
A VARIABLE LATENCY PIPELINED

FLOATING-POINT ADDER

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-96-689

February 1996

This work was supported by NSF under contract MIP93-13701.

A VARIABLE LATENCY PIPELINED

FLOATING-POINT ADDER

by

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-96-689

February 1996

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-9030

pubs@shasta.stanford.edu

Abstract

Addition is the most frequent
oating-point operation in modern microprocessors. Due
to its complex shift-add-shift-round data
ow,
oating-point addition can have a long la-
tency. To achieve maximum system performance, it is necessary to design the
oating-point
adder to have minimum latency, while still providing maximum throughput. This paper
proposes a new
oating-point addition algorithm which exploits the ability of dynamically-
scheduled processors to utilize functional units which complete in variable time. By rec-
ognizing that certain operand combinations do not require all of the steps in the complex
addition data
ow, the average latency is reduced. Simulation on SPECfp92 applications
demonstrates that a speedup in average addition latency of 1.33 can be achieved using this
algorithm, while still maintaining single cycle throughput.

Key Words and Phrases: Addition, computer arithmetic,
oating point, performance
analysis, pipeline, variable latency

Copyright c
 1996

by

Stuart F. Oberman and Michael J. Flynn

Contents

1 Introduction 1

2 FP Addition Algorithms 1

2.1 Basic : 1
2.2 Two-Path : 2
2.3 Pipelining : 3
2.4 Combined Rounding : 4

3 Variable Latency Algorithm 6

3.1 Two Cycle : 6
3.2 One Cycle : 8

4 Performance Results 11

5 Conclusion 13

iii

List of Figures

1 Two path algorithm : 4
2 Three cycle pipelined adder with combined rounding : : : : : : : : : : : : : 5
3 Two or three cycle variable latency adder : : : : : : : : : : : : : : : : : : : 7
4 One, two, or three cycle variable latency adder : : : : : : : : : : : : : : : : 9
5 Additional hardware for one cycle operation prediction : : : : : : : : : : : : 10
6 Histogram of exponent di�erence : 12
7 Histogram of normalizing shift distance : 12
8 Performance summary of proposed techniques : : : : : : : : : : : : : : : : : 13

iv

1 Introduction

Floating-point (FP) addition and subtraction are very frequent
oating-point operations.
Together, they account for over half of the total
oating-point operations in typical scienti�c
applications [10]. Both addition and subtraction utilize the FP adder. Techniques to reduce
the latency and increase the throughput of the FP adder have therefore been the subject
of much previous research.

Due to its many serial components, FP addition can have a longer latency than FP
multiplication. Pipelining is a commonly used method to increase the throughput of the
adder. However, it does not reduce the latency. Previous research has provided algorithms
to reduce the latency by performing some of the operations in parallel. This parallelism is
achieved at the cost of additional hardware. The minimum achievable latency using such
algorithms in high clock-rate microprocessors has been three cycles, with a throughput of
one cycle.

To further reduce the latency, it is necessary to remove one or more of the remaining
serial components in the data
ow. In this study, it is observed that not all of the components
are needed for all input operands. Two variable latency techniques are proposed to take
advantage of this behavior and to reduce the average addition latency. To take advantage of
the reduced average latency, it is necessary that the processor be able to exploit a variable
latency functional unit. Thus, the processor must use some form of dynamic instruction
scheduling with out-of-order completion in order to use the reduced latency and achieve
maximum system performance.

The remainder of this paper is organized as follows: Section 2 presents previous research
in FP addition. Section 3 presents two forms of the proposed algorithm. Section 4 analyzes
the performance of the algorithm. Section 5 is the conclusion.

2 FP Addition Algorithms

FP addition comprises several individual operations. Higher performance is achieved by
reducing the maximum number of serial operations in the critical path of the algorithm.
The following sections summarize the results of previous research in the evolution of high-
performance
oating-point addition algorithms. Throughout this study, the analysis as-
sumes IEEE double precision operands. An IEEE double precision operand is a 64 bit
word, comprising a 1 bit sign, an 11 bit biased exponent, and a 52 bit signi�cand, with one
hidden signi�cand bit [7].

