
OS Support for Improving Data
Locality on CC-NUMA Compute
Servers

Ben Verghese
Scott Devine
Anoop Gupta
Mendel Rosenblum

Technical Report: CSL-TR-96-688

February 1996

This work was supported in part by ARPA contract DABT63-94-C-0054. Mendel Rosenblum
is partially supported by a National Science Foundation Young Investigator award. Anoop
Gupta is partially supported by a National Science Foundation Presidential Young Investigator
award.

i

OS Support for Improving Data Locality on CC-NUMA
Compute Servers

Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum

Technical Report: CSL-TR-96-688

February 1996

Computer Systems Laboratory
Department of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305-2140
{pubs}@cs.Stanford.EDU

Abstract

The dominant architecture for the next generation of cache-coherent shared-memory
multiprocessors is CC-NUMA (cache-coherent non-uniform memory architecture). These
machines are attractive as compute servers, because they provide transparent access to local and
remote memory. However, the access latency to remote memory is 3 - 5 times the latency to local
memory. Given the large remote access latencies, data locality is potentially the most important
performance issue. In compute-server workloads, when moving processes between nodes for load
balancing, to maintain data locality the OS needs to do page-migration and page-replication.
Through trace-analysis and actual runs of realistic workloads, we study the potential
improvements in performance provided by OS supported dynamic migration and replication.
Analyzing our kernel-based implementation of the policy, we provide a detailed breakdown of the
costs and point out the functions using the most time. We study alternatives to using full-cache
miss information to drive the policy, and show that sampling of cache misses can be used to
reduce cost without compromising performance, and that TLB misses are inconsistent as an
approximation for cache misses. Finally, our workload runs show that OS supported dynamic
page-migration and page-replication can substantially increase performance, as much as 29%, in
some workloads.

Key Words and Phrases: data locality, CC-NUMA, virtual memory, page migration, page
replication

Copyright  1996
Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum

— 1 —

1.0 Introduction

Shared-memory multiprocessors today are primarily bus-based machines with uniform memory
access time (UMA machines). However, as multiprocessors get larger and the individual
processors get faster, the memory bus quickly becomes a bottleneck. With superscalar processors,
like the DEC Alpha 21164 that run at 300MHz, the bus is becoming a bottleneck even for small
systems. The architectural solution to this problem is to distribute the main memory with
individual processors, use directory techniques to provide cache coherence, and to use scalable
interconnect technology. Cache-coherent shared-memory systems come in two variations. The
first is the more traditional CC-NUMA machine (cache-coherent non-uniform-memory-access),
e.g. Stanford DASH [LLG+90], MIT Alewife [ACD+91], and Convex Exemplar, which use
specialized custom interconnect. The second is the CC-NOW machine (cache-coherent networks
of workstations), that use more general-purpose interconnect technology with the nodes being
users’ workstations, e.g. the Stanford Distributed FLASH proposal [Kus+94] and the SUN s3.mp
architecture.

Both CC-NUMA and CC-NOW machines will provide transparent access to local and remote
memory, making them attractive as compute servers. The access to local memory is optimized to
provide workstation-like latencies. The remote access latency is expected to be about 3-5 times
the local access latency for CC-NUMA and about 10-20 times the local case for CC-NOW. The
impact on application performance could be quite drastic if a large fraction of cache misses have
to be serviced from remote memory, consequently data locality is potentially the most important
performance issue. Traditional techniques to enhance locality, e.g. locking processes to specific
processors and allocating memory locally, conflict with the need to move processes around for
load balancing in compute-server workloads (affinity scheduling [VaZ91] is a compromise and is
important). Page migration can move data to the local memory of the processor running the
process. Replication of data in different memories, can also improve memory locality, potentially
even in parallel applications where careful static placement of data is usually done. The focus of
this report is to study OS supported migration and replication of pages, to enhance memory
locality in such systems.

The rest of this report is organized as follows. First we briefly discuss related work. In Section 3,
we present a framework, to help reason about various design issues and policy choices for page
migration and replication. We describe our experimental environment in Section 4. We base this
study on several classes of workloads that are important for multiprocessor compute servers. A
multiprogrammed engineering workload, a program-development workload, dedicated and
multiprogrammed parallel scientific applications, and a parallel Sybase database server running
decision support queries. In Section 5, we provide a description and a base characterization of
these workloads. In Section 6, using traces of complete cache miss information, we study the
implications of the myriad of policy choices available, and show that there are significant
potential gains from migration and replication. Section 7 explores the impact of making page
movement decisions based on approximate information, such as TLB misses and sampling.
Section 8 discusses the issues in our kernel implementation of the policy and gives a detail
breakdown of the costs. We show that the performance of the workloads improves significantly
when run on our kernel. Finally, we present our conclusions in Section 9.

— 2 —

2.0 Related Work

Related work on this subject has focussed on three areas. The first is implementing shared
memory on message-passing machines and networks of workstations (involving replication and
migration of pages/objects). The second focuses on migration/replication on shared-memory
machines that arenon-cache-coherent. The target machine architecture of our work, CC-NUMA,
is significantly different from that assumed in these two areas of related work. The third area
includes limited work done on CC-NUMA machines, the majority of which has focussed only on
migration; replication has not been explored.

Work in first category includes that by Li on IVY [Li88], by Zwaenopoel et al. on Munin and
Treadmarks [BCZ90], by Bershad et al. on Midway [BZS93], and by Lam et al. on Jade and SAM
[ScL94]. These systems provide a shared-memory programming abstraction on multicomputers
or networks of workstations where the underlying hardware does not support direct execution of
remote load/store instructions. Consequently, the runtime system or the operating system is used
to migrate and/or replicate pages or shared-objects in the local memory of the individual nodes.
Given the underlying architecture of these systems, data replication or migration will berequired
when a processor references a remote datum. Consequently, the focus has been to minimize
overheads (which could be from tens of microseconds to milliseconds) through techniques to
couple data and synchronization and by exploiting task knowledge to do prefetching.

Work in the second category includes that by LaRowe and Ellis [LaE91], Fowler and Cox
[CoF89], Holliday [Hol89], and Bolosky et al. [BSF+91]. These groups focused on migration and
replication onnon-cache-coherent shared-memory NUMA machines like the BBN-Butterfly and
the IBM ACE machine. The policies to migrate/replicate were triggered by page-faults.
Appropriate mechanisms (e.g., freezing and defrosting of pages) were developed to prevent
excessive migration/replication and to keep overhead low. Although many of the mechanisms that
were developed are directly relevant to us for this study, their policy and performance results are
less applicable because of our different hardware assumptions.

Our environment differs from the previous two in the following respects. The ability of CC-
NUMA machines to cache remote shared data substantially changes the potential benefits of
migrating/replicating pages and requires us to be much less aggressive (the page movement
overheads we can tolerate are much lower). In our environment, a remote access latency is on the
order of a microsecond, but with shared memory and cache-coherence, subsequent accesses hit in
the local processor cache and so take only a few nanoseconds. This changes the trade-offs
substantially; for example, the performance can be quite good even without any
migration/replication if the cache locality of the workload is good. The workloads that we
evaluate are also substantially different from those used in these earlier studies.

Work in the third category includes work by Black et al [BGW89], and Chandra et al [CDV+94].
Black et al. proposed a competitive strategy to migrate and replicate pages in a NUMA
multiprocessor using special hardware support (a counter for each page-frame and processor
combination). The workloads evaluated included a few small scientific applications from the
SPLASH suite [SWG92] (run one at a time), and only user-mode data references were
considered. Our workloads are very different and include complex multiprogrammed

— 3 —

applications, and include both kernel and user references. The policy space explored is also quite
different. Finally, Chandra et al, reported results for scheduling and page migration studies based
on the Stanford DASH multiprocessor. This work while being closely related is different in many
important respects: (i) focus of Chandra et al’s work was process scheduling and migration, while
here we study memory locality through both migrationand replication; (ii) the workloads in this
study are more varied, including Sybase and large engineering applications; and (iii) this study is
based on the SimOS simulation environment [HWR+95], while Chandra et al’s work was directly
implemented on DASH. While using DASH certainly has the advantage of being more real, the
SimOS environment used here is realistic (see Section 4) and allows us to vary/choose
architecture parameters more freely (e.g., we can choose processor speeds and cache sizes more
relevant to today’s systems, than when DASH was designed 5-6 years ago).

3.0 The Problem Statement and Solution Framework

In this section, we begin with a more concrete description of the problem we are trying to address.
We then present an abstract migration/replication algorithm in the form of a decision tree. Finally,
based on the decision tree, we present the key migration/replication policy parameters that we
explore in this report.

3.1 The Problem Statement

Our goal, as that for most other optimization techniques, is to minimize the runtime for the user’s
workload. More concretely, this translates into the statement:perform page migration and
replication so as to maximize the following quantity — (cost savings from converting remote
misses to local misses less the cost overheads due to migration and replication). As is evident
from the above statement, we need to be concerned about both components of the above
statement.

The first component involves finding the pages suffering the most remote-misses and converting
these remote-misses to local-misses using migration or replication. Whether migration should be
used, or replication should be used, or whether neither will help is primarily dependent on the
access patterns to the page. Based on their access patterns, pages can be broadly classified in three
groups:

1. Pages that are primarily accessed by a single process: This group includes data pages of
sequential applications, and data pages of parallel applications where the accesses from the
multiple processes are to disjoint sections of the data. This group also includes the code of
sequential applications, if there is only one instance of the application running on the machine.
These pages are prime candidates for migration when the process accessing them migrates to
another processor, usually for load balancing reasons.

2. Pages accessed by multiple processes, but with mostly read accesses: This group includes code
pages of parallel applications, and of sequential applications with multiple copies running. It
also includes read-only or read-mostly data pages of parallel applications. These pages are
prime candidates for replication.

— 4 —

3. Pages accessed by multiple processes, but with both read and write accesses:This group
includes the data pages of parallel applications where there is fine grain sharing with updates
from multiple processors. Replication is never a good idea for such pages; migration does not
help either, except in special cases where cache misses from one processor dominate over
misses from the other processors.

The second component we need to consider is the cost of supporting migration and replication.
We can classify costs into four categories:

1. Information gathering costs to help determine when and what pages to migrate or replicate. We
will discuss this topic in detail in Section 7; the options we consider are to keep track of all
cache misses or to use time sampling of cache misses (supported by Stanford FLASH). Many
processors have software handling of TLB misses, so we also consider using TLB misses or
time sampled version of TLB misses.

