
LATENCY TOLERANCE

FOR DYNAMIC PROCESSORS

James E. Bennett

Michael J. Flynn

Technical Report No. CSL-TR-96-687

January 1996

The research described herein has been supported by NASA-Ames under grant

NAGW 419, using equipment supplied by Silicon Graphics, Inc.

LATENCY TOLERANCE

FOR DYNAMIC PROCESSORS

by

James E. Bennett

Michael J. Flynn

Technical Report No. CSL-TR-96-687

January 1996

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

pubs@shasta.stanford.edu

Abstract

While a number of dynamically scheduled processors have recently been brought to market, work

on hardware techniques for memory latency tolerance has mostly targeted statically scheduled

processors. This paper attempts to remedy this situation by examining the applicability of hardware

latency tolerance techniques to dynamically scheduled processors. The results so far indicate that

the inherent ability of the dynamically scheduled processor to tolerate memory latency reduces

the need for additional hardware such as stream bu�ers or stride prediction tables. However, the

technique of victim caching, while not usually considered as a latency tolerating technique, proves

to be quite e�ective in aiding the dynamically scheduled processor in tolerating memory latency.

For a �xed size investment in microprocessor chip area, the victim cache outperforms both stream

bu�ers and stride prediction.

Key Words and Phrases: Dynamic scheduling, Memory latency, Stream bu�er, Stride pre-

diction, Victim cache, Nonblocking cache

Copyright c
 1996

by

James E. Bennett

Michael J. Flynn

Contents

1 Introduction 1

2 Experimental Procedure 1

2.1 The benchmarks : 1

2.2 The processor model : 2

2.3 The memory subsystem : 2

3 Results 3

3.1 Stream bu�ers : 3

3.2 Stride prediction : 6

3.3 Victim caches : 10

4 Discussion 13

4.1 Software techniques : 13

4.2 Stream bu�ers with �lters : 14

4.3 Cache associativity : 14

4.4 Future directions : 14

5 Conclusion 15

iii

List of Figures

1 Stream Bu�ers - L1 Cache : 4

2 Stream Bu�ers - L2 Cache : 5

3 Stride Prediction - L1 Cache : 7

4 Prediction Queue - L1 Cache : 8

5 Prediction Queue - L2 Cache : 9

6 Victim Cache - L1 Cache : 11

7 Victim Cache - L2 Cache : 12

iv

List of Tables

1 The Benchmarks : 2

2 Stream Bu�er Miss Rates : 3

3 Stride Prediction E�ectiveness : 10

4 Victim Cache Miss Rates : 13

v

1 Introduction

The current crop of microprocessors includes a number of dynamically scheduled machines, such as

the Intel P6 and the PA{8000[Gwe95, Gwe94]. However, most recent studies of hardware techniques

for tolerating memory latency, such as stride prediction[CB95] and stream bu�ers[KF95, Jou90],

have included only statically scheduled processors. In this paper we study the e�ectiveness of these

hardware techniques when applied to dynamically scheduled processors.

Dynamic scheduling has been proposed as a technique for tolerating memory latency[CCMH91,

BP91, GGH92]. By speculating through branches, fetching load instructions, and issuing these as

soon as the address is available, the dynamic processor can e�ectively prefetch data. This aspect of

dynamically scheduled processors may limit the e�ectiveness of other hardware schemes for latency

tolerance. This study tends to con�rm this suggestion, but at the same time, shows that there are

other techniques that can enhance the e�ectiveness of dynamic processors in tolerating memory

latency. In particular, victim caches[Jou90] work well in conjunction with a dynamic processor.

This paper is organized as follows. In section 2, the experimental procedure is outlined, with

descriptions of the processor model, the simulation environment and the benchmarks. Section 3

describes the techniques used to improve the processor's latency tolerance and the results of the

simulation runs. Section 4 discusses these results and related work on techniques for tolerating

memory latency. Finally, section 5 presents some conclusions and plans for future work.

