
Technology Scaling E�ects on

Multipliers

Hesham Al-Twaijry and Michael Flynn

Technical Report : CSL-TR-96-698

July 1996

This work was supported using facilities supported by NASA contract NAG2-842
and a fellowship from Saudi Arabia.

Technology Scaling E�ects on

Multipliers

by

Hesham Al-Twaijry and Michael Flynn

Technical Report : CSL-TR-96-698

July 1996

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-9040

pubs@shasta.stanford.edu

Abstract

Booth encoding is a method of reducing the number of summands required to produce the

multiplication result. This paper compares the performance/area tradeo�s for the di�erent

Booth algorithms when trees are used as the summation network. This paper shows that the

simple non-Booth algorithm is not an e�cient design, and that for small feature sizes the

performance for the di�erent Booth encoding schemes are comparable in terms of delay.

The report also quanti�es the e�ects of wires on the multiplier. As the feature size

continues to decrease wires will provide an ever increasing portion of the total delay, Booth

3 becomes more attractive since it is smaller.

Key Words and Phrases: Floating-Point, Multiplication, Booth, Trees, Technology
scaling

Copyright c 1996

by

Hesham Al-Twaijry and Michael Flynn

Contents

1 Introduction 1

2 Encoding Methods 2

2.1 Non-Booth . 3
2.2 Booth 2 . 4
2.3 Booth 3 . 5
2.4 Redundant Booth 3 . 5

3 Topology 6

3.1 Double Linear Array . 8
3.2 Binary Tree . 9
3.3 Balanced Delay Tree . 9
3.4 Overtuned Staircase Tree . 10
3.5 Higher Order Arrays . 12
3.6 Topology di�erences . 12

4 Results 13

4.1 Binary Tree . 14
4.1.1 Wire E�ects . 14
4.1.2 Scaling E�ects . 16

4.2 Linear Array . 19
4.2.1 Wire E�ects . 19
4.2.2 Scaling E�ects . 20

4.3 Higher Order Array . 22
4.3.1 Wire E�ects . 22
4.3.2 Scaling E�ects . 23

4.4 Overturned Staircase Tree . 25
4.4.1 Wire E�ects . 25
4.4.2 Scaling E�ects . 26

4.5 Balanced Delay Tree . 28
4.5.1 Wire E�ects . 28
4.5.2 Scaling E�ects . 29

4.6 Areas . 30

5 Conclusion 31

iii

List of Figures

1 Counter interconnection Schemes (a) Parallel (b) Linear 1
2 Floating Point Number Standard . 2
3 Non-Booth Encoding . 3
4 Booth 2 Encoding . 3
5 Booth 3 Encoding . 4
6 Redundant Booth 3 Encoding . 5
7 Multiplier's shape . 6
8 (a) Counter Placement (b) Actual Layout in Bit Pitch 7
9 (a) \4-2" Counter Logical Construction (b) Double Linear Array 8
10 Binary Tree . 8
11 Balanced Delay Tree . 9
12 Overturned Staircase Tree . 10
13 Booth 3 Higher Order Array . 11
14 Booth 2: Overall 42 Tree (a) Delays (b)Ratio 14
15 Booth 3: Overall 42 Tree (a) Delays (b)Ratio 15
16 (a) Delays (b)Ratio . 16
17 a) Delays (b)Ratio . 17
18 (a) Delays (b)Ratio . 18
19 (a) Delays (b)Ratio . 18
20 Booth 2 : (a) Delays (b)Ratio . 19
21 (a) Delays (b)Ratio . 20
22 (a) Delays (b)Ratio . 21
23 (a) Delays (b)Ratio . 21
24 Booth 3: (a) Delays (b)Ratio . 22
25 (a) Delays (b)Ratio . 23
26 (a) Delays (b)Ratio . 23
27 (a) Delays (b)Ratio . 24
28 (a) Delays (b)Ratio . 25
29 Booth 2 : (a) Delays (b) Ratio . 25
30 (a) Delays (b)Ratio . 26
31 (a) Delays (b)Ratio . 27
32 (a) Delays (b)Ratio . 27
33 Booth 2: (a) Delays (b) Ratio . 28
34 (a) Delays (b)Ratio . 29
35 (a) Delays (b)Ratio . 30
36 Area for each con�guration . 31

iv

List of Tables

1 Minimum Number of Wiring Tracks . 12
2 Subcell Circuit Sizes . 30

v

1 Introduction

Multiplication is one of the basic arithmetic operations. The speed of the multiplier is a crit-
ical issue in determining the performance of the microprocessors. The advent of VLSI has
given chip designers the ability to integrate multipliers as part of microprocessors. There-
fore, it has become common for modern microprocessor to have oating point multipliers
implemented fully in hardware, in contrast to in software as in the previous generations. In
fact the very latest processors also implement integer multiplication in hardware. Integer
multiplication is used to speed up address translation, array indexing, etc.

Multiplication is the process of adding a number (summand) a certain number of times.
Each summand is a chosen multiple of one of the operands (multiplicand), based upon the
value of certain bits of the other operand (multiplier). These summands need to be added
together to produce the �nal result. The addition of each pair is a relatively long latency
carry-propagate addition. In order to reduce the total time required to produce the �nal
result, a redundant form of addition, most commonly carry-save addition, is used. In carry-
save addition the summands are split into columns. Each bit of the summands is called a
partial product. The columns of partial products are added independently from adjacent
columns. The addition of the partial products in each column is achieved by the use of
counters. These counters are circuits which encode the number of ones in their inputs. The
counters can be connected in several ways.

PP PP PP PP PP PP PP PP

Adder Adder Adder

Adder

Adder

Adder

Adder

Result

PPPP

Adder

Adder

PP

Adder

PP

Adder

Adder

PP

PP

Result

Adder

PP

Figure 1: Counter interconnection Schemes (a) Parallel (b) Linear

In high speed multipliers, the counters are connected in parallel using tree structures as
shown in �gure 1(a), in contrast to serially as in linear arrays. The number of adders needed
to reduce the partial products is the same for both trees and arrays. The only di�erence is
that trees have more complex interconnections. The more complex interconnection a�ect
the design of the multiplier when it is part of a chip because of the limited number of wires
available that are used for interconnecting the counters.

The number of summands that must be added to give the multiplications' result can be

1

reduced by using Booth encoding [2]. In Booth encoding the number of summands is reduced
by recording the multiplier bits into groups that select multiples of the multiplicand. Higher
order Booth encoding reduces the number of summands by a greater degree by encoding
larger groups of multiplier bits and therefore requiring a larger group of multiples to select
from, and consequently a more complex selection table.

Sign Bit Normalized Fraction Biased Exponent
(1) (52) (11)

Figure 2: Floating Point Number Standard

The multiplier under consideration uses the IEEE oating point arithmetic standard [1].
The format for double precision numbers, as de�ned by the standard, is shown in �gure 2.
The standard de�nes numbers in a sign-magnitude, normalized format. The standard has
a normalized signi�cand, that is the most signi�cant bit of the fraction is always 1, and
therefore is not stored. The signi�cand e�ectively becomes 53 bits. To achieve the rounding
accuracy de�ned by the standard, the full 106 bit result has to be calculated, even though
almost half of it is used only for rounding.

The multiplier is part of a processor's datapath which forces the width of each subcell or
bit pitch to be constant. The required structure for connecting the counters for each topology
is achieved by varying the interconnection network of the adders. The interconnection
network is routed on top of the adders themselves. Based upon the number of wiring tracks
available and the number of tracks required by the chosen topology, one uses circuits that
propagate the signal or circuits that produce both the signal and its complement.

This study investigates the relationship between the topology of the partial product
interconnections and the encoding scheme used. It also studies the e�ect of these topologies
and encoding schemes on the latency and area of the multiplier as the feature size decrease,
when the multiplier is part of a larger system. This study also quanti�es the e�ects of wires
on the multiplication process.

