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Abstract

We present in this paper a novel modeling styleand catrd sythesist echni que for
systemlevel specificati ons that are better described as a set of concurrent descri ptions,
their synchronizations and constraints. The proposed synthesis procedure considers
the degrees of freedomintroduced by the concurrent nodels and by the envi ronnent
inorder tosatisfy the design constraints.

Synthesis is divided in two phases. In the first phase, the original specification
is translated into an al gebraic system for which conpl ex control -flowconstraints and
quantifiers of the designareintroduced. In the second phase, we transl ate the al gebraic
formul ation into a finite-state representation, and we derive an optinal control-unit
inpl enentation for eachindi vidual concurrent part. In the i npl enentationof the con-
trollers fromthe fini te-state representati on, we use flexi ble objective functions, which
allows designers to better control the goals of the synthesis tool, and thus i ncorporate
as mich as possible their know edge about the envi ronnent and the desi gn.

1 Introduction

The use of synthesis tools has gained great acceptance inindustry. Three of the reasons for
its success are the increasing complexityof the circuits, the needfor reduci ng tine to narket
and the need to designcircuits optinally. Inorder to neet the tight requirenents of today’s
narket pl ace, designers have to rely on the specification at higher levels of abstraction, and
inparticular, relyon nedels that describe the specification at alevel hi gher thanlogic level
and register-transfer level (R1L) [28].

Inthese designs specified at hi gher level s, the systemto be synthesizedis usual 1 y nodel ed
as a set of sequential conponents consisting of operations and their dependencies, e.g., as
inthe case of a dataflow. We call process each sequential conponent. Processes have been
successful ly synthesized at chip-1evel by experinental and/or commercial hi gh-1evel synthesis



tools. The synthesis task inthese tools invol ved the scheduling of operations over a discrete
tine and the binding of these operations to conponents.

Thi s paper considers systens that are better described as a set of synchronous concurrent
processes and thei r synchroni zation, whi chve call here a multi-process or systemlevel design.
Althoughit has been attenpted to use high-level synthesis tools to synthesize multi-process
descriptions, these techni ques are usually not vell suited for systemlevel designs for three
reasons. First, nost high-level synthesis tools synthesize one process at a tine, thus not
considering some degrees of freedomin the optimzation. Second, the nodel used for spec-
ifying and handling the interface in nest high-level synthesis is very sinple, and does not
easily support nodifications. Hnally, standard cost functions used in high-level synthesis
are sinple, i.e., the goal of the synthesis tool is usually the mni mzationof areaor delay. In
systemlevel designs, ve may have to quantify not only area and del ay, but nore conpl ex
cost measures, such as bus or mcroprocessor utilization.

The use of single process techniques inthe synthesis of nul ti-process descriptions inposes
severe limtations on the inplenentations; in sone cases it even prevents valid inpl enen-
tations frombeing found. Mul ti-process descriptions require the use of nore conpl ex al go-
rithns and techni ques other than the ones used for single process synthesis. These conpl ex
techni ques invol ve the utilization of the degrees of freedomof the other processes during the
synthesis of a single process, the use of synchronization anong processes to further opti-
mze the synthesis tasks, the nodification of the control-flowover tine, as required by the
specification, and the selection of the different goals of the synthesis tools.

Mil t1- process descriptions al so require specifications of conpl exconstraints. For exanple,
vhen synt hesi zi ng single process model s, the tool does not have to consider the synchroni za-
tion anong concurrent descriptions. Hovever, when synthesizing nul ti-process descriptions,
the interrelations anong different processes nust be considered. In addition, interrelations
of the different parts in aninterface does not need to be static. Ior exanple, a synchronous
RAVIhas diflerent requi renents in terms of cycles for the different nodes of operation. The
ability of adding conpl ex timng constraints results ina greater flexibility wth respect to a
speci ficati on.

1.1 Research Objective

In this paper, we present a fornal nedel to anal yze control-flowintensive synchronous
systemlevel specifications (operating under a single clock), and a nethodol ogy to synthesize
control -units for the concurrent parts of the design. In this nethodol ogy, the control - flow
of the description is first abstracted into an al gebraic system here called control-flow ex-
pressions, nani pul ated, and then translated into its state space, where the control-umit is
synthesized. Our techni que al so extends previous synthesis approaches because 1t considers
processes wth arbitrary control -flow W enphasize that our systemutilizes both represen-
tations during synthesis, i.e., an al gebraic representation and a state space representation,
and that these tvo representations are necessary for the efficient nani pul ation of the spec-
ification for different types of transformations. K gure 1 presents a pictorial viewof our
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K gure 1: Design flow for synthesizi ng multi-process descriptions

design flow W assune that the design is originally specified by sone hardware descrip-
tion language (HDL), such as VHI, Verilog HL or HrdwareC, and conpiled into sone
control - dataflowgraph ((JFG) nodel . W assune that the compilationfromthe Hlinto

the (IFGmodel 1s a direct nmappi ng, and that control - flowexpressions can be obtai ned from
the QFGthrough abstraction. So in all exanples in this paper, we will use the original
HL specification instead of the (IFGrepresentation. It shoul d be enphasized here that
ve focus neither on a specific UFGnedel nor on an HIL | anguage representation, but

on a nedeling style for concurrent synchronous systens and a synthesis techni que for their
control lers.

The constraints of the systemare nanually entered in the tool fromsone constraint
l anguage that includes synchronization, timng and binding constraints. For exanple, the
specification of synchronization constraints is already present in the Esterel [2] language.
The HhrdwareC1anguage allows the specification of timng and binding constraints that
are used by the synthesis tool. These constraints wll guide the synthesis tool during the
synthesis of the control-unit inplenentations.

In the next section, ve present sone exanples of where our formul ation can be used and
howthose probl ens can be sol ved. Inthe follow ng section, ve define the al gebra of control -
flow expressions, 1ts axions, the representation of the design space, and a conparison with
existing fornalisng. In Section 4, we showhowconstraints can be represented in control -
fiow expressions, and howwe restrict the sol ution space with respect to the constraints. In
Section 5, we showhowthe algebra of control-flowexpressions can be transforned into a
fini te-state representation. InSection6, ve present our synthesis nethod using an 0- 1 i nteger
linear prograrmng specification wth Bool ean constraints. In Section 7, we present sone
applications of this nethodol ogy withinplenentationresults, followed by sone concl usions.



2 Motivation

Thi s section presents exanpl es of real designs that either cannot be synthesized or are syn-
thesized sub-optinmally by usual hi gh-level synthesis tools. Wshowintuitivel ythat optinal
and val i dinpl enentations can be obtained onl y 1t synchroni zation, dynamc bi ndi ng and dy-
nam ¢ schedul i ng are consi dered duri ng the desi gn space exploration. Then, inthe rest of the
paper, we present fornal nethods to obtain optinal sol utions to these synthesis problens.

(e of the major problens of using current hi gh-1evel synthesis tools tosynthesizesystem
level designs is that the synthesis tool must consider howthe environnent affects the whole
system Since the specification of the environnent in which the circuit is going to execute
is generally a formdable task, the user nust have a better control over the synthesis tool
inorder obtain optinal results. The user can interact with our synthesis tool by specifying
conpl ex constrai nts and flexi bl e cost functions. The necessityof this interactionwill becone
apparent in the next exanples.

2.1 Synchronization Synthesis and Dynami ¢ Bindi ng
2.1.1 Etherne Co-processa

In this exanple, we show how ve can synchromn ze multiple processes to share the sane
critical resource. This synchronizationis synthesized by considering the degrees of freedom
anong the diflerent processes that share the critical resource. Dmamc binding is achieved
by allowng several processes to instantiate the sane resource at different times. In this
exanpl e, a constraint that crosses process boundaries exists, i.e., the critical resource shoul d
not be used by nore than one process at a tine.

The block di agramof K gure 2 is the block diagramof an ethernet coprocessor. 'his
coprocessor contains three umits: an execution unit, a reception unit and a transmssion
uni t. These three units are model ed by thirteen concurrent processes, wth three processes
accessing the bus: DMAazmt | [Mrcvd , and engueve. The probl emve vant to sol ve is
the synthesis of the synchroni zation anong the three processes such that any bus access for
the three processes is free of conflicts. Note that the difltultyin sol ving this probl emcones
fromthe transfers that are non-determnistic over tine, i.e., we do not knowa priori vhen
each process accesses the bus, since this operation is control dependent. Aso, the transfers
of different processes are uncorrelated, i.e. knowing that one process accesses the bus at a
specific tine does not inply the transfers in other processes are known.

Thi s probl emhas beensol vedfor the sinplifiedassunptionthat the processes are dat aflovs
executing at the sane rate [20]. Note that in the probl emdescribed here, hovever, ve do not
knowvhen each bus access will take pl ace, since there nay be 1oops and condi tional s in the
specification that will nake the bus accesses execute at different rates. Thus, the approach
described in [20] camot be used. Flo et al. [13] addressed the problemof rescheduling
transfers inside a single loop or conditional to reduce the nunber of synchronizations aneng
processes. This nethod is restrictive because all transfers that are optimzed must be en-
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K gure 2: Ethernet coprocessor

closed in the sane 1oop or conditional, and only the synchronization due to the transfers
is considered during the sinplification. Asynchronization is elimnated if there are tvwo
transfers that are executed sequentially or in parallel and the synchronization of the first
one is correl ated to the second transfer. % we are going to showlater, our fornalismallovs
processes to be specified by their control-flowwith an abstraction on the dataflow parts,
and thus wll subsune the sol utions found by both of these procedures. Aso, our fornalism
achi eves the sinplification of synchroni zation that crosses loops and conditional s, and we do
not restrict this sinplification to only correl ated transters in the specification.

Let us first consider an abstraction of the original specificationthat captures only the bus
accesses. Hirthernore, in order to be able to discuss this problemthroughout this paper,
ve will assune a set of reduced behaviors tor [Mrcvd, [Memt and enqueue such that
the resulting behavior is small enough that can be easily understood. Fgure 3 presents
the behaviors we assune for these descriptions in this paper, in a pseudo- Vrilog code.
In this figure, the constructs that do not belong to the language, such as write bus, are
representedin typewiter style; reserved vords of Vrilog are representedin bold; and ot her
legal syntactic constructs are representedinitalics.

Note that the processes are control-domnated specifications where the flowof control
is nodi fied by sone set of wait statenents. Inthis exanple, also, note that the priority of
enqueue shoul d be the snallest one, since the execution of the bus access inthis process nay
be delayed. (h the other hand, if the bus accesses of the other processes are del ayed, the
controller wll not be able to deliver data at the interface at the proper rate.



module DMArcvd,; wdle MArm ¢ mdle enqueue;

always s s
begin hegn hegn
write bus; initialize variables vt (free bus);
data = receive(fromamit_frane); wit (transmission ready); read bus;
ad read bus; ad
ardulle ad ardulle
ardulle

Kgure 3: Abstracted behaviors for DMArcvd, DMxm t and enqueue

If ve assune that every operation takes one clock cycle, an inplenentation for the
synchroni zati on nechani stof the bus shoul d establish a tenporal rel ation betveen enqueue
and the tvo other processes [Miemt and [Mrcvd This tenporal relationshoul dinclude
any dat a dependent operation of the twoother processes, suchas the conditional transmssion
ready, andit shoul d al so consi der when the other processes access the bus. Apossible sol ution
to this probl emvoul d be:

mdle enque ue;
dwas
hegn
vt ( poadpclock);

vhile (transmission ready)
begn
vt ( peedpclock);

vt ( peedpclock);
ail
read bus;
ail
adualle

Inthis inpl enentation, ve have to wait the first cycle because [Mrevdis accessing the
bus in the first cycle. Diring the second cycle, enqueue will be able to access the bus only
if IMiemt 1s not accessing it. In the following cycle, hovever, [Mrcvdwill be accessing
the bus again, and enqueue will have to wait for another cycle. Wwll showlater howthis
control ler coul d be obtained autonatically for the process enqueue.

212 Prdod @veasiaa

Inthis section, we showhowve can use synchroni zation synthesis in order to synthesize the
controller for converting the R bus protocol [35] into a synchronous TRAMprotocol . In
particular, ve wll provide here the conversion between reading and witing cycles of a P
bus into synchronous TRAMcycles. Hgure 4 shows the di agramof conputer using a FI

bus, and a synchronous TRAM(STRAM nenory bank. Bth protocols can use single or
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Fgure 4: Protocol conversion for PCI bus conputer

burst node transfers, wth the difference that SIRAM burst nede are limted to at nost
8 transfers on the sane rowthat are one cycle apart fromeach other.

