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Abstract
We have created SMART, a Scheduler for Multimedia And Real-Time applications. SMART supports both
real-time and conventional computations and provides flexible and accurate control over the sharing of
processor time. SMART is able to satisfy real-time constraints in an optimal manner and provide propor-
tional sharing across all real-time and conventional tasks. Furthermore, when not all real-time constraints
can be met, SMART satisfies each real-time task’s proportional share of deadlines, and adjusts its execu-
tion rate dynamically. This technique is especially important for multimedia applications that can operate
at different rates depending on the loading condition. This paper presents the design of SMART and pro-
vides measured performance results of its effectiveness based on a prototype implementation in the
Solaris operating system.

1 Introduction
Processor schedulers for multiprogrammed systems must multiplex shared resources in order to service the
resource requests of concurrently running applications. These applications may be of different importance and
may have different resource requirements. To be effective, the scheduler must account for these different impor-
tance and resource requirements. It should apply that information toward making the most efficient use of hard-
ware resources in order to deliver the best application performance possible. In particular, when resources are
scarce, it is crucial for the scheduler to provide flexible and accurate controls that can be used to provide better
performance to those applications that matter most.

Traditional schedulers have evolved along a path that has emphasized notions of throughput and fairness.
Their goal has been to effectively time-multiplex resources among conventional interactive and batch applica-
tions. However, there exists today a growing class of applications whose resource requirements are real-time in
nature. Multimedia audio and video, virtual reality, transaction processing, and data acquisition are examples of
this class of applications. Unlike conventional requests, real-time resource requests need to be completed within
application-specific delay bounds, known asdeadlines, in order to be of maximum value to the application [19].
Tardy results are often discarded as being of no value at all. To integrate these real-time applications in the work-
station environment together with existing conventional applications, schedulers are faced with the question of
how to service both real-time and conventional resource requests in order to allow them to co-exist and share
resources effectively. Not only should it be possible for real-time applications to meet their deadlines, but con-
ventional interactive applications should be able to obtain good responsiveness and conventional batch applica-
tions should be able to make reasonable forward progress, even in the presence of real-time requirements.

With the combined requirements of efficient resource utilization, support for applications of different impor-
tance, and support for real-time, interactive and batch resource requests, scheduling multimedia applications is a
particularly challenging problem. While many schedulers have been proposed that satisfy some of these require-
ments in restricted application domains, effectively supporting the combination of these requirements in the gen-
eral-purpose workstation environment is beyond the scope of current schedulers [18]. However, there are three
useful concepts that have been previously identified independently for their effectiveness in restricted application
domains: best-effort real-time decision making [2][15][26], exploiting the ability of batch applications to tolerate
latency [1][10][11], and proportional sharing [3][7][20][23][24][25].
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Best-effort real-time decision making (BE) combines earliest-deadline scheduling [14] with a unique priority
for each request to provide optimal performance inunderload and graceful degradation inoverload. (A set of
real-time resource requests is defined to be in underload if there exists a schedule that can meet all deadlines, and
is defined to be in overload if no such schedule exists.) BE provides optimal performance in underload in that it
can always satisfy all deadlines if at all possible with any scheduler, thereby making the most efficient use of
hardware resources. When not all deadlines can be met, rather than making everyone late and delivering tardy
results that may be of no value, BE provides graceful degradation by denying service to lower priority requests
to ensure that higher priority requests can still meet their deadlines. However, BE does not support proportional
sharing and requires that all requests have deadlines. As a consequence, it lacks even the ability to support con-
ventional applications in a fair manner.

Multilevel-feedback schedulers, as typified by UNIX time-sharing [1][11], take advantage of the ability of
long running batch applications to tolerate longer and more varied service delays to deliver better response time
to short interactive requests while attempting to ensure that batch applications make reasonable progress. We
introduce the termlatency tolerance as a measure of the ability of an application to tolerate latency in the servic-
ing of its resource requests. Interactive and batch applications have very different latency tolerances. Interactive
applications are often short and intermittent and desire fast response time. Their latency tolerances are typically
small because service delays of even a couple seconds are often quite noticeable in these applications. On the
other hand, batch applications are typically long running and less sensitive to service delays. Their latency toler-
ances are often large because even service delays of a few minutes make little difference if the result of the appli-
cation takes several hours to compute in the first place. For example, a delay of a few seconds is quite noticeable
when text editing, but it typically makes little difference whether a long compilation completes in four hours, or
it completes in four hours and five minutes. However, while the idea of latency tolerance is attractive, the multi-
level-feedback mechanisms used to achieve it are poorly understood [24] and are not amenable to predictable
controls, as evident with thenice knobs provided with UNIX schedulers [17].

Proportional sharing, also known as weighted fairness, has long been advocated as an effective basis for allo-
cating resources among competing applications. The principle is to allocate resources among competing applica-
tions in proportion to their relative weightings, which are sometimes calledshares. For example, given two
applications with shares 1 and 2 respectively, the second application would be allowed to consume twice as much
of the resource as the first application. Shares provide a simple abstraction that can be used to bias the allocation
of resources based on the importance of an application. However, deadlines and latency tolerance are unac-
counted for in weighted fairness, and there are no known mechanisms that allow weighted fairness to be obtained
with real-time requests in overload, when the importance of an application matters the most.

To provide effective support for multimedia applications, we have created SMART, Scheduler for Multimedia
And Real-Time. SMART combines the advantages of best-effort real-time decision making, latency tolerance,
and weighted fairness. SMART uses an algorithm based on weighted fair queueing (WFQ) [3] to implement
weighted fairness. The concept ofvirtual time is used to measure the degree to which each task has consumed its
proportional share of resources. Taking advantage of the ability of batch applications to tolerate longer and more
varied service delays, we bias the virtual time with a notion of latency tolerance to provide better responsiveness
to real-time and short interactive resource requests. The biased virtual time is then used as priority in a best-effort
scheduling algorithm so as to satisfy as many real-time constraints as possible.

When scheduling real-time applications, SMART has the desirable behavior of a real-time scheduler: it
ensures that deadlines are met whenever possible, and allows applications to degrade proportionally according to
their relative importance when resources are insufficient to satisfy all resource requirements. When scheduling
conventional applications, SMART has the desirable behavior of a conventional scheduler: it ensures that interac-
tive computations deliver good responsiveness and batch computations make long term progress fairly according
to their shares. More importantly, not only does our unified scheduler handle each class of computation effec-
tively, it also handles the combination of all classes of computations seamlessly. We have implemented a SMART
processor scheduler in the Solaris operating system to demonstrate its effectiveness.

