Performance/Area Tradeoffs in
Booth Multipliers

Hesham Al-Twaijry and Michael Flynn

Technical Report : CSL-TR-95-684

November 1995

This work was supported using facilities supported by NASA contract NAG2-842
and a fellowship from Saudi Arabia.

Performance/Area Tradeoffs in
Booth Multipliers

by
Hesham Al-Twaijry and Michael Flynn
Technical Report : CSL-TR-95-684
November 1995

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305-4055
pubs@shasta.stanford.edu

Abstract

Booth encoding is a method of reducing the number of summands required to produce the
multiplication result. This paper compares the performance/area tradeoffs for the different
Booth algorithms when trees are used as the summation network. This paper shows that the
simple non-Booth algorithm is not a viable design, and that currently Booth 2 is the best

design. It also points out that in the future Booth 3 may offer the best performance/area
ratio.

Key Words and Phrases: Floating-Point, Multiplication, Booth, Trees

Copyright (© 1995
by
Hesham Al-Twaijry and Michael Flynn

Contents

1 Introduction 1
2 Encoding Methods 2
2.1 Non-Booth e 2
2.2 Booth 2 e e 2
2.3 Booth 3 e e 3
2.4 Redundant Booth 3 e 5
25 Booth2 /Booth3 5
3 Topology 6
3.1 4-2 counter tree e e 7
3.2 ZMtreeo e e 7
3.3 OS tree e e 8
3.4 Higher Order Arrays o i e 10
4 Layout Issues 10
5 Results 11
5.1 4-2Tree e e e e 11
5.2 ZM Tree e e 12
5.3 OS Tree . . . o o e e e 14
5.4 Higher Order Arrays o i i e 14
5.5 AT@AS . L . o e e e 15
5.6 Areavs. Delay L e 17
6 Conclusion 17

iii

List of Figures

WO 0~ S T = W N~

—_ =
— o

e O e T e S SO S Y
0~ O O = W N

(a) Parallel addition (b)Linear Addition 1
Non-Booth Encoding o o 2
Booth 2 Encoding Lo 3
Booth 3 Encoding Lo 4
Redundant Booth 3 Encoding L. 4
Booth 2 / Booth 3 Encoding 5
Multiplication Shape.o oL 6
(a) 4-2 Counter Internal structure (b) 4-2 Tree 6
Balanced Delay Tree 7
Overturned Staircase Tree o Lo 8
Higher Order Arrays Structure v v .. 9
IEEE Double Precision Format, 10
4-2 Tree Latency o o i i i e e e e e 12
Balanced Delay Tree Latency 13
Overturned Staircase Tree Latency 13
(a) Fully Dynamic HA (b) Dynamic Tree HA 14
Overturned Staircase Tree Latency 16
Area vs. Latency: (a) Encoding Scheme (b) Topology 16

iv

Result Result

Figure 1: (a) Parallel addition (b)Linear Addition

1 Introduction

Multiplication is one of the basic arithmetic operations that constitute programs. In fact
8.72 % of all instructions in typical scientific programs are multiplies [1]. Hardware designers
have recognized this and have devoted considerable silicon area to building high speed
multipliers.

Multiplication is achieved by the addition of a certain number of summands. Each
summand is a chosen multiple of one of the operands (multiplicand), based upon the value
of certain bits of the other operand (multiplier). The addition of these summands is a
relatively long latency carry propagate addition (CPA). In order to reduce the total time
required to produce the result a redundant form of addition, most commonly carry-save
addition, is used. In carry-save addition, the summands are split into columns, in which
each column’s addition progresses independently from adjacent columns. Each column has
a certain number of inputs called partial products. In high speed multipliers, the addition
of the partial products is done in parallel using tree structures as shown in figure 1(a), in
contrast to serially as in linear arrays. The number of adders needed to reduce the partial
products is the same for both trees and arrays. The only difference being that trees have
more complex interconnections.

The number of summand that must be added to give the multiplications’ result can be
reduced by using Booth encoding [3]. In Booth encoding the number of summands is reduced
by recording the multiplier bits into groups that select multiplies of the multiplicand. Higher
order Booth encoding reduces the number of summands by a greater degree by encoding
larger groups of multiplier bits and therefore requiring a larger group of multiples to select
from and consequently a more complex selection table.

This study investigates the relationship between the topology of the partial product
interconnections and the encoding scheme used. It also studies the effect of these topologies
and encoding schemes on the latency and area of the multiplier, when the multiplier is part

gem 91 Se WYLIOS[e [Yjoog 9y], ‘puedrdinu ayj jo sofdrjnuw 1o97es s3iq s31 Jo sdnoid yey)
os Ierdnuw 9y} SuIpIodal Aq SPUBRTWNS 97} JO I9qUWINU 2y} 2onpal 0 sjdwelle WyjLIos[e
qjoog 9y, ‘19319 SI pawiwins ag 0} pedu jey) so[dinuw pueddinu jo IBqUWNU IB[[RWS Y