Informally, a P bus cycle begins wth an address phase, followed by one or nore data
phases. Wit states can be inserted in the data phase by either the mcroprocessor or by
the nenory. Tor burst node transactions, ve assune here a linear increnent of the address
space.

The synchronous TRAVreadi ng protocol begins by a rowaddress sel ection (RAS) phase
folloved by a columm address selection (CAS) phase. Ater the CAS phase, and a fixed
nunber of cycles, the SIRAMwi 1 produce data at a rate of one word/cycle.

Diring the generation of the protocol converter, a control-unit inplenentationis selected
to conbi ne the behavi ors of both STRAVEnd R bus protocol s. Inplenentations satisfying
these protocol conversion constraints were obtained in the systemdescribed in [4]. In our
approach, ve will show how such constraints can be conbined with timng and resource
binding constraints in order to generate optinal controllers.

2.2 Dynam c Scheduli ng

Inthis exanpl e, ve showhowve can specialize a desi gn by i ncorporating dynamc schedul i ng
constraints froman interface. Splitting the i nterface specification fromthe design speci fica-
tion vas addressed in [31, 25, 32, 3]. Qe of the main advantages of abstracting interface
inpl enentation details at the hi gher levels of abstraction is that nore degrees of freedom
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can be expl ored during synthesis.
In such techni ques, the transfers anong processes are abstracted in terms of cormr

nication operations (such as a send operation). Diring synthesis, the best protocol and
commmi cation nedi umis selected to inplenent a particular transfer. 'The selection and
synthesis of the protocol interface will inpose conpl ex scheduling constraints to the design,

as ve wll see bel ow
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Fgure 6: Writing cycles for synchronous DRAM(A) and for synchronous FIFO (B)

(bnsider a systemthat has an ASICand an enbedded processor, such as the one gi ven
in Hgure 5. Asune the ASIC conmuni cates wth the mcroprocessor either through a
synchronous nenery or through a synchronous FIFQ or exanple, this structure has been
used in hardvare-sof tvare codesign [16, 17]. In this system the transfers to the nenory
and to the HFOare determned at run-tine by the proper selection of the address. 'The
interface timng is al so determned at run-tine, since the timng specifications for these two
conponents are different, as givenin Hgure 6. In essence, a data transter nmay take either
one or three cycles to compl ete. Thus, the timng constraint specification shoul d al so reflect

the msnatch between the timng of the conponents.



The specification of interface constraints has been usedinthe past by Nestor [32], Ku[25]
and Borriello [3]. 'They used min/max scheduling constraints to annotate the design spec-
ification. 'The use of these constraints, however, is limted to static constraints. In the
exanpl e presented above, the specification of the interface requires the design to contain
inpl enentation details, whichis not desirable for the reasons gi ven previously.

Msumng that the address selection for the nenory nedule is called s, the constraint
that ve need to specifyis a three-cycle operation or a one-cycle operation, depending on s.
Thus, the interface can no longer be specified in terns of fixed mini nungnaxi rimdel ay
bet veen operations, since the execution tine of the operation is dependent on the address
selection. In order to synthesize the protocol for the send operation given above, ve must
consider a dynamc schedul e for this operation.

Thi s can be achi eved by using the al ternative conpositioninthe constraint specification.
For exanpl e, one possible representationfor this constraint coul d be:

synchroni ze with “send” operation
if (s)

delay for “send” 1s 8 cycles
dse

delay for “send” 1s 1 cycle

W will showthat using the al gebra of control-flowexpressions, ve can represent this
constraint as the follow ng conpact representation:

s: Ras-0-{Cas,data} + 5: data

vhere fisis an abstraction to the RAS cycle of the RAM (ds is an abstraction of the
XS cycle of the RAM 0 1s a one-cycle del ay operation, datais an abstraction of the data
transfer, and s neans that s is false.

Diring the synthesis procedure, the send operation is bound to an inpl enentation that
observes this constraint. In this case, the inplenentationis exactly the control that waits
either one or three cycles, depending on s.

Inthis exanpl e, the tvo diflerent conmuni cations nechani sns assune di flerent possible
behavi ors for the envi ronnent. Ikpendi ng on howthe envi ronnent requires data, one node
shoul d be hi ghl i ghted over the other for sone transfer by the proper sel ection of anobjective
function.

3 Control-Flow Expressioms

This section presents the definition of the al gebra of control-flow expressions, which is a
fornal nodel for representing the control-flowin systemlevel designs. A the nane sug-
gests, control-flowexpressions are used for the anal ysis of the control-flowot the design, by
abstracting away the dataflowdetails.



3.1 Abstraction fromthe (riginal Specification

Weonsider inthis paper systemlevel designs that wll be synthesizedas synchronous circuits
runni ng under the sane clock. In the synthesis of these designs, ve need to represent the
interactions among the concurrent parts, whi ch can be best nodel ed at the control - flowl evel .

W assune in our conputation nodel that the specification will be partitioned interns
of a control-flowand a dataflow; as described in[10, 28, 47]. Inthis nodel, variables, their
operations and operands are placed in the dataflow and the language constructs of the
speci fication l anguage are placed in the control-flow In addition, ve assune that any 1/0
operation between a process and the process external enviromment will be placed in the
dat aflow

In this nodel, the control-flow and dataflow will cormunicate through events. 'The
control -flowwi 1l generate output events to the dataflowthat wll sensitize the execution of
operations in the dataflow The dataflowwill generate input events to the control - flowthat
wll trigger the diflerent execution paths.

output [...] dx,dy;

“while @>0) __ocl

begin
dx = ldx; - al
a=a-1; -— a2
dy=a; -— a3
if (dy==1) —scC2
dx = 0; a4
end
‘ 1
1
0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Tila2
S 23
a dy dx .34
>0 =
C
c
DATAPATH CFE

Fgure 7: Partitioning of specification into control-flow/dataflow
Fxampe1 In Fgure 7, we showhowthe control - flowportion of a description can be abstracted

interns of the events it generates. 'The control-flowof the specificati on generates output events
a1, a9, ¢ and a,. Bvent q;, for exanple, triggers the execution of the pathin the control-flowthat

10



will conpl enent dz. W represent the dataflowby an inplenentationin terns of a datapath for
illustrative purposes only. In general, we do not assune any particul ar dataflowi npl enent ati on,
since control -flowwill be able to encode several possible datapath inplenentations.

The datapath of H gure 7 generates input events @nd ¢, that will trigger the execution of the
l oop and the execution of the al ternative path, respectively.

The reader shoul d note that the control - flowdoes not nake any assunptions on the possible
val ues of its input events over tine. In this exanple, we assune that entering the | oop (when even
¢, is generated) and exiting the l oop are equally probable. O

3.2 A gebra of Control -Fl ow Expressions

The al gebra of control -flowexpressions is defined by the abstraction of the specification in
terns of the sensitization of paths in the dataflow and by the conpositions that are used
anong these operations. /A presentedin the previous section, we viewthe communi cation

bet veen the dataflow and control - flowas an event generation/consunption process. Mre
formally, ve call the output events generated fromthe control -flow actions (fromsone al -
phabet A). W assune that each action will execute in one-unit of tine (or cycle). If an
operation executes in mltiple cycles, they wll be handl ed by a conposition of single-cycle
actions.

Bage2 W abstract the conputation z = y * 2z of sone HDL by action a, which then
substitutes all occurrences of this conputationin the specification. O

Wrepresent the input events of a control-flowby conditional s, which are synbol s from
an al phabet C. 'The conditionals in a control -flowexpression will enable different bl ocks of
the specification to execute. Guards will be defined as the set of the Bol ean formil as over
the set of conditionals.

Ddintim3.1 Aguard is a Bool ean formd a on the d phabet of conditionals. We wll use
G to denote the set of guards over conditional s.

W assune that each guard and conditional i1s evaluated in zero tine. A the end of
this section, we conpare the assunptions on the execution tine of actions, conditionals and
guards with the synchrony hypothesis.

Bage 3 In the specification if ( > y) @ =yz, acondi tional ¢ abstracts the binary rel ati onal
conputation z >y. If at sone instant of tine, the quandc is tng * =y 2z is executed. If at some
instant of tine, the gad—c is tng the el se branch (whichis null inthis case) is executed. O

5 discussedin the introduction, ve assune systens nodel ed by a set of operations, de-

pendencies, concurrency and synchroni zation. Wencapsul ate sub-behaviors of this system
interns of processes, which are represented by control - flowexpressions and correspond to

11



an HL nodel. In our representation, each process has a label fromsone al phabet F to
control - flowexpressions.

Wdefine the set X' as the al phabet of actions, conditionals and processes XY= ACQF

The conpositions that are defined in the al gebra of control-flow expressions are the
conpositions supported by existing HIs. Vrilog HI, for exanple, supports sequential
conposition, alternative conposition, loops, forks and unconditional repetition. The sane
set of compositions is also supported in VHL and Hardware( and thus is supported by
control - flowexpressions. Since alternative conpositions and loops in these languages are
guarded, their corresponding conpositions in (I wll also be guarded.

W defne the set O = {sequentid(-),dternative(, guard:), loop*), infinite(w),
paral [el(||)} as being the valid conpositions of control-flowexpressions. 'The formal defi-
nition of the al gebra of control-flowexpressions is presented bel ow

Ifiitian32 Let (X Q6, €) be the al gebra of control -flowexpressions uhere:

Xis an al phabet that is subdivided into the al phabet of actions, conditional s and pro-

CESSESS

Ois the set of conposition operators that define sequential, alternative, guard, [oop,
infute and paral [ el behavior;

0 is the identity operator for alternative conposition;
€ is the identity operator for sequential conposition.

For the sake of sinplicity, werestrict the sets of behaviors definabl e i ncontrol - flowexpres-
sions in the following way: it should al ways be possible to obtain a control -flowexpression
wthout any process variables. In this sense, the set of process variables have the sane
cardinality as the set of control-flowexpressions wthout process variables. In this paper,
vhenever ve refer to a (FEp, ve are referring to the (FE defined by the process variable
p.

W consider aspecial actioncalled0, vhichcorresponds to a no-operation or abstraction
of the computation. Action 0 executes in one unit-delay (just as any other action), but it
corresponds either to an unobservable operation of a process with no side effects or to a
uni t- del ay bet veen tvo conput ations.

Wintroduced in Defini tion 3.2 the synbol & that is called here deadlock 1. 'The synbol
0 is defined as 6 éfa]se . p, vhere pis any control-flowexpression. 'The deadl ock synhol
is an identity for alternative conposition. 'This neans that the branch of the alternative
conposition represented by the deadlock is never reachable. Iater we show that these
branches can infact be renoved.

I'Deadlock was the name given to § in process al gebras. In synthesis, § denotes code that is unreachable
due to synchronization. Since its properties are the sane as the properties for deadlock in process al gebras,
we used the latter nane, for the sake of uniformty.

12



‘ (bnposi tion ‘ HLRepresentation‘ (F Expression

Sapatid begin p; ¢ end P-q
Padld fork p; ¢ join pl| ¢
if (¢)
. P . -
Altendive else c:p+c: q
q;
while (¢)
Lap P (c:p)
vait (lc)
P (C . ij
Infirite alvzy's P

Fgure 8 Link between Verilog HIL constructs and control - flowexpressi ons

W also introduced the synbol e, whichis called here the mil computation The mdl
compd ation synbol is defined as a conputation that takes zero tine. Ior exanple, this
synbol can be used to denote an enpty branch of a conditional. ‘This synbol behaves as
the 1dentity synbol for sequential conposition.

The senantics of the major control-flowconstructs in HL are rel ated to control - flow
expressions in the table in the Hgure 8, where p and ¢ are processes (p, ¢ € A and ¢ is a
conditional (¢ €0. Inthis figue, ve relate (FEto the control-flowstructure of Vrilog
HL [41]. Inthis paper, ve assune that guards (:) have precedence over all other conpo-
sition operators; loops and infinite conposition (#% w) have precedence over the remaining
conposi tions; sequential conposition (-) has precedence over al ternative and parallel conpo-
sition; al ternative conposition (4 has precedence over the parallel conposition. Inaddition,
ve use parentheses to overrule this precedence and for ease of understanding. Athough it
is not necessary, we wll at tines replace parentheses by square brackets for clarity.