2 Encoding Methods

There are several methods for encoding the summands. A popular method when large
multipliers were built using MSI parts, was the use of smaller multipliers to generate the
partial products. These smaller multipliers were simply the truth table representation of
the multipliers output and where built out of ROMs. With the advent of VLSI and the
requirement to build multipliers as part of a single chip, this method is no longer used.
Booth encoding is the most common method used to reduce the number of summands.

2

Pa
rt

ia
l P

ro
du

ct
 S

el
ec

tio
n

T
ab

le

M
ul

tip
lie

r
B

it

0 1

Se
le

ct
io

n

0 M

L
sb

M
sb

Multiplier

L
sb

M
sb

Pr
od

uc
t

F
ig
u
re

3:
N
on
-B
o
ot
h
E
n
co
d
in
g

2
.1

N
o
n
-B
o
o
th

T
h
e
�
rs
t
an
d
si
m
p
le
st

m
et
h
o
d
fo
r
en
co
d
in
g
is
n
on
-B
o
ot
h
as

sh
ow

n
in

�
gu
re

3.
T
h
is
a
lg
o
-

ri
th
m

is
si
m
p
ly

a
sh
if
t
a
n
d
a
d
d
al
go
ri
th
m

w
h
er
e
th
e
m
u
lt
ip
li
ca
n
d
is
co
n
d
it
io
n
al
ly

ad
d
ed

to
p
ro
d
u
ce

th
e
�
n
a
l
re
su
lt
.
In

th
is
al
go
ri
th
m

th
e
su
m
m
an
d
is
se
le
ct
ed

fr
om

th
e
se
t
f0
,
M
g
.

T
h
is
al
g
o
ri
th
m
's
su
m
m
an
d
se
le
ct
io
n
lo
gi
c
is
a
si
m
p
le
A
N
D
ga
te
.
U
n
fo
rt
u
n
at
el
y,
th
er
e
is
n
o

re
d
u
ct
io
n
in

th
e
n
u
m
b
er

of
su
m
m
an
d
s
th
at

n
ee
d
to

b
e
su
m
m
ed

to
p
ro
d
u
ce

th
e
�
n
al
re
su
lt
.

S

S

L
sb

M
sb

Multiplier

0 0 0

L
sb

M
sb

Pr
od

uc
t

S

S

S

S

S

S

S

S

S

S

S

S

S
S

S

S

Pa
rt

ia
l P

ro
du

ct
 S

el
ec

tio
n

T
ab

le

Se
le

ct
io

n
M

ul
tip

lie
r

B
its

00
0

00
1

+
0

+
M

01
0

01
1

10
0

10
1

11
0

11
1

+
M

+
2M

-2
M

-M -M -0
1

1

1

1

1

1

F
ig
u
re

4:
B
o
ot
h
2
E
n
co
d
in
g

3

2
.2

B
o
o
th

2

T
h
e
B
o
ot
h
al
go
ri
th
m

a
tt
em

p
ts

to
re
d
u
ce

th
e
n
u
m
b
er

of
th
e
su
m
m
an
d
s
b
y
re
co
d
in
g
th
e

m
u
lt
ip
li
er

so
th
a
t
g
ro
u
p
s
of

it
s
b
it
s
se
le
ct

m
u
lt
ip
le
s
of

th
e
m
u
lt
ip
li
ca
n
d
.
T
h
e
B
o
ot
h
a
lg
o
-

ri
th
m
as

it
w
a
s
o
ri
g
in
al
ly
p
ro
p
o
se
d
p
er
fo
rm

ed
th
e
en
co
d
in
g
se
ri
al
ly
.
T
h
er
ef
or
e,
th
e
M
o
d
i�
ed

B
o
ot
h
A
lg
o
ri
th
m

[2
]
w
h
ic
h
p
er
fo
rm

s
th
e
en
co
d
in
g
in

p
ar
al
le
l
is
u
se
d
.
In

th
is
al
go
ri
th
m
,
th
e

m
u
lt
ip
li
er

is
p
a
rt
it
io
n
ed

in
to

ov
er
la
p
p
in
g
gr
ou
p
s
of
3
b
it
s.

E
ac
h
gr
ou
p
is
d
ec
o
d
ed

in
p
a
ra
ll
el

to
se
le
ct

a
m
u
lt
ip
le
o
f
th
e
m
u
lt
ip
li
ca
n
d
fr
om

th
e
se
t
f�

2M
;
�
M
;
�
0g
,
a
s
sh
ow

n
in

�
gu
re

4
.

A
ll
of

th
es
e
m
u
lt
ip
le
s
ar
e
ob
ta
in
ab
le

b
y
si
m
p
le

sh
if
ti
n
g
an
d
co
m
p
le
m
en
ta
ti
on
.
T
h
e
�
n
a
l

re
su
lt
o
f
th
e
m
u
lt
ip
li
ca
ti
o
n
is
ob
ta
in
ed

b
y
ad
d
in
g
th
e
su
m
m
an
d
s
to
ge
th
er
.
N
eg
at
iv
e
m
u
l-

ti
p
le
s,
in

2'
s
co
m
p
le
m
en
t
fo
rm

,
ar
e
ob
ta
in
ed

b
y
p
er
fo
rm

in
g
b
it
b
y
b
it
co
m
p
le
m
en
ta
ti
o
n
o
f

th
e
co
rr
es
p
on
d
in
g
p
os
it
iv
e
m
u
lt
ip
le
,
an
d
ad
d
in
g
a
1
at

th
e
le
as
t
si
gn
i�
ca
n
t
p
os
it
io
n
(t
h
e

S
b
it
s
al
on
g
th
e
ri
gh
t
si
d
e
o
f
th
e
p
ar
al
le
lo
gr
am

).
F
or

th
e
m
u
lt
ip
li
ca
ti
on

to
p
ro
d
u
ce

th
e

co
rr
ec
t
re
su
lt
,
ea
ch

su
m
m
an
d
n
ee
d
s
to

b
e
si
gn

ex
te
n
d
ed
.
F
or
tu
n
at
el
y,

th
e
si
gn

ex
te
n
si
o
n

th
at

is
re
q
u
ir
ed

is
m
in
im
al

a
s
sh
ow

n
in

�
gu
re

4.
A

ri
go
ro
u
s
p
ro
of

th
at

th
is
is
a
su
�
ci
en
t

si
gn

ex
te
n
si
o
n
is
p
re
se
n
te
d
in

[3
]
.

U
si
n
g
th
is
a
lg
or
it
h
m
;
th
e
n
u
m
b
er

of
su
m
m
an
d
s
is
d
n
+
1

2
e.

T
h
e
ex
tr
a
1
in

th
e
ex
p
re
ss
io
n

co
m
es

fr
o
m

th
e
n
ee
d
to

en
su
re

th
at

th
e
la
st

su
m
m
an
d
is
a
p
os
it
iv
e
m
u
lt
ip
le

of
th
e
m
u
lt
i-

p
li
ca
n
d
.
T
h
is
is
a
ch
ie
ve
d
b
y
a
d
d
in
g
at

le
as
t
an

ex
tr
a
ze
ro

to
th
e
le
ft
of

th
e
m
u
lt
ip
li
er
.
It

sh
ou
ld

b
e
p
oi
n
te
d
ou
t
th
at

B
o
ot
h
2
d
o
es

n
ot

re
d
u
ce

th
e
ar
ea

b
y
al
m
os
t
h
al
f
co
m
p
ar
ed

to
n
on
-B
o
o
th
.
T
h
e
ar
ea

re
d
u
ct
io
n
is
le
ss

th
an

th
at

b
ec
au
se

of
th
e
m
or
e
co
m
p
le
x
su
m
m
a
n
d

se
le
ct
io
n
lo
gi
c
(B
o
o
th

en
co
d
er
s)

an
d
p
ar
ti
al

p
ro
d
u
ct

ge
n
er
at
or
s
(B
o
ot
h
m
u
x
es
).