This paper presents the design of SMART, and focuses on the aspects of its design that enable it to provide
proportional sharing among both real-time and conventional applications. The paper is organized as follows. Sec-
tion 2 presents an overview of our approach and describes our assumptions and scheduling model. Section 3
describes the mechanisms used in SMART to support weighted fairness. Section 4 describes the mechanisms
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used in SMART to take advantage of latency tolerance. Section 5 describes the mechanisms used in SMART to
provide best-effort scheduling of real-time applications while allowing conventional applications to co-exist and
share resources effectively. Section 6 compares SMART with other scheduling schemes. Section 7 presents per-
formance measurements based on our Solaris implementation prototype of SMART. Section 8 presents some con-
cluding remarks.

2 Approach

2.1 Assumptions and Context

SMART is designed to provide effective resource management in the workstation environment. In this environ-
ment, good price performance is critical and as a result, being able to deliver efficient processor utilization is
imperative. Unlike single function systems such as embedded systems or video game machines, the workstation
is a multiprogrammed environment that must be able to support the needs of concurrently running applications.
As is typical in such environments, applications can be preemptively multitasked by the scheduler as needed to
meet their requirements. Note that this environment is a dynamic one in which the mix of applications that need
to be executed may change at any time. As a result, scheduling decisions must be done on-line in order for the
scheduler to effectively manage resources.

From the perspective of the real-time systems domain, our focus here is on scheduling soft real-time applica-
tions in which missed deadlines are undesirable but not catastrophic. Many applications, including those in mul-
timedia, fall in this category of real-time applications. These applications are able to adapt to overloaded
conditions that result in their deadlines not being met. Applications such as video playback are amenable to drop-
ping video frames as a means of degrading gracefully in overloaded conditions. Their primary requirement is not
simply that all deadlines must be met. Instead, as many deadlines as possible should be met, and when deadlines
cannot be met, resources should be provided in a predictable manner that allows the applications to degrade
gracefully. Rather than making everybody equally late, the scheduler should ensure that as little processing time
as possible is wasted on tardy results that would otherwise be discarded when the processing time can be used
instead to service requests whose deadlines can be met.

On the other hand, in hard real-time applications, a missed deadline is defined to be catastrophic. These appli-
cations run in fault-tolerant environments with excess resources, in contrast to commercial workstation environ-
ments, where price performance issues matter. We note that SMART also provides features, such as combining
user-defined priorities with earliest-deadline scheduling, for supporting these kinds of applications that are of
strictly greater importance, as opposed to just proportionally more important. However, a discussion of these
additional features is beyond the scope of this paper.

Implicit in the following discussion is the fact that SMART provides a rich interface that facilitates the coop-
eration of applications and users with the scheduler to allow the flow of information necessary to manage
resources effectively. In particular, the interface allows applications and users to specify their importance and
real-time requirements, and allows applications to be notified via an upcall mechanism when their deadlines can-
not be met so that they are able to adapt to the available resources. While a detailed account of the design and
rationale of the SMART interface is beyond the scope of this paper, a brief summary of some of the relevant
scheduling attributes is presented in Section 2.2.

2.2 Task Model and Definitions

We briefly describe the execution model common in these environments as a basis for describing our approach.
In this paper, we use the termtask to refer to a thread of execution. The time from when a task is created until
when a task is completed is called thelifetime of the task. During the lifetime of a task, a task may be in one of
two states:runnable andblocked. A task is runnable if it is running or is available to be run on the processor. A
task is blocked if it is waiting for an event to occur, such as I/O, before it can run. A task that has been blocked
for a long time, for example while waiting for user’s input, is considered to beinactive; otherwise, it is consid-
eredactive.

A task is made up of a sequence of resource requests, each of which may have real-time or conventional
requirements. The resource requests of a task are defined to be serialized; a task cannot have multiple resource
requests at once for a given resource. As previously described, the basic difference between real-time and con-
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ventional resource requests is that real-time requests have explicit deadlines by which they desire to complete
while conventional requests do not have explicit deadlines. A request is said to be moreurgent if it has an earlier
deadline. Since conventional requests do not have deadlines, real-time requests are said to be more urgent than
conventional requests. Note that resource requirements may change during the lifetime of the task. We shall refer
to a task as a real-time task if it has real-time requirements at the time that it is being scheduled. Similarly, we
shall refer to a task as a conventional task if it has conventional requirements at the time that it is being sched-
uled.

For the purposes of this paper, there are four primary scheduling attributes associated with each task:dead-
line, time-quantum, latency tolerance, and share. As previously discussed, the deadline specifies when the
respective resource request should be completed; conventional tasks have no deadlines. The time-quantum speci-
fies the processing time required to complete the resource request. The latency tolerance indicates the ability of
the task to tolerate latency in the servicing of its resource requests. The share specifies the relative proportion of
resources that can be allocated to a task.

2.3 Algorithm Overview

The basic SMART scheduling algorithm combines the concepts of proportional sharing, latency tolerance, and
best-effort real-time decision making. It seeks to optimize not just how much processing time each task is allo-
cated, but also when each task is given its allocation of processing time.

Our design uses an algorithm based on weighted fair queueing (WFQ) [3] to implement proportional sharing.
We use the concept ofvirtual time to measure the degree to which each task has consumed its proportional share
of resources. We introduce the notion of latency tolerance to take advantage of the ability of batch applications
to tolerate longer and more varied service delays, thereby providing better responsiveness to real-time and short
interactive resource requests. A task’s virtual time is adjusted according to its latency tolerance to determine its
virtual latency time, which is used as a system-internal priority in a best-effort scheduler to schedule the resource
requests. Conventional tasks do not have any artificial deadlines and are run only when they have been unduly
delayed from receiving their proportional share of resources. That is, a conventional task will not make a real-
time task miss its deadline unless the processor is overloaded for so long that the conventional task’s time alloca-
tion falls below its tolerated level of unfairness. Consider first the case when all the real-time tasks request less
than their proportional share. Whenever there are real-time tasks are present, SMART behaves like a simple BE
scheduler by executing them in deadline order; otherwise, it runs the conventional tasks based on proportional
sharing. On the other hand, when the system is overloaded, for real-time tasks requesting more resources than
their proportional share, SMART will drop the appropriate real-time requests to dynamically adjust the rates of
these tasks. We describe each of these components of the scheduling algorithm in more detail in the following
sections.

3 Proportional Sharing
SMART allows the user to choose how the resources should be proportioned among all tasks, be they real-time
or conventional, according to his preference. (The default is that all the tasks should share the resources equally).
It should be possible for real-time applications to satisfy their deadlines at the expense of slower forward
progress for conventional applications, if so desired. Similarly, it should also be possible for more important con-
ventional applications to garner a larger portion of the resources even if it means not being able to satisfy the
deadlines of less important real-time applications. In other words, whether a task has deadlines is independent
from the proportion of the resources it should be allowed to consume. SMART separates the concepts of urgency
from fairness, and can provide proportional sharing among and across real-time and conventional tasks.