2 Experimental Procedure

In order to accurately model a dynamically scheduled processor, an execution based simulation

method was chosen. In this way the e�ect of cache misses on the instruction schedule can be

correctly modeled, as well as memory accesses that are generated along incorrectly speculated

paths. This information (speculative memory accesses) isn't available to a trace based simulator.

The disadvantage of an execution based simulation is that the speed of the simulation limits the

number of cycles that can be reasonably simulated. To allow the simulation of complete programs,

rather than an initial subset, the input data had to be reduced in some cases. The cache size was

then �xed for each benchmark to obtain miss rates comparable to those observed in real world

applications[MDO94].

2.1 The benchmarks

A set of benchmarks was chosen from the SPEC 92 benchmark suite, together with the Linpack

benchmark, a collection of linear algebra routines. This set was chosen in order to provide a variety

of reference patterns and programming styles, and includes both integer and
oating point intensive

benchmarks. All benchmarks were run to completion, in some cases on a reduced problem size.

Cache sizes were �xed for each benchmark to maintain miss rates of around 5{10% for the level

1

Benchmark Instructions Miss rate [size] Miss rate [size]

L1 cache L2 cache

Compress 2.3M 9.14% [8K] 2.29% [128K]

Uncompress 1.7M 10.55% [1K] 0.99% [16K]

Espresso 37.3M 3.53% [4K] 1.19% [8K]

Sc 37.8M 4.93% [4K] 2.71% [16K]

Xlisp 11.8M 6.55% [1K] 1.66% [8K]

Linpacks 66.9M 7.33% [8K] 2.15% [32K]

Spice 91.9M 9.39% [8K] 2.39% [64K]

Wave 32.7M 9.51% [8K] 2.29% [32K]

Table 1: The Benchmarks

one cache, and 1{2% for the level two cache. Table 1 shows the benchmark length, in instructions

executed, and the level one and two cache sizes and miss rates for each benchmark.

2.2 The processor model

The processor model was selected to represent the current generation of dynamically scheduled

processors, such as the Intel P6 and the PA-8000[Gwe95, Gwe94]. It is a four issue, dynamically

scheduled processor, with register renaming, branch prediction, speculative execution, and precise

interrupts[HP90]. Instructions issue out-of-order, as their operands become available, and a reorder

bu�er is used to restore the precise state after an interrupt[SP85, Joh91]. The load/store bu�er has

32 entries, and the reorder bu�er is 64 entries long. For comparison, the P6 has 40 reorder bu�er

entries, and the PA-8000 has 56.

More detailed information on the benchmarks, processor model, and simulation environment are

available in [BF95].

2.3 The memory subsystem

The simulator supports only a single level cache. In order to investigate the impact of both level one

and level two cache misses, each benchmark was run with two di�erent cache sizes, one modeling

the �rst level cache, and the other modeling the second level cache. The cache is single ported, so

only one load or store instruction can access the cache each cycle. It is four way set associative

with an LRU replacement policy and a �xed line size of 16 bytes. The cache is write back with

write miss allocate. The same line size was used for the L1 and L2 caches, so that the e�ects due

to cache size and memory latency could be isolated from the e�ects due to varying the line size.

Both memory latency and memory bus tra�c were modeled. An L1 cache miss has a latency of 8

cycles and consumes 4 bus cycles. An L2 cache miss has a latency of 50 cycles and consumes 8 bus

cycles. The bus activity due to instruction cache misses and other system activities, for example

disk accesses, was not modeled.

2

Benchmark Stream bu�er Stream bu�er

on L1 cache on L2 cache

Compress 99.76% 92.45%

Uncompress 98.54% 65.15%

Espresso 66.14% 66.57%

Sc 80.46% 81.58%

Xlisp 94.36% 86.13%

Linpacks 12.23% 64.48%

Spice 86.00% 75.22%

Wave 93.70% 77.37%

Table 2: Stream Bu�er Miss Rates

In many current systems, the miss penalties are considerably greater than this (private commu-

nication, Larry McVoy), so that the results presented here actually understate the speedup that

might be achieved by these various latency tolerating techniques.