2.1 Basic

The straightforward addition algorithm Basic requires the most serial operations. It has
the following steps [17]:

1. Exponent subtraction: Perform subtraction of the exponents to form the absolute
di�erence jEa � Ebj = d.

1

2. Alignment: Right shift the signi�cand of the smaller operand by d bits. The larger
exponent is denoted Ef .

3. Signi�cand addition: Perform addition or subtraction according to the e�ective oper-
ation, which is a function of the opcode and the signs of the operands.

4. Conversion: Convert the signi�cand result, when negative, to a sign-magnitude rep-
resentation. The conversion requires a two's complement operation, including an
addition step.

5. Leading-one detection: Determine the amount of left shift needed in the case of sub-
traction yielding cancellation. For addition, determine whether or not a 1 bit right is
required. Priority encode (PENC) the result to drive the normalizing shifter.

6. Normalization: Normalize the signi�cand and update Ef appropriately.

7. Rounding: Round the �nal result by conditionally adding 1 unit in the last place
(ulp), as required by the IEEE standard [7]. If rounding causes an over
ow, perform
a 1 bit right shift and increment Ef .

The latency of this algorithm is large, due to its many long length components. It
contains two full-length shifts, in steps 2 and 6. It also contains three full-length signi�cand
additions, in steps 3, 4 and 7.

2.2 Two-Path

Several improvements can be made to Basic in order to reduce its total latency. These im-
provements come typically at the cost of adding additional hardware. These improvements
are based on noting certain characterists of FP addition/subtraction computation:

1. The sign of the exponent di�erence determines which of the two operands is larger.
By swapping the operands such that the smaller operand is always subtracted from
the larger operand, the conversion in step 4 is eliminated in all cases except for equal
exponents. In the case of equal exponents, it is possible that the result of step 3 may
be negative. Only in this event could a conversion step be required. Because there
would be no initial aligning shift, the result after subtraction would be exact and
there will be no rounding. Thus, the conversion addition in step 4 and the rounding
addition in step 7 become mutually exclusive by appropriately swapping the operands.
This eliminates one of the three carry-propagate addition delays.

2. In the case of e�ective addition, there is never any cancellation of the results. Ac-
cordingly, only one full-length shift, an initial aligning shift, can ever be needed. For
subtraction, two cases need to be distinguished. First, when the exponent di�erence
d > 1, a full-length aligning shift may be needed. However, the result will never
require more than a 1 bit left shift. Similarly if d � 1, no full-length aligning shift is
necessary, but a full-length normalizing shift may be required in the case of subtrac-
tion. In this case, the 1 bit aligning shift and the conditional swap can be predicted

2

from the low-order two bits of the exponents, reducing the latency of this path. Thus,
the full-length alignment shift and the full-length normalizing shift are mutually ex-
clusive, and only one such shift need ever appear on the critical path. These two cases
can be denoted CLOSE for d � 1, and FAR for d > 1, where each path comprises
only one full-length shift [5].

3. Rather than using leading-one-detection after the completion of the signi�cand addi-
tion, it is possible to predict the number of leading zeros in the result directly from the
input operands. This leading-one-prediction (LOP) can therefore proceed in parallel
with the signi�cand addition using specialized hardware [6, 13].

An improved adder takes advantage of these three cases. It implements the signi�cand
datapath in two parts: the CLOSE path and FAR path. At a minimum, the cost for this
added performance is an additional signi�cand adder and a multiplexor to select between
the two paths for the �nal result. Adders based on this algorithm have been used in several
commercial designs [2, 3, 9]. A block diagram of the improved Two Path algorithm is shown
in �gure 1.