Infornally, we define the behavior of the conpositional operators of (Fts as follows:
the sequential conposition of two processes p and ¢ neans that ¢ is executed only after
p is executed. 'The parallel conposition neans that both p and ¢ begins execution at the
sane tine, and any operation followng p|l¢g will begin execution when both p and ¢ have
conpl eted. Note that the parallel conposition does not assune that p and ¢ must termnate
at the sane tine. 'The alternative conposition neans that a determnistic choice is first
nade wth respect to ¢ and —¢ to decide whether the (FEp or ¢ is executed, respectivel y.
The loop conposition neans that p is executed while the guard ¢ is true. 'The infinite
conposition neans that pis executed infinitel y nany tines upon reset.
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Note that inour definitionof the syntaxof (Fks, everyloop and every al ternati ve branch
is guarded by “:”. wvhi ch nakes the diflerent branches of al ternative and loops distinct. This
restricts the specificationof 1oop bodies and al ternative branches to onl y accept determmnistic
choi ces wth respect to the guards.
Wwll use the foll owng shorthand notation for control - flowexpressions. The control -
flow expression p ™ will denote n instances of p composed sequentially (p-...-p), which
—

corresponds, for exanple, to a counting loop that repeats ntines insone HIL. jhencontrol—
flow expression (z : p) <" wll denote a control-flow expression in which at most n — 1
repetitions of p my occur. This (FEis equivalent to (z: p4+ T: )™l

Inour original specification, ve assuned that everyactionin Aakes a unit-tine delayin
(I, and that every guard takes zero tine del ay. Then, we coul d possibly design a system
vhere after choosing a particular branch of an al ternative conposition (e.g., after choosing
cis trueine : p+c: ¢) and executing the first action of process p, the execution of this
action voul d mke @ true and thus al so enabling the execution of ¢. In order to avoid this
erroneous behavior, we adopt a weaker versionof the synchromy hypot hesis [ 5].

Assurian 31 [et p be a process and ¢ be a guard that guards the execution of p (defined

as ¢ : p). Ay action of p is assumd to execute after ¢ has been eval uated to true. In order
wrds, ¢ : p can be viewed as (¢ : €) - p. First, the conditiond is evadluated to true, then
the process p that is quarded by ¢ is execut ed, and other assignments to ¢ wll possibly affect
future choices onlv.

3.3 Axions of (FEs

In this section, vwe present the axions for the algebra of control-flowexpressions. ‘These
axi ord provi de the theoretical background that wll be used to build the finite-state nachi ne
representation for control - flowexpressions in Section 5.

The al gebra of control -flowexpressions inherits its fornalismfroma subset of process
al gebras [1] that is suitable for describing synchronous systems, called the a gebra of regul ar
synchronous processes. W further extend this al gebra by specifying Bol ean variables as
guards of processes. 'The follow ng proposition holds for (Fhs:

Rammitian31 (FEs are a subset of regul ar synchronous process al gebras.

In Table 1, ve present the axions of control-flowexpressions that are derived fromthe
axioms of the al gebra of synchronous processes, vhere a, b €M 4 (the set of miltisets of
actions), p, ¢, r EF(processes) and ¢ 1, &, ¢ €G(guards).

The alternative conposition has 6 as its identity conponent. It is commutative, and
associates to the right or left. The sequential conposition has € as its identity conponent.

It associates to both the right and left, andit is only distributive to the left wth respect to
the al ternative conposition. This inplies that p-(cq1: r+eqy: s) #c1: p-r+cq: p-s. The
intuitive neaning for p- (c¢q: r +cq: s) being different fromeq : p-r 4cy: p-sis that ve
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D qgH4cy:p (+is comnt ative)
cpHeo i qgHes i r)  (+is associative)
= c1:ptcy:qgtcs:r

c1: ptca:
(ar: p4ea: q) +es:

=R

1
o0
- W

(a:p4ca:q)-r = cr:p-r+4ez:q-r (- distributes to the left wth+)
(p-q)-r = p-(qg-r) (- is associalive)
= pg-r
cio:ptciip = ci:p (+is iderpotent)
lep =p
O:p =0
ca:p+d = cqi:p (6 is the identity elenent for 4
b-p =6 (6 is the zero el enent for -)
p-e = p (€ is the identity el enent for -)
€ep =D
cara:p = (ec1he):p
allb = (alb) if aUb synchroni ze
alp =6 if aW does not synchronize
allb = blla
ald = a
ale = a
a-pllo-q = (allb) - (pllq)
a-pllb = (dl[b)-p

(a:ptea: @llr = ci: (pllr) +ez2: (q]|r)

Table 1: Axions of control-flowexpressions

abstracted away the conputation of p,¢ 1 and ¢ 5, and thus ve cannot answer the questionon
whether action p affects the choice of ¢ 1 or ¢;, or if the environnent needs sone val ue fromp
for naking a decisionon vhether ¢ 1 or ¢3 should be true. If we assuned this transfornation
vere valid, ve could nake the decision for all branches of the specification upon start by
propagating the guards towards the begi nni ng.

(hthe other hand, if ve assunedthat p-(¢ 1 : r4e2: s) vereequivalent to p-cq : r4p-ca @ s,
ve voul d be in fact assunming that systemwere non-causal (its current choices depending
on the future val ue of conditionals) andinthis case ve could al so have propagated all those
decisions to the initial start tine of the systemmodel ed by the (FE

The parallel conposition assunes a synchronous execution semantics, also known as
naxinal parallelismsenantics. Inthis execution semantics, if two processes are executed
in parallel, then one action of each process is executed atomcally at the sane tine. W
represent the actions that execute together by mul tisets of actions. For exanple, if mltiset
a defines {o 1, -+, 4}, vhere eacha ; E4Aactions a 1, ... ,aare executed at the sane tine.
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The set consisting of miltisets of actions is represented here by the synbol M 4. If tvo
miltisets « ={a 1, -+, ¢}tand b =% 4, -, §,} are composed in parallel, the resulting
mil tiset {a 1, -+, ¢, b, -+, h}is represented by a Ub. W sonetines abuse our notation

for mil tisets and use a; for {a;}if it can be inferred by the context that « ; represents the
ml tiset {a ;

In the definition of the axions of (}ts, we shoved that the result of the parallel com
position of two multisets a and b is dependent on sone synchronization between a and b.
Athough a fornal defini tionof synchronizationwll be presentedinthe next section, we wll
give an infornal definition that will all owthe reader to understand its neani ng.

Processes synchronize in control - flowexpressions by defini ng nul tisets of actions that
al ways have to execute at the sane tine, and by defini ng nul tisets of actions that shoul d
never execute at the sane tine.

Loops and infini te conputations can be defined by control - flowexpressions with process

*1s equi val ent to recursive process ¢ =c: p-q+¢C: e,

variables. The 1oop conposition (¢ : p)
where p is a process variable. The infinite conposition p ¥ is equivalent to the recursive
process ¢ =p - q. Their axions can be determned by appl yi ng those equations into axions

of the original al gebra.

3.4 (nparison of Control-Fl owExpressions w th Existing For-
nal i sns

(bntrol -flowexpression is very useful as a nedeling and abstraction formalismof (OJFG
since the translation from(I¥FGinto (FFs is straightforward. Inthis section, we conpare
(I wthother fornalisns that were used to nedel the control-flow while abstracting the

dat aflowi nf ormation: regul ar expressions, pathexpressions, fini te-state nachines, Petri-nets,
al gebra of concurrent processes (AP), calculus of cormuni cating systens ((5), timng
expressions and HSM, al though this list is by no neans exhaustive.

o 'The algebra of reguar exressias [19] is used represent strings accepted/emtted
by a fini te-state nachine. This al gebra is represented by (X 4 -, ¥, where Yis the
al phabet of characters accepted/emtted, +denotes al ternative conposition, - denotes
sequential conposition, and *denotes zero or nore repetitions of a subexpression.

Regul ar expressions have been used in the modeling of the control-flowof sequential
prograns [34, 26]. In order to specify the control-flowin terns of an input /output
behavior, regular expressions nust be extended to guard alternative branches and
loops. Aso, in the case of parallel descriptions, a parallel operator nust be added.
Fovever, this parallel operator is redundant for regul ar expressions, since the left and
right distributivity of the sequential operator with respect to the al ternative operator
all owconcurrency to be traded by non- determni sm| 29] . Such expressi veness does not
exist in control-flowexpressions, because the sequential operator does not distribute
to the right wth respect to the al ternative operator.
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(I also extend regul ar expressions by defini ng infini te behaviors, which could be
achi eved onl y by extending regul ar expressions to wregul ar expressions [9].

¢ Pthepesias[ 8] are equi val ent to regul ar expressions, with the addition of paral-
lelism Fowever, instead of a synchronous execution senantics for the parallel conpo-
sition, path expressions assune aninterleaved execution senantics. (Fks al so extend
path expressions by provi ding guards to alternative branches and 1oops, in the same
vay (FIs extended regul ar expressions.

o Afiitestate mdire [ 19] recognizer is a tuple (X 5, 6, S 0, F), vhere Yis aset of
inputs, Sis the set of states, 6 : Sx Y — Sis the transition function, ¢is the set
of initial states, and F'is the set of final states. In the case of finite-state nachines
as conputational engines, ve also define an output al phabet O, and either the output
transition function A : S —O(in the case of a More nachine) or A: S x¥—0
(in the case of a Maly nachine). Parallelismin finite-state nachines is defined only
at the transition level, in vhich several outputs nay be generated at the sane tine.

A this level, hovever, the duration for each output has al ready been determned, and
any transfornmation of the specification that nodifies this execution tine camnot be
perforned.

Aspecification consisting of a set of concurrently executing finite-state nachines can
also be considered in this nedel, as in the case of reactive systeml anguages, such as
StateCharts [11] and SIL [39]. In these languages, the systemis nodeled as a set of
hierarchi cal concurrent finite-state nachines, and the systems state is defined to be
the state of the Gartesian product of all concurrently executing finite-state nachines.
% inthe case described inthe previous paragraph, at the level of finite-state nachines,
the execution tine for the operations has al ready been deci ded, and thus any transfor-
nation that changes the execution tine of operations cannot be perforned, w thout
requiring a restructuring of the finite-state nachine.

o I2tii 1#ts [ 36] are representedbythe tuple (7, P, 6, I), vhere T'is the set of transitions,
Pis the set of places, and § C T xPUP X" defines the transition relation (or firi ng)
fromtransitions to places and vice-versa. Anarking in Fetri-nets is an assignnent of
natural nunbers (tokens) to places. [ is the initial marking of the Petri-net.

Astate ina Petri-net is a narking of places. Transitions betveen states are achi eved
by having a narking that becones another narking by firing sone transition. This
firi ng occurs when one transition of the net has all i ncomng pl aces with nere than one
token. 'The transition takes one such token fromeach place and puts one additional
token in every outgoing place. Since only one firing can occur at any tine, this nodel
can onl y represent interleaved concurrent systens.

(he possible extension of Petri-nets is the synchronous firing senantics [43]. In this
semantics, the set of firings that can occur at the sane tine is specified al ong with the
Petri-net. Simlarly to the concurrent fini te- state nachi ne nodel , any transfornations
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that changes the execution tine of the operations, or the structure of the graph cannot
be easily perforned.

e Roess dgbra[l] and @ [30] correspond to a famly of representations used
to formally nedel concurrent systens. In these nodels, we viewthe systemas a
set of operations that are represented by actions, and their conpositions in terms of
sequential conposition, non-determmnistic choice, parallel conposition and cormumi -
cation. (oncurrency usually refers tointerleaved concurrency, whichis represented by
non- determmni stic choi ce; and synchronous concurrency is defined in terns of cormu-
ni cation.