We use a mechanism similar to WFQ to keep track of the resource consumption of each task in order to deter-
mine whether or not it has received more or less than its weighted fair portion of resources. For each taski, we
define avirtual time Vi(t) which advances at the rate of its execution timeEi(t) divided by its shareSi:

. We also define aglobal virtual time GN(t) which advances at the rate of elapsed wall clock
time divided by the total number of shares of allactive tasks: , whereN is the number of
active tasks. When a task is created, the virtual time of the task is set equal to the global virtual time.

Vi t( ) Ei t( ) Si⁄=
GN t( ) t Sjj 1=

N∑⁄=
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Previous work in the domain of packet switching provides a theoretical basis for using the difference between
the virtual time of a task and the global virtual time as a measure of whether the respective task has consumed its
proportional allocation of resources [3][20]. In particular, if , then . In
other words, if the virtual time of a task is equal to the global virtual time, the task is considered to have received
its proportional allocation of resources. Similarly, if the virtual time of a task is less than the global virtual time,
the task is considered to have consumed less than its proportional allocation of resources. If the virtual time of a
task is greater than the global virtual time, the task is considered to have consumed more than its proportional
allocation of resources.

Since the global virtual time advances at the same rate for all tasks, the relative magnitudes of the virtual
times provides a relative measure of the degree to which each task has received its proportional share of
resources. In particular, for any two tasksi and j, if , then . In other words, if
the virtual times of two tasks are equal, then their relative execution times are proportional to their shares. Simi-
larly, if one task has a virtual time that is less than that of another, then the smaller virtual time task is considered
to have consumed a lesser amount of its proportional share of resources than the larger virtual time task. One
result of this is that a scheduler whose goal is to provide each task with its instantaneous proportional share could
simply service tasks in order of their virtual times, as is done in [25].

The virtual time of each task advances at a rate that is independent of the shares of other tasks in the system.
As a result, given the processing time required for a resource request, we can determine at the arrival of a task’s
resource request what the task’s virtual time will be when its resource request is completed. This is called thevir-
tual finishing time of the resource request, which we denote asFi(t) for a taski. For a taski, given a processing
time requirement ofQi, it follows that . We refer to the processing time required for a
task’s resource request as itsservice-time. For conventional tasks, their computations are typically divided into
resource requests for time-slicing, each with a service-time equal to a scheduling time quantum on the order of
10-100 ms. When one time quantum is used up, a new time quantum is simply assigned. For real-time tasks, the
resource requests correspond to the unit of computation that must complete before a deadline. The service-time
of each resource request is equal to the estimated execution time required to complete the request before its dead-
line.

As we shall describe further in Section 5, the basic SMART scheduling algorithm gives preference to tasks
with earlier virtual finishing times. Our choice of using virtual finishing times instead of perhaps the more obvi-
ous choice of using virtual times can be explained in part by comparing two scheduling algorithms, one that ser-
vices tasks in order of increasing virtual times, which is known as Generalized Processor Sharing (GPS) [20] in
the ideal case when tasks can be multiplexed at an infinitesimally fine granularity, and the other that services
tasks in order of increasing virtual finishing times, which is known as WFQ as well as packet-by-packet GPS
(PGPS) [20] in the case when requests are non-preemptible once they have started executing.

Although it is an idealized model, GPS provides instantaneous weighted fairness. It has been previously
shown that WFQ provides a good approximation to GPS in providing weighted fairness [20]. Furthermore, the
amount of time that a resource request is delayed when scheduled by WFQ as compared to GPS is bounded to be
less than or equal to the product of the total number of shares of active tasks and the maximum resource request
service-time. This bound however assumes that requests are non-preemptible once they have started executing,
which is the case in the domain of packet switching in which WFQ was derived. However, for processor sched-
uling, resource requests are preemptible even after they have started executing. In this case, the delay bound is
zero. In other words, when tasks are serviced in order of increasing virtual finishing times, a resource request is
never completed later than it would be under GPS. Servicing tasks in order of increasing virtual finishing times
results in better response time while still maintaining overall weighted fairness across multiple resource requests.
We will discuss this issue further in Section 4 in conjunction with exploiting latency tolerance.

In addition, by ordering tasks based on virtual finishing times instead of virtual times, the relative ordering of
tasks does not change at each moment, but only changes when the resource request of a task changes. For real-
time tasks, this occurs at the arrival of a new resource request with a new deadline. For conventional tasks, this
occurs at the completion of a resource request and the assignment of a new time quantum. This task ordering
property is crucial for the execution of real-time resource requests because it allows their resource requests to be

Vi t( ) GN t( )= Ei t( ) t S× i Sjj 1=
N∑⁄=

Vi t( ) V j t( )= Ei t( ) Ej t( )⁄ Si Sj⁄=

Fi t( ) Vi t( ) Qi+ Si⁄=
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serviced as entities. As a result, once a real-time request has been determined to be able to complete before its
deadline and has begun executing, it is possible to ensure that the request is not further delayed by other cur-
rently active tasks and can therefore complete before its deadline.

4 Latency Tolerance
As we have previously described, latency tolerance is a time unit measure of the amount of delay that a given
task can tolerate in the servicing of its resource requests. Our previous discussion in Section 3 assumed that all
tasks have zero latency tolerance. However, another benefit of the use of virtual finishing times in SMART to
provide proportional sharing is that the virtual finishing times can be augmented to account for tasks that have
different latency tolerances.

We have already pointed out that our use of virtual finishing times provides both weighted fairness and better
response time than simple instantaneous weighted fairness of the kind provided by GPS. In particular, since the
virtual finishing time of a task is based on the size of its resource request, tasks with shorter resource requests
will initially obtain better response time than tasks with longer resource requests. To be more precise, among
tasks with equal virtual times, those tasks with shorter resource requests will be given preference over those with
longer resource requests, thereby obtaining better response time initially. However, if the tasks with shorter
resource requests continue to consume resources, then since virtual times, and hence virtual finishing times,
advance based on execution time, the longer resource requests will eventually be executed and obtain their pro-
portional share of resources as well. The faster response time obtained by short resource requests is not at the
expense of overall weighted fairness, but is only at the expense of instantaneous weighted fairness. Since appli-
cations at most care about weighted fairness at the granularity of their resource requests, attempting to provide
instantaneous weighted fairness is actually of little value and hurts overall performance.

While real-time tasks in particular desire weighted fairness at the granularity of their resource requests, even
this granularity of weighted fairness is not necessary for conventional tasks such as long running batch applica-
tions. While the resource request size of conventional tasks is based on a time quantum chosen by the scheduler
that is typically on the order of 10-100 ms, long running batch applications for instance are often able to tolerate
much longer delays in the servicing of their individual resource requests with no observable effect on their result-
ing performance.

