
Computer Systems Laboratory

Department of Electrical Engineering
Stanford University, CA 94305

E�cient Multiprocessor Communications:
Networks, Algorithms, Simulation, and Implementation

Yen-Wen Lu

July 1996

Technical Report No. CSL-TR-96-699

(Technical Report No. STAR-1DEH694-1996-1)

E�cient Multiprocessor Communications:

Networks, Algorithms, Simulation, and Implementation

By

Yen-Wen Lu

July 1996

Technical Report No. CSL-TR-96-699

(Technical Report No. STAR-1DEH694-1996-1)

Department of Electrical Engineering

Stanford University, CA 94305

c
 Copyright by Yen-Wen Lu 1996

All Rights Reserved

ii

This report constitutes a Ph.D. dissertation submitted to

Stanford University.

iii

Abstract

As technology and processing power continue to improve, inter-processor communication

becomes a performance bottleneck in a multiprocessor network. In this dissertation, an

enhanced 2-D torus with segmented recon�gurable bus (SRB) to overcome the delay due

to long distance communications was proposed and analyzed. A procedure of selecting an

optimal segment length and segment alignment based on minimizing the lifetime of a packet

and reducing the interaction between segments was developed to design a SRB network.

Simulation shows that a torus with SRB is more than twice as e�cient as a traditional torus.

E�cient use of channel bandwidth is an important issue in improving network perform-

ance. The communication links between two adjacent nodes can be organized as a pair of

opposite uni-directional channels, or combined into a single bi-directional channel. A mod-

i�ed channel arbitration scheme with hidden delay, called \token-exchange," was designed

for the bi-directional channel con�guration. In spite of the overhead of channel arbitration,

simulation shows that bi-directional channels have signi�cantly better latency-throughput

performance and can sustain higher data bandwidth relative to uni-directional channels of

the same channel width. For example, under 2% hot-spot tra�c, bi-directional channels can

support 80% more bandwidth without saturation compared with uni-directional channels.

An e�cient, low power, wormhole data router chip for 2-D mesh and torus networks with

bi-directional channels and token-exchange arbitration was designed and implemented. The

token-exchange delay is fully hidden and no latency penalty occurs when there is no tra�c

contention; the token-exchange delay is also negligible when the contention is high. Distrib-

uted decoders and arbiters are provided for each of four IO ports, and a fully-connected 5�6

crossbar switch increases parallelism of data routing. The router also provides special hard-

ware such as
exible header decoding and switching to support path-basedmulticasting. From

measured results, multicasting with two destinations used only 1/3 of the energy required

for unicasting. The wormhole router was fabricated using MOSIS/HP 0.6�m technology. It

delivers 1.6Gb/s (50MHz) @ Vdd=2.1V, consuming an average power of 15mW.

iv

Acknowledgments

I would like to thank my parents, to whom this dissertation is dedicated, for their uncon-

ditional support throughout my education. Without their encouragement, it would not be

possible for me to achieve my goals.

I would like to express my deepest gratitude to my advisors, Professor Allen Peterson and

Professor Len Tyler. Professor Peterson had given me a tremendous amount of support and

guidance during my �rst three years at Stanford. Professor Tyler has been very patient with

me for preparing my oral defense and this dissertation. I especially thank him for the time and

e�ort he put into helping me clarify and correct many important points in this dissertation.

I would like to thank Professor Michael Godfrey for letting us use his laboratory to do the

chip testing and for helping us resolve all the related problems. I would also like to thank

Professor Teresa Meng, Professor John Gill, and Professor Fabian Pease for serving in my

reading and oral committees.

I have been fortunate to work with my colleagues in the Space, Telecommunications, and

Radioscience Laboratory, and the Ultra Low Power group. Jim Burr has helped me a great

deal in the direction of my research and projects. Gerard Yeh, my partner of the STARP

project, is always eager to help me solve problems, and it is a pleasant experience to work

with him. I would like to thank Bevan Baas for many discussions of all di�erent topics.

I would also like to thank the visiting scholars, Masataka Matsui and Kallol Bagchi, for

broadening my background and knowledge.

Last but not least, I would like to thank my wife, Woan-Yu, for her loving support and

understanding. She has accompanied me for countless hours to �nish my projects over the

last few years.

My research was supported by Intel, NASA, Toshiba, and the department of Electrical

Engineering, Stanford University. They are all gratefully acknowledged.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Multiprocessor Speedup : 2

1.1.1 Speedup with a �xed load : 2

1.1.2 Speedup with �xed execution time : : : : : : : : : : : : : : : : : : : 3

1.2 Multiprocessor Networks : 5

1.3 Multiprocessor Communications : 5

1.4 An Overview of the Research : 7

2 Network Interconnection 9

2.1 Properties of Network Topology : 9

2.2 Network Examples : 11

2.3 Network Category : 15

3 Routing Flow Control 19

3.1 Desired Routing Properties : 19

3.2 Routing Flow Control Schemes : 21

3.3 Virtual Channel : 24

3.3.1 Virtual Channel Con�guration : 25

3.3.2 Dynamically Allocated Multi-Queue : : : : : : : : : : : : : : : : : : : 26

3.4 Uni-directional versus Bi-directional Channel : : : : : : : : : : : : : : : : : : 27

3.4.1 Token Exchange for Bi-directional Channels : : : : : : : : : : : : : : 27

vi

4 Wormhole Routing Algorithms 31

4.1 Deterministic Routing : 33

4.2 Fully Adaptive Routing : 35

4.2.1 Virtual Network Algorithm : 37

4.2.2 Dimension Reversal Algorithm : 41

4.2.3 Star-Channel Algorithm : 43

4.2.4 Extended Channel Dependency : 44

4.3 Partially Adaptive Routing : 48

4.3.1 Planar Algorithm : 48

4.3.2 The Turn Model : 49

4.4 Randomized Routing : 51

4.5 Multicast Routing : 54

4.5.1 Unicast-based Multicasting : 55

4.5.2 Tree-Based Multicasting : 55

4.5.3 Path-Based Multicasting : 58

5 Wormhole Routing Simulation 61

5.1 Simulation Models : 61

5.1.1 Network Model : 61

5.1.2 Node Model : 62

5.1.3 Link Model : 66

5.1.4 Tra�c Model : 67

5.2 Simulation Flow : 67

5.3 Performance Measurement : 68

5.4 Simulation Results : 69

6 Segmented Recon�gurable Bus 87

6.1 SRB Architecture Overview : 88

6.2 Routing Algorithms for Di�erent Torus Architectures : : : : : : : : : : : : : 89

6.2.1 Torus with Links Only : 89

6.2.2 Torus with Global Buses : 89

6.2.3 Torus with Recon�gurable Buses : 92

6.2.4 Torus with Segmented Recon�gurable Buses : : : : : : : : : : : : : : 93

6.3 Interconnection Delay : 94

vii

6.3.1 Link model : 95

6.3.2 Long wire model : 96

6.3.3 Bus model : 96

6.3.4 Transmission gate model : 97

6.3.5 Repeater model : 98

6.3.6 Delay Comparison : 99

6.4 SRB Simulation and Comparison : 101

6.4.1 Simulation Results : 105

6.4.2 Discussion : 106

6.5 SRB Optimization : 108

6.5.1 Optimal Segment Length : 108

6.5.2 Optimal Segment Alignment : 110

6.6 Summary : 115

7 Wormhole Router Design 119

7.1 Network Architecture : 119

7.1.1 Network Review : 119

7.1.2 STARP Network Architecture : 120

7.2 Previous Router Designs : 122

7.3 Data Format of Di�erent Levels : 122

7.3.1 Channel Format : 123

7.3.2 Packet Format : 124

7.3.3 Flit Format : 125

7.4 Router Architecture : 126

7.4.1 Host Interface : 126

7.4.2 Port Architecture : 128

7.4.3 Crossbar Switch Architecture : 132

7.5 Router Timing : 134

7.5.1 I/O Timing : 134

7.5.2 Router Core Timing : 138

7.6 Router Instruction Sets : 142

7.6.1 Status Instructions : 143

7.6.2 Packet Instructions : 144

viii

7.6.3 Instruction Examples : 145

7.7 Chip Implementation : 147

7.7.1 Design Methodology : 147

7.7.2 Circuit Issues : 149

7.7.3 Chip Fabrication : 153

7.8 Testing Issues : 153

7.8.1 Loop-back Mode Testing : 153

7.8.2 Tester Setup : 153

7.8.3 Testing Results : 155

7.9 Summary : 156

8 Contributions and Suggestions for Future Work 161

8.1 Contributions : 161

8.2 Suggestions for Future Work : 162

References 164

ix

List of Tables

2.1 Summary of network properties : 17

2.2 Topologies of existing parallel systems : 18

5.1 Virtual channel bu�er allocation for di�erent routing algorithms in a 2-D torus. 71

6.1 Comparison of di�erent torus architectures : : : : : : : : : : : : : : : : : : : 105

6.2 Alignment metric �, � = :5, � = 2, N = 60, segment length=15 : : : : : : : 115

6.3 Average latency (completion steps),N = 60, segment length=15, bu�er size=10.117

6.4 Optimal segment alignment for di�erent segment length : : : : : : : : : : : : 117

7.1 Topologies of existing parallel systems : 120

7.2 Some previous wormhole router designs : 123

7.3 Comparison of 2-stage CR and fully-connected CR : : : : : : : : : : : : : : 133

7.4 Summary of status instructions modes : 144

7.5 Estimated power and area allocation of the router in STARP : : : : : : : : : 159

7.6 STARP wormhole router summary : 159

x

List of Figures

1.1 Amdahl's Law. Speedup with a �xed load : : : : : : : : : : : : : : : : : : : 3

1.2 Gustafson's Law. Speedup with �xed time : : : : : : : : : : : : : : : : : : : 4

1.3 Multiprocessor networks. : 5

1.4 Total execution time is composed of computation time and communication time 6

1.5 An example of tra�c contention. : 7

2.1 Linear Array and Ring : 11

2.2 Tree Networks : 12

2.3 Hypercube and CCC : 13

2.4 2-D Mesh and Torus : 14

2.5 Bus Networks : 15

2.6 Some multi-stage networks examples : 16

2.7 Crossbar Network : 16

3.1 An example of deadlock. : 20

3.2 Latency comparison of di�erent
ow control schemes : : : : : : : : : : : : : 23

3.3 FIFO queue con�gurations. : 25

3.4 Channel con�guration : 28

3.5 Token exchange state diagram : 29

3.6 Token exchange timing diagram : 29

4.1 Channel ci has a source node si and destination node di : : : : : : : : : : : : 31

4.2 Relation between network graph G and channel dependency D. : : : : : : : : 33

4.3 Deadlock avoidance by adding virtual channels : : : : : : : : : : : : : : : : : 34

4.4 Examples of dimension-order routing in a 2-D torus. : : : : : : : : : : : : : : 36

4.5 Two virtual networks in a 2-D torus : 38

xi

4.6 Expanding a virtual network to three logical levels in a 2-D torus : : : : : : 38

4.7 Examples of Virtual Network routing on the negative network in a 2-D torus. 40

4.8 A packets is routed from (2,1) to (0,3) on the negative virtual network in a

2-D torus. : 41

4.9 Examples of Star-Channel routing in a 2-D torus. : : : : : : : : : : : : : : : 45

4.10 Indirect channel dependency from ci to cj . : : : : : : : : : : : : : : : : : : : 47

4.11 Two di�erent possible ways to break cyclic dependency in a 2-D mesh : : : : 50

4.12 Examples of paths for the negative-�rst algorithm of the Turn model in a 2-D

mesh : 50

4.13 Derouting in a 2-D array when a packet is blocked. : : : : : : : : : : : : : : 52

4.14 Latency penalty due to derouting in a 16 � 16 2-D torus : : : : : : : : : : : 55

4.15 Examples of di�erent multicasting schemes. : : : : : : : : : : : : : : : : : : 56

4.16 Deadlock con�guration in tree-based multicasting : : : : : : : : : : : : : : : 58

4.17 Two di�erent mapping to construct Hamiltonian paths in a 2-D mesh : : : : 59

4.18 Partition of a 2-D mesh based on the Hamiltonian path : : : : : : : : : : : : 60

5.1 Internal router node architecture model : 63

5.2 Wavefront arbitration. : 65

5.3 Link model : 66

5.4 Simulation Flow : 69

5.5 Delay components in the simulation model : : : : : : : : : : : : : : : : : : : 70

5.6 Latency versus throughput for di�erent routing algorithms under uniform ran-

dom tra�c : 76

5.7 Latency versus throughput for di�erent routing algorithms under transpose

tra�c : 77

5.8 Latency versus throughput for di�erent routing algorithms under Hot-spot tra�c 78

5.9 Latency versus throughput for di�erent routing algorithms under uniform ran-

dom tra�c. Comparison of uni- and bi-directional channels : : : : : : : : : : 79

5.10 Latency versus throughput for di�erent routing algorithms under Hot-spot

tra�c. Comparison of uni- and bi-directional channels : : : : : : : : : : : : : 80

5.11 Latency versus throughput for di�erent virtual channel bu�er sizes. Determ-

inistic routing under uniform random tra�c : : : : : : : : : : : : : : : : : : 81

xii

5.12 Latency for di�erent packet length. Uni-directional channels. Deterministic

routing under uniform random tra�c. : 82

5.13 Latency versus throughput for di�erent routing algorithms under uniform ran-

dom tra�c. : 83

5.14 Latency versus throughput for di�erent routing algorithms under transpose

tra�c. : 84

5.15 Interleaving
its from di�erent packets will insert idle cycles in the packets

when they continue to the next node. : 85

6.1 Torus structure with links and recon�gurable buses. : : : : : : : : : : : : : : 88

6.2 Adjacent segments share a common end points. : : : : : : : : : : : : : : : : 89

6.3 Torus with segmented recon�gurable bus, segment length=5, shift=2, o�set=2. 90

6.4 Torus with global bus : 91

6.5 A node of the torus with recon�gurable bus. : : : : : : : : : : : : : : : : : : 93

6.6 Wrap-around connections in a torus with SRB : : : : : : : : : : : : : : : : : 94

6.7 Transistor layout model : 95

6.8 Link model, where the wire is modeled by distributed RC : : : : : : : : : : : 96

6.9 Bus model, where the parameters are the same as link model : : : : : : : : : 97

6.10 (a) Transmission gate model, (b) Transmission gate interconnection, (c) Trans-

mission gate interconnection model : 98

6.11 (a) repeater model, (b) repeater interconnection, (c) repeater interconnection

model : 99

6.12 Delay versus transistor width x for a �xed width z : : : : : : : : : : : : : : 101

6.13 Delay versus transistor width z for a �xed width x : : : : : : : : : : : : : : 102

6.14 Delay versus N : 102

6.15 Delay versus N , excluding transmission gate : : : : : : : : : : : : : : : : : : 103

6.16 Delay versus large N : 103

6.17 Latency versus N : 104

6.18 Throughput versus N : 104

6.19 Average steps versus N : 106

6.20 Average steps versus bu�er size, N = 80, segment length=10 for Torus SRB 107

6.21 Analysis and simulation of segment length. : : : : : : : : : : : : : : : : : : : 111

xiii

6.22 Examples of segment alignment, L = 15, (a) shift=4, o�set=6, (b) shift=5,

o�set=3. : 116

7.1 Network architecture of STARP : 122

7.2 Channel format : 123

7.3 Packet format : 124

7.4 Flit format : 125

7.5 Global router architecture : 127

7.6 Host interface architecture : 128

7.7 Router port architecture, only one port is shown : : : : : : : : : : : : : : : : 129

7.8 Channel hand-shaking in the packet level. : 130

7.9 State diagram of the header decoder : 131

7.10 Two di�erent crossbar architectures : 133

7.11 I/O control and channel timing diagram : 135

7.12 Token-exchange interface circuit diagram : 136

7.13 Token-exchange state diagram : 136

7.14 Token-exchange timing diagram : 137

7.15 Header decoder timing diagram : 139

7.16 Arbiter timing diagram : 140

7.17 Crossbar timing diagram. : 141

7.18 Router core timing diagram : 142

7.19 Design methodology and
ow of STARP : 148

7.20 CMOS inverter model. : 149

7.21 Crossbar switch circuits. : 150

7.22 Dynamic crossbar switch with a PMOS keeper at the output to prevent leakage151

7.23 Crossbar switch
oor plan : 152

7.24 STARP chip micrograph : 154

7.25 Loop-back mode test : 155

7.26 Chip measurement results : 157

7.27 Core energy�delay vs. Vdd : 158

7.28 Performance improvement vs. well bias : 158

xiv

Chapter 1

Introduction

The demand for more powerful computation is increasing rapidly in many di�erent �elds.

For example, high-de�nition television (HDTV) with 2K � 1K pixels per frame and a frame

rate of 60 frames per second will require at least 100 GOPS (1 � 1011 operations/sec) for

video compression. With higher quality and larger image size, the computation requirement

falls easily in the Tera OPS (1� 1012 operations/sec) range. Facing this exploding demand,

we will ask where the computation power comes from.

Di�erent advanced techniques and computing models have been proposed and implemen-

ted to improve computational capability (Hennessy and Patterson, 1996). These computing

models have di�erent approaches and e�ciency, but they all achieve their goals by increasing

the concurrency of the system to some degree.

Pipelining

A serial computation can be divided into a number of steps, called stages. Each stage

works at full speed on a particular part of computation. The output of one stage is

the input of the next stage. With proper balance of the delay of each stage, data are

fed continuously into the pipelined stages and all stages can operate concurrently with

di�erent sets of input to maximize the computation throughput.

Superscalar

When a pipeline reaches its maximum capacity, more functional units must be added

in parallel to increase performance. Machines that can issue multiple independent

instructions per cycle are superscalar machines. Di�erent instructions can use di�erent

1

2 CHAPTER 1. INTRODUCTION

functional blocks and execute in separate pipelines concurrently if there is no hardware

con
ict. Therefore, a superscalar machine increases the parallelism in a processor to

achieve more computation in a shorter time.

Massively Parallel Processing (MPP)

After we consume the computation power of a single processor, the next step is to

combine more processors to solve problems together. Massively parallel processing

represents the ultimate approach to achieving the limits of computation.

Parallel processing provides signi�cant computational advantages for many scienti�c, sig-

nal processing, and image processing applications. However, it took more than 20 years for

parallel computers to move from laboratory to marketplace. Even with today's most ad-

vanced technology, many challenges remain. Computation is not the only concern, however,

as other issues are becoming bottlenecks. For example, as a parallel system grows, inter-

processor communication may eventually dominate overall system performance. Having no-

ticed the increasing importance of inter-processor communication, realizing its potential to

limit the improvement of a parallel system, we take the question of optimal multiprocessor

communication as the central problem of this dissertation.

1.1 Multiprocessor Speedup

When we have a multiprocessor system, a natural question to ask is how much performance

gain we can get from the system. Speedup performance models were de�ned to answer this

question quantitatively.

1.1.1 Speedup with a �xed load

The most common speedup model is that of the \�xed-load", which has a �xed problem

size and workload. As the number of processors increases, the �xed load is distributed to

all the processors in the system. Let T (1) be the time required to �nish the problem in one

processor, and T (n) be the time for n processors. Then the speedup factor for the �xed load

is de�ned as

Sn =
T (1)

T (n)
(1.1)

1.1. MULTIPROCESSOR SPEEDUP 3

0

5

10

15

20

25

30

5 10 15 20 25 30

S
pe

ed
up

Number of processors

Speedup with a fixed load

1% sequential
10% sequential
20% sequential

Figure 1.1: Amdahl's Law. Speedup with a �xed load

Amdahl's law is used to �nd the speedup factor for a �xed load. Usually the total

workloadW is assumed to consist of two parts: Ws is the sequential portion of the program

which cannot be parallelized, and Wp is the portion which can be parallelized and evenly

distributed in all available processors. The speedup factor Sn can be written as

Sn =
W

Ws +Wp=n
=

Ws +Wp

Ws +Wp=n
(1.2)

When n ! 1, Sn ! W=Ws. So the speedup is bounded by W=Ws and cannot go further

even we have more processors. Fig. 1.1 shows the speedup versus the number of processors

for a �xed load. When we have 10% of a program which cannot be parallelized, the speedup

curve is very
at after we have more than about 20 processors. So the sequential part becomes

the performance bottleneck.

1.1.2 Speedup with �xed execution time

The problem with Amdahl's law is that the workload cannot scale with the number of pro-

cessors to fully utilize the available computing power, and we get a very low speedup factor.

Gustafason (1988) proposed a �xed-time speedup model to scale the problem size.

Assuming the total workW (1) = Ws+Wp for one processor can be done in time T , for n

4 CHAPTER 1. INTRODUCTION

0

5

10

15

20

25

30

5 10 15 20 25 30

S
pe

ed
up

Number of processors

Speedup with fixed time

1% sequential
10% sequential
20% sequential

Figure 1.2: Gustafson's Law. Speedup with �xed time

processors, we can �nish the total workloadW (n) = Ws+ nWp in the same amount of time.

Therefore, the speedup Sn can be de�ned as

Sn =
W (n)

W (1)
(1.3)

=
Ws + nWp

Ws +Wp

Fig. 1.2 shows the speedup for the �xed-time model. With �xed-time characteristics, a

very good speedup factor is achieved even when the sequential portion is as high as 20%.

Because we have scaled the problem size, we can utilize more computing power by keeping

all processors busy.

Gustafson's law gives us insight to design our own parallel machine for image/video

processing (Chapter 7). When we have a �xed image size, the bene�t of increasing the

network size to solve the problem is small when we have a \su�cient" network size.1 But

if we are dealing with a larger image size, we should scale our network size to match the

workload, and thereby maintain a very high speedup factor.

1\Su�cient" means that the time a processor spends in the parallel portion is about the same as the time
in the sequential part.

1.2. MULTIPROCESSOR NETWORKS 5

Network

Interconnection

R

R
R

N

N
N

Figure 1.3: Multiprocessor networks. Communication occurs between nodes (processors

and/or memory). N is the node and R is the data router.

1.2 Multiprocessor Networks

A multiprocessor network is used to connect all processing elements, memory modules, and

periphery devices, and to make them work together. Fig. 1.3 illustrates a general multi-

processor network. The interconnection network is the backbone of a parallel system. All

nodes collaborate with each other through the interconnection network. Chapter 2 will give

an overview of interconnection networks and di�erent network examples.

1.3 Multiprocessor Communications

Fig. 1.4 shows the total execution time of a parallel machine in terms of its two components:

computation and communication. We assume that the computation can be parallelized com-

pletely, and that the computation time is inversely proportional to the number of processors.

Communication time, however, is linear with the number of processors. As the number of

processors increases, the computation time decreases dramatically. However, the communic-

ation time increases steadily and becomes dominant �nally. Therefore, the communication

overhead plays an important role in the overall system performance.

In fact, when tra�c contention in a network occurs, the communication time will increase

more than linearly with the number of processors. Fig. 1.5 illustrates a simple example of

6 CHAPTER 1. INTRODUCTION

0

20

40

60

80

100

120

5 10 15 20 25 30

T
im

e

Number of processors

Computation
Communication

Total

Figure 1.4: Total execution time is composed of computation time and communication time

tra�c contention. Assume nodes A, B, C have data sent to nodes C, D, E, respectively. The

channel setup time is t for each hop and data transmission will occupy the channel for nt

where n is the packet length. The intermediate nodes can begin to forward the data to the

next nodes immediately after they receive the data.2 Without any tra�c contention, the data

routing can be �nished at time nt (assume n � 1 to ignore the channel setup time). But

data moving from node A to C and data moving from B to D will compete for the link BC.

Similar contention occurs on link CD. So if nodes A, B, C start to send their data at the

same time, the data routing cannot be completed until time � 3nt. However, if we can delay

node B to send its data till time � nt, then there is no contention between path A ! C and

C! E, and the data routing will be �nished at time � 2nt. This simple example shows how

the routing latency can be varied due to di�erent degrees of tra�c contention.

2We assume the wormhole routing
ow control. The detail of
ow control schemes will be given in
Chapter 3.

1.4. AN OVERVIEW OF THE RESEARCH 7

BA C D F

Figure 1.5: An example of tra�c contention. Node A to node C, B to D, and C to E. There

is tra�c contention on link BC and CD.

1.4 An Overview of the Research

In the rest of this dissertation, we will discuss in detail the inter-processor communication

issues in parallel systems for which the design goals for an e�cient inter-processor com-

munication architecture are high data throughput, low routing latency, low communication

energy, and low implementation cost. Chapter 2 gives an overview of network properties and

examples of di�erent network topologies. Chapter 3 introduces
ow control schemes, vir-

tual channels, and channel con�gurations. Chapter 4 describes wormhole routing algorithms

including deterministic, fully adaptive, partially adaptive, and multicasting algorithms. Sim-

ulation results of di�erent routing algorithms and channel con�gurations are given in Chapter

5. An enhanced mesh or torus architecture with segmented recon�gurable bus (SRB) is in-

troduced in Chapter 6, where also gives an optimization procedure for a torus with SRB.

Chapter 7 describes the detail design and implementation of a VLSI wormhole data router

for a 2-D mesh or torus. It implements bi-directional channels, dimension-order data routing,

and hardware supported path-based multicasting. A completed chip implementation delivers

1.6Gb/s (50MHz) @ Vdd=2.1V and consumes an average power of 15mW. Finally, Chapter

8 summarizes the contributions of this dissertation and suggests some future work in this

�eld.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Network Interconnection

A multiprocessor network comprises nodes and communication channels, and can be repres-

ented by a uni-directional graph G = (N;C), with vertices N = fn1; n2; : : : ; nmg corres-

ponding to the nodes and edges C = fc1; c2; : : : ; cng corresponding to the communication

links between nodes. An e�cient network for multiprocessors should be able to utilize the

hardware resources e�ectively. Network performance usually is measured by latency and

throughput: latency is the time required for a message to be delivered from source to des-

tination; throughput is the data rate which is maintained in the network. Both latency and

throughput are strongly dependent on the network topology and the routing algorithm em-

ployed. In this chapter, we will describe some properties of a network and introduce di�erent

network topologies.

2.1 Properties of Network Topology

There are several network properties that are directly related to network performance and

complexity (Hwang, 1993). We will describe these network properties in this section and

compare these properties for di�erent networks in the next section.