2.3 Pipelining

To increase the throughput of the adder, a standard technique is to pipeline the unit such
that each pipeline stage comprises the smallest possible atomic operation. While an FP
addition may require several cycles to return a result, a new operation can begin each cycle,
providing maximum throughput. Figure 1 shows how the adder is typically divided in a
pipelined implementation. It is clear that this algorithm �ts well into a four cycle pipeline
for a high-speed processor with a cycle time between 10 and 20 gates. The limiting factors
on the cycle time are the delay of the signi�cand adder (SigAdd) in the second and third
stages, and the delay of the �nal stage to select the true result and drive it onto a result
bus. The �rst stage has the least amount of computation; the FAR path has the delay of at
least one 11 bit adder and two multiplexors, while the CLOSE path has only the delay of
the 2 bit exponent prediction logic and one multiplexor. Due to the large atomic operations
in the second stage, the full-length shifter and signi�cand adder, it is unlikely that the two
stages can be merged, requiring four distinct pipeline stages.

When the cycle time of the processor is signi�cantly larger than that required for the FP
adder, it is possible to combine pipeline stages, reducing the overall latency in machine cycles
but leaving the latency in time relatively constant. Commercial superscalar processors, such
as Sun UltraSparc [4], often have larger cycle times, resulting in a reduced FP addition
latency in machine cycles when using the Two Path algorithm. In contrast, superpipelined
processors, such as DEC Alpha [1], have shorter cycle times and have at least a four cycle
FP addition latency. For the rest of this study, it is assumed that the FP adder cycle
time is limited by the delay of the largest atomic operation within the adder, such that the
pipelined implementation of Two Path requires four stages.

3

Rshift

LshiftRound

LOP

PENC

MUX

SigAdd

SigAdd

Exp Diff

FAR

+
Swap

+
Swap

Predict

CLOSE

Conversion

Figure 1: Two path algorithm

2.4 Combined Rounding

A further optimization can be made to the Two Path algorithm to reduce the number of
serial operations. This optimization is based upon the realization that the rounding step
occurs very late in the computation, and it only modi�es the result by a small amount.
By precomputing all possible required results in advance, rounding and conversion can be
reduced to the selection of the correct result, as described by Quach [11, 12]. Speci�cally,
for the IEEE round to nearest (RN) rounding mode, the computation of A+B and A+B+1
is su�cient to account for all possible rounding and conversion possibilities. Incorporating
this optimization into Two Path requires that each signi�cand adder compute both sum

and sum+1, typically through the use of a compound adder (ComAdd). Selection of the
true result is accomplished by analyzing the rounding bits, and then selecting either of the
two results. The rounding bits are the sign, LSB, guard, and sticky bits. This optimization
removes one signi�cand addition step. For pipelined implementations, this can reduce the
number of pipeline stages from four to three. The cost of this improvement is that the
signi�cand adders in both paths must be modi�ed to produce both sum and sum+1.

4

Rshift

Lshift

LOP

PENC

ComAdd

ComAdd

HalfAdd

MUX

Exp Diff
+

Swap
+

Swap

Predict

CLOSEFAR

Figure 2: Three cycle pipelined adder with combined rounding

For the two directed IEEE rounding modes round to positive and minus in�nity (RP
and RM), it is also necessary to compute A + B + 2. The rounding addition of 1 ulp may
cause an over
ow, requiring a 1 bit normalizing right-shift. This is not a problem in the case
of RN, as the guard bit must be 1 for rounding to be required. Accordingly, the addition
of 1 ulp will be added to the guard bit, causing a carry-out into the next most signi�cant
bit which, after normalization, is the LSB. However, for the directed rounding modes, the
guard bit need not be 1. Thus, the explicit addition sum+2 is required for correct rounding
in the event of over
ow requiring a 1 bit normalizing right shift. In [12], it is proposed
to use a row of half-adders above the FAR path signi�cand adder. These adders allow
for the conditional pre-addition of the additional ulp to produce sum+2. In the Intel i860

oating-point adder [8, 14], an additional signi�cand adder is used in the third stage. One
adder computes sum or sum+1 assuming that there is no carry-out. The additional adder
computes the same results assuming that a carry-out will occur. This method is faster than
Quach, as it does not introduce any additional delay into the critical path. However, it
requires duplication of the entire signi�cand adder in the third stage. A block diagram of

5

the three cycle Combined Rounding algorithm based on Quach is shown in �gure 2. The
critical path in this implementation is in the third stage consisting of the delays of the
half-adder, compound adder, multiplexor, and drivers.