¢ qyood <c¢'¢

")J[nsel [euly 8y) sonpoid 0} pewrwins aq 01 Pesu JeY] spuedidinum
JO IaquinUu oY} UT UOI}INPal OU ST 8Ia(} ‘A[9)RUNIIOJU() *9)es ([N °[dWIs © ST 2130[UOI}09[eS
puewwns s wyjrogde sty [, “{N 0} 19 90U} Wolj pajda[es sI pURWIWNS 9} WY)LIOF[e SIY) U]
")[nsal Jeuy a1} eonpold 0} peppe A[[RUOI}IPUOD ST puedI[dINuU a1} aIeym WIILIOS[R pPpe pue
iys ' A[dwrs st wyjLIog[e sy, "yjoog-uou sI SUIPOIUL I0J poyjeul iss[duwils pue }sIy ayJ,

yjoog-uoN 1°Z

")[nsel [eUl 2y} 9onpold 0] papassu ale Jel) SPURTIWNS JO IS(UNU 31} 80NPaI
0] pasn ale spoyjew asel], ‘9[qissod are puedrdimu syl SUIpoOUsS JO SPOYIPUW [RIDAIG

spoyIeAl Sutpoouy g

"UPATS 9I' SUOISN[IUOD 37} aIa(M § UOI}I8s A pamo[[0] ‘s)[nsal oY) sjussard ¢
uor)09s ‘A[[eUl,] ‘POO)SISpUN 19})3q 8] ULD S} NSSI 81} Y} OS PISN SIam JRY} SJUTRIISUOD 3Y)
sure[dxs UOI129¢ Pa(LIDS|P Ik Pash alw Je() s8180[0d0]) |1} ¢ UOIIDL8S U] "SaWLDS SUTPOIUL
JUSIBJIP 97 SqLIDS|p g UOIDag °SMO[[0] se peziuesio si 1aded siy) Jo Iepurewal oy [,

‘“UI9)SAS I98Ie[® JO

SuIpooUy] Yl00¢-UON :g 2INSLq

1onpoid
s BN

=N (@] 0000000000000 00 |
° o000 000000000000]
° o000 000000000000]
° o000 000000000000
° 0000000000000 000]
° 000000000000 0000]
° o000 000000000000]
T e o000 000000000000]
S e 0000000000000 000]
S |e 00000000000 00000
=e 0000000000000000]
° o000 000000000000
° o000 000000000000 m I
° 0000000000000 000] 0 0
[] l7................7 uonoe RS ng eidnniy
1|0 —~0000000000000000] 8106 L UOIB S NPO.d e

‘pueisdo paugdsun
ue s1sIy T, puedrdinu oy jo a[dinum sarjisod e SI purwWWNS }SB] 8} JRY) SINSUS 0] PIsU
91} WOIJ SO0 UoIssaIdxa o) Ul T BIJXS oY J, ﬁ%; ST SPURUWIWINS JO ISUINU 81} W{}LIOS[
1) SUuIs() "DI80] UoIas[Es Xa[duod jsowW 81} Sy Os[e WILIOS[R SIY], "paimbal st uonppe
opededord A1reo [nJ e Ieyjer jng -uonjejuswedwod pue 3unjiys oidwrs Aq peurelqo 9q
10U ued ‘o[dinur piey ® st 0) palls)el ST YoIYm ‘sidijnur [NE 9y} JO UOIjRISULS 9Y T,

‘Sunuswe[dwos pue Suryiys Ajdwrs Aq ‘sjqreurejqo Afises are ¢ 1deoxe im sediynu
o) [V ¥ 2Indy ur umoys se ‘{0 ‘pWF ‘WeF ‘WEF ‘VFF} 198 o) WoIJ 9q P[NOd PURBWWNS
[oef “pPURWIWNS UTR}ISD ® 1090 0) [9[[eled ul papoodsp st dnors yoes ‘sjiq Jo sdnors Surd
-dej1aa0 ojur peuonyaed st msrdynur ayq ¢ Yloog U] "0m) URY]) 191113 SIUNOUIR JJIUS SUIST
[nsel [euy 8y} @onpold 01 paimbsl spurwwing Jo Isquinu 8y} 2dnpal 0 a[qissod os[e ST 9]

€ yjood ¢€°¢

“4277drgnuL 9Y) JO 98] 9} 0 OILZ RIJXS UR }s®a]) SUIPPR A PaisIyde s sIYJ, ‘puedidimnum
a1} Jo sldrymu saryisod ® ST puewWINs 4se[8} JRY} SINSUS O} PI_U S WOIJ SBWOD UOIS
-seIdxs 8y} Ul T ®I)Xe ST, ﬁ%; ST spueWWNS JO I8qUINU 8} WYILIOS[R SIY} SUIS()
‘uorpejuswe(dwod pue Surniys ojdurs £q s[qeureiqo are sejdrynu
9s9Y) JO [y "¢ 2Indy ur umoys se ‘{(‘pVF ‘JUe¢F} 198 o) woiy puedrdrynw o) jo sidinu
' 109[s 07 [s[[eled Ul papodsp st dnois yoey 's11q ¢ Jo sdnoid surddejisso ojur pauoryred st
Ierdrynw oY) ‘wyjrIoge s1y) uy “pasn st [a[[eded ul Jurpoous 9y swioped yorym [¢] wryiL
-08[y Y100y PSYIPOIN o} ‘@lojeIsy], "A[[elss Sulpoous oy} peuriojrad pssodoid Afreursiio