These representations can be considered as a superset of control-flowexpressions. If
ve restrict the set of specifiable behaviors to regul ar and synchronous processes, then
control - flowexpressions will have the sane representation capabilities of process al ge-
bras and (5. (he of the uni que features of control-flowexpressions that was defined
previously in this paper is that we distinguish actions fromconditionals. This allows
the systemto better capture the reactiveness nature of hardware systens, and as a
result, control-flowexpressions wll fit better the nodel used for synthesis.

o Timgegressias [ 46, 48] is anoedel for descri bi ng behaviors of sequential systens
and specifying sequential constraints a sequential systemhas to satisfy [46]. Intinmng
expressions, the sequential systemis represented by expressions that nay take difler-
ent val ues over tine. Wen conpared to control-flowexpressions, ve see that timng
expressions will be better suited to represent the control infornation at lover levels
of descriptions, whereas control-flowexpressions wll be better suited for representing
the control -flowat higher-levels of descriptions. In addition, control-flowexpressions
can be considered as a superset of timng expressions, since (s can be used to rep-
resent systens containing hi erarchical series-parallel specifications, whereas in timng
expressions parallelismcan occur only at the hi ghest level.

e BFS\MIs [45] are a generalization of finite-state nachines wth partial timng inforna-
tion on the rel ative execution tine of the states. Through synthesis, a conplete tine
(or schedule) is obtained. 'This nodel closely resenbles the al gebra of control-flow
expressions because it was used for nodel i ng and synthesis of control - domnated spec-
ifications. Ibvever, the lack of a synchroni zation fornalismand the lack of a fornal
nodel for constraint specification — whichis restricted to schedul ing constraints —
prevents BSM frombeing used in nore conpl ex problens. A opposed to (I,
whi ch uses both expression and fini te-state nachine representations for a concurrent
system the translation fromthe specification to a finite-state nachine descriptionis
perforned too early wth BSM, and thus, optimzations that would be best used
at the expression level —such as hierarchical abstraction and rewiting —woul d not
be available to the synthesis process. Hnally, HSMis a nodel best suited for rep-
resenting the control - flowof 1anguages in which parallelismis specified at the process
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level, such as V1. If used to represent the control -flowot |anguages that can spec-
ify series-parallel conposition of systems, such as Verilog HI, its representation and
constraint specification becones cunbersone.

Vien conpared to the formlisns presented above, control-flowexpressions are able to
capture nore succinctly the control - flowinfornation, abstraction fromthe original specifi
cation, and the degrees of freedom Wen considering specifications in terns of (IFs (or
interns of the correspondi ng HL code) control - flowexpressions fit perfectly as a nedeling
tool of the control behavior for synthesis of systemlevel specifications.

4 (orstraint Specification

In the previous section, we presented the al gebra of control-flowexpressions, and how to
abstract the dataflowinfornation and represent the control -flowof the design. Real designs
consist of specification and design constraints. Inthis section, we showhowto use (s to
represent constraints, such as scheduling, binding, and synchronization.

The specification of a systemat higher levels of abstraction requires the nodeling of
non- determmni sm since at these levels, not all synthesis decisions have been nade. In the
al gebra of control - flowexpressions, ve nodel these non-determmnistic choices of the design
by guarding the choi ces wth decision variables, whi ch quantify the design space.

W present in this section the incorporation of design constraints by control - flowex-
pressions. Ibth the specification and the constraints wll be converted to a finite-state
representationin the next section, where ve will be able to obtain the controllers satisfying
design constraints.

4.1 Quantification of the IDksign Space

W represent here the design space and constraints by neans of decision variables, which

are used as guards of (Its:

Iefitian4.1 Adecision variable d is a variabl e quarding the execution of a control - fiow
expression vhose value is determned by the synthesis procedure. [ts possible values are
defmed as the set of Bol ean formi as over sone set D.

Adecision variable is a Bolean variable that quantifies a constraint, i.e., whenever the
decision variable is true, the constraint is satisfied. Asinple inplenentation that has been
sought in the past is the assignnent of decision variables to constant val ues over tine [21].
Later, we showhowto obtain assignnents to the decision variabl es that considers the “state”
of the systembeing synthesized. Thus, insone cases, the set Dwll be the set of conditionals
C, with the Bool ean constants {0, 1} Wen ve obtain a fini te-state nachine satisfying the
constraints in the next section, the different nachi nes we can choose fromwill be uni quel y
determned by diflerent assignnents to the decision variables.
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Inthe al gebra of control - flowexpressions, we are going to use decision variables as guards
of expressions, so ve will need to extend guards to allowdecision variables and condi tional s
to be conposed together. Because decision variables will uni quel y determne the satisfaction
of a constraint, we only need to conpose guards with conjunctions of decision variables, or
their conpl enents. This also states that any non- determmni smf romthe specification will be
uni quel y guarded by a Bol ean guard.

Ifiitian42 A guard is a conjunction of decision variables (or their conplenents) and
a Bol ean formid a over the set of conditiona s.

Bage 4 (bnsider the code w =y * z; u = w+3;. Assune both the mul tiplication and
the addition take one clock cycle, and that w=%y * 2z is represented by action a and v =w+31is
represented by action b. A@smntbetween ¢ and b, or the quantificati onof all possible schedul es
such that b occurs after ais represented by the (FEa- (2 * 0p, where a, b € A, and 2 €D. In
this CFE, the possible schedul es are quanti fied by the di fferent assignnents of the decision variable
x over tine.

Possible assignnents coul d be:

The first assignnent corresponds to an assi gnnent of z to fdsafter the execution of action a.
The second assignnent corresponds to an assignnent of z to tneafter the execution of a, then to
fds The other assignments have a simlar correspondence. O

4.2 (bnstraint Representation

(bnstraints are properties that any inplenentation needs to satisfy. W consider here a
subset of constraints that can be specified as scheduling constraints, binding constraints
and synchroni zation constraints. Mre conpl ex speci fications can be achi eved by conposi ng
these constraints using control - flowexpressions.

T mng constraints wll be defined in terms of control-flowexpressions. In binding con
straints ve wll use expression rewiting, i.e., the incorporation of binding constraints as
a nedification of the original (JE Bth timng and binding constraints wll use decision
variables as quantifiers of the design space. Hmnally, synchronization constraints wll use
mul tisets of actions that should occur at the sane tine and nul tisets of actions that should
never occur at the same tine.

The constraints will be defined in terns of the actions that appear in a control - flow
expression, which ve define bel owas the support of a (FE
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Iefitian43 The support of a control -flow expression p is defined as the sel of actions
that are execut ed in p.

Bage5 The support of a (FEp =(a- b) “l|(c-d-%)wittenas 9 is the set of actions of
p. ere, §={a, b, ¢, d, e}. O

Fach action defined in the support of a (FKwill have a shadowaction, whi ch executes
every tine the correspondi ng action executes.

Iefhitian44 Ashadowof an action a, witten as o a, 18 defined to be an action that does
not correspond to amy operation of the original specification and executes every tine action
a s executed.

Bage6 Inthe ’E(a- b - ¢) “ g is executed every tine a is executed, i executed every
tine bis executed, andois executed every tine ¢ is executed. O

421 Steddirg Getreirs

Schedul ing constraints are constraints that specify the timngrel ations aneng conputations.
A though ve w1l onl y define mni numand naxi numt i mng constraints here, ve canspecity
and handl e a much richer set of constraints wth control -flowexpressions, including loops,
al ternati ve conposition and synchroni zation, as opposed to the constraints that are handl ed
inother CADtools, suchas [40, 44, 25, 3]. 'The speci fication of schedul ing constraints using
control -flowexpressions can be al so considered as an extension of path constraints defined
by [40].

[et us assune p to be a (FErepresenting a specification of a design with support S e
Suppose ve vant to represent initially sinple mni numand naxi numconstraints betveen
tw actions @ and b, witha, b €S .

Iefitian45 Amni rumtiming constraint of n cycl es bet ueen twwo actions a and b, whose
shadow actions are ¢, and oy, can be represented by the AE(x: 0)  * -0, - 0" 1 (y: OF - oy,
uhere x and y are decision variabl es.

Iefitian46 A naximumtimng constraint on n cycles betueen tuw actions a and b,
uhose shadowactions are o and o, canbe represented by the (FE(x: 0)  *-04-(y: 0] -0y,
uhere x and y are decision variabl es.

Let p be a control -flowexpression representing a specification and let m 1, ..., jmbe a

set of (s representing scheduling constraints. The control - flowexpression p|lm 1| -+ ||mn
will denote the application of the n scheduling constraints to the specification p.
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KHgure 9: (JFG of a differential equation exanple

Bage 7 The design in Figure 9 is the control-data flow graph of a subset of the loop of a
di fferenti al equation sol ver [28]. Assune that the (FEfor the specificationis p, and that we want
tospecify a naxi maomti m ng constraint of 3 cycles betweengand s5, which can be represented
by the FE(z: 0) *- g,, - (y: 05°- q,, where 2 and y are decision variables.
The applicationof this constraint tothe (FEpis represented by anew(FEp|| (2% @), (y:
0)<¢. g, O
In the previous exanple, ve specified conventional mni numand naxi numtimng con-
straints. % we pointed out before, (Fts can be used to specify a much broader set of
schedul ing constraints, and even hide interface infornation fromthe original specification,
as shown in the fol l ow ng exanpl e.

Bage 8 Tet us exanine the specificati on of the scheduling constraint presentedin Section2.2.

In this exanple, the different actions that are invol ved in the transm ssion of the data are the
actions “Ras”, “(Chs” and “data”. Associated with the action “send”, we have the shadowaction
Ogend- 1he constraint that specifies that the send operation shoul d take ei ther three or one cycle,
dependi ng on the address selection, can be represented by the control - flowexpression {af:50)

{o5end BB - 0- {C dtd + 55: {oapq, dd). O

422 Budig Gstreitts

H nding constraints specity the possible inpl enentations for each conputation that is repre-
sented by an action. Wrepresent binding constraints as a rewiting of the original control-
flowexpression.

Ifntian47 let p be a control - flowexpression wth support S p- Arewriting of p, witten

as R(p)[a «— q], vhere q is a control-fowexpression, is defined as the substituion of every
occurrence of a €S, inp byq.
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Bapge 9 Assunme we make the rewriting of a by (¢ 1 - @ +cy - @ ) intop =
(a-b09]|(c- d-“) Then:

R(p)la—(c:a - atcs: 6 a-a)] =((a: G- ates: a-a-a) bY[[(c- d-%)

a

Ifitian48 Iet p be a (FE of a specification and assune sone action a can be inpl e-
nent ed by a set of components {C 1, Gy, oo, G} This binding constraint is represent ed by
the (FE

Rp)la — Z z;: G

1<¢ <m

vhere Yy <; i 0 G represents the alternative conposition of the mterns (x .0 G), and
X1, e, are mdecision variabl es.

Inthis expression rewiting, vhenever x ; is true, conponent C' ; inplenents the conpu
tation abstracted by action a. Note that since decision variables are assuned to take val ues
fromthe set of Bolean formil as over 1 and not just the values 0 or 1, ve nay have an
inpl enentation in which sone # ; enables conponent €' ; at sone tine, and at a later tine
xj (1 f£j) enables conponent C' ;, thus inpl enenting dynamic bi ndi ng of conponents.

Bage 10 Inthis exanple, assune that actions m ;, ¢ =1, ..., 50f Fgure 9 can be i npl enented
by one of three mul tipliers MM, M. Then, for the (FEp that represents this C(DFG we define
the bindi ng for each mas:

Rp)[mi @ ;10 M 4z ;90 Mo 42,5 Ms)]

where ¢ ranges over 1to 5 and g, % 5and z;3are decision variables O

Note that inthis sectionve are only specifying binding constraints. Wen an assi gnnent
to the decision variables is obtained in such a way that different bindings are selected at
different tines, then ve refer to this as dynamc binding.

423 Symdraizdin Gstrerts

Synchroni zation constraints specify actions that shoul d be executed at the sane tine and
actions that shoul d never be executed at the sane tine. The forner type of synchronization
corresponds to the specification data transfers, or control transfer fromone specification to
another. The l atter kind of synchronization allows one to specify excl usive use of a resource
by sone indi vi dual process.

W define bel ow AIWY'S and NEVFRsets, which are sets consisting of nultisets of

actions.
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Iftian49 let AIMS be a set consisting of mitisets of actions that contains mi -
tiset X. If tw actions a and b belong to the sane mitiset X then a and b must al ways
execute at the sane tine.

Iftian410 [et NMRbe a set consisting of mitisets of actions that contains mi -
tiset X If tu actions a and b belong to the sane mitiset X then a and b must never
execute at the sane tine.