Network Diameter

The network diameter is the maximum shortest path between any two nodes in the

network. The diameter is the indication of the worst case latency when the tra�c load

is low. A designer should keep the network diameter small to reduce latency.

9

10 CHAPTER 2. NETWORK INTERCONNECTION

Bisection Width

The network bisection width is the minimum number of channels required to be removed

to cut the network into two equal-sized parts. Therefore, the bisection width is related

to the maximum communication bandwidth supported between two separated parts in

the network.

Number of Links

The total number of links is related to the maximum total bandwidth provided in a

network. In an ideal case, all the links can be used for transmitting data at the same

time; this would achieve the peak throughput of the network. So the number of links

is an indication of degree of concurrency of communications. The number of links also

a�ects the cost of the network interconnection.

Node Degree

The node degree is the number of IO ports associated with each node in the network.

When we design a scalable network, we would like to have the node degree independent

of the network size to reduce the cost. Limited wire density and pin count in the current

VLSI packaging technology restrict the node degree in feasible networks.

Symmetry

A network is symmetric if it is isomorphic to itself with any node used as the origin.

Thus, in a symmetric network, the network is the same seen from any node. For uniform

tra�c, a symmetric network has the same tra�c loading in all channels, and \hot-spot"

e�ects, which may occur in an asymmetric network, are reduced.

Network Mapping

No matter what form of network we design, we need to map the network onto a two-

or three-dimensional space for implementation. This network mapping directly a�ects

the physical channel width and wire length. Thus propagation delay, clock speed, and

transmission power all depend on the network mapping.

Data Routing

Data routing is the basic function performed by a network. Di�erent network topologies

have di�erent characteristics as described above, as well as di�erent node addressing,

2.2. NETWORK EXAMPLES 11

(a) Linear Array (b) Ring

Figure 2.1: Linear Array and Ring

communication paths, and channel dependency. Therefore, di�erent data routing al-

gorithms are needed to match the di�erent topologies.

Scalability

Ideally, the network performance should be scaled linearly with an increasing number of

processors employed. For example, the network bisection width should be scaled with

the network size to support su�cient communication bandwidth for the increased tra�c.

For a scalable network, the node degree should be constant, the networkmapping should

be compact, and the data routing should be identical for di�erent size of networks.

2.2 Network Examples

In this section, we will give a brief description of some popular networks and compare their

characteristics as de�ned in the previous section.

Linear Array and Ring

Fig. 2.1 shows the topology of a linear array and ring. Linear arrays and rings are very

simple and low-cost, but long diameter and low bisection width causes the latency to

increase exponentially as the number of nodes increases, due to tra�c contention.

Tree

A binary tree is shown in Fig. 2.2(a). A tree is made up a root, intermediate nodes, and

leaves. Long relative distances between leaves on di�erent branches and low bisection

width are the main drawbacks of a tree network. Fat trees (Fig. 2.2(b)) have been

proposed to increase the bandwidth as we ascend from leaves to the root and then

reduce tra�c contention near the root. Another variation of the tree structure is the

12 CHAPTER 2. NETWORK INTERCONNECTION

(a) Binary Tree (b) Fat Tree

(c) X-Tree

Figure 2.2: Tree Networks

\X-tree" (Fig. 2.2(c)). In an X-tree network, all the nodes at the same level are also

connected in a ring to reduce the communication across levels and the bottleneck near

the tree root. The tree structures are not only limited to binary connections. The

structures can be extended to multiway trees.

Hypercube and Cube-Connected Cycle (CCC)

In general, a hypercube is an n-cube with N = 2n nodes. There are n dimensions

with two nodes per dimension. An order n hypercube can be constructed from two

order n � 1 hypercubes, but the node degree increases from n � 1 to n (Fig. 2.3(a)).

That the node degree depends on the network size makes hypercubes unscalable. A

cube-connected cycle (CCC) is a variation of hypercubes. An n-dimensional CCC is a

n-cube in which each vertex is replaced by a cycle of n nodes. Therefore, an n-CCC

has N = n2n nodes, and a longer network diameter, but a constant node degree of 3.

Fig. 2.3(b) shows a 3-cube topology.

2.2. NETWORK EXAMPLES 13

(a) Construct a 4-cube from two 3-cubes (b) 3-CCC

Figure 2.3: Hypercube and CCC

2-D Mesh and Torus

Fig. 2.4 shows the topology of a 2-D mesh and torus. A torus is basically a mesh with

wrap-around connections in each row and column to reduce the network diameter. A

folded torus, shown in Fig. 2.4(c), can be laidout easily without the long wrap-around

connections which increase the propagation delay. 2-D meshes and tori are becoming

popular due to their simplicity, regularity, scalability, and feasibility.

k-ary n-cube

This is a very general network topology with n dimensions and k nodes per dimen-

sion. Linear arrays, rings, hypercubes, meshes, and tori all belong to this family.

Several researchers have produced results in favor of low-dimensional networks. Un-

der the assumption of constant wire bisection width, Dally (1990b) has shown that

two-dimensional k-ary n-cube networks can o�er the minimum latency with a linear

wire delay model. Agarwal (1991) also showed that three or four-dimensional networks

perform best under some other constraints, e.g., �xed node size, considerable switching

delay, and so on. Several new generationmultiprocessors have chosen the k-ary n-cubes

family as their interconnection.

14 CHAPTER 2. NETWORK INTERCONNECTION

(a) Mesh (b) Torus (c) Folded Torus

Figure 2.4: 2-D Mesh and Torus

Shared Bus

A shared bus is a very simple way to connect several hosts together (Fig. 2.5(a)). A bus

is usually heavily loaded, has long propagation delay, and consumes more energy than

other types of interconnections. Bus arbitration needs to be considered because only

one node at a time can use the bus. The bus bandwidth is shared among multiple nodes

and the tra�c contention may become serious when the number of nodes increases. A

hierarchical bus structure has been proposed to increase utilization and bandwidth, and

to reduce contention (Fig. 2.5(b))(Mahnud, 1994).

Multi-stage Network

A multi-stage interconnect network (MIN) consists of more than one stage of switch

elements which can be set up dynamically according to tra�c requests. Processing

nodes (or memory) are located at the ends of the MIN, and tra�c is routed from one

end to the other. Di�erent switch \fabrics" and interstage connections have been pro-

posed (Tobagi, 1990; Fen, 1981). Some examples are the Omega (or Shu�e-Exchange),

Butter
y, and Baseline networks, etc., pictured in Fig. 2.6. We should note that some

multi-stage networks are actually equivalent, for instance, Fig. 2.6 (a) is equivalent to

(b) with some nodes in the middle stage re-ordered. All the paths in a MIN have the

2.3. NETWORK CATEGORY 15

(a) Shared Bus

SWSW

(b) Hierarchical Bus

Figure 2.5: Bus Networks

same latency, so the designer cannot take advantage of data locality in most applica-

tions.

Crossbar

A crossbar switch is an interconnection in which each input is connected to each output

through a path that contains a single switching node (Fig. 2.7). It o�ers the least tra�c

contention, but has the highest complexity. The cost is proportional to N2 where N is

the network size. Because of the high cost, the crossbar network is not very scalable in

a large system.

Table 2.1 provides a summary of network characteristics, showing the relation between

key physical properties and network size for di�erent network topologies. Table 2.2 surveys

the topologies used in some parallel systems. Most of the recent multiprocessor systems

have chosen the low dimensional k-ary n-cube as the network interconnection because of its

scalability for high bandwidth, regularity for easier data routing, and simplicity for e�cient

implementation.

2.3 Network Category

Networks also can be categorized based on interconnection status or node functionality. A

network interconnection can be either static or dynamic. Static networks such as meshes and

k-ary n-cubes have all their connections �xed without changing during execution. On the

16 CHAPTER 2. NETWORK INTERCONNECTION

1

2

3

4

(a) Omega network

1

4

2

3

(b) Butter
y network

(c) Baseline network

Figure 2.6: Some multi-stage networks examples

In
pu

t

Output

Figure 2.7: Crossbar Network

2.3. NETWORK CATEGORY 17

Network size diameter bisection number node symmetry

width of links degree

Linear Array N N � 1 1 N � 1 2 No

Ring N bN=2c 1 N 2 Yes

Binary Tree N = 2n � 1 2(n� 1) 1 N � 1 3 No

Hypercube N = 2n n 2n�1 nN=2 n Yes

CCC N = n2n 2n� 1 + bn=2c 2n�1 3N=2 3 Yes

2-D Mesh N = k2 2(k� 1) k 2(N � k) 4 No

2-D Torus N = k2 2bk=2c 2k 2N 4 Yes

k-ary n-cube N = kn nbk=2c 2kn�1 nN 2n Yes

Shared Bus N 1 1 1 1 Yes

Omega N lgN + 1 N=2 N(lgN + 1) 4 No

Crossbar N 2 N N 2 Yes

Table 2.1: Summary of network properties

other hand, dynamic networks may change their channel con�guration during the running

time depending on data routing requirement, for example, multi-stage networks.

A network con�guration also can be either direct or indirect. In a direct network, all the

nodes are the processing units as well as switching elements, i.e., the communication channels

connect processors directly. Unlike direct networks, indirect networks have some intermediate

nodes used for switching only. In this case, messages between processing nodes are routed

through the paths set up by switching nodes. A dynamic network is usually an indirect

network; for example, a multi-stage network often has its processors or memory at both ends

of the network, and has the intermediate stages as switches. A dynamic network also can

be a direct network; for example, a recon�gurable mesh may change its connections to the

neighbors even though all the nodes are the processing units. Similarly, a static network can

be either a direct or indirect network; for instance, a tree network is a direct network if all the

nodes are processors, but is an indirect network if only the leaves of the tree are processors.

18 CHAPTER 2. NETWORK INTERCONNECTION

Machine Year Topology Remarks

CMU/C.mmp 1972 Crossbar 16 processors � 16 memory

Caltech/Cosmic Cube 1983 Hypercube 64 nodes connected in a binary 6-cube

Intel/iPSC 1985 Hypercube 7 I/O ports form a 7-dim hypercube

IBM/RP3 1985 Omega 512 processors. The interconnect consists of

2 networks. A network with 128 ports (4 levels

of 4� 4). A combining network with 64 ports

(6 levels of 2� 2)

TMC/CM-2 1987 Hypercube CM-2 is made of 8 subcubes. Each subcube

contains 16 matrix boards. A matrix board

has 512 processors

Cray/Y-MP 1988 Multi-stage 8 processors and 256 memory modules

Crossbar connected by 4� 4 and 8� 8 switches and

1� 8 demux

BBN/Butter
y 1989 Butter
y A 3-stage 512� 512 butter
y network

constructed by 8� 8 switches for a

512 processors system

TMC/CM-5 1991 Fat tree 32 to 1024 processors (max. 16384 proc)

bisection width of 1024 nodes is 5GB/s

KSR-1 1991 Fat tree 2 levels of ALLCACHE Engine hierarchy.

The ALLCACHE Engine is the fat tree

topology. Eng:0 has bandwidth 1GB/s,

Eng:1 has 1, 2, or 4GB/s

Intel/Paragon 1991 2-D Mesh Link bandwidth: 175MB/s full duplex

max bisection width: 5.6GB/s

Stanford/DASH 1992 2-D Mesh 16 clusters (4� 4 mesh)

Each cluster has 4 PEs

May extend to 512 clusters

MIT/J-Machine 1992 3-D Mesh 1024-node (8� 8� 16)

max limit: 65536 nodes (32� 32� 64)

Caltech/Mosaic C 1992 2-D Mesh 64 Mosaic chips are packaged in an 8� 8

array on the circuit board. These boards

can construct arbitrarily large 2-D arrays

Cray/T3D 1993 3-D Torus 2048 processors with peak 300 G
ops

Table 2.2: Topologies of existing parallel systems

Chapter 3

Routing Flow Control

Data routing is one of the most important factors in a high performance multiprocessor

network. In many situations, communication between processors has become the performance

bottleneck. For example, in a shared memory system, processors may wait for the memory

responses which need to travel across the network. Therefore, an e�cient routing
ow scheme

and routing algorithm are crucial to achieving good overall system performance.

3.1 Desired Routing Properties

There are three basic types of data routing faults in any kind of network: deadlock, livelock,

and starvation. In a network system, all messages compete with each other for limited

resources. Unless the routing con
icts are resolved satisfactorily, one of these faults will

occur. A desirable routing
ow control will be deadlock-free, livelock-free, and starvation-

free.

Deadlock

There are four necessary conditions for deadlock to occur: mutual exclusion, no preemp-

tion, hold and wait, and circular wait (Silberschatz et al., 1991). For example, resource

I is occupied by process A, and process A is requesting use of resource II which is

occupied by process B. If process B is requesting resource I, and if a resource cannot

be released by a process until the new request has been granted, then there is a circular

request dependency between process A and B, and deadlock will arise (Fig. 3.1). In

19

20 CHAPTER 3. ROUTING FLOW CONTROL

II

I

A B

occupy

occupy

wait

wait

Figure 3.1: An example of deadlock: A is waiting for B to release resource II, and B is

waiting for A to release resource I.

data routing, the resources may be bu�ers (in a store-and-forward network) or chan-

nels (in a wormhole network) depending on the routing
ow control scheme (Section

3.2). When the circular waiting condition occurs, no message can move forward, and

deadlock results. Avoiding deadlock is critical to solution of the data routing problem.

We will discuss deadlock avoidance methods in chapter 4.

Livelock

\Livelock" occurs when a packet circulates in a network forever and never arrives at its

destination. In the livelock situation, data packets which are circulating in the network

consume channel bandwidth and increase tra�c contention. If all packets take only

the shortest paths to their destinations, i.e., every hop decreases the distance to the

destination, then livelock cannot occur because all packets take �nite steps to reach

the destinations. Livelock can occur in non-minimal routing algorithms where packets

detour away from their destinations when they encounter tra�c contention.

Starvation

A packet may wait for a resource inde�nitely when it is competing with other packets.

Starvation is caused by an unbalanced arbitration of resources. For example, a low

3.2. ROUTING FLOW CONTROL SCHEMES 21

priority packet might not gain access to a channel which is always requested by other

higher priority packets. One solution to the problem of starvation is aging. In order to

prevent unlimited waiting, aging increases the priority of packets which have waited in

the network for a certain time. Aging also increases the overhead of data routing in the

form of the extra hardware required to calculate the age of a packet, and the additional

data �eld required to store the age, etc.

3.2 Routing Flow Control Schemes

Flow control is the scheme for allocating communication channels and bu�ers, and determining

the steps to advance messages (Dally, 1990a). In a message-passing network, a message is

divided into several packets for transmission in the network. Each packet contains its own

header on routing information, and can be routed independently. A packet is divided further

into several
ow control digits or
its. A
it is the basic unit for transmission. Only the

header
it contains the routing information. The rest of
its follow the header and cannot be

routed independently.

Several routing control schemes have been proposed and implemented in parallel ma-

chines. In this section, we will describe and compare these di�erent schemes.

Store-and-Forward Routing

Early multiprocessors used store-and-forward as the routing
ow control. A packet was

treated as an indivisible entity in a store-and-forward network. When a packet reached

an intermediate node, the entire packet was bu�ered in the node. Then the packet was

forwarded to the next node on the path to the destination only when the next node had

su�cient bu�ers to hold the packet and the channel was free.

Wormhole Routing

In a wormhole network, only the header
it carries the route information. As the

header advances along the path, all the remaining
its follow in pipeline fashion. The

intermediate nodes can begin to forward the message as soon as the header has been

decoded and the next node on the route has been selected. If the header is blocked, the

trailing
its remain distributed in the intermediate nodes along the path.

22 CHAPTER 3. ROUTING FLOW CONTROL

Virtual Cut-Through Routing

Virtual cut-through routing is similar to wormhole routing in that the
its are pipelined

in the network (Kermani and Kleinrock, 1979). But when the header is blocked in this

instance, all the
its of the stalled packet are collected by the intermediate node where

the blocking occurs.

Pipelined Circuit Switching Routing

Pipelined circuit switching (PCS) (Gaughan and Yalamanchili, 1995) is a variation of

wormhole routing. In PCS, data
its do not immediately follow the header into the

network. The header travels alone to �nd the path to its destination. When the header

�nally reaches the destination, an acknowledge
it returns to the source. Then data

its are then pipelined along the established path in the network.

The �rst di�erence among these routing
ow control schemes is their latency (Ni and

McKinley, 1993). Let Lp be the packet length, Lf be the
it length, B be the channel

bandwidth, and D be the distance between the source and destination.

The latency for a store-and-forward network is

TSAF =
Lp

B
� (D + 1) (3.1)

The latency for a wormhole network is

TWH =
Lp

B
+
Lf

B
�D (3.2)

The latency for a pipelined circuit switching network is

TPCS =
Lp � Lf

B
+ 3�

Lf

B
�D (3.3)

Fig. 3.2 provides a comparison of the latency for the di�erent routing
ow schemes. Lp is

usually larger than Lf , therefore the latency of store-and-forward is larger than the latency

of wormhole family. When Lp � Lf , the latency of wormhole routing becomes less sensitive

to the distance D.

Secondly, the bu�er requirement is di�erent for these three schemes. Store-and-forward

and virtual cut-through routing require bu�ering of the entire packet, so they need storage

memory for at least an entire packet inside each node. In contrast, wormhole and pipelined

circuit switching routing allow a packet to be distributed in the intermediate nodes when

3.2. ROUTING FLOW CONTROL SCHEMES 23

Time

N0

N3

N1

N2

(a) Store-and-Forward

Time

N0

N3

N1

N2

(b) Wormhole

Time

N0

N3

N1

N2

(c) Pipelined Circuit Switching

Figure 3.2: Latency comparison of di�erent
ow control schemes

24 CHAPTER 3. ROUTING FLOW CONTROL

there is tra�c contention, thus they require less bu�ering in each node since only part of a

packet must be stored.

Thirdly, di�erent routing
ow control schemes have di�erent deadlock avoidance charac-

teristics. In store-and-forward and virtual cut-through routing, the critical resource is packet

bu�ers, while in wormhole routing, the critical resource is communication channels. To avoid

deadlock a designer must eliminate circular dependency among resources which are reques-

ted by packets. For example, in store-and-forward and virtual cut-through routing networks,

messages can be forwarded from one bu�er to the next according to a loop-free directed

bu�er graph which accommodates all the possible message routes (Merlin and Schweitzer,

1980). The bu�ers can be organized so that they are in an ascending order. When a packet

resides in a given bu�er, it can be stored only in a restricted set of bu�ers in the next node

of the path such that no circular dependency in the directed bu�er graph may occur. In

wormhole networks, on the other hand, channel dependency is used for resource allocation.

To prevent deadlock it is necessary to restrict the routing relation to make the channel de-

pendency acyclic. Virtual channels have been proposed as one method to eliminate cyclic

channel dependency (Dally, 1992). In PCS networks, some routing constraints imposed by

wormhole routing are relaxed because only headers are traversing in the network during the

setup phase of a packet route, and deadlock can be avoided as long as the header has acyc-

lic dependency (Gaughan and Yalamanchili, 1995). The penalty is that PCS networks have

longer latency than wormhole networks.

Wormhole routing
ow control has been adopted by most of the new generation multipro-

cessors, for instance, the Intel Paragon, StanfordDASH, and so on. Therefore, we concentrate

on wormhole routing in the remainder of discussion.

3.3 Virtual Channel

Virtual channels have been incorporated in multiprocessor networks as a means of prevent-

ing deadlock and also of improving performance. Several virtual channels share a physical

channel. This is accomplished by time multiplexing the virtual channels on the same physical

link.

3.3. VIRTUAL CHANNEL 25

(a) A single deep FIFO

(b) Several virtual channel FIFOs (c) Several virtual channel DAMQs

Figure 3.3: FIFO queue con�gurations. See Sec. 3.3.1 and 3.3.2 for discussion.

3.3.1 Virtual Channel Con�guration

A virtual channel is implemented by use of a bu�er which can store one or more
its. Instead

of having a deep FIFO structure, we may organize the bu�ers into several independent

lanes, i.e., virtual channels (Fig. 3.3). The bu�er in each virtual channel can be allocated

independently of other virtual channels for di�erent packets, but the virtual channels which

are associated with the same physical channel will compete with each other for the channel

bandwidth.

When one virtual channel is blocked due to tra�c contention, other virtual channels need

not be idle since they can still make use of the physical channel. Therefore, virtual channels

improve the network throughput substantially for heavily loaded tra�c. Adding virtual chan-

nels and restricting the routing relation among some virtual channels can eliminate circular

channel dependency to avoid deadlock (Chapter 4). Many wormhole routing algorithms are

26 CHAPTER 3. ROUTING FLOW CONTROL

based on virtual channels for this reason. Chapter 4 describes channel dependency and some

particular routing algorithms in detail.

3.3.2 Dynamically Allocated Multi-Queue

Organizing bu�ers such that there are several parallel lanes, i.e., virtual channels, increases

the e�ciency of physical channels. However, if the bu�ers within a virtual channel are

arranged as a FIFO, then it is still possible that packets in the virtual channel can be blocked

unnecessarily. For example, if the packet at the head of FIFO is blocked because it requests a

busy output port, then all the packets behind it will be blocked even though they are destined

for output ports that are idle.

A dynamically allocated multi-queue (DAMQ) arrangement has been proposed to reduce

the e�ect of \blocked-by-head" (Tamir and Frazier, 1992) (Fig. 3.3 (c)). Packets in a DAMQ

bu�er destined for di�erent output ports can be accessed separately, and the free space

reassigned dynamically to any packet. Multiple queues of packets are maintained in linked

lists. Each output direction has its own linked list associated with an input virtual channel.

There is another linked list to keep track of free space available. When a packet arrives at

the input port, a free space is removed from the free list and linked to the tail of the list

corresponding to the output port to which the packet will be routed. When the packet leaves

the input bu�er, this space will be returned to the free linked list. All the heads of the linked

lists for di�erent output directions in an input virtual channel can issue their requests to the

router. So there may be more than one request from an input virtual channel con�gured as

a DAMQ while there is at most one request if con�gured as a conventional FIFO. All the

requests are arbitrated so that only one request can be granted per input and output port.

Use of a DAMQ can increase the router throughput and utilization because one of the

requests from an input port must be granted if there is no output con
ict with other requests

from other input ports. However, we have to decide to which output port the packet will

be routed when the header arrives at the input port in order to make a proper linked list.

Consequently, a routing decision has to be made very quickly upon the arrival of a new packet.

Moreover, after a linked list associated with an output direction is established, it is not easy

to change the desired output direction of the packet. Thus, it is di�cult to implement a

DAMQ with adaptive routing (Section 4.2) where the routing direction may be changed due

to local tra�c contention.

3.4. UNI-DIRECTIONAL VERSUS BI-DIRECTIONAL CHANNEL 27

3.4 Uni-directional versus Bi-directional Channel

The links between two adjacent nodes can be organized either as a pair of opposite uni-

directional channels, one for transmitting and the other for receiving (Reese et al., 1994), or

combined into a single bi-directional channel (Fig 3.4). The choice of di�erent link con�gur-

ations a�ects the e�ciency of channel utilization. If the total link width is a constant 2W ,

then a single bi-directional channel can have full channel width 2W , but each uni-directional

channel can only have half of the channel width. When two uni-directional channels are not

fully utilized, one may be busy while the other is idle, and up to one half of the channel

bandwidth is wasted. However, bi-directional channels may have longer propagation delay

due to increased capacitance loading on the channel. Also, a special arbitration is necessary

for bi-directional channels to prevent con
ict and deadlock, and this arbitration introduces

some additional overhead. Doubling the bandwidth available for data transmission halves

the packet length in terms of
its because each
it size is doubled, and the same amount of

information can be encoded into one half the number of
its. Bu�er storage is halved also

in terms of the number of
its if the total storage space is constant. Therefore if a packet is

blocked in the network, it will be distributed over the same number of nodes regardless of

which scheme we use.

3.4.1 Token Exchange for Bi-directional Channels

A token exchange mechanism is used for single bi-directional channels to prevent con
ict

caused by two neighboring nodes attempting to use the channel at the same time. A token

is associated with each physical channel. Only the node with the token uses the channel to

transmit data. A node without the token listens to the channel as a receiver. When a receiving

node has data to transmit, it sends a request to the adjacent node which currently \owns"

the token. The current \owner" can grant the request by sending an acknowledgment back

to the requesting node, and the roles of these two nodes exchange (Dally and Song, 1987).

The state diagram of the token exchange is shown in Fig. 3.5. Two neighboring nodes, A

and B, start at state No token and With token, respectively. The signal TE is low initially.

Node A, which does not have the token, can send a request by making TE=1, and enter state

No token req. Node B, which is in state With token, goes to state With token req after TE

goes high. Node B will wait in state With token req until the �nish signal goes high, which

means it can give up the token now. Then node B will lower TE and enters state No token.

28 CHAPTER 3. ROUTING FLOW CONTROL

W

A B

W

(a) Two uni-directional channels

A B
2W

(b) Single bi-directional channel

Figure 3.4: Channel con�guration

Node A, which now is waiting in state No token req, senses the signal TE becoming low, and

knows that the token has been granted. It enters state With token and begins to transmit

data. Fig. 3.6 shows the timing diagram of the token-exchange handshaking between node A

and B where enableA and enableB designate which node is driving the signal TE.

One of two conditions must hold if a node is to give up its token (�nish=1): 1) it was

idle in the previous cycle, or 2) the previous
it it sent is a tail of a packet.

Theorem 1 The token-exchange channel arbitration is con
ict-free and deadlock-free.

Proof: First, we will prove the property of \conservation of token," i.e., there is one and only

one token associated with a channel. From the de�nition of token states, only the node in the

state named with With token or With token req has the channel token. The token exchange

takes place when TE goes from high to low (Fig. 3.6). This event is triggered by the state

transition from With token req to No token in node B, and will cause the state transition

from No token req to With token in node A. This sequence of transitions transfers the token

from A to B without any overlap and completes in �nite time (less than one clock cycle).

Therefore, conservation of token holds.