For these conventional tasks, we introduce the idea of avirtual latency tolerance. The virtual latency toler-
ance is a virtual time measure of the ability of a task to tolerate longer and more varied service delays. Given the
latency tolerance of a task, the virtual latency tolerance of the task is equal to its latency tolerance divided by its
shares. Rather than just using virtual finishing times for ordering tasks to determine which tasks should given
preference for being serviced, SMART orders tasks based on their virtual finishing times plus their respective vir-
tual latency tolerances. The sum of the virtual finishing time and its corresponding virtual latency tolerance is
called thevirtual latency time. For real-time tasks, and conventional tasks with zero latency tolerance, the virtual
latency time reduces to the virtual finishing time.

Note that the latency tolerance of a conventional task, and hence its virtual latency tolerance, need not be
static values. Instead, the latency tolerance can be automatically adjusted by the system in a table-driven manner,
similar to the way priorities and time-quanta are adjusted in UNIX SVR4 to implement time-sharing [1]. For
instance, the latency tolerance can be allowed to increase if the task does not interact with the user for extended
periods of time. The idea of a dynamically adjusted latency tolerance based on execution time is somewhat anal-
ogous to the idea of a decaying priority based on execution time which is used in multilevel-feedback. However,
while multilevel-feedback affects the actual average amount of resources allocated to each task, latency tolerance
only affects the response time of a task and does not affect its overall ability to obtain its proportional share of
resources. By separating the mutually exclusive dimensions of weighted fairness and responsiveness, our use of
latency tolerance is able to provide both weighted fairness and responsiveness in a systematic fashion.

5 Best-effort Scheduling
SMART considers a task with a smaller virtual latency time to have a higher priority (the term priority here
refers to a system-internal attribute, not a user-defined parameter). Note that the priority is a dynamic attribute,
as it reflects whether a task has been given its proportional share. SMART uses a best-effort scheduling algorithm
to combine earliest-deadline scheduling with the priority values. Earliest-deadline scheduling is crucial to make
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efficient use of resources in meeting real-time requirements in underload. When not all real-time requirements
can be met, our use of virtual latency times employs weighted fairness to determine when to shed real-time
requests and scales back the resource consumption of tasks requesting more than their proportional share.

The first step in the scheduling algorithm is to create a priority list by sorting all active tasks in decreasing
priority order. This sorting process is done on an incremental basis. Because of our use of virtual finishing times,
the priority list only changes when a task’s resource request changes. When a task’s resource request changes, its
position in the priority list must be updated. Since resource requests typically only change after a task has exe-
cuted, only the position of the last executed task changes in the priority list. As a result, the priority list can be
updated using a simple linear traversal to find the new position in the list of the last executed task. The complex-
ity of this operation is , whereN is the number of tasks in the priority list.

If the highest priority task has no deadline, for example, in the case of a conventional task, the scheduler sim-
ply executes the task with the highest priority. If there are real-time tasks in the system, this can potentially cause
a real-time task with an urgent deadline to be shed. Note that since a conventional task’s virtual latency time is
biased by its latency tolerance, a conventional task will not make a real-time task miss its deadline unless the
processor is overloaded for so long that the conventional task’s time allocation falls below its tolerated level of
unfairness.

Otherwise, SMART applies best-effort scheduling on all the real-time tasks with higher priorities than those
without deadlines. In the degenerate case where there are no tasks without deadlines, it simply considers all the
real-time tasks. SMART iteratively selects tasks among this set in decreasing priority order and inserts them into
an initially empty schedule in increasing deadline order. The schedule defines an execution order for servicing
the real-time resource requests, and is said to befeasible if the set of task resource requirements in the schedule
can be completed before their respective deadlines if serviced in the order defined by the schedule. It should be
noted that the resource requirement of a periodic real-time task includes an estimate of the processing time
required for its future resource requests.

To determine if a schedule is feasible, letcj be the service-time of taskj, andej be the total time taskj has
already spent running toward completing the service-time. Letrj be the percentage of the processor required by
a periodic real-time task;rj is simply the ratio of a task’s service time to its period if it is a periodic real-time
task, and zero otherwise. Letdj be the deadline of the task. Then, the estimated resource requirement of taskj at
a timet such that is:

Resource requirement of task j:

A scheduleS is then feasible if for each taski in the schedule with deadlinedi, the following inequality holds:

Feasibility test:

On each task insertion into the schedule, the resulting schedule that includes the newly inserted task is tested
for feasibility. If the resulting schedule is not feasible, the newly inserted task is removed from the schedule. If
the resulting schedule is feasible and the newly inserted task is a periodic real-time task, its estimate of future
processing time requirements is accounted for in subsequent feasibility tests. At the same time, lower priority
tasks are only inserted into the schedule if they do not cause any of the current and estimated future resource
requests of higher priority tasks to miss their deadlines. The iterative selection process is repeated until SMART
runs out of tasks or if it determines that no further tasks can be inserted into the schedule feasibly. Once the iter-
ative selection process has been terminated, SMART then executes the earliest-deadline runnable task in the
schedule.

If there are no runnable conventional tasks and there are no runnable real-time tasks that can complete before
their deadlines, the scheduler runs the highest priority (earliest virtual latency time) runnable real-time task, even
though it cannot complete before its deadline. The rationale for this is that it is better to use the processor cycles
than allow the processor to be idle. The algorithm is therefore work conserving, meaning that the resources are
never left idle if there is a runnable task, even if it cannot satisfy its deadline. Finally, SMART notifies a task via
an upcall mechanism if a task misses its deadline, and thereby allows the task to determine its own policy for
handling the exception [5].

O N( )

t d j≥

Rj t( ) cj ej– r j t d j–( )× t d j≥,+=

di t Rj di( ) i S∈∀, ˙
j S dj di≤∈

∑+≥
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If all the real-time tasks request less than their proportional share, the scheduler will be able to run them in
deadline order, and use the remaining time to run the conventional tasks. When the system is overloaded, for
those real-time tasks that request more resources than their proportional share, SMART dynamically reduces
their execution rate by simply shedding requests with low priority.

5.1 Examples

Let us consider a few simple examples to help illustrate the behavior of the SMART algorithm. We start off with
two real-time tasksR1 andR2. TaskR1 has a periodic deadline every 80 ms and requires 20 ms of processing
time to satisfy each deadline. TaskR2 has a periodic deadline every 40 ms and requires 30 ms of processing time
to satisfy each deadline. Given these two tasks, SMART will determine that both tasks can satisfy their respective
deadlines and will execute them in earliest-deadline-first order, irrespective of what share each task is assigned.
Note that we use periodic tasks here as examples for simplicity only. Neither task is required to be periodic in
order for SMART to meet all of their deadlines.