Bage 11 Iet us consider the synchronization synthesis problempresented in Section 2.1.1.
In this problem let us assune the fol lowing control-flowexpressions for the processes DM Al
IMnit and eqeag respectivel y:

p = [a. OF
p2 = [0.(c: 0)al
ps = [(z: 0f.af

Wiere a corresponds to the bus access and 0 hi des the internal conputation fromthe original
specification. The conditional ¢ hides the eval uati onof tsissicwadpredi cate and the decision
variabl e z quantifies the predicate frebis In this case, since we have the additional restriction
that no two bus accesses shoul d occur at the sane tine, we have NEVIR={{a, a}}. O

In summary, ve shoved howto represent scheduling, binding and synchroni zation con-
straints inthis section. Mre conpl ex constraint specifications can use these three types of
constraints as building bl ocks, with the conpositions of control-flowexpressions as a way to
conbi ne these constraints.

5 Hnte-Sate Representation

Thi s sectionshovs howto generate afini te-state representationfromecontrol - flowexpressions.
% wve have shown in K gure 1, ve use both the al gebrai ¢ and the fini te-state representations
inour synthesis tool. The al gebraic representation presentedin the previous sections alloved
us to nani pul ate and rewri te the the expressions al gebrai cally. The fini te-state representation
allows us to anal yze and to synthesize the controllers for the specification.

Wobtain a fini te-state representation froma control - flowexpression by conputing all
the suffkes of the expression. Informally, a suffk of a control-flowexpression represents the
state of the systemafter an n-cycle simul ation of the system W showthat this state can
be represented by another (FF, and ve call this simulationof the (FEto obtainits suffxes
a derivative, because of the its resenbl ance to the vork of Bzozowski [7] who first defined
derivatives of regul ar expressions.

Inthe foll ow ng exanpl e, ve will present the keyideas of this sectioninobtaining a finite-
state representationfor a control-flowexpression by enunerating its suffxes. The al gorithm

will be formalized]ater.
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Bage 12 For the control - flowexpressionp =(a-b-¢) “, we wishtoobtainafinite-state Maly
nachine. By inspecting p, and assum ng that a, b and ¢ are the outputs to the fini te-state nachine
representing p, we knowthat a Maly nachine starting at some initial statempkes a transition
tosone state ¢ with output @ being generated. Fromstate;g the finite-state nachi ne nakes a
transition to some state;gaith output b. Finally, a transitiemgcurs to the original state ¢
w th output ¢. The Mal y nachine for this control -flowexpressionis presentedin K gure 10.

If we nowl ook at the possible suffixes of p, the (FEb- ¢- (a- % i pbtained after sinul ating
(a-b- &) for one cycle, and the FEc- (a- b “ci)s obtained after simul ating b - ¢ - (a “bf-or Jone
cycle. Thus, we can associate the states ¢ and g, with the suffkes (a-b- &) b-c- (a-b¥c)

@ (ab.c)®

a

¢ e b.c.(ab.c) ©

b

G c.(a.b.c) w

Fgure 10: Maly nachine for control -flowexpression (a-b-¢)

and ¢ - (a-b- ¢) respectively. O

Wiat ve need to shownowis howto conpute the suffkes of a control - flowexpression,
that there is only a fini te nunber of suffxes for a gi ven (FE, and that there is an equi val ence
rel ation between the suffkes of a control - flowexpression and the states of its corresponding
Mal y automaton. This is described fornallyin Appendix A Wsuggest to the reader who
is interestedinthe mathenatical foundation of this vork to go first to this appendi x before
proceeding to the next section.

5.1 (bnstructing the Finite- State Representation

W present in this section a procedure to obtain the finite-state Maly nachine froma
control - flowexpression using derivatives. ‘This Maly nachine is formally represented by

M =(I,0Q,6é X\ g) 2 vhere [ is the set of input variables of M Ois the set of output
synbol s of M Qis the set of states, ¢ois theinitial state, 6 is the transitionfunction of M
ie., 6§ =02 1 —€) and Mis the output functionof Mi.e., A: Qx2 I 9 0,

2We use the Greek letter 6 to denote the transitionfunction as usedinliterature. This §is different from
the 6 introduced in Section 3.3, but the reader shoul d be able to easily recognize when we are referring to
the deadl ock synbol and when we are referring to the transition function of the Meal y nachine M.
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This Maly nachine is related to the set of derivatives of p in the followng way. The
set of input variables of Mcorresponds to the set of conditional and decision variables of p.
The set of outputs of Mcorresponds to the nul tiset of actions of p. Wth eachirredundant
suffc s of p, ve associate a state ¢ ; €@} In particular, ¢ ¢ corresponds to the state ¢,, i.e.,
to the (FEp itsel f.

The transition function () and the output function (A) are related to the (FEp in the
following way. et s be anirredundant suffx of a control - flowexpression p, for vhich ve are
bui | di ng the fini te-state nachine representation. The triple (7, u, ) €G¥M 4 X defined
formallyin Appendix A), obtained froma (FEp, indicates that the actions p are executed
vhen v is true, folloved by the executionof #. Asune that (v, y, 7) €0s, vhere ds denotes
the derivative of s. Thus, 6(¢s, v) =rand ¢ 5, y) =in M

p

vV
©) @.0)] (0.(c:0)*.a”|| ((x:0)*.a)%
S

x{a,a} + x:a cxa +xcfaa}

N w )

1) 0.@0” | (c:0)*.a.(0.(c:0)*.a)" || ((x:0)*.a)
AN

X c:a+xc0 xca +x c{a,a}

N 0 ©

Q(a.O) Il (c:0)*.2.(0.(c:0)*.af” || (x:0)*.a)

X c¢{a,a} + x c:{a,a,a} X:a+x:0

Y
(3) 0.(a.01l (0.(c:0)*.af | ((x:0)*.a)"

Kgure 11: Fnite-state representation for synchronization synthesis probl em

Bage 13 Figure 11 shows the finite-state representation for the synchronization exanpl e
whose control - flowexpression was presented in Fxanple 11 (p|p||p). O

Note that the derivative conmputation does not take into account the synchronization
constraints. Thus, ve will need the follow ng defini tions.

Ifiitia 51 Atransition 6(q, f) of a fiite-state Maly rachine representation of the
cont rol - flow expressionp is valid if

o Vo eAIMS (Xq, f)Nax A0) = (¢ C Mg, f))
o e ENMR = £Nq, f).
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The definition above states that if at least a certain action in a transition is included
insome il tiset of actions of the AUMSset, then all actions in this multiset shoul d be
executed in the transition. Kwthernore, this transition should not include any mul tiset of
actions of the NeMRset. This condition guarantees that the transition wll not viol ate the
synchroni zation requi renents of the design.

Since sone of the transitions of the Mal y nachi ne nay be invalid, ve have al so to check
whether a state of the nachine is reachable by valid transitions or not.

Rgmitian51 Te initia state q » of the fiite-state Maly nachine representing the
cont rol - flow expression p is reachabl e, and so is any other state q € () such that there is
at least one valid transition fromanother reachable state to q.

/* Breath First Search of stale space represented by CFE p x/
paedre Const ruct _FSM

{
ipt:  cfe, ALWAYS, NEVER
atpt: finite-state muchine M
fifo.init (cfe) J¥initialize fifo with initial cfe */
Wile (fifo # 0, {
cfe =fifo. first() /¥ gel cfe ontop of fifo */
mrk(cfe) /¥ mark cfe as traversed and nuke il a state */
derivative =0 (cfe) /* conpule all cfe’s one cycle apart */
V(7y, 1, ™) 1 (G x M xF) € derivative {
/¥ check if it violates ALVAYS and NEVER sets */
if (pN ALVAYS /=0)
if (ALVAYS /e ) catine
if (uNNEVER /=0)
if (NEVERE 1) catine
add edge (cfe,v: p m) to finite-state michine /*lransitionis valid*/
if unnurked () /¥ if suffiz isn’t a stale, insert il in fifo */
fifo.insert (m)
}
}
renvve unreachable states
}

K gure 12: A gorithmto construct finite-state representation

The al gorithmof Hgure 12 is used to conpute the finite-state Maly nachine Mof a
specification. 'The al gori thmworks by traversing the finite-state nachine in a breath-first
searchnanner, and elimnatingtheinvalidtransitions and the unreachable states. 'The fini te-
state nachi ne obt ai ned contai ns onl y the reachabl e states and val i dtransitions of the system
The design space represented by the schedul i ng and bi nding constraints are enbedded into
the original control-flowexpression of the specification.
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w -0)* q) W -0)* q) W
Q\ é\(aﬂ) [1(0.(c:0)*.8) ®|| ((x:0)*.a)

Faagexal | Gxa xXEE)
N
@\ E—— \Qo(w) ® || (c:0)*.a.(0.(C:0)*.a) W] (x0)*.a) @
Xca+xc0 xca +§c{aa} Xca+xco xca
\Q\ @ (@.0)@|| (c:0)*.a.(0.(c:0)*.a) W| ((x:0)*.a) @
T(C"{a,a} + )'((':{a,aa} X:a+x0
(@) (b)

Kgure 13: FEnite-state representaion observing synchrom zation constraint s

Bage U If we apply the MIR={a, a} constraint to the finite-state representation of
1l | p| | p (shownin Exanple 13), we obtain the fini te-state representation of Iigure 13-b.

Note that state 3 becones unreachabl e fromthe initial state, and thus can be elim nated from
the final finite-state representation. O

5.2 Feasibility of Sol utions

In the design process, the user may want at sone point to determne if there exists an
inpl enentationfor the specification in presence of aset of design constraints. The foll ow ng
theoremshovs howone can test whether a probl emis overconstrai ned or not.

Teaarhi 1 Suppose p is a control-flow expression al ong wth the synchronization con-
straints specified by the sets AVMS and NMR If the procedure Comstruct FSM(p,
ADMS NME returns an enpty finite-state nachine, then the specificationis overcon
strai ned.

Proof. W knowthat at least one state should exist in the fini te-state nachine:
the state corresponding to ¢ =p||pb- - - |JmIf this initial state does not exist in
the finite-state nachine, it neans that it was first generated (before the vhilel oop of
the al gorithmin Figure 12), but later renoved fromthe fini te-state machi ne because
the state was unreachable. Since invalid transitions are elimnated when they viol ate
synchroni zation constraints, ¢ was overconstrained. |

Note that the converse nmay not be true, hovever. If the overconstrained part of the
specification is not large enough to nake all states unreachable, then an inpl enentation is
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still obtained for the parts of the specification that satisfies the constraints.

6 Synthesizing (Wrtrol-Units from the Hnite-State Rp-
reserntation

CFE pyji..{lpill... Il pn ALWAYS NEVER

Finite-State Representation Cost Function

0-1 Integer Linear Programming

P Implementation

Projection

Control-Unit for ?;

K gure 14: Mt hodol ogy for synthesi zing control -units

Wpresent inthis section a nethodol ogy to synthesize control - uni ts fromthe fini te-state rep-
resentation. Hgure 14 gives a pictorial viewot the synthesis nethod. K omthe specification
represented by the set of concurrent processes p 1||---|p il|--|p », and the synchronization
constraints expressed by the AJMSand MWHRsets, ve obtained a fini te-state nachi ne
representation by the al gori thmshown in the previous section. Homthis fini te-state repre-
sentation, vhichal ready contains all feasible behaviors, ve look for afeasibleinpl enentation
that has been optimzed with respect to a cost function. In particular, we obtain in this
section the inplenentation by casting the synthesis problemas a 0-1 Integer Linear Pro-
granming i nstance. Note that the opti mzed fini te-state representation nodel the systemas
a vhole. 'Thus, to derive the controller for eachindividual process p;, ve project the set of
decisions nade for the inpl enentationinto p ;. This nethodol ogy can be used to synthesize
the controllers of concurrent systens with arbitrary control-flows, as well as systems with
envi ronnent and synchroni zation constraints.

'The naj or diflerence betweenour formul ation and previ ous approaches to synthesis, such
as [21, 37, 24, 14], is that we do not have the notion of a control-step as a linear order over
tine, because of loops, synchronization and concurrency. Wereas the control flows only in
one directionin single-source single-sink dataflovs, loops nakes the anal ysis of the control-

29



flowto depend on the different assignnents to the conditionals. (oncurrency inplies that
different instances of the sane piece of conmputation requires different decisions. FKnally
synchroni zation inplies that the different parts of the specification should not be treated
separatel y. Thus, the conplexity of the synthesis task becones much hi gher.

The dependency of the flowof control on the conditional s and on the design constraints
prevent us fromformil ating the synthesis problemin terns of control-steps. Fowever, we
can define the synthesis problemin terns of a equivalent entity: the state of a finite-state
nachi ne.

