
DELAY BALANCING OFWAVE PIPELINED

MULTIPLIER COUNTER TREES USING

PASS TRANSISTOR MULTIPLEXERS

Hidechika Kishigami, Kevin J. Nowka, and

Michael J. Flynn

Technical Report CSL-TR-96-692

January 1996

DELAY BALANCING OF WAVE PIPELINED

MULTIPLIER COUNTER TREES USING

PASS TRANSISTOR MULTIPLEXERS

by

Hidechika Kishigami, Kevin J. Nowka, and Michael J. Flynn

Technical Report CSL-TR-96-692

January 1996

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

Wave pipelining is an attractive technique used in high-speed digital circuits to speed-up

pipeline clock-rate by eliminating the synchronizing elements between pipeline stages.

Wave-pipelining has been successfully applied to the design of CMOS multipliers [1, 2,

11, 10, 12] which have demonstrated speed-ups of clock-rate 4 to 7 times over their non-

pipelined design. In order to achieve high clock-rate by using wave-pipelining techniques, it

is necessary to equalize (balance) all signal path delay of the circuit. In an earlier study a

multiplier [1] was designed by using only 2-inputs NAND gates and inverters as primitives

in order to reduce delay variations of the circuit.

Alternatively, there are several reports that use pass-transistor logic as primitives for multi-

pliers to achieved very low latency [5] [6]. Pass-transistor logic seems attractive for reducing

circuit delay variations.

In this report we describe a design of wave-pipelined counter tree, which is a central part

of parallel multiplier, and detail a method to balance the delay of (4,2) counter using

pass-transistor multiplexers (PTMs) as primitives to achieve both higher clock-rate and

smaller latency. Simulations of the wave-pipelined counter tree demonstrated 0.8ns clock-

rate and 2.33ns latency through the use of pass-transistor multiplexers (PTMs) for a 0.8�m

CMOS process. This data suggests using pass-transistor multiplexers as primitives for

wave-pipelined circuits is useful to achieve both higher clock-rate and lower latency.

Key Words and Phrases: Wave-pipeline, Pass-transistor multiplexer, Multiplier

ii

Copyright c 1996

by

Hidechika Kishigami, Kevin J. Nowka, and Michael J. Flynn

Contents

1 Introduction 1

2 16-bit Multiplier Design 3

2.1 Architecture for Multiplier . 3

2.2 Primitive Circuit . 5

3 Design of Wave-Pipelined Counter Tree 5

3.1 Pass-Transistor Multiplexer Delay Adjustment 5

3.2 Balancing the Delay of the (4,2) Counter . 8

3.3 Comparison of Balanced (4,2) Counter using Pass-Transistor Multiplexer and

Static CMOS . 11

3.4 Simulation Results of Wave-pipelined Counter Tree 15

4 Conclusions 16

5 Acknowledgements 18

iii

List of Figures

1 Circuit Models. (a) Non-pipelined System. (b) Conventional-pipelined Sys-

tem. (c) Wave-pipelined System. 2

2 16-bit multiplier block diagram. 3

3 Counter tree block diagram. 4

4 A (4,2) counter using pass-transistor multiplexers. (a) A (4,2) counter block

diagram. (b) A multiplexer circuit. 6

5 PTM Bu�er Sizing Fine Tuning Results. 8

6 PTM Pass-Transistor Width Tuning Results. 9

7 PTM Pass-Transistor Width Tuning Results. 10

8 PTM W/L Fine Tuning Results. 11

9 Simulation results of (4,2) counter before/after balancing delay. 12

10 A (4,2) counter after balancing delay. (a) A (4,2) counter block diagram. (b)

A delay element. 13

11 Simulation results of a (4,2) counter using pass-transistor multiplexers and

static CMOS (2NAND and INV). 14

12 Simulation results of counter tree at typical condition. 15

13 Simulation results of counter tree at typical, fast, and slow conditions. . . . 16

iv

List of Tables

1 Delay Adjustment Base Transistor Geometries 7

2 Delay variations of (4,2) counter before/after balancing delay. 12

3 Comparison of balanced (4,2) counter using pass-transistor multiplexers and

static CMOS (2NAND and INV). 14

4 Simulation results of counter tree on typical, fast, and slow conditions. . . . 17

5 Simulation parameters on typical, fast, and slow conditions. 17

v

1 Introduction

Wave-pipelining is a system design technique which allows digital synchronous system to

be clocked at rates higher than can be achieved with conventional pipelining techniques.