surpoour] ¢ yjooq :¢ oInsrg

0 1onpoid
cm_zww as1 SN
° W 0000000000000 000C0CCCOCOCOOCOOOOOOOOCEO
)
°
° J j:ooooooooooooooole
° WJ 000000000000000005]
° 0000000000000 0005 !
.mow 0000000000000 05
Sle 0000000000005 !
S |e _] 0e00000000O0S5
=|e 000000005 o -
° XX XXX OE " ot
° XXX R - ot
[We- 00T
® We+ 110
*1 @] W+ o010
0 W+ 100
0+ 000
uopseps | sug endninn
9|CeL uondees 10Npo.d eied

8
=

Multiplier
ceeeeeeeeee00e00000co

B
-

B8
=

Multiplier

B
2

SuIpooUy] ¢ [100¢ JURPUNPIY :G SINSL

0 PNpoId
b @1 sN
°
° 00000000000000000000000000000000
°
° 000000 eeccocccoe
° o] o] o]
° o0 co0O | s]
o [] S e To|
° 060000C000CO0OOCOO0C S|T T
° o] o]
° Dee0ewe0e00e® ST T
. [o]
° 000C000C000C000CS|T T
° f
L4 X XIEEE
° 0000000000000 00000
°
d (o] TITT AP+ 1110

W-M ottt WE+M 0110

W-M TO0TT NE+M T0T0

We-X1 00TT NZ+M 0010

We-X TT0T e+ 1100

We-X 010t W+ 0100

We-X T00T W+ T000

WX 000T (] 0000

uonseps sug eidnnin uon®ps sug edniniy

3qe L Uond S 10NPo.d [eled

surpoour] ¢ yjooq : oInsrg

1Nposd
Al SN

..ﬁi

S

TITt Wb+ T110
01Tt e+ 0110
ToTT e+ T0T0
00Tt We+ 0010
T10T We+ T100
0T0T N+ 0100
TOOT W+ T000
000T 0+ 0000
uoneps sug Bldnin uon®ps sug Bidninw
9|Ce L Uoho9 RS 10NPo.d [elifed

€ ooy
pue z yjooq Aq pelmbal jel) UsaMIaq SSlIRA SWLYDIS S} Aq pallnbal spuewwins Jo Isqunu
9], 'SISqUINU DIW)IIRSO] OM] JO UOI}IPPe 97} SURSW UOIJRZI[RLISS 3Y} PU® ‘OIWU}LIRGO[ST
S9INJONIYS 991) SUISN SPURWIWINS JO WOIINPAI 8Y) SI JRYJ, 'SPURWIWINS 9Y) JO UOI}ONPSI |1
JO UOIjeZI[elIss 3Y)} JO 9sNeIa(| SI SIY], 'Uspply A@Rjie[duwod aq jou ued sdnmu ¢ sY) Jo
uorjeIsuas oY) I0J AjJeusd oY) se UM 9)9[dWOD ' JOU ST POYISU SIYY JeY) PaJOU 8q P[NOYS
1] "9 9INgY Ul UMOYSs se ‘SUIpodus ¢ [loog Suisn Aq pappe aq Ued SPURWIWNS SUTUTRUILI
o) ‘Apeal st o[diynu JN¢ oY) usym uayJ, ‘[¢] Surpoous g yjoog Suisn ‘[a[[ered ur spueur
-wuns 8y} JO aWOs SUIppe Aq ¢ 93 JO UOIRISULS oY) [)}Im pajerdosse Ajfeusd ayj) seonpar
polylew ST, g Y100 URY} I9MO[S 9q 0} ¢ ooy sesned s[dinur ¢ 8y} JO UOTJRISUSS YT,

¢ yjroog / g yzooq ¢'¢

"0I9Z ST 9319
91[) 0} Pappe }[NsSI 12U 9Y) JRY]} OS SWI) USFISSP J' SPURUWIWINS 9] 0] PIPPR U]} ST JURISUOD
ST} JO 9AI1RS9U B], "S90I9Z |1} PPR O} Pasu OU SI 9I8Y) "' ‘PaIOUSl 9 0} SUOI}RIO[9S8}
MO[[e [SIYJ, "SOLIIeD 9y} Ueamiaq sded fizdws ay) Ul s90I8Z oAy [[Im Isdiynw Sy Jo
so[diynur saryedau pue a2a11sod |3 B} OS PURWWNS [IB3 0} PIPPE SI JURISUOD Y "G 9In3Y
Ul UMOYS Se ‘sIappe 3y} ussmilsq uoljededolid LIIed ou [jIm ‘SIeppe IS[[RUWIS JO SOLISS ®
Sursn Aq pessryoe s uorjejusserdar juepunpad A[reryred oy, ‘[y] uoryejusserdss juepunpal
Afrerjared qusreambes ue Sunjersus3 Aq we[qold SIY) 9AJOS 0} swe ¢ Yjoog juepunpay ¢
s[diynu prey ay) Jo uUoljeIaUaE 8y} salnbal 41 ‘A[9jRUNIONU) g [l00¢ pUe [}00g-UOU 0]
071 peledwod spuewWWIns Jo I8qUINU IS[RWS & SaImMmbal 1 jer) adejueape ay)} sey ¢ yjooq