3 Variable Latency Algorithm

From �gure 2, it can be seen that the long latency operation in the �rst cycle occurs in the
FAR path. It contains hardware to compute the absolute di�erence of two exponents and
to conditionally swap the exponents. Depending upon the FP representation used within
the FPU, the exponents are either 11 bits for IEEE double precision or 15 bits for extended
precision. As previously stated, the minimum latency in this path comprises the delay of
an 11 bit adder and two multiplexors. The CLOSE path, in contrast, has relatively little
computation. A few gates are required to inspect the low-order 2 bits of the exponents to
determine whether or not to swap the operands, and a multiplexor is required to perform
the swap. Thus, the CLOSE path is faster than the FAR path by a minimum of

�td � tmux + (tadd11 � t2bit)

3.1 Two Cycle

Rather than letting the CLOSE path hardware sit idle during the �rst cycle, it is possible
to take advantage of the duplicated hardware and initiate CLOSE path computation one
cycle earlier. This is accomplished by moving both the second and third stage CLOSE path
hardware up to their preceding stages. As it has been shown that the �rst stage in the
CLOSE path completes very early relative to the FAR path, the addition of the second
stage hardware need not result in an increase in cycle time.

The operation of the proposed algorithm is as follows. Both paths begin speculative
execution in the �rst cycle. At the end of the �rst cycle, the true exponent di�erence is
known from the FAR path. If the exponent di�erence dictates that the FAR path is the
correct path, then computation continues in that path for two more cycles, for a total
latency of three cycles. However, if the CLOSE path is chosen, then computation continues
for one more cycle, with the result available after a total of two cycles. While the maximum
latency of the adder remains three cycles, the average latency is reduced due to the faster
CLOSE path. If the CLOSE path is a frequent path, then a considerable reduction in the
average latency can be achieved. A block diagram of the Two Cycle algorithm is shown in
�gure 3.

It can be seen that a result can be driven onto the result bus in either stage 2 or stage
3. Therefore, some logic is required to control the tri-state bu�er in the second stage to
ensure that it only drives a result when there is no result to be driven in stage 3. In the
case of a collision with a pending result in stage 3, the stage 2 result is simply piped into
stage 3. While this has the e�ect of increasing the CLOSE path latency to three cycles in
these instances, it does not a�ect throughput. As only a single operation is initiated every
cycle, it is possible to retire a result every cycle.

6

Rshift Lshift

LOP

PENC

ComAdd

ComAdd

HalfAdd

Exp Diff
+

Swap

+
Swap

Predict

CLOSEFAR

Collision
Logic

+
Tri-state

Output

Collision Logic
+

Tri-State

Output

Figure 3: Two or three cycle variable latency adder

7

The frequency of collisions depends upon the actual processor micro-architecture as well
as the program. Worst case collisions would result from a stream of consecutive addition
operations which alternate in their usage of the CLOSE and FAR paths. The distance
between consecutive operations depends upon the issue-width of the processor and the
number of functional units.

Scheduling the use of the results of an adder implementing Two Cycle is not complicated.
At the end of the �rst cycle, the FAR path hardware will have determined the true exponent
di�erence, and thus the correct path will be known. Therefore, a signal can be generated
at that time to inform the scheduler whether the result will be available at the end of one
more cycle or two more cycles. Typically, one cycle is su�cient to allow for the proper
scheduling of a result in a dynamically-scheduled processor.

3.2 One Cycle

Further reductions in the latency of the CLOSE path can be made after certain observations.
First, it can be seen that the normalizing left shift in the second cycle is not required for
all operations. A normalizing left shift can only be required if the e�ective operation is
subtraction. Since additions never need a left shift, addition operations in the CLOSE

path can complete in the �rst cycle. Second, in the case of e�ective subtractions, small
normalizing shifts, such as d � 2, can be separated from longer shifts. While longer shifts
still require the second cycle to pass through the full-length shifter, short shifts can be
completed in the �rst cycle through the addition of a separate small multiplexor. Both of
these cases have a latency of only one cycle, with little or no impact on cycle time. If these
cases occur frequently, the average latency is reduced. A block diagram of this adder is
shown in �gure 4.