Wave-pipelining has been successfully applied to the VLSI design of numerous arithmetic

circuits including: a bipolar population counter[8], a CMOS adder[9], CMOS multipliers[1,

11, 2, 10, 12], and a VLSI vector unit [3]. These designs demonstrated speed-ups in clock-

rate 2 to 7 times over the equivalent non-pipelined designs.

Figure 1 shows circuit models of non-pipelined (a), conventional pipelined (b), and wave-

pipelined (c) system. In a wave-pipelined system, new data are applied to the inputs of the

system before the previous outputs are available. In this way, coherent sets of data, waves,

propagate through di�erent stages of the system at the same time. The minimum clock

period at which input data can be applied to the system is limited by the di�erence between

maximum and minimum propagation delays through the system plus the clocking overhead.

So to achieve maximum clock-rate, the propagation delays across di�erence paths of the

system have to be equalized, or balanced. In the design of the parallel multiplier reported

by [1], only 2-inputs NAND gates and inverters were used as primitives in order to minimize

delay variations.

Alternatively, there are several reports that use pass-transistor logic as primitives for mul-

tipliers which have achieved very low latency [5] [6]. Ohkubo et. al. reported high perfor-

mance (low latency) 54 x 54-b multiplier using pass-transistor multiplexers [5]. They used

new (4,2) counters and a carry lookahead adder, both featuring pass-transistor multiplexers,

which provide a speed advantage over conventional CMOS circuits because the number of

critical-path gate stages is minimized due to the high logic functionality of pass-transistor

multiplexers. Other researchers have developed wave pipelined designs using pass-transistor

logic families: Using transmission gate logic, Zhang and Sridhar [12] developed an adder

which had a delay variation of approximately 14.5%. With a CPL implementation of gates,

Ghosh and Nandy [10] implemented a multipler.

Thus, it seems that wave-pipeline techniques promote high clock-rates, while pass-transistor

multiplexers promote low latency of a multiplier.

In this report, we describes a design and simulation results of wave-pipelined counter tree,

a main part of parallel multiplier, using pass-transistor multiplexers to achieve both higher

clock-rate and lower latency.

1

Resistor Resistor

(a)

(b)

(c)

Combinational
Circuits

Waves of Signals

Input
Signals

Output
Signals

Figure 1: Circuit Models. (a) Non-pipelined System. (b) Conventional-pipelined System.

(c) Wave-pipelined System.

2

2 16-bit Multiplier Design

2.1 Architecture for Multiplier

In order to evaluate the e�ectiveness of pass-transistor multiplexers (PTMs) as primitives

for wave-pipelined system, we selected a counter tree which is a main part of parallel

multiplier. Figure 2 is a block diagram of 16 x 16-bit integer parallel multiplier, which

consists of partial products generator, counter tree, and 32-bit adder. The partial products

generator generates a set of partial-products which are summed in the counter tree and the

32-bit adder. In a 16-bit integer parallel non-encoded multiplier, sixteen partial-products

are generated by the partial products generator. The counter tree sums the partial-products

and reduce the number of series addition. Figure 3 shows a block diagram of the counter

tree that uses row of (4,2) counters which reduces four partial-products to two in one stage.

The three stages of the rows of (4,2) counters reduces 16 partial-products to two, which are

input to �nal the 32-bit adder.

The details of 16-bit integer parallel multiplier is described in [1].

X[15:0]Y[15:0]

Partial Products Generator

Counter Tree

32-bit Adder

Z[31:0]

Figure 2: 16-bit multiplier block diagram.