¢ yjoog juepunpay ¥'g

Surpoouyy ¢ qlooy / g qloog :9 9Ingig

1onpoId
s SN

B
=

n|®

-0 ®
- @ ®

T

.
!m.@xnnnnnnmw

" @ ®

" @ e e
-0 0 e
-0 e e

e e e e
-0 0 e e
-0 0 e e
-0 0 e e

"o e oo @
-0 0 e e e

Multiplier
cleee0ee0e0ee0e00000000CcO

B
-

Partial
Products

Sum

e © o o o o o Resllt

Figure 7: Multiplication Shape.

g } ,,,,,,,,, { ,,,,,,,,,

3-2 Counter

Trey 1977 7YT°

|
%H_%??f%

Courter 3-2 Counter | Counter

Figure 8: (a) 4-2 Counter Internal structure (b) 4-2 Tree

3 Topology

The different encoding schemes all produce a parallelogram shaped multiplier structure as
shown in figure 7. The rows of the parallelogram are added together to produce the final
result. In order to decrease the delay needed to produce the result, the redundant form of
addition, carry-save addition is used. In this form of addition, carries only propagate to
the next column. Each column in this method is treated independently. There are many
ways to connect the adder “counters” to produce the final result. The number of counters
does not differ between the different interconnection schemes. These different methods of
interconnecting the counters, or topologies, differ in the interconnection scheme used to
connect the adders.

These counters can be added together to form a linear array. In a linear array the
delay from each of the inputs is proportional to the location at which it is added to the
array. however, when all the inputs are available at approximately the same time, there
are better solutions. These better solutions are achieved by creating “balanced delay trees”.
The balanced delay trees are topologies in which the number of stages of delay, or counters,
for each input is approximately equal to the number of stages of delay for the other inputs.
This is achieved by making the outputs of counters be inputs to non-adjacent counters.
These topologies are called tree structures. This is in contrast to linear arrays, in which
each counters output is the input for the subsequent counter. These topologies include.

Linear Array

paix ;???\j???
?TT ?TT ?TT
B % ”” i

4-2 Counter

Figure 9: Balanced Delay Tree

3.1 4-2 counter tree

The 4-2 counter is constructed from two 3-2 counters as shown in figure 8a. The 4-2 counter
is symmetric, in that it has a 2 : 1 reduction ratio, while the 3-2 counter is not symmetric.

The 4-2 counter tree [6] has a regular and symmetric structure, as shown in figure 8b.
In the 4-2 tree, for every four inputs taken at one level, two results are produced at the
next level. This can be thought of as a redundant binary tree, since every counter reduces
two redundant numbers into one redundant number. The 4-2 tree’s binary nature makes
it commonly used in pipelined, and iterative multipliers. The symmetric nature of the 4-
2 counter facilitates the addition of latches that are needed for pipelining after each 4-2
counter. Iterative and pipelined 4-2 counter trees use the same structure for each bit pitch.

The 4-2 counters do not have a constant requirement for wiring tracks. The number
of wiring tracks increases by two when the number of partial products is doubled. Their
wiring requirement is similar to that of Wallace trees [8]. In that they are both logarithmic.
However, the growth rate of wiring tracks in 4-2 trees is smaller. Also, their wiring require-
ment is more regular, since Wallace trees, which use 3-2 counters, are extremely irregular
making them notoriously difficult to layout.

The advantage of the binary tree reduction of the 4-2 trees is not all that significant for
IEEE double precision numbers since the significand size is not a power of two.

3.2 ZM tree

This is the balanced delay tree proposed by Zuras and McAllister [7]. The ZM tree is based
upon the idea of balanced delay chains of counters. Trees are constructed by combining
progressively longer serial chains into serial chains below them. The connection between

Linear Array (3)

Body (5) —

5-3 Connector -

Figure 10: Overturned Staircase Tree

the two chains is made when the total delay of the upper chain is equal to the delay of
the lower chain. The connection is made when the number of counters in the critical path
of upper chain of counters is as long as the delay of the critical path of the chain of lower
counters. This method builds ZM trees of type one, which require only two tracks to feed
the output of one counter to the input of a non-adjacent counter, as shown in figure 9.

This tree structure has a very regular layout and it requires only a few primitive cells.
This type of tree generally uses more levels of counter delay than the Wallace tree [8] gives,
for most values of partial products that must be summed. To reduce the number of levels,
higher order ZM trees are constructed, by iteratively replacing the largest chains with ZM
trees of type 1. These higher order trees require a larger number of tracks, and are less
regular. The number of tracks required by ZM trees is 2P , where P is the order of the tree,
and the number of levels is O(NP;H).