The One Cycle algorithm allows a result to be driven onto the result bus in any of the
three stages. As in the Two Cycle algorithm, additional control for the tri-state bu�ers is
required to ensure that only one result is driven onto the bus in any cycle. In the case
of a collision with a pending result in any of the other two stages, the earlier results are
simply piped into their subsequent stages. This guarantees the correct FIFO ordering on
the results. While the average latency may increase due to collisions, throughput is not
a�ected.

Scheduling the use of the results from a One Cycle adder is somewhat more complicated
than for Two Cycle. In general, the instruction scheduling hardware needs some advance
notice to schedule the use of a result for another functional unit. It may not be su�cient
for this notice to arrive at the same time as the data. Thus, an additional mechanism may
be required to determine as soon as possible before the end of the �rst cycle whether the
result will complete either 1) in the �rst cycle or 2) the second or third cycles. A proposed
method is as follows. First, it is necessary to determine quickly whether the correct path
is the CLOSE or FAR path. This can be determined from the absolute di�erence of the
exponents. If all bits of the di�erence except for the LSB are 0, then the absolute di�erence
is either 0 or 1 depending upon the LSB, and the correct path is the CLOSE path. To
detect this situation fast, an additional small leading-one-predictor is used in parallel with
the exponent adder in the FAR path to generate a CLOSE/FAR signal. This signal is very

8

Rshift Lshift

LOP

PENC

ComAdd

ComAdd

HalfAdd

Exp Diff
+

Swap

+
Swap

Predict

CLOSEFAR

Collision
Logic

+
Tri-state

Output

Collision Logic
+

Tri-State

Output

Collision
Logic

+
Tri-state

Output

Figure 4: One, two, or three cycle variable latency adder

9

CLOSEFAR

LOP

E EA

LOP

Sig SigAB B

CLOSE SMALL
SHIFT

Add Sub

ONE CYCLE

Figure 5: Additional hardware for one cycle operation prediction

fast, as it does not depend on exactly where the leading one is, only if it is in a position
greater than the LSB.

Predicting early in the �rst cycle whether or not a CLOSE path operation can com-
plete in one or two cycles may require additional hardware. E�ective additions require no
other information than the CLOSE/FAR signal, as all CLOSE path e�ective additions can
complete in the �rst cycle. In the case of e�ective subtractions, an additional specialized
leading-one-predictor can be included in the signi�cand portion of the CLOSE path to pre-
dict quickly whether the leading one will be in any of the high order three bits. If it will
be in these bits, then it generates a one cycle signal; otherwise, it generates a two cycle
signal. A block diagram of the additional hardware required for early prediction of one
cycle operations is shown in �gure 5. An implementation of this early prediction hardware
should produce a one cycle signal in less than 8 gate delays, or about half a cycle.

10

4 Performance Results

To demonstrate the e�ectiveness of these two algorithms in reducing the average latency,
the algorithms were simulated using operands from actual applications. The data for the
study was acquired using the ATOM instrumentation system [16]. ATOM was used to in-
strument 10 applications from the SPECfp92 [15] benchmark suite. These applications were
then executed on a DEC Alpha 3000/500 workstation. The benchmarks used the standard
input data sets, and each executed approximately 3 billion instructions. All double preci-
sion
oating-point addition and subtraction operations were instrumented. The operands
from each operation were used as input to a custom FP adder simulator. The simulator
recorded the e�ective operation, exponent di�erence, and normalizing distance for each set
of operands.

Figure 6 is a histogram of the exponent di�erences for the observed operands, and it
also is a graph of the cumulative frequency of operations for each exponent di�erence. This
�gure shows the distribution of the lengths of the initial aligning shifts. It should be noted
that 57% of the operations are in the FAR path with Ed > 1, while 43% are in the CLOSE
path. An implementation of the Two Cycle algorithm therefore utilizes the two cycle path
43% of the time with a performance of:

Average Latency = 3� (:57) + 2� (:43) = 2:57 cycles

Speedup = 3=2:57 = 1:17

Thus, an implementation of the Two Cycle algorithm has a speedup in average addition
latency of 1.17, with little or no e�ect on cycle time.