2. Data movement costs to physically migrate or replicate the page. Machines that we are
considering here will have interconnection network bandwidths greater than 100 Mbytes/sec,
so a memory-to-memory transfer of a 4KB page will likely take less than 40 microseconds.

3. Kernel overhead costsfor migration and replication. These include time for allocating a new
page, removing all mappings to the old physical page, establishing the new mappings, flushing
TLBs to maintain coherence and eliminating/updating other replicas on a store to a replicated
page, and so on. These costs will vary with the organization of the VM subsystem; most
current kernels are not very supportive of changing mappings cheaply (we will expand on
these costs in Section 8).

4. Memory-pressure related costs are indirect costs that occur due to the increased memory use
with page replication.

Given the above set of costs and potential for benefits, the challenge is to design an algorithm that
will maximize the net benefits. The potential for benefit depends on three factors:

1. What fraction of the execution time is spent stalled on cache misses that go to memory and are
these misses to pages with access types 1 and 2 described above? The larger the fraction of
execution time spent stalled, the greater the potential benefit from improving memory locality.

2. How effective is the policy in finding pages with remote-misses and migrating or replicating
these pages to make the misses local.?

3. How large is the overhead in moving these pages? The larger the overhead, the more selective
the policy has to be, only finding and moving pages with a large number of misses.

3.2 Solution Framework and Policy Parameters

We now outline, in the form of a decision tree (see Figure 3.1), the sequence of decisions that
need to be made to decide when and what pages to migrate or replicate. For now, we assume that
action may be triggered on any cache miss. Although, it may be possible to approximate cache
misses by UTLB misses to reduce overhead (see Section 7), the nature of the decision tree
remains the same.

Given that there is substantial cost associated with page migration/replication, our first task is to
determine the hot pages, that is the pages to which a large number of misses are occurring. If the

— 5 —

number of misses to a page is small, then end performance benefits will be small, and we need not
concern ourselves with such pages (especially given that remote reference in CC-NUMA are not
too expensive and shared data may be cached). If the page is hot, our second task (node 2 in
Figure 3.1) is to determine the type of sharing that applies to the page in question. This is
important as it will help decide if the page should be migrated (if referenced primarily by one
process) or replicated (if referenced by many processes). Based on the sharing pattern, we take the
replication (high sharing) or the migration (low sharing) branch. The final two nodes (numbered 3
and 4) help reduce the overhead cost under various circumstances. Replication is allowed only if
the write frequency is lowand there is no memory pressure. Migration is done only if the page
has not been pinging back and forth between different nodes. We note that this decision tree is
very similar to that used in earlier studies on non-cache-coherent NUMA machines, the key
difference being that we are driven by cache-misses instead of all memory references.

The abstract decision tree can now be translated into concrete parameters than can be observed in
the system and thresholds that can be used to make policy decisions. The framework we develop
here will be used later in Sections 6, 7, and 8 for analyzing performance benefits. We also note
that for now we remain with cache-miss based parameters; later we will discuss sampled-cache-
miss based and UTLB-based parameters. Finally, since it is difficult to track rates, all rates are
computed using counters with a periodic zeroing of counters.

To approximate miss rate, we keep a miss counter per page per processor, and define atrigger
threshold and areset interval. A counter for a page hitting the trigger threshold makes the page
hot (i.e., migration/replication action is considered for that page) if the page is not on that
processor. With a periodicity of the reset interval all the counters for a page are reset. To
determine sharing behavior, we define ahold threshold. It is used as follows. When a page is
triggered (i.e., some processor exceeds its trigger threshold), we examine the miss counters for

migratedo nothing do nothing

do nothing

cache-miss

1. miss rate

2. sharing

3.write freq. &
mem. pressure 4.migration rate

replicate

low high

both low high low

high low

 any high

 to page

FIGURE 3.1. Replication/Migration Decision Tree. The flowchart shows the steps involved in
making a decision about a page when it takes a cache miss. The possibilities are replicate,
migrate or do nothing.

migrate

— 6 —

other processors that have a copy of that page (replica or original). If any of them is above the
hold threshold, we consider the page multiply shared and consider it a candidate for replication; if
hold threshold is not exceeded by any other processor, the page is considered only for migration.
(The hold threshold is always less than the trigger threshold.) Finally, the write frequency and
migration rate are tracked by keeping a counter per page for the number of writes and number of
migrates. These counters are also reset periodically, every reset interval. To determine if too many
writes and/or migrates are happening to a page, we define awrite threshold and amigrate
threshold. If number of writes to a page within a reset interval exceeds write threshold, the page is
not considered for replication until the end of the reset interval, and if number of migrates exceeds
its threshold, the page is not considered for migration until the end of the reset interval. These
parameters are summarized in Table 1. We now discuss the experimental environment and
workloads we use for our evaluation studies.

4.0 Experimental Environment

The studies in this report are based on running actual applications on a simulated machine called
SimOS[RHW+95]. The analysis is done through tracing of cache and TLB misses and statistics
collection during the run. To do the above non-intrusively and since our target machine has
characteristics not currently available we use SimOS, a machine simulator. SimOS is a complete
and accurate machine simulator capable of booting a commercial Operating System (Silicon

Table 1 Key parameters used by OS policies to decide migration and replication. The counters used by the
policies include a per-page per-processor miss counter, and a single per-page write counter and migrate
counter.

Parameter Semantics

Reset Interval Number of clock cycles after which all counters are reset.

Trigger Threshold Number of misses after which page is considered hot and a migration/replication decision is triggered.

Hold Threshold Number of misses from another processor with a local copy, making a page a candidate for replication.

Write Threshold Number of writes after which a page is stopped from consideration for replication

Migrate Threshold Number of allowable migrates before page is stopped from consideration for migration.

R4000-based machine
IRIX version 5.2

CPUs

M. SysMemory

Disk

Console

Ethernet

More Detailed
Simulators

CPU
Models

Memory
Systems

IRIX version 5.2 (Simulated)

Pmake Scien- Sybase

Host Platform

SimOS Base

Unaltered
Applications

Mode

tific

FIGURE 4.1. The SimOS environment runs as a layer between the simulation host platform and
unaltered workload applications. Additionally, SimOS provides the flexibility to include a variety of
more detailed CPU and memory system simulators.

— 7 —

Graphics’ IRIX 5.2 in our case) and executing unmodified applications (i.e.,unmodified binaries
for original SGI systems), including all of the system activity that they require. SimOS models
various processors, I/O devices (disks, ethernet, etc.), processor caches, and memory systems.

Because the notion of simulated machine time is completely internal to the simulator, any number
of statistics can be recorded in essentially zero time without altering the behavior of the workload.
This non-intrusiveness is one of the key advantages of simulation over software-based
instrumentation techniques on actual hardware. The simulator not only collects data and statistics
on the hardware components of the simulated machine, but also provides non-intrusive tracing of
machine activity. This allows the collection of cache and TLB information without perturbing the
system. In our studies we use SimOS in two modes:

• Generating traces of cache and TLB misses for each workload. These traces are used to do a wide range
of policy explorations in Sections 6 and 7 of the report.

• Actually running the various workloads for a limited set of policies with a kernel that implements page
migration and replication. These are studied in Section 8.

The target CC-NUMA and CC-NOW machines that we model using SimOS are based roughly on
the Stanford FLASH and Distributed FLASH architectures (see Figure 4.2). The actual hardware
parameters that we use in our simulations are as follows. We assume an 8-node machine for all
our explorations. Although 8-nodes are quite few for CC-NUMA organization, our reasons were:
(i) some of our workloads (e.g., the database) do not yet scale to large numbers of processors; (ii)
larger number of processors would have meant larger sized workloads, and the simulation times
would have become unacceptable (some of them already take over 24 hours to run on a 133MHz
SGI Indy); and finally (iii) even with 8 nodes, the probability that a process would by accident
find a randomly allocated page local is already quite small (12.5%), so most of the benefits of
migration/replication can be seen with these few nodes. We assume that each node is a 300MHz
processor with TLB size of 64 entries with 8 reserved for the kernel and wired entries. We assume
separate level-1 I and D caches, each 32KB 2-way set associative with 1 cycle hit time. We
assume a unified I and D level-2 cache that is 512KB 2-way set associative and with a hit time of
50ns. We assume local memory access time of 300ns, and remote memory access time of 1200ns
(ratio 1:4) for CC-NUMA configuration and 3000ns (ratio 1:10) for CC-NOW configuration (we

FIGURE 4.2. CC-NUMA and CC-NOW multiprocessors explored in this report. For CC-NUMA, we assume
local memory access latency of 300ns and remote memory latency of 1200ns (ratio of 1:4). For CC-NOW we
assume local memory access latency of 300ns and remote memory latency of 3000ns (ratio of 1:10).

µP

Magic

Mem

Cache

CPU

I/ONetwork

250ft
Routing Mesh

CC-NUMA CC-NOW

µP

Magic

Mem

Cache

CPU

I/O

— 8 —

assume the 1000 ft. of fiber traversed in CC-NOW causes approximately 2000ns of latency).
Finally, the OS we use is Silicon Graphics’ IRIX 5.2.

5.0 Workloads

The choice of workloads used to evaluate the benefits of migration/replication is a critical factor
affecting the value of the study. In this report we use five “real-life” workloads capturing some of
the major uses of compute servers. These include: (i) a multiprogrammed collection of large
sequential engineering applications (verilog and Flash simulations); (ii) a single optimized
parallel graphics application from the SPLASH suite (Raytrace); (iii) a multiprogrammed
collection of parallel scientific applications using a space-partitioning scheduling policy [TuG89]
again from the SPLASH suite (Raytrace + Vol.Rendering + Ocean); (iv) a Sybase system with
multiple SQL servers executing decision support queries; and finally (v) a multiprogrammed
code-development environment (parallel compilations). For all workloads we observe both kernel
and user references and both instruction and data references. We believe this is a more diverse and
realistic collection of workloads than used in any of the previous studies. A summary of the
workloads is given in Table 2.

Before describe the applications we note that each of the workloads is very long running, so it was
not possible for us to observe the workloads from start to finish. Instead, we do the following.
SimOS allows for fast and slow modes of execution. In the fast mode, instructions and memory
references are executed directly by the host processor, and the target hardware system’s caches are
not simulated. We used the fast mode to get each workload deep into its execution (“steady state”,
past all initialization), and then take a checkpoint of the complete system state. We then used the
slower detailed mode of SimOS, which executes the workloads for several seconds after that
checkpoint, modeling all memory hierarchy details. The detailed numbers we report below in
Table 3 and Table 4 correspond to this interval beyond the checkpoint. It is obvious from these
numbers that we are able to observe a fair amount of the application execution, which
corresponds to a large number of instructions and memory references (in the billions). We now
describe the salient features of each of the workloads in greater detail.