L
sb

M
sb

Pr
od

uc
t

S

S
S

S
S

S
S

S

S
S

S

S
S

L
sb

M
sb

Multiplier

0 0 0

Se
le

ct
io

n
M

ul
tip

lie
r

B
its

+
0

+
M

+
M

+
2M

Se
le

ct
io

n
M

ul
tip

lie
r

B
its

-2
M

-M -M -0

Pa
rt

ia
l P

ro
du

ct
 S

el
ec

tio
n

T
ab

le

01
11

01
10

01
01

01
00

00
11

00
10

00
01

00
00

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

+
2M

+
3M

+
3M

+
4M

-4
M

-3
M

-3
M

-2
M

1
1

1
1

1

1
1

F
ig
u
re

5:
B
o
ot
h
3
E
n
co
d
in
g

4

2.3 Booth 3

It is also possible to reduce the number of summands required to produce the �nal result
using shift amounts greater than two. In Booth 3 the multiplier is partitioned into overlap-
ping groups of 4 bits, each group is decoded in parallel to select a certain summand. Each
summand could be from the set f�4M;�3M;�2M;�M;�0g, as shown in �gure 5. All the
multiples except 3M are easily obtainable, by simple shifting and complementing.

The generation of the 3M multiple, referred to as a hard multiple, can not be obtained
by simple shifting and complementation. Rather, a full carry propagate addition is required.
This carry propagate adder increases the latency of the Booth 3 multiplier. In some pro-
cessors the generation of the 3M multiple is designed as a separate cycle in the processor's
pipeline. The 3M adder is a special purpose adder that is designed to add (M + 2M).
This allows for some circuit optimizations which make it faster than a regular adder. This
algorithm also has the most complex selection logic. Using this algorithm the number of
summands is dn+1

3
e. The extra 1 in the expression comes from the need to ensure that the

last summand is a positive multiple of the multiplicand. This is an unsigned operand.

Lsb

Msb

M
ultiplier

0

0

0

LsbMsb

Product

SelectionMultiplier Bits

K+0

K+M

K+M

K+2M

SelectionMultiplier Bits

K-2M

K-M

K-M

K-0

Partial Product Selection Table

0111

0110

0101

0100

0011

0010

0001

0000 1000

1001

1010

1011

1100

1101

1110

1111

K+2M

K+3M

K+3M

K-4M

K-3M

K-3M

K-2M

K+4M

SS

S

SS X

Y

X

Y

X

Y

C

S

S X

Y

X

Y

X

Y

S

S X

Y

X

Y

X

Y

S

S X

Y

X

Y

X

Y

C

C

C

S

S X

Y

X

Y

X

Y

C

11

11

11

Figure 6: Redundant Booth 3 Encoding

2.4 Redundant Booth 3

Redundant Booth 3 aims to eliminate the need for the hard multiple generation by gener-
ating an equivalent partially redundant representation [4]. The partially redundant repre-
sentation is achieved by using a series of smaller adders, with no carry propagation between
the adders, as shown in �gure 6. If the adders are small enough, then the carries are not
propagated across many bits and therefore the generation of the three times multiple should
not take a long time. The adders are designed to take as much time to produce their results
as the Booth encoding process takes to decode the bits of the multiplier and select the ap-

5

propriate multiplicand multiple as the summand. A constant is added to each summand so
that the positive and negative multiples of the multiplier will have zeroes in the empty gaps
between the carries. This will allow these locations to be ignored, i.e. there is no need to
add the zeroes so no counters are needed for these locations. This constant is required to be
the same number for all the possible multiples of the multiplicand. The negative of the sum
of all the constants is added to the summands at design time so that the net result added
to the tree is zero. The negative of the sum of the constants is called the compensation
constant. It is possible to add the compensation constant at design time because each of
the summands constant is independent of the multiple chosen.

Result

Carry

Sum

Products
Partial

Figure 7: Multiplier's shape

3 Topology

The di�erent encoding schemes all produce a parallelogram shaped multiplier structure
as shown in �gure 7. The rows of the parallelogram are the summands which are added
together to produce the �nal result. In order to reduce the �nal result, the time consuming
carry-propagate addition is performed once. This is acheived by using a redundant form of
addition, called carry-save addition. In carry-save addition carries only propagate to the
next column. Therefore, each column in the parallelogram is treated seperately.

The partial products in each column are reduced to two bits, which are part of the sum
and carry vectors. The reduction of the partial products is acheived by using counters.
Counters are circuits that encode the number of ones in their inputs. There are many ways
to connect the counters to produce the �nal result. These di�erent ways for interconnecting
the counters are called topologies. the number of counters needed to reduce the partial
products is the same for all the topologies. The topologies di�er in the compexity of the
interconnections used to connect the counters. The topologies that connect more partial
products in parallel have more complex interconnections.

6

Figure 8: (a) Counter Placement (b) Actual Layout in Bit Pitch

The counters used in the reduction of the partial products are laid out in rows. Each
row reduces its inputs by the compression ratio of its counters. This organization of the
counters forms a two dimensional plane. The plane is repeated for each column of the
parallelogram. This creates a three dimensional structure as shown in �gure 8a. However,
chips are designed as a planar process. Therfore, each of these planes has to be attened.
The attening process is acheived by placing the counters in a linear fashion as shown in
�gure 8b. The width of partial product reduction structure is the width of one counter. In
contrast to the two dimensional structure, the counters outputs when laid out linearly are
inputs for non-adjacent counters. The outputs of the counters will therefore have to bypass
the intermediate counters that lay between the inputs and outputs of the counters. The
bypassing is acheived by routing wires to interconnect the counters. The wires are routed
over the intermediate counters. The width of the partial product reduction structure is the
width of a counter. This width is the bit pitch for the cells in the datapath. Each bit pitch
has a limited number of wires available for routing the signals. Therefore, the more complex
topologies may require more wires than available and are thereby impossible to route.

There are many di�erent topologies that di�er in the number of wires that each topology
requires and in the number of counters used. These topologies include:

7

3-2 Counter

3-2 Counter

From Adjaent

Counter

To Adjecent

Counter

4-2 Counter

Figure 9: (a) \4-2" Counter Logical Construction (b) Double Linear Array

3.1 Double Linear Array

The double linear array is constructed using \4-2" counters. The 4-2 counter is logically
constructed from two 3-2 counters as shown in �gure 9a. However, actual implementations
of the \4-2" counter are constructed in such a way that the total delay is less than that for
two serial connected \3-2" counters. The 4-2 counter is symmetric in that it has a 2 : 1
reduction ratio, while the 3-2 counter is not symmetric.

Linear arrays are the simplest topology in which the counters are serially connected. In
the linear array the delay from each of the inputs is proportional to the location at which
it is added to the array. The double linear array reduces the delay of a simple array in half
by connecting the even numbered counters and the odd numbered counters separately as
shown in �gure 9b. The two counter chains are combined by the last counter to produce
the �nal result. The number of counters in the critical path is linearly proportional to the
number of partial products being reduced. This is in contrast to trees that usually are
logarithmically proportional to the number of partial products. The number of wires that
are needed to connect the counters in an array structure is constant and independent of the
number of partial products being reduced.

