modified stream cache -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

�

�

�
� �

�

�

�

�

�

� �
�

� � � � �

�

�

�
�

� � �

�

�

�

�

�

�

�

�

�

� �
� �

�

�

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 256 entry modified stream cache -- associativity 1

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

� �

� � � � �

� �

�

�
� � �

� � �
�

�
�

�

�

� �
� �

�

�
�

�

� �

�
�

�

�

�

�

� �

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 256 entry modified stream cache -- associativity 4

 Cache Size (Bytes)

 F
ra

ct
io

n 
of

 M
is

se
s 

E
lim

in
at

ed

� � �
� �

�

�

�

�

�

�
�

� � � � � �

�

�

�
�

�
� �

�

�

�

�

�

�

�

�

�

� �
� �

�
�

Figure 12: Hit rates for 128 and 256 entry modi�ed stream cache using 128 entry stride
prediction tables

15



7.1 Transient Data Isolation

One enhancement is to move the stream cache from the re�ll path of the main cache to
a position parallel to the main cache. This is shown in �gure 11. This is based on the
hypothesis that multimedia applications tend to operate on a relatively small workspace of
data that marches linearly through the image. The data in this workspace is operated on
for a short time, but then is not frequently reused. The goal of the modi�ed stream cache
is to isolate this local workspace to the stream cache. Prefetched data is brought into the
stream cache, but is not copied into the main cache. A cache access must search both the
main cache and the stream cache in parallel. Because the data in the stream cache is reused
before it becomes stale, an LRU replacement scheme is now employed.

Miss rate data for a 128 entry modi�ed stream cache with a 128 entry SPT is shown in
�gure 12. The smaller caches show a greater enhancement than mid sized caches since there
is a greater bene�t from keeping less frequently used data out of the main cache. For small
cache sizes, performance is better than the 128 entry stream cache described in section 6.
Furthermore, this is the region where the main cache is su�ering from high miss rates, so
that this improvement is particularly bene�cial. Section 8, in which execution times are
compared illustrates this point.

7.2 Truncated Table Size

Each stride prediction table entry must hold a complete instruction address and data address
for each entry and valid bit. Thus, not counting the valid bit, a 128 entry stride prediction
table requires about 1KB extra area to hold two 32 bit words per entry.

However it is usually not necessary to store the full instruction address. Storing only
the lower 16 bits as an address tag produces similar results. Unfortunately, because of the
methodology used to generate this simulation data, the actual instruction address was not
used as an index and therefore it is not possible to test this assumption.

The size of the data address �eld could also be reduced to 16 bits since it is unlikely
to encounter data strides of more than 64KB. Employing this technique allows a 128 entry
table to be built using only approximately 512B of area.

8 Execution Time

Finally, relative execution times to a baseline cache of the same size are shown for a modi�ed
stream cache in �gure 13. Until here, fraction of misses eliminated was used as the primary
metric for comparing various cache designs since it allowed for evaluation independent of
speci�c design parameters. This section presents data for execution time so as to show the
impact the cache would have on actual application performance.

The execution time is shown as a fraction of cycles required for a cache of the same
size and associativity but without a stream cache. Execution time is calculated assuming a
main memory latency for both the main and stream caches of 25 cycles. If data is needed
while it is in the process of being loaded to the cache, then the balance of cycles remaining
is counted in total execution time.

16



Absolute execution times for a single application are shown in �gure 14. The horizontal
axis is adjusted such that total area, including both the main cache and stream cache, is
shown for the enhanced cache. For very small cache sizes, the stream cache can cut the
execution time in half. For cache sizes of up to about 256 KB, less than 80% of the original
time is required for execution. For very large cache sizes, the traditional cache design does
a fairly good job of capturing the working set and the stream cache is proportionately less
bene�cial or even detrimental in some cases. In the case of large caches, then, the stride
prediction table alone is an e�ective means of prefetching. As image sizes become larger,
however, this break point will shift to the right and the stream cache will be useful over a
larger range of caches. The reader is also reminded that only one application is executed in
the cache, so that a real system executing multiple applications will have the performance
of the smaller caches as per our graphs.

This data suggests that the stream cache is extremely e�ective in improving execution
time for either a very small on chip cache or a low cost multimedia system using only a
small cache. A 128 entry stride prediction table with a 128 entry stream cache adds only
about 2.5KB extra area, but cause the 2KB main cache to perform as a baseline 16KB
cache or a 4KB cache to perform as a baseline 128KB cache for the application shown.

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|
0.40

|

0.60

|

0.80

|

1.00

|

1.20

|

1.40

 128 entry modified stride cache -- associativity 1

 Cache Size (Bytes)

 R
el

at
iv

e 
E

xe
cu

tio
n 

T
im

e

�

�

�

� � �
�

�

�
�

�

�

�

�

�
� � � �

�

�

�

�

� �
�

�

�

�
�

�

�

�

�

�

�

�
�

� �

� � mpeg_play-hula
� � mpeg2play
� � mpeg_play-easter
� � mpeg_encode

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

|

1.20

|

1.40

 128 entry modified stride cache -- associativity 4

 Cache Size (Bytes)

 R
el

at
iv

e 
E

xe
cu

tio
n 

T
im

e

�

�

�

�
� � �

�

�

�

�

�

�

�
� � � �

� �

�

�

�
� � �

�

�

� �

�

�

�

�

� � � � � �

Figure 13: Relative execution times for 128 entry modi�ed stream cache with 128 entry
stride table

9 Conclusions

In this paper we investigated a number of hardware prefetching techniques for some common
multimedia applications. It is clear that the regular memory access pattern of these appli-
cations makes some form of data prefetching an attractive strategy for improving memory