Multiprogrammed Engineering Workload (Engineering): Our first workload consists of large
sequential computation- and memory-intensive applications (six large verilog simulations and six
large Flash machine simulations). This represents one of the most common uses of
multiprocessors today. The verilog simulator we use is VCS (commonly used in large industrial
projects); it compiles the simulated circuit into code and so has a very large code segment, and

Table 2 Description of the workloads. For each workload, we list the applications in the workload, the
number of processors (PEs) used, and a short description of the workload.

Name Contents PEs Notes

Engineering 6 Flashlite, 6 Verilog 8 multiprogrammed, compute intensive, serial applications

Raytrace Raytrace 8 parallel graphics application, rendering a scene

Parallel Raytrace, Volrendering,
Ocean

8 multiprogrammed, compute intensive, parallel applica-
tions, space multiplexed scheduling

Database Sybase 4 commercial database, with decision support queries

Pmake 4 four-way Make 8 software development, compile of gnuchess

— 9 —

generates a high I-cache miss rate (see Table). With multiple instances of the same application
running, this generates interesting opportunities for benefits from replication of code pages. For
this workload, we use regular UNIX priority scheduling with affinity. As the tables show, this
workload spends very little time in the kernel (4%), so we will focus only on
migration/replication for user code and data.

Dedicated Single Application (Raytrace): One common workload expected to run on compute
servers is single compute-intensive parallel applications. As representative of this class, we have
chosen Raytrace, a widely used graphics algorithm for rendering images. This particular
Raytrace program come from the SPLASH2 suite [SWG92], and we use the car.env (a car model)
as the input dataset. This application forms an interesting workload for the replication study,
since it has widely shared data segments. The processes of the application were locked down to
specific processors, as would be the case in such a dedicated-use workload. As the tables show,
this workload spends very little time in the kernel (6%), so we will focus only on
migration/replication for user code and data.

Multiprogrammed Scientific Workload (Splash): The second workload consists of Raytrace,
Volume rendering, and Ocean applications from SPLASH in a multiprogrammed setting. For

Table 3 Execution time and memory usage of the workloads. We show the cumulative execution time of the
workload, the percentage of the execution time spent in Idle, Kernel and User modes, the percentage of time
spent stalled on the secondary cache for instructions and data, and the number of instruction and data
pages touched during the workload. The numbers for stall time and the pages touched are separated into
Kernel and User.

Work
load

Cum
CPU
Time
 (s)

CPU Time
Breakdown (%)

Stall Time (%) Pages Touched

Kernel User Kernel User

Idle Kern User Instr Data Instr Data Instr Data Instr Data

Engr. 52.84 0 4 96 0.5 1.0 26.5 28.7 138 1155 1077 5955

Raytrace 30.78 5 6 89 0.1 3.0 5.8 32.5 165 1098 128 7257

Splash 53.49 8 7 85 0.9 2.9 2.8 37.5 164 3860 184 14563

Database 10.85 36 11 53 1.3 4.8 3.3 28.1 197 3292 581 4761

Pmake 35.27 22 44 34 4.0 29.3 3.6 9.1 168 28661 518 18350

Table 4 Memory behavior of the workloads. We show the number of memory references, the number of
cache misses, and the number of UTLB misses for each workload. The memory references are divided into
kernel, user, read and write. The cache misses are similarly divided and they separate out the instruction
misses too. The UTLB misses are separated into read and write misses.

Work
load

Mem References (millions) Cache Misses (millions) UTLB
Misses

(millions)Kernel User Kernel User

Read Wr. Read Wr. Read Wr. Instr Read Wr. Instr Read Wr.

Engr. 40.73 5.71 1047 689 0.55 0.20 0.42 6.25 5.99 11.4 27.78 2.21

Raytrace 25.11 8.35 1480 494 0.61 0.27 0.46 7.21 0.88 1.41 7.46 0.19

Splash 37.10 16.26 2107 687 1.45 0.89 0.76 12.81 3.43 1.27 9.53 0.25

Database 14.99 8.06 158 69 0.39 0.39 0.21 1.34 1.27 0.30 3.23 0.30

Pmake 94.93 88.95 547 260 3.38 5.06 1.15 1.38 1.26 1.04 4.12 0.57

— 10 —

this workload we use space-partitioningscheduler-activations-like scheduling as described in
[ABL+91]. The applications effectively enter and leave the system at different times, so the
number and specific set of processors assigned to an individual application changes over time.
For example, in this workload, Raytrace starts with 8 processes, then reduces to 4, then 3, then 6
and finally ends with 8, because of arrival and departure of Volume rendering and Ocean. This is
an interesting test case for automatic page movement, because static placement does not do well
with such dynamically changing processor allocations. Both Raytrace and Volume rendering have
substantial read-mostly structures that may be replicatable. The access to these structures from
processors is fairly unstructured and efficient static placement is difficult as we show later. As the
tables show, this workload spends very little time in the kernel (7%), so we will focus only on
migration/replication for user code and data.

Decision Support Database (Database): Our fourth workload represents use of CC-
NUMA/CC-NOW machines for database applications. Our workload models decision support
type queries on an off-line main-memory database.We also considered a workload based on the
TPC-B benchmark. However this would have entailed updates to somewhat random entries in a
large table, and so there would have been little potential for benefits from migration/replication.
Our database engine is Sybase. It supports multiple engines, but has not been optimized for
NUMA architectures. This workload is run on a four processor system with the database engines
locked to processors. We use the decision support queries from the Metaphor benchmark for this
workload. As we show later, there is a lot of synchronization and locking behavior in this
workload that adversely affects the possibilities for migration and replication.

Multiprogrammed Software Development (Pmake): Our final workload represents a software
development environment typically consisting of many small, short-lived jobs such as compilers
and linkers. Our workload consists of four Pmake jobs each compiling the gnuchess program with
4-way parallelism. The workload is I/O intensive with a lot of system activity. Again, UNIX
priority scheduling with affinity is used for this workload. In this workload, the majority of the
memory stall time arises due to kernel instruction and data references (33%) rather than from user
references (13%). For this reason, with this workload we focus on migration and replication
potential in the kernel.

In assembling the workloads we have picked realistic and important workloads that would be of
interest to users of compute servers. The execution window that we studied is long enough to
capture the essential characteristics of the applications. The workloads themselves show
significant memory stall times with a reasonable potential for benefitting from improvements in
memory locality. These benefits are only likely to increase further with future faster processor
making the choice of workloads more significant.

6.0 Exploring the Policy Parameter Space

In Section 3 we had described the various parameters (reset interval, trigger threshold, hold
threshold, write threshold, migrate threshold) which determine the effectiveness of the
migration/replication policy. In this section we explore the impact of various choices that we
make for these policy parameters. As mentioned in Section 4, we use traces for this part of the
analysis because they provide perfect information about cache misses, and since the runs are

— 11 —

cheap, we can perform a more extensive exploration of the policy space to study the sensitivity of
the results to variations in the parameters. The traces also offer a determinism in the runs across
policy variations; this obviously has its benefits and drawbacks, but we believe that for improving
our basic understanding, the benefits are substantial. Our analysis in the section is based on full
cache-miss traces; in Section 7 we will consider the effect of using less than perfect information
on the results. In Section 8 we will discuss actual implementation results.

6.1 Tracing Methodology and Policy Parameters

We use SimOS to run the workloads and non-intrusively generate a detail trace. The trace
contains all secondary cache and TLB misses, with information about the processor taking the
miss, a timestamp, and whether it was user or kernel, code or data, and a read or a write. The trace
is then post-processed by an analysis program that mimics a policy based on the parameters given
and provides the number of misses that would be local and remote, the number of pages that will
be migrated or replicated, and other relevant information for this policy. For the results in this
section we ignore the cost of collecting the information required to make policy decisions. The
cost to do page movement is modelled as a fixed cost per migrate, replicate, or collapse. From
actual runs of the kernel implementation of the policy on a contention-less NUMA memory
model, we see that the average cost per page movement is about 350µs for CC-NUMA. We
estimate that the cost for CC-NOW will be about 1ms. We also do not model contention effects or
the change in execution interleaving of the workload when replication and migration make a
greater number of misses local.

For the trace analysis we establish a base case for the policy parameters and compare the results
of this base case against static placement policies, replication-only and migration-only policies.
Subsequently we examine the sensitivity of the results to each of the parameters. The base case
we picked was the one that on average did the best across all the workloads. The parameters for
the base case are trigger threshold at 128 (which is twice the number of cache lines in a page),
hold threshold at 32 (a quarter of the trigger threshold), reset interval 32 million cycles
(approximately 100 ms), write threshold 1 and migrate threshold 1. The reset interval is set to be
32 million cycles (100ms), large enough so that the resetting of counters in a practical
implementation will not be an appreciable overhead.

6.2 Workload Results

We first compare the base policy with other page allocation strategies, exploring the potential
performance gains. Next we vary the parameters in the base policy to examine their effect on
workload performance.

6.2.1 Base Policy Results

As shown in Table 3, the engineering, splash, raytrace and database workloads spend most of
their execution and memory stall time in user mode. Because they have very little kernel activity
we will first use these four workloads to study user performance with page migration and
replication. We then use the pmake workload, which has a significant level of kernel activity, to
study how migration and replication affect kernel performance.

— 12 —

Workload performance with the CC-NUMA model is shown in Figure 6.1. For each workload six
page allocation strategies are shown; three static allocation policies, roundrobin (RR) which is
equivalent to random allocation, first touch (FT) where the page is allocated to the processor that
first touches it, post facto (PF) which is the best static allocation case and assumes future
knowledge, and three dynamic policies migration only (Migr) with trigger 128, replication only
(Repl) with trigger 128, and the base case combined policy outlined above (Base).

Overall we see that for 3 of the 4 workloads shown, policies doing migration or replication or
both generally outperform the static policies, even considering that the PF policy that assumes
perfect future knowledge. By improving memory locality, they reduce the remote stall time
component. This reduction is more than the increase in local stall time and overhead and so there
is a net reduction in execution time. We also see that doing both replication and migration can do
better than either by itself. The extent of the improvement relative to round robin varies, from
28% in the case of the engineering workload to 12% in the case of the database workload.

In addition to the results shown in Figure 6.1, we did a more detail analysis for each workload for
code and data separately, to better understand the benefits seen with each policy. We now consider
the performance of the policies for each workload in detail, comparing benefits from replication
and migration, and from code and data misses.