3

(4,2) counter x 32(4,2) counter x 32 (4,2) counter x 32(4,2) counter x 32

(4,2) counter x 32 (4,2) counter x 32

(4,2) counter x 32

P0P1P2P3P4P5P6P7P8P9P10P11P12P13P14P15

A B

Figure 3: Counter tree block diagram.

4

2.2 Primitive Circuit

In the 16-bit integer parallel multiplier designed in [1], the implementation was constrained

by the use of 2-input NAND gates and inverters exclusively for every logic function in order

to minimize the delay variations. On the other hand, the use of pass-transistor multiplexers

was proposed by [5] in order to design high performance (low latency) multiplier. The use

of pass-transistor multiplexers as primitives provides a speed advantage over conventional

CMOS circuits because the number of critical-path gate stages is minimized due to the high

logic functionality of pass-transistor multiplexers. Figure 4 shows a (4,2) counter using pass-

transistor multiplexers, which is similar to the circuit proposed by [5]. The only di�erence

is that our multiplexer has output inverters to ease the balancing of the delay of the (4,2)

counter.

3 Design of Wave-Pipelined Counter Tree

3.1 Pass-Transistor Multiplexer Delay Adjustment

To optimize the throughput of a wave pipelined design, the variation in the delay through

the combinational logic along all paths must be minimized. To perform this optimization,

gross adjustments to delay imbalance are made through the insertion of delay gates into

the fast paths through the logic [8]. For variations less than a delay gate, transistor sizing

methods are e�ective [4]. Along the fast paths through the logic, the transistor geometries

are modi�ed to decrease the speed of the gates; transistor lengths are increased and/or

transistor widths are decreased to slow the propagation through the gate.

Several transistor sizing methods of �ne-delay tuning are possible with pass-transistor mul-

tiplexers: (a) adjusting the width of the transistors in the output inverter, (b) adjust-

ing the width of the pass-transistors in the multiplexers, (c) adjusting the length of the

pass-transistors in the multiplexers, and (d) adjusting the widths and lengths of the pass-

transistors concurrently so as to minimize the change in load on all inputs of the pass-

transistor multiplexer. The �rst three options alter the e�ective capacitance of the input

nodes of the pass-transistor multiplexer. This change makes delay balancing more di�cult,

since any delay adjustment to this gate a�ects the delay of predecessor gates. The �nal

method allows relatively isolated delay adjustment, which eases the balancing task. This

method is closely related to one used in [4].

The base transistor geometries for the delay adjustment methods detailed in Section 3.1 are

given in Table 1.

The minimum delays through a pass-transistor multiplexer are 217ps for a single pass-

transistor multiplexer load and 446ps for a four PTM load. The maximum delays are 441ps

for a single PTM load and 864ps for a four PTM load. The ratios of maximum to minimum

5

Db
D

Bb
B

C Cb

A Ab

Cinb
Cin

Cin

Cinb

Co
Cob

S1b
S1

Cb
Ab

C
A

Db

D

S0
S0b

Mux Mux

Mux

Mux

Mux

Mux

Sel Selb

A

B

Ab

Bb

P:8
N:4

P:8
N:4

P:8
N:4

P:8
N:4

Out

Outb

Mux
A
B

Bb
Ab

Sel Selb

Outb
Out

P:8

N:4

P:8

N:4
Pass-Transistor: W=4, L=1 for pmos

W=2, L=1 for nmos
Inverter : W=4, L=1 for pmos

W=2, L=1 for nmos

(a)

(b)

Figure 4: A (4,2) counter using pass-transistor multiplexers. (a) A (4,2)

counter block diagram. (b) A multiplexer circuit.

6

Transistor Width (micron) Length (micron)

Pass Gate NMOS 8 1

Pass Gate PMOS 8 1

Bu�er NMOS 8 1

Bu�er PMOS 16 1

Table 1: Delay Adjustment Base Transistor Geometries

delay are thus 2.03 and 1.94, respectively. These wide variation in delays of individual gates

must be managed when they are used in the design of wave pipelined circuits.