3.4. UNI-DIRECTIONAL VERSUS BI-DIRECTIONAL CHANNEL 29

No_Token

With_Token

No_Token_

Req

With_Token_

Req

flag_req=0 TE=1

TE=0

TE=0

TE=1

finish=0

finish=1

flag_req=1
TE = 1

TE = 0

Figure 3.5: Token exchange state diagram

With_Token_Req No_TokenWith_Token

No_Token No_Token_Req With_Token

TE

enable A

enable B

2 cycles

A’s state

B’s state

Figure 3.6: Token exchange timing diagram

30 CHAPTER 3. ROUTING FLOW CONTROL

The state transition from With token req to No token is caused by �nish=1. The condi-

tions for setting �nish guarantee that �nish will equal one in �nite time because the packet

length is �nite. So this state transition will complete in �nite time and the token exchange

can also complete in �nite time.

Based on the above two properties: conservation of token and �nite-time token exchange,

we can conclude that it is con
ict-free and deadlock-free. 2

In the ideal case of no tra�c contention the time for token exchange need not increase the

latency. In practice, network routers are pipelined; for example, in a four-stage pipeline the

elements might be an input bu�er, header decoder, crossbar switch, and output control. Use

of the output channel and the token-exchange are in the last stage of pipeline. The need to

request the channel token is always known before the last stage, for example, in the header

decoder stage. So the request for the token can be made in advance, for example, in the

crossbar switch stage. Without tra�c contention, the token transfer \just in time" for the

next cycle, i.e., the output control stage, and hide the token-exchange latency.

The other issue related to the bi-directional channel is that when we have the full band-

width of the channel, the width of each
it is doubled compared with the uni-directional

case, which means the crossbar switch inside the node must double too. But the total area

and capacitance loading of a multiline switch are proportional to the square of the width of

a
it, and the penalty for increasing the size of the switch is high. We can approach the

problem of switching in another way. In our experience, the critical path inside a node is

the header decoding. Although the crossbar usually is heavily loaded, it has very shallow

logic depth, and is much faster than the path in the header decoding, especially for adaptive

routing. Therefore we may keep the size of the crossbar unchanged but double the clock in

the crossbar to match the bandwidth of the external channels.

We will show in simulation that in spite of the increased overhead of token exchange, the

single bi-directional channel has better overall channel utilization, and thus better latency-

throughput performance (see Chapter 5).

Chapter 4

Wormhole Routing Algorithms

In this chapter, we give the theoretical background and de�nitions required to understand

wormhole data routing. We develop the routing algorithms in the following sections.

A routing algorithm determines where to send a packet according to its source, destina-

tion, and possibly local tra�c conditions. An interconnection network, as de�ned in Chapter

2, is a uni-directed graph G = (N;C), with vertices N = fn1; n2; : : : ; nmg corresponding

to the nodes and edges C = fc1; c2; : : : ; cng corresponding to the communication channels

between nodes. For a channel ci, the nodes si and di are the source and destination of ci, such

that source(ci)=si and dest(ci)=di, respectively (Fig. 4.1). We use the following de�nitions

(De�nition 1 to 4) from Duato (1993):

De�nition 1 Routing Function R

A routing function R : N�N ! P (C), where P (C) is the set of communication channels

C, provides a set of alternative output channels to send a packet from the current node nc

to the destination nd, i.e., R(nc; nd) = fcc1 ; cc2; : : : ; ccpg, where source(cci)=nc.

A routing function de�nes all the permissible movements which avoid deadlock and guar-

antee delivery according to the current position and destination. For an adaptive routing, we

c
d

i
si i

Figure 4.1: Channel ci has a source node si and destination node di

31

32 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

may have more than one possible output channel supplied by the routing function if nc 6= nd.

On the other hand, for a deterministic routing, there is only one possible output channel given

any pair (nc; nd) if nc 6= nd.

De�nition 2 Local tra�c F

Local tra�c F speci�es the tra�c conditions of the output channels in a node.

The local tra�c variable F may be very simple. For example, it might indicate only

whether the output channel is busy or not busy. Or it could be complicated. For example,

F might represent the tra�c load of each output channel, e.g., available bu�ers left at the

receiver.

De�nition 3 Selection function S

A selection function S : P (C � F)! C0, where C0 is a subset of C, considers the tra�c

conditions of all candidate routings to select an output channel from the set supplied by the

routing function R.

The selection function a�ects performance, for example, by choosing a lightly loaded

output to avoid tra�c contention. When an output channel is the candidate of the routing

function of several packets, the choice of which packet is granted use of this output channel

has to be balanced in order to ensure that starvation will not occur.

De�nition 4 Channel Dependency

For a given network and routing function R, the channel dependency graph D = (C;E)

is de�ned as: the channels C are the vertices of D, and the edges E are the pairs of channels

connected by R:

E = f(ci, cj) j ci 2 R(si; n) and cj 2 R(di; n) for some destination n 2 Ng

Fig. 4.2 shows an example of channel dependency D based on a network graph G. We

call the above de�nition of channel dependency direct dependency because we can use cj

immediately after ci to transmit data by the path (ci; cj ; : : :) to the destination n. The

channel dependency is very important for resolution of the deadlock issue in data routing.

Theorem 2 (Duato, 1993) A routing function R for a given network is deadlock-free if there

is no cycle in the direct channel dependency graph D.

4.1. DETERMINISTIC ROUTING 33

C2C4

C5

C6

C3

C1
N1 N2

N3N4

(a) Network graph G

C2

C6

C5 C4

C3

C1

(b) Channel dependency D

Figure 4.2: Relation between network graph G and channel dependency D. The edge

between C1 and C2 in channel dependency D indicates that C2 can be used immediately

after C1 (via Node N2)

Virtual channels (Section 3.3.1) are used in many routing algorithms to break closed cycles

in the channel dependency graph and thereby prevent deadlock. An example of deadlock

avoidance by virtual channels is shown in Fig. 4.3. By adding virtual channels and restricting

the routing function1, we can break the circular channel dependency as in Fig. 4.3(b).

Because of the importance of k-ary n-cube networks in the recent development of mul-

tiprocessors, we will describe some speci�c routing algorithms for the general k-ary n-cube

networks in the following sections.

4.1 Deterministic Routing

In deterministic routing, the routing path depends only on the source and destination. When

a packet is injected into a network, a unique path is determined corresponding to its source

and destination. In a k-ary n-cube network, the most commonly used routing algorithm is

the e-cube algorithm, also known as the dimension-order routing algorithm (Dally and Seitz,

1987). The dimension-order routing algorithm has been implemented in most wormhole

router designs due to its simplicity and low cost. In the dimension-order routing algorithm,

messages are routed in a strictly ascending order of dimensions. Each packet is routed in one

1For example, if a packet at node n0 came from channel C3, then it has to use channel V0 instead of C0
to node n1.

34 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

n2 n3

n0n1

C2

C3V1C1

V0

C0

(a) Adding virtual channels V0 and
V1

C1

C0

V1 C3

V0

C2

(b) Virtual channel dependency

Figure 4.3: Deadlock avoidance by adding virtual channels

dimension at a time: it takes hops in dim0 (if any), then in dim1 (if any), and so on until it

reaches its destination. Therefore, there is only one pre-determined path between any pair

of source and destination nodes. If there are no wrap-around connections in each dimension,

then the dimension-order routing is deadlock-free because only lower dimensional channels

need to wait for higher dimensional channels, but higher dimensional channels never wait

for any lower dimensional channel. Channels in the same dimension will not have circular

waits in absence of wrap-around connections. So there is never a closed cycle in the channel

dependency.

However, if there are wrap-around connections, then deadlock can occur. Dally has

developed a deadlock-free routing algorithm for k-ary n-cubes with wrap-around connections

based on adding virtual channels (Dally and Seitz, 1987). Each physical channel is divided

into two virtual channels: lower and upper channels. A packet generated in a source node

starts from a lower channel in the lowest dimension on its path to the destination. The packet

continues in the lower channels until it goes through the wrap-around connection if necessary.

After it takes the wrap-around connection, however, it jumps to upper channels. The packet

returns to lower channels when it is routed to a higher dimension.

Theorem 3 In a k-ary n-cube with wrap-around connections, two virtual channels per phys-

ical link can provide deadlock-free dimension-order routing.

4.2. FULLY ADAPTIVE ROUTING 35

Proof: (Dally and Seitz, 1987) We label each virtual channel as c(a0;a1;:::;an�1);dir;dim;vc,

where (a0; a1; : : : ; an�1) is the coordinate of the source node of this link, dir is the virtual

channel direction (+ or �), dim is the current dimension (from 0 to n� 1), and vc indicates

it is a lower (vc = 0) or upper (vc = 1) virtual channel. Then we can assign a value V to

each virtual channel based on its label:

V (c(a0;a1;:::;an�1);dir;dim;vc) =

8<
: 2k � dim+ k � vc+ adim if dir = +

2k � dim+ k � vc+ (k � 1� adim) if dir = �
(4.1)

The channel dependency of the dimension-order routing function R have the following

possible relations:

(c(a0;a1;:::;adim;:::;an�1);+;dim;0; c(a0;a1;:::;adim+1;:::;an�1);+;dim;0)

(c(a0;a1;:::;adim=k�1;:::;an�1);+;dim;0; c(a0;a1;:::;adim=0;:::;an�1);+;dim;1)

(c(a0;a1;:::;adim;:::;an�1);�;dim;0; c(a0;a1;:::;adim�1;:::;an�1);�;dim;0)

(c(a0;a1;:::;adim=0;:::;an�1);�;dim;0; c(a0;a1;:::;adim=k�1;:::;an�1);�;dim;1)

(c(a0;a1;:::;adim;:::;an�1);�;dim;(0or1); c(a0;a1;:::;adim;adim+1+1;:::;an�1);+;dim+1;0)

(c(a0;a1;:::;adim;:::;an�1);�;dim;(0or1); c(a0;a1;:::;adim;adim+1�1;:::;an�1);�;dim+1;0)

Based on the assignment by Eq. 4.1, the channel dependency increases the virtual channel

value V as a packet travels from the source to destination. Therefore, there is no cycle in the

channel dependency graph, and it is deadlock-free. 2

Fig. 4.4 shows examples of the dimension-order routing in a 2-D torus. For the path (3,1)

! (0,1)! (0,0)! (0,3), the virtual channel values V de�ned by Eq. 4.1 are 3 ! 10! 11,

i.e., in a strictly ascending order. Because the maximum distance between the source and

destination in any dimension is half of the torus size, half of the higher level virtual channels

will never be used (shaded bu�ers in Fig. 4.4). In spite of the simplicity of the dimension-

order routing algorithm, it performs well under uniform random tra�c condition. However,

the performance degrades quickly if there are hot spots in the tra�c patterns. Furthermore,

there is no capability for fault-tolerance in the dimension-order routing algorithm.

4.2 Fully Adaptive Routing

In a multiprocessor network, there are usually multiple paths from a source to a destination.

In adaptive routing, the routing function R may have more than one output channel as a

36 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

never used

1
0

1

1
0

0

0

0

0

0 1

0

0
1

0 1

0

0
0

0

(1, 3)

(2, 1)

(0, 3)

(3, 1)

Figure 4.4: Examples of dimension-order routing in a 2-D torus. Only input bu�ers are

shown. Some bu�ers are omitted for simplicity. Packets are routed from node (3,1) to (0,3)

and from (1,3) to (2,1). Half of the upper channels are never used (shaded bu�ers) because

the maximum packet distance is half the torus size due to wrap-around connections.

4.2. FULLY ADAPTIVE ROUTING 37

candidate, and the selection function S will choose one of them based on the local tra�c

condition F . If a routing algorithm can use all possible shortest paths between any pair of

source and destination nodes, then it is a fully adaptive routing algorithm. On the other

hand, if a routing algorithm can only use a subset of the possible paths, then it is a partially

adaptive algorithm. We will describe some fully adaptive routing algorithms in this section,

and partially adaptive routing algorithms in the next section.

4.2.1 Virtual Network Algorithm

Deadlock-free adaptive routing can be achieved by partitioning a physical network into several

virtual networks (Linder and Harden, 1991). A virtual network is a collection of sets of virtual

channels in which there is no cyclic channel dependency. Such a virtual network can provide

all possible paths of adaptive routing for this packet without deadlock. When a packet is

generated, the choice of virtual network is based on its source and destination.

We formally de�ne a virtual network as follows (Linder and Harden, 1991):

De�nition 5 (Linder and Harden, 1991) Each virtual network is identi�ed by a vector V N ,

where V N = fd1; d2; : : : ; dn�1g, and di = f 0 or 1 g for i 2 [1; n � 1]. A virtual network

vnVN is de�ned as8<
: the channels in dimension di that point exclusively in the positive direction if di = 1

the channels in dimension di that point exclusively in the negative direction if di = 0

Fig. 4.5 shows the example of virtual networks for a 2-D torus. In shortest-path routing,

a packet never changes the direction, e.g., from positive to negative, in any dimension on its

path. Therefore, a packet stays in the same virtual network once it is generated. If there is no

wrap-around connection, then these virtual networks are su�cient to provide deadlock-free

adaptive routing. For an n-cube, there are at most n wrap-around connections which a packet

may take. Thus we expand each virtual network into n+ 1 levels. A packet starts at level 0,

and moves to a higher level whenever it takes a wrap-around link. Fig. 4.6 shows the three

level construction of the negative virtual network in a 2-D torus. We label a virtual channel as

cVN;L;(a0;:::;an�1);dir;dim, where V N = fd1; d2; : : : ; dn�1g is the virtual network identi�cation,

L is the level for wrap-around connections, (a0; a1; : : : ; an�1) is the coordinate of the source

node of this link, dim is the current dimension (from 0 to n � 1), and dir is the virtual

channel direction (dir = ddim if dim > 0).

38 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

(a) Negative Virtual Network (b) Positive Virtual Network

Figure 4.5: Two virtual networks in a 2-D torus

level 2

level 0

level 1

(a) Negative Virtual Network (b) Positive Virtual Network

Figure 4.6: Expanding a virtual network to three logical levels in a 2-D torus

4.2. FULLY ADAPTIVE ROUTING 39

Theorem 4 In a k-ary n-cube with wrap-around connections, the virtual network adaptive

routing is deadlock-free.

Proof: (Linder and Harden, 1991) Similar to the proof of dimension-order routing, we can

assign a value to each virtual channel such that all the channel dependency is in strictly

ascending order.

V (cVN;L;(a0;:::;an�1);dir;dim) = L � kn +
n�1X
i=1

8<
: ai � k

i if di = 1

(k� 1� ai) � k
i if di = 0

+

8>>><
>>>:

k if dim 6= 0

a0 if dim = 0 and dir = +

(k � 1� a0) if dim = 0 and dir = �

(4.2)

Where di is the vector element of V N . Based on the adaptive routing function R, we have

the following channel dependency:

(cVN;L;(a0;:::;an�1);�;0; cVN;L;(a0�1:::;an�1);dir;dim)

(cVN;L;(a0=k+1;:::;an�1);+;0; cVN;L+1;(a0=0:::;an�1);dir;dim)

(cVN;L;(a0=0;:::;an�1);�;0; cVN;L+1;(a0=k+1:::;an�1);dir;dim)

(cVN;L;(a0;:::;an�1);di;i; cVN;L;(a0;:::;ai+1;:::;an�1);dir2;dim2) if di = 1

(cVN;L;(a0;:::;an�1);di;i; cVN;L;(a0;:::;ai�1;:::;an�1);dir2;dim2) if di = 0

(cVN;L;(a0;:::;ai=k+1;:::;an�1);di;i; cVN;L+1;(a0;:::;ai=0;:::;an�1);dir2;dim2) if di = 1

(cVN;L;(a0;:::;ai=0;:::;an�1);di;i; cVN;L+1;(a0;:::;ai=k+1;:::;an�1);dir2;dim2) if di = 0

Based on the assignment by Eq. 4.2, all the virtual channel values are increased as a packet

travels from the source to destination for all possible routes. Therefore, there is no cycle in

the channel dependency graph, and it is deadlock free. 2

Fig. 4.7 shows the routing examples of the virtual network adaptive routing. For the path

(2,1)! (3,1)! (3,0)! (0,0)! (0,3), the virtual channel values V de�ned by Eq. 4.2 are

10 ! 12 ! 15 ! 32. We can also view the path on the expanded virtual network graph

(Fig. 4.8). The packet goes to a di�erent logic level when it takes a wrap-around link.

The drawback of the virtual network approach is that it requires a large number of

virtual channels because none of the virtual networks share any virtual channels. For a k-ary

n-cube network, there are 2n�1 virtual networks, and each virtual network has (n+1) levels.

40 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

2

0 1

0

0

0

1

1

0
1

0
1

0

1

2
1

0 1

never used

(2, 1)

0

1

2

2

1

(0, 3)

(3, 2)

(1, 1)

0

2
1
0

0

0

2

2

1

1

0

0 2

2

0

1

1

1
2

0

2
1

Figure 4.7: Examples of Virtual Network routing on the negative network in a 2-D torus.

Packets are routed from (2,1) to (0,3) and from (3,2) to (1,1).

4.2. FULLY ADAPTIVE ROUTING 41

level 2

level 0

level 1
(0,0)

(0,0)

(0,0)

(0,3)

(0,3)

(3,1)

(3,1)

(2,1)

(2,1)

(2,1)

(0,3)

(3,1)

(3,0)

(3,0)

(3,0)

Figure 4.8: A packets is routed from (2,1) to (0,3) on the negative virtual network in a 2-D

torus. The packet goes to a di�erent logic level when it takes a wrap-around link.

Therefore, the total number of virtual channels required per port is (n+1)2n�1 for dimension

0 and (n + 1)2n�2 for other dimensions, which may not be feasible in a high dimensional

network. The other disadvantage of the virtual network algorithm is that the virtual channel

utilization of higher level networks tends to be very low because the probability that a packet

will take many wrap-around links on its path is small.

4.2.2 Dimension Reversal Algorithm

The dimension reversal (DR) number of a packet is the count of the number of times that this

packet has been routed from a higher dimension to a lower dimension, which is the reverse

of the dimension order. All packets are initialized with DR = 0. Whenever a packet has

a dimension reversed route, the DR of the packet is incremented. Dally and Aoki (1993)

developed an adaptive routing algorithm based on keeping track of the dimension reversal

numbers of packets.

In the Dally and Aoki's scheme, the virtual channels associated with a physical channel are

divided into two classes: adaptive and deterministic channels. A packet is generated in the

42 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

adaptive channels. While in the adaptive channels, a packet may be routed in any direction.

A packet labels a virtual channel with its currentDR when it acquires this channel. In order

to prevent deadlock, a packet with DP = p cannot wait for a busy virtual channel with label

DR = q if q � p. If a packet reaches a node where all output channels are busy and have

equal or lower DR labels, then this packet is forced to switch to the deterministic channels

and follow the dimension-order routing on the rest of the path to its destination, and is not

allowed to jump back to the adaptive channels.

Theorem 5 The dimension reversal adaptive routing algorithm is deadlock free.

Proof:(Dally and Aoki, 1993) Assuming the network is deadlocked, then there is a set of

packets P in the cyclic channel dependent situation. There exists a packet pmax with a

maximum DR(pmax). If pmax is waiting for some channel c occupied by packet pj with

DR = r in set P , then r � DR(pmax). But pmax is not allowed to wait for a channel with

equal or lower DR label. Therefore, there is contradiction and no deadlock. 2

When a packet is in adaptive channels, there is no restriction on which direction to route

the packet. So a packet may take a hop which will increase the distance to its destination

if all output channels on the shortest paths are busy, i.e., it may follow a non-minimal rout-

ing. In non-minimal routing, however, \livelock" can become a problem (Section 3.1). In

practice, we must put a limit on the maximum number of DR due to counter width, storage

space, etc. When a packet reaches its DR limit, the algorithm cannot account for more

dimension reversals. Consequently, the packet is directed to the deterministic channels for

dimension-order routing; it will be delivered to the destination eventually. Strictly speaking,

the dimension reversal adaptive routing algorithm is not really a fully adaptive routing al-

gorithm in the sense that a packet loses freedom of adaptivity in those situations where it has

to take the deterministic channels for the rest of its path. In order to support more adaptivity,

it is necessary to increase the upper limit of DR and use more adaptive virtual channels.

If the number of adaptive virtual channels is too small, packets easily become congested in

adaptive channels and are converted to the deterministic channels. In this instance the DR

algorithm behaves more like the dimension-order routing algorithm.

4.2. FULLY ADAPTIVE ROUTING 43

4.2.3 Star-Channel Algorithm

The Star-Channel algorithm is a fully adaptive, minimal wormhole routing algorithm which

requires a small constant number of virtual channels per bi-directional link, independent of

the size and dimension of the k-ary n-cube networks (Berman et al., 1992).

The algorithm makes use of two kinds of virtual channels: star channels and non-star

channels. The star channels are used when packets are routed on the dimension-order

paths. When a packet takes some path which is not allowed by the dimension-order rout-

ing, it will use the non-star channels. Therefore, for a physical channel between node

(a0; : : : ; ai; : : : ; an�1) and (a0; : : : ; (ai+1) mod k; : : : ; an�1), there are three virtual channels

associated with it:

c�(a0;:::;ai;:::;an�1);+;i;0 ; c
�
(a0;:::;ai;:::;an�1);+;i;1

; c(a0;:::;ai;:::;an�1);+;i

Similarly, for a link between (a0; : : : ; ai; : : : ; an�1) and (a0; : : : ; (ai�1) mod k; : : : ; an�1),

we may have

c�(a0;:::;ai;:::;an�1);�;i;0 ; c
�
(a0;:::;ai;:::;an�1);�;i;1

; c(a0;:::;ai;:::;an�1);�;i

where c� channels are de�ned to be the same as the dimension-order routing in Section 4.1.

Assume a packet is transmitted initially on dimension i. If dimension i is the lowest dimension

in which the packet needs to be transmitted for all its minimal paths, then it goes through the

star channel c�i in this dimension, otherwise it uses the non-star channel ci because dimension

i is not the lowest dimension and it is not allowed by the dimension-order routing. Each star

channel c�i is partitioned into two levels: c
�
i;0 and c

�
i;1. If the packet has taken a wrap-around

link along dimension i, then it uses c�i;1, if it has not, then it chooses c�i;0 (Berman et al.,

1992). A packet will enter a star channel when the current dimension is the most signi�cant

dimension de�ned by the dimension-order routing, and it is allowed to correct any other

dimensions along a minimal path through non-star channels (Fig. 4.9).

Theorem 6 The Star-Channel routing algorithm is fully adaptive and deadlock free.

Proof: All the possible minimal paths are allowed in the routing function R, so it is fully

adaptive. The formal proof of deadlock-free property can be found in (Gravano et al., 1994).

Here we give an intuitive explanation. There is no closed cycle within the star channels

because they are de�ned by the dimension-order routing as in Section 4.1. A star-channel

44 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

never waits for a particular non-star channel inde�nitely because there always exists a star-

channel which can be used in the next step on one of the possible shortest paths. Similarly,

a non-star channel also never waits for another non-star channel inde�nitely. Therefore,

no unlimited waiting for non-star channels will occur under any condition. This implies

that based on an acyclic star-channel dependency, the non-star channels will not introduce

inde�nite waiting cycles. Thus it is deadlock free. 2

There are cycles in the direct channel dependency (De�nition 4) of the star-channel routing

algorithm. The star-channel routing algorithm is a special case of the extended channel

dependency (Duato, 1993). The key point is to build an adaptive routing algorithm based

on a deadlock-free routing with acyclic channel dependency. We will discuss a more formal

construction and properties of the extended channel dependency in the next section. The most

important property of the star-channel routing is that although a packet can use a non-star

channel at any time, it never waits for a non-star channel inde�nitely and there is always a

star channel chosen by the routing function. If a packet is directed to a non-star channel, it

must be handled in �nite time in the non-star channel bu�er in order to prevent deadlock.

Therefore, the non-star channel bu�er must be empty before it can accept any new packet,

otherwise cyclic waiting may occur and packets may sit in the middle of queues forever. This

more restricted rule is applied to non-star channels but not star channels in order to avoid

deadlock in the star-channel routing algorithm.

4.2.4 Extended Channel Dependency

Theorem 2 states that if there is no cycle in the direct channel dependency graph, then

deadlock will not occur. This is a su�cient condition for deadlock-free data routing. In this

section, we will introduce the concept of the extended channel dependency graph which is

based on both direct and indirect channel dependency to obtain a more relaxed deadlock-free

condition (Duato, 1993).

De�nition 4 describes direct channel dependency. Before we give the de�nition of indirect

channel dependency, we will de�ne the routing subfunction, then de�ne the extended channel

dependency graph and give a theorem for deadlock-free data routing (Duato, 1993).

4.2. FULLY ADAPTIVE ROUTING 45

1

1

1

0

0

0

0

0

0

0

0 0

0

0

0

0
1

never used

(2, 1)

(2, 0)

(3, 2)

(0, 3)

0

0
1

1

star channel

non-star channel

0

0

0
1
0

Figure 4.9: Examples of Star-Channel routing in a 2-D torus. Packets are routed from (2,0)

to (3,2) and from (2,1) to (0,3).

46 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

De�nition 6 Routing Subfunction

A routing subsection R1 for a given routing function R and a channel subset C1 � C is

de�ned as

R1 : N �N ! P (C1)

R1(x; y) = R(x; y)\ C1 8x; y 2 N

De�nition 7 Indirect Channel Dependency

For a given network G=(N, C), a routing function R, a subset channel C1 � C which

de�nes a routing subfunction R1, and a pair of channels ci, cj 2 C1, there is an indirect

dependency from ci to cj if and only if

9�c1; �c2; : : : ; �ck 2 �C = C � C1such that

8>>>>><
>>>>>:

ci 2 R1(si; n)

�c1 2 R(di; n)

�cm+1 2 R(�dm; n) m = 1; : : : ; k� 1

cj 2 R1(�dk; n)

where si and di are the source and destination nodes of link ci, respectively, and n is a node

in N .

We can construct a path from node si to dj for a packet destined to node n. Between

si and dj , ci and cj are the �rst and last channels and the only ones belonging to C1. All

other channels used between them belong to �C = C � C1 (Fig. 4.10). Therefore, cj will be

used by a packet after using ci and other channels in �C. So there is an indirect dependency

of channel ci and cj .

Based on the de�nition of indirect channel dependency, wemay de�ne the extended channel

dependency graph which has increased freedom of adaptive routing while still guaranteeing

that deadlock will not occur.