Now let us add a conventional batch taskC1 to the task mix. By estimating the load on the system, SMART
will determine that in the steady-state, it is not possible to allow taskC1 to make forward progress while allow-
ing tasksR1 andR2 to meet all of their deadlines. The allocation of resources given to each task is then related
to the share of each task. If tasksR1, R2, andC1 have equal shares, then each task is allowed to use one-third of
the machine. As a result, taskR1 will meet all of its deadlines because it only requires one-quarter of the
machine to meet all of its deadlines. The remaining three-quarters of the machine will be equally distributed
between tasksR2 and C1. SMART would then service taskR2 in 30 ms quanta, allowing it to use its three-
eighths of the machine to satisfy half of its deadlines while skipping the other half of its deadlines due to insuf-
ficient resources. TaskC1 would then consume the remaining three-eighths of the machine. On the other hand, if
the shares for tasksR1, R2, andC1 are 1, 3, and 4, respectively, thenR1 andR2 will each be able to meet half of
their deadlines whileC1 consumes half of the machine.

If task C1 completes and is therefore removed from the task mix, SMART will determine that it is again pos-
sible to meet the deadlines of both tasksR1 andR2. TasksR1 andR2 will again execute in earliest-deadline-first
order and meet all of their deadlines. Note that SMART handles these transitions between underload and over-
load without requiring any adjustments to the share of each task to achieve optimal underload performance and
graceful degradation by proportional sharing in overload. This behavior is not possible with mechanisms based
just on proportional sharing.

To help illustrate the effect of latency tolerance, let us consider the transient as opposed to steady-state behav-
ior of the SMART algorithm. We start off with a long-running conventional batch taskC2 that has accumulated
a latency tolerance of 100 ms and has a time-quantum of 10 ms. An aperiodic real-time taskR3 arrives requiring
33 ms of processing time before its 33 ms deadline. For simplicity, assume that both tasks have equal shares. At
the arrival of taskR3, both tasks will have the same virtual time. When taskR3 arrives, since taskC2 has a large
enough latency tolerance, taskR3 will be able to run immediately and thereby complete before its deadline. After
taskR3 completes, taskC2 will get to execute again.

If however taskR3 is a periodic real-time task that continues to requiring processing time to meet additional
deadlines, thenR3 will only be allowed to run until taskC2 reaches its tolerated level of unfairness as measured
by its latency tolerance. Assuming a periodic resource request of 33 ms for every 33 ms deadline, taskC2 with
its 100 ms latency tolerance will allow taskR3 to meet three of its deadlines before it will run and causeR3 to
miss a deadline. Subsequently,R3 will only be able to meet every other deadline in steady-state asC2 consumes
its fair proportion of the machine in accordance with its share. Note that simply using a larger time-quantum for
C2 does not result in the same desirable behavior for the given task mix.

5.2 Complexity

Our experience with an implementation of the algorithm indicates that the complexity of the overall algorithm in
practice is dominated by the cost of insertion into the priority list, which is , whereN is the number of tasks
in the priority list. In the worst case, which occurs if each task needs to be selected and feasibility tested against
all the other tasks in the schedule, the complexity of the algorithm is dominated by the complexity of the iterative

O N( )
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selection process, which is , whereN is the number of tasks in the priority list. Even with this complexity,
simulation studies showed a marked improvement in the value the system delivered to the user under low-to-
medium overhead assumptions [15].

However, it is unlikely for the worst case to occur in practice for any reasonably largeN. The primary reason
for this is because there are inevitably some conventional tasks in any workstation environment. These conven-
tional tasks limit the number of tasks that need to be considered in the iterative selection process. Furthermore,
real-time tasks typically have short deadlines so that if there are a large number of real-time tasks, the scheduler
will determine that the schedule is no longer feasible before all of the tasks need to be individually tested for
insertion feasibility.

6 Comparison with Other Schemes

6.1 Multilevel-feedback

Like multilevel-feedback schemes [1][10][11], SMART takes advantage of latency tolerance to improve the
response time of applications that are more sensitive to delay. However, unlike multilevel-feedback, SMART pro-
vides a systematic approach to exploiting latency tolerance that can be combined with proportional sharing to
provide predictable controls over the allocation of resources. As a result, SMART does not suffer from the non-
intuitive behavior of the nice controls provided with multilevel-feedback schemes such as UNIX time-sharing, in
which even small changes in the nice controls can lead to large and unpredictable effects. As previously demon-
strated [17], nice controls require a great deal of experimentation in order to find a set of control values that work
well for a given application mix, and the settings often only work for that exact application mix. Finally, while
multilevel-feedback schemes cannot effectively schedule real-time applications, SMART provides the ability for
latency tolerance to be exploited to improve the performance of real-time applications as well.

6.2 Proportional Sharing

Like proportional share schemes [3][7][20][23][24][25], SMART recognizes the need to provide flexible and
accurate control over the allocation of resources for applications of different importance. SMART uses shares to
provide a simple abstraction that can be used to bias the allocation of resources based on the importance of an
application. However, unlike proportional share schemes, SMART provides an additional mechanism for
accounting for the different latency as well as allocation requirements of real-time, interactive, and batch appli-
cations to make more efficient use of hardware resources while preserving the proportional share abstraction.

This results in three main differences between SMART and other proportional share mechanisms. First, in
underload, SMART is optimal for both periodic and aperiodic real-time tasks. Other proportional share mecha-
nisms are at best optimal for strictly periodic real-time tasks when their shares are set equal to their resource
requirements.

Second, in overload, SMART is able avoid wasting processing time on deadlines that cannot be met and
instead use each real-time task’s proportional share of the machine toward meeting deadlines. Other proportional
share mechanisms either result in all tasks being proportionally late, potentially missing all deadlines, or disallow
proportional sharing in overload through first-come-first-serve admission control policies.

Third, SMART is able to transition effectively between underloaded and overloaded conditions. For example,
it is possible in SMART to share resources fairly in overload while ensuring optimal performance in underload.
Each task can simply be assigned an equal share. SMART estimates the load on the system to determine if all
deadlines can be met. If that is possible, SMART meets all of the deadlines. Otherwise, it sheds tasks whose
deadlines cannot be met based on their shares. As alluded to in the examples in Section 5.1, this kind of behavior
is not possible with other proportional share mechanisms [3][7][20][23][24][25]. To get the desired overload
behavior in these other schemes, the shares must be equal, but then deadlines will be missed in underload since
the resource requirements may be different. If the shares are set according to the resource requirements, then the
greedy tasks will monopolize the system in overload.

The problem is that other proportional share schemes only have one dimension one which to base their sched-
uling, which is the share of the task. Adding a QoS layer on top to adjust the shares depending on loading con-
dition simply begs the question of how that adjustment is made, much in the same way that priorities can claim
to be a complete scheduling solution if only one knew what priorities to assign. On the other hand, SMART has

O N2( )
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both shares and deadlines. It uses that information to estimate the load on the system to determine when all
resource requirements can be met in spite of their shares, and when the shares are needed to ensure that greedy
but unimportant tasks do not monopolize the machine. As a result, SMART is able to transition effectively
among different loading conditions in a way not possible with just proportional sharing.