7ZM trees are not easily pipelined. The pipelining of a ZM tree requires that the outputs
of the Booth muxes that are not at the first level, ie. those Booth muxes whose output is
after the first latch, must be latched in addition to the outputs of the 3-2 counters. So the
number of latches required is greater than the number of latches in a 4-2 counter tree. ZM
trees can be built to produce the result iteratively using structure that is similar to 4-2 tree.

3.3 OS tree

This is the Overturned Staircase Tree that was proposed by Mou and Jutand [9]. It is called
an overturned staircase because the way the counters are connected resembles a staircase.
This method divides a tree into a body and a root. The root is the last 3-2 counter in
the tree. The body is constructed recursively. In that a body of height k, where k is the

ﬁ?ﬂ

177

A0 SR O A R O A S O O A B 4

it

m

L

19 11t 115 113 11%_

=

L1

=

=)

177

ok

Sk

119

1
|

]
|

19

.
Byl Clba Gl bl Gl Lol
| - #IJ#]

[] [] |
Figure 11: Higher Order Arrays Structure

L]
o
L
S
L]
RS
L]
o
L
o
L
R

number of 3-2 counters in the critical path, is constructed from a body of height k-1 and
a linear array of height k-2. The linear array and the body are joined using a 5-3 counter.
The 5-3 counter is constructed from two 3-2 counters in series. This method build OS trees
of type one, as shown in figure 10. This tree structure requires a few primitive cells. It
requires 3 tracks to route signals between non-adjacent counters. The OS tree uses more
wiring tracks than the ZM tree. The OS tree needs more primitive cells, and it has a less
regular structure, compared to the ZM tree.

OS tree structure can give the optimal (minimum) number of counter levels for most
numbers of partial products. However, to achieve this, one has to use higher order OS trees.
Higher order OS trees can be built by replacing the linear arrays with OS trees of type one.
The higher order trees require more wiring tracks. The number of tracks required by OS

trees are 3P , where P is the order of the tree, and the number of levels is O(NP;H).

OS trees are not easily pipelined. The pipelining of a OS tree requires that the outputs
of the Booth muxes that are not at the first level, ie. those Booth muxes whose output is
added to the outputs of the first level counters, must be latched in addition to the outputs
of the 3-2 counters. So the number of latches required is greater than the number of latches
in a 4-2 counter tree. OS trees can be built to produce the result iteratively using structure
that is similar to ZM tree. However, OS trees are not typically used for iterative multipliers,
since 4-2 trees give a more regular topology, that uses the same number of counter levels.

Sign Bit Normalized Fraction Biased Exponent
@ (52 19

Figure 12: IEEE Double Precision Format

3.4 Higher Order Arrays

This is a class of arrays in which the 3-2 counters are designed as several linear array
chains. The chains are combined in parallel when the delay of the upper chain is equal to
the delay of the lower chain. This class of arrays can in fact be thought of as a collection
of ZM trees of type one. The ZM trees have been designed for the column with the largest
number of inputs. This design is replicated for all other columns. In this design the
non-critical columns are not optimized. This design trades of the performance of the non-
critical columns for regularity, as shown in figure 11. The regularity of the higher order tree
is proportional to the number of linear arrays that are combined. The smaller the number
of arrays the more regular the design.

Higher order trees can be classified according to the lengths of the chains of partial
products before the combining occurs. For example the 6-6-8-8 array has a linear array
that combines 6 partial products which is combined with an array the combines 6 partial
products. The resulting structure is then combined with an array that combines 8 partial
products. Finally the resulting structure is combined with an array that sums 8 partial
products.

Higher order arrays are just as easily pipelined as arrays. However since their design is
proposed to reduce the latency of the multiplier using the smallest number of wiring tracks
available, pipelined iterative higher order trees are not very attractive.

Since Higher order arrays are just ZM trees of type 1 they require only two tracks and
there summing time is O(V/N)

4 Layout Issues

The multiplier under consideration uses the IEEE floating point arithmetic standard [2].
The format for double precision numbers, as defined by the standard, is shown in figure 12.
The standard defines numbers in a sign-magnitude, normalized format. The standard has
a normalized significand, that is the most significant bit of the fraction is always 1, and
therefore is not stored. The significand effectively becomes 53 bits. To achieve the rounding
accuracy defined by the standard, the full 106 bit result has to be calculated, even though
almost half of it is used only for rounding.

The multiplier is part of a processors datapath which forces the width of each subcell or
bit pitch to be constant. The required structure for connecting the counters for each topology
is achieved by varying the interconnection network of the adders. The interconnection
network is routed on top of the adders themselves. For the bit pitch chosen for the study,
45pm, sixteen wiring tracks per bit pitch are available. Only twelve of these tracks are
available for routing. The other four tracks being used for the routing of the two operands,
result, power, and ground buses. The power and ground can be designed such that they

10

use a single bus by mirroring!. These twelve tracks are used to route the interconnections
between the counters, in addition to the routing of the Booth muxes outputs and inputs.