4.2. FULLY ADAPTIVE ROUTING 47

ii

d

c

C = C - C

s c
c 1

cdi

1

j

k

k

dj

Figure 4.10: Indirect channel dependency from ci to cj . Solid lines 2 C1, and dashed lines

2 �C = C � C1

De�nition 8 Extended Channel Dependency Graph

For a given network and routing subfunction R1 of a routing function R, the extended

channel dependency graph DE = (C1; EE) is de�ned as: the vertices of DE are the set of

channels C1 which de�nes R1, and the edges EE are the pairs of channels (ci; cj) 2 C1 such

that there is either a direct or indirect dependency from ci to cj.

A very important theorem proven by Duato (1993) shows that we may have a more

relaxed rule for deadlock-free data routing.

Theorem 7 A routing function R for a given network is deadlock-free if there exists a chan-

nel subset C1 � C that de�nes a routing subfunction R1 which is connected such that there

is no cycle in the extended channel dependency graph DE.

Proof: (Duato, 1993)

The key point behind the extended channel dependency graph is the routing subfunction

R1. We may allow cycles in the channel dependency graph in C but still stay deadlock-free

as long as there is no cycle in the extended channel dependency graph in C1 which de�nes the

routing subfunctionR1. SoC1 channels are analogous to the core channels which are deadlock-

free as a result of using routing function R1. The remainder of channels �C = C � C1 give

more alternative paths and adaptivity while not introducing cycles in the extended channel

dependency graph. As mentioned in Section 4.2.3, the star-channel algorithm is an example

of an extended channel dependency graph where the star channels and the dimension-order

routing function are C1 and R1, respectively. The non-star channels belonging to �C = C�C1

48 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

are used to add adaptivity on top of the star channels. We may check that there are no

cycles in the extended channel dependency graph of the star channels, guaranteeing that it

is deadlock-free. The other very important rule is that there must be no inde�nite waiting

for the channels in �C in order to make sure that no waiting cycles will occur in any channel.

Thus the bu�ers of channels in �C have to be empty before they accept new packets.

4.3 Partially Adaptive Routing

In a partially adaptive routing algorithm, the routing freedom is restricted to a subset of

possible paths from a source to a destination. By this restriction, deadlock avoidance is

easier and less expensive to implement in hardware.

4.3.1 Planar Algorithm

Restricting the routing freedom to a few dimensions at a time can reduce the requirement for

virtual channels for deadlock-free routing. In the planar routing algorithm (Chien and Kim,

1992), a packet is routed adaptively in a series of two-dimensional planes. For example, a

packet can be routed adaptively between dimension 0 and 1 at the beginning. After it reaches

the destination's position in dimension 0, it can be routed adaptively between dimension 1

and 2, and so on.

We may de�ne an adaptive plane Ai as a collection of some virtual channels, and divide

Ai into two virtual networks Ai+ and Ai�:

Ai+ = ci;+;2;l + ci+1;�;0;l

Ai� = ci;�;2;l + ci+1;�;1;l (4.3)

where cdim;dir;vc;l labels a set of virtual channels in dimension dim with speci�ed direction

dir, virtual channel ID (vc), and level l. The level l indicates whether the wrap-around

connection in this dimension has been taken or not (l = 0 or 1).

A packet is routed from plane A0; A1; : : :, to An�2. Within plane Ai, a packet is routed

adaptively in the virtual network Ai+ or Ai� depending on its direction of dimension i. In

each adaptive plane, the packet completes its routing path in at least one dimension, then

moves to the next adaptive plane until reaches its destination. If, in plane Ai, the packet

4.3. PARTIALLY ADAPTIVE ROUTING 49

completes dimension i+1 �rst, it will stay in Ai and travel in dimension i until the distance

in dimension i reduces to zero, then it will move to Ai+2 directly.

There is no cycle within each adaptive plane because we divide it into two separate virtual

networks as we do in the fully adaptive virtual network routing algorithm for a 2-D torus

(Section 4.2.1). There is also no cycle between di�erent adaptive planes Ai and Aj because

of the limitation of routing dimensions. So the planar algorithm is deadlock-free.

Because of the constraint of routing freedom to a 2-D plane, the requirement of virtual

channels for deadlock-free routing is constant and independent of network dimension n. From

Eq. 4.3, for a particular port (given dim and dir), vc = 1 � 3 and l = 0 or 1. So for any size

of k-ary n-cubes, each port needs 6 virtual channels to avoid deadlock.

4.3.2 The Turn Model

The turn model has been proposed to avoid deadlock by prohibiting some turns to break

all possible cycles in the channel dependency without adding virtual channels (Glass and Ni,

1992). The basic idea is to prevent cycles by limiting the number of turns to the smallest

possible number while remaining as adaptive as possible. In fact, the dimension-order routing

algorithm is a special case of the turn model where the turns from a higher dimension to a

lower dimension are not allowed. Obviously, the dimension-order routing algorithm prohibits

more than necessary turns and loses its adaptivity. Di�erent combinations of turns might be

eliminated in order to break cycles. For example, for a 2-D mesh, Fig. 4.11 shows two di�erent

possible ways to break cyclic dependency. In the negative-�rst routing, a negative direction

channel can be followed adaptively by either a negative or positive direction channel in any

dimension, but a positive direction channel is not allowed to be followed by any negative

direction channel. Thus by prohibiting one quarter of all possible turns, we can prevent

deadlock in an n dimensional mesh without wrap-around connections.

Based on which turns are prohibited, there is a di�erent degree of adaptivity for di�erent

pairs of sources and destinations. For example, in the negative-�rst routing on a 2-D mesh,

if the destination is at the right-upper side of the source (xd > xs, yd > ys), then it is fully

adaptive from the source to destination (Fig. 4.12 (a)). On the other hand, if the destination

is at the left-upper side of the source (xd < xs, yd > ys), then it is strictly deterministic

if only the shortest path can be taken, or partially adaptive if non-minimal path is allowed

(Fig. 4.12 (b)). In Fig. 4.12, path (c) is not allowed because it violates the negative-�rst

principle.

50 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

(a) Negative-�rst (b) North-last

Figure 4.11: Two di�erent possible ways to break cyclic dependency in a 2-D mesh, where

the dotted turns are prohibited

(a)

(c)

(b)

Figure 4.12: Examples of paths for the negative-�rst algorithm of the Turn model in a 2-D

mesh

4.4. RANDOMIZED ROUTING 51

In an n dimensional mesh without wrap-around connections, restricting the positive to

negative turns in the negative-�rst routing is su�cient to avoid deadlock. However, an n-cube

with wrap-around connections requires a more complex approach to prevent deadlock. One

way is to recognize the logic direction of a wrap-around link. For example, if the wrap-around

link between node (k � 1, y) and (0, y) is labeled as a negative direction channel, then we

can apply the negative-�rst routing as described above. This approach, however, will reduce

adaptivity and utilization of those wrap-around channels.

4.4 Randomized Routing

In randomized routing no particular virtual channel assignments or constraints are imposed

on the routing paths. Such schemes select randomly an available virtual channel following a

shortest path if such a channel is available. A \derouting" scheme2 is used when a packet is

blocked. If a packet is blocked and waiting in the same node for more than some number of

cycles w, then this packet is derouted with some probability (Lu et al., 1993a; Konstantinidou

and Snyder, 1991). \Derouting" chooses a direction which may increase the distance to a

packet's destination. The key idea here is to get around the local contention by using some

non-minimal paths.

The direction chosen for derouting may be dependent on the relative position between

the current node and the packet's destination: if the current node and destination are on

di�erent rows and columns, then one of the two backward paths is selected (Fig. 4.13(a)); if

the current node and destination are on the same row or column, then one of the perpendicular

paths to the normal path is selected (Fig. 4.13(b)) (Lu et al., 1993a). Derouting has been

shown to be deadlock-free for store-and-forward and virtual cut-through (Konstantinidou

and Snyder, 1994). For wormhole routing, because the
its are blocked in place, a packet is

possibly blocked by itself, and deadlock may occur. Therefore multi-
it bu�ers are necessary

to prevent this situation, and we should choose the bu�er size large enough to collect packets

when they are blocked. In fact, for the current generation of router design, a large bu�er

space often is used to store at least one entire packet in order to improve performance when

tra�c contention occurs. We consider virtual cut-through
ow control for the randomized

data routing in the rest of this section.

2\Derouting" is also known as \misrouting", \non-minimal routing", and \hot-potato routing" in some
literature.

52 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

(a) (b)

Figure 4.13: Derouting in a 2-D array when a packet is blocked. The shadow circle is the

current node and the black circle is the packet's destination. Solid lines are the normal paths,

and dotted lines are the derouting paths.

Theorem 8 If the tra�c contention is uniformly distributed in a wrap-around connected

N � N torus network, and the blocking probability p < 1, then the derouting algorithm is

livelock-free with probability one.

Proof: We de�ne the blocking probability p as the probability that an input port has no

empty bu�ers, i.e., p is the probability that a node refuses to receive new packets. We will

prove livelock-free property in a 2-D torus here. It can be generalized to the n dimensional

case. Without loss of generality, we set the source of a packet to be (i; j), and the destination

to be (0,0). We de�ne u(i; j) as the probability of successful delivery from node (i; j) to (0,0).

Because of symmetry, u(i; j)=u(j; i), and u(i; j)=u(i;N � j).

At node (i; 0), if node (i� 1; 0) has no available bu�ers, then the algorithm selects (i; 1)

or (i; N � 1) as the next node on the path to the destination. If both (i; 1) and (i; N � 1) are

available, one is selected at random. If only one of these is available, then there is only one

possibility. If both have full bu�ers, then this packet must be delayed at (i; 0) for another

cycle. At node (i; j), i; j � 1, the next node along the shortest path is (i� 1; j) or (i; j � 1);

derouting will choose (i+1; j) or (i; j+1) in case of blocking. From these considerations we

can write the successful probability equations as

u(i; 0) = (1� p)u(i� 1; 0)+ p(1� p2)u(i; 1)+ p3u(i; 0) (4.4)

4.4. RANDOMIZED ROUTING 53

u(i; j) =
(1� p2)

2
[u(i� 1; j) + u(i; j � 1)]

+
p2(1� p2)

2
[u(i+ 1; j)+ u(i; j + 1)]

+p4u(i; j) (4.5)

There is a boundary condition: u(0; 0) = 1 because (0,0) is the destination. Other boundary

conditions come from the wrap-around connections. For N even, n = N=2, we have

u(n+ 1; n+ 1) = u(n� 1; n� 1) (4.6)

u(i; n+ 1) = u(i; n� 1) for i � n (4.7)

u(n+ 1; j) = u(n� 1; j) for j � n (4.8)

For N odd, n = bN=2c, we have

u(n+ 1; n+ 1) = u(n; n) (4.9)

u(i; n+ 1) = u(i; n) for i � n (4.10)

u(n+ 1; j) = u(n; j) for j � n (4.11)

Using Eq. 4.5 and the above boundary conditions, we can show that for n = N=2 (when N

is even) or n = bN=2c (when N is odd),

u(n; n) = u(n; n� 1) if p 6= 1 (4.12)

By two-dimensional mathematical induction, it is easy to show that u(n; n) = u(n; n� 1) =

u(n� 1; n) = � � � = u(i; j) = � � � = u(1; 1) = u(1; 0) = u(0; 1) = u(0; 0). Because u(0; 0) = 1,

then

u(i; j) = 1 8i; j (4.13)

which means the successful probability for all nodes is equal to one. Therefore, the derouting

algorithm can �nish the data routing with probability one, i.e., with livelock-free routing. 2

A similar method works to calculate the latency of derouting in a 2-D torus. We de�ne

the average latency from node (i; j) to (0,0) as l(i; j). By symmetry, l(i; j) = l(j; i). Again,

54 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

p is the blocking probability of a node, and q is the average queue length in each node. Using

the same argument as for u(i; j) above, we obtain the following equations for l(i; j),

l(1; 0) = 1 + (1� p)l(0; 0)+ p(1� p2)[l(1; 1)+ q]

+p3l(1; 0) (4.14)

l(i; 0) = 1 + (1� p)[l(i� 1; 0)+ q]

+p(1� p2)[l(i; 1)+ q] + p3l(i; 0) 8i > 1 (4.15)

l(i; j) = 1 +
(1� p2)

2
[l(i� 1; j) + l(i; j� 1) + 2q]

+
p2(1� p2)

2
[l(i+ 1; j)+ l(i; j + 1) + 2q]

+p4l(i; j) 8i; j � 1 (4.16)

The boundary conditions for l(i; j) are the same as u(i; j) (Eq. 4.6 to Eq. 4.11), and l(0; 0)=0.

When a packet enters a node and there are q packets waiting in the queue, then this

packet will be delayed at least q cycles. This delay is caused by con
icts with other tra�c,

not by derouting. Therefore, if we want to measure the extra latency induced by derouting,

we have to set q = 0. In this case, each packet can be handled immediately whenever it

enters the nodes, so the delay is caused by the longer distance due to derouting.

Fig. 4.14 shows the latency penalty due to derouting in a 16 � 16 2-D torus. The latency

is the average worst case where the distance between sources destinations is 16. It shows

that the latency remains very
at and is close to 16 time units until the blocking probability

is considerably large (p > 0:1).

4.5 Multicast Routing

All the routing algorithms we described before are unicast routing where each packet has

only one destination. Multicasting is a communication process in which a message has more

than one destination. Broadcasting is a special case of multicasting where a message is sent

to all of the nodes in a network. An e�cient multicasting algorithm should be able to deliver

messages with a short latency without increasing the network load signi�cantly. There are

three methods to implement multicasting. These employ unicast-based, tree-based, and path-

based multicasting algorithms.

4.5. MULTICAST ROUTING 55

10
−2

10
−1

10
0

15

20

25

30

35

40

45

Blocking probability

La
te

nc
y

Figure 4.14: Latency penalty due to derouting in a 16 � 16 2-D torus

4.5.1 Unicast-based Multicasting

Most current routers do not have a built-in capability to support multicasting. With such

routers, it is necessary to use multiple unicasting to implement multicasting in software.

When a multicast request is issued by a host, multiple copies of the messages are generated,

i.e., one for each destination. The messages are sent to the destinations sequentially according

to a unicasting algorithm such as described in the previous sections.

Fig. 4.15 (a) shows an example of the unicast-based multicasting. The unicast-based

multicasting is easy to implement because it is a direct extension of a unicasting algorithm

and only the source nodes need to replicate the messages. But all the packets of the same

message will use network resources repeatedly, thereby increasing the network tra�c load

and message latency.

4.5.2 Tree-Based Multicasting

An alternative approach is to construct a multicasting tree that covers all destinations3 and

send the message along the paths on the tree. In tree-based multicasting, the destinations

are partitioned at the source, and separate copies of the message are transmitted, one for

each set of destinations or sub-trees. Packets are routed along each path. When they reach

3The destinations can be either on the leaves or intermediate nodes of the multicast tree.

56 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

1 3

7 6

1198

14 1215 13

10

4

20

5

(a) Unicast-based

1 3

7 6

118

1215 13

10

4

20

9

14

5

(b) Tree-based

1 3

7 6

118

1215 13

10

4

20

9

14

5

(c) Path-based

Figure 4.15: Examples of di�erent multicasting schemes. Source node is 6, destinations are

[0, 2, 4, 10, 11, 15]

4.5. MULTICAST ROUTING 57

a branch on a sub-tree, they are replicated and each copy is forwarded to di�erent subsets

of destinations under this branch. The procedure of \replicate-forward" is repeated at every

branching node of the tree until all the destinations have received their packets (Lin et al.,

1994). Fig. 4.15 (b) shows an example of tree-based multicasting. Because there is no storage

space in the intermediate nodes on the paths, all the packets of a multicasting message on

subsequent branches have to stop if any one packet which is blocked. Therefore, the blocking

probability of a tree-multicasting message is much higher than a unicasting message. For

example, if the blocking probability for any branch is p and there are k branches originating

from the same node, then the blocking probability of the multicasting message is 1� (1�p)k,

which is larger than p for any k > 1.

Deadlock may occur in tree-based multicasting even though we follow the dimension-order

routing for each message. Fig. 4.16 shows a deadlock con�guration in tree-based multicasting

taken from Lin et al. (1994). In the example, a multicasting tree branches at node (1, 0) to (0,

0) and (2, 0). Another multicasting tree branches at node (2, 0) to (1, 0) and (3, 0). Neither

the message entering (1, 0) nor that entering (2, 0) can move forward. The �rst multicast

message, at (1, 0), cannot move forward because it requires the right output port at node

(2, 0) which is in use. The second multicast message, at (2, 0), also cannot move forward

because it requires the left output port at node (1, 0) which is occupied by the �rst message.

Thus, there is circular waiting resulting in deadlock. A solution to prevent such blockages

was proposed in (Lin et al., 1994). The approach is similar to the virtual network algorithm

for adaptive routing described in Section 4.2.1. A physical network is partitioned into 2n

disjoint virtual networks (VN = fd0; d1; : : : ; dn�1g)
4. The set of destinations is identi�ed by

the virtual network a message will take, and divided into subsets. Duplicated copies of the

message are sent to each virtual network. The tree-based multicasting algorithm is applied

in each virtual network to deliver the message to all the destinations in the subset.

The main disadvantage of tree-based multicasting is that the equivalent blocking probab-

ility is higher because of multiple branches on the tree. Furthermore, a packet is forwarded

right after the header is received in wormhole routing, so for e�cient operation the branching

decision needs to be made as soon as possible. Encoding all the required branching inform-

ation in the header e�ciently is di�cult when there are many destinations distributed in

di�erent branches. For these reasons tree-based multicasting is not suitable for wormhole

routing.

4In Section 4.2.1, we have 2n�1 virtual networks and V N = fd1; d2; : : : ; dn�1g

58 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

(3, 0)(2, 0)(1, 0)(0, 0)

Figure 4.16: Deadlock con�guration in tree-based multicasting

4.5.3 Path-Based Multicasting

In path-based multicasting, a packet is forwarded to its destinations one by one in a sequential

order, so a message is never duplicated at the intermediate nodes after it departs the source

node. A packet may have multiple headers: the �rst header indicates the �rst destination, the

second header indicates the second destination, and so on. After the packet has reached the

�rst destination, the �rst header is removed, and the remainder is both retained at the �rst

destination and also continuously forwarded to the next destination speci�ed by the headers.

In path-based multicasting, messages usually do not travel by the shortest paths to all their

destinations, but there is only one packet associated with each message in the network at any

time. For example, in Fig. 4.15 (c), for the message from node 6 to nodes 0, 2, and 4, there

is only one packet, and the path from node 6 to node 0 is not the shortest path. Therefore,

the network load and the blocking probability of messages do not increase in the same way

as tree-based multicasting.

A path-based multicasting algorithm using Hamiltonian paths was proposed by Lin et

al. (1994). A Hamiltonian path visits every node in a graph exactly once. A label may

be assigned to each node in the network according to its position on a Hamiltonian path.

Fig. 4.17 shows two examples of Hamiltonian paths in a 2-D mesh. Based on the labeling of

the Hamiltonian paths, it is possible to partition the network into two disjoint parts: (i) a

positive network where all the links are from the nodes with smaller labels to the nodes with

larger labels; and (ii) a negative network where the links are from the nodes with larger labels

to the nodes with smaller labels. Fig. 4.18 shows the network partition of Fig. 4.17 (a).

For a source and a set of destinations, the destinations can be divided into two subsets,

DH and DL. The destinations in DH have larger labels than that of the source, while the

destinations in DL have smaller labels than that of the source. Two copies of messages are

4.5. MULTICAST ROUTING 59

1 2 30

7 6 5 4

111098

15 14 13 12

(a) Hamiltonian path 1

10

10

12

8 9

723

4 5 6 11

131415

(b) Hamiltonian path 2

Figure 4.17: Two di�erent mapping to construct Hamiltonian paths in a 2-D mesh

sent to the destinations: one is sent to the nodes in DH using the positive network, and the

other is sent to the nodes in DL using the negative network (Fig. 4.15 (c)). The packets use

the channels of the positive network in the strictly ascending order for the destinations in DH ,

and those of the negative network in the strictly descending order for DL. Therefore, there

is no cyclic dependency, and deadlock-free multicasting is achieved.

60 CHAPTER 4. WORMHOLE ROUTING ALGORITHMS

1 2 30

7 6 5 4

111098

15 14 13 12

(a) Positive Hamiltonian net-
work

1 2 30

7 6 5 4

111098

15 14 13 12

(b) Negative Hamiltonian net-
work

Figure 4.18: Partition of a 2-D mesh based on the Hamiltonian path

Chapter 5

Wormhole Routing Simulation

A wormhole routing simulator was built to study di�erent routing algorithms and some design

tradeo�s, such as those among bu�er size, virtual channel numbers, and channel arbitration.

Throughput and latency are the main metrics for measuring performance. A good routing

algorithm combined with appropriate design parameters should be able to sustain a high

data throughput with low latency. In this chapter, we describe the simulator models and

architectures, and some di�erent tra�c models. We also describe the results of the simulation

and interpret these in terms of design issues.

5.1 Simulation Models

The wormhole network simulator can be divided into three levels: the network, the node, and

the link model. The network model instantiates the network topology and interconnections,

and de�nes individual nodes in the network. The node model de�nes the functions inside

a router that perform data routing. The link model implements the low level data transfer,

interconnection protocols, and FIFO or DAMQ bu�ers. In addition to the above three level

models, we also have a tra�c model which generates packets for the network based on the

speci�ed injection model and destination distribution. We will describe the details of each

model in the following sections.

5.1.1 Network Model

The network model de�nes the network interconnection. Network dimension and size are

declared in this level. A network con�guration �le contains the declaration of nodes, each

61

62 CHAPTER 5. WORMHOLE ROUTING SIMULATION

port of every node, and the connection with other nodes. We can have an arbitrary network

topology by specifying the interconnections in the network con�guration �le. The network

interconnection consistency is checked automatically after reading the con�guration �le to

make sure all the interconnections are legal and one-to-one. Two kinds of nodes can be

declared: routers and hosts. The router node will be described by the node model, and the

host will be described by the tra�c model.

We are most interested in k-ary n-cube networks because of their generality, regularity,

and simplicity (Section 2.2). A k-ary n-cube mesh network is an n-dimensional grid consisting

of kn nodes. There are k nodes in each dimension, and each node is connected to its Cartesian

neighbors1. A torus is a mesh with wrap-around connections, i.e., there is a ring in every

dimension. With the physical limitation of wire density and bisection width, Dally has shown

that low-dimensional cubes perform better than high-dimensional cubes in parallel processing

(Section 2.2) (Dally, 1990b). Therefore, we will concentrate on the two-dimensional mesh or

torus in our simulation.

5.1.2 Node Model

The node model de�nes the router functions and performs data routing. Fig. 5.1 shows

the internal router architecture proposed and implemented in the simulator. A router is

composed of header decoders, requesting units, arbiters, crossbar switches, I/O bu�ers, and

I/O controllers. The I/O bu�ers and I/O controllers are described in the link model. Each

function in a node is declared as a simulation module and the interface between modules is

well de�ned. In this way, we can replace a module and implement di�erent algorithms for a

particular function.

In order to enhance the routing e�ciency, each packet has the directional information in

its header to indicate the direction (positive or negative) it will take in any dimension. For

this we need n bits for an n-dimensional array. The directional information is encoded at

the source when the packet is generated, and is never changed on the path to the destination.

There are n arrival bits in the header associated with each dimension to indicate whether

this dimension needs further correction or not. There are other n wrap-around bits in the

header to keep track of which dimensions have taken the wrap-around connections. The wrap-

around bits are critical to deadlock avoidance as described in the various routing algorithms

(Chapter 4). So, a total of 3n bits of supplemental information are encoded in the header
it

1The node here contains a router and a host.

5.1. SIMULATION MODELS 63

WavefrontRequest

Filter

output status

From Input Channel

Generator

Input PortInput buffers

Requesting Unit

Request

decoder

Vch3

Arbiter

Ack

request from other ports

Vch2

header

header

Vch0

Vch1

PortsCross Bar

To

Output

Figure 5.1: Internal router node architecture model

of a packet.

A credit feedback scheme is used for tra�c congestion control. We assign a credit to

each output-input virtual channel pair. The credit is used to indicate the bu�er availability

at the input port of the receiver and is monitored at the output port of the sender. The initial

value of a credit is equal to the virtual channel bu�er size. When a
it is transferred to the

output port, the credit of the virtual channel it will use is decremented by one. When the

receiving node reads a
it out of the corresponding input virtual channel bu�ers, it will send

a credit back to the sender's output port. The credit for the virtual channel at the output

port is incremented by one when a credit is received. Because of the propagation delay, the

credit at the output port is always less than or equal to the available bu�er size of the input

port at the receiver. Thus with this scheme, we will not over
ow an input bu�er and never

discard a packet.

We now describe the details of each functional block in a router.

Header Decoder The header decoder at each input port compares the coordinates of the

current node and the incoming header
it's destination. We only have to check the

address coordinate in the dimension from which the packet is coming. The header

decoder marks the arrival bit of this dimension as \arrived" if the incoming packet's

destination matches the current node in this dimension. If the input link is a wrap-

around connection, the header decoder will set the wrap-around bit in this dimension

64 CHAPTER 5. WORMHOLE ROUTING SIMULATION

for the incoming packet. If the input virtual channel is implemented as a DAMQ, the

header decoder also decides the primary output direction and links the incoming
it to

the proper list.

Requesting Unit There are two sub-blocks in the requesting unit: a request generator and

a request �lter. The request generator takes the requests from all virtual channels of

the input port and selects the output port and output virtual channel for each request.

If an input virtual channel is organized as a DAMQ, then there may be more than one

request from a single virtual channel. If the request is issued by a header, the request

generator will choose the output virtual channel based on the routing algorithm for

deadlock avoidance and credit availability. If the header has passed, then the previous

output virtual channel assigned for the same packet is chosen. Before the requests go

to the arbiter, they go to the request �lter which can block some requests. A request

is blocked if (1) the chosen output virtual channel has already had another message

in progress, (2) the chosen output virtual channel is full (no credit), or (3) the chosen

output port bu�er is full. Requests which fall into these three categories are eliminated,

so they will not occupy the slot for arbitration.