Figure 10: Binary Tree

8

3.2 Binary Tree

The 4-2 counter tree [5] has a regular and symmetric structure, as shown in �gure 10.
In the 4-2 tree, for every four inputs taken at one level, two results are produced at the
next level. This can be thought of as a redundant binary tree, since every counter reduces
two redundant numbers into one redundant number. The 4-2 tree's binary nature makes
it commonly used in pipelined, and iterative multipliers. The symmetric nature of the
4-2 counter facilitates the addition of latches that are needed for pipelining after each 4-
2 counter. Iterative and pipelined 4-2 counter trees use the same structure for each bit
pitch with the output of previous stages being fed back after the appropriate shifting. The
number of counters in the critical path for the binary tree is a logarithmic function of the
number of partial products that need to be reduced.

The 4-2 counters do not have a constant requirement for wires. The number of wires
needed increases by two when the number of partial products is doubled. Their wiring re-
quirement is similar to that of Wallace trees [7], in that they are both logarithmic. However,
the growth rate of wiring tracks in 4-2 trees is smaller. Also, their wiring requirement is
more regular, since Wallace trees, which use 3-2 counters, are extremely irregular making
them notoriously di�cult to layout.

The advantage of the binary tree reduction of the 4-2 trees is not all that signi�cant for
IEEE double precision numbers since the signi�cand size is not a power of two.

Linear Array

4-2 Counter

Figure 11: Balanced Delay Tree

3.3 Balanced Delay Tree

The balanced delay tree was proposed by Zuras and McAllister [6]. The ZM tree is based
upon the idea of balanced delay chains of counters. Trees are constructed by combining
progressively longer serial chains into serial chains below them. The connection between the

9

two chains is made when the total delay of the upper chain is equal to the delay of the lower
chain. The connection is made when the number of counters in the critical path of upper
chain of counters is as long as the delay of the critical path of the chain of lower counters.
The ZM tree is \balanced" in the sense that the delays of all chains are approximately equal
and that the wire usage is balanced between all counters. The previous method builds ZM
trees of type one, which require only two wires to feed the output of one counter to the
input of a non-adjacent counter, as shown in �gure 11.

This tree structure has a very regular layout and it requires only a few primitive cells.
This type of tree generally uses more levels of counter delay than the Wallace tree. To
reduce the number of levels, higher order ZM trees are constructed, by iteratively replacing
the largest chains with ZM trees of type 1. These higher order trees require a larger number
of tracks, and are less regular. The number of tracks required by ZM trees is 2P , where P

is the order of the tree, and the number of levels is O(N
1

P+1).
ZM trees are not easily pipelined. The pipelining of a ZM tree requires that the outputs

of the Booth muxes that are not at the �rst level, to be latched in addition to the outputs
of the 3-2 counters. The number of latches required is therefore greater than the number of
latches in a 4-2 counter tree. ZM trees can be built to produce the result iteratively using
a structure that is similar to a 4-2 tree.

Body (5)

root

5-3 Connector

Body (4)

Linear Array (3)

Figure 12: Overturned Staircase Tree

3.4 Overtuned Staircase Tree

The Overturned Staircase Tree was proposed by Mou and Jutand [8]. It is called an over-
turned staircase because the way the counters are connected resembles a staircase. This
method divides a tree into a body and a root. The root is the last 3-2 counter in the tree.
The body is constructed recursively. A body of height k, where k is the number of 3-2
counters in the critical path, is constructed from a body of height k-1 and a linear array of

10

height k-2. The linear array and the body are joined using a 5-3 counter. The 5-3 counter
is constructed from two 3-2 counters in series. This method build OS trees of type one, as
shown in �gure 12. This tree structure requires a few primitive cells. It requires 3 tracks
to route signals between non-adjacent counters. The OS tree uses more wiring tracks than
the ZM tree. The OS tree needs more primitive cells and it has a less regular structure,
compared to the ZM tree.

OS tree structure can give the minimum number of counter levels for most numbers of
partial products. However, to achieve this, one has to use higher order OS trees. Higher
order OS trees can be built by replacing the linear arrays with OS trees of type one. The
higher order trees require more wiring tracks. The number of tracks required by OS trees

are 3P , where P is the order of the tree, and the number of levels is O(N
1

P+1).
OS trees are not easily pipelined. The pipelining of a OS tree requires that the outputs

of the Booth muxes that are not at the �rst level, is be latched in addition to the outputs
of the 3-2 counters. Thus, as in ZM trees, the number of latches required is greater than
the number of latches in a 4-2 counter tree. OS trees can be built to produce the result
iteratively using structure that is similar to ZM tree. However, OS trees are not typically
used for iterative multipliers, since 4-2 trees give a more regular topology, using the same
number of counter levels.

Figure 13: Booth 3 Higher Order Array

11

3.5 Higher Order Arrays

Higher Order Arrays is a class in which the counters are designed as several linear array
chains, as can be seen in �gure 13. The chains are combined in parallel when the delay of
the upper chain is equal to the delay of the lower chain. This class of arrays can in fact
be thought of as a collection of ZM trees of type one. The ZM trees have been designed
for the column with the largest number of inputs. This design is replicated for all other
columns. In this design, the non-critical columns are not optimized. This design trades the
performance of the non-critical columns for regularity, as shown in �gure 13. The regularity
of the higher order tree is proportional to the number of linear arrays that are combined.
The smaller the number of arrays the more regular the design.

Higher order trees can be classi�ed according to the lengths of the chains of partial
products before the combining occurs. For example, the 6-6-8-8 array has a linear array
that combines 6 partial products which is combined with an array the combines 6 partial
products. The resulting structure is then combined with an array that combines 8 partial
products. Finally, the resulting structure is combined with an array that sums 8 partial
products.

Higher order arrays are pipelined as easily as arrays. However, since their design is
proposed to reduce the latency of the multiplier using the smallest number of wiring tracks
available, pipelined iterative higher order trees are not very attractive.

Since Higher order arrays are just ZM trees of type 1; they require only two tracks and
there summing time is O(

p
N)

3.6 Topology di�erences

The word topology refers to how the counters are connected. The di�erent topologies each
require a di�erent number of wiring tracks that will be used for bypassing the intermediate
counters.

Tree topologies give structures that have a small number of serial counters at the expense
of complex interconnections. When the multiplier is part of a larger system, the number of
available wiring tracks that can be used for bypassing is limited. Table 1 gives the minimum
number of tracks that each topology requires to be routable.

Topology Number of Wiring Tracks
Non-Booth Booth 2 Booth 3

Linear Array 6 6 6
Binary Tree 16 12 12

Balanced Delay Tree 10 10 10
Overturned-Stair Case Tree 12 12 12

Higher Order Arrays 6 6 6

Table 1: Minimum Number of Wiring Tracks

The table was obtained for IEEE double precision numbers. The table includes the

12

number of wiring tracks required to route the inputs and outputs of the partial product
generators and the counters. The partial product parallelogram for the tree topologies is
folded to save silicon area. The maximum number of wiring tracks occur in the folded
region. This is because their are two comparably sized trees that whare the available wiring
track. The highly regular array topologies are not folded since all partial product columns
have the same structure, so aligning the partial products and routing the intercounter wires
diagonally is possible.

The topology used and consequently the number of wiring tracks used and the number
of wiring tracks available have an e�ect on the choice of circuits used to implement the
counters. The circuits used to build the counters can be broadly classi�ed as belonging to
either of two families; single-ended and complementary signal circuits. The complementary
signal circuits are usually faster since they produce and propagate both the signal and its
complement and no signal inversions are required.

4 Results

The transistor models that are used in the simulations are scalable. The transistors and
wires are assumed to scale to what the electrical limits dictate [9]. The fabrication process
is not assumed to limit what is achievable for the transistor. The physical limits for the
scaling of transistors come about due to leakage currents in the transistors and reliability
concerns for the transistor.