3 Results

3.1 Stream bu�ers

Stream bu�ers were �rst proposed by Jouppi[Jou90] as an extension to the older idea of prefetching

on a cache miss[Smi82]. The idea is to allocate room for a series of sequential fetches when a cache

miss occurs. In this study, four stream bu�ers were allocated, each eight cache lines long.

On a cache miss, the stream bu�ers are checked to see if the data is present. If so, then the data is

fetched from the stream bu�er into the cache, and removed from the stream bu�er. The succeeding

bu�ers in the stream are moved forward to take its place.

If the data is not present in any stream bu�er, then the cache line is fetched from the next level in

the memory hierarchy. In addition, the least recently used stream bu�er is allocated to service this

new (potential) data stream. Each cycle when the bus is idle, the stream bu�ers are checked to see

if they have an available bu�er, and if so a prefetch is issued. The stream bu�ers are serviced in a

round robin fashion when more than one is active.

Figure 1 shows the performance of the dynamic processor with and without stream bu�ers. The

\Performance Ratio" is the number of cycles it took to execute the benchmark on the given processor

model, divided by the number of cycles it took to execute the same benchmark on a system

with perfect memory (0-cycle cache miss latency). A performance ratio of 1.0 indicates that all

the memory latency was e�ectively hidden, while a ratio of 1.2 indicates that there was a 20%

degradation in performance due to cache misses.

In this case we see that the performance is little changed in most cases. Only Linpack, with its

highly sequential access pattern, shows a dramatic improvement. The e�ectiveness of stream bu�ers

3

Base Stream Buffer
Configuration

1.0

1.1

1.2

1.3

P
er

fo
rm

an
ce

 R
at

io

L1 Cache

Compress
Uncompress
Espresso
Sc
Xlisp
Linpacks
Spice
Wave

Figure 1: Stream Bu�ers - L1 Cache

4

Base Stream Buffer
Configuration

1.0

1.1

1.2

1.3

P
er

fo
rm

an
ce

 R
at

io

L2 Cache

Compress
Uncompress
Espresso
Sc
Xlisp
Linpacks
Spice
Wave

Figure 2: Stream Bu�ers - L2 Cache

varied widely with the benchmark, as can be seen by comparing miss rates (see table 2, under \L1

cache"). The miss rate given here is the local miss rate, the percent of misses out of all references

to the stream bu�er.

In cases where the miss rate was especially high, such as Compress and Uncompress, the perfor-

mance got worse when stream bu�ers were added. This degradation is caused by the extra bus

tra�c generated by stream bu�ers. Even though stream bu�er prefetches were issued only when the

bus was idle, once on the bus they take up several cycles, and may delay the handling of subsequent

cache misses.

In the case of a level two cache (�gure 2), the addition of stream bu�ers always improved perfor-

mance, although the improvement isn't particularly impressive. By looking at the stream bu�er

miss rates in table 2 for the L2 cache, we see that miss rates have improved for many of the

benchmarks, but in the case of Linpacks the miss rate got much worse.

Because of the larger size of the level two cache, most of the capacity and con
ict misses have

been satis�ed, and the remaining misses are largely compulsory[HP90] or start up misses. Stream

bu�ers can exploit the spatial locality of these start up misses, which for most of the benchmarks

is greater than spatial locality of the misses from the level one cache.

Linpacks has a high degree of sequentiality in its cache misses from the level one cache. In the case

5

of the level two cache, however, the sequential accesses get sati�ed from the cache, and the cache

misses have much less locality.

3.2 Stride prediction

The basic idea of using stride information to predict future memory references, and collecting

this information dynamically, was reported by several researchers[CB91, Skl92, FPJ92]. A stride

prediction table, indexed by the program counter, records the address of the memory operation at

that location. When the instruction at that location is executed a second time, the new memory

address is compared to the previous address, and if they are di�erent, then their di�erence is the

stride.