Engineering workload: From Table 3 and Table 4, the engineering workload shows a large user
stall time, about 55% of non-idle time, and the misses are about equally divided between code and
data. For the code misses, there are multiple copies of each application (VCS and Flashlite) in the
workload, which leads to read-only shared access that can be made local through replication.
However, for the data misses, this workload consists of sequential applications and so the data
accesses are unshared. These misses can be made local through page migration (coupled with
affinity scheduling). As expected, the “Repl” and “Migr” policies are successful at improving the
execution time of this workload through replication of code and migration of data respectively.
This workload clearly brings out the point that you require a policy that does both migration and
replication to fully exploit memory locality. The “Base” policy by doing both is able to make 76%
of the misses local which translates to an improvement in total execution time of 28% over the

| ||0

|20

|40

|60

|80

|100
 N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e Overhead

 5

 6

 3 3 4
 5

 62 59 46 34 40
 17

 41 34 28 32 16 17 45 36 28 24 23 17 58
 41 40 40 39 39

 6 9 7 13

 3 4 4 8 7
 4 6 7 7 8

 7 7 7 7 7

 36 36 36 36 36 36

 58 58 58 58 58 58 53 53 53 53 53 53
 40 40 40 40 40 40

 100 98
 88

 84 86

 72

 100
 95 91 94

 84 85

 100
 93

 87 87 87 84

 100

 88 86 88 88 88

10
RR

14
FT

33
PF

51
Migr

41
Repl

76
Base

engr

11
RR

27
FT

38
PF

32
Migr

65
Repl

64
Base

raytrace

11
RR

29
FT

44
PF

54
Migr

54
Repl

66
Base

splash

15
RR

39
FT

41
PF

40
Migr

42
Repl

43
Base

database

Remote Stall
Local Stall
User CPU

FIGURE 6.1. Breakdown of user execution time for various policies for CC-NUMA architecture with 1200ns
remote latencies. There are six runs for each workload, three static allocation policies Roundrobin (RR),
First touch (FT), and Post-facto (PF), and three dynamic policies Migration-only (Migr), Replication-only
(Repl), and the combined migration/replication policy (Base). Each bar shows the execution time for that
policy normalized w.r.t. the RR policy (which is 100). Additionally each bar separately shows User CPU time,
cache-miss stall to local memory, cache-miss stall to remote memory and the overhead to migrate and
replicate pages. The percentage of misses that were to local memory is shown at the bottom of each bar.

— 13 —

“RR” policy. The memory cost of doing replication is increased memory usage. There are 1077
code pages that are touched in this workload. If code replication was done on first touch as has
been suggested, this could potentially increase usage by 7539 pages. Table 5 shows that by
selecting hot pages, the “Base” policy increases usage by only 2307 pages representing an
increase of 32% in memory usage for the workload.

Raytrace: Raytrace is an interesting parallel application for this study, since a large portion of its
data, representing the scene to be rendered, is shared and read-mostly. It has about 38% user stall
time, and unlike the engineering workload most of the stall is due to data misses. We characterize
the read-only nature of data in Raytrace and this is graphically illustrated in Figure 6.2,. Raytrace
has almost 60% of its data misses in read chains that are longer than 512, and since this is shared
data, it indicates good replication potential. Since both the data and code are shared, migration
will not provide much benefit. From Figure 6.1 we see that both the “Repl” and the “Base” policy
perform well reducing the execution time by 15% over the “RR” policy. This workload touches

Table 5 Comparison of the Base and RR policies. We show Pages Replicated and Migrated, the Average
and Maximum pages utilized, Percentage of misses to local memory, and the Stall, Overhead and Run
time.

Work
load Policy

Pages moved Pages utilized
Percent
Local

Time (seconds)

Repl Migr Avg. Max. Stall Ovhd Run

Engr
RR 0 0 5028 7032 10 29.2 0 48.06

Base 2394 5071 6731 9339 76 13.7 2.6 35.16

Raytrace
RR 0 0 5279 7379 11 11.6 0 29.1

Base 1727 780 6031 8798 64 6.6 0.9 25.0

Splash
RR 0 0 10792 14739 11 21.4 0 49.4

Base 2013 4131 11341 16355 66 11.8 2.2 42.0

Database
RR 0 0 4418 5332 14 3.5 0 7.0

Base 209 103 4595 5533 43 2.6 0.1 6.2

� engineering

 raytrace
� splash
� sybase
� pmake

|

0
|

128
|

256
|

384
|

512

|0

|20

|40

|60

|80

|100

 Read Chain Length

 %
 o

f C
ac

he
 M

is
se

s

� � � �

�

�

�

�

� � �
�

�
� � �

FIGURE 6.2. Percentage of data cache misses in read chains. A read chain represents a string of reads to a
page from a processor which is terminated by a write from any processor to that page. A long read chain
indicates a page that could benefit from replication. The X-axis shows read chain lengths and the Y-axis
shows the percentage of the total data misses that are part of read chains of that length or more.

— 14 —

7257 pages of code and data. From Table 5, the additional page usage through replication is only
1419 page, a 20% increase. Static data placement or replication would be difficult in the raytrace
workload because of its unstructured data access. This then is a clear example of dynamic data
replication improving execution time and reducing the memory overhead of replication.

Splash workload:This workload of parallel applications includes raytrace, volume rendering and
ocean. It has about 40% stall time, which is almost entirely due to data misses. Raytrace and
volume rendering, both have unstructured accesses to read only data sets and so can benefit from
replication. Figure 6.2 shows about 30% of the data misses in this workload in read chains longer
than 512, so confirming the replication benefit from data. Ocean has only nearest neighbor
communication and so mostly unshared access to data. Ocean’s cache misses can be made local
with a first touch type policy. However, in a multiprogrammed workload, processes will have to
be moved across processors to achieve load balancing. In this scenario, migration of code and
data to the processor running the process will be needed to improve the data locality [CDV+94].
Given the type of data accesses just described, the “Migr” and the “Repl” policies are each only
able to capture a part of the potential benefit. The “Base” policy, by doing both performs better,
with a reduction in execution time of 16%. Table 5 shows that the base policy increased memory
usage just 11% through replication.

Database workload:For this workload we chose a set of decision support queries expecting that
the data accesses would be mostly reads and so the workload would benefit from replication.
Since we locked the servers to the processors we do not expect much benefit from migration.
Figure 6.1 shows that first-touch reduces remote stall time, improving performance by 12% over
round robin. However, there is very little additional benefit for any other policy over first touch.
Table 4 shows that almost half of the user data cache misses are writes. Classifying the pages
based on the type of access reveals that, of the 2.6 million user data misses, only about 10% are to
“read-mostly” pages that could benefit from replication. The remaining 90% of the misses are
concentrated in about 5% of the pages that have more writes than reads. These “read-write” pages
seem to be mainly for synchronization purposes with fine grain sharing by all the processors. This
sharing pattern of type 3 outlined in section 3 cannot benefit from replication or migration.
Consequently no policy gives much additional benefit beyond first touch.

Figure 6.3 shows the performance of the various policies on CC-NOW type systems. The results
are similar to the CC-NUMA case. The larger remote latency of CC-NOW systems results in
greater performance improvements for the dynamic policies. The improvement for the Base
policy over RR ranges from 44% for engineering to 20% in the case of the database workload.

In summary, for the workloads where we analyzed user misses, three of the four show potential
for substantial performance improvements using dynamic policies. Both migration and replication
are needed to exploit the full potential of memory locality. Dynamic replication of data is
effective and essential for improving performance in the raytrace and splash workloads. Also
dynamically selecting hot code pages to replicate can substantially reduce memory usage
compared to a possible replicate on first miss policy.

Pmake workload: We use the pmake workload to study the potential for replication and
migration in the kernel, since it has significant kernel activity and much less user stall time (see
Table 3). The kernel can be viewed as a large parallel program with shared code and data. Most

— 15 —

UNIX kernels today are loaded in memory at boot time and their code and data are not mapped
through the TLB. Therefore dynamic replication and migration of kernel code and data is not
possible in these implementations. However, using our traces we can investigate the potential
benefit from migration and replication. Figure 6.4 shows the effect of applying the various
policies to the traces of kernel activity. There is almost no benefit beyond first touch and the little
that is observed with the “Repl” and “Base” policies is from the replication of kernel code.
However this accounts for only about 12% of the misses (see Table 4). Kernel data shows no real
benefit beyond that of the static “FT” policy. The “FT” policy gives some benefit over “RR”
because there are some kernel structures that have a natural affinity to a particular processor, e.g.
the Private Data Area (PDA), a per processor structure, and the Page Frame Descriptors (PFD) for
memory local to a processor. There could be a small potential benefit from page migration, for
structures that are per process, e.g. user page tables, but the realization of this migration benefit is

| ||0

|20

|40

|60

|80

|100
 N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e Overhead

 7

 8

 5 6
 5 7

 8
 80 77

 60
 44 52

 22

 63
 52 44 49

 25 26

 67
 54

 42 35 35 26

 77
 55 53 54 53 52

 5 4 7

 5 5
 3 4 4 5

 4 4 4 4 4

 19 19 19 19 19 19
 36 36 36 36 36 36 32 32 32 32 32 32

 21 21 21 21 21 21

 100 97

 82
 74 78

 56

 100
 90

 83
 89

 70 72

 100

 88
 77 76 77

 71

 100

 80 78 80 80 80

10
RR

14
FT

33
PF

51
Migr

41
Repl

76
Base

engr

11
RR

27
FT

38
PF

32
Migr

65
Repl

64
Base

raytrace

11
RR

29
FT

44
PF

54
Migr

54
Repl

66
Base

splash

15
RR

39
FT

41
PF

40
Migr

42
Repl

43
Base

database

Remote Stall
Local Stall
User CPU

FIGURE 6.3. Breakdown of user execution time for various policies for CC-NOW architecture with 3000ns
remote latencies. There are six runs for each workload, three static allocation policies Roundrobin (RR), First
touch (FT), and Post-facto (PF), and three dynamic policies Migration-only (Migr), Replication-only (Repl),
and the combined migration/replication policy (Base). Each bar shows the execution time for that policy
normalized w.r.t. the RR policy (which is 100). Additionally each bar separately shows User CPU time, cache-
miss stall to local memory, cache-miss stall to remote memory and the overhead to migrate and replicate
pages. The percentage of misses that were to local memory is shown at the bottom of each bar.

| | | | | | | | | | | | ||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Overhead

 44 32 31 32 29 29
 67

 48 46 48 44 44 4 5 4 5 5

 3 3

 15 15 15 15 15 15

 9 9 9 9 9 9
 39 39 39 39 39 39

 23 23 23 23 23 23

 100
 91 90 91 89 90

 100

 83 82 84 80 82

11
RR

36
FT

38
PF

36
Migr

42
Repl

42
Base

CC-NUMA

11
RR

36
FT

38
PF

36
Migr

42
Repl

42
Base

CC-NOW

Remote Stall
Local Stall
Kernel CPU
User

FIGURE 6.4. Execution time breakdown for the pmake workload for both CC-NUMA and CC-NOW. Only
Kernel misses are considered for the different policies. There are six runs for each configuration, three static
allocation policies Roundrobin (RR), First touch (FT), and Post-facto (PF), and three dynamic policies
Migration-only (Migr), Replication-only (Repl), and the combined migration/replication policy (Base). Each
bar shows the execution time for that policy normalized w.r.t. the RR policy (which is 100). Additionally each
bar separately shows User time, Kernel CPU time, cache-miss stall to local memory, cache-miss stall to remote
memory and the overhead to migrate and replicate pages. The percentage of misses that were to local memory
is shown at the bottom of each bar. There is no significant improvement beyond FT.