As the feature sizes decrease to sub-micron feature sizes, the supply voltages are also
decreasing. For extremely short sub-micron channel lengths the supply voltage will be
in the 1-2 volt range. Therefore, at these small channel lengths the use of NMOS pass
transistor logic will no longer be feasible because of the threshold voltage drops. At these
small feature sizes the logic families that use both NMOS and PMOS transistor will be the
ones that operate correctly.

The ratios between the latencies of the di�erent encoding schemes and topologies will
di�er with the changing of the feature size. The di�erences are a result of the di�erent rates
at which the capacitances and resistances of the transistors and wires scale. Wires will scale
at a slower rate than the transistors. This means that at small feature sizes the wires will
contribute a larger part of the total delay.

The simulations are based upon the scalable HSPICE transistor models developed by
McFarland [9]. The delays are for 25oC operating temperature. The latencies are measure
from the 50 % Vdd points.

The bit pitch for the oating point datapath is assumed to be 110�. This pitch is wide
enough for 12 wires to pass over the cells that make up the datapath. The wires are used
for the routing of the partial products and the counter outputs. It should be noted that
non-Booth binary tree results have been included although it is not possible to route binary
tree in the number of tracks available. They will need a wider bit pitch. The wider pitch is
used for the area calculations.

The adder that is used to generate the three times multiple for the Booth 3 encoding
scheme is a special purpose adder that adds M + 2M. The speci�cation that the adder only

13

performs this addition give a considerable saving in both latency and area.
The counters used in the multiplier are all DPL circuits [10]. If the topology requirements

for wires is small, the fully DPL circuit in which both the signal and its complement are
produced and propagated. These topologies, which use DPL gates as they were originally
de�ned, are direct candidates for having the counter circuits directly replaced with the
dynamic logic circuits. However, if the topology is wire intensive, and it does not allow the
use of the DPL circuits with both the signal and its complement generated a single valued
version of DPL is used. In this version, the true value for each signal is generated, and the
inverted values, which are needed by the counter internally, are generated by local inversion
within the counters.

4.1 Binary Tree

4.1.1 Wire E�ects

This section describes the wire e�ects for each of the encoding schemes when the topology
is the binary tree, using 4-2 counters.

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0
|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Booth 2 Wire Effects

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�
��

��

�

�

�

�

��
�

�

�

�

�

�

��
�

�

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|

0.0

|

0.2

|

0.4

|

0.6

|

0.8

|

1.0

|

1.2

|

1.4

|

1.6

|

1.8

|

2.0

 Feature Size

 D
el

ay
 R

at
io

��������

�
��

�
��

��

�
��

�

�
�

�

�

Figure 14: Booth 2: Overall 42 Tree (a) Delays (b)Ratio

Figure 14 gives the e�ects of wires on the total delay for Booth 2 encoding. From this
�gure it is apparent that the e�ects of the wires' capacitance are greater at smaller feature
sizes. This is due to the wires capacitance providing a greater portion of the total capac-
itance for the circuit at the smaller feature sizes. The wire capacitance is proportional to
both the area and length of the wires, while the capacitance of the transistors is proportional
only to the areas. Therefore, the capacitance of the wires decreases at a slower rate than the
capacitance of the transistors. For extremely small feature sizes the wiring capacitance will
become dominated by the fringing capacitance, which is proportional to the wire lengths.
Wire capacitance e�ects are noticeable because wire capacitance is approximately 40 % of
the total capacitance.

14

Surprisingly, the wire resistance does not cause a signi�cant portion of the delay. Wire
resistance is in the order of a few percent of the total resistance with most of the total
resistance coming from the equivalent resistance for the transistors. In addition as the
feature sizes decrease wire resistance increases slowly, while the resistance of the transistors
also increase but at a slower rate. Therefore at smaller feature the wires resistance ratio to
the total resistance increases slightly, although the increase is so small that its e�ects on
total delay are minimal.

Wires have a greater e�ect for non-Booth multipliers, when compared to Booth 2. Non-
Booth has two contradicting factors a�ecting the wire e�ects on the total delay. The �rst
e�ect is that it has more levels of logic. For Binary trees this extra logic is a single row of
\4-2" counters, less the logic needed to obtain the summands for Booth 2, Booth encoder
and Booth mux. The second e�ect is the extra long wires needed to route the results of the
row of counters. This extra row of wires requires some long wires, which causes the wire
capacitance to be a more signi�cant part of the total capacitance, as compared to Booth 2.
The e�ect of the extra row of counters on the ratio of wiring capacitance to total capacitance
is not large enough to o�set the extra capacitance of the extra wires. This causes the wires
to account for a larger portion of the total capacitance. For non-Booth multipliers at small
feature sizes, more than 50% of the delay is due to wire capacitance compared to 30% for
the larger feature sizes. Wiring resistance e�ects are still negligible sice wire resistance still
remains a few percent of total resistance.

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0
|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Booth 3 Wire Effects

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

��
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

����
��

��

���
�

��
�

�

Figure 15: Booth 3: Overall 42 Tree (a) Delays (b)Ratio

Figure 15 gives the wire e�ects when Booth 3 is used as the encoding scheme. The wire
capacitance's e�ect is not as signi�cant for Booth 3 when compared to Booth 2. This is
due to two factors. First, Booth 3 requires a greater number of logic levels to generate the
three times multiple, in addition to the tree reduction. This large number of logic levels
is equivalent to having a greater number of serial transistors in the critical path. This
implies that the wiring capacitance is a smaller fraction of the total capacitance. So even
if it decreases at a slower rate than the the active (transistor) capacitance, it still remains
a smaller fraction of the total capacitance, when compared to Booth 2. Secondly, Booth 3

15

decreases the number of summands in the reduction tree by increasing the complexity of
the selection logic. This reduction in the number of summands means that the wires are
also shorter than Booth 2. This also has the e�ect that the wiring capacitance is a smaller
portion of the total capacitance. Thus, the e�ects of the wire resistance for Booth 3 are
even less than those for Booth 2.

The e�ects of wires for Redundant Booth 3 most closely match those for Booth3. The
only di�erences are that redundant Booth 3 has longer wires and a slightly smaller number
of logic levels. Therefore redundant Booth 3 is a�ected by wires to a slightly larger degree
than Booth 3.

4.1.2 Scaling E�ects

This section compares the di�erent topologies for each di�erent scaling scenario.

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for 4-2 Tree (Normal Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

��
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

������
�

� ������
��

Figure 16: (a) Delays (b)Ratio

Figure 16 compares the di�erent encoding schemes under the assumption that the wires
will scale as predicted. This �gure shows that Booth 2 always has the least latency. However,
at very small feature sizes Booth 3 is only 10% slower while being signi�cantly smaller.

If the wire resistance is negligible then what will happen will closely resemble what is
expected to happen for normal scaling of wires. This means that the resistance of the wires
has minimal e�ect on the circuits. This is because, although wire resistance will scale at a
slower rate than the transistors equivalent resistance, the wire resistance will still remain
an insigni�cant part of the total resistance.

16

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for 4-2 Tree (No Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�
��

��

�

�

�

�

��
�

�

�

�

�

�

��
�

�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0
|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

�������
�

�������
�

Figure 17: a) Delays (b)Ratio

Figure 17 compares the di�erent topologies if the wires would magically disappear. This
is the lower limit for when the wire resistance and capacitance are an insigni�cant part of
the totals for the circuit. The performance advantage for Booth 2 remains unchanged.
The ratios between the di�erent Booth algorithms remains fairly constant, as the feature
sizes decrease. This is because the capacitances for all the topologies decrease by the same
amount. Therefore the total values remain fairly constant as expected.