In the scheme of Chen and Baer[CB95], the stride prediction table is indexed by a \lookahead PC",

which is the predicted value of the program counter some number of cycles in the future. This

number can be tuned to re
ect the expected latency of the memory subsystem. Chen and Baer

propose associating some additional state with the stride prediction table, and to make predictions

only when the stride is non-zero and the stride prediction has been con�rmed. That is, wait to make

a prediction until that entry is accessed a third time, and the second stride calculation matches the

�rst. The purpose of this is to reduce the number of incorrect or useless predictions.

In this study, we followed the approach of Chen and Baer, except for the lookahead PC. For a

dynamically scheduled processor, the program counter is not such a well de�ned concept. In this

work, we have de�ned the program counter as the address of the instruction currently being fetched.

This PC is used to index the stride prediction table, and a predicted address is generated by taking

the address found at that entry and adding the stride to it. We also experimented with adding a

multiple of the stride in order to fetch data several loop iterations ahead of the current PC.

In order to compare the e�ectiveness of stride prediction to stream bu�ers, a 64 entry stride

prediction table was chosen, as being roughly equivalent in area to the 32 cache lines of the stream

bu�ers. Each cache line was 16 bytes long, whereas each entry in the stride prediction has three

pieces of information: an address, a stride, and a valid bit. This information can be packed into

about 6 bytes, but the bit density will be lower for the table than for the cache line.

The results are shown in �gure 3. The di�erent con�gurations \SP - 1", \SP - 2", \SP - 4",

and \SP - 8" correspond to using multiples of 1, 2, 4, and 8 times the stride, respectively. These

multiples were chosen to minimize the hardware required to compute the predicted address. The

performance was generally worse for a system with stride prediction than for the base system. The

reason for this is that the predicted addresses compete with regular memory operations for scarce

cache bandwidth. When the stride multiple is one, the predicted address is the same as the actual

address, which will be computed by the processor within a few cycles of when it is fetched. In this

case, the performance penalty due to stealing cache cycles to handle the predictions outweighs the

bene�t of fetching the data a few cycles early.

As the stride multiple increases, the bene�t from providing the addresses early is greater, and it

starts to compensate for the lost cache access cycles. The results for the level two cache (not shown)

are similar.

6

Base SP - 1 SP - 2 SP - 4 SP - 8
Configuration

1.0

1.1

1.2

1.3

1.4

1.5

P
er

fo
rm

an
ce

 R
at

io

L1 Cache

Compress
Uncompress
Espresso
Sc
Xlisp
Linpacks
Spice
Wave

Figure 3: Stride Prediction - L1 Cache

7

Base PQ - 1 PQ - 2 PQ - 4 PQ - 8
Configuration

0.9

1.0

1.1

1.2

1.3

P
er

fo
rm

an
ce

 R
at

io

L1 Cache

Compress
Uncompress
Espresso
Sc
Xlisp
Linpacks
Spice
Wave

Figure 4: Prediction Queue - L1 Cache

8

Base PQ - 1 PQ - 2 PQ - 4 PQ - 8
Configuration

1.0

1.1

1.2

1.3

P
er

fo
rm

an
ce

 R
at

io

L2 Cache

Compress
Uncompress
Espresso
Sc
Xlisp
Linpacks
Spice
Wave

Figure 5: Prediction Queue - L2 Cache

9

Benchmark Prediction ratio Prefetch ratio

Compress 5.36% 0.18%

Uncompress 7.01% 1.48%

Espresso 24.69% 1.16%

Sc 15.05% 1.54%

Xlisp 12.97% 0.95%

Linpacks 77.43% 15.24%

Spice 7.56% 1.08%

Wave 50.12% 6.60%

Table 3: Stride Prediction E�ectiveness

In order to deal with this problem, Chen and Baer[CB95] recommend dual porting the cache tags.

Then the prediction mechanism can determine if the predicted value is present in the cache, without

stealing cycles from regular memory operations. If the data isn't present in the cache, a prefetch

is issued to fetch the data into the cache. We simulated this case, and the results are shown in

�gures 4 and 5. We refer to this case as the prediction queue, because a separate queue, distinct

from the load/store bu�er, was used to handle the predicted addresses.