— 16 —

similar to that of unshared user data and is dependent on the scheduling of the associated user
process.

We classified the kernel misses by the structures accessed as shown in Table 6, to see if the lack of
replication benefit was a basic characteristic of the kernel or a result of the kernel data not being
structured to take advantage of page replication, i.e., read-only structures are not grouped together
on pages. We expand the scope beyond read-only structures, to also include structures that are
written infrequently (we consider structures where writes are less than 1% of the misses as “read-
mostly”). We analyzed the kernel miss traces at the granularity of pages, cache lines, and words
and the results are shown in Table 5. Of the 9.4 million total kernel misses, only 1.25 million
misses to kernel data are potentially “read-mostly”. The largest part is when reading data for
copyin which represent the kernel copying pages in from user space. These may not really be all
“read-mostly” since we do not see the writes which may happen in user space. The kernel stall
time for this workload was 42% of non-idle time, so even if all the 1.25 million misses which
could be to “read-mostly” structures are made local through replication, the improvement in
execution time would be only about 5% (without accounting for the overhead). This leads us to
conclude that even at a word granularity there is not enough “read-mostly” kernel data to give any
substantial benefit from dynamic replication.

6.2.2 Sensitivity to Policy Parameters

Our above analysis for the workloads shows that there are substantial performance gains from
replicating shared code and “read-mostly data and from migrating unshared code and data.
Having considered the performance of a few basic policies, we now examine the sensitivity of the
results to the different parameters in the policy. The parameters of interest to us are the trigger
threshold, the hold threshold and the reset interval. We also study the effect of restricting the
additional memory used for replication.

Table 6 Breakdown of Kernel D-cache Misses by Kernel Segment for the Pmake workload. We show
total misses to each segment and misses to read-mostly blocks, We consider blocks to be pages (4KB) or
Cache lines (64Bytes) or Words (4Bytes). We use read-mostly (< 1% writes) instead of read-only, since
we want to consider pages that may be written very infrequently. Other than text, only a small fraction
of the pages are read-mostly.

Kernel Segment
Total Misses

1000’s

Misses to Read-Mostly Blocks (<1% writes)

Page (4KB) Line (64Byte) Word (4Byte)

User data copyin/copyout 4,022 (43%) 234 (2%) 257 (3%) 513 (5%)

Kernel initialized data 1,970 (21%) 24 (0%) 48 (1%) 238 (3%)

Kernel allocated tables 1,491 (16%) 1 (0%) 43 (0%) 351 (4%)

Kernel heap 173 (2%) 1 (0%) 10 (0%) 26 (0%)

U area 243 (3%) 0 (0%) 1 (0%) 50 (1%)

Kernel stack 238 (3%) 0 (0%) 0 (0%) 5 (0%)

Page tables 72 (1%) 72 (1%) 72 (1%) 72 (1%)

Private data area (PDA) 33 (0%) 0 (0%) 0 (0%) 2 (0%)

Kernel text 1,157 (12%) 1,157 (12%) 1,157 (12%) 1,157 (12%)

Total 9,400 (100%) 1,489 (16%) 1,588 (17%) 2,414 (26%)

— 17 —

Trigger threshold: The trigger threshold controls the aggressiveness of the policy and provides a
trade-off between increased memory locality resulting in reduced stall time and the total overhead
to migrate and replicate pages. Figure 6.5 illustrates this trade-off clearly for the different
workloads. A smaller trigger makes more misses local and reduces stall time, but increases the
overhead. Given the increase in both the costs and the benefit, the best “operating point” would
depend on the actual values of the local and remote miss latencies, the overhead to migrate or
replicate a page, and the percentage of execution time spent in memory stall for the workload. The
trigger threshold is clearly a critical parameter and a more sophisticated policy implementation
could be considered that varies it automatically at runtime (through feedback) to control the rate
of migrations and replications to respond to different situations, e.g., excessive memory pressure
or lock contention.

Hold threshold: The hold threshold is used to differentiate between shared and unshared pages
and so decides whether a hot page is potentially migrated or replicated. A higher hold threshold
potentially favors migration over replication. The results in Figure 6.6 show that the performance

| ||0

|20

|40

|60

|80

|100
 N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e Migr Ovhd

 7 5
 4

 4 9 6 3
 3

 4 3

 8 5
 9 4

 4

 21 24 30
 43

 20 21 24 27
 19 22 26 30

 44 45 46 46

 36 36 36 36

 58 58 58 58 53 53 53 53
 40 40 40 40

 68 68 72
 82

 89 86 85 86
 91

 85 84 85
 92 89 88 87

93
t32

88
t64

76
t128

49
t256

engr

77
t32

72
t64

64
t128

56
t256

raytrace

83
t32

76
t64

66
t128

55
t256

splash

46
t32

44
t64

43
t128

42
t256

database

Repl Ovhd
Stall
User CPU

FIGURE 6.5. Variation in performance with the trigger threshold. Each workload is run with four trigger
thresholds, 32, 64, 128, and 256. The hold threshold is a quarter of the trigger threshold and trigger 128 is
that base case. Each bar shows the run time for a configuration normalized to the run time for the
Roundrobin case for that application. In each bar, we separately show User CPU, User stall, and overhead
cost of Replication and Migration. The percentage of misses made local is shown at the bottom of each bar.

| | | | | | | | | | | | | | | | | ||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Migr Ovhd

 4 4 4

 3 3 3

 30 30 30

 24 24 24 26 26 26 46 46 46

 36 36 36

 58 58 58 53 53 53
 40 40 40

 72 72 72

 85 85 85 84 84 84 88 88 89

76
h16

76
h32

75
h64

engr

64
h16

64
h32

64
h64

raytrace

66
h16

66
h32

66
h64

splash

43
h16

43
h32

42
h64

database

Repl Ovhd
Stall
User CPU

FIGURE 6.6. Variation in performance with changes in the hold threshold. Each application is run with
three different hold thresholds, 16, 32, and 64. Trigger threshold is 128 for all cases and hold threshold 32 is
the base case. Each bar shows the run time for a configuration normalized to the run time for the
Roundrobin allocation case. In each bar, we separately show User CPU, User stall, and overhead cost of
Replication and Migration. The percentage of misses made local is shown at the bottom of each bar.
Variations in the hold threshold have minimal impact on performance.

— 18 —

seems to be quite insensitive to the value of the hold threshold within a reasonable range. This
result holds across all the workloads. The performance being insensitive to the hold threshold
points to the fact that most pages are clearly differentiated being either shared (code and shared
data of parallel applications) or unshared (data of sequential applications) and very few pages in
the workloads have ambiguous sharing behavior.

Reset interval: The reset interval converts a count of cache misses to a cache miss rate.
Figure 6.7 shows that the larger reset interval, 400 ms instead of 100ms seems to not affect the
results significantly. The local/total cache miss ratio does not change significantly and the small
resulting reduction in stall time is compensated by the small increase in overhead. This indicates
that pages are either hot (many misses) or cold (few misses). There are not too many that are
borderline w.r.t the trigger threshold, that would get hot with a larger reset interval. Resetting the
counters is an overhead in the implementation of the policy. If this overhead turns out to be
significant, based on the above result, we can reduce this overhead by using a longer reset interval
without impacting the performance in any significant way.

Memory Pressure: All the previous runs were done without any memory pressure. We studied
the performance of the base policy, in the presence of memory pressure. The policy responds to
memory pressure, by stopping replication and reclaiming replica pages that have not been
recently referenced till the memory pressure drops. We specify memory pressure as a maximum
number of pages that are available. Table 7, compares the performance of the base policy with and
without memory pressure. When memory is restricted, achieved memory locality is still very
good and the percentage of additional pages used in this case is quite small, 0.3% for Splash to
11% for Engineering. The additional cost is an increase in the number of replications and to a
lesser extent migrations. This is due to replicas being reclaimed under memory pressure and then
later being replicated again (or migrated). One could also consider reclaiming infrequently
accessed non-replica pages under memory pressure, however this must be done carefully else it
could increase the number of disk accesses.

| | | | | | | | | | | | ||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Migr Ovhd

 4 4

 3 4

 3

 4 3

 30 28

 24 22 26 24 46 46

 36 36

 58 58 53 53
 40 40

 72 72

 85 84 84 85 88 88

76
i32

79
i128

engr

64
i32

70
i128

raytrace

66
i32

70
i128

splash

43
i32

43
i128

database

Repl Ovhd
Stall
User CPU

FIGURE 6.7. Variation in performance with changes in the reset interval. Each application is run with two
different reset intervals, 100ms (i32) and 400ms (i128). Trigger threshold is 128 and hold threshold is 32 in
both cases, 100ms reset interval is the base case. Each bar shows the run time for a configuration
normalized to the run time for the Roundrobin allocation case. In each bar, we separately show User CPU,
User stall, and overhead cost of Replication and Migration. The percentage of misses made local is shown at
the bottom of each bar. Variations in the reset interval have minimal impact on performance

— 19 —

7.0 Quality of Information

In the previous section we showed that the memory stall time of some of the workloads can be
reduced significantly through page replication and migration. These policies were based on
perfect information, counting all cache misses. Cache miss information to this level of detail is
not available in the OS. In this section we examine other forms of information that are available in
current or planned systems and discuss the costs involved in collecting this information. We will
study their accuracy in approximating perfect cache miss information and their effect on the
performance of the policies.