Booth 2 always provides the smallest latency, while Booth 3 always gives the largest
latency. Booth 3 gives the largest latency because, for binary trees it provides no reduction
in the number of \4-2" counter levels compared to Booth 2 while still requiring the extra
logic to provide the three times multiple. From this �gure we notice that non-Booth always
gives the second best latency. This occurs because these curves ignore the wire delay,
which is signi�cant for the non-Booth, and these curves are related only to the number of
transistors in the critical path and the transistor's loading. Also for this reason, redundant
Booth 3 is better than Booth 3 which is the worst.

If there is no wire capacitance, then the curves for the �gures will very closely resemble
what would happen, if there were no wires. This means that the major e�ect for the wires
is in their capacitance.

17

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for 4-2 Tree (Slow Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0
|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

�
�����

�
�

������
�

�

Figure 18: (a) Delays (b)Ratio

If the predicted scaling for the wires does not occur but rather the wires are constantly
25% slower than expected, for all feature sizes, as shown in �gure 18 then Booth 2 provides
the best performance. However, at small feature sizes redundant Booth 3 provides almost
the same latency, but for a smaller area.

In addition, as small feature size decrease, the latency gap between Booth 2 and non-
Booth continues to increase. This is because of the long wires in non-Booth. These wires
cause non-Booth's capacitance to increase at a larger rate when compared to Booth 2.

However, if the resistance and capacitance of the wires are doubled for each feature
size, then at small feature sizes both Booth 3 and redundant Booth 3 provide the same
performance as Booth 2.

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for 4-2 Tree (Scalable Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

��
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

�
��

���
�

�

������
�

�

Figure 19: (a) Delays (b)Ratio

18

However, if wires scale at a slower rate than predicted, as shown in �gure 19, then at
small feature sizes, Booth 2 does not have an advantage in latency. Booth 3 as expected,
shows the biggest improvement. This is because it has the shortest wires so its capacitance
increase which is due to wires not scaling as predicted is the least. Redundant Booth 3
also shows the same improvements as Booth 3, though not as dramatically. It provides a
multiplier that falls in between Booth 2 and Booth 3 in terms of both area and latency.
The improvements of both Booth 3 and redundant Booth 3 leads one to conclude that, if
the wires scale at a worst rate than predicted in the future, then Booth 3 and redundant
Booth 3 will provide the best latency.

Non-Booth shows a slight deterioration in the ratio of its delay to that of Booth 2 due
to its long wires.

4.2 Linear Array

4.2.1 Wire E�ects

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0
|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Booth 2 : Array Wire Differences

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�
��

��

�

�

�

�

�
�

�
�

�

�

�

�

��
��

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

�
��

�

��

�

�

�

��

�

�
�

�

Figure 20: Booth 2 : (a) Delays (b)Ratio

The wires have similar e�ects as binary trees. In the double linear array the wires contribute
almost the same percentage of the total delay as they do for binary trees, as shown in
�gure 20. This occurs although the counters are larger and therefore the total wire length is
longer and consequently the wire capacitance is larger. However the ratio of wire capacitance
to total capacitance is virtually unchanged because linear arrays have more levels of logic.
All the other encoding schemes exhibit the same general characteristics for the di�erent
wiring cases and the wire e�ects on the total delay

The wires have the same e�ects on the double linear array as they do for the binary
tree. This occurs although the linear array has more levels of logic and shorter constant
length wires. However, the e�ects for wires are less for the linear array. The e�ects are less
because wires contribute a smaller portion of the total delay.

19

This is the Double Linear array using 4-2 Counters. This circuit has more levels of logic,
when compared to the binary tree. Its family of curves closely resemble those of the binary
tree.

4.2.2 Scaling E�ects

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

 Delay for Array (Normal Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2
|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

����
���

�

������
�

�

Figure 21: (a) Delays (b)Ratio

Figure 21 gives the performance for the double linear arrays, if the wires scale as expected.
Here, Redundant Booth 3 provides the same latency as Booth 2 for large feature sizes and
better performance at smaller feature size. Booth 3 provides slightly worse performance at
large feature sizes compared to Booth 2, however at small feature sizes it provides the same
performance as Redundant booth 3, which is better than Booth 2. The reason why Booth
3 outperforms Booth 2 for this case, is that since these are linear arrays, the number of
summands is directly proportional to the number of serial levels of counter in the reduction
array. Therefore the extra levels of logic that are needed to provide the three times multiple
for Booth 3 are o�set by the obtained reduction in the number of summands, and in the
shorter wires that are used in the adder. The performance advantage that is achieved by
Booth 3 and Redundant Booth 3 is due to the shorter wires that are used in the three times
adder. In contrast the ratio of wire capacitance to total capacitance is the same for all these
circuits summand reduction arrays.

Non-Booth is consistently slower because of the extra number of counter levels needed
to reduce the summands. The curve for the ratio of non-Booth to Booth 2 is almost at
because the array structure has the same wire length between each pair of counters, so the
ratio of wire capacitance to total capacitance is the same for both Booth 2 and Non-Booth.

If the wire resistance is negligible then curves resembles what happens when wires are
going to scale as expected. However Redundant Booth 3 and Booth 3 are better than Booth
2 for larger feature sizes compared to the normal wires case. This is only because the curves
start closer, and not due to any intrinsic di�erences due to the wires.

20

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

 Delay for Array (No Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�
��

��

�

�

�

�

��
�

�

�

�

�

�

��
�

�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0
|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

������
�

�
�������

�

Figure 22: (a) Delays (b)Ratio

The case of there being no wires is represented in �gure 22. In this case Booth 2 is the
fastest. This is because there are no wires so in e�ect the di�erence in latencies is due to
the number of transistors in the critical path. Therefore, the topology with the smallest
number of transistors (Booth 2) is the fastest. The ratios between the di�erent organizations
is relatively constant. The di�erence in the ratios is due to the di�erent scaling rate for the
gate and di�usion capacitances for the transistors.

When there is only wire resistance, in this case these curves resemble the no wire case
and the same reasoning applies to this case. This is because the wire resistance is not
signi�cant.

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

 Delay for Array (Scalable Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

������
�

�

��������

Figure 23: (a) Delays (b)Ratio

If the wires scale at a slower rate than expected, the latencies are shown in �gure 23,

21

then for small feature sizes, both Booth 3 and redundant Booth 3 provide the best possible
organizations. It should be noted that redundant Booth 3 is always better than Booth
2. This is because the \4-2" counters are connected serially in the array. It shows an
improvement over Booth 2 because it has shorter wires, similarly to that shown by Booth
3.

If our predictions for the wire delays are slightly o� and they are slower, then all the
curves except for non-Booth are grouped together at large feature sizes. At smaller feature
sizes, both Booth 3 and redundant Booth 3 will be faster than Booth 2. This is because of
the shorter wires in them.

However, if the predictions for the wires are extremely wrong, then for all feature sizes
Redundant Booth 3 gives the smallest latency, with Booth 3 giving comparable latencies
for small feature sizes. In this case the performance of the non-Booth also shows some
improvement. This improvement is due to the low ratio of wiring capacitance to total
capacitance when compared to binary trees.

4.3 Higher Order Array

4.3.1 Wire E�ects

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0
|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Non-Booth Wire Effects

 NumBits

 D
el

ay
 (

ns
)

�

�

�

�
��

��

�

�

�

�

�
�

��

�

�

�

�

��
��

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

|2.2

 NumBits

 R
at

io

��������

�
��

�
��

�

�

�
�

�

�

�
�

�

�

Figure 24: Booth 3: (a) Delays (b)Ratio

The wire contributions for higher order arrays are virtually identical to those of linear
arrays, as can be seen from �gure 24. This is because double linear arrays are a special
case of higher order arrays, and they both use the same counter. In this �gure we notice
that if wires scale at a worst rate than expected then as feature sizes decrease wires delay
contribution approaches that of what would happen if the wire resistance and capacitance
was 25% larger than what their values are. The increase in delay exhibited increases linearly
with decreasing feature size. This is because the wire capacitance does not decrease as fast
expected, so the total capacitance will increase over that of the normal case.