E�ective �ne balancing techniques should allow adjustment of PTM delay over a broad

range with a �ne degree of control while minimizing any additional induced data-dependent

delay variation.

Figures 5 to 8 demonstrate the e�ects of the four transistor sizing techniques described

above. They present HSPICE simulated delay of the fastest and slowest paths through the

PTM as the transistors are sized. In each case, the fanout of the PTM output was four

PTMs.

Adjusting the width of the transistors in the output inverter, as detailed in Figure 5, allows

a broad range of adjustment of the delay of the critical path through the PTM. It does not,

however allow su�cient adjustment of the fast-path delay. Thus, as this technique is used

signi�cant data dependent delay variation is introduced.

Adjusting the pass-transistor widths, as shown in Figure 6, does not signi�cantly inuence

the delay of the PTM. It is, therefore, of little practical use in the optimization of wave

pipelined PTM circuits.

Adjusting the length of the pass-transistors in the PTM, as shown in Figure 7, provides

su�cient range of delay tuning with a reasonable degree of control. It results in a moderate

increase in data-dependent delay variation.

Adjusting the length and width of the pass-transistors in the PTM concurrently so as to

maintain constant capacitance of the pass-transistor control inputs allows su�cient tuning

range and a reasonable degree of control with a moderate increase in data-dependent delay

variation. Simulated results of this method are given in Figure 8. Adjustment of both width

and length of transistors in the PTMs was used in this design.

7

 Maximum Delay
 Minimum Delay

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

|2000

|2200

|2400

 Buffer Transistor Width (micron)

 P
ro

p
D

el
ay

 (
ps

)

Figure 5: PTM Bu�er Sizing Fine Tuning Results.

3.2 Balancing the Delay of the (4,2) Counter

In this design, the counter or compressor circuits used to form the multiplier were balanced

individually. The delay of the (4,2) Counter is balanced manually by inserting delay elements

and adjusting transistor sizes. This delay adjustment has been performed through extensive

circuit level simulation using a SPICE-like simulator CAzM available from MCNC [7] and

the chosen technology is CMOS26b, a 0.8�m triple-level-metal process developed at Hewlett-

Packard. Delay data were obtained at 27C, 5.0V supply voltage, and 0.1ns input transition

time signals were asserted to input inverters, which connect to each of the (4,2) counter

inputs A, B, C, and D.

Figure 9 shows simulation results of (4,2) counter before and after delay adjustment and

Table 2 summarizes the results.

The design process to balance delay of the (4,2) counter consists of the following steps:

1. No-delay adjustment

8

 Maximum Delay
 Minimum Delay

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|200

|300

|400

|500

|600

|700

|800

|900

|1000

|1100

|1200

 Pass Transistor Width (micron)

 P
ro

p
D

el
ay

 (
ps

)

Figure 6: PTM Pass-Transistor Width Tuning Results.

The top �gure of waves in Figure 9 shows simulation results of (4,2) counter without

any delay adjustment. The simulation was performed with the 32 input vectors that

change the (4,2) counter inputs (A, B, C, and D) from 0000 to **** and from **** to

0000 (* indicates either a 0 or 1). The outputs of all simulation results are superim-

posed in Figure 9. The (4,2) counter without any delay adjustment has a delay time

varying from 0.23ns to 1.06ns, which means the delay variation is 0.83ns.

2. Insert delay elements

The middle �gure of waves in Figure 9 shows simulation results of (4,2) counter after

inserting delay elements to equalize the number of gate-level stages. Because the

longest path delay from input to output of the (4,2) counter is three pairs of a pass-

transistor and an inverter, we inserted pair of a pass-transistor and an inverter as a

delay element (See Figure 10(b)) to equalize the number of gate-level stages from all

inputs to the outputs of the (4,2) counter as three. The (4,2) counter including delay

elements has a delay time varying from 0.62ns to 1.02ns; thus the delay variation is

0.40ns.