6.3 Real-time Scheduling

Real-time schedulers are predominantly based on either rate-monotonic [12][14][21] or earliest-deadline schedul-
ing [14]. Rate-monotonic scheduling services periodic real-time tasks by shortest-period-first. It can be used in
environments where only statically assignable priorities are available for scheduling, but at the cost of only being
able to deliver 70% resource utilization in the worst-case. Earliest-deadline scheduling services real-time tasks in
earliest-deadline order and is always able to deliver 100% resource utilization. However, the basic rate-mono-
tonic and earliest-deadline schedulers are ill-equipped to handle resource requests that exceed their resource uti-
lization bounds, although some ad-hoc “tricks” [22] have been used to address this issue.

Recognizing the need for scheduling support even when all real-time requirements cannot be met, BE [2][15]
combined earliest-deadline scheduling with a unique priority for each request to provide optimal performance in
underload and graceful degradation inoverload. However, it is limited by the need for a unique priority and the
lack of a practical method for providing them. Its use of priority is uncorrelated with resource consumption rates
and thus it is unable to support proportional sharing. Furthermore, it does not handle periodic real-time tasks well
in overload as it cannot anticipate future resource requests. SMART extends BE by addressing both of these
issues as well as providing a unified mechanism for scheduling the combination of real-time and conventional
tasks.

Several schemes for supporting multimedia applications [8][9][16] have evolved from real-time schedulers.
These approaches do not allow conventional applications to function effectively in the presence of real-time
applications. Each of these schemes rely on the use of artificial rates, artificial deadlines, first-come-first-serve
resource reservations, or some combination of the above. In the presence of real-time applications, none of these
approaches allow conventional applications to dynamically adapt to system loading conditions. In contrast,
SMART provides proportional sharing of resources for conventional applications even in the presence of real-
time resource requests so that both classes of applications can perform effectively.

6.4 Two-level Scheduling

Because creating a single scheduler to service both real-time and conventional resource requirements has proven
difficult, a number of hybrid schemes [1][4][6] have been proposed based on the traditional two-level scheduler
approach [13]. These approaches attempt to avoid the problem by having statically separate schedulers for real-
time and conventional applications, respectively. However, all of the mechanisms that have been used for com-
bining these scheduling policies ignore real-time requirements. In the best case, these approaches have the same
limitations as conventional schedulers. In the worst case, pathological behaviors result in runaway real-time com-
putations with the user being unable to regain control of the system [17]. These schedulers rely on different pol-
icies for different classes of computations, but they encounter the same difficulty as other approaches in being
unable to propagate these decisions to the lowest-level of resource management where the scheduling of actual
processing time takes place.

Like two-level approaches, SMART behaves like a real-time scheduler when scheduling only real-time
requests and behaves like a conventional scheduler when scheduling only conventional requests. However, it
combines these two dimensions in a dynamically integrated way that fully accounts for real-time requirements. In
addition to allowing a wide range of behavior not possible with static schemes, SMART is better able to adapt to
varying workloads and provide more efficient utilization of resources.

7 Implementation and Performance Results
We have implemented a prototype SMART processor scheduler in a pre-release build of the Solaris operating
system, version 2.5.1. The scheduler handles the execution of all tasks in the system. To demonstrate its effec-
tiveness, we present some measured performance results based on running a set of simple applications on an
unoptimized version of the SMART scheduler prototype. The experiments described here were performed on a
fully functional uniprocessor 150 MHz hyperSPARC SPARCstation 10 workstation. By a fully functional
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system, we mean that all experiments were performed with all system functions running and the system con-
nected to the network. All measurements were performed using a minimally obtrusive tracing facility that logs
events at significant points in both the application and system code. This is done via a light-weight mechanism
that writes time-stamped event identifiers into a memory log. A suite of tools exist to post-process these event
logs and obtain accurate representations of what happens in the actual system.

To provide a context for our experiments, we first describe some of the relevant system timing characteristics
and system overheads in the workstation used to conduct our experiments. There are two timers of interest in the
system, the hi-resolution timer and the clock interrupt timer. The hi-resolution timer is based on a half microsec-
ond resolution hardware counter in SPARCstation 10 systems. Reading the counter value takes roughly one
microsecond. This timer is ideally suited for cheap, accurate interval timing and is used for all of our timing mea-
surements. The clock interrupt timer interrupts the processor once every 10 ms and is used in the Solaris operat-
ing system for all time-dependent scheduling decisions, as is typical of UNIX implementations. Timeouts and
time-slicing cannot be performed at any finer resolution than 10 ms. As a result, service-times and deadlines can-
not be accurately supported at a finer granularity than 10 ms in the current prototype implementation.

We measured the cost of various systems calls used in adjusting the scheduling parameters of a given task and
found that their overheads are comparatively small relative to the resolution of the clock interrupt timer. These
scheduling parameters include shares, deadlines, time-quanta, etc. The cost of reading the scheduling parameters
of a given task is about 10 microseconds. The cost of assigning new scheduling parameters to a task is about 20
microseconds. Finally, the cost of actually scheduling a task using the SMART prototype depends on the partic-
ular mix of tasks that need to be scheduled, but is about 25-50 microseconds for typical desktop workstation
loads.

The remainder of this section highlights some performance results for various mixes of real-time and conven-
tional resource requests. These requests were generated using a set of simple applications that allow us to vary
their resource requirements to demonstrate the effectiveness of SMART under a variety of workloads. We look at
conventional tasks, real-time tasks, and a combination of both in Sections 7.1, 7.2, and 7.3 respectively. We dem-
onstrate that proportional sharing is achieved for all the cases, regardless of whether the real-time requests
present (if any) have overloaded the system. We show in both Sections 7.2 and 7.3 that the scheduler drops the
minimum number of deadline requests to achieve fair sharing, in the case of overload. Finally, we also show in
Section 7.3 that latency tolerance helps minimize the number of deadlines dropped.

7.1 Conventional Applications

The first case presented is based on the execution of three identical conventional compute-oriented applications,
C1, C2, andC3, with relative shares of the ratio 3 : 2 : 1. The applications were started at approximately the
same time and have a running time of about 338 seconds. We logged the cumulative execution time of each
application versus wall clock time. The results are shown by the solid line curves in Figure 1. We note that Figure
1 as well as all of the other figures simply present the raw sampled data with no interpolation between sample
points.

Figure 1 Proportional sharing for conventional applications
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TaskC2:  seconds

TaskC3:  seconds.

The corresponding ideal performance curves are also plotted as dotted lines in Figure 1. However, the dotted ideal
curves are hardly visible because of the close match with the actual experimental results. The results match the
expected behavior very well, with tasksC1, C2, andC3 finishing at times 678, 848, and 1018 seconds, respectively.
Furthermore, the slopes of the graphs, indicating the resource consumption rates, show that the tasks are serviced in a
proportionally fair manner throughout the execution. As expected, the slopes ofC1, C2, andC3 are of the ratio 3.00 :
2.00 : 1.00 in the first stage of the computation when all the programs are running. The slopes ofC2andC3 are of the
ratio 2:00 : 1:00 in the second stage when tasksC2andC3 are running.