Wwill consider, thus, the finite-state nachine M=(I, Q Q 6, A\, ¢ ) defined in Sec-
tion 5.1 that represents the control -flowexpression p and the synchroni zation constraints.
Thi s fini te- state nachi ne was obtai ned by the al gori thmgi venin H gure 12. Wassune that
(Jcontains only reachabl e states and A contains only valid transitions.

Since ve enriched the control - flowexpression of the specification with decision variabl es
in order to quantify the design space, the corresponding finite-state nachine contains a
representationof the design space according to the degrees of freedomintroduced. Thus, ve
define nowwhat we nean by an i npl enentation of the fini te-state nachine M

Iefitian 61 [et Mbe the fmite-state nachine obtained froma control - flow expression
through derivation. Wedl M ' an inplementation of Mif the followng conditions hold.

1. The set of states of M ' is a subset of the set of states of M
2. The intiad states of Mand M ' are the same.

3. 'The set of transitions of M ' is a subset of the set of transitions of M

Thus, an inplenentation M ' =(I1, Q Q', §, X, ¢) will be an inplenentation of M=
(1,0Q66 Neg if Q6 "D and A 'O\ Inaddition to the requirenents gi ven above,
ve still require that M also satisfies additional constraints that will be inposed by the
structure of the original specification. W wll present by an exanple the formil ation of
the mul ti-process synthesis problemas an ILP ‘The conplete forml ation can be seen in
Mppendi x B

In the synthesis of M’ fromM we have to identify which states wll be includedin M '
and whi ch transitions will be part of the transition function for M’. Inorder to determne
the states of Mwhichwll be part of the states of M ', ve create a Bbolean variable y , for
cachstate ¢, of M If the Boolean variable y , is set to 1, our interpretationwll be that the
state ¢, will belong to M’. Wwill denote the state ¢ , by p in the remainder of this section.

In order to determne a subset of the transitions of M’ ve subdivide each guard f of a
transition 6(¢, f) into tvo conjoined parts. 'The first part contains only decision variables
and the second part contains only conditional variables. Iet us call the first part f x and
the second part f¢. MNw for eachstate ¢,, decision variable z of k& and for each diflerent
Bolean formila f ¢ of ¢,, ve create a Bolean variable z (,, s.). In the solution of the ITP
problem the variables x (4, ) are assigned 0-1 values such that if fx|z s (s &) =1, then
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6(q, [) belongs to M', i.e., ifxfeval uates to 1 when each variable @ of f x is assigned the
value of x(,, @), then é(gy, f) wll belong to M.

Bage 15 Tet us consi der the fini te- state machine of Figure 13 for the synchroni zati onprobl em
presented in Section 2. 1. 1. For this fini te-state nachine, the set of m xed Bool ean- ILP equati ons
that quantifies the design space for the decision variable x is shown bel ow

Yo =
Y1 — (2o, Yo V (2, Y2) =0
Yo =Y 1(T(L, VT (1, ) =0

z(o, 1)=1
Tz =1
T(1, erk T(r el
T =1

(20, 1)V T0) (%1, F (12 V T0) (%2, .V T2) =0

The first set of equations represent the transitionrelationof Minterns of the decision variables
and states. The first state of M(0) is al ways a state of. Mtate 1 will be a state of’ Mf 0is a
state of Mand the transition 6(0, ) is il,Mhichis represented by assigning 1 tqaj or if
state 2is astate of "Mdnd the transition é(2, zc) is ih Mhichis represented by assigning 1 to
the Bool ean variable g ., Asimilar reasoning yields the third equation.

In the second group of equations, we represent set of valid assignments for each state and
condi tional expression. The first equati on states that the only possible choice for state 0is to nake
a transition tostate 1, and thusy 4)shoul d be assigned to 1. Simlarly, when ¢ is fdscon state
1, since the only possible choiceis atransitiontostate 0, this transition should be a transition of
M’'. In the transition between states 1 and 2, there are tvwo possible choices when ¢ is tng and
onl y one of those transitions shoul d be assigned to M

In the thirdset of equations, we guarantee that for any causality constraint of the type a- (z:
0)*- b, where ¢ and b are actions and 2 is a decision variable, at least one statewf] Mave x
assigned to fds i.e., b will eventually be schedul ed.

Aassignnent satisfyingthis set of equationsis givegbyyy =y =1, 29 1=2 1z =22, .=1,

z; ,=0. O

6.1 Selection of a (Gbst Function

In the previous section, we considered just the formul ation of the constraints to find an
inpl enentation of a finite-state representation. Insystemlevel designs, ve vant to be able
to distinguish possible inplenentations with respect to sone cost neasure in order to be

able to select the optinal inplenentation. In addition, the designer should be able to add
infornation about the environnent. In our tool, the designer is allowed to control the
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synthesis sol utions by specifying flexi ble objective functions, i.e., cost functions whose goal s
nay be diflerent for the different regions of the specification. Tor exanple, in a nested loop
structure, the synthesis goal nmay be mni rumdel ay for the inner loop, but mni numarea

for the outer loops. Wwill showhere howto specify schedul ing and binding cost functions

by using actions and guards. Then, ve will generalize the procedure by showing how the
designer can specify nore general objective functions wth (I3, whose goals change wth

the different regions of the specification.

611 Sediig MinmBledlirg Gts

Qe of the prinary goals of synthesizing circuits whose rumning tine is mninum The
sel ectionof mni mumschedul i ng costs using using control - flowexpressions uses the fol lowing
observation. [Insingle-source singl e-sink acyclic (IMG's, the synthesis of mnimmschedu es

is equuvad ent to mmimzing the execution tine for the sink node of the (IKG Thus, every

tine an operation is del ayed one cycle, we can associate an action 0 (corresponding to a
del ay of one cycle) that is inserted between the action which vas del ayed by one cycle and
the action executed previously (Section4). & aresult, we can quantify the scheduling and
causal ity constraints by counting the nunber of 0’s inserted by the synthesis procedure.

The advantage of this nethod is that we may select tfast schedules wth respect to a re-
strictedportionof the specification, or wthrespect tosoneset of conditionals, insteadof just
the mini numgl obal schedul e, giving nore flexibility to the other parts of the specification.

W can express the scheduling cost of an inplenentation by considering the causality
and schedul i ng constraints of the specification. Tor causality constraints of the type (z: 0)*,
vhere xis a decision variable, ve cast the schedul e cost as the nunber of tines xis assigned
tol, i.e., the anount of delayinserted due to decision variable . Simlarly, for a scheduling
constraint of the form(az': 0+x?: F + - 4z " : "), vhere ', 2%, . .. "zare decision
variables. verytine z ' is assignedto 1, the latency of the process inwhichz® was specified
is increased by .

Bage 16 In the Fxanpl e 15, we canrepresent the schedulingcost onz bythe cost min y g0 13+
Yi( 21, )% 17) +Y22(s, ) vhere +denotes arithnetic additionand | denotes Boolean disjunction.
This cost function represents all possible assignnents z can have in the fini te-state representa-
tion. Vienever x is assigned to 1, corresponding tQ %, %o, 1y %17 OF ¥(2, \being assigned to 1,
the execution tine of processs pncreases. Thus, any assignnent to z that mni mzes the nunber
of tines xis 1 over tine (corresponding to the assignnents of & 20,1y F17) OF (o, c) reduces
the [ atency of p
The user specifies this cost functi on by requesting a mni mzation of the assignnents of z over
tine, which can be automatically transl ated to the cost function gi ven above. O

612 Sedirg MimmBrdig Gts

In order to select a binding cost, we will have to define a partial cost function for actions,
called here 3. W then conpute the disjunction of every transition of M ' that contains
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action a, and veight this disjunction by 3(a).

Bage 17 In Exanpl e 10, we rewote the control - flowexpression of the original specification
inorder toinclude binding constraints.
W can represent the bi ndi ng cost of aninplenentation by the formla:

mn (M 1)[ Ve, ] +8( M2) [ Ve, ] +8( Ms) [V, ]

where G(M;) is the cost of conponent }/ and Vr,, denotes the disjunctionof all transitions
of the inplenentation that contains M Note that due to the conpl exity of the Bool ean formil a
representing the disjunction of the set of transitions containi mg décided not to put them
explicitly here.

This fornula states that the cost of, ¥ €{1, 2, 3}) contributes to the cost of the inplenen-
tationif at least one transitionof Mwith output il a transitionof ‘M O

613 Gandiarg Oheatiwe kntias
Wshoved previ ousl y howto sel ect nini nunrs chedul 1 ng and bi ndi ng sol uti ons by speci fyi ng
their correspondi ng cost functions. Wsuggest inthis section the conbinationof scheduling
cost functions, binding cost functions and control -flowexpressions to obtain nore general
obj ective functions, such as the mnimzation of the execution tine over paths, or the mmni-
mzation of the execution tine of parts of a control-flowexpression.

Wen ve shoved how scheduling and binding cost functions could be represented in
our formil ation, ve only considered single transitions in the cost function. Recause (Fls,
deci sion variabl es and shadowactions can be used to represent constraints, we can conhine
constraint representation with objective functions and represent the cost of the whole path
for aninpl enentation. This coni nation provides the designer withthe flexibilityof further
controlling the synthesis tool to change its goals according to the region being synthesized,
or to guide the synthesis tool to introduce priorities inthe synthesis process.

Bage 18 In the specificati on of the ethernet coprocessor of FHgure 2, the transmssion unit
consists of three processes, IMXNI, XIFEWMand XHABIT Process IMXIT
receives a block as a byte streamfromthe bus and transmts it to the process XHHM
whi ch encapsul ates the block with a frane and sends it to process MBI Thus, the transms-
sion uni t can represented by the control - flowexpression dawit] | wit_frad | it bit, with the
appropri ate synchroni zation correspondi ng to data transfers.

Let us consider the transmssion of data fromdewit to ait_frumto be represented by
action a, the transmssion of data frommi firumto wit_tt to be represented by action b,
and the initialization of the transmssion command by action ¢. Thus, the expression duwi| |
wit_frag | wit bt | (2 0t OF-¢-(w: 0F-a-(&: 0f-bencapsul ates wi thdecision vari ableand
x5 all possible schedul es of the transfers in the transmssionunit. Thus, mnimzingacost function
defined over the assignnments to (g @) will correspond to nminimzing the execution tine of the
path that begins with the execution of the transmt data command, and ends at the transmission

of the first bit. O
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Note that the designer should be able to provide onl y cost neasures by specifying whi ch
parts of the design he wants to tag a cost function. 'The actual conposition of the cost
function and the conputation of which transitions will be used in the cost function can be
determned autonatically.

6.2 (bnparison with G her ILP Met hods

W are going to anal yze the procedure gi ven above to obtain an inpl enentation that mni-
mzes or naximzes the cost functions defined above. Wwill conpare basically conpl exity
of the al gorithmw th problens they are able to sol ve.

Mst previous approaches to scheduling and binding are usually restricted to single-
source, single-tail control-data flowgraphs [18, 24, 21, 42, 13, 37, 27, 14], i.e., specifications
in vwhich the concurrent parts are restricted to begin at the sane tine, or to specifications
vhi ch are dataflowintensive, as in the case of I¥Ps [12, 33] . Athough those systens can
also be synthesized wth our approach, we further extend those nethods by synthesizing
the concurrent parts that nmay be running at different speeds or that nay have conpl ex
interactions. In addition, we also consider the synchroni zation aneng the diflerent parts of
the system whichis only consideredinalimted vayin [20, 13]. In[15], a reconfiguration
procedure for datapaths was described, but this reconfigurationis usedonlyincase of failure.

Aong the approaches to scheduling nentioned above, ve are going to conpare the
execution tine of our approach wth exact methods using (-1 integer linear progranmng
formul ations, such as [21, 37]. Ior single-source, single-tail control-data flowgraphs, our
net hod pays a penal ty in the mmber of variables to be sol ved by the ILP sol ver, whichis
greater by a constant factor with respect to these other approaches. Hovever, our nethod-

ol ogy outperforns those other approaches in that it can handle 1oops, synchroni zation and
mul ti-rate execution of concurrent nodels.