3. Adjust transistor size (W and L)

9

 Maximum Delay
 Minimum Delay

|
1.0

|
1.5

|
2.0

|
2.5

|
3.0

|
3.5

|
4.0

|200

|300

|400

|500

|600

|700

|800

|900

|1000

|1100

|1200

|1300

|1400

|1500

 Pass Transistor Length (micron)

 P
ro

p
D

el
ay

 (
ps

)

Figure 7: PTM Pass-Transistor Width Tuning Results.

Transistor size of all pass-transistors and inverters are W=2�m L=1�m for NMOS

transistors and W=4�m L=1�m for PMOS transistor in the (4,2) counters described

above. In order to decrease the delay variations, we adjusted the transistor sizes. As

a �rst step, we changed the transistor width (W) of all inverters double (W=4�m

L=1�m for NMOS and W=8�m L=1�m for PMOS) in order to equalize RC loads of

all inputs (A, B, C, and D) and internal multiplexers of the (4,2) counter. Next we

adjusted the transistor size (both width (W) and length (L)) of pass-transistor used

in the delay elements inserted above. After varying the transistor sizes several times,

we achieved a delay varying from 0.69ns to 0.85ns, which means delay variation is

0.16ns. The bottom �gure of waves in Figure 9 shows the simulation results, and the

(4,2) counter after adjusting transistor sizes is shown in Figure 10.

10

 Maximum Delay
 Minimum Delay

| | | | | ||400

|500

|600

|700

|800

|900

|1000

|1100

|1200

 Pass Transistor Width/Length (micron)

 P
ro

p
D

el
ay

 (
ps

)

8/1 6.6/1.22 5.7/1.44 5/1.66 4.4/1.88 4/2.10

Figure 8: PTM W/L Fine Tuning Results.

3.3 Comparison of Balanced (4,2) Counter using Pass-Transistor Multi-

plexer and Static CMOS

Figure 11 shows simulation results of balanced delay (4,2) counter using pass-transistor

multiplexers and using static CMOS (only 2-input NAND gates and inverters) reported by

[1] to compare their delay and delay variations. Note that the simulations were exhaustive;

they were performed by using the 256 possible di�erent input patterns (from **** to ****)

in order to conform worst case delay and delay variations. The average delay and the delay

variations of the balanced (4,2) counter using pass-transistor multiplexers are 0.79ns and

0.21ns respectively, which are about 1/2 smaller than the equivalent counter implemented

in two-input static CMOS. Table 3 summarizes the comparison.

Thus, using pass-transistor multiplexers as primitives for balanced (4,2) counters is e�ective

in achieving both lower latency and higher clock-rate wave-pipelined circuits.

11

without any adjust

insert delay elements

adjust transistor sizes

Figure 9: Simulation results of (4,2) counter before/after balancing delay.

Circuit A Circuit B Circuit C

Delay * 0.23 - 1.06ns 0.62 - 1.02ns 0.69 - 0.85 ns

Delay Variation 0.83ns 0.40ns 0.16ns

Circuit A: no-delay adjustment

Circuit B: insert delay element

Circuit C: adjust transistor sizes (W and L)

Note: Delay shows a delay time of a input inverter + (4,2) counter.

Table 2: Delay variations of (4,2) counter before/after balancing delay.

12

Db
D

Bb
B

C Cb

A Ab

Cinb
Cin

Cin

Cinb

Co
Cob

S1b
S1

S0
S0b

Mux Mux

Mux

Mux

Mux

Mux

Cb
Ab

C
A

D
D
D
D

Db

D D

D

D

D

2

2

1

1

1
1
1
1

Inserting delay elements

Inserting delay elements

(a)

(b)

In Out

Gnd

P:8
N:4

Vdd

P:16

N:8

Pass-Transistor: W=4, L=1 (D1) / W=4, L=2 (D2) for pmos
W=2, L=1 (D1) / W=2, L=2 (D2) for nmos

Inverter : W=8, L=1 for pmos
W=4, L=1 for nmos

DIn Outx

x = 1 or 2

Figure 10: A (4,2) counter after balancing delay. (a) A (4,2) counter block

diagram. (b) A delay element.