7.1 Alternate Sources of Information

To maintain cache-coherence, CC-NUMA systems have a directory controller implemented in
hardware or software. The directory controller on a node has access to every cache miss that
originates from the node or has to be satisfied by memory on the node. These controllers are
highly optimized to do the necessary processing per cache miss very efficiently, so counting and
bucketing every cache miss by processor would add an unacceptable overhead. It is however
feasible to sample this information and provide feedback to the page migration and replication
policies. The sampling frequency can be used to trade-off the overhead of collection with the
accuracy of the information. A scheme similar to this is to be implemented in the MAGIC
directory controller chip for the FLASH machine being designed at Stanford [Kus+94]. This
sampled cache miss information will be evaluated as a potential substitute for full cache miss
information.

Another source of information about memory references is the TLB. Every user access to data or
instructions also needs a TLB access to translate the virtual page number into a physical page
number, Therefore TLB misses could be a possible approximation for cache misses. The TLB
can be viewed as a cache with the line size being a page. Therefore the validity of the
approximation would depend on the access patterns of the application and the size and
architecture of both the cache and the TLB. Since the TLB misses are handled in software by the
OS, the miss handler could be modified to count the TLB misses. On IRIX the user TLB miss
handler is highly tuned and takes about 15 cycles, so adding counting to this could increase the
overhead of this fairly frequent operation. To reduce the counting overhead, sampling of TLB

Table 7 Effect of Memory Pressure on policy performance. Each workload is run in two configurations.
First with unlimited additional pages available for replication. Second with total memory restricted such
that only half the additional pages used in the unlimited case are available. We show pages moved through
replication and migration, Average and Maximum pages utilized, Additional pages used as a percentage of
the pages used in the RR case and the percentage of misses that were to local memory. We see a gradual
reduction in%Local as the total available pages is reduced.

Avail. Mem.

Pages moved Pages Utilized Addl Pages
Used (%)

Percent
LocalReplicated Migrated Average Maximum

E
ng

Unlimited 2394 5071 6731 9339 33 76
8186 pages 5905 5214 5858 7778 11 72

R
ay

. Unlimited 1727 780 6031 8798 19 64
8089 pages 2557 987 5597 7685 4 61

S
pl

s Unlimited 2013 4131 11341 16355 11 66
15547pages 2569 4291 10929 14790 0.3 64

— 20 —

misses can be done in software, with an action being performed only on every Nth TLB miss. We
will evaluate both TLB misses and sampled TLB misses as potential sources of information.

7.2 Effectiveness of Approximate Information

The important question when using partial or approximate information is how faithful is the
heuristic to the original for the purpose at hand. To study the effectiveness of using the above
forms of approximate information we rerun selected policies with the appropriate source of
information. The trigger and hold threshold counts are based on sampled cache misses, TLB
misses, or sampled TLB misses. A sampling rate of 1 in 10 is used, as this should be sufficient to
reduce the collection overhead. The thresholds are scaled based on the sampling rate, so a trigger
threshold of 128 with full misses will be equivalent to a threshold of 13 with 1 in 10 sampling.

| ||0

|20

|40

|60

|80

|100

 N
o
rm

a
liz

e
d
 E

xe
cu

tio
n
 T

im
e Migr Ovhd

 4 4

 6 6

 3 3

 30 28

 57 56
 24 24 27 26

 26 26
 34 34

 46 46 46 46

 36 36 36 36

 58 58 58 58 53 53 53 53
 40 40 40 40

 72 71

 100 100

 85 85 86 86 84 84
 89 89 88 88 89 89

76
FC

79
SC

23
FT

24
ST

engr

64
FC

65
SC

56
FT

57
ST

raytrace

66
FC

66
SC

45
FT

45
ST

splash

43
FC

43
SC

43
FT

43
ST

database

Repl Ovhd
Stall
User CPU

FIGURE 7.1. Performance impact of approximate information. There are 4 bars for each workload, Full
cache (FC), Sampled cache (SC), Full TLB (FT), and Sampled TLB (ST). All sampled cases are sampled with
ratio 1:10. Each bar shows the run time normalized to the run time for the Round robin case. The run time is
broken down as User CPU, User stall (local and remote), Overhead for replication and migration separately.
The percentage of misses made local is shown at the bottom of each bar. Sampled cache does as well as Full
cache in all cases.

� engineering(cache)
� engineering(tlb)

 raytrace(cache)
� raytrace(tlb)
� splash(cache)
� splash(tlb)
� sybase(cache)

 sybase(tlb)

|

0
|

20
|

40
|

60
|

80
|

100

|0

|20

|40

|60

|80

|100

 % of Pages

 %
 o

f C
ac

he
 M

is
se

s

�

�

� � � �

�

�

�

�

� �

�

�

�
� � �

�

�

�

�
� �

�

�

�

�

�
�

�

�
�

�
� �

FIGURE 7.2. Effectiveness of TLB misses and cache misses in finding hot pages. The X-axis is percentage
of pages considered. The pages are sorted in descending order based on the number of misses taken, cache
misses for one set of graphs and TLB misses for the other. The Y-axis shows the percentage of the total
cache misses that are to the pages considered. A close correspondence between the cache and TLB lines
for a workload indicates that hot cache miss pages are also hot TLB miss pages. This does not seem to be
the case for engineering and to a lesser extent for splash and raytrace.

— 21 —

The results for the policies with approximate information for each of the workloads is shown in
Figure 7.1.

Sampled cache: Comparing the sampled cache based policies with the policies that use full cache
information, the striking point is that the performance is almost identical across all the workloads.
This is true for both the local/total ratio and the overhead for replication and migration. The
Flashpoint study [MOH96] implements functionality which includes the counting of cache misses
in the MAGIC directory controller. This functionality is at least as complex as what we need and,
without using sampling, they report an increase of about 2 - 5% in application execution time.
Therefore, the 1 in 10 sampled cache case evaluated here is very attractive, both for accuracy and
for performance.

TLB: Our results in Figure 7.1 show that TLB misses are a somewhat inconsistent metric to use
for the policies. The performance is worst in the engineering workload with a local/total ratio of
only 23% as opposed to 76% with perfect information. On the other hand, the TLB metric
performs quite well for the database workload achieving the same local/total ratio. The
performance of the other two workloads, Splash and Raytrace, fall in between these extremes. To
explain this difference in behavior we use Figure 7.2, which shows the effectiveness of using TLB
misses in finding the hot user pages. The graph partly explains the difference in performance of
the workloads with the TLB metric. In Figure 7.2, the difference in behavior between using TLB
misses and cache misses (the separation of the corresponding graphs) is largest for the
engineering workload and least for the database workload. Other factors that contribute to the
reduction in performance with TLB misses are the difference in the absolute number of TLB and
cache misses for a workload and the difference in the read/write ratio of each metric (see Table 4).

Sampled TLB: Figure 7.1 also shows that sampled TLB performs about the same as TLB.
Sampled TLB misses would be an adequate metric for the policy, for workloads with a good
correlation between TLB misses and cache misses.

8.0 Performance Results

In sections 6 and 7 we used cache and TLB miss traces to explore the policy space and study the
effect of approximate information. The results showed potential performance improvements of
28% for CC-NUMA and 44% for CC-NOW type systems. The trace based analysis used a fixed
per page overhead and was useful for exploring potential benefits. However it does not
completely represent all the costs in the system and all the benefits from doing the replication and
migration of pages. To explore the realistic costs and benefits and validate the trace results, we
implemented the dynamic policy, used in the trace-based studies, in the IRIX 5.2 kernel. As
described in section 4, we use SimOS [HWR+95], a realistic hardware simulator for our runs
allowing us to simulate a CC-NUMA machine based on the FLASH multiprocessor [Kus+94].
SimOS also enables us to non-intrusively collect detailed information about cache misses and the
kernel overhead associated with migrating and replicating pages.

We first describe the important aspects of the implementation of the policy. We then analyze the
latency of page-migration or page-replication and give a detail breakdown by function of the
kernel overhead. Finally, we present performance numbers for the actual implementation.

— 22 —

8.1 Implementation Details

The IRIX 5.2 operating system was modified to implement the page migration/replication
policies. IRIX is an SMP OS that currently runs on the SGI CHALLENGE, a bus-based MP
system. Without going into the kernel modifications in detail, we now point out some of the
important issues in the implementation.

The directory controller counts misses, and generates an interrupt when a page crosses the trigger
threshold. The policy is implemented in the kernel as a low priority interrupt handler. Figure 8.1
describes the sequence of events in our kernel implementation of the page migration and
replication policy. The flow chart shows the steps in generating and servicing a pager interrupt.
There is one other path to the pager routine. The page table entries for replicated pages are
marked read-only. Should a write occur to any replica, the processor traps to the protection fault
handler (pfault). The pfault code directly calls a routine to collapse the replicas to a single page.

1. Count misses
Raise interrupt

2. Take interrupt
Call pager routine

Pages
to
process

NO

YES

3. Read

Make decision

IGNORE COLL .

MIG/REP

4. Allocate page

5. Update links
Set Mappings

6. Flush TLBs

Pages
to
copy

NO

YES

7. Copy page

8. Free pages
Update

Done

1. Misses are counted and when a counter reaches
the trigger threshold, the processor is interrupted.

2. The processor takes the interrupt and calls the
pager routine that implements the page movement
code. Note that there are other functions
multiplexed on this interrupt line and will also
have to be checked when the interrupt is taken.

3. The pager routine reads the counters for the page
and its replicas and decides to migrate, replicate
or collapse a page based on the counter values and
on the hold, migrate and write thresholds. The
decision could also be to do nothing, in which
case the remaining steps are skipped. It then
acquires the necessary page-level locks for this
page.

4. A new page is allocated from the appropriate
memory. For a page collapse, one of the existing
copies is designated as the new copy.

5. The new page is linked into all the appropriate
queues maintained by the OS. The page table
entries are changed to read-only and for a migrate
or a collapse, to point to the new physical page.
The page itself is locked, so that the entries
cannot be changed by a faulting processor.

6. The TLBs on all the processors are flushed.
Flushing the TLB removes old TLB mappings
that may not be valid after a migrate or a collapse
and it prevents writes to the page, while the data
is being copied to the new page

7. The data is now copied to the new page.

8. Page collapse: all old replicas are freed. Page
migrate: old page is freed and mappings are
marked valid again. Page replicate: all the
mappings are changed to point to a local page if
possible.