If ve consider the finite-state nachine representation Mof a control-flowexpression p
with n, states, n conditionals and n,4 decision variables, then the munber of variables in
the vorst case wll be on the order of @n ,n42"). Note, however, that in practical terns
this upper bound is never reached, since not all decisionvariables will be eval uatedin every
state and not all possible expressions on conditionals are eval uated at the sane tine. If ve
conpare this conplexity with the conplexity of the 0-1 [TPnethod of [21], we note that n s
rel ated wi th the nunber of control-steps an operation can be scheduledin [21], n 4 is related
wi th the munber of operations to be scheduledin[21] andn . =1in[21], since no conditional
paths can be specified in the formul ation.

6.3 Solution of the ILP

Inorder tosolvethis set of 0-1 [1Pequations, ve devel oped a sol ver based on bi nary deci sion
diagrans (H13) toobtainthe set of sol utions that mni mzes/naxi mzes sone cost function.

The reason for obtai ning the set of solutions is that the user nay be interestedin further
constraining a previous solution, or selecting dynamcally which sol ution should be taken.
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For exanpl e, 11 a probl emof determni ng whi ch transaction shoul d take a bus, the user nay
vant to specify that during sone cycles no transaction nay be able to access the bus.
Wrefer the reader to [6] for anintroduction on H1¥. HI} have been used in several
diflerent appli cations, including the solutionof 0-1 Integer linear Programmng [22], because
of its lowspace conplexity to represent sone types of Bool ean functions. Inthese problens,
each equation of the O-1 ILP problemis represented by a HD This HD describes a
function whose assignnents to the Bol ean variables satisfy the [LPequation. Ina 0-1 ITP
problemy the problemis specified as a set of equations and a cost function, that should be
mni mzed or naxi mzed. An assignnent satisfying this set of equations can be obtained by
conjoining the HI¥ for the diflerent equations, and a solution that mni mzes /naxi mzes
a cost function can be obtained by a branch- and-bound on the set of valid assignnents to
the conjoined HDwith respect to the cost function.

Kgure 150 BDDrepresenting t he congrad €8 4z

Exanpl e 19 The equati on4dx » < 8is true by any assignnent satisfyingthe Bool eanformil a
T1 V To, whose BDDis shownin Fgure 15. O

W devel oped a HD based I1P sol ver that extended the solution nethod presented
in[22] by allowing equations not to be limtedto linear equations on the Bool ean variabl es,
but to linear equations on Bol ean functions over Bool ean variabl es. A though the probl ens
both sol vers can sol ve are still the sane, since the Bool ean constraints can be represented
by a set of linear separable equations, our sol ver has a snaller munber of Bool ean vari abl es
and equations to sol ve than the forner when the equations include Bool ean functions.

6.4 Derivation of Control-Unit

W now show how ve can obtain an inplenentation for the original processes fromthe

fini te-state nachine M ’. Recause M’ was obtained by findi ng an inpl enentation for the
systemp =p {|]---|p » that mininizes sone cost function, we can obtain a control-unit
inplenentation for each p ; satisfying the assignnents to the decision variables in M’ by
proj ecting these assigmnents into p;. Thus, fromthe subnachine M ' =(I, O, ¢, é, X, ¢),
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ve construct nachines M ; =(1;, Q, @, §, X, @) for each concurrent part p; of p. M will be
the control-umt for this concurrent part of p.

The set [ ; of inputs to M; correspond tothe set of conditional variables of . (J)correspond
to the nultiset of actions of M. This multiset is a subset of O, restricted to the mltisets
of actions that can be generated fromp ; alone. 'The transition function 6; has the sane
transitions of 8, but wth the set of inputs restricted to . 'The output function A ; is a
restriction of Ain such a way that the inputs are restricted to I ; and only the actions
specifiedin p; are maintainedin A ;.

Let us interpret this newtransition function é; and the output function A ;. Suppose we
conputed the fini te-state nachine representation N for p ; alone. Inthis fini te-state nachine
representation, let us assune astate transitionand anoutput generationthat is dependent on
sone decision variable. Ater synthesizing the fini te-state representationfor p, and obtai ni ng
M;, the transitionof Nwvas replaced by one or nore transitions whi ch depended onl y on the
conditional variables. Fvenif the nunber of states in Nand M ; does not agree, there wll
be equi val ent transitions for Nand M ; such that for each tvo equivalent states of N and
M;, there will be two corresponding transitions. Thus, this change inthe transitionfunction
can be interpreted as if the decision variable of p vere assigned the Bolean expression
associ ated wth the transitionof §. This nechani smcan be used to dynamcal 1y reconfigure
the systemaccordi ng to the systems state, based on the conditionals.

In practice, ve voul dlike to keep the nunber of possible schedul es for a gi ven operation
smal | because dynamcal 1 y schedul i ng an operation i ncreases the conpl exity of the controller
for amdel. Inour case, this was achi eved by the fol | owi ngobservations. Frst, a control-flow
expressionis unrolledonl yif it is necessaryto generate a newstate, since equi val ent states are
grouped together. Second, the controller obtainedis a fini te-state nachi ne partially specified
withrespect tothe conditional s whenever possible, because ve leave roomfor sequential 1ogic
optimzers to further optimze the final controller.

@ @0 @J e.cora) P (xora) @

0 c:0 @

@ 0.(a.0) 00” (c:0)*.a.(0.(c:0)*.a) 00” ((x:0)*.a) w — 0 c:0+c:a

c:a c:0 @

@ (a-O)wu (c:0)*.a.(0.(c:0)*.a) (*)|| ((x:0)*.a) w

Hgure 16: Fnite-state nachine for control -flowexpression ((x : 0) * a¥
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Exanpl e 20 Inthe synchronizationexanple discussedin previous exanpl es, our goal is toobtain
a control -unit inplenentati onfogs.pNote that the assi gnment presented in Exanple 15 elininates

the transitionfromstate 1tostate 2 whencis true. If werestrict theinplenentationon the actions
generated by gy =((2: 0). ay, we obtain the finite-state nachine presentedin Hgure 16. O

The reader shoul d note that the fini te-state nachine ve obtain by the procedure above
does not guarantee any mninal ity wth respect to the nunber of states, but just a finite-
state nachi ne that satisfies the original constraints and mni mze l atency whichis the prinary
optimzation goal . Wuse the state mini mzer Stamina [38] to obtain the nmini rumnunber
of states for the control-flowexpression. In fact, in Fxanple 20, an inplenentation with
mni mumnunber of states can be obtained with just 2 states.

Note that the conpl exity of the finite-state nachine for each of the control -flowexpres-
sions will have a conplexi tyof the product nachine inthe worst case, i.e., vhen the anount
of synchronization aneng the nachines is high. Fowever, if the anount of synchronization
anong several control - flowexpressions is high, then the nunber of states of the finite-state
nachine wll be much lover than the product of the nunber of states for the finite-state na-
chine of the indivi dual control-flowexpressions. Thus, ve do not expect the final conplexity
of the nachines to be much hi gher, except for the subparts that are not tightly coupled.
Note however, that we can al vays find transtfornmations of the control-flowexpression that
naxi mzes the tightly coupled regions of a control -flowexpression [23].

7 Inplenantation and Rsu ts

Winpl enented a programto synthesize controllers wth dynamc schedul es fromcontrol -
flowexpressions in 20,000 lines of G and a 0-1 ILP sol ver using B nary [¥cision D) agrans
(HI») in 3,000 lines of C

Since the techni que presented in this paper is targeted for the synthesis of concurrent
systems under synchromization, which is a new area, there are no standard benchnarks
yet. Thus, instead of conparing our approach wth the existing techni ques for scheduling
and binding using standard benchnarks, we will showan application of this techni que for
designing the circuits described in Section 2.

7.1 Applying Scheduling Constraints tothe Et hernet Coprocessor

W consider here the Hhernet coprocessor of Hgure 2. In that figure, let us focus on the
transmssion unit. /A% nentioned in Fxanple 18, the transmission unit is conposed by
three processes, dna_zmt, xmt_frane and xmt_bit. Upon receiving a byte fromprocess
xmt_frame, xmt_bit send the corresponding bit streans over the line TXD Thus, zmt_bit
nmust recei ve each byte eight cycles apart, which constraints the rate in which the bytes are
transmtted fromamt_frane.
Process zmt_frane was specified as a programstate nachine wittenin Vrilog HI, as

shown in K gure 17, and it was al so specified with an exception handling nechanism i.e.,
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ether_xmit = preamble;

txrestart = 0;

discon_b =1;

if (counter < npreamble)
counter++;

el

se
state = 'SFD;

discon_b =0;
xmitidle = 1,
wait (txstart);
xmitidle = 0;
wait (DMAxmit);

ether_xmit = sfd;
b = DMAXmit;
state = 'DEST1;

st ='PREAMBLE;
counter = 1;
parity = 8'hff;

ether_xmit = b;
parity = parity ~ b;
b = DMAXmit;

tate = 'DEST2;

ether_xmit = b;

parity = parity * b;

b = DMAxmit;

if (counter < length)
counter++;

else

state = 'DATAEND;

Fgure 17 Programstate machine for process xmt_frane

the disable cormand of Vérilog HI. Wrefer the reader to [23] for additional details on
the inpl enentation. Table 2 presents the results for the scheduling of znit_frame fromits
control -flowexpression nodel . The first col unm shovs the nunber of states of amt-frane
bet ore schedul i ng the operations. 'The second col unm shows the nunber of states after state
mmni mzation. ‘The third col umm shows the size of the constraints in terns of HIDnodes,
used by the HDIIP sol ver. 'The fourth col urm shows the execution tine taken to obtain

a satisfying schedul e mni mzing the execution tine of the process. Nte that by having a
fini te-state representation of the behavior of the systemin two different inplenentations,
ve vere able to obtain two conparabl e i npl enentations in the nunber of states.

7.2 Protocol (bnversion for a PA Bus

Winpl enented the four nedels for the reading and witing cycles of the RI local bus
and the SIRAMnentioned in Section 2.1.2 in 230 lines of a high-level subset of Vrilog
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‘ H # States ‘ (bnstraint ‘ T ne ‘

xmt-frane (except.) | 178 | 90 324 | 15.7s
xmt-frane 178 | 90 989 87s

Table 2: Results of the xm t frame synthesis problem

HI, wththe correspondi ng (Ffs having simlar conplexity. These nodels are predefined
libraries that cansynchroni ze with any circuit. Wthus use the techni que of synchroni zation
synthesis inorder to synthesize a conbi ned controller that is smaller than the two separate
control lers.

Tabl e 3 shows the nunber of states for the controllers interms of a Mal y nachi ne, when
each part is synthesized separately, and vhen the controller for both nodels is generated
as a single controller, vhichis highly desirable, since both parts are highly synchroni zed.
Athough the nunber of states in the single controller is higher than the nunber of states
used vhen both specifications are synthesized separately, the total nunber of registers used
is smaller, due to the reduction of unreachable states of both specifications. (Tor exanple, a
SIRAMtransfer does not occur if the PI is not also transferring data.) Walso showthe
nunber of actions, conditionals and decision variables for both descriptions. In both cases,
ve attenpted to mni mze the execution tine of the conbi ned description.

States | States States Execution | Actions| Conditionals| Decision
Model P SCRAM PA + SDRAM Time Vari abl es
READ 7 15 34 3.5s 16 8 6
WRI'TE 6 7 30 1.6 s 15 8 3

Table 3: PCI /SDRAMprotocol conversion exanple

8 Sumary and concl tsiors

W considered in this paper the nodel ing and synthesis problens for specifications that are
better described as a set of concurrent and interacting parts, or miti-process descriptions.
For these specifications, current synthesis tools achieve suboptinal results, due to the local
scope of suchtools, i.e., they donot consider the reconfigurabilityof one part of aspecification
wth respect to the other parts.
Inorder to best capture the degrees of freedomavailable in such designs, ve devel oped a
nodel i ng techni que for control - flowdomnated specifications, and ve presented a nethodol -
ogy for autonatically obtaining the controllers for the concurrent parts of the specification.
Mdeling was performed in the al gebraic domain, which ve called here the al gebra of
control - flowexpressions. [8ing control - flowexpressions, the systemwas abstractedinterms
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of its control-flow (bntrol-flowexpressions vere nani pul ated al gebrai cal l y with operations
such as termrewriting, and synchroni zation specification. (onstraints vere al so represented
as control - flowexpressions, which allowed an uni formnet hod for representing the speci fica-
tion and constraints.