Implementations of the One Cycle algorithm reduce the average latency even further.
An analysis of the e�ective operations in the CLOSE path shows that the total of 43%
can be broken down into 20% e�ective addition and 23% e�ective subtraction. As e�ective
additions do not require any normalization in the close path, they complete in the �rst cycle.
An implementation allowing e�ective addition to complete in the �rst cycle is referred to
as adds, and has the following performance:

Average Latency = 3� (:57)+ 2� (:23)+ 1� (:20) = 2:37 cycles

Speedup = 3=2:37 = 1:27

Thus, adds reduces the average latency to 2.37 cycles, for a speedup of 1.27.
Figure 7 is a histogram of the normalizing left shift distances for e�ective subtractions

in the CLOSE path. From �gure 7, it can be seen that the majority of the normalizing
shifts occur for distances of less than three bits. Only 4.4% of the e�ective subtractions in
the CLOSE path require no normalizing shift. However, 22.4% of the subtractions require
a 1 bit normalizing left shift, and 25.7% of the subtractions require a 2 bit normalizing left
shift. In total, 52.5% of the CLOSE path subtractions require a left shift less than or equal
to 2 bits. The inclusion of separate hardware to handle these frequent short shifts provides
a performance gain.

Three implementations of the One Cycle algorithm could be used to exploit this behav-
ior. They are denoted subs0, subs1, and subs2, which allow completion in the �rst cycle

11

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Exponent Difference

 F
re

qu
en

cy
 (

%
)

�

�

�

�

�

�

�

�

�
�

�
�

� � � � � � � �

�

Figure 6: Histogram of exponent di�erence

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Left Shift Distance

 F
re

qu
en

cy
 (

%
)

�

�

�

�

�
�

�
� � � � � � � � � � � � �

�

Figure 7: Histogram of normalizing shift distance

12

| |

2.0

|

2.2

|

2.4

|

2.6

|

2.8

|

3.0

 Average Latency (cycles)

two path

two cycle

adds

subs0

subs1

subs2

3.0/1.00

2.57/1.17

2.37/1.27
2.36/1.27

2.31/1.30

2.25/1.33

F
igu

re
8
:
P
erform

an
ce

su
m
m
ary

of
p
rop

osed
tech

n
iq
u
es

fo
r
e�
ective

su
b
tra

ctio
n
s
w
ith

m
ax
im
u
m

n
orm

alizin
g
sh
ift

d
istan

ces
of

0,
1,

an
d
2
b
its

resp
ectively.

T
h
e
m
ost

a
ggressive

im
p
lem

en
tation

su
b
s2

h
as

th
e
follow

in
g
p
erform

an
ce:

A
verag

e
L
a
ten

cy
=

3
�
(:57)

+
2
�
(:11)

+
1
�
(:32)

=
2
:25

cy
cles

S
p
eed

u
p

=
3
=2
:25

=
1
:33

A
llow

in
g
a
ll
e�
ective

ad
d
itio

n
s
an
d
th
ose

e�
ectiv

e
su
b
traction

s
w
ith

n
orm

alizin
g
sh
ift

d
is-

tan
ces

o
f
0,
1,

a
n
d
2
b
its

to
com

p
lete

in
th
e
�
rst

cy
cle

red
u
ces

th
e
average

laten
cy

to
2.25

cy
cles,

for
a
sp
eed

u
p
of

1
.33.

T
h
e
p
erform

an
ce

o
f
th
e
p
rop

osed
tech

n
iq
u
es

is
su
m
m
arized

in
�
gu
re

8.
F
or

each
tech

-
n
iq
u
e,

th
e
av
era

ge
laten

cy
is
sh
ow

n
,
alon

g
w
ith

th
e
sp
eed

u
p
p
rov

id
ed

over
th
e
b
ase

T
w
o

P
a
th

F
P
a
d
d
er

w
ith

a
�
x
ed

laten
cy

of
th
ree

cy
cles.