Based upon the number of wiring tracks one has available and the number of tracks
required by the chosen topology, one uses either single-ended or complementary signal
circuits. Single-ended signals include both the static or pass transistor logic families [10].
While the fast complementary signal circuits include the domino [11], NORA [12], and
CVSL [13] logic families. An expanded discussion about the merits and disadvantages of
each logic family when implementing counters can be found in Song[14].

For the topologies chosen, higher order arrays were implemented in domino logic, while
all other topologies used a combination of static and pass transistor circuits.

5 Results

The circuits were simulated using HSPICE. They were simulated for an HP 0.8um processes.
The simulations are run for typical processing conditions at 25°C. The simulation includes
the wire delays that are modeled using the Ersatzco [15] wire model. This model calculates
the wire RC delay by placing half the wires capacitance on each side of the wires resistance.
The capacitance is calculated using the parallel plate model, with fringing capacitance.
This model has the advantage of being computationally simple, while still providing accurate
results. The transistor models include an approximation of the gate and source capacitances
that is calculated automatically by HSPICE.

The delays are measured from the time the input is latched into the circuit by the system
clock in the latches to the time the result becomes available at the output of the trees before
the CPA. The specified areas are only for the multipliers reduction tree.

5.1 4-2 Tree

The results for the 4-2 tree are given in figure 13. From this figure we can see that Non-
Booth has a larger set up time than Booth 2. This is surprising since it has very simple
selection logic. This setup delay is larger because of the extra wiring delay and capacitance
due to the large number of summands. The reduction time is also slow because the tree
needs 5 “4-2” levels to produce the result. Booth 2 is is the fastest. This is due to several
factors. The first is it has a small number of summands, so it does not load the drivers for
the booth muxes inputs. Secondly it does not require the generation of a hard multiple.
Finally, it requires 8 levels. Booth 3 has a smaller reduction time than Booth 2, even
though they have the same number of levels. This is due to its having a smaller number of
summands and consequently less capacitance due to wiring. However, the generation of the
3M multiple cause this configuration to be slow. For the redundant Booth 3 configuration
the large set up time is due to the complexity of the encoding and Booth muxes. There is
a slight advantage to the reduction time compared to Booth 2 due to the decrease in the
number of summands. In the hybrid Booth 2 / Booth 3 configuration Booth 2 reduces 18

"Mirroring is the circuit layout scheme,in which one places the power and ground buses at the edges of
the subcell. The subcells are then mirrored, so that one can place the power and ground lines of adjacent
cells on top of one another.

11

12

10.52 10.33 1055
10
8.38
75
8 6.65 [| Set-up
6.17 5.97 :
58 -
2 6 5.53 L] Tree
4.36
4 39 B Total
3.02
258
2
0
E=] N @ = @
S = £ s «
@ S S 2 £
c [a) m 3 o
) = o)
b4 & 0

Figure 13: 4-2 Tree Latency

summands. This requires 8 levels, the time required to reduce the 8 summands is greater
than the time required to generate the 3M multiple and it is included in the set up time.
In this configuration the tree time is the time required to reduce the Booth 3 tree for the
configuration.

5.2 ZM Tree

For the balanced delay tree, Non-Booth is the slowest, as can be seen from figure 14. It
also has a larger set up time than Booth 2. This is due to the extra wiring delay and
capacitance due to the large number of summands. The reduction time is also slow because
the tree needs 11 levels to produce the result. Booth 2 is is the fastest. This is due to the
same factor as the 4-2 tree Booth 3 has a smaller reduction time than Booth 2. This is
due to its having a smaller number of summands and consequently less capacitance due to
wiring, and to its needing 7 levels compared to 8 that are needed by Booth 2. However,
the generation of the 3M multiple causes this configuration to be slow. For the redundant
Booth 3 configuration the large set up time is due to the complexity of the encoding and
Booth muxes. There is a slight advantage to the reduction time compared to Booth 2 due
to the decrease in the number of summands, which causes the wire capacitance to be less
even though they have the same number of levels. In the first hybrid Booth 2 / Booth 3
configuration, Booth 2 reduces 12 summands then it has to wait for the 3M multiple to
be generated so that the reduction can continue using Booth 3. This fact causes it to be
slightly slower than the other Booth 2 / Booth 3 configuration. The second hybrid Booth
2 / Booth 3 configuration Booth 2 reduces 18 summands. This requires 7 levels. The time
required to reduce the 18 summands is still less than the time required to generate the 3M
multiple. This design is slightly faster than the other hybrid configuration because it has
fewer summands.