7.2 Real-time Applications

Optimal Performance in Underload

To demonstrate the performance of SMART for real-time applications in underload, we executed two real-
time applications,R1 andR2, with periodic resource requests. The resource requests were event-driven, with the
event arrival interval determining the deadline of the respective request.R1 required 28-30 ms of execution time
to complete each resource request, with each resource request having a 40 ms deadline from its instantiation.R2
required 18-20 ms of execution time to complete each resource request, with each resource request having a 90
ms deadline from its instantiation.R1 was given 2000 events to process andR2 was given 888 events to process.
R1 andR2 were both assigned equal shares, though the assignment of shares makes no difference in this case. We
logged the number of missed deadlines and the cumulative execution time obtained by each task, which is illus-
trated by the solid line curves in Figure 2(a).

If the system were perfect, we would expect all deadlines to be satisfied; both tasks should be able to obtain
their requested resources. Furthermore, ifR1 required exactly 30 ms of execution time for each 40 ms deadline
andR2 required exactly 20 ms of execution time for each 90 ms deadline, we would expect both tasks to finish
in roughly 800 seconds with the following cumulative execution times:

TaskR1:  ms

TaskR2:  ms

The corresponding ideal performance curves are represented by the respective dotted lines in Figure 2(a). We can see
in Figure 2(a) that both applications obtained nearly their ideal resource consumption rates, with the slight deviation
from ideal being due to each task on average requiring slightly less than their respective ideal execution times to com-
plete their resource requests. TaskR1 obtained 57,066 ms of execution time and taskR2 obtained 17,426 ms of exe-
cution time. More importantly, because SMART is optimal in underload, there were no missed deadlines for either
application.
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Figure 2 SMART scheduling of real-time applications in underload
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To demonstrate the optimal performance of SMART in underload, we executed two periodic real-time appli-
cations again,R1 andR3, but this time the applications consume nearly 100% of the machine. In particular,R3
requires 18-20 ms of execution time every 80 ms.R1 was given 2000 events to process andR2 was given 1000
events to process.R1 andR2 were both assigned equal shares, though the assignment of shares makes no differ-
ence in this case. We logged the number of missed deadlines and the cumulative execution time obtained by each
task, which is illustrated by the solid line curves in Figure 2(b).

If the system were perfect and the actual processing time required in any given interval never exceeds 100%
utilization, we would expect all deadlines to be satisfied in this case as well; both tasks should be able to obtain
their requested resources. Furthermore, ifR1 required exactly 30 ms of execution time for each 40 ms deadline
andR2 required exactly 20 ms of execution time for each 80 ms deadline, we would expect both tasks to finish
in roughly 800 seconds with the following cumulative execution times:

TaskR1:  ms

TaskR2:  ms.

The corresponding ideal performance curves are represented by the respective dotted lines in Figure 2(b). We
can see in Figure 2(b) that both applications obtained nearly their ideal resource consumption rates, with the slight
deviation from ideal being due to each task on average requiring slightly less than their respective ideal execution
times to complete their resource requests. TaskR1 obtained 57,178 ms of execution time and taskR2 obtained
19,673 ms of execution time. SMART met all of the deadlines ofR3 and only 3 out of 1999 ofR1’s deadlines
were missed. Even with nearly 100% average resource utilization and some variability in the execution times of
these applications, SMART was able to meet over 99% of the deadlines.

Proportional Sharing in Overload

To demonstrate the unique ability of SMART to allow real-time applications to proportionally share resources
in overload, we executed three identical real-time applications,R1, R2, andR3, with relative shares of the ratio 3
: 2 : 1. Each application takes 18-20 ms of execution time to complete each resource request, and each resource
request has a 40 ms deadline from its instantiation. To show the dynamic behavior of these applications when the
application mix changes, the applications are started at approximately the same time, but each application is exe-
cuted for a different number of iterations.R1 processed a sequence of 1000 real-time requests,R2 processed a
sequence of 1500 real-time requests, andR3 processed a sequence of 2000 real-time requests. We logged the
cumulative execution time and number of deadlines missed for each application. These measurements are illus-
trated by the solid line curves in Figure 3.

If the system were perfect, we would expect the three tasks to accumulate processing time in accordance with
their shares during the first 40,000 ms, then at the completion ofR1, R2 andR3 should be able to complete the
remainder of their deadlines since the system is no longer overloaded. In particular, the ideal total cumulative
execution times would be:
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Figure 3 SMART proportional sharing among real-time applications in overload then underload
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TaskR1:  ms

TaskR2:  ms

TaskR3:  ms.

The corresponding ideal performance curves showing cumulative execution time for each task are plotted as dotted
lines in Figure 3(a). As the system is overloaded during the first 40,000 ms, not all deadlines can be met. Based on
their respective resource requirements and shares, we would expect the total number of deadlines met by each task to
be:

TaskR1:  out of 1000 deadlines met

TaskR2:  out of 1500 deadlines met

TaskR3:  out of 2000 deadlines met.

The corresponding ideal performance curves showing the number of deadlines met for each task are plotted as dotted
lines in Figure 3(b). These ideal numbers assume not only that each task receives the ideal amount of resources, but
also that all of that processing time can be effectively used toward meeting deadlines; none of the processing time
should be wasted on deadlines that will not be met. To do this, it is important to not only dole out processing time in
the right sized quanta for each task, but also that the quanta be doled out at the right time to be synchronized with the
deadlines.

We can see there is a close match between the measured results and the ideal curves. The total cumulative
execution times ofR1, R2, andR3 were 19,045, 23,061, and 25,094 ms, respectively. The total number of dead-
lines met byR1, R2, andR3 were 999, 1100, and 1331, respectively.

We divide the results into the overloaded and underloaded periods. During the first 40 seconds of elapsed wall
clock time, all three applications are executing. The slopes of the left graph show the respective measured
resource consumptions ofR1, R2, andR3 to be in the ratio 2.80 : 2.02 : 1.00. Note that the resource consumption
of R1 is a bit less than its proportional share because it does not require its proportional share to complete its
deadlines. If the system were perfect and that there are no variability in the tasks’ execution time, we expect
applicationsR1, R2, andR3 to miss roughly 0, 1/3, and 2/3 of the deadlines, respectively. During this period,
each application had 1000 deadlines that it desired to have satisfied. Figure 3(b) shows the number of deadlines
met. During the first 40 second period,R1 met 999 deadline,R2 met 604 deadlines, andR3 met 345 deadlines.
They correlate well with the ideal values.