Arbiter The purpose of the arbiter is to arbitrate input and output con
icts at the crossbar

and to make switch utilization and throughput as high as possible. We implemented

wavefront arbitration to optimize the utilization of the crossbar switch (Tamir and Chi,

1993). Fig. 5.2 shows a 5 � 5 wavefront arbiter. Each cell receives the request and

generates the grant for the corresponding cross point in the crossbar switch. The cells

are arranged in diagonal lines, i.e., wavefronts. Since the requests on a wavefront are

from di�erent input ports and for di�erent output ports, there is no con
ict between

the arbitration cells on the same wavefront. The order of wavefronts determines the

priority of requests. The arbitration begins from the top wavefront, which has the

highest priority. If a request is granted, the corresponding input and output port are

disabled and no other requests can be granted for either the same input or output

port. To guarantee fair arbitration, we can sort the wavefronts by the \age" of the
its

issuing the requests. A more practical compromise is to put the oldest
its on the top

wavefront, with other requests ordered in a random or round-robin priority.

Crossbar Switch The crossbar switch sets up physical connections from input ports to

other output ports. The size of crossbar switch is m �m, where m is the number of

5.1. SIMULATION MODELS 65

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(4, 2) (4, 3) (4, 4)

(3, 4)(3, 3)(3, 2)

(2, 3) (2, 4)

(1, 4)

(1, 0) (1, 1) (1, 3)

(2, 2)(2, 1)(2, 0)

(3, 0) (3, 1)

(4, 0)

(1, 2)

In 0

In 4’

In 4’

In 4

In 3

In 2

In 1 In 1’

In 2’

In 3’

In 1’

In 2’

In 3’

(4, 1)

Out 0 Out 1 Out 2 Out 3 Out 4

Request & Granted

Request but NOT granted

NO Request

Figure 5.2: Wavefront arbitration. Each cell corresponds to a cross point in the crossbar

switch.

66 CHAPTER 5. WORMHOLE ROUTING SIMULATION

input

FIFO

output
FIFO

FIFO

input

FIFO
output

IO
Cont

IO
Cont

Channel

credit feedback

Figure 5.3: Link model

ports.

In a two-dimensional mesh or torus, each node has �ve I/O ports: four to the nearest

neighbors and one to the host. The crossbar is a 5� 5 fully-connected switch such that any

input port can be connected to any other output port as long as there is no output con
ict

guaranteed by the arbiter.

5.1.3 Link Model

The link model includes the physical channels for data transfer, I/O controller for intercon-

nection protocols, and I/O bu�ers for virtual channels (Fig. 5.3).

A physical channel is modeled as a FIFO where the sender pushes a new
it into the

channel and the receiver pops a
it out of the channel. There is a delay associated with each

channel. The depth of the channel FIFO model is proportional to the channel propagation

delay. When the sender pushes a
it, it will add the delay to the
it's time stamp. The FIFO

not-empty signal will inform the receiver to check the channel. If the
it at the head of the

channel has a time stamp smaller or equal to the current time, the receiver pops out this

it and completes the transaction. We do not relay an acknowledgment back to the sender

because the credit scheme described in the previous section guarantees that the bu�ers will

not over
ow and no
its will be discarded. Each
it has its own virtual channel ID. When

it is popped out by the receiving node, it will be put into the input virtual channel speci�ed

by its virtual channel ID. The FIFO model of the channel is useful especially when the

propagation delay is longer than the cycle time, where there may be more than one
it in the

channel as a result of the transmission line e�ect.

The credit feedback link from a receiver back to a sender is similar to the data channel.

5.2. SIMULATION FLOW 67

A credit with speci�ed virtual channel ID is pushed into the credit feedback link. After the

scheduled delay, the credit is popped out to update the output credit of the corresponding

virtual channel at the sender.

The input bu�ers are organized as several independent lanes, or virtual channels. Each

virtual channel bu�er can be either a FIFO or DAMQ (Section 3.3.2) depending on the

simulation conditions. The size of bu�ers and number of virtual channels are the simulation

parameters. The output bu�er is a single FIFO because the output
its are sequential on the

physical channel. If the physical channel is grouped as two uni-directional channels, then a

single entry latch is su�cient for the output bu�er. If the physical channel is a bi-directional

channel, then we need more space for the output bu�er because the token-exchange may take

some time and it is necessary to have the packets pass through the crossbar switch and be

bu�ered at the output port in order to hide the latency.

5.1.4 Tra�c Model

A host is connected to one of the ports in a router to inject tra�c into the network. The

tra�c injection module emulates the host to generate packets and encode the packet headers.

The injection rate is a parameter to adjust the tra�c load in the network. Di�erent injection

modes can be used to generate tra�c, for example, uniform injection and bursty injection.

The packet length is speci�ed in terms of number of
its including the header. Two di�erent

packet lengths can be de�ned and speci�ed by some ratio to generate a mixed tra�c. A
it

is consumed immediately when it reaches the destination host. The injection rate and destin-

ation distribution can be speci�ed for each host separately to model the non-uniform tra�c.

We may limit the maximal number of outstanding packets per host to prevent overloading

the network.

5.2 Simulation Flow

Fig. 5.4 shows the simulation
ow of the wormhole data routing network. The simulator has

a mixed simulation scheduling scheme. Instead of the event-driven simulation, we have a

global clock to control all the hosts and routers which we assume are running at the same

frequency in the network. We have a bypass in each simulation step to save simulation time

if we know there will be no action for some steps. In addition to the global simulation clock,

we also have scheduling queues for each physical link as described in the link model. The

68 CHAPTER 5. WORMHOLE ROUTING SIMULATION

propagation delay for each transmission is scheduled in the channel queue, and a receiving

node will read the channel based on the value of the time stamp. The clock skew between

nodes is simulated by adding a random synchronization delay when a
it passes across a

link. The granularity of propagation delay and synchronization delay can be sub-cycle, but

the scheduling is quantized to be on the cycle boundary.

Most network simulations assume it takes only a single cycle for a hop (Duato, 1993;

Dally and Aoki, 1993; Boppana and Chalasani, 1993; Pifarr�e et al., 1994; Berman et al.,

1992; Draper and Ghosh, 1992); this is not an accurate model for hardware implementation

and cannot handle variable propagation delay. In this research, four stages of pipelining

in the router are implemented as a realistic model of hardware design. The four stages

are shown in Fig. 5.4: I/O Control, Header Decoding, Request Arbitration, and Crossbar.

The fall-through latency is de�ned as the latency of a
it passing through a router without

contention. In our simulation model, the fall-through latency is four cycles.

In the bi-directional channel con�guration, it is very important for performance to hide

the delay of token exchange. Since it is known whether an output port will be used at the

Request Arbitration cycle, which is two cycles earlier than the output external transmission,

it is possible to issue the token request at the end of the Request Arbitration cycle, if the

chosen output port does not have the token. This hides two-cycle latency. Because of

the overhead of token exchange, we do not want to have the token exchanged too often,

but it is still necessary to be balanced in order to prevent starvation. A token request is

acknowledged when the output port which currently has the token is idle or is sending a tail

it. This arrangement guarantees that a node can get the token in a �nite time after it issues

the token request, and that the token will not bounce back and forth unnecessarily, thereby

reducing the overhead (Section 3.4.1).

5.3 Performance Measurement

Throughput and latency are the mainmetrics of network performancemeasurement. Through-

put is a measure of the actual rate at which data are delivered to a host. The headers of

packets are not included in the net data bandwidth achieved although they will consume the

network bandwidth. Assume that the total channel width per port is 2w. If the channels

are bi-directional links, they have entire width 2w but may have the token-exchange over-

head and longer propagation delay due to higher loading. If the channels are uni-directional

5.4. SIMULATION RESULTS 69

I/O Control

Request_Arbitration

for (step=0; step < MaxStep; step++)

For (all Hosts)

Host_Read_Channel();
Generate_Packet();

{

}

{

For (All Routers)
{

Read_Channel(all input ports);

Write_Channel(all output ports);

Crossbar_Forward();

Requesting(all input ports);

Arbitration();

Header_Decoder(all input ports);

}

Cal_statistics(step);

}

Write_Input_Buffer(all input ports); }

}

}

Header_Decoding

Crossbar}

Figure 5.4: Simulation Flow

links, each direction can only have width w, and the utilization may be lower (Section 3.4).

We normalize the throughput (data bandwidth) to the factor w in our simulation results for

comparison of these two channel con�guration schemes.

Latency is measured based for each individual
it. Fig. 5.5 shows the delay decomposition

of a single hop. The single hop delay consists of propagation delay, synchronization delay,

router fall-through delay, and queuing delay (not shown). The queuing delay is due to tra�c

contention in the network and results in an extra delay which may be dominant for heavy

tra�c loads. As described in the previous section, the granularity of propagation delay and

synchronization delay can be sub-cycle, and the total delay is accumulated along the path.

The router fall-through delay and queuing delay are cycle-based and also accumulated in the

latency calculation.

5.4 Simulation Results

The simulation was used to study network data routing for two-dimensional tori. Each

simulation point has at least 10,000 cycles of operation to ensure that the statistics have

reached the steady state. Data for the �rst 2000 cycles are discarded because they are

unstable. For valid comparison, the total bu�er size in a node is constant for all simulation

70 CHAPTER 5. WORMHOLE ROUTING SIMULATION

output

buffers

receiver

Synchronizer

driver

output

Router

Delay
Synch Router Fall-thru

DelayPropagation Delay

Core
output
buffers

output
driver

Figure 5.5: Delay components in the simulation model

conditions, i.e. di�erent virtual channel numbers, routing algorithms, and so on. In the

simulation, we �x the total input bu�er size in a node to be 576w, where w is the width of a

uni-directional channel. For most of the simulations, the packet size is equal to 10w (8w data

plus 2w header). In terms of
its, the packet length is 10 and 5
its in the uni-directional

and bi-directional con�guration, respectively. To prevent overloading the simulated network,

we limit the maximal outstanding packets per host to be 4 in most simulations2.

For di�erent routing algorithms, the minimal requirements of virtual channels and bu�er

allocation to prevent deadlock are di�erent (Chapter 4). For example, for the deterministic

(Dimension-Order) routing, we need two levels of virtual channels in each port, while the

adaptive (Dimension-Reversal or DR) algorithm needs three levels of virtual channels. Table

5.1 summarizes how we allocate the bu�ers for di�erent routing algorithms on a 2-D torus,

where vxi is the number of ith level virtual channels in the x direction, for example; each

virtual channel bu�er size (vcb) is 32w. It is possible to reorganize the bu�ers to reduce

vcb and increase the number of virtual channels. For instance, vx0=2 with vcb=32w can be

reorganized as vx0=4 with vcb=16w. The e�ect of di�erent vcb size will be shown in the

simulation results.

In the simulation, we assume the clock frequency for each node is 100MHz (10ns cycle

time) and the propagation delay between nodes is 17ns. Every node has its own local clock

with a di�erent phase, and the clock phase drifts by a random number within �1% of the

clock rate, i.e., 0:1ns/cycle. The synchronization delay is the clock di�erence between a

sender and a receiver and takes a multiple of 10ns.

2The limitation on the number of outstanding packets exists in most real parallel machines. In the real
situation, we usually have request-reply type tra�c patterns. Then the number of pending requests is limited

5.4. SIMULATION RESULTS 71

Algorithm Bu�er Allocation Total Bu�er Size

Deterministic vx0 = 3, vx1 = 2, vy0 = 2, vy1 = 2 2(5 + 4)� 32w

Adaptive(Virtual Net) vx0 = vx1 = vx2 = 1, vy0 = vy1 = vy2 = 1 2(6 + 3)� 32w

for both vn0 and vn1
Adaptive(DR) det: vx0 = vx1 = 1, vy0 = vy1 = 1 2(5 + 4)� 32w

adp: vx2 = 3, vy2 = 2

Adaptive(STAR) vx�0 = vx�1 = 2, vy�0 = 2, vy�1 = 1, vy = 2 2(4 + 5)� 32w

Table 5.1: Virtual channel bu�er allocation for di�erent routing algorithms in a 2-D torus.

Simulation results and discussion follow:

E�ect of routing algorithms We simulated four di�erent routing algorithms to compare

their performance under di�erent tra�c loads. The four algorithms are listed in

Table 5.1: There is one deterministic (Dimension-Order), and three adaptive cases,

Virtual Network, Dimension Reversal (DRn)3, and Star-Channel algorithm. Three dif-

ferent tra�c patterns: uniform random, transpose, and hot-spot tra�c, were run for

each of these algorithms. The bandwidth shown in the simulation �gures is the average

number of bits delivered to a host per cycle divided by the channel width w.

Uniform Fig. 5.6 shows the simulation results of the uniform random tra�c for dif-

ferent algorithms. For both uni- and bi-directional channel con�gurations, the

deterministic algorithm is the worst among the four algorithms simulated. The

Star-Channel algorithm gives the lowest latency under the same throughput (band-

width). However, the di�erence between di�erent algorithms is not very signi�cant

compared with some results reported by other researchers (Duato, 1993; Dally and

Aoki, 1993; Boppana and Chalasani, 1993). The main reason for this di�erence is

that we have a more realistic router model where the requests are arbitrated in the

same way for both deterministic and adaptive routing so that the hardware com-

plexity is about the same. A second reason is that we have four pipelining stages

plus propagation delay in our model. When a
it is blocked and loses one cycle

due to contention, the percentage of latency increased is smaller than that of the

1-cycle model for a single hop. So the performance di�erence between algorithms

by the size of request bu�er which determines the maximal number of outstanding packets per host.
3DRn, where n is the maximum reversal number allowed

72 CHAPTER 5. WORMHOLE ROUTING SIMULATION

for uniform tra�c is not prominent.

Transpose Transpose is a particular data pattern where node (i; j) is always sending

messages to node (j; i), and vice versa. Fig. 5.7 shows the results for the transpose

data pattern. In Fig. 5.7(a) (Uni-directional channels), the deterministic algorithm

saturates much faster than other algorithms due to lack of
exibility in its routing

paths. The Star-Channel algorithm is worse than the other adaptive algorithms in

this case. The reason is the limitation of usage of non-star channels i.e., the non-

star channel bu�er must be empty before it can accept any new packet, Section

4.2.3. The e�ciency of the adaptive paths drops when we require more adaptivity,

which is not very necessary in the uniform case.

For the bi-directional channel case (Fig. 5.7(b)), the deterministic algorithm ac-

tually performs best over much of the range of tra�c simulated. Because of the

regular data
ow and the property of transpose, the deterministic algorithm al-

ways sends a packet from (i; j) to (j; j) to (j; i). So there is no channel token

exchange involved in the path. The only time we may need to exchange tokens

is at the source or destination where the router interfaces with the host. For ad-

aptive routing, the regular data
ow pattern is destroyed and token exchange is

necessary. The overhead of token exchange makes the latency of the adaptive

routing algorithms higher than that of the deterministic routing. However, since

the network contention is more severe for the deterministic routing, the latency

increases rapidly and the network is saturated much more quickly than the case

of adaptive algorithms. So the adaptive routing achieves its advantage for heavily

loaded tra�c.

Hot Spot We also simulated the hot-spot e�ect in a network. To create a hot spot, we

have every host in the network send 2% of its packets to a common destination,

i.e., the hot spot. In a 2-D 16 � 16 torus, there normally are about 0.4% of

packets for each destination under uniform tra�c. Thus we have �ve times the

tra�c load for the hot spot. Fig. 5.8 shows the results of hot-spot tra�c. For the

uni-directional case, all four algorithms saturate at about the same tra�c load,

which is also di�erent from some results reported previously (Draper and Ghosh,

1992; Boppana and Chalasani, 1993). The �rst reason is that the bottleneck in this

case is at the interface between the router and the host of the hot spot. The limited

interface bandwidth will make the contention propagate quickly from the hot spot

5.4. SIMULATION RESULTS 73

to other points in the network. This phenomenon is called \tree-saturation."

Before the tree-saturation occurs, however, the deterministic algorithm is worse

than other adaptive algorithms. But as is the case for uniform tra�c, the di�erence

is not very signi�cant. When the tree-saturation sets in, most bu�ers are occupied

by the
its destined to the hot spot, so use of di�erent routing algorithms do

not make much di�erence. Additionally, we have limited the number of maximal

outstanding packets per host to create a more realistic host model. Since there

is more contention for hot-spot messages, their \life time" is longer than normal

messages. As a result, based on the packet generation probability, the percentage

of hot-spot packets will become much higher than the 2% expected at the steady

state. Then there are fewer normal packets which can take advantage of the

adaptive routing paths. Therefore, the overall average latency is dominated by the

hot-spot packets.

E�ect of channel con�guration Communication links can be con�gured either as two

uni-directional channels or as a single bi-directional channel (Section 3.4). Fig. 5.9 and

5.10 show the comparison of uni- and bi-directional channels for uniform and hot-spot

tra�c, respectively. For lower tra�c, the bi-directional channel con�guration has higher

latency because of token-exchange overhead. In this region, latency is dominated by

the distance, and any additional delay by token exchange is signi�cant. But when

tra�c load is increased, the bi-directional channel con�guration performs better than

the uni-directional con�guration because network contention becomes dominant in the

latency. For the bi-directional con�guration, the e�ective packet length in terms of
its

is half that of the uni-directional con�guration, and the tra�c congestion is much less in

spite of the overhead of token exchange. Especially for the hot-spot tra�c (Fig. 5.10),

the bi-directional con�guration can support much higher data bandwidth because the

bottleneck at the hot-spot host is reduced due to doubling the available channel width.

A similar comparison for transpose tra�c is shown in Fig. 5.14. We will discuss this

�gure in detail in the paragraph on the e�ect of packet interference.

E�ect of virtual channels The number of virtual channels can be increased to reduce the

e�ect of \blocked-by-head" delays when there is tra�c contention. However, we have to

decrease the bu�er size for each virtual channel to keep the total bu�er number constant

for a valid comparison (Dally, 1992). In Dally (1992), simulation results have shown that

74 CHAPTER 5. WORMHOLE ROUTING SIMULATION

more virtual channels can increase achievable throughput. Our simulation shows similar

results (Fig. 5.11), where larger bu�er size means fewer virtual channels. However,

when the bu�er size is too small, i.e., when there are too many virtual channels, the

performance will be worse. The �gure includes the e�ects of propagation delay (17ns)

and credit feedback scheme. When the bu�er size is equal to 4
its, the round-trip link

delay will make the sender stop sending more data
its because the credit is 0 and the

credit update is delayed even though there is no contention. The channel will remain

idle until the credit is updated. So there is an o�set between the latency of vcb=4

and larger vcb at lower tra�c. Some relative performance gain occurs for vcb=4 at

higher tra�c, but this is still not the best choice. Therefore, the virtual channel bu�er

size has to be large enough to hide the propagation delay of credit feedback. In the

simulation, vcb=8 or 16 are the optimal bu�er sizes for most tra�c patterns and routing

algorithms.

E�ect of packet length For each packet, there is a constant overhead for header routing.

When we increase the packet length, the percentage of header overhead is reduced.

However, longer packets become jammed up more easily in a network. Fig. 5.12 (a)

shows the network bandwidth for packet length=6, 10, and 20
its. The total network

bandwidth includes the headers of packets. For shorter packets, the latency is less at the

lower network bandwidth compared with longer packets. However, shorter packets have

higher header overhead. For example, the header overhead is 1/3 for length=6, but only

1/10 for length=20. Fig. 5.12 (b) shows the net data bandwidth which does not include

headers. Due to header overhead, shorter packets have lower e�ective data bandwidth

although they can achieve higher total network bandwidth. In the simulation, packet

length=10 is a good compromise between tra�c contention and header overhead for

uni-directional channel con�guration.

E�ect of packet interference When tra�c contention occurs, packets will interfere with

each other. If more than one packet requests the same output port at the same time (they

will request di�erent virtual channels), only one can be granted use of the crossbar to

the output port. Di�erent arbitration schemes have been implemented and simulated.

The �rst is that all the
its from di�erent packets have the same privilege to issue

the request and only one can be chosen by the wavefront arbiter. Then the
its from

di�erent packets may be interleaved on a physical output channel. The second scheme

5.4. SIMULATION RESULTS 75

attempts to keep a packet together. If a packet is using some output port, then the

requests by other packets will be �ltered out before going to the wavefront arbiter.

So the
its from the same packet will be consecutive without interruption by other

packets. However, we still allow a
it to break in a packet if this
it is \older" than

some threshold to prevent starvation in the second scheme.

For uniform tra�c (Fig. 5.13), the performance is better when we allow a
it to break

in another packet on a physical channel for the uni-directional con�guration. Because

all the
its compete with each other only based on their current age, it is a balanced

competition and does not depend on previous arbitration results. If we try to keep

a packet together, we may make some
its of other packets continue to wait even if

they are older. For the bi-directional channel con�guration, however, keeping a packet

together is slightly better except for the deterministic algorithm.

Fig. 5.14 shows the results for transpose tra�c. In this case, the bene�t of keeping

a packet together for the bi-directional channel con�guration is even more obvious for

adaptive routing. When we keep a packet together, there is no gap within a packet

and the packet boundary is clear, so the overhead of token exchange is reduced. If we

interleave di�erent packets on a physical channel, a packet will spread out and idle

cycles will be inserted when the packet continues to the next node (Fig. 5.15). The

output port may be confused by the idle cycles and give up the token prematurely. As a

result the token could be exchanged much more often, thereby increasing the overhead

of token exchange.

76 CHAPTER 5. WORMHOLE ROUTING SIMULATION

550

600

650

700

750

800

850

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, vcb=16*1w, uniform, uni-dir channels

deter
star

virtual net
DR4

(a) Uni-directional

600

620

640

660

680

700

720

740

760

780

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, vcb=8*2w, uniform, bi-dir channels

deter
star

virtual net
DR4

(b) Bi-directional

Figure 5.6: Latency versus throughput for di�erent routing algorithms under uniform ran-

dom tra�c

5.4. SIMULATION RESULTS 77

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, vcb=16*1w, transpose, uni-dir channels

deter
star

virtual net
DR4

(a) Uni-directional

550

600

650

700

750

800

850

900

950

1000

1050

1100

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, vcb=8*2w, transpose, bi-dir channels

deter
star

virtual net
DR4

(b) Bi-directional

Figure 5.7: Latency versus throughput for di�erent routing algorithms under transpose

tra�c

78 CHAPTER 5. WORMHOLE ROUTING SIMULATION

550

600

650

700

750

800

850

900

950

1000

1050

0.02 0.04 0.06 0.08 0.1 0.12 0.14

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, vcb=16*1w, hot spot, uni-dir channels

deter
star

virtual net
DR4

(a) Uni-directional

600

620

640

660

680

700

720

740

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, vcb=8*2w, hot spot, bi-dir channels

deter
star

virtual net
DR4

(b) Bi-directional

Figure 5.8: Latency versus throughput for di�erent routing algorithms under Hot-spot

tra�c

5.4. SIMULATION RESULTS 79

550

600

650

700

750

800

850

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

L
a

te
n

cy
(n

s)

Bandwidth/Host

16x16 Torus, uniform, deterministic

uni_ch
bi_ch

(a) Deterministic

550

600

650

700

750

800

850

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
L

a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, uniform, virtual net

uni_ch
bi_ch

(b) Adaptive (Virtual Networks)

550

600

650

700

750

800

850

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

L
a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, uniform, DR4

uni_ch
bi_ch

(c) Adaptive (Dimension Reversal)

550

600

650

700

750

800

850

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

L
a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, uniform, star

uni_ch
bi_ch

(d) Adaptive (Star Channel)

Figure 5.9: Latency versus throughput for di�erent routing algorithms under uniform ran-

dom tra�c. Comparison of uni- and bi-directional channels

80 CHAPTER 5. WORMHOLE ROUTING SIMULATION

550

600

650

700

750

800

850

900

950

1000

1050

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L
a

te
n

cy
(n

s)

Bandwidth/Host

16x16 Torus, hot spot, deterministic

uni_ch
bi_ch

(a) Deterministic

550

600

650

700

750

800

850

900

950

1000

1050

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L
a

te
n

cy
(n

s)

Bandwidth/Host

16x16 Torus, hot spot, virtual net

uni_ch
bi_ch

(b) Adaptive (Virtual Networks)

550

600

650

700

750

800

850

900

950

1000

1050

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L
a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, hot spot, DR4

uni_ch
bi_ch

(c) Adaptive (Dimension Reversal)

550

600

650

700

750

800

850

900

950

1000

1050

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L
a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, hot spot, star

uni_ch
bi_ch

(d) Adaptive (Star Channel)

Figure 5.10: Latency versus throughput for di�erent routing algorithms under Hot-spot

tra�c. Comparison of uni- and bi-directional channels

5.4. SIMULATION RESULTS 81

550

600

650

700

750

800

850

900

950

1000

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, uniform, uni-dir channels, deter

vcb=72
vcb=48
vcb=32
vcb=16
vcb=8
vcb=4

(a) Uni-directional, size unit=w

600

620

640

660

680

700

720

740

760

780

800

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, uniform, bi-dir channels, deter

vcb=24
vcb=16
vcb=8
vcb=4

(b) Bi-directional, size unit=2w

Figure 5.11: Latency versus throughput for di�erent virtual channel bu�er sizes. Determ-

inistic routing under uniform random tra�c

82 CHAPTER 5. WORMHOLE ROUTING SIMULATION

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

La
te

nc
y(

ns
)

Bandwidth(including headers)/Host

16x16 Torus, vcb=16, uniform, uni-dir channels, deter

l=20
l=10

l=6

(a) Network bandwidth (including headers)

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 0.05 0.1 0.15 0.2 0.25 0.3

La
te

nc
y(

ns
)

Bandwidth/Host

16x16 Torus, vcb=16, uniform, uni-dir channels, deter

l=20
l=10
l=6

(b) Data bandwidth only

Figure 5.12: Latency for di�erent packet length. Uni-directional channels. Deterministic

routing under uniform random tra�c.