FIGURE 8.1. Implementation flow chart for processing a
page for migration or replication in the kernel. The steps 1
- 8 of the flowchart are described in more detail on the
right.

counters

mappings

— 23 —

In our initial implementation, every hot page generated an interrupt. However measurements
showed that the kernel overhead in taking an interrupt and flushing TLBs for each page is quite
significant. To reduce this cost, the directory controller attempts to collect a few pages that have
crossed the threshold before interrupting the local processor. The waiting criterion is collecting
five pages or 500µs whichever comes first. This is a trade-off between reducing the per page
overhead and taking more remote misses due to the delay in moving the page. Therefore on each
interrupt, the code iterates over steps 3-5 for each page. A single TLB flush operation is done and
then steps 7 and 8 are done for all the pages that require it. We observed that on average there are
approximately two and a half pages for each interrupt.

Step 1 represents the collection of miss information. It is possible to implement collection of TLB
miss information by instrumenting the TLB handler in the OS. However our results from section
7 show that using TLB misses as an approximation for cache misses does not produce consistent
results. However, counting cache misses needs hardware support. The FLASH design will include
cache miss counting in the directory controller using sampling of cache misses to reduce the
overhead. Therefore in our implementation, we include the collection of cache miss information
within the directory controller simulator.

Three important changes had to be made to the IRIX VM system to enable our implementation of
replication and migration. Figure 8.1 gives an overview of these changes.

Replication support: Support was added to link together the replicas of a physical page. One
replica is designated as the master page and is linked in the hash chain of physical pages. The
other replicas are linked to the master page.

Finer grain locking: The version of IRIX that we used had fairly coarse locking for VM related
structures. There is one lock (memlock) protecting the global hash table of active physical pages
and the global free page list. There is also one lock (region lock) per region (e.g. text, data, etc.)
that has to be acquired when changing page table entries. It was evident that both memlock and
the region locks for shared text or data would be significant bottlenecks in the implementation of
the policy. To reduce the contention on memlock, we added page level locking for manipulating
replica chains. A lock was added to each page table entry to avoid having to grab the region lock
when changing a mapping. However the lower-level functions that access the hash table of active
physical pages and do the allocation and deallocation of pages still use memlock since changing
this would require a significant redesign of the VM system. As a result of these changes, we
reduce synchronization cost significantly in our implementation, however it still accounts for a
significant fraction of the kernel overhead for some workloads (as high as 33% for engineering).

Page table back mappings: Support was added for back mappings from the physical page to the
page table entries pointing to it. This functionality is similar to an inverted page table. This was
necessary to enable changing the mappings to a page when it was replicated or migrated.

8.2 Analysis of Kernel Overhead

We ran selected workloads, with the migration/replication policy implemented in the kernel as
described above. We used the Engr., Raytrace and Splash workloads for these runs as they showed
significant improvements in the trace-based analysis. Our SIMOS execution environment
provides detailed kernel and hardware statistics for each run. Using these statistics we analyze the

— 24 —

Standard IRIX:

With Replication:

nil

nil

nilnil

nil

With Back Mappings:

nil

FIGURE 8.2. a In IRIX a hash table is used to translate logical pages (vnode, offset) to physical pages.
Physical page frame descriptors (pfds) are linked into this open hash table through the hash chain. Also,
virtual page table entries (ptes) point at the pfds, but there is no link directly from the pfd back to the pte.
There is one global lock (memlock) which protects all the physical pages and multiple region locks, each of
which locks all the ptes in a region.

FIGURE 8.2. b All replicas of a page are linked on a replica chain. Only one of the replicas is linked into
the hash table. Individual page level locking was added to lock the replica chain. Memlock is now only
used for changes to the hash chain and for allocation and deallocation of page frames.

hash chain

hash chain

replica chain

FIGURE 8.2. c To facilitate easy mapping changes, links were added to the pfd pointing back to all the
ptes mapping this page. pte level locks were added so that the region lock did not have to be grabbed
during a migration or replication operation. (Although the region still exists to protect other resources.)

pfd

pte

— 25 —

kernel overhead to understand where the time is being spent while migrating and replicating
pages.

Table 8 shows the average latency for each of the steps 2-8 from Figure 8.1 while migrating or
replicating a page. The latency for the interrupt-handling and the TLB flush are amortized over a
number of pages as described in the previous section. Effective values for a single page are shown
(this accounts for the variations in those latencies across workloads). The component for step 5
(Links & Mapping) is higher for migration, since during migration, the old page has to be taken
off the physical page hash queue and the new page put back on. This requires acquiring the
memlock. For replication, the replicas are queued on the master page and only requires acquiring
a page-level lock. In step 8 (Policy End), replication takes longer, since all current mappings to
the page have to be examined and set to point to the most appropriate replica.

The individual latencies are about the same for the different workloads. An interesting point to
note is the increase in time for the page allocation routine for the Splash and engineering
workloads. This increase is primarily due to contention for memlock (which still protects the free
list and the page hash table). The engineering and Splash workloads allocate more pages than the
Raytrace workload and so increase the contention for memlock. The average latency per
operation is in the 400 - 500µs range.

The previous table showed the latencies of each of the individual operations involved in migrating
or replicating pages. There are two additional sources of kernel overhead not accounted for in
these numbers. The time spent in the kernel when it receives a request from another processor to

Table 8 Latency of various functions in the policy implementation. The columns correspond to the
implementation steps in section 8.1. The numbers are shown separately for Replication and Migration,
where applicable. The latencies shown are inµs and is the average value for invocations of the function
across the entire run.

Workload
Intr.
Proc

Policy
Decision

Page
Alloc

Links &
Mapping

TLB
Flush

Page
Copying

Policy
End

Total
Latency

Engr.
Repl. 13.0 12.6 184.3 28.6 35.9 87.0 80.5 441.9

Migr. 75.8 63.4 472.0

Ray
Repl. 24.4 16.0 74.4 34.3 61.5 106.7 77.4 394.7

Migr. 100.5 64.9 448.4

Splash
Repl. 22.2 12.8 170.6 40.2 51.3 97.1 91.9 486.1

Migr. 99.7 62.4 516.1

Table 9 Breakdown of total overhead by function. For each workload, we show the kernel overhead
and the percentage of the overhead that can be attributed to the various functions. Page allocation,
TLB flushing and Page copying comprise a large part of the overhead.

Workload
Kernel
Ovhd(s)

Percentage of Kernel Overhead

TLB
Flush

Page
Alloc

Page
Copy

Page
Fault

Links &
Mapping

Policy
End

Policy
Decision

Intr.
Proc.

Engr. 4.54 34.5 25.5 11.1 8.9 8.3 8.8 2.1 1.7

Raytrace 1.80 54.4 7.6 10.8 5.4 7.4 7.4 2.6 2.6

Splash 4.00 44.1 20.7 8.1 7.3 6.5 6.3 2.0 1.9

— 26 —

flush its TLB and the additional protection faults taken because pages are marked read-only
during migration or replication. Table 9 shows the kernel overhead due to all replication and
migration costs and its breakdown by function. Overall, the functions that cause the most
overhead are the allocation of pages, the flushing of TLBs and the copying of pages.

A big factor in doing page allocation is the time spent in acquiring memlock. Detail
measurements of synchronization time showed that as a percentage of total kernel overhead, it
was 33% for engineering and 17% for Splash, primarily due to contention for memlock. Our
implementation reduced the contention for memlock, but redesigning the VM to remove the
memlock bottleneck should yield significantly better performance. This would reduce the time
spent in page allocation and also in some of the other functions that acquire memlock. Due to the
high synchronization overhead in the current implementation, our experiments indicate that
adaptively changing the trigger to control the rate at which pages are moved can improve
performance. The trigger threshold could be changed through feedback from the kernel, based on
the contention for kernel resources.

The time spent flushing TLBs can also potentially be reduced. This could be done by tracking the
processors that have mappings for a page and flushing only those TLBs. This functionality is not
supported by the current OS and would require significant changes to the VM system.

The actual copying of bytes is not as significant an overhead as initially expected. An
unoptimized bcopy done by the processor takes approximately 100µs. A pipelined memory to
memory copy that is done by the directory controller in FLASH takes about 35µs. Runs with the
FLASH supported bcopy show that performance could be improved with this technique.

8.3 Execution Time Improvement

As stated earlier, the workloads were run both with our implemented replication and migration
policy and, for comparison, with “first touch” (FT) page allocation implemented in the kernel1.
Table 10 shows the results of the two sets of runs for each of the workloads. We confirm that the
kernel implementation of the migration and replication policy is able to improve memory locality
substantially. The improvement in execution time is dependent on three factors. First, the
achieved fraction of misses satisfied from local memory. Second, the contribution of user stall
time to the total execution time, as this is the part that can be reduced through improved page
locality. Third, the kernel overhead required to improve the memory locality. The total execution
time is improved in all three cases even after considering the additional overhead in the kernel for
migration and replication.

In Table 10, for raytrace, we see that the total increase in kernel time is actually less than the
kernel overhead for replication and migration as shown in Table 9. To a lesser extent this is true
for engineering too. This is partly due to the reduced wall clock time for the execution of the
workload with page migration and replication. As a result, routines that run at regular intervals
(on a clock tick) run fewer times and so reduce the kernel time used. The more important cause
for the reduction in kernel time is the reduction in the average latency per cache miss, both local

1. We used a trigger value of 128 for the Raytrace and Splash workload and 96 for the engineering workload. These
values gave the best execution times for the actual implementation.

— 27 —

and remote, through better page locality. The FLASH memory model is more detailed and models
contention at buses, in the directory controller processor and at the memory modules. In this
model, a miss to local or remote memory could be dirty in another processor's cache and so
resulting in 2 network hops for the local miss or 3 network hops for the remote miss.
Consequently, the latency of a local or remote miss is not fixed and varies based on queuing
delays. The minimum local latency is 0.27µs and remote latency is 1.33µs when the memory line
is clean in main memory.

In this configuration improving memory locality has two benefits. First, the misses can be
satisfied from local memory and so with a smaller latency. Second, they do not occupy a remote
directory controller in addition to the local one and so actually reduce the contention in the
directory controller and the network. Consequently, the latency of all misses, local and remote, is
reduced. Table 11 shows the average latency for misses for the two sets of runs. Improving the
memory locality reduced the average local memory access latency for each of the runs shown
above, Engineering (34.6%), Raytrace (40%), and Splash (18.9%). The effect of latency reduction

Table 10 Comparison of the performance of the workload runs with “First Touch”(FT) and with the
implemented policy (Rep/Mig). We show the percentage of misses to local memory, and the resulting
second-level cache stall time in user mode. This reflects the improvement in memory locality through
migration and replication. We also show User mode execution time which reduces due to better
memory locality, Kernel mode execution time which increases due to the kernel overhead, and total
execution time which shows the net improvement.