R1 completes its execution at the beginning of the next 20 seconds of wall clock time whileR2 andR3 con-
tinue to compete for resources. Note that the remaining tasks are no longer requesting more than their propor-
tional shares. The slopes of Figure 3(a) show the respective measured resource consumptions ofR2 and R3
during this period to be in the ratio 1.02 : 1.00. Both tasks miss a couple of deadlines as R1 is completing its exe-
cution, but then are able to satisfy all of their remaining deadlines. This example shows SMART automatically
adjusts to the load condition and transitions between overload and underload gracefully.

7.3 Conventional and Real-time Applications

Real-time Requests Using Less than Proportional Share

In mixing conventional and real-time applications, we first consider the case when the real-time applications
require less than their proportional share of resources to satisfy their deadlines. We show two examples of this
case in Figure 4.

Figure 4(a) shows two equal-share applications,R1 andC1, of whichR1 is real-time andC1 is conventional.
In particular,R1 required 18-20 ms of execution time for each of its resource requests, and has a 40 ms deadline
from its instantiation. If the system were perfect andR1 required exactly 20 ms to process each 40 ms deadline
request, we would expectR1 not to miss any deadlines and for each application to use 50% of the system, as
illustrated by the dotted line in Figure 4(a). Our measured results correspond well with the ideal and indicate that
R1 did not miss any of its deadlines. SinceR1 actually required slightly less than its proportional share of
resources,C1 was allowed to consume more than its proportional share and make better progress. In total,R1
consumed roughly 48% of the system whileC1 consumed the remaining 52% of the system.
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40000 2 6⁄× 1500 1000–( ) 20×+ 23333=

40000 1 6⁄× 2000 1000–( ) 20×+ 26667=
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Figure 4(b) shows a periodic real-time applicationR2 and a conventional applicationC2 whose respective
shares are in the ratio 3 : 1.R2 required 28-30 ms of processing time with a periodic deadline every 40 ms. If the
system were perfect andR2 required exactly 30 ms to process each 40 ms deadline request, we would expectR2
not to miss any deadlines and forR2 andC2 to consume resources in proportion to their shares, 75% and 25%,
respectively, as illustrated by the dotted lines in Figure 4(b). Our measured results correspond well with the ideal
and indicate thatR2 did not miss any of its deadlines.R2 consumed roughly 72% of system whileC2 consumed
the remaining 28% of the system. The slight difference from ideal is due to the fact thatR2 consumes a little bit
less than the stated ideal.

Latency Tolerance

To show some of the benefit of latency tolerance, we again consider the case of two equal-share applications,
R1 andC1, of whichR1 is real-time andC1 is conventional. In this case however, while each resource request of
R1 still has a 40 ms deadline from its instantiation, the work required for each resource request varies with an
even distribution between 10-30 ms of execution time, with an average of 20 ms. While the resource consump-
tion graph in this case remains similar to Figure 4(a) given the time scales involved, the number of deadlines that
are missed byR1 depends on the latency tolerance ofC1. If C1 cannot tolerate any latency, thenR1 misses 192
out of 1999 deadlines. However, ifC1 is given a latency tolerance of just 100 ms,R1 can execute without miss-
ing any of its deadlines, despite the fact that its desired resource consumption for any given resource request var-
ies from 25% to 75% of the machine.

Proportional Sharing with Latency Tolerance in Overload

We demonstrate that SMART is able to share resources proportionally even for mixes of conventional and
real-time applications in which the set of real-time resource requests is overloaded. Figure 5 shows the results of
executing three equal-share applications,R1, R2, andC1, of which R1 andR2 are real-time andC1 is conven-
tional. In particular,R1 andR2 are identical applications, each requiring roughly 38-41 ms of execution time for
each resource request, and each resource request having a 60 ms deadline from its instantiation. Each real-time
task processed a sequence of 2000 resource requests.C1 is a conventional task with a latency tolerance of 200 ms
and takes 40,000 ms of processing time to complete.

If the system were perfect, we expect tasks to share resources based on their shares since the system is over-
loaded. As a result, each task should be allocated 1/3 of the resources. All three tasks should complete in 120,000
ms. Their ideal performance curves fall on the dotted line in Figure 5(a). Given 1/3 of the resources, each real-
time task should be able to complete half of its deadlines:

TasksR1, R2:  out of 2000 deadlines met.
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Figure 4 SMART proportional sharing among conventional and real-time applications
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Figure 5(a) shows that all three applications consume nearly identical proportions of the resource, in close
correspondence with the ideal.C1 was able to consume a slightly larger portion of the processing time because it
was always able to run if there were available resources.R1 andR2 were only able to make valuable use of the
processing time when it was possible to satisfy their respective deadlines. For instance, ifR1 still had to run 40

ms to meet its deadline and the deadline was only 30 ms away, it would be useless to runR1.

Figure 5(b) shows that the number of deadlines met byR1 andR2 correspond well with their expected values.
Out of 2000 deadlines,R1 met 985 deadlines whileR2 met 998 deadlines. The number of respective deadlines
that each of them completed is in the ratio 1.00 : 1.01, which very closely corresponds to their shares. Over the
course of 120 seconds of execution, the total amount of time spent by bothR1 andR2 in processing deadlines
that could not be met was less than 1 second. The SMART scheduler is able to make efficient use of processor
cycles to devote the processor allocations of both real-time applications almost entirely toward resource requests
whose deadlines can be met.

The ability of the conventional applicationC1 to tolerate latency was a contributing factor in the ability of
both real-time applications to meet such a large percentage of their deadlines, given their proportional shares,
variances in execution times, and the overloaded condition. At the same time, the conventional application was
still able to consume slightly more than its proportional share of processor cycles due to its ability to run when-
ever there were cycles that could not be used effectively by the real-time applications. When the latency tolerance
of C1 was instead zero, the number of deadlines missed increased by 10%.

7.4 Summary

We have provided measured experimental results of the SMART prototype implemented in the Solaris operating
system that demonstrate its effectiveness for both real-time and conventional applications. The results show that
the scheduler can in practice provide nearly optimal performance for real-time applications in underload, and
provides accurate proportional sharing across both real-time and conventional applications, and even allows real-
time applications to satisfy their deadlines in a proportional manner when not all deadlines can be met. Good
results are obtained despite the fact that the current prototype scheduler is unoptimized. This shows that this high
degree of flexible control and efficient resource utilization can be achieved in practice without prohibitive sched-
uling overhead.

8 Concluding Remarks
In this paper, we have described the design of SMART, a processor scheduler for supporting both real-time and

conventional resource requirements, such as those found in multimedia applications. Unlike previous approaches to
supporting multimedia applications, the design combines the desirable properties of proportional sharing, latency
tolerance, and best-effort real-time scheduling in an integrated manner.
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We have implemented a SMART prototype in the Solaris operating system. Our measured performance
results of the implementation demonstrate its effectiveness in a real system to make efficient use of hardware
resources and its unique ability to provide proportional sharing across both real-time and conventional applica-
tions.
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