5
C
o
n
c
lu
s
io
n

T
h
is
stu

d
y
h
a
s
p
resen

ted
tw
o
tech

n
iq
u
es

for
red

u
cin

g
th
e
average

laten
cy

of
F
P
ad
d
ition

.
P
rev

iou
s
research

h
a
s
sh
ow

n
tech

n
iq
u
es

to
gu
aran

tee
a
m
ax
im
u
m

laten
cy

of
th
ree

cy
cles

in

13

high clock-rate processors. This study shows that additional performance can be achieved
in dynamic instruction scheduling processors by exploiting the distribution of operands that
use the CLOSE path. It has been shown that 43% of the operands in the SPECfp92 appli-
cations use the CLOSE path, resulting in a speedup of 1.17 for the Two Cycle algorithm.
By allowing e�ective additions in the CLOSE path to complete in the �rst cycle, a speedup
of 1.27 is achieved. For even higher performance, an implementation of the One Cycle al-
gorithm achieves a speedup of 1.33 by allowing e�ective subtractions requiring very small
normalizing shifts to complete in the �rst cycle. These techniques do not add signi�cant
hardware, nor do they impact cycle time. They provide a reduction in average latency while
maintaining single cycle throughput.

References

[1] P. Bannon et al. Internal architecture of Alpha 21164 microprocessor. In Digest of

Papers. COMPCON 95, pages 79{87, March 1995.

[2] B. J. Benschneider et al. A pipelined 50-Mhz CMOS 64-bit
oating-point arithmetic
processor. IEEE Transactions on Computers, 24(5):1317{1323, October 1989.

[3] M. Birman, A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and J. Barnes. Developing
the WTL 3170/3171 Sparc
oating-point co-processors. IEEE Micro, 10(1):55{63,
February 1990.

[4] D. Greenley et al. UltraSPARC: the next generation superscalar 64-bit SPARC. In
Digest of Papers. COMPCON 95, pages 442{451, March 1995.

[5] M. P. Farmwald. On the Design of High Performance Digital Arithmetic Units. PhD
thesis, Stanford University, August 1981.

[6] E. Hokenek and R. K. Montoye. Leading-zero anticipator (LZA) in the IBM RISC
System/6000
oating-point execution unit. IBM Journal of Research and Development,
34(1):71{77, January 1990.

[7] ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

[8] L. Kohn and S. W. Fu. A 1,000,000 transistor microprocessor. In Proceedings of the

IEEE International Solid-State Circuits Conference, pages 54{55, 1989.

[9] P. Y. Lu, A. Jain, J. Kung, and P. H. Ang. A 32-m
op 32b CMOS
oating-point
processor. In Proceedings of the IEEE International Solid-State Circuits Conference,
pages 28{29, 1988.

[10] S. Oberman and M. Flynn. Implementing division and other
oating-point opera-
tions: a system perspective. In Proceedings of SCAN-95, International Symposium

on Scienti�c Computing, Computer Arithmetic, and Numeric Validation, pages 18{24,
Wuppertal, Germany, September 1995.

14

[11] N. Quach and M. Flynn. Design and implementation of the SNAP
oating-point
adder. Technical Report No. CSL-TR-91-501, Computer Systems Laboratory, Stanford
University, December 1991.

[12] N. T. Quach and M. J. Flynn. An improved algorithm for high-speed
oating-point ad-
dition. Technical Report No. CSL-TR-90-442, Computer Systems Laboratory, Stanford
University, August 1990.

[13] N. T. Quach and M. J. Flynn. Leading one prediction - implementation, generalization,
and application. Technical Report No. CSL-TR-91-463, Computer Systems Laboratory,
Stanford University, March 1991.

[14] H. P. Sit, M. R. Nofal, and S. Kimn. An 80 MFLOPS
oating-point engine in the Intel
i860 processor. In Proceedings of 1989 IEEE International Conference on Computer

Design, pages 374{379, 1989.

[15] SPEC Benchmark Suite Release 2/92.

[16] A. Srivastava and A. Eustace. ATOM: A system for building customized program anal-
ysis tools. In Proceedings of the SIGPLAN '94 Conference on Programming Language

Design and Implementation, pages 196{205, June 1994.

[17] S. Waser and M. Flynn. Introduction to Arithmetic for Digital Systems Designers.
Holt, Rinehart, and Winston, 1982.

15