Synthesis was perforned in the state-space donain. W shoved howa control - flowex-
pression can be transl ated into a fini te- state representation, vhere the anal ysis and synt hesis
tasks vere perforned. 'The conversion froma control-flowinto a finite-state nachine was
achi eved by conputing the derivatives of a control-flowexpression. W shoved that the
nunber of derivatives was finite, and that only a finite nunber of iterations was necessary
to obtain all the derivatives of an expression.

Mnalysis of a control-flowexpression was perforned by checking for enptiness of the
correspondi ng fini te- state nachi ne representation. This alloved us to checkif a specification
was overconstrained, and thus conclude that no sol ution existed for the synthesis probl em

Synthesis was cast as an O-1 ILP problem In the IIP formlation, the designer vas
alloved to specify flexible objective functions in order to have a better control over the
synthesis procedure. ‘These functions alloved the different regions of conputations of a
systemlevel design to have diflerent goals, that vere satisfied during the synthesis of the
speci ficati on.

The TIP problemwas sol ved using a HDsol ver. Anong the advantages of this sol ver,
it included the reduced nunber of variables that needed to be handl ed and the capability of
considering internedi ate solutions, i.e., the capability of adding synchroni zation el enents at
the end of the synthesis process to allowfor extensibility of the design.

Reconfigurabi 11ty of a process with respect to the process’ environnent was achi eved by
allow ng an assignnent to a decision variable to vary over tine. Thus, at diflerent states of
the systemwe vere able to obtain diflerent assignments to the decision variables.

& future vork, we are currently investigating possible extensions to control-flowex
pressions. Among themy ve are considering the specification of constraints as negations of
(I, addition of exceptionhandling nechani sns to (Fks, and the i ncorporation of internal
variables. Since the size of the finite-state nachine for each control - flowexpression depend
heavily on the anount of synchronization, we intend to use this fact to reduce the size of a
fini te- state nachi ne when synthesizing the fini te- state nachi ne for a control - flowexpression,
and to facilitate the specification of constraints. Wth this newnethod, the conplexity of
the internedi ate representation voul d be further reduced. In addition, the synchroni zation
of the different parts can be further reduced by considering synchroni zation only at small
bl ocks or subparts of the specification, instead of considering the full specification. Finally,
ve are currently investigating the use the al gebra of control-flowexpressions to perform
hi gh-1evel restructuring of the control-flow
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A Derivatives

W showin this appendi x how ve can use the conputation of derivatives to conpute the
suffkes of a (FF, and that derivatives of a (FEcorrespond to the cycl e-by-cycle sinul ation

of the (FE Inorder to define derivatives of a control -flowexpression, we need to knowit the
control - flowexpression can execute in zero tine. Thus, we define a function Athat returns

a Bol ean expression over the set of conditional s and decision variabl es for those guards that
enabl e zero-cycle paths (or e-paths) ina (FE

Defini tion A. 1 [let A: F—Gbe a function defined recursivel y as fol l ous:

1. Af:e)=f, where f €G
A6) =0
Aa) =0, vherea eM A
2 Iet P, QeFand let XP) and XQ) be the guards that generate € in P and Q)
respectively. Wassune that if ¢ 1, ¢, g €G and that for any tw gquards f and g, fg
is the conjunction of f and g, that f|g is the disjunction of f and g and that — f is the
negation of f.
AP-Q) =4AP) A(Q
Neqr: PHeg: Q) =c1 A(P)|e2 A(Q)
Alg: P)) =7
AP¥) =0
APlIQ =AP) AQ
The functi on Adetermnes whi ch assi gnnent to condi tional s and decision vari abl es nakes
a control - flowexpression execute €, that executes in zero tine. XAsune for sone (FFp,
Ap) A0. If ve conpose p inside aloop ((¢: p)*) or inan infinite conputation (p ), (¢ : @)
and p“ will violate the synchrony hypothesis and the synchronous execution senantics we

defined earlier, since in (¢ : p) or simlarly for $, there is at least one assignnent to the
guards that voul d nake ¢ be eval uated consecutivel y in the sane clock cycle.

Defini tion A. 2 [et p be a control-flowexpression. Wsay (¢ : p)and p “ are well-formed
(Hs (V) if Ap) =0.
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A though non- WIS appear inreal 1ife specifications, synthesis tools al ways nake the
assunption that each loop or infinite repetition wll take at 1east one cycle. Thus, we nust
be able to convert non- W into WIS such that the execution tine for the non-e
executions is naintained, and a delayis generated for e executions.

TheoremA. 1 et Ap) A0, for some (FEp. Then Xp - (Ap): 0+ Ap): e)) =0.

Proof. A(p- (4p) Ap}:e)) =4p)4Ap) =0 m

Note that for any other assignnent to the conditionals and decision variables such that
the ¢ is not executedinp, ane is executedin (Ap): 0+Ap) : ¢). Whave thus shovn that
for any non- W(FE, we can obtain an equi val ent (FEwhichis vell-forned. Thus, ve wll
consider in this appendix (FFs which are WIS, since they will correspond to circuits
that wll be inplenented.

The derivatives of a (FE correspond to a cycle-by-cycle simulation of the (FE Since
actions in a control - flowexpression have a singl e-cycl e semantics, a cycle-by- cycl e simul ation
of a control -flowexpressionis equivalent to extracting all actions that can be executed next
froma control - flowexpression.

W will represent the derivative of a control-flowexpression by the operator d. 'his
operator, when appliedtoa (IF, yvields atripleinGeM 4 >E where Gis the set of Bool ean
expressions over the set of conditional and decision variables, M* is the set consisting of
mil tisets of actions, and Fis the set of control-flowexpressions. 'The triple (v, p, ) €
GxM 4 xFobtained froma (FE p indicates that the actions p are executed when v is

true, folloved by the execution of .

Defini tion A. 3 Iet 0 : FHGxM XF be defined as a derivative of a control - fow

expression, given recursively as fol l ous:

f:0)=(f,0,¢)
prq)={(v, 7 q) | (v, 7)€} UL (ApP)y, 1, 7) | (7, p, 7) € Dq}

Lop+forq) ={(fr,pm) | (v, 4, 7) €IpA(p#e)} U
{CEv, )| (v, 1, ) €0g A (1 /=€) }

op) ={(v, w ) | (7, 1, ) €D(P)}p
(S ) ={(Svs s m)| (v, py 7) € (p- (N)p)
3(p| | Q) :{£7?\7q7 B U g, 7&3| |q7j | ([777 s 7%) € ap/\(’)@, Hys ﬂé) € 0q}
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Exanmpl e 21 Tet p=(a- W ¢)

op = A{(v,pm| (v, m7)€a- b c- (&b c)
= {(77:u77r'b'c'(a'%)'|6677uvﬂ)€8a}u®
= {(tng a, b- c- (a- b¥)J

Thus, after the first cycle in which actionais executed, p transforms intob- ¢-“a-0b- ¢)

Now let us extend the definition of 9 operator to the iterative application of 0 to a
control - flowexpression. Since ve can consi der each applicationof 9 as aone-cycle simul ation
of the control - flowexpression, then the iterative applicationof d corresponds toamlti-cycle
simul ation of the control-flowexpression.

Defini tion A. 4 Iet p be a control-fowexpression.' ) is defined recursively as fol l ous:

d'p = adp

v,y 7) e zoipd™

Let us nowdefine fornally what is a suffk of a control-flowexpression.

Defini tion A. 5 Iet p be a control-flowexpression. Then g is a suffizx of p if ¢ =p or if
I, oy, s (s 1 q) G

The definition above allovs the following formla to be used for conputing the set of
suffxes of a control - flowexpression.

Suffkes (p) =U 0% {7 | (v, p, 7) €0"p}Ufp}

Athough the formul a presented above conputes all the suffkes of a control - flowexpres-
sion, the formula does not specify that the mumber of suffxes is finite, and neither does it
specify that the set of suffkes can be obtained af ter a fini te munber of iterations. Thus, we
have to showthat this procedure is infact effective, i.e., that it will termnate after a finite
nunber of iterations.

In order to showthat the nunber of suffxes is finite, we first have to elimnate any tvo
suffkes that are equival ent, according to the following defini tion.

Defini tion A. 6 Hw control-fowexpressions, p andq, are equival ent 1if one can be obt ained
fromthe other using the (FEaxions (lible 1).

Exanpl e 22 The control - flowexpression (a-“bis ejuivalent toa- b- ¢+ (a®.b -Oc)
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Thus ve will only consider the set of suffkes for a control-flowexpression such that no
tvo suffkes are equivalent. This set of suffkes wll be called the set of rredundant suffees
of a control -flowexpression. Inthe rest of this paper, we will refer to the set of irredundant
suffxes of a control - flowexpression just by the set of suffkes of the control - flowexpression.
The tol l owi ng theoremshovs that the nunber of derivatives of a control - flowexpression
is finite, considering that any tvo equivalent control - flowexpressions are represented by the
sane set el enent during the conputation of a derivative.

TheoremA. 2 Herycontrol-flowezpressionp has a finit e nunber of derivatives, i.e., |U 22
'p| (the munber of el enents of this set) is finite.

Proof. W are going to prove this theoremrecursively on the nunber of CFE
conposi tions.

1. Basis: ([ a) <2and |[SYdé| =0
2. Inductive Step: Tefo'p) < N and | J0%¢| < N for control-flow

expressions p and ¢

| G0 (p-q)] < (P0'pl x| 8,0°q] ) +
| U0 (Ap) @ q)
S NPN‘] —I_Nq
| U0 (a: ptes: q)] < U (a: p)| %0 (e q)
< N,+N,
| G0 (p| | q)| < $L0'p| x| pL,0'¢|
NPN‘]
| GL0° ()] < |0 (p-b)|
2| Lﬁ)@ipl
2N,
| Y0 ((c: )| < [0 (c: p.(c: D)
2] Y0 (p. (¢ p)]
IN

IN

VANVAN

[VANPAN

P

TheoremA. 3 Hr any control-flowexpression p, there exists N such that for dl M> N
vazoaip =uU fwzoaip-

Proof.  Supposf_ldp =UZ'd'p, but UL d'p /=30, where Nis the least

integer in which this occurs.
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Since Y& 9'p =(UN,9'p)U(IF p). Then ¥ p must contain sone derivative not
included in Q.
W defined 0 ™ p =U (, , xew, 0,7 Note that we have UY,0'p =U N 9ip. Thus,

oM p =U (v, 0, 1) 81 9ip™ =0 Np, and UNE 9'p =U N, d'p, a contradiction. m

In summary, ve presented a vay to conpute all the suffkes of a control - flowexpression.

Wal so shoved that the nunber of suffkes is finite, since the nunber of derivatives is finite,
and that only a fini te nunber of derivatives is necessary to obtain the sets of suffxes.

B Iormdationof Mti-Synthesis Problemas 0-1 ILP

Istance

Wtormul ate the probl emof findi ng an i npl enent ationtor the fini te-state representation as
a [IPinstance. Wwll use here z, f x, ¢ and fc, as defined in Section 6. Iet us define al so
fx whichstands for (M €x)f x(z =z p, &)z, 1.e., the formla obtained by replacing every
occurrence of x €f x by, 4.

Fnally, let X={r , &}Uly ,}be theset of all Bolean variables defined previously for
the finite-state machine M W want to obtain an assignnent to the variables in X such
that the followng set of equations hol d.

o The initial state of the finite-state nachine Mis a validstate of every inpl enentation
M’ of M y, =1, vhere p denotes here the original control-flowexpression;

o Iach state p /' of Mis astate of M’ (y, =1) if for every transitionto p ((p, %fc, p) €
P), o, =V oUpfxes 1.€../fis astate of Mif thereis astate p that is a state of 'Pand
there is an assignnent to X such that f ¢ =I.

o Tor each al ternative conpositionin whichthe guards are decision variabl es —such as
inthe case of the nodul e sel ection or inscheduling constraint specificati on —enl y one
decision variable should be true tor a gi ven state of the fini te-state nachine.

This statenent is captured by folloving formula: 3"z, & =1, for all p and transitions
6(p, f)=pand A(p, f) =a suchthat x €x, and 3 denotes the arithnetic addition.

e for each causality constraint (z : 0)*, vhere = is a decision variable, we assune that
eventuall y the the conputation shoul d proceed. In other words, there is at least one
state of the inplenentation M ' in which a shoul d be different froml.

The foll owi ng equation captures this constraint: A s, fymnn(p, £)=k/% p, & VW p) =0.
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