12

ns

12

10

12

10

1034 9.9
8.12
7.39
6.14
5.5 5.65
4.75)
4.25
29 2.53

Non-Booth

Non-Booth

Booth 2
Booth 3
Redundant
Booth
2(12)/3(10)
Booth
2(18)/3(6)

Figure 14: Balanced Delay Tree Latency

10.89

Booth 2

Booth 3

Booth
2(18)/3(6)

<)
=)
SR
]
m\—l

o

N

Redundant

Figure 15: Overturned Staircase Tree Latency

13

| Set-up
L] Tree

M Total

| Set-up
[Tree

M Total

-

812

0
7.84 9
o 679 653 8
6.03
5.69 7 6.43
527 513 513 M set-up . 603 M setup
417] [Tree 2 5 224 a2 [0 Tree
317, 4
25 269 M Total 264 264 291 [Total
3 247
17 152 L 14 2
1
0

Figure 16: (a) Fully Dynamic HA (b) Dynamic Tree HA

oCRr N WSO O N ®O

Non-Booth
Booth2
Booth3

Redundant

Booth
2(12)/3(10)

Booth
2(18)/3(6)

Non-Booth
Booth 2
Booth3

Redundant

5.3 OS Tree

The same general considerations as the previous two cases apply here as can be from fig-
ure 15. However, here Non-Booth is not the slowest. This is because the optimal number of
levels is used to produce the result (9 levels). This fact overcomes the extra delay associated
with non-Booth and cause Booth 3 to be the slowest.

As an aside, when the wire lengths were zero, that is the extra delay due to the wiring
capacitance is removed the difference between non-Booth and Booth 2 in terms of delay
becomes 0.03ns. This is an insignificant number that can be ignored. So in fact their delays
become equal. That is, for Booth 2; wires contribute only 13.5 % extra delay, while for
non-Booth they contribute 32 % extra delay. Therefore the big performance advantage for
Booth 2 disappears when there is not any wiring delay. For Booth 3 the wires contributed
12 % of the delay. This contribution is relatively minor, due to the shorter wires used in the
tree and to the short wires and many levels of carry lookahead used in the 3M generator,
which is the major contributor to the large set-up time. Redundant Booth 3 showed a
smaller contribution for the wires to the delay, for they contributed 9.5 % of the delay.
Redundant Booth 3’s wires contributed to the delay is insignificant because of the short
wires used in the ripple carry adders used to produce the redundant 3M representation. In
addition the tree reduction time is almost equal for Booth 2 and Redundant Booth 3 when
there are no wires. this is because they both use the same number of counter levels. The
smaller latency of the tree for the redundant Booth 3 was due to the smaller number of
summands and hence, shorter wires. Finally for the combined Booth 2 / Booth 3; the wires
contributed 10 % of the delay for both configurations. Their wires contribution to the delay
was less than Booth 2 and Booth 3 because of the parallelism between Booth 2 reduction
and Booth 3 multiple generation, which hid some of the wire delay.

5.4 Higher Order Arrays

Higher Order arrays are in reality ZM trees of type 1. This means that they are not fully
optimized trees and consequently they have a large number of levels. The fact that they
are ZM 1 trees means that they have minimal wiring tracks need. This allows the use of
dynamic circuits in contrast to the previous methods which all required single ended static
circuits. Figure 16(a) gives the latencies for the different algorithms when the multiplier
is build from a fully dynamic structure. The same general considerations as the previous
three cases apply here. However, the redundant Booth 3 solution is extremely attractive

14

here, as it provides almost the same performance as Booth 2 trees. This is due to the fact
that there is a high correlation between the number of summands and the number of levels
that are required to reduce them.

For the dynamic tree only part, shown in figure 16(b), it is not possible to intermix
Booth 2 and Booth 3 because of the monotonic signal requirement for domino circuits,
which would require an extra clock. The addition of an extra clock is not practical due to
timing constraints. The same general considerations as those of the fully dynamic multiplier
also apply to the multiplier that has only a dynamic tree.

Circuit Type Length | Width
(1) (1)

3-2 Counter Static 73 45
Dynamic 105 45

4-2 Counter Static 146 45
Dynamic 210 45

AND Gate Static 16 45
Dynamic 16 45

Booth 2 Encoder | Static 32 213
Dynamic 40 369

Booth 3 Encoder | Static 50 284
Dynamic 60 476

Booth 2 Mux Static 32 45
Dynamic 40 45

Booth 3 Mux Static 50 45
Dynamic 60 45

56 bit Adder Static 345 45
Dynamic 315 45

Table 1: Subcell Circuit Sizes

5.5 Areas

The areas for each subcell used in the design are given in table 1. Non-Booth always has the
largest area, as can be seen from figure 17. This is because of the large number of summands
required. Booth 3 is always the smallest because it requires the fewest summands. However,
the area for Booth 2 is not that much more than redundant Booth 3. This is because of the
need for an adder in redundant Booth 3, and the fact that the Booth muxes and encoders
are larger for Booth 3. The area for Booth 2 is smaller than that for Booth2(18)/3(6)
because the reduction in the number of summands does not offset the extra area used for
the 3M adder and the increase in size due to the Booth Muxes. The break even point where
the areas are offset occurs at Booth2(12)/3(10).