Workload

Memory
Alloc.
Policy

Percent
misses to

local mem.
User Stall
time (s)

User Exec.
time (s)

Kernel Exec.
time (s)

Tot. Exec.
time (s)

Engr
FT 12 35.4 45.7 3.6 49.3

Rep/Mig 63 17.0 27.4 7.7 35.1

Raytrace
FT 16 28.4 51.3 18.2 69.4

Rep/Mig 53 18.2 40.9 18.3 59.2

Splash
FT 18 28.2 56.5 15.0 71.5

Rep/Mig 50 21.5 49.3 19.1 68.4

Table 11 Effect of improving memory locality on latency of cache misses. We show the
average latency for local and remote cache misses with two different page allocation
policies, first touch (FT) and our implemented migration/replication policy (Rep/Mig).
We also show the improvement in latency for Rep/Mig over FT. The minimum local
latency is 0.27µs and remote latency is 1.33µs. There is significant reduction of local
latency by improving the memory locality.

Work-
load Policy

Average Latency of
Cache Miss (µs)

Percent improvement
over FT

Local Remote Local Remote

Engr
FT 0.78 2.26

34.6 11.1
Rep/Mig 0.51 2.01

Raytrace
FT 1.15 2.93

40.0 5.1
Rep/Mig 0.69 2.78

Splash
FT 0.74 2.20

18.9 - 3.6
Rep/Mig 0.60 2.28

— 28 —

through page locality was large enough to offset some or most of the kernel overhead for
migration and replication.

Table 12. compares the results from the traces and the actual runs. With all the realistic overheads

of the actual implementation, the performance improvement in execution time is still significant
and ranges from 28.9% for the engineering workload to 4.4% for the Splash workload. The
benefits with the real run is comparable to that with traces for the “Raytrace” and the
“Engineering” workloads despite the achieved local ratio being somewhat less. This is a result of
the memory system contention and higher latency for misses in a real system. The trace-based
analysis used a simple contention-less NUMA memory model, with fixed remote and local
memory access times.

The lower local miss ratio reflects the realities of an actual implementation and is due to a number
of factors. There is an interval between when the counter exceeds a trigger and when the page is
moved or replicated, resulting in additional remote misses. Since migration and replication do not
affect correctness on a CC-NUMA machine, the pager routine will ignore a page if its page-level
lock is currently held by another processor. When a process is rescheduled to a different node,
which has a local copy of a page, it may take a while before the page-table entry is changed to
reflect this. Currently we only change mappings when a page or one of its replicas is processed
after crossing the trigger threshold. The above factors affect the Splash workload most, since it
has both rescheduling of processes and shared code and data segments.

The workloads were also run using sampled cache misses and TLB misses as amtracs. The results
exactly mirrored what we observed with the traces, showing that sampling at 1:10 ratio was quite
effective with the performance being similar to that without sampling. We had hoped that the
flushing of TLBs, required when moving pages, might substantially change the effectiveness of
TLB misses, making their results closer to that of cache misses. However, the observed behavior
was very similar to that with the traces, TLB misses continued to be a somewhat inconsistent
approximation of cache misses.

Table 12 Performance improvement with page movement over “First Touch”. We show
results for the trace-based analysis and the FLASH architecture. The achieved memory
locality in FLASH is lower than the traces, but because of the contention effects in the real
architecture, the actual execution time improvement can be greater.

Workload
Memory
model

Percentage
 of misses
to local
memory

Percent improvement
over First-touch

User Stall
time

Execution
time

Engr.
Trace 76 51.5 27.7

FLASH 63 52.1 28.9

Raytrace
Trace 64 35.0 9.6

FLASH 53 35.8 14.7

Splash
Trace 66 35.6 9.4

FLASH 50 23.7 4.4

— 29 —

9.0 Conclusions and Summary

Cache coherent shared memory (CC-NUMA) multiprocessors are becoming increasingly popular
as compute servers and now constitute an important class of machines. The key factor that affects
the performance of applications on these systems is memory locality, which is the focus of this
report. To study the issues in improving memory locality we assembled a very realistic and
important set of workloads, that included a Sybase database, single and multiprogrammed parallel
graphics and supercomputer applications, engineering simulators including VCS, and software
development tools. Using traces and perfect cache miss information we studied the potential
improvements in memory stall time that are achievable in these workloads. We showed that there
are some workloads that benefit from the replication of data (in addition to code) and that
dynamically replicating only hot pages (as opposed to first touch) can reduce the memory
overhead. We investigated the use of other forms of information to drive the policy and found that
TLB misses were an inconsistent approximation for cache misses. Our studies also showed that,
even a cache-miss sampling rate of 1 in 10 can give results closely matching those of full cache
information. Therefore, sampling can be used to reduce the cost of collecting cache-miss
information in hardware. We did a detailed analysis of our kernel-based implementation of the
policy and discovered that the primary sources of overhead were the synchronization between
processors and the flushing of TLBs. Running the workloads on a kernel implementation of the
policy, our results showed that improving memory locality reduces the overall stall time and by
reducing contention, the latency of misses too. This compounding effect is important, and the
performance improvement was as much as 28% for the engineering workload on the CC-NUMA
architecture and could be as high as 44% on the CC-NOW architecture.

Bibliography

[ABL+91] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler
activations: effective kernel support for the user-level management of parallelism. In
Proceedings of the 13th ACM Symposium on Operating System Principles, pages 95-
109, October 1991.

[ACD+91] Anant Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor.MIT/LCS Memo TM-454, Massachusetts Institute of Technology,
1991.

[BCZ90] J. K. Bennett, J. B. Carter, W. Zwaeneopoel. Munin: Distributed shared memory based
on type-specific memory coherence. InProceedings of the Second Symposium on
Principles and Practice of Parallel Programming, pages 168-175, March 1990.

[BZS93] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway Distributed Shared
Memory System. InProceedings of the 1993 IEEE CompCon Conference, pages 528-
537, February 1993.

[BGW89] D. Black, A. Gupta, and W. D. Weber. Competitive management of distributed shared
memory. InProceedings of COMPCON, pages 184-190, March 1989.

[BSF89] W. Bolosky, M. Scott, and R. Fitzgerald. Simple but effective techniques for NUMA
memory management. InProceedings of the Twelfth ACM Symposium on Operating
Systems Principles, pages 19-31, December 1989.

— 30 —

[BSF+91] W. Bolosky, M. Scott, R. Fitzgerald, and A. Cox. NUMA policies and their
relationship to memory architecture. InProceedings, Architectural Support for
Programming Languages and Operating Systems, pages 212-221, April 1991.

[CDV+94] R. Chandra, S Devine, B Verghese, A Gupta, and Mendel Rosenblum. Scheduling and
Page Migration for Multiprocessor Compute Servers. InProceedings, Architectural
Support for Programming Languages and Operating Systems, 12-24, October 1994.

[CHR+95] J. Chapin, S. A. Herrod, M. Rosenblum, and A. Gupta. Memory System Performance
of UNIX on CC-NUMA Multiprocessors. In ACM SIGMETRICS ‘95, pages 1-13,
May 1995.

[CoF89] A. L. Cox and R. J. Fowler. The implementation of a coherent memory abstraction on
a NUMA multiprocessor: Experiences with Platinum. InProceedings of the Twelfth
ACM Symposium on Operating Systems Principles, pages 32-43, December 1989.

[Hol88] M. Holliday. Page table management in local/remote architectures. In ACM
SIGARCH International Conference on Supercomputing, pages 1-8, July 1988.

[Hol89] M Holliday. Reference history, page size, and migration daemons in local/remote
architectures. InProceedings, Architectural Support for Programming Languages and
Operating Systems, pages 104-112, April 1989.

[Kus+94] J. Kuskin, et al. The Stanford FLASH Multiprocessor. InProceedings of the 21st
International Symposium on Computer Architecture, pages 302-313, April 1994.

[LaE91] R. P. LaRowe Jr. and C. S. Ellis. Page placement policies for NUMA multiprocessors.
Journal of Parallel Distributed Computing, 11(2):112-129, February 1991.

[LaE91] R. P. LaRowe Jr. and C. S. Ellis. Experimental Comparison of Memory Management
Policies for NUMA Multiprocessors.ACM Transactions on Computer Systems,
9(4):319-363, November 1991.

[LEK91] R. P. LaRowe Jr., C. S. Ellis, and L. S. Kaplan. The robustness of NUMA memory
management. InProceedings of the Thirteenth ACM Symposium on Operating System
Principles, pages 137-151, October 1991.

[LLG+90] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessey. The directory-
based cache coherence protocol for the DASH multiprocessor. InProceedings of the
17th Annual International Symposium on Computer Architecture, pages 148-159, May
1990.

[Li88] K. Li. IVY: A shared virtual memory system for parallel computing. InProceedings of
the 1988 International Conference on Parallel Processing, pages 125-132, August
1988.

[MOH96] Margaret Martonosi, David Ofelt, and Mark Heinrich. Integrating Performance
Monitoring and Communication in Parallel Computers (92 kB). To appear inthe
proceedings of ACM SIGMETRICS ‘96: Conference on Measurement and Modeling of
Computer Systems, Philadelphia, 1996.

[RHW+95]M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete Computer Simulation:
the SimOS approach. InIEEE Parallel and Distributed Technology, Fall 1995.

[ScL94] D. J. Scales and M. S. Lam. The design and evaluation of a shared object system for
distributed memory machines. InProceedings, Operating Systems Design and
Implementation, pages101-114, November 1994.

[SWG92] J.P. Singh, W. Weber, A. Gupta. Splash: Stanford Parallel Applications for Shared
Memory. Computer Architecture News, 20(1):5-44, 1992.

— 31 —

[TuG91] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed
shared-memory multiprocessors. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles,pages 159-166, December 1991.

[VaZ91] R. Vaswani and J Zahorjan. The implications of cache affinity on processor scheduling
for multiprogrammed, shared-memory multiprocessors. InProceedings of the
Thirteenth ACM Symposium on Operating Systems Principles, pages 26-40, October
1991.

[WSH94] S. Woo, J. P. Singh, J. L. Hennesey. The performance advantages of integrating block
data transfer in cache-coherent multiprocessors. InProceedings, Architectural Support
for Programming Languages and Operating Systems, pages 219-232, October 1994.