13

Pass Transistor

Static CMOS
(2NAND and INV)

Figure 11: Simulation results of a (4,2) counter using pass-transistor multi-

plexers and static CMOS (2NAND and INV).

Pass-Transistor Multiplexer Static CMOS

Number of Transistors

(Before Balanced) 72 88

(After Balanced) 104 102

Delay 0.68 - 0.89 ns 1.12 - 1.51ns

Average Delay 0.79 ns 1.32 ns

(0.59) (1.0)

Delay Variation 0.21ns 0.39ns

(0.54) (1.0)

Table 3: Comparison of balanced (4,2) counter using pass-transistor multiplexers and static

CMOS (2NAND and INV).

14

3.4 Simulation Results of Wave-pipelined Counter Tree

By using balanced (4,2) counter described above, we designed wave-pipelined counter tree,

which consists of three stages of 32-bit (4,2) counters shown in Figure 3. Figure 12 shows

the simulation results of the counter tree. The simulation has performed at 27C, 5.0V

supply voltage, and 0.1ns input transition time signals were asserted to the inputs of the

counter tree. The input signals were changed their value randomly at a clock-rate of 1.0ns,

0.8ns, and 0.7ns. From these results, the counter tree can be operated up to 0.8ns clock-rate

and the delay from inputs to the outputs is 2.33ns, which means that a speed-up of 2.9 (=

2.33ns / 0.8ns) is achieved by using wave-pipeline technique under typical conditions.

1.0ns

0.8ns

0.7ns

Figure 12: Simulation results of counter tree at typical condition.

Figure 13 also shows the simulation results of the counter tree at typical, fast, and slow

conditions to consider the e�ects of temperature, supply voltage, and process variations on

the wave-pipelined counter tree. Table 4 summarizes the results and Table 5 shows the

di�erence of parameters at each conditions. From these results, the maximum clock-rate

(cycle time), the delay from inputs to the outputs (latency), and the delay variations are

almost proportional to each other and speed-ups of 2.7 - 2.9 can be achieved by using wave-

pipeline technique under any conditions. These results suggest that the more advanced the

15

process technology used to design wave-pipelined circuits, the higher the clock-rate and the

lower the latency achieved.

Typ.

Fast

Slow

Figure 13: Simulation results of counter tree at typical, fast, and slow con-

ditions.

4 Conclusions

In this report we described a design and simulation results of wave-pipelined counter tree for

a parallel multiplier, using pass-transistor multiplexers as primitives to achieve both higher

clock-rate and smaller latency. Our simulation results showed 0.8ns clock-rate and 2.33ns

latency were achieved at typical condition for the HP 0.8�m CMOS26b process, 0.6ns(clock-

rate) / 1.69ns(latency) at fast condition, and 1.2ns (clock-rate) and 3.27ns(latency) at

slow conditions, which means speed-ups of 2.7 - 2.9 are achieved by using wave-pipelined

technique.

Our simulation results suggest that using pass-transistor multiplexer as a primitive for

wave-pipelined circuits is e�ective in achieving both higher clock-rate and lower latency,

but a more complete study is necessary to clarify the advantages and disadvantages of

16

Typical Fast Slow

Cycle Time 0.8ns(1.0) 0.6ns(0.6) 1.2ns(1.5)

Latency 2.33ns(1.0) 1.69ns(0.73) 3.27ns(1.40)

Delay Variation 0.38ns(1.0) 0.22ns(0.58) 0.60ns(1.58)

Speed-up(Latency/Cycle Time) 2.9 2.8 2.7

Table 4: Simulation results of counter tree on typical, fast, and slow conditions.