15

B Non-Booth [] Booth 2 B Booth 3

M Rredundant Booth [Booth 2(12) / 3 [] Booth 2
3 (10) (18)/3(6)

17.27 175

1139 1139 0,812'342'23234

1.089 6710.89
7 5785787

75 678578

42" os ™M HA(fully) HA

Figure 17: Overturned Staircase Tree Latency

19
L] Booth 2
17 =]
o Non-Booth
15
£ 13 * Booth 3
£ u A
11 | I ’ O Redundant Booth3
3
9 g A A Booth 2(12)/Booth
* o0 3(10)
7
Booth 2(18)/Booth
° 3 (6)
5 7 9 11 13
ns
19
17 Best Performance A
L6
15
v
13 4
£ * 42"
11 A . u,]
A HA(fully)
o pu*o " B SRR
E Oe A HA
7 Best Area x v
Smallest Area
5
5 6 7 8 9 10 11 12

ns

Figure 18: Area vs. Latency: (a) Encoding Scheme (b) Topology

16

5.6 Area vs. Delay

Figure 18a gives the graphs for the area vs delay for the different algorithms. From this
figure we can see that non-Booth is not a viable solution, in that its points are all in the
upper right part of the graph. Booth 2 provides the best performance, while Booth 3 has
the minimum area. The other 3 algorithms fall in between these two.

Figure 18b gives the graphs for the area vs delay for the different topologies. From this
figure the absolute best performance possible is for Booth 2, fully dynamic higher order area.
The figure also shows that the smallest area is achieved by Booth 3 overturned staircase
tree, while the best performance area is provided by Booth 2 overturned staircase tree.

6 Conclusion

Non-Booth is not a viable design. It consistently gives the largest area, and always is one of
the worst in terms of latency. Booth 2 gives the designs with the smallest latency. This is
because an additional adder is not required, and that the best possible reduction in number
of counter levels needed to sum the summands, as achieved by Booth 3, is only 1. Booth 3
produces the smallest designs because they have the least number of summands. Redundant
Booth 3 is not very attractive for tree based designs. It is more suited to standard cell based
designs, in which higher order arrays can be thought of as an extreme case, because the
number of levels is more closely correlated with the number of summands. Booth 2 / Booth
3 falls in-between Booth 2 and Booth 3 in terms of latency, even though the reduction in
area is not as extreme.

As wires continue to account for larger fractions of the total delay, due to decreasing
feature size, Booth 3 may provide the best solution. This observation was made because
for Booth 2 and Non-Booth the wire contribution to the delay is not insignificant. In the
future it is possible that when the wire delay will dominate the total delay, the number
of tree levels will not be the deciding factor. Rather, the number of summands, which is
directly correlated to the wire lengths, will be the determining element.

References

[1] Stuart Oberman and Michael Flynn, “Design issues in Floating Point Division”, Tech-
nical Report: CSL-TR-94-647, Stanford University Dec 1994.

[2] An American National Standard, “IEEE Standard for Floating Point Arithmetic”,
ANSI/IEEFE standard 754-1985

[3] O.L. McSorley, “High Speed Arithmetic in Binary Computers”, Proceedings of the IRE,
49(1), pp. 67-91, Jan 1961.

[4] G. Bewick, “Binary Multiplication Using Partially Redundant Multiples”, Technical
Report: CSL-TR-92-528, Stanford University, June 1992.

17

[5] B. S. Cherkauer and E. G. Friedman, “A Hybrid Radix-4/Radix-8 Low Power Signed
Multiplier Architecture”.

[6] M. Santoro, “Design and Clocking of VLSI Multipliers”, Ph.D. Thesis, Stanford Uni-
versity, Oct. 1989

[7] D. Zuras and W. McAllister, “Balanced Delay Trees and Combinatorial Division in
VLS, IEFEE J. Solid-State Circuits, vol SC-21, No.5, pp. 814-819, Oct. 1986

[8] C.S. Wallace, “A Suggestion for a Fast Multiplier”, IEEFE Trans. Electronic Computers,
pp. 14-17, Feb. 1964.

[9] Z. Mou and F. Jutand, “A Class of Close to Optimum Adder Trees allowing Regular
and Compact Layout”, IEFFE Trans. Computers, pp. 251-254, 1990.

[10] C. A.Mead and L. A. Conway, “Introduction to VLSI systems”, Reading, MA, Addison
Wesley, 1980.

[11] R. Krambeck, C. Lee and H-F. Lew, “High Speed Compact Circuits with CMOS”,
IFEE Journal of Solid State, pp. 614-618, June 1982.

[12] N. Goncalves and H. DeMan, “NORA: A Race Free Dynamic CMOS technique for
Pipelined Logic Structures”, IEFE Journal of Solid State Circuits, Vol SC-18, No.3,
pp- 261-266, June 1983.

[13] L. Heller, W. Griffin, J. Davis and N. Thomas, “Cascode Voltage Switch Logic: A
differential CMOS Logic Family”, IFEF International Solid State Conference, pp. 16-
19, Feb. 1984.

[14] P. Song, “New circuit and structures for combinatorial multipliers”, Ph.D. Thesis Stan-
Jford University, 1993.

[15] M. Horowitz, EE371 Class notes.

18