22

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for Higher Order Array (Normal Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

��
��

�

�

�

�

�
�

�
�

�

�

�

�

��
�

�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0
|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

 ����
��

�

�
�������

�

Figure 25: (a) Delays (b)Ratio

4.3.2 Scaling E�ects

Figure 25 compares the latencies of the di�erent encoding schemes if the wires scale as
expected. For higher order arrays the best latency is provided by redundant Booth 3, its
performance advantage increases as the feature size decreases.

Wire resistance is not a factor, and therefore when wire resistance is neglected the
latencies are virtually unchanged.

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0
|18.0

|20.0

 Delay for Higher Order Array (No Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�
��

��

�

�

�

�

��
�

�

�

�

�

�
��

��

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

������
�

�

�������
�

Figure 26: (a) Delays (b)Ratio

Similarly to all the other topologies, when there are no wires Booth 2 provides the best
performance as shown in �gure 26. This is because Booth 2 has no extra delay needed
to generate the 3 times multiple and a simpler selection logic, at the expense of one extra

23

\4-2" counter level when compared to Booth 3 and Redundant Booth 3. And because it
has signi�cantly fewer levels than non-Booth. When the wire capacitance is set to zero
and the simulations are performed again, the latencies for the di�erent encoding schemes
closely resemble those for the case when there are no wires. Therefore, one can conclude
that wire capacitance is the most important parasitic factor for the wires. In the future the
domination of the wires capacitance e�ects is going to increase.

� Booth 2

 Non-Booth
� Booth 3
� redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for Higher Order Array (Slow Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

��
��

�

�

�

�

�
�

�
�

�

�

�

�

��
�

�

� Booth 2

 Non-Booth
� Booth 3
� redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4
|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

 ������
�

�
�������

�

Figure 27: (a) Delays (b)Ratio

For slower wires, redundant Booth 3 provides the best latency. This is because the
topology, higher order arrays, has a a square root dependency between the number of sum-
mands in the array and the number of counter in the critical path. This means that the
number of logic levels is comparable between Booth 2, which has no three times generation
but has more counter levels, and redundant Booth 3, that generate the multiple in a re-
dundant form, and therefore needs less levels. Since these are slow wires, their capacitance
and resistance values are large. This case favors multiplier organizations that have short
wires. As the feature size decreases the wire capacitance value decreases at a slower rate
than the active area capacitance. Therefore, at smaller feature sizes the redundant Booth
3 and Booth 3 will have the largest capacitance reduction, due to their shorter wires, and
there latency improvement will be the greatest.

If the expectations for the wire capacitance and resistance were overly optimistic, than
the advantages for Booth 3 and redundant Booth 3 are magni�ed.

24

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for Higher Order Array (Scalable Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

��
��

�

�

�

�

�
�

�
�

�

�

�

�

��
��

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0
|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

 ������
�

�
�������

�

Figure 28: (a) Delays (b)Ratio

If wires scale at a slower rate than expected, then Booth 3 and redundant Booth 3 will
provide the best latencies at small feature sizes. That is because at smaller features the
wires will be comparable to those of the slow wire case.

4.4 Overturned Staircase Tree

4.4.1 Wire E�ects

This is the �rst topology that makes use of the \3-2" Counter. This has the e�ect that the
number of levels for the tree is increased. This e�ect is counterbalanced by the fact that
overturned-staircase trees give the optimal number of counter levels for almost all number
of summands.

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Booth 2 Wire Effects

 NumBits

 D
el

ay
 (

ns
)

�

�

�

�
��

��

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 NumBits

 R
at

io

��������

�
���

��

�
�

�

�
�

�

��

�

�

Figure 29: Booth 2 : (a) Delays (b) Ratio

25

The E�ects of the wires' capacitance are greater at smaller feature sizes as can be
seen in �gure 29. This is due to the wires capacitance providing a greater portion of
the total capacitance for the circuit at the smaller feature sizes. The wire capacitance is
proportional to both the area and length of the wires, while the capacitance of the transistors
is proportional to the areas Therefore, the capacitance of the wires decreases at a slower rate
than the capacitance of the transistors i.e. the rate of total capacitance reduction is slower
for wires. For extremely small feature sizes the wiring capacitance will become dominated
by the fringing capacitance, which is proportional to the wire lengths. Wire capacitance
e�ects are noticeable because it is a signi�cant portion of the total capacitance.

Surprisingly, the wire resistance is not a signi�cant portion of the delay. This is due
to the resistance of the wires being a small fraction of the total resistance. In addition
as the feature sizes decrease wire resistance values increase slowly, while the resistance of
the transistors also increase but at a slower rate. Therefore at smaller feature the wires
resistance ratio to the total resistance increases slightly, although the increase in value is so
small that its e�ects on total delay are minimal.

If the wires are going to scale at a slower rate, then their latency at smaller feature sizes
is comparable to that of the wires if they are slower by 25%. The increase in the latency is
almost linear. The e�ects of wires are the same for the other three encoding schemes.

4.4.2 Scaling E�ects

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0
|14.0

|16.0

|18.0

|20.0

 Delay for Overturned Staircase Tree (Normal Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

����
���

�
����

���
�

Figure 30: (a) Delays (b)Ratio

If the wires will scale as predicted, then Booth 2 will provide the best latency for Wallace
tree, which have the same number of levels as the Overturned Stair-case tree as shown in
�gure 30. However its latency advantage will decrease at smaller features.

Booth 3 and Redundant Booth 3 show almost the same improvement in this topology
because Booth 3 has longer wires in the three times multiple generation while redundant
Booth 3 has longer wire in the tree. The di�erence in wire lengths almost cancels out each

26

other. The increase in the latency of Booth 3 is due to the more complex generation of the
multiple.

The case when there is only wire capacitance is very similar. This means that wire
resistance is not a signi�cant factor.

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for Overturned Staircase Tree (No Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�
��

��

�

�

�

�

��
�

�

�

�

�

�

��
�

�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0
|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

����
���

� �
������

�

Figure 31: (a) Delays (b)Ratio

When there are no wires the performance advantage for Booth 2 increase. The other
topologies will never approach its performance advantage, as can be seen in �gure 31. This
occurs for similar reasons as the other topologies.

When there is only wire resistance, the curves are very similar to this case. This means
that wire capacitance is the dominate e�ect for wires, and that wire resistance will not
become a factor.

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 Delay for Overturned Staircase Tree (Slow Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

�������� �������
�

Figure 32: (a) Delays (b)Ratio

27

For slow wires, Booth 2 remains the best organization, as can be seen in �gure 32.
This is in contrast to the previous topologies were for slow wires redundant Booth 3 gave
the smallest latency. This is because for OS trees both Booth 2 and redundant Booth 3
have the same number of counter levels, and the increase in wire length for Booth 2 over
redundant Booth 3 contribution to the total delay is less than that caused by the more
complex Booth 3 encoding. However if the wires are extra slow, then at small feature size
redundant Booth 3 will provide the best latency. It provides the best latency although it
has the same number of counter levels as Booth 2 and it has a more complex summand
generation. This is because it has shorter wires, and at the smaller feature sizes when wire
capacitance becomes a more signi�cant part of the total capacitance it will have a smaller
capacitance total than Booth 2.

If wires scale more slowly than expected. Then at smaller feature sizes the best per-
formance will be provided by Booth 2, Booth 3, and redundant Booth 3. With the higher
Booth encoding providing the latency for a smaller area.

4.5 Balanced Delay Tree

This topology uses the \3-2" Counter. This topology has more counter levels than the
Overturned Stair-case tree.