In the L1 cache case, we see that stride prediction with a stride multiple of two e�ectively hides the

memory latency of the Linpacks benchmark, and slightly improves the performance of the Wave

benchmark. These two benchmarks have a regular access pattern which is missing from the other

benchmarks, as can be seen in table 3. This table shows the ratio of valid stride predictions to

the total number of load instructions fetched (\Prediction ratio"). The column labeled \Prefetch

ratio" shows the number of predictions that generated a cache line prefetch to the L1 cache divided

by the total number of loads. By either measure, Linpacks and Wave score more highly than the

other benchmarks.

For a level two cache, stride prediction again improves the performance of Linpacks and Wave,

although in this case the best performance is achieved with a stride multiple of four. Linpacks

performance actually declines with stride multiples of one and two. The remaining source of

performance degradation in the prediction queue scheme is that prefetches can knock data out of

the cache that is still needed. Only when the stride multiple is increased to four does the bene�t

from prefetching outweigh the performance impact of this pre-empted data.

Another interesting result is that some of the benchmarks with irregular access patterns bene�t

from stride prediction in the level two cache case. This results from the increased locality of level

two cache misses, as we observed in section 3.1.

3.3 Victim caches

Finally, we consider victim caches, proposed by Jouppi in [Jou90]. A victim cache is a small, fully

associative cache that holds data recently pre-empted from the main cache. We used a cache size

of 32 lines, the same number of cache lines as were used for stream bu�ers. The results are shown

in �gures 6 and 7.

10

Base Victim Cache
Configuration

1.0

1.1

1.2

1.3

P
er

fo
rm

an
ce

 R
at

io

L1 Cache

Compress
Uncompress
Espresso
Sc
Xlisp
Linpacks
Spice
Wave

Figure 6: Victim Cache - L1 Cache

11

Base Victim Cache
Configuration

1.0

1.1

1.2

1.3

P
er

fo
rm

an
ce

 R
at

io

L2 Cache

Compress
Uncompress
Espresso
Sc
Xlisp
Linpacks
Spice
Wave

Figure 7: Victim Cache - L2 Cache

12

Benchmark Victim cache Victim cache

on L1 cache on L2 cache

Compress 61.60% 71.10%

Uncompress 39.82% 20.65%

Espresso 65.41% 22.03%

Sc 73.97% 54.57%

Xlisp 48.35% 55.52%

Linpacks 96.77% 15.11%

Spice 36.59% 21.50%

Wave 26.56% 69.46%

Table 4: Victim Cache Miss Rates

By comparing these graphs with the results in sections 3.1 and 3.2, we see that the victim cache is

e�ective in improving performance for more of the benchmarks than either stream bu�ers or stride

prediction. In the level two cache case, the addition of a victim cache signi�cantly improved the

performance of all the benchmarks.

Table 4 demonstrates one reason for the e�ectiveness of victim caches. The miss rates are better

(lower) for the victim cache than for the stream bu�er (see table 2) for all of the benchmarks for

both cache sizes, with the sole exception of Linpacks on the level one cache.

A second reason why victim caches perform well is that victim caches reduce the demands of

the processor on the memory bus. The victim cache intercepts and services requests that would

otherwise be sent to the next level in the memory hierarchy, which decreases the amount of bus

tra�c. Also victim caches never fetch data from memory; they copy the data from the cache before

it is overwritten.

Both stride prediction and stream bu�ers, on the other hand, always increase the load on the

memory bus. They generate prefetches in an attempt to get data into the cache before it is

needed. Whenever they are successful, the memory bus tra�c is unchanged, and whenever they

are unsuccessful (e.g. fetching data that isn't referenced), the memory bus tra�c increases.