5.4. SIMULATION RESULTS 83

550

600

650

700

750

800

850

900

950

1000

0.05 0.1 0.15 0.2

L
a

te
n

cy
(n

s)

Bandwidth/Host

16x16 Torus, vcb=16*1w (8*2w), uniform, deter

allow to break in a packet,uni-ch
keep a packet together,uni-ch

allow to break in a packet,bi-ch
keep a packet together,bi-ch

(a) Deterministic

550

600

650

700

750

800

850

900

950

1000

0.05 0.1 0.15 0.2
L

a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, vcb=16*1w (8*2w), uniform, virtual net

allow to break in a packet,uni-ch
keep a packet together,uni-ch

allow to break in a packet,bi-ch
keep a packet together,bi-ch

(b) Adaptive (Virtual Networks)

550

600

650

700

750

800

850

900

950

1000

0.05 0.1 0.15 0.2

L
a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, vcb=16*1w (8*2w), uniform, DR4

allow to break in a packet,uni-ch
keep a packet together,uni-ch

allow to break in a packet,bi-ch
keep a packet together,bi-ch

(c) Adaptive (Dimension Reversal)

550

600

650

700

750

800

850

900

950

1000

0.05 0.1 0.15 0.2

L
a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, vcb=16*1w (8*2w), uniform, star

allow to break in a packet,uni-ch
keep a packet together,uni-ch

allow to break in a packet,bi-ch
keep a packet together,bi-ch

(d) Adaptive (Star Channel)

Figure 5.13: Latency versus throughput for di�erent routing algorithms under uniform

random tra�c.

84 CHAPTER 5. WORMHOLE ROUTING SIMULATION

550

600

650

700

750

800

850

900

950

1000

0.05 0.1 0.15 0.2

L
a

te
n

cy
(n

s)

Bandwidth/Host

16x16 Torus, vcb=16*1w (8*2w), transpose, deter

allow to break in a packet,uni-ch
keep a packet together,uni-ch

allow to break in a packet,bi-ch
keep a packet together,bi-ch

(a) Deterministic

550

600

650

700

750

800

850

900

950

1000

0.05 0.1 0.15 0.2

L
a

te
n

cy
(n

s)

Bandwidth/Host

16x16 Torus, vcb=16*1w (8*2w), transpose, virtual net

allow to break in a packet,uni-ch
keep a packet together,uni-ch

allow to break in a packet,bi-ch
keep a packet together,bi-ch

(b) Adaptive (Virtual Networks)

550

600

650

700

750

800

850

900

950

1000

0.05 0.1 0.15 0.2

L
a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, vcb=16*1w (8*2w), transpose, DR4

allow to break in a packet,uni-ch
keep a packet together,uni-ch

allow to break in a packet,bi-ch
keep a packet together,bi-ch

(c) Adaptive (Dimension Reversal)

550

600

650

700

750

800

850

900

950

1000

0.05 0.1 0.15 0.2

L
a
te

n
cy

(n
s)

Bandwidth/Host

16x16 Torus, vcb=16*1w (8*2w), transpose, star

allow to break in a packet,uni-ch
keep a packet together,uni-ch

allow to break in a packet,bi-ch
keep a packet together,bi-ch

(d) Adaptive (Star Channel)

Figure 5.14: Latency versus throughput for di�erent routing algorithms under transpose

tra�c.

5.4. SIMULATION RESULTS 85

flits from different packets

Idle cycles within a packet

Figure 5.15: Interleaving
its from di�erent packets will insert idle cycles in the packets

when they continue to the next node.

86 CHAPTER 5. WORMHOLE ROUTING SIMULATION

Chapter 6

Segmented Recon�gurable Bus

Low dimensional networks (2-D mesh or torus) have been adopted in many recent mul-

tiprocessor implementations due to their simplicity, regularity, scalability, and feasibility.

However, their main drawbacks are the large network diameter and possibly long distance

communication between nodes.

As a result of this research, the segmented recon�gurable bus (SRB) torus architecture is

proposed to overcome the delay due to \long distance" communications. In addition to the

usual links between the nearest neighbors, we add the recon�gurable bus to the network as

a means of reducing the latency of long distance communication, and to compensate for the

large diameter of low-dimensional networks. A recon�gurable bus improves utilization, but

the physical limitation in the bus length remains (Lu et al., 1993b). Therefore we propose the

segmented recon�gurable bus, and choose the segment length to mitigate the delay impact and

increase resource utilization. It is necessary to arrange these segments carefully to minimize

the interaction between di�erent segments to reduce tra�c contention.

In this chapter, we describe several torus architectures, including that of a torus with SRB.

We also analyze and compare the delay for di�erent interconnectionmodels for di�erent torus

architectures. Simulation results show that the torus with SRB has the best performance in

terms of routing latency as compared with other torus architectures. To increase further

the performance of the SRB, an optimization procedure to select the segment length and

segment alignment is developed. The results of a theoretical analysis of SRB performance

are consistent with the simulation results, providing a guideline for designing a SRB torus

network.

87

88 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

Figure 6.1: Torus structure with links and recon�gurable buses. Dotted lines are the links

connecting nearest neighbors. Solid lines are the recon�gurable buses. The wrap-around

connections of the torus are not shown. Also see Fig. 6.2 for detail connections.

6.1 SRB Architecture Overview

The network topology we use here is an N �N square torus. Each node contains a routing

decision circuit, four I/O ports (receiver/transmitter), and k bu�ers. Each node is connected

to its four nearest neighbors with links. In addition to the links between the nearest neighbors,

we add recon�gurable buses to each row and column (Fig. 6.1). A recon�gurable bus is

basically a series of links with switches to connect or disconnect these links In Fig. 6.1,

the small shaded boxes represent these switches. Each recon�gurable bus is controlled by

a token. Only the nodes which have the token can use the corresponding bus to send their

packets. All the other nodes must use links to send packets only to their neighbors.

In order to compensate for the interconnection delay, we restrict the length of a recon-

�gurable bus. Each row and column is partitioned into several segments to form the SRB,

and each segment has its own recon�gurable bus and token. Within a segment, only a single

node can transmit onto the bus at any one time. Each segmented bus has two end points.

In order to fully utilize each segment, we overlap the segmented buses, i.e., two adjacent

segments will share a common end point. Fig. 6.2 shows the overlap of the segments. Node

6.2. ROUTING ALGORITHMS FOR DIFFERENT TORUS ARCHITECTURES 89

0 1 2 3 4 5 6

SRB0 SRB1 SRB2

Figure 6.2: Adjacent segments share a common end points. Each segment has its own token

ring without overlapping.

6 is shared by two adjacent segments, SRB1 and SRB2. Node 6 can receive packets from

both SRB1 and SRB2; however, it can send packets using SRB2 only. The token of SRB1

only circulates from node 1 to node 5; node 6 belongs to the token ring of SRB2. In this

arrangement, the two end points of each segmented bus belong to the di�erent token rings,

and packets in the end points can be sent by di�erent segmented buses. To avoid confusion,

we de�ne the segment length as the length of the token ring. Thus the length of SRB1 in

Fig. 6.2 is equal to 5. Fig. 6.3 is a 2-D torus with SRB. The SRB's are arranged such that

the segment shift between adjacent rows (or columns) is s, and the o�set between the �rst

row and �rst column is t. The shift s and the o�set t are the design parameters of SRB.

6.2 Routing Algorithms for Di�erent Torus Architectures

A basic principle for e�cient data routing is to reduce the distance packets travel to reach

their destinations. In this section, we will brie
y describe the routing algorithms on the

di�erent torus architectures: a torus with links only, a torus with global buses, a torus with

recon�gurable buses, and a torus with segmented recon�gurable buses.

6.2.1 Torus with Links Only

We use the randomized routing (Section 4.4) as the basic routing algorithm for a torus with

links only (torus link). Recall that this is an adaptive routing with \derouting" for deadlock

avoidance.

6.2.2 Torus with Global Buses

The links and buses can be combined together in a torus (or mesh) structure (Fig. 6.4). This

has the advantage that buses can make long distance transmission much faster than links.

90 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

row-bus ending point

column-bus ending point

s=2

offset
t=2

shift

s=2

shift

Figure 6.3: Torus with segmented recon�gurable bus, segment length=5, shift=2, o�set=2.

Only part of the network is shown for simplicity.

6.2. ROUTING ALGORITHMS FOR DIFFERENT TORUS ARCHITECTURES 91

i,j+1i,j

i-1,j

i,j-1

i+1,j

Figure 6.4: Torus with global bus

Tokens control the use of the buses, which guarantees that there is at most one node driving

a bus at any time.

Algorithm 1 Torus with global bus (torus bus)

� Each row has a global bus and a row-token; each column has a global bus and a column-

token.

� At the start, the tokens are randomly distributed within the nodes, but each row (or

column) has only one row-token (or column-token).

� Only those nodes with tokens can use the global buses.

� When the node (i; j) can use the bus and has a packet whose destination is node (i0; j0),

1. If node (i; j) has the row-token,

{ if (i; j) = (i; j 0), then the node uses link instead of bus to send the packet.

{ if (i; j) 6= (i; j 0),

� if the bu�ers in node (i; j0) are not full, then node (i; j) uses the row-bus

to send the packet to node (i; j0).

� if the bu�ers in node (i; j0) are full, then node (i; j) does nothing.

92 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

2. If node (i; j) has the column-token,

{ if (i; j) = (i0; j), then the node uses link instead of bus to send the packet.

{ if (i; j) 6= (i0; j),

� if the bu�ers in node (i0; j) are not full, then node (i; j) uses the column-

bus to send the packet to node (i0; j).

� if the bu�ers in node (i0; j) are full, then node (i; j) does nothing.

3. If node (i; j) has both a row and a column-token, then it uses the row-bus �rst.

� The rules to use links are the same as torus link.

� After sending the packets, those nodes with token pass their tokens to the next node,

i.e., row-token: (i; j)! (i;modN(j + 1)), column-token: (i; j)! (modN(i+ 1); j).

6.2.3 Torus with Recon�gurable Buses

The utilization of tokens is a crucial factor in increasing the performance of a torus with

bus. In the torus bus algorithm for the torus with global bus, some nodes possess the tokens

but have nothing to send; in this instance, the bus is unused and the token is wasted. We

may eliminate this situation by using the recon�gurable bus. It guarantees that the nodes

receiving and keeping the tokens must have some packets to send unless all the nodes in the

same row (or column) have empty bu�ers. Therefore the utilization of the bus is increased.

A node of the torus with recon�gurable bus is shown in Fig. 6.5.

Algorithm 2 Torus with recon�gurable bus (torus RB)

The rules to use links and buses are same as torus link and torus bus, but there are some

new rules for token passing:

� A node with empty bu�ers connects its (N; S) and (W;E) switches, therefore a token

can bypass it, i.e., it will not grasp the token unless it needs to send packets.

� A node with row-token disconnects its (W;E) switch, and sends the token from E to

its neighbor.

� A node with column-token disconnects its (N; S) switch, and sends the token from S

to its neighbor.

6.2. ROUTING ALGORITHMS FOR DIFFERENT TORUS ARCHITECTURES 93

N

W E

S

Figure 6.5: A node of the torus with recon�gurable bus.

� If a node has some packets in its bu�ers, it disconnects its (N; S) and (W;E) switches,

i.e., it will have the opportunity to get and keep the token, and send the packet by bus

in the next step.

� The nodes with disconnected (W;E) will keep the row-token if they receive the row-

token. The nodes with disconnected (N; S) will keep the column-token if they receive

the column-token.

� During the \packets sending" phase, all the (N; S) and (W;E) are connected as the

global column and row buses respectively.

6.2.4 Torus with Segmented Recon�gurable Buses

In practice, a recon�gurable bus comprises a series of repeaters (or transmission gates), mak-

ing it di�cult to implement a long recon�gurable bus without reducing throughput (the details

of delay models will be given in the next section). Therefore the segmented recon�gurable

bus is proposed for practical applications.

94 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

0 1 2 3 4 5 6 7

Figure 6.6: Wrap-around connections in a torus with SRB

The rules for the segmented recon�gurable bus are described as follows:

Algorithm 3 Torus with segmented recon�gurable bus (torus SRB)

� Each segment is a local bus with wrap-around connection.

� Each local bus has its own token which is only circulated in this local bus. The \token-

passing" algorithm in each local bus bus is the same as torus RB.

� Each local bus has two end points. Each local bus has two indicators to indicate if the

bu�ers in these two end points are full or not.

� If a node has a token, and the intermediate destination of its packet is on this local

bus, then use the bus as torus bus.

� If a node has a token, but the intermediate destination is outside the local bus, then

{ if the bu�ers of the nearer end point (nearer to the destination) are not full, then

use the local bus to send the packet to this end point.

{ if the bu�ers of the nearer end point are full, then use the links.

� The rules to use the links are the same as torus link.

In Fig. 6.6, there are 4 additional wires between rows (and columns) compared with the

torus with links only. So the space penalty for SRB does not depend on the segment length.

Also in Fig. 6.6, all the nodes are identical: they all have one input and one output port

attached to a SRB.

6.3 Interconnection Delay

Interconnection delays directly a�ect latency and throughput of a network system, especially

for a network with SRB. Before we consider the interconnection delay, we need to examine

6.3. INTERCONNECTION DELAY 95

5

x

source
gate

drain

Figure 6.7: Transistor layout model

in detail the resistance and capacitance model of a transistor. Fig. 6.7 shows the layout of a

transistor. Using 2�m technology parameters, typically,

R0
t = 20k �

2

x
=

40k

x

C0
d = 2 � (5 + x) � 0:5 + 5x � 0:2

= 2x+ 5 fF

C0
g = 2x � 0:9 = 1:8x fF

where R0
t is the transistor resistance, C0

d is the di�usion capacitance, and C0
g is the gate

capacitance. Next we consider the delay models of link, long wire, bus, transmission gate,

and repeater.

6.3.1 Link model

The link model is shown in Fig. 6.8.1

�link = 2:3Rout(Cwl + Cin + Cout) + 2:3Rw(
l

w
)Cin

1Rw is the wire resistance per unit square, Cw is the wire capacitance per unit length for a �xed wire
width. For the following analysis, we assume the wire width is 8�m, and use 2�m parameters: metal 1 area
capacitance = 26� 10�18, metal 1 peripheral capacitance = 38� 10�18, then

Cwire = 26� 8� l + 38� 2� (l+ 8)

= 284� l + 608 � :284� l (fF)

so we choose Cw = :284fF=�m.

96 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

C

R

C C

out

wout in

wR

l

l/w

width ywidth x

l

Figure 6.8: Link model, where the wire is modeled by distributed RC

+RwCw(
l

w
)l (6.1)

where Rout, Cin, Cout are the output resistance, input capacitance, and output capacitance

of a node respectively. In our case, Rout � R0
t = 40k/x, Cin = 2 C0

d = 4x + 10, and Cout = 2

C0
g = 3:6y, where x, y are the transistor width of the output driver, input driver, respectively.

We use di�erent coe�cients for lumped and distributed RC (2.3 for lumped RC, and 1 for

distributed RC). (Bakoglu and Meindl, 1985)

6.3.2 Long wire model

The long wire model is the same as the link except that l is changed to N � l. Then

�longwire = 2:3Rout(CwNl+ Cin + Cout)

+2:3Rw(
Nl

w
)Cin +N2RwCw(

l

w
)l

(6.2)

6.3.3 Bus model

The bus model is shown in Fig. 6.9.

6.3. INTERCONNECTION DELAY 97

C Cwout in

wR

l

l/w

CinlC

Rout

Cw

wR l/w

Cin

N l

Figure 6.9: Bus model, where the parameters are the same as link model

�bus = NRwCw(
l

w
)l+ 2:3Rout(CwNl+NCin + Cout)

+2:3Rw(
l

w
)

"
N�1X
i=1

i(Cwl+ Cin) +NCin

#

= NRwCw(
l

w
)l+ 2:3Rout(CwNl+NCin + Cout)

+2:3Rw(
l

w
)

�
N(N � 1)

2
Cwl +

N(N + 1)

2
Cin

�

(6.3)

6.3.4 Transmission gate model

The transmission gate model and its interconnection are shown in Fig. 6.10.

�TG = 2:3Rout[CwNl+ 2(N + 1)Ct+ Cout +NCin]

+2:3Rw(
l

w
)

"
N�1X
i=1

iCwl+
NX
i=1

[(2i� 1)Ct+ iCin]

#

+2:3Rt

"
NX
i=1

i(Cwl + Cin + 2Ct)

#

+NRwCw(
l

w
)l (6.4)

98 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

C

C

N l

CCt t

t t t

R

in

t

R Rt t

Rout

CoutC t Ct C

wR l/w

Cin
Ct C

wR l/w

Cin
Ct CinlwC Cw l

Rt

(a)

(c)

(b)

width z

width y

width x

Figure 6.10: (a) Transmission gate model, where Rt =
40k
z , Ct = 4z+10, (b) Transmission

gate interconnection, (c) Transmission gate interconnection model

= 2:3Rout[CwNl+ 2(N + 1)Ct+ Cout +NCin]

+2:3Rw(
l

w
)

�
N(N � 1)

2
Cwl +N2Ct +

N(N + 1)

2
Cin

�

+2:3Rt

�
N(N + 1)

2
(Cwl + Cin + 2Ct)

�

+NRwCw(
l

w
)l (6.5)

where Rt and Ct are the resistance and capacitance of a transmission gate respectively.

6.3.5 Repeater model

The repeater used here is a tri-state driver. Its model and interconnection are shown in

Fig. 6.11.

�repeater = 2:3Rout(C
0
in + Cout)

+2:3Rw(
l

w
)[N(C0

in+ Ct)]

+2:3Rt[N(Cwl + Ct + C0
in)]

6.3. INTERCONNECTION DELAY 99

C

N l

Ct

R

in

t

Rout

outC

(a)

(c)

(b)

R Rt t

Ct

wR l/w

Cin
Ct

wR l/w

Cin
Ct CinlwC Cw l

Rt

Cin

width z

’

’ ’ ’ ’

width x

width y

Figure 6.11: (a) repeater model, where Rt =
40k
z , Ct = 4z + 10, C0

in = Cin + 2C0
g, (b)

repeater interconnection, (c) repeater interconnection model

+NRwCw(
l

w
) (6.6)

where C0
in is the input capacitance of a node, i.e., C0

in = Cin + 2C0
g = 4x+10+3:6y+3:6z

(Fig. 6.11 (a)).

6.3.6 Delay Comparison

First, from Eq. 6.5 and 6.6, interconnection delay depends on the transistor width x, y, z

(because Rt, Ct, Cin depend on x, y, z), therefore overall optimization requires optimal x, y,

z to minimize interconnection delay. We know y is the width of the input driver transistor,

which drives only a small number of circuits. Consequently the minimal width y = 4�m

(assuming 2�m technology) is su�cient. Fig. 6.12 shows delay of transmission gates and

repeaters versus transistor width x for a �xed z = 25�m, and we can see the delay curve has

a minimum at about x = 20�m. Fig. 6.13 shows delay versus transistor width z for a �xed

x = 20�m, and the curve is very
at after z is greater than 25 �m. Therefore the choice of

x = 20�m, y = 4�m, z = 25�m will satisfy our requirements2.

2The actual optimal number will depend on technology.

100 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

Links and wrap-around connections are composed of wires between two nodes. A global

bus is a long wire connected to many nodes. A recon�gurable bus is links between adjacent

nodes but with switches in each node to connect or disconnect those links. Transmission gates

or repeaters (tri-state drivers) can be used for this kind of switch in the recon�gurable bus.

Due to the square term (N2) in Eq. 6.5, the delay of transmission gates grows much faster

than that of bus and repeaters (Fig. 6.14), so a transmission gate is not a good interconnection

for our recon�gurable bus from this point of view.

Fig. 6.15 compares delay of links, long wires, buses, and repeaters. The penalty for the

wrap-around connection is just the wire delay. For moderate N (N < 100), this penalty

is compensated by the reduction of both tra�c congestion and diameter of the torus (from

Fig. 6.18, the throughput of a long wire forN = 80 is about 3/10 of throughput of links, which

can be compensated by reduction of diameter and congestion). Both bus and repeaters have

longer delay than the long wire within the range ofN in which we are interested. This implies

that if we include the bus or the recon�gurable bus with the same length of the long wire, it

will reduce the throughput of this system. From Fig. 6.15, we can see that, for example, the

long wire delay for N = 100 is about equal to the delay of 25 repeaters. Therefore if we have

a 100� 100 torus with wrap-around connection, the maximum length of the recon�gurable

bus without reducing throughput is about 25 nodes. But if we fold the torus to eliminate the

long wires for wrap-around connection, the design will su�er degradation due to delay of the

recon�gurable bus; thus the design is driven to a shorter bus length to reduce delay impact.

For smaller N , a bus is better than repeaters, but as N increases, the square term in bus

delay (Eq. 6.3) grows faster than all the linear terms in repeater delay (Eq. 6.6), and use of

repeaters is better than use of a straight bus. (Fig. 6.16)

Figs. 6.17 and 6.18 compare latency and throughput of several kinds of interconnections.

The total delay of each step is the sum of interconnection delay and processing time in the

node (�delay = �connection + tp). Latency is the total delay between source and destination, and

throughput is the maximum rate achievable for sending packets. It is obvious that latency and

throughput are tradeo�s for these connections. For di�erent applications, the importance of

latency and throughput is di�erent, however. For example, if a large amount of long distance

data transfer is required, then latency is more important, for example, as in transposing a

matrix. On the other hand, if most data transfer is local, the throughput is more signi�cant,

for example, as in systolic arrays. In the torus permutation problem, assuming that all the

data are randomly distributed, then long distance and local communication are roughly of

6.4. SRB SIMULATION AND COMPARISON 101

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x10-7

0 10 20 30 40 50 60 70 80 90 100

l=500um, y=4um, z=25um, N=10
Rw=.05, Cw=.284fF, wire width=8um

repeater

se
co

nd
s

transmission gate

link

width x (um)

Figure 6.12: Delay versus transistor width x for a �xed width z

equal importance, so the bus (or recon�gurable bus) length must be chosen carefully in order

to balance latency and throughput.

6.4 SRB Simulation and Comparison

The delay analysis in the previous section motivates the architecture with SRB. This sec-

tion reports results of simulation of di�erent torus architectures with links only, global bus

connections, recon�gurable bus connections, and use of segmented recon�gurable bus con-

nections, and compares their performance. In the simulation, we consider the 1-to-1 routing

(permutation) on a two-dimensional N �N torus array with wrap-around connections.

102 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

0

0.5

1

1.5

2

2.5

3

3.5

4
x10-7

0 10 20 30 40 50 60 70 80 90 100

l=500um, x=20um, y=4um, N=10
Rw=.05, Cw=.284fF, wire width=8um

link

repeater

transmission gate

width z (um)

se
co

nd
s

Figure 6.13: Delay versus transistor width z for a �xed width x

0

1

2

3

4

5

6

7

8

9
x10-6

0 10 20 30 40 50 60 70 80 90 100

N

se
co

nd
s

l=500um, x=20um, y=4um, z=25um

Rw=.05, Cw=.284fF, wire width=8um

transmission gate

repeater, bus, long wire, link

Figure 6.14: Delay versus N

6.4. SRB SIMULATION AND COMPARISON 103

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x10-7

0 10 20 30 40 50 60 70 80 90 100

N

se
co

nd
s

repeater

bus

long wire

link

l=500um, x=20um, y=4um, z=25um

Rw=.05, Cw=.284fF, wire width=8um

Figure 6.15: Delay versus N , excluding transmission gate

0

0.5

1

1.5

2

2.5
x10-6

0 100 200 300 400 500 600 700 800 900 1000

se
co

nd
s

N

repeater

bus

long wire

l=500um, x=20um, y=4um, z=25um

Rw=.05, Cw=.284fF, wire width=8um

Figure 6.16: Delay versus large N

104 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

0

0.5

1

1.5

2

2.5
x10-6

0 10 20 30 40 50 60 70 80 90 100

l=500um, x=20um, y=4um, z=25um, tp=20ns
Rw=.05, Cw=.284fF, wire width=8um

repeater
bus

link

N

se
co

nd
s

Figure 6.17: Latency versus N

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x107

0 10 20 30 40 50 60 70 80 90 100

l=500um, x=20um, y=4um, z=25um, tp=20ns
Rw=.05, Cw=.284fF, wire width=8um

link

repeater

bus long wire

N

H
z

Figure 6.18: Throughput versus N

6.4. SRB SIMULATION AND COMPARISON 105

algorithm average steps

Torus link 1.4075N

Torus bus 1.338N

Torus RB 0.8144N

Torus SRB 0.6065N

Table 6.1: Comparison of di�erent torus architectures

De�nition 9 Permutation (1-to-1 routing)

For an N � N torus, each node (i; j) in the torus has a packet whose destination is

(i0; j0). This is 1-to-1 mapping, i.e., for every di�erent source pair (i1; j1), (i2; j2), their

packets' destinations (i01; j
0
1), (i

0
2; j

0
2) are also di�erent.

The uniform random permutation is a permutation with all sources and destinations

randomly distributed in the network. We �rst show the simulation results and a comparison

of di�erent torus architectures, and then interpret these.

6.4.1 Simulation Results

Fig. 6.19 shows the average number of steps to complete data transfer required by the four

di�erent architectures with N � N nodes, with their standard deviation as the error bars.

The uniform random permutation is used as the data transfer pattern. Each simulation point

in Fig. 6.19 is the average number of steps to complete 200 di�erent random permutations.

Torus SRB needs the fewest steps to �nish the data transfer. Torus link and Torus bus have

very similar behavior because the bus utilization in Torus bus is low and most packets are

delivered by links. As N increases, the error bar of Torus bus becomes larger, indicating

increasing variability, and the average number of steps of Torus bus exceed Torus link. This

is because the bu�er size = 5 is too small for the con�guration, and the tra�c congestion

delays the data transfer by both links and buses. We will discuss the detail tradeo�s later.

Fig. 6.20 shows the average steps versus di�erent bu�er size. The number of steps needed

for a particular algorithm remain approximately constant after the bu�er size is larger than

some value, and this value is di�erent for each algorithm.

Table 6.1 summarizes the simulation results of four di�erent torus architectures. The

average number of steps for the permutation problem appears linearly with the size N . For

106 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

o

o

o

o

o

o

o

o

o

x

x

x

x

x

x

x

x

x

*

*

*

*

*

*

*

*

*

*

+

+
+

+
+

+
+

+
+

o

x

*

+

Torus_link

Torus_bus

Torus_RB

Torus_SRB

N

st
ep

s

Figure 6.19: Average steps versus N , bu�er size=5 for Torus link, Torus bus, and

Torus RB, bu�er size=10 for Torus SRB, segment length=10 for Torus SRB

the torus SRB, we can �nish the permutation in 0.6065N steps on average, which is more

than twice as fast as original torus architecture torus link.