17



� � mpeg_play-hula base
� � mpeg_play-hula enhanced

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|
2097152

|

0

|

30

|

60

|

90

|

120

|

150

|

180

|

210

|

240

 absolute execution time -- asssociativity 1

 Cache Size (Bytes)

 E
xe

cu
tio

n 
T

im
e 

(M
ill

io
ns

 o
f C

yc
le

s)

�

�

�

�

�
�

�
�

� �

�

�
�

�
� � � � � �

� � mpeg_play-hula base
� � mpeg_play-hula enhanced

|
2048

|
4096

|
8192

|
16384

|
32768

|
65536

|
131072

|
262144

|
524288

|
1048576

|
2097152

|

0

|

30

|

60

|

90

|

120

|

150

|

180

|

210

|

240

 absolute execution time -- asssociativity 4

 Cache Size (Bytes)
 E

xe
cu

tio
n 

T
im

e 
(M

ill
io

ns
 o

f C
yc

le
s)

�

�

�

� � � �

�
�

�

�

�

� � � � � � � �

Figure 14: Absolute execution times for mpeg play-hula with 128 entry modi�ed stream
cache and 128 entry stride table adjusted for extra area required.

performance.
We showed that stream bu�ers can eliminate up to about 50% of data misses for small

and moderately sized caches. It is the small cache sizes, where the large number of misses
contribute signi�cantly to total execution time, where a large reduction in misses is desirable.
The stream cache added improvement over the stride prediction table for smaller sized
caches, and left the performance improvements intact for large caches. Finally, the modi�ed
stream cache resulted in extremely good performance enhancements for small cache sizes
with a small amount of additional hardware, but in some cases did slightly worse than the
stride prediction table for large cache sizes.

Data was presented for both direct mapped and 4 way associative caches to show that
the same trends exist regardless of associativity, although the improvement is somewhat
mitigated for the 4 way associative cache. 4 way associativity was chosen since unpub-
lished simulations showed that 4 way associativity behaves approximately the same as fully
associative.

Finally, execution times were simulated for a speci�c architecture and memory system
which showed the modi�ed stream cache could reduce execution time by more than a factor
of two for small caches. Because these results are highly dependent on the parameters
chosen for the memory models, however, execution time was not exhaustively simulated.

The speci�c cache sizes reported in this paper will perform as slightly larger caches in a
real system because only single applications were run in each cache. The image frame size
used also has a signi�cant e�ect on the break point in a given cache performance curve.
For this reason, results should be considered relative to one another, rather than �xed at a
given cache size. Although a speci�c cache simulated here may perform as a smaller cache

18



in a given system, the relative trends will remain constant regardless.
Several common prefetching schemes were compared for multimedia benchmarks. The

stride prediction table was shown to perform extremely well for large caches, and the stream
cache and modi�ed stream cache perform very well for small cache sizes. In these cases,
signi�cant performance improvements will result from a very small increase in hardware.
Extremely cost or area sensitive applications, where a small cache is required, can bene�t
signi�cantly from employing such a technique.

References

[1] Jean-Loup Baer and Tien-Fu Chen. An e�ective on-chip preloading scheme to reduce
data access penaly. In Proceedings of Supercomputing '91, pages 176{186, November
1991.

[2] Tien-Fu Chen and Jean-Loup Baer. E�ective hardware-based data prefetching for high-
performance processors. IEEE Transactions on Computers, 44:318{328, May 1995.

[3] Chad Fogg. mpeg2 codec. ftp:ftp.netcom.com:/pub/cf/cfogg/mpeg2, MPEG Software
Simulation Group, 1994.

[4] J. Fu, J. Patel, and B. Janssens. Stride directed prefetching in scalar processors.
In Proc. of the 25th International Symposium on Microarchitecture, pages 102{110,
December 1992.

[5] John W. C. Fu and Janak H. Patel. Data prefetching in multiprocessor vector cache
memories. In Proc. of the 18th Annual International Symposium on Computer Archi-

tecture, pages 54{63, May 1991.

[6] D. Le Gall. MPEG: A Video Compression Standard for Multimedia Applications.
Communications ACM, 34(4):46{58, April 1991.

[7] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch bu�ers. In Proc. of the 17th Annual Inter-

national Symposium on Computer Architecture, pages 364{373, May 1990.

[8] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for
prefetching. In SIGPLAN Notices, pages 62{73, September 1992.

[9] Subbarao Palacharla and R.E. Kessler. Evaluating stream bu�ers as a secondary cache
replacement. In Proc. of the 21st Annual International Symposium on Computer Ar-

chitecture, pages 24{33, April 1994.

[10] K. Patel, B.C. Smith, and L.A. Rowe. Performance of a Software MPEG Video De-
coder. In Proceedings ACM Multimedia 93, pages 75{82, August 1993.

[11] A.K. Porter�eld. Software methods for improvement of cache performance on super-
computer applications. Technical Report COMP TR 89-93, Rice University, May 1989.

19



[12] Ivan Sklenar. Prefetch unit for vector operations on scalar computers. ACM Computer

Architecture News, 20:31{37, September 1992.

[13] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14:473{530, September
1982.

[14] Gregory K. Wallace. The JPEG Still Picture Compression Standard. Communications

ACM, 34(4):30{44, April 1991.

[15] Daniel Zucker and Ruby Lee. Reuse of High Precision Arithmetic Hardware to Perform
Multiple Concurrent Low Precision Calculations. Technical Report No. CSL-TR-94-
616, Computer Systems Laboratory, Stanford University, April 1994.

[16] Daniel F. Zucker and Alan H. Karp. Ryo: A versatile instruction instrumentation
tool for pa-risc. Technical Report No. CSL-TR-95-658, Computer Systems Laboratory,
Stanford University, January 1995.

20