4 Discussion

4.1 Software techniques

This study has compared various hardware techniques for tolerating memory latency. There has also

been work on software techniques for for tolerating memory latency, such as prefetching[MLG92,

TE95] and balanced scheduling[KE93]. Hardware and software techniques are compared in [BP92],

[CCMH91], and [CB94]. In general, it appears that software and hardware techniques are comple-

mentary. Compile time optimizations for memory latency tolerance can include large scale code

motion, such as loop transformations, that are beyond the scope of hardware techniques. On the

other hand, hardware techniques have access to dynamic information such as memory addresses

13

and recent reference history that is unavailable to the compiler.

4.2 Stream bu�ers with �lters

Palacharla and Kessler[PK94] propose that �lters be associated with stream bu�ers to reduce the

amount of bus bandwidth that is consumed by the stream bu�er. This proposal resembles the

stride prediction mechanism described in section 3.2. A history of cache misses is kept, and a new

stream is started only when a series of sequential misses is observed. They also propose extending

this mechanism to allow prefetching of strided data. The comparative study of [FJ94] concludes

that the main bene�t of �lters is to reduce the bus bandwidth consumed by stream bu�ers, and

that performance declined slightly when �lters were introduced.

In this study, the use of �lters might have improved the performance of stream bu�ers, because bus

bandwidth is a signi�cant performance issue, as noted in section 3.1. To see if this would a�ect the

relative merits of the di�erent latency tolerating techniques, the benchmarks were re-run with an

in�nite bandwidth memory subsystem. Even after eliminating e�ects due to bus bandwidth, the

victim cache still outperformed the other two techniques.

4.3 Cache associativity

The e�ectiveness of the victim cache is due in part to the low degree of associativity of the main

cache. That is, if the main cache were fully associative, then the addition of a small number of

additional fully associative cache lines would be unlikely to have a signi�cant a�ect on performance.

For all of these simulations, the main cache was taken to be four way set associative. Since the

victim cache was e�ective for this degree of associativity, making the main cache eight way set

associative might also be an e�ective way to increase performance.

Taking this argument in the other direction, systems with a direct mapped cache should bene�t

even more from the addition of a victim cache.

4.4 Future directions

In comparing the e�ectiveness of stream bu�ers, stride prediction, and victim caches for the di�erent

benchmarks, we see that stream bu�ers and stride prediction were both more e�ective for Linpacks

than for other benchmarks. For the victim cache (when added onto the level one cache), the

Linpacks benchmark had the worst miss rate of all the benchmarks. This suggests that the victim

cache and either stream bu�ers or stride prediction might work well in cooperation.

One possible extension of this work is to consider a combined stream bu�er/victim cache. A short

history of cache misses would be kept, as in [PK94], and when a stream of consecutive or strided

misses is detected, some of the cache lines could be stolen from the victim cache to serve as a stream

bu�er. We are currently investigating this possibility.

14

5 Conclusion

In this study, we have compared three hardware techniques, to see which was more e�ective at

helping a dynamically scheduled processor tolerate cache misses. These techniques, stride predic-

tion, stream bu�ers, and victim caches, have been previously shown to be e�ective in the case of

statically scheduled processors. We have looked at the question of whether these techniques are

still e�ective for dynamically scheduled processors, and also which of these techniques provides the

greatest bene�t for a �xed investment in processor die area.

All three techniques continue to be e�ective for certain classes of applications. Stream bu�ers and

stride prediction o�er a bene�t for applications with a regular access pattern, especially when the

data accessed doesn't �t in the cache (as in the case of Linpacks on the level one cache). Victim

caches, however, are more e�ective in improving performance for most of the benchmarks used in

this study. Because victim caches and stream bu�ers or stride prediction are e�ective for di�erent

benchmarks, combinations of these techniques are a promising area for future research.

15

References

[BF95] J. E. Bennett and M. Flynn. Performance factors for superscalar processors. Technical

Report CSL-TR-95-661, Stanford University, Computer Systems Laboratory, February

1995.

[BP91] M. Butler and Y. Patt. The e�ect of real data cache behavior on the performance of a

microarchitecture that supports dynamic scheduling. In Proc. of the 24th International

Symposium on Microarchitecture, pages 34{41, November 1991.