6.4.2 Discussion

Use of the torus with SRB is not only the most e�ective approach in terms of total steps

required for a data transfer, but it is also feasible to implement in hardware for reasonable

delays. The penalty for use of the SRB design is increased bu�er size. This is a result

of tra�c congestion occurring at the end points of the local buses. The torus with SRB is

basically a kind of hierarchical structure: links inside each local bus are the lowest level,

segmented buses are the second level, and links between segmented buses are the highest

level. Enhancing the routing ability of the lower levels increases the speed of routing, but

would also increase the workload of the higher levels, causing congestion there. So balance

is required to optimize a particular design.

There are several ways to mitigate the e�ect of tra�c contention between di�erent hier-

archical levels. First, we can increase the bu�er size in the nodes. Second, we can dedicate

6.4. SRB SIMULATION AND COMPARISON 107

50

100

150

200

250

300

2 4 6 8 10 12

o o o o o o

x

x

x
x x x x

*
* * * * * *

+ + + + + +

o

x

*

+

Torus_link

Torus_bus

Torus_RB

Torus_SRB

Buffer size

st
ep

s

Figure 6.20: Average steps versus bu�er size, N = 80, segment length=10 for Torus SRB

more communication bandwidth to the highest level, i.e., make the ending nodes of each local

bus more powerful and increasing the number of links between them, so that they can route

more than one packet in each of the steps. These two methods involve additional hardware

and cost, however. The third method is to arrange the alignment of segmented buses care-

fully to reduce communications at the highest level (Section 6.5). Poor alignment of SRB will

cause unnecessary tra�c at the highest level, for example, if all the end points are aligned

at the same rows or same columns, the interaction between the end points will cause addi-

tional tra�c contention. Thus, achieving a balanced of workload in each hierarchical level is

important to remove bottlenecks and improve performance.

Segment length is also an important performance parameter. As mentioned before, we

must choose the segment length carefully to balance throughput and latency. When we

design a torus with SRB, we need to consider all of these factors to choose the optimal

segment length. In Section 6.5, we will show how to �nd the optimal segment length.

The algorithms with segmented recon�gurable bus comprise two phases: a packet sending

phase and a token passing phase. We overlap these two phases to reduce communication and

control overhead. Usually the token is a one-bit indicator, which is much shorter than the

108 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

data packets. If we process the packet sending phase and token passing phase simultaneously,

then the token passing phase must be completed sooner, and we may use the extra time to

pipeline the rest of the routing procedures.

In a practical implementation, we can use repeaters to implement the recon�gurable

bus in order to reduce delay (Section 6.3). This implies all data transfers by elements of

the recon�gurable bus are unidirectional, so wrap-around connections are necessary in the

recon�gurable bus. Furthermore, because the only required tra�c on the recon�gurable bus is

the token, we may use the traditional bus for packet sending and recon�gurable bus for token

passing. This approach would simplify the hardware implementation without decreasing

performance. Thus a near optimal torus network would consist of links for packet sending,

segmented buses for packet sending, and segmented recon�gurable buses for token passing.

6.5 SRB Optimization

As discussed in the previous section, the segment length and segment alignment have crucial

e�ects on overall performance. In this section, we now derive the methods for �nding the

optimal segment length and alignment (Lu et al., 1993a).

6.5.1 Optimal Segment Length

Analysis

The length of each segment is a crucial design parameter for a torus with SRB. The intercon-

nection delay of a segmented recon�gurable bus sets the maximum segment length without

reducing throughput (Lu et al., 1993b). Within this maximum allowable segment length, a

designer can choose the optimal length that provides the shortest latency for completion of

data routing. From the hierarchical concept as pointed out above, the workload balance in

each level (links inside each local bus, segmented buses, and links between di�erent segments)

is an important issue with regard to bottlenecks and improving performance. Therefore, the

choice of the segment length is the �rst step in design of an optimal torus with SRB.

Our goal here is to �nd a segment length L which minimizes the total steps required

to complete a data transfer with arbitrary distribution. For the ith step, we de�ne �di as

the average distance sent by each recon�gurable bus, and Di as the total distance sent by

recon�gurable buses and links. There are 2N(N=L) segments in the torus, each can send a

packet over an average distance �di. The other N
2 � 2N(N=L) nodes can use links to send

6.5. SRB OPTIMIZATION 109

packets to the neighbors with distance one. Ignoring the delay due to tra�c congestion, the

total distance Di sent at step i is

Di = 2(
N

L
)N �di+ (N2� 2(

N

L
)N) (6.7)

Let R0 be the initial total packets distance, and Rn be the total distance remaining after

the �rst n steps. R0 is a function of the data transfer we want to solve.

Rn = R0 �
n�1X
i=0

Di (6.8)

Assume there are N2 packets circulating in the network at step n.3 Then each packet has the

average remaining distance �rn = Rn=N
2 to its destination. Each node with a bus token will

send a packet via a segmented bus an average distance �dn,

�dn =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

L
2

if �rn � L

2
L

�
L
2
dxe+

PL=2

i=dxe+1

(�rn+(
L
2
�i))

2

�
if L

2
� �rn < L

where x = �rn � L=2

2
L

�
�rnbxc+

PL=2

i=bxc+1

(�rn+(
L
2
�i))

2

�
if 0 � �rn <

L
2

where x = L=2� �rn

(6.9)

Simulation

If we use random permutation (Def. 9) as an example, the initial total distance R0 with

wrap-around connection is N3=2, and �rn can be written as

�rn =
N

2
�

nX
i=1

(1 +
2

L
(�di � 1)) (6.10)

From equations 6.7 to 6.10, for each choice of segment length L, we may �nd a minimum

n called no to make Rno � 0, which indicates that in the absence of tra�c contention, the

3This assumption may not be true for the permutation problem because some packets can be consumed by
their destinations before step n, but we also assume there are N2 nodes sending packets at step n. Actually
there are fewer than N2 nodes sending fewer than N2 packets, so these two assumptions can compensate
each other and get the approximately equivalent results.

110 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

data routing can �nish at the noth step. A smaller no implies a shorter latency. The optimal

segment length Lopt should be chosen in order to achieve the minimum no.

Fig. 6.21 compares simulation and analysis results of the uniform random permutation for

N = 60 and 80. Without considering the e�ect of tra�c contention, the analysis results yield

fewer steps to completion than the simulation results, but the curve shapes are very similar

for both cases. The minima of simulation and analysis occur at about the same length, which

gives con�dence that our prediction of the optimal length is accurate. From these results,

we infer that the optimal length is about N=5 or N=4 for the random permutation problem,

and that performance does not change signi�cantly if we choose a longer segment length.

For moderate N (N � 100), this would be within the maximum allowable segment length4

(Lu et al., 1993b). The optimal length may be slightly di�erent for the other problems, but

the shape of the latency versus segment length curve is not expected to change very much.

Because random permutation is a basic tra�c pattern for a large class of communication

problems, when we minimize the latency of the uniform random permutation problem, we

minimize the life time of packets, and we increase network throughput and capacity in many

applications.

6.5.2 Optimal Segment Alignment

The end points of a segmented recon�gurable bus are a kind of \hot spot" in a network. They

carry much more of the workload than ordinary nodes. Proper arrangement of these end

points can help to remove the e�ect of \hot spots" and reduce unnecessary tra�c contention.

Ending points equation

Let the segments on the (i + 1)th row (or (i + 1)th column) be shifted s nodes from the

segments on the ith row (or ith column). The o�set between the �rst row and �rst column

segments is t (Fig. 6.3). Then we may express the positions of the end points as

row end points: [i;modN(i � s + n1 � L)] (6.11)

column end points: [modN (j � s+ n2 � L+ t); j] (6.12)

where N is the torus size, L is the segment length, s is the segment shift between adjacent

rows (or columns), t is the segment o�set between the �rst row and �rst column, n1, n2 =

4The maximum allowable segment length is about 25 to 30 nodes for 2 �m technology.

6.5. SRB OPTIMIZATION 111

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

o

o
o o o o o o o o

x

x

x

x x

x x x x
x

segment length

la
te

nc
y

(c
om

pl
et

io
n

st
ep

s)
N=60

simulation

analysis w/o traffic contention

(a) Latency vs. segment length, N=60

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

o

o
o

o o o o
o

x

x

x

x
x

x x

x

segment length

la
te

nc
y

(c
om

pl
et

io
n

st
ep

s)

N=80

simulation

analysis w/o traffic contention

(b) Latency vs. segment length, N=80

Figure 6.21: Analysis and simulation of segment length.

112 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

0 � (N=L� 1), and i, j = 0 � (N � 1).

If we choose N to be an integer multiple of L, i.e., N = mL, then we can simplify the

above equation as

row end points: [i;modL(i � s)] (6.13)

column end points: [modL(j � s+ t); j] (6.14)

where i; j = 0 � (L � 1). The distribution pattern of those end points is duplicated in the

torus with a period of L nodes. So we only have to investigate the properties of a L � L

region instead of the entire N �N torus.

Intuitively, if we can make the distance between any two end points as large as possible,

then we can reduce the interaction between them and reduce tra�c contention due to these

hot spots. Given a segment alignment (given s and t), a criterion is needed to measure

whether it is a good alignment or not. We de�ne two factors as the metrics: the distribution

factor (fd) and the neighboring factor (fn). The distribution factor measures the workload

among the end points. If their workload is not uniform, then there may be a \hottest spot" in

these hot spots, and it will become the bottleneck and reduce performance. The neighboring

factor measures the e�ect between di�erent end points. This takes the distance between end

points into account, i.e., the longer distance implies the smaller e�ect between them.

Distribution factor fd

For each end point in a L� L region, we may de�ne a distance distribution function which

describes the relative distance to all other end points in this region.

De�nition 10 Distance distribution function

We mark the 2L end points in a L � L region according to some arbitrary order from 1

to 2L. For each end point, de�ne a two-dimensional function as

disi(l) = k

This means for the ith end point, there are k other end points whose distance to this ith end

point is l.

We obtain a set of distribution functions, one for each end point in the L � L region.

This is similar to a stochastic process, each distribution function corresponds to a realization

6.5. SRB OPTIMIZATION 113

of the process (but this is a deterministic function, not random). We have 2L such sample

processes, and we can take the ensemble average disave(l) as

disave(l) =
1

2L

2LX
i=1

disi(l) (6.15)

Using this ensemble average, we may calculate the di�erence between disi(l) and disave(l).

De�ne �2i = var[disi], then we have

�2i �
1

L

LX
l=0

(disi(l)� disave(l))
2 (6.16)

We de�ne the distribution factor fd as the sum of the distribution variance of the total

2L end points.

fd �
2LX
i=1

�2i (6.17)

From this de�nition, fd is a measure of the degree of uniformity of the distribution of

those end points. If every end point has a similar distribution function disi, then it is also

close to the ensemble average disave, and resulting in a small variance �2i . Therefore, small

fd (small total variance) implies that all the �2i are also small and that all the end points

have approximately the same workload. Thus fd is sensitive to a combination of two of the

critical network parameters, the degree to which the load is balanced and to occurrence of

hot spots.

Neighboring factor fn

Even though small fd indicates that each end point has about the same workload, it does

not guarantee that this workload is small. We still have to investigate the tra�c contention

caused by the distribution of the end points. The closer together these end points are, the more

serious tra�c congestion will be. Our approach is to �nd a penalty coe�cient corresponding

to some distance between two ending points. The larger distance will have a smaller penalty.

For a certain segment in a row, there are (N � L) nodes outside this segment. The

probability for a node to send a packet to another node in the same segment by the segmented

bus is about L=N . Therefore the probability for a node to send a packet to one of the end

points of this segment is about (1 � L=N)=2. We de�ne the penalty for distance l as the

114 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

probability for an end point a to receive a packet from another end point b whose distance

to node a is l.

When two end points coincide at the same node (a row bus and a column bus share the

same node as their end points), we may regard this node as the end point a for a row bus

and the end point b for a column bus. Then the probability for a to receive packets from b

is just the probability for b to receive packets through the column bus (because a and b are

coincidence). So the penalty p0 for the coincidence of two end points is (1�N=L)=2. When

two ending points are adjacent, l = 1, the probability for one end point to receive packets

from the other one is 1/4 because each node has four neighbors and assume the tra�c is

uniform. Whenever we increase the distance between two end points by one, this probability

is reduced by 1/4.5 Then the penalty for distance l is (1=4)l for l � 1. From the penalty

de�nition and distance distribution functions, we may get the total penalty for the ith end

point

Pi =
1

2
(1�

L

N
)disi(0) +

LX
l=1

(
1

4
)ldisi(l) (6.18)

Now we de�ne the neighboring factor fn as the maximum total penalty among all the end

points.

fn = max
i

Pi

= max
i
[
1

2
(1�

L

N
)disi(0) +

LX
l=1

(
1

4
)ldisi(l)] (6.19)

This factor can give us the heaviest load in the network, which will be the hottest spot and

bottleneck of performance. The smaller fn indicates all the ending points are separated far

enough and tra�c contention caused by nearer end points is reduced.

Criterion for optimal segment alignment

As mentioned previously, we need to consider both the distribution factor fd and the neigh-

boring factor fn in order to evaluate the overall tra�c condition for a network. We de�ne an

alignment metric � as

5The exact probability is more complicated, but the approximation is su�cient for our purpose.

6.6. SUMMARY 115

shift o�set

1 2 3 4 5 6 7

1 0.5145 0.1252 0.0453 0.0272 0.0224 0.0211 0.0207

2 0.2228 0.2228 0.3570 0.2257 0.2238 0.3547 0.2236

3 0.3182 0.3147 0.3158 0.3127 0.3122 0.3182 0.3147

4 0.0804 0.0089 0.0113 0.0804 0.0065 0.0019 0.0089

5 0.2272 0.2295 0.3446 0.2272 0.2295 0.3446 0.2272

6 0.1227 0.0183 0.0189 0.1228 0.2557 0.1227 0.0183

7 0.2238 0.2238 0.3547 0.2257 0.2236 0.3570 0.2199

Table 6.2: Alignment metric �, � = :5, � = 2, N = 60, segment length=15

� = (fd)
� � (fn)

� (6.20)

where � and � are the weighting factors for log(fd) and log(fn). For any positive � and �,

tra�c contention is reduced as � is decreased. Table 6.2 shows the metric � for � = :5 and

� = 2. Compared with simulation results of random permutation in Table 6.3,6 the metric

� is consistent with the simulation. The
uctuation of simulation gave us some exceptions

compared with Table 6.2 and Table 6.3, but a smaller average number of steps basically

corresponds to a smaller �. Hence the minimal � will correspond to the best performance. We

found the minimal � always corresponds to the minimal fd and fn, so the optimal alignment

metric would not be very sensitive to the di�erent choices of � and �. Table 6.4 lists the

optimal segment alignment for di�erent segment length. Fig. 6.22 shows the examples of

\good" alignment and \poor" alignment. A good alignment (Fig. 6.22(a)) has a uniform

distribution and larger distance between end points. A poor alignment (Fig. 6.22(b)) is not

very uniform and has shorter distance between adjacent end points, and coincidences of row

and column end points (`o' and `x' occur at the same place).

6.6 Summary

A recon�gurable bus is a very
exible structure for the mesh-connected multiprocessors.

Many algorithms for di�erent problems have been developed in networks with recon�gurable

buses (Wang et al., 1990; Snyder, 1982; Miller et al., 1988). But the interconnection delay

6The standard deviation of simulation is � 2.5 % of the mean value. Assuming that these values are
normally distributed, the 95 % con�dence interval is within 0.3 % of the mean value.

116 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

0

2

4

6

8

0 10 128 14642

10

12

14

(a) Good alignment, shift=4, o�set=6

0

2

4

6

8

0 10 128 14642

10

12

14

(b) Bad alignment, shift=5, o�set=3

Figure 6.22: Examples of segment alignment, L = 15, `o': row end point, `x': column end

point. (a) shift=4, o�set=6, distribution is uniform and distance between end points is large.

(b) shift=5, o�set=3, distribution is not uniform and there are three coincidences of `o' and

`x'. Cf. Fig. 6.3.

6.6. SUMMARY 117

shift o�set

1 2 3 4 5 6 7

1 44.431 42.170 40.815 40.135 39.780 39.705 39.895

2 41.640 41.643 43.410 41.845 41.652 43.420 41.750

3 42.151 42.580 42.675 42.595 42.685 42.555 42.550

4 40.553 39.750 40.110 40.495 39.280 39.225 40.050

5 40.535 40.575 44.805 40.590 40.650 44.795 40.345

6 40.140 40.340 40.095 40.270 44.420 40.285 40.620

7 40.440 40.475 42.715 40.623 40.580 42.750 40.450

Table 6.3: Average latency (completion steps), N = 60, segment length=15, bu�er size=10.

Simulation results are matched with the analytic results in Table 6.2

length L 10 11 12 13 14 15 16 17 18 19 20

shift 1 1 5 1 6 4 7 1 8 1 9

o�set 5 5 3 6 4 6 4 8 5 9 5

Table 6.4: Optimal segment alignment for di�erent segment length

of a recon�gurable bus will negatively impact the performance of these algorithms. We

propose to use the segmented recon�gurable bus (SRB) to reduce the interconnection delay.

Implementation of a recon�gurable bus by use of repeaters is also an important issue. The

faster the available repeater, the smaller the delay for the recon�gurable bus, giving the

designer more freedom to choose the proper segment length to achieve the best performance.

We have shown that the torus with SRB is the fastest among the di�erent torus architectures

for the permutation problem in our simulation.

We also proposed a procedure to design the optimal torus with SRB. Given the com-

munication distance distribution, we may �nd an optimal segment length within the feasible

maximum length to achieve the best resource utilization and minimize the latency. After

�nding the optimal segment length, we arrange the segment alignment so that the interaction

between the end points of these segments can be minimized, and we can reduce the unne-

cessary tra�c congestion resulting from the hot spots in the network. We have shown that

the best segment length for random permutation is about N=5 to N=4, and a good segment

alignment may have 10% improvement over a poor alignment.

118 CHAPTER 6. SEGMENTED RECONFIGURABLE BUS

Chapter 7

Wormhole Router Design

Router hardware implementation has direct e�ects on the performance of multiprocessor com-

munications. We designed and implemented a wormhole data router chip for 2-D mesh and

torus networks with bi-directional channels and token-exchange arbitration. In our design,

the token-exchange delay is fully hidden, and no latency penalty occurs in the absence of

tra�c contention. There are distributed decoders and arbiters for each IO port, and a

fully-connected crossbar switch to increase parallelism of data routing. The router also has

hardware support for path-based multicasting. From measured results, we will show that

multicasting communication is much more energy-e�cient than unicasting. The wormhole

router was fabricated using MOSIS/HP 0.6�m technology. It can deliver 1.6Gb/s (50MHz)

@ Vdd=2.1V and consumes an average power of 15mW.

7.1 Network Architecture

7.1.1 Network Review

As mentioned in Chapter 2, the network architecture is a primary factor a�ecting the perform-

ance of a parallel system. Due to hardware limitations, e.g., bisection width, wire density, and

interconnection delay, some network architectures are better than others from the implement-

ation point of view (Dally, 1990b; Agarwal, 1991). For example, although high-dimensional

hypercubes possess nice properties in which they have multiple IO connections and smaller

network diameter, their channel width per IO port is much smaller than the channel width

of a low-dimensional mesh network when the total bisection width is �xed. For a constant

119

120 CHAPTER 7. WORMHOLE ROUTER DESIGN

Machine Year Topology

CMU/C.mmp 1972 Crossbar

Caltech/Cosmic Cube 1983 Hypercube

Intel/iPSC 1985 Hypercube

IBM/RP3 1985 Omega

TMC/CM-2 1987 Hypercube

Cray/Y-MP 1988 Multi-stage

BBN/Butter
y 1989 Butter
y

TMC/CM-5 1991 Fat tree

Intel/Paragon 1991 2-D Mesh

Stanford/DASH 1992 2-D Mesh

MIT/J-Machine 1992 3-D Mesh

Caltech/Mosaic C 1992 2-D Mesh

Cray/T3D 1993 3-D Torus

Stanford/STARP 1995 2-D Mesh or Torus

Table 7.1: Topologies of existing parallel systems

data
ow, packets in a high-dimensional hypercube must be longer as compared with packets

in a low-dimensional mesh, and longer packets su�er more tra�c contention, resulting in a

deterioration of throughput performance and increased latency.

Table 7.1 summarizes the network topologies of some parallel machines in the past twenty

years. There has been some evolution over this time. Before 1990, there was considerable

diversity in the network topologies people chose to implement. Hypercubes and multi-stage

networks were particularly popular because of their good algorithmic properties for a wide

range of applications. But in the 1990's, as VLSI technology improved, the component and

wire density are increasing, and e�cient implementation became more important. Low-

dimensional networks (2-D or 3-D mesh) now dominate current multiprocessor topology im-

plementations.

7.1.2 STARP Network Architecture

The STARP (Stanford Tilable and Recon�gurable Processor) is an array processor targeted

for motion estimation in video compression application. While most machines in Table 7.1

are general purpose computers, STARP is a signal processing machine. There are important

7.1. NETWORK ARCHITECTURE 121

di�erences between STARP and general purpose machines in terms of network and commu-

nications:

� IO: in STARP, the IO stream comes mainly from video data which is a nearly constant

high-bandwidth data
ow. In general purpose machines, IO is much more bursty and

unpredictable.

� Tra�c Pattern: in STARP, the tra�c pattern is essentially �xed by the motion estim-

ation searching algorithm. In general purpose machines, however, the tra�c patterns

are very dependent on applications and data partitioning, and patterns may interfere

with each other.

� Data Mapping: in STARP, a 2-D image maps directly onto a 2-D mesh or torus array.

Therefore, we choose a 2-D torus as the network topology for STARP to preserve data

locality and increase communication e�ciency. In general purpose machines, depending

on applications and topologies, data mapping may be less e�cient and require more

long distance communication.

� Multicasting: in STARP, the data stream is shared by several nodes for the purpose

of performing image motion estimation. As a result, the bene�t of using multicasting

to reduce tra�c is very high. In general purpose machines, multicasting messages are

mostly invalidation signals for cache coherence; these usually are short packets and will

not cause much tra�c overhead. Consequently, the demand for hardware supported

multicasting in general purpose machines is less than in STARP.

The STARP network architecture is shown in Fig. 7.1. It can be con�gured either as a

2-D mesh or a 2-D torus with nearest neighbor connections. Each STARP node contains a

processing element and a data router. The processing element has a datapath optimized for

motion estimation. There are �ve on-chip SRAM memory banks (each bank is 128�32 bits),

and a global controller. The data router carries out data communication between nodes. The

router performs wormhole data routing with hardware supported path-based multicast. Bi-

directional channels are designed and implemented based on the simulation results in Chapter

5. The design and implementation of the STARP chip was done in collaboration with Gerard

Yeh. The datapath and SRAM were designed by Gerard Yeh. In the rest of this chapter, we

concentrate on the wormhole data router, and give the details of the router design.

122 CHAPTER 7. WORMHOLE ROUTER DESIGN

Memory Banks

Bus

Communication
Channels

Data-
path Control DMA

Router
Processing Element

Figure 7.1: Network architecture of STARP

7.2 Previous Router Designs

Many wormhole routers have been designed and implemented for parallel systems. Table 7.2

summarizes a few implementations of the recent years (Dally and Seitz, 1986; Segucgi et al.,

1991; Traylor and Dunning, 1992; Reese et al., 1994).

In 1986, Dally and Seitz (1986) designed the �rst wormhole routing chip for a 2-D torus

(uni-directional in each dimension) with a throughput as high as 32Mb/s/port. As VLSI

technology advanced, new generations of wormhole router provided more I/O ports with

higher data throughput. But from Table 7.2, all of them implemented the uni-directional

channel con�guration, which is easier to design but supports less data bandwidth if there

is tra�c contention (see simulation results in Chapter 5); none support multicasting which

reduces tra�c congestion and communication energy dramatically. Therefore, in STARP, it

was decided to implement bi-directional channels with token-exchange channel arbitration to

optimize channel utilization, and to include hardware supported path-based multicasting.

7.3 Data Format of Di�erent Levels

In this section, we describe the data format of three di�erent levels: channel level, packet

level, and
it level, in STARP.

7.3. DATA FORMAT OF DIFFERENT LEVELS 123

Year IO Ports Ch. Confg. Multicast Tech BW

Dally & Seitz 85 3� 3 Ports uni-dir No 3�m 32Mb/s

Seguchi 91 3� 3 Ports uni-dir No 0:8�m 1.2Gb/s

Traylor et al. 92 5� 5 Ports uni-dir No 1�m 1.6Gb/s

Reese et al. 94 5� 5 Ports uni-dir No 0:6�m 3.2Gb/s

BiCMOS

STARP 95 5� 6 Ports bi-dir Yes 0:6�m 1.6Gb/s

Table 7.2: Some previous wormhole router designs

18-bitNode A Node B

T
token

T

RA_B

RA_A

RAout

RAinRAout

RAin

Figure 7.2: Channel format

7.3.1 Channel Format

Data channels are the physical media for transfer of information between nodes. Based

on the simulation results for channel con�gurations in Chapter 5, we chose to implement

bi-directional channels due to their capability to sustain a high data bandwidth.

To use the bi-directional channel con�guration, a special channel arbitration scheme called

\token-exchange" was designed. Section 3.4 describes the details of the algorithm. The basic

idea was to prevent con
ict of channel usage by neighboring nodes and to reduce the overhead

caused by this arbitration.

Fig. 7.2 shows the channel format between two nodes in STARP. There is a one-bit signal

T for \token-exchange" arbitration. Two-bit hand-shaking signals (RAin and RAout) are

used for packet synchronization and contention control. Details of packet hand-shaking are

given in Section 7.5. An 18-bit bi-directional channel (16-bit data and 2-bit control) is the

physical channel for data transmission and reception.

124 CHAPTER 7. WORMHOLE ROUTER DESIGN

Data nData 1 Data 2header 3 MemAdd3

Data nData 1 Data 2header 3 MemAdd3

Data nData 1 Data 2header 3 MemAdd3

header 1

1 flit

header 2 MemAdd2MemAdd1

After the 1st destination

header 2 MemAdd2

After the 2nd destination

original packet

Figure 7.3: Packet format

7.3.2 Packet Format

A packet is divided into several
its for transmission. The packet length is arbitrary according

to the communication protocol. In practice, however, the packet length is limited due to the

�nite counter size in the host interface which generates the outgoing packets.