4.5.1 Wire E�ects

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0
|14.0

|16.0

|18.0

 Booth 2 Wire Effects

 NumBits

 D
el

ay
 (

ns
)

�

�

�

�

��
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� No Wires
� Normal Wires

 Slow Wires
 No Wire Resistance
� Scalable Wires

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 NumBits

 R
at

io

��������

�
���

��

��

�
��

�

��

�
�

Figure 33: Booth 2: (a) Delays (b) Ratio

The E�ects of the wires' capacitance are greater at smaller feature sizes as can bee seen
in �gure 33. This is due to the wires capacitance providing a greater portion of the total
capacitance for the circuit at the smaller feature sizes. The wire capacitance is proportional
to both the area and length of the wires, while the capacitance of the transistors is propor-
tional to the areas Therefore, the capacitance of the wires decreases at a slower rate than

28

the capacitance of the transistors i.e. the rate of total capacitance reduction is slower for
wires. For extremely small feature sizes the wiring capacitance will become dominated by
the fringing capacitance, which is proportional to the wire lengths. Wire capacitance e�ects
are noticeable because it is a signi�cant portion of the total capacitance.

Surprisingly, the wire resistance is not a signi�cant portion of the delay. This is due
to the resistance of the wires being a small fraction of the total resistance. In addition
as the feature sizes decrease wire resistance values increase slowly, while the resistance of
the transistors also increase but at a slower rate. Therefore at smaller feature the wires
resistance ratio to the total resistance increases slightly, although the increase in value is so
small that its e�ects on total delay are minimal.

If the wires are going to scale at a slower rate, then their latency at smaller feature sizes
is comparable to that of the wires if they are slower by 25%. The increase in the latency is
almost linear.

The other encoding schemes also exhibit the same characteristics. This is not surprising
since the average wire length for each counter level is the same for all the encoding schemes.

4.5.2 Scaling E�ects

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0
|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

 Delay for Balanced Delay Tree (Normal Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

�������
�

�������
�

Figure 34: (a) Delays (b)Ratio

For balanced delay trees the best performance is provided by Booth 2. Its advantage,
however is not signi�cant over redundant Booth 3 at larger feature sizes and almost non-
existent at the smaller feature sizes. Non-Booth similarly to all the other topologies provides
the worst latency. Wire resistance and capacitance exhibit the same characteristics as for
all the other topologies.

The scaling e�ects for ZM trees are virtually identical to those exhibited by the OS
trees. The only di�erence is that OS trees have smaller delays.

29

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

 Delay for Balanced Delay Tree (Scalable Wires)

 Feature Size

 D
el

ay
 (

ns
)

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

� Booth 2

 Non-Booth
� Booth 3
� Redundant Booth 3

|
0.0

|
0.1

|
0.2

|
0.3

|
0.4

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|0.0
|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 Feature Size

 R
at

io

��������

�������
�

��������

Figure 35: (a) Delays (b)Ratio

If wires scale at a slower rate than expected as shown in �gure 35, then Booth 2 and
redundant Booth 3 will have virtually the same latency. this also occurs if the wires are
slower than expected.

Circuit Type Length Width
(�) (�)

3-2 Counter DPL (Single) 255 100
DPL (Dual) 352 100

4-2 Counter DPL (Single) 385 100
DPL (Dual) 493 100

AND 2 Gate DPL 65 100
Static 52 100

Booth 2 Encoder DPL 151 800
Booth 3 Encoder DPL 238 800
Booth 2 Mux DPL 151 100
Booth 3 Mux DPL 238 100
5 Bit Adder DPL 401 100
56 bit Adder DPL & Static 804 100

Table 2: Subcell Circuit Sizes

4.6 Areas

The areas for each topology and encoding scheme are expressed as a function of the minimum
feature size �. This is because the design is assumed to go through direct feature size
reduction without any major redesign.

30

 Binary Tree

 Double Linear Array

 Higher Order Array

 Overturned Stair-case Tree

 Balanced Delay Tree

||0.0

|20.0

|40.0

|60.0

|80.0

|100.0

|120.0

Booth 2 Booth 3 non-Booth Redundant Booth 3

 A
re

a
(1

,0
00

,0
00

s*
λ2

)

Figure 36: Area for each con�guration

The areas for each subcell used in the design are given in table 2. Non-Booth always has
the largest area, as can be seen from �gure 36. This is because of the large number of sum-
mands required. Booth 3 is always the smallest because it requires the fewest summands.
However, the area for Booth 2 is slightly smaller than or equal to the area for redundant
Booth 3. This is because of the need for an adder in redundant Booth 3 and that the Booth
muxes are larger for Booth 3, which o�sets the savings in area due to the reduction in the
number of counters.

5 Conclusion

Non-Booth is not a viable design. It consistently gives the largest area, and always is one of
the worst in terms of latency. Booth 2 gives the designs with the smallest latency. This is
because an additional adder is not required, and that the best possible reduction in number
of counter levels needed to sum the summands, as achieved by Booth 3, is only 1. Booth 3
produces the smallest designs because they have the least number of summands. Redundant
Booth 3 is not very attractive for tree based designs. It is more suited to standard cell based
designs, in which higher order arrays can be thought of as an extreme case, because the
number of levels is more closely correlated with the number of summands.

As wires continue to account for larger fractions of the total delay, due to decreasing

31

feature size, redundant Booth 3 provides the best best latency. This occurs because of the
shorter wires that are needed by Booth 3 and redundant Booth 3. Without any wires Booth
2 always gives the smallest latency irrespective of the topology chose.

There are no area savings inbuilding redundant Booth 3 compared to Booth 2. The
savings in area due to reduction in the number of counters is o�set by the increase in area
that occurs because of the need to generate the multiple and because of the larger decoders.

The binary tree is the most attractive solution in terms of both area and latency. It
has the smallest latency and area of all the di�erent topologies for all feature sizes. This
occurs because of the new \4-2" counter design which has 3 serial XOR gates instead of the
4 serial that is obtained by the simple contacting of two \3-2" counters. There is also an
area saving when compared to two \3-2" counters.

References

[1] An American National Standard, \IEEE Standard for Floating Point Arithmetic",
ANSI/IEEE standard 754-1985

[2] O.L. McSorley, \High Speed Arithmetic in Binary Computers", Proceedings of the IRE,
49(1), pp. 67-91, Jan. 1961.

[3] S. Vassiliadis, E. Schwarz and B. Sung, \Hard-wired Multipliers with Encoded Partial
Products." IEEE Trans. on Computers, vol 40, No.11, pp. 1181-1197, Nov. 1991.

[4] G. Bewick, \Binary Multiplication Using Partially Redundant Multiples",Technical
Report: CSL-TR-92-528, Stanford University, June 1992.

[5] M. Santoro, \Design and Clocking of VLSI Multipliers", Ph.D. Thesis, Stanford Uni-

versity, Oct. 1989.

[6] D. Zuras and W. McAllister, \Balanced Delay Trees and Combinatorial Division in
VLSI,"IEEE J. Solid-State Circuits, vol SC-21, No.5, pp. 814-819, Oct. 1986.

[7] C. S. Wallace, \A Suggestion for a Fast Multiplier", IEEE Trans. Electronic Computers,
pp. 14-17, Feb. 1964.

[8] Z. Mou and F. Jutand, \A Class of Close to Optimum Adder Trees allowing Regular
and Compact Layout", IEEE Int. Conf. on Computer Design: VLSI in Computers and

Processors, pp.251-254, 1990.

[9] G. McFarland and M. Flynn, \Limits of Scaling MOSFETs", Technical Report: CSL-
TR-95-662 Revised, Stanford University, Nov. 1995.

[10] N. Ohkubo et al., \A 4.4 ns CMOS 54*54-b Multiplier using Pass-Transistor Multi-
plexor", IEEE J. Solid-State Circuits, vol SC-30, No.3, pp. 251-257, Mar. 1995.

32