[BP92] M. Butler and Y. Patt. An investigation of the performance of various dynamic schedul-

ing techniques. In Proc. of the 25th International Symposium on Microarchitecture,

pages 1{9, December 1992.

[CB91] T-F. Chen and J-L. Baer. An e�ective on-chip preloading scheme to reduce data access

penalty. In Supercomputing 91, pages 176{186, November 1991.

[CB94] T-F. Chen and J-L. Baer. A performance study of software and hardware data prefetch-

ing schemes. In Proc. of the 21st International Symposium on Computer Architecture,

pages 223{32, April 1994.

[CB95] T-F. Chen and J-L. Baer. E�ective hardware-based data prefetching for high-

performance processors. IEEE Transactions on Computers, 44:609{23, May 1995.

[CCMH91] P. Chang, W. Chen, S. Mahlke, and W. Hwu. Comparing static and dynamic code

scheduling for multiple-instruction-issue processors. In Proc. of the 24th International

Symposium on Microarchitecture, pages 25{33, November 1991.

[FJ94] K. I. Farkas and N. P. Jouppi. Complexity/performance tradeo�s with non-blocking

loads. In Proc. of the 21st International Symposium on Computer Architecture, pages

211{22, April 1994.

[FPJ92] J. Fu, J. Patel, and B. Janssens. Stride directed prefetching in scalar processors. In Proc.

of the 25th International Symposium on Microarchitecture, pages 102{110, December

1992.

[GGH92] K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding memory latency using dynamic

scheduling in shared-memory multiprocessors. In 19th International Symposium on

Computer Architecture, pages 22{33, May 1992.

[Gwe94] L. Gwennap. PA-8000 combines complexity and speed. Microprocessor Report, 8:5{9,

November 1994.

[Gwe95] L. Gwennap. Intel's P6 uses decoupled superscalar design. Microprocessor Report,

9:9{15, February 1995.

[HP90] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Mor-

gan Kaufmann Publishers, Inc., Palo Alto, CA, 1990.

[Joh91] Mike Johnson. Superscalar Microprocessor Design. Prentice-Hall, Inc., Englewood

Cli�s, NJ, 1991.

16

[Jou90] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch bu�ers. In 17th Annual International Symposium

on Computer Architecture, pages 364{73, May 1990.

[KE93] D. R. Kerns and S. J. Eggers. Balanced scheduling: Instruction scheduling when mem-

ory latency is uncertain. In ACM SIGPLAN '93 Conference on Programming Language

Design and Implementation, pages 278{89, June 1993.

[KF95] P. Chow K.I. Farkas, N.P. Jouppi. How useful are non-blocking loads, stream bu�ers

and speculative execution in multiple issue processors? In First IEEE Symposium on

High-Performance Computer Architecture, pages 78{89, January 1995.

[MDO94] A. Maynard, C. Donnelly, and B. Olszewski. Contrasting characteristics and cache

performance of technical and multi-user commercial workloads. In Proc. of the Sixth

International Conference on Architectural Support for Programming Languages and Op-

erating Systems, pages 145{56, October 1994.

[MLG92] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for

prefetching. In SIGPLAN Notices, pages 62{73, September 1992.

[PK94] S. Palacharla and R.E. Kessler. Evaluating stream bu�ers as a secondary cache replace-

ment. In Proc. of the 21st International Symposium on Computer Architecture, pages

24{33, April 1994.

[Skl92] I. Sklenar. Prefetch unit for vector operations on scalar computers. Computer Archi-

tecture News, 20:31{37, September 1992.

[Smi82] A. J. Smith. Cache memories. Computing Surveys, 14:473{530, September 1982.

[SP85] J. E. Smith and A. R. Pleszkun. Implementation of precise interrupts in pipelined

processors. In 12th International Symposium on Computer Architecture, pages 36{44,

June 1985.

[TE95] D. Tullsen and S. Eggers. E�ective cache prefetching on bus-based multiprocessors.

ACM Transactions on Computer Systems, 13:57{88, February 1995.

17