Typical Fast Slow

Supply Voltage 5.0 V 5.8 V 4.2 V

Temperature 27 C 0 C 125 C

Process Parameters

TOX (NMOS) 1.78e-08 1.75e-08 1.85e-08

(Oxide Thickness) (PMOS) 1.78e-08 1.69e-08 1.82e-08

VTO (NMOS) 0.71 0.54 0.82

(Threshold Voltage) (PMOS) -0.90 -0.75 -1.50

LD (NMOS) 1.44e-07 1.55e-07 0.80e-07

(Lateral Di�usion) (PMOS) 1.03e-07 1.15e-07 0.95e-07

UO (NMOS) 571.5 575.0 540.0

(Mobility) (PMOS) 177.6 185.9 171.6

Table 5: Simulation parameters on typical, fast, and slow conditions.

17

using pass-transistor multiplexers for wave-pipelined circuits.

Some aspects of this future study are listed below.

1. Whole multiplier design: In this study, we designed and evaluated performance of a

wave-pipelined counter tree, a part of parallel multiplier, but future study might be

necessary to design whole multiplier and evaluate its performance including e�ect of

wiring capacitance based on real layout information.

2. Comparison of primitives: In this study, we used pass-transistor multiplexers with

output inverters as primitives, but other types of circuits as primitives should also be

evaluated, and compared not only in speed, but in chip area and power.

5 Acknowledgements

Facilities used in the development of this work were provided by NASA under contract

NAG2-842.

References

[1] F. Klass, M. J. Flynn, and A. J. van de Goor. \Fast Multiplication in VLSI using Wave

Pipelining Techniques" Journal of VLSI Signal Processing, 7, 233-248 (1994)

[2] V. D. Nguyen, W. Liu, C. T. Gray, and R. K. Cavin. \A CMOS Signed Multiplier

using Wave Pipelining" IEEE 1993 Custom Integrated Circuits Conference, 1993.

[3] K. Nowka and M. Flynn. System Design Using Wave-Pipelining: A CMOS VLSI Vector

Unit. Proceedings of the 1995 IEEE International Conference on Circuits and Systems,

pages 2301{2304, 1995

[4] K. Nowka.High Performance CMOS VLSI System Design Using Wave Pipelining. PhD

thesis, Stanford University, Department of Electrical Engineering, 1995.

[5] Ohkubo et. al. \A 4.4ns CMOS 54 x 54-b Multiplier Using Pass-Transistor Multiplexer"

IEEE Journal of Solid-State Circuits, Vol. 30, No 3 1995, pp. 251-257.

[6] Yano et. al. \A 3.8ns 16x16 Multiplier Using Complementary Pass Transistor Logic"

IEEE Journal of Solid-State Circuits, Vol. 25, pp. 388-395, Apr. 1990.

[7] D. Rose, D. Erdman, and G. Nifong. \CAzM: Circuit analyzer with macromodeling

user's guide," Technical Report, MCNC, June 1990.

18

[8] D. Wong. Techniques for Designing High Performance Digital Circuits Using Wave

Pipelining. PhD thesis, Stanford University, Department of Electrical Engineering,

1991.

[9] D. Fan, C. Gray, W. Farlow, T. Hughes, W. Liu and R. Cavin. \A CMOS Parallel

Adder Using Wave Pipelining" MIT Advanced Research in VLSI and Parallel Systems,

March 1992, pp. 147-164.

[10] D. Ghosh and S. K. Nandy. \ A 400 MHz Wave-Pipelined 8x8-bit Multiplier in CMOS

Technology." Proceedings of the International Conference on Computer Design, pages

189{201, 1993.

[11] W. Lien and W. Burleson. \Wave-Domino Logic: Timing Analysis and Applications"

MIT Advanced Research in VLSI and Parallel Systems, March 1992.

[12] X. Zhang and R. Sridhar. \CMOS Wave Pipelining using Transmission-Gate Logic."

Proceedings of Seventh Annual IEEE International ASIC Conference and Exhibit,

Rochester, NY, September 1994.

19