In STARP, a packet is composed of three kinds of
its: Header,MemAdd, and Data
its.

The de�nition of each type of
it is as follows:

� Header: packet destination node address.

� MemAdd: memory address to be written at the destination node.

� Data.

A basic packet must have one Header
it, followed by aMemAdd
it, and then one or more

Data
its. Path-based multicasting is supported by the design (Section 4.5). A multicasting

packet has multiple headers, with each Header
it followed by a MemAdd
it that indicates

the memory address associated with the destination node speci�ed by the Header
it. Fig. 7.3

shows the format of a multicasting packet. After reaching the �rst destination, header1 and

MemAdd1 are removed, and the remainder of the packet is forwarded toward the second

destination, and so on.

7.3. DATA FORMAT OF DIFFERENT LEVELS 125

01234567891112131517 16 14 10

y-address DxDyheadtail x-address

16-bit Data or Destination memory address

Flit

Figure 7.4: Flit format

7.3.3 Flit Format

A
it is the most basic unit for transmission. In the physical design, the
it size is equal

to the communication channel width. In STARP, the channel is 18 bits wide for all ports.

Fig. 7.4 shows the
it format. There are 2 bits for control signals indicating whether the
it

is a tail or a header, and 16 bits for data or address. The tail bit is set only for the last
it

of a packet, so it is a very low activity signal. One explicit head bit is necessary to indicate

the Header
it because we require more than one Header to support multicasting. By using

the additional head bit, we can specify an arbitrary number of destinations in a multicasting

packet.

If a
it is a Data orMemAdd
it, it carries a 16-bit data or memory address, respectively.

If the
it is a Header
it, bits 7 and 15 are the directional bits (Dx, Dy) which specify

the direction it will travel in the corresponding dimension (0 indicates negative, 1 indicates

positive). Dx and Dy are calculated at the source, and never change along the path. Therefore,

the intermediate nodes do not have to re-decode the address to compute Dx and Dy. Bits 0

to 6 and bits 8 to 14 are the x-address and y-address for the destination, respectively. The

maximal addressable network size is 27 � 27.

126 CHAPTER 7. WORMHOLE ROUTER DESIGN

7.4 Router Architecture

The design goals for this router are: 1) reduce fall-through latency, 2) maintain high through-

put (one
it/cycle/port), 3) increase parallelism, and 4) reduce power consumption. The

router has �ve ports: four external I/O ports with the nearest neighbors on the mesh net-

work, and one port with the local host (Fig. 7.5). The main blocks in the router are: Host

interface, header decoders, arbiters, I/O controllers, and crossbar switches.

7.4.1 Host Interface

The host interface is the block between the router core and the local host (Fig. 7.6). There

are two kinds of modules in the interface: Source Output Control (SrOut) and Source Input

Control (SrIn).

SrOut controls the path from the local host to the network. It receives the commands from

the host and injects packets into the router core. We will describe the details of commands

in the later section (Section 7.6). SrOut executes the following tasks:

� Generating the outgoing packet headers including Header and MemAdd
its.

� Setting SrOut counter for packet length (how many Data
its in the packet).

� Issuing memory read to fetch data for outgoing packets.

� Generating the tail bit for the last
it in a packet.

Similarly, SrIn controls the path from the network to the local host. It receives the

incoming packets destined for the local host. As shown in Fig. 7.6, we have two SrIn modules

to increase the data bandwidth to the local memory. Sometimes, especially when there are

multicasting packets, there may be more than one packet arriving at the same destination at

the same time. If there are two such packets whose destination memory addresses are in the

di�erent memory banks, then there is no con
ict between them. Thus two SrIn modules can

operate simultaneously and double the bandwidth to the host to reduce the bottleneck e�ect

caused by host. The main tasks of SrIn are:

� Filtering out header information before writing packets to memory. SrIn will keep mon-

itoring the head bit from the router core. If it sees head=1, it will delete 2 consecutive

its (Header and MemAdd) before writing to memory.

7.4. ROUTER ARCHITECTURE 127

Arbiter

Header
Decoder

I_O Port N

I_O Port S

E

Port

I_O

Arbiter

CROSSBAR

Arbiter

Port

I_O

W

to other
arbiters

Header
Decoder

Header

Decoder

Header

Decoder

from other
header decoders

Host InterfaceArbiter

(5 x 6)

Decoder
Header

Arbiter

Figure 7.5: Global router architecture

128 CHAPTER 7. WORMHOLE ROUTER DESIGN

Bus_A

Bus_B

Bus_C

Bus_R

Address

SrOutSrIn 1SrIn 0
Control

Arb
Bus

Host Interface

Router Core

Figure 7.6: Host interface architecture

� Arbitrating data bus con
icts.

� Issuing memory write commands.

The memory buses are 32 bits, while the communication channels are only 16 bits. So

for both SrOut and SrIn, two
its correspond to one memory access. Thus, the maximal

memory bandwidth consumed by the router is less than half of the total memory bandwidth

available. The processing element can share the memory bandwidth with the router by

properly interleaving their memory access.

7.4.2 Port Architecture

The router has four identical ports (North, East, West, South) connected to the nearest

neighbors. Each port contains: I/O control, input and output FIFOs, a header decoder,

and an arbiter (Fig. 7.7). We have distributed header decoders and arbiters in each port to

increase parallelism of data routing. As long as there is no output con
ict, (e.g., no more

than one packet is heading toward the same output port), di�erent packets can proceed at

the same time.

I/O Control and FIFO

The I/O control implements the link-level communication protocol and token-exchange ar-

bitration (Section 3.4). We have assumed the network is synchronous, i.e., all the nodes

7.4. ROUTER ARCHITECTURE 129

In_FIFO

Out_FIFO

IO Control

Header
Decoder

Arbiter

Crossbar

Clear Enable
Grant

Grant

Req

Req

Clear Enable

Read_FIFO
Not_Empty

Full

5 * 6

I/O Port

TE

RAin

RAout

Figure 7.7: Router port architecture, only one port is shown

are driven by the same clock and have the same frequency and phase.1 The communication

hand-shaking occurs at the packet level instead of
it level (Dally, 1990a; Hwang, 1993) in

order to reduce hand-shaking overhead and increase data throughput. When a port acts as

an output port, its RAout is the Req signal, and RAin is the Ack signal from its neighbor. On

the other hand, when a port acts as an input port, its RAout is the Ack signal, and RAin is

the Req from the neighbor. When an I/O port changes from output to input, its RAout and

RAin also change their roles. Fig. 7.8 shows the interaction of Req and Ack. When there is a

packet at the output port (i.e., the output FIFO is not empty), the Req signal, the RAout of

the sender, will go high in order to notify the neighbor that there is an incoming data stream.

Because they are synchronous, the receiver can sample and latch the incoming data as soon

as the signal is stable. Req stays high if the sender keeps sending the following
its of the

same packet. When the receiver's input FIFO is full, it will set Ack (its RAout) to be high to

signal the sender. The sender will stop sending data and lower Req to prevent bu�er over
ow

and
it loss. After the receiver has available space in its input FIFO, it will set Ack to low

1Synchronous networks can be achieved by 1) distributing a global clock with carefully balanced delay,
2) PLL in each local node, or 3) Source Synchronous Driver/Receiver, where the local clock is sent along
with data.

130 CHAPTER 7. WORMHOLE ROUTER DESIGN

Req

Ack

Output FIFO empty

Input FIFO full

Output FIFO not empty

Input FIFO not full

Figure 7.8: Channel hand-shaking in the packet level. Req is the RAout of the sending node

and Ack is the RAout of the receiving node

and the sender will resume data transmission by setting Req high again. When the sender

�nishes the entire packet (output FIFO empty), it will set Req to low to tell the receiver that

no more data are on the channel.

Each I/O FIFO is two-
its deep. For an input FIFO, if there is space for only one
it,

then when a new
it arrives, the Ack (input FIFO full) signal will be high, and will slow down

the transmission rate of the sender even though there is no tra�c contention. So we need

at least two-
it FIFO to eliminate this false full phenomenon. For an output port, although

we can hide the token-exchange delay by pre-issuing token request (Section 7.5), we need

some extra bu�ering when tra�c contention happens. Therefore, we choose two
its per I/O

FIFO to reduce hardware cost while maintaining functionality.

Header decoder

The header decoder determines to which output port a packet will be routed based on the

routing algorithm. The design implements the dimension-order deterministic algorithm be-

cause of its simplicity and e�ciency. When a header
it comes into the header decoder, it �rst

compares the local host address with the packet destination address. If they are identical,

this packet has reached its destination and the host interface is signaled that a packet has

arrived. If the x addresses are di�erent, the packet will be sent to x dimension according to

Dx; if the x addresses are the same but y addresses are di�erent, the packet will be sent to

y dimension according to Dy. We can formulate the operation as follows:

Rx = Xp �Xn

Ry = Yp � Yn (7.1)

If dest � Rx +Ry = 0, then send to the local host,

else if Rx 6= 0, then send to x (E or W) according to Dx bit,

7.4. ROUTER ARCHITECTURE 131

Uni-
Routing

Multi-
Routing

head=1,
dest=0

dest=1
head=1,

head=1,dest=0

Idle

Req

Req

Req

tail=1
tail=1Clear
Clear

Figure 7.9: State diagram of the header decoder

else if Rx = 0, then send to y (N or S) according to Dy bit

where Xp(Yp) and Xn(Yn) are the x(y) addresses of the packet destination and local node,

respectively. And � is XOR operation.

The header decoder also was designed to support path-based multicasting. Fig. 7.9 shows

the state diagram for the header decoder. When a new packet comes in, the header decoder

changes from the idle state to either the uni-routing state or the multi-routing state, depending

on whether or not this packet has reached its destination. If dest=0, the current node is only

an intermediate node. In this case, the decoder goes to uni-routing state and the entire packet

is forwarded to the next node. When dest=1, the packet has reached it destination (or the

�rst destination on the list), and the header decoder goes to the multi-routing state. In the

multi-routing state, the header decoder continues to monitor the next head bit in the packet,

and issues a routing request if a second header arrives. The header decoder goes to the

uni-routing state after the second header has been decoded. After the tail bit arrives, the

header decoder goes back to the idle state, clears the switches, and waits for the next packet.

Arbiter

The arbiter receives and arbitrates requests from the header decoders of all input ports.

When the arbiter receives requests, it �rst checks its internal state to see if the switch to the

output has been used. If the switch is free and there is only one request at that time, then the

132 CHAPTER 7. WORMHOLE ROUTER DESIGN

port issuing the request can use the switch immediately. If the switch is available but there

are more than one request from di�erent ports, then round-robin priority is used to decide

which one is allowed to use the switch, and all the other requesting ports wait. If the switch

to the output port is being used, all the requests are denied. Because we do not implement

virtual channels, packets to the same output port can not be interleaved with each other.

When there is a packet passing through the switch and the corresponding output FIFO is

full, the arbiter associated with this output port will be noti�ed. A disable signal (Enable=0)

will be sent from the arbiter back to the header decoder of the input port from which the

packet came. The disable signal stops the packet until there is space available at the output

FIFO. When the transmission of the packet �nishes, a clear signal is sent to the arbiter to

reset the switch, and the arbiter is ready for the new request.

7.4.3 Crossbar Switch Architecture

The crossbar is a fully-connected 5 � 6 switch used to set up a physical connection path

from an input port to any output port. Each input or output port in the crossbar is 18 bits

wide (16-bit data plus 2-bit control) with the format of a
it. One extra output port to the

local host provides 32 bits per cycle bandwidth (2 � 16-bit data width) in order to reduce

host bottleneck. To support multicasting, an input port is able to connect to more than one

output port. All connected paths can transfer data simultaneously.

Fig. 7.10 shows two di�erent crossbar architectures: a two-stageCR and a fully-connected

CR. Table 7.3 summarizes the comparison of these two CR architectures. The two-stage CR

has a smaller area. However, it has strict routing limitation , i.e., it can only route data from

E or W to N or S , but cannot route data in the reverse directions (from Y to X)2. Due to

this limitation, the two-stage CR cannot support path-based multicasting. In addition, the

2-stage CR also has less parallelism, e.g., packets may get blocked even though there is no

output con
ict. Therefore, we chose to implement the fully-connected CR and pay the area

penalty. More details of crossbar switch implementation will be discussed later (Section 7.7).

2For dimension-order unicasting routing, the routing limitation is not a problem because Y to X routing
never occurs.

7.4. ROUTER ARCHITECTURE 133

Host

Host 0 Host 1

3 * 4

3 * 3
W

N

S

E

W

N

S

E

(a) 2-stage CR

W

Host

N

E

W

S

N

E

S
Host 0

Host 1

5 * 6 Crossbar

(b) Fully-Connected CR

Figure 7.10: Two di�erent crossbar architectures

2-stage CR Fully-Connected CR

Area Small Large

Connectivity Cannot route from Y to X Provide all connections

Delay Longer critical path Same for all connections

Multicasting No Yes

Parallelism Less More

Table 7.3: Comparison of 2-stage CR and fully-connected CR

134 CHAPTER 7. WORMHOLE ROUTER DESIGN

7.5 Router Timing

The main design goal of the router is to make the fall-through latency as small as possible

while maintaining the throughput at one
it/cycle/port. In this section, we will show the

details of our timing design and latency-hiding technique.

7.5.1 I/O Timing

The I/O control timing includes I/O channel timing for data transmission and token-exchange

timing for channel arbitration.

I/O Channel Timing

Fig. 7.11 shows the I/O channel timing. In cycle 1, Out state s1, which changes from Idle

to Sending, triggers �fo out and RA(req), and puts data (Flit 1) on the channel. In cycle

2, In state s2 of the receiving node changes from Idle to Receiving due to RA(req)=HIGH.

The channel data will be latched by data in signal. If the input FIFO of the receiving node is

full, RA(ack) will become HIGH to stop the sender; Out state s2 becomes Idle and RA(req)

becomes LOW as shown in cycle 3. The sender can resume transmission in cycle 4 when it

sees RA(ack) is LOW indicating that there is space available in the input FIFO. When the

sender �nishes, Out state s1 returns to Idle and RA(req) becomes LOW. The receiver also

returns to Idle to complete the transaction in cycles 5 and 6.

Without tra�c contention, the input FIFO is never full, the data throughput is one

it/cycle, and RA(req) only changes at the packet header, which goes from LOW to HIGH,

and at the tail, which goes from HIGH to LOW. Hand-shaking is in the packet level. A

second hand-shaking signal, RA(ack), is necessary for contention control to prevent bu�er

over
ow and packet loss.

Token-Exchange Timing

In order to prevent con
ict, token exchange is used for channel arbitration to determine which

can use the channel. There is a one-bit signal TE between two neighboring nodes. Fig. 7.12

shows the circuit of the token-exchange interface. Both nodes are listening to TE all the time,

but only the node whose Tstate s2 is either no token or with token req state can drive TE.

That is,

ag enable=(Tstate s2==no token) k (Tstate s2==with token req)

7.5. ROUTER TIMING 135

Phi1

Phi2

Out
state_s1

Out
state_s2

fifo_out

Channel

RA(req)

Idle Sending Idle IdleSending

Sending SendingIdle Idle Idle

Idle

Idle

Receiving

Receiving ReceivingIdle

Idle
In

state_s1

In
state_s2

data_in

fifo_full_s2

Idle

Idle

RA(ack)

Flit 1 Flit 2 Flit 3

1 2 3 4 5 7 86

Figure 7.11: I/O control and channel timing diagram

136 CHAPTER 7. WORMHOLE ROUTER DESIGN

TE

Node1 Node2

flag_enableflag_enable

Tout Tout

Figure 7.12: Token-exchange interface circuit diagram

No_Token

With_Token

No_Token_

Req

With_Token_

Req

flag_req=0 TE=1

TE=0

TE=0

TE=1

finish=0

finish=1

flag_req=1
TE = 1

TE = 0

Figure 7.13: Token-exchange state diagram

The
ag enable signal controls the tri-state driver of T out in Fig. 7.12. Fig. 7.13 shows the

token-exchange state diagram; Fig. 7.14 is the timing diagram. Details of token-exchange

algorithm were described in Section 3.4.1. As shown in the timing diagram, TE is triggered

by node1 Tout or node2 Tout depending on their
ag enable states. It takes two cycles for

token exchange (from Phi 2 of cycle 1 to Phi 2 of cycle 3, Fig. 7.14). We will show how to

hide this token-exchange latency in the next section (router core timing). In the absence of

tra�c contention, there is no penalty for token-exchange arbitration in our design.

7.5. ROUTER TIMING 137

Phi1

Phi2

node1
Tstate_s1

node1
Tstate_s2

node1
flag_enable

node1
Tout

TE

node2
Tstate_s1

node2
Tstate_s2

no_token

no_token

no_token

no_token

w/ token

w/ token

w/ token

w/ token

no_token_req

no_token_req

w/t_req

w/t_req

node2
flag_enable

node2
Tout

2 3 4 51

flag_req

Figure 7.14: Token-exchange timing diagram

138 CHAPTER 7. WORMHOLE ROUTER DESIGN

7.5.2 Router Core Timing

There are three major pipelining stages in the router core: header decoder, arbiter, and

crossbar. We will describe their detail timing in the following paragraphs.

Header Decoder Timing

The header decoder takes a
it from the input FIFO when both data in s2 and enable s2

are HIGH (Fig. 7.15). In cycle 1, if the incoming
it's head bit=HIGH, decoding circuitry

will send req to Arb=HIGH to the requested output port. When grant from Arb is HIGH

in cycle 2, the decoder will lower the req to Arb signal to indicate that the path to the

output port has been established. If the output FIFO bu�er is full due to tra�c contention,

grant from Arb will become LOW and the enable signals also become LOW; the header

decoder will stop reading new
its from the input FIFO as shown in cycles 3 and 4. When

the blocking at the output port is removed, grant from Arb and enable become HIGH again,

and the header decoder resumes. When the tail of the packet arrives at the header decoder in

cycle 5, the clear sw signal is HIGH one cycle later to clear the arbiter, crossbar, and reset

grant from Arb=LOW at the end of cycle 6 to complete this packet.

Arbiter Timing

Fig. 7.16 shows the arbiter timing diagram. In cycle 1, the arbiter receives the request from a

header decoder,3 and checks its internal switch state. If the switch state is LOW (the switch

is free now), it can give grant to both header decoder and crossbar to establish the path in

cycle 2. When the output FIFO is full (output full=HIGH), the arbiter will disable the grant

and enable signals to the header decoder and crossbar to stop further transmission of data

until output full is LOW as shown in cycles 4 and 5. When a clear switch signal is received

by the arbiter, it resets its switch state and clears all grant signals in cycle 6.

Crossbar Switch Timing

The crossbar is a physical switch for establishing paths from any input port to any other

output port(s). One input port may be connected to more than one output port when the

packet is a multicasting packet and the current node is one of the destinations.

3In fact, the arbiter may receive more than one request from di�erent header decoders. Then the round-
robin priority arbitration is used.

7.5. ROUTER TIMING 139

Phi1

Phi2

from fifo
data_in

data_in_s2

read_fifo_q2

from_fifo
Data

tail bit

head bit

req_to_Arb

grant_from_Arb

enable

enable_s2

clear_sw

enable_s2
is LOW

due to output_full

Flit 1 Flit 2 Flit 3 Flit 4

1 2 4 5 6 73

Figure 7.15: Header decoder timing diagram

140 CHAPTER 7. WORMHOLE ROUTER DESIGN

Phi1

Phi2

header_decoder
req from

header_decoder
grant to

crossbar
grant to

enable to
header_decoder

output_full

clear_switch

1 2 3 4 5 6 7

switch_state
(arb_busy)

Figure 7.16: Arbiter timing diagram

7.5. ROUTER TIMING 141

Phi1

Phi2

Flit A Flit B Flit C

Flit A Flit B Flit C

A B B Cff ff ff ff

Data_from
in_fifo

Data_s2

out_fifo
write

arb_busy

grant_to_CR_q2

data_in_
to_CR_s2

Data_from_CR

shut off
precharge

begin
precharge

a bubble in the incoming packet

1 2 3 4 5 76

Figure 7.17: Crossbar timing diagram. � in Data from CR is the precharged value.

Fig. 7.17 shows the timing of the crossbar switch. Data from the input FIFO is latched

once before entering the crossbar (Data s2). Precharge circuits are used in the crossbar;

details of the circuit issues are in Section 7.7.2. The crossbar begins to precharge when

arb busy from the arbiter is HIGH because we know some packets are going to use the

crossbar in the next cycles. When arb busy=HIGH, the circuits are precharged during Phi 1,

and evaluated during Phi 2 controlled by grant to CR q2. Data is latched in the output FIFO

at the falling edge of Phi 2 by write out �fo signal. The crossbar shuts o� precharge when

arb busy=LOW to save stand-by power.

Router Core Timing

Based on the timing diagrams of the functional blocks described in the previous paragraphs,

we can summarize the timing of the router core as shown in Fig. 7.18. The router fall-through

latency is 3 cycles (from In channel to Out channel), and the throughput is one
it/cycle.

142 CHAPTER 7. WORMHOLE ROUTER DESIGN

flit 2 flit 3 flit 4flit 1

flit 1 flit 2 flit 3 flit 4PC PC PC PC

flit 1 flit 2 flit 3

phi1

phi2

In_FIFO

Header_Req

Arb_Grant

Out_Channel

CR_Data

In_channel

Hide Token-Exchange Delay

Figure 7.18: Router core timing diagram

From Fig. 7.18 timing diagram, we observed that Header Req is two cycles earlier than

Out channel. It is known which output port will be used two cycles before the data actually

arrives. Also from Fig. 7.14, the token-exchange timing diagram, we know there are two cycles

delay for token exchange. Therefore, the token request can be pre-issued at the Header Req

cycle; if there is no contention, the node receives the token two cycles later and sends out the

data without delays associated with the token exchange process.

7.6 Router Instruction Sets

We de�ned a set of instructions for STARP to perform data routing. There are two groups

of instructions for the router: one for setting up the router status, called status instructions,

and the other for generating data packet, called packet instructions. Each instruction is 16

bits with 4-bit opcode (bits 15:12). Depending on the opcode, di�erent �elds of operand (bits

11:0) have di�erent meaning.

7.6. ROUTER INSTRUCTION SETS 143

7.6.1 Status Instructions

Status instructions are used to set up the router states, for example, I/O tokens, test mode,

and so on. The opcode for the status instructions is \ROUT". The �elds of operand are

de�ned as follows:

11|{z}
M

� 10|{z}
T

� 09|{z}
S1

� 08|{z}
S2

� 07� 06| {z }
S

� 05� 04| {z }
W

� 03� 02| {z }
E

� 01� 00| {z }
N

M = 0; (S1; S2) = don't care Multicasting OFF

M = 1; (S1; S2) = don't care Multicasting ON

T = 0; (S1; S2) = (1; 0) set token mode

(1; 1) set ID mode

T = 1; (S1; S2) = (0; 0) SW set mode

(0; 1) SW reset mode

(1; 0) Host reset mode

(1; 1) Host reset mode

Multicasting ON or OFF is set in SrOut control only. It a�ects only the generation of

outgoing packets from the host. The router can handle any kind of packets independent of

the status of SrOut control. Table 7.4 summarizes the functions and operations of each mode

described above. Some notes are given as follows:

� When we initialize the I/O port token state for several routers connected in a network,

we must assume that each channel can be initialized with only one token.

� In SW set mode, the decoded results Rx and Ry (Eq. 7.1) are overwritten by the pre-set

values Rxt and Ryt speci�ed in the �elds of operand corresponding to the I/O port.

� Similarly, in Host set mode, the decoded results Rx and Ry are overwritten by the

pre-set values Rxt and Ryt speci�ed in the operand bits 1:0.

� Either SW set mode or Host set mode will turn on the loop-back testing mode of the

router. The details of loop-back mode will be given in Section 7.8.

144 CHAPTER 7. WORMHOLE ROUTER DESIGN

Mode Operations

set token Set I/O port token state

bits [7:0] are associated with 4 I/O ports (NEWS) as speci�ed.

(00) is no token and (11) is with token state

set ID Set the local node address

bits [7:4] and [3:0] are the x and y address, respectively.

SW set Set router switches to the test mode.

The header decoders in the I/O ports (NEWS) will be disable.

Decoded results are pre-set by this instruction in bits [7:0]

SW reset Reset router switches to the normal mode.

Host set Set host switch to the test mode.

The header decoders in the host port is disable.

Decoded results are pre-set in bit [1:0]

Host reset Reset host switch to the normal mode.

Table 7.4: Summary of status instructions modes

7.6.2 Packet Instructions

The outgoing packets are generated at SrOut by writing some packet information, for ex-

ample, destination address, memory location, packet length, into the system registers. The

packet instructions are used to write these system registers. The opcode for the packet in-

structions is \LSRI". The �elds of the operand contains a 4-bit register ID and an 8-bit

data.

There are four system registers designed for router packet instructions. Each system

register is 8 bits wide. The functions for the system registers are listed as follows:

Register ID Data stored

reg#0 dest[7:0]

reg#1 dest[15:8]

reg#2 local[7:0]

reg#3 local[15:8]

7.6. ROUTER INSTRUCTION SETS 145

The corresponding header format is :

Header[2:0] = dest[2:0]; // x-address

Header[6:3] = 4'b0000;

Header[7] = dest[3]; // Dx

Header[10:8] = dest[6:4]; // y-address

Header[14:11] = 4'b0000;

Header[15] = dest[7]; // Dy

MemAdd[3:0] = 4'b0000;

MemAdd[11:4] = dest[15:8];

MemAdd[15:12] = 4'b0000;

In the STARP prototype, we can specify only 3-bit x and y addresses for the packet

destination, although the maximal addressable range in a header is 7-bit in each dimension.

In a full implementation, it would be necessary to increase the number of system registers or

increase the size of each register.

System registers #2 and #3 are used for local host memory address and packet length.

Source mem address and SrOut counter are de�ned as follows:

Source mem address[11:2] = local[9:0];

SrOut counter = local[15:10];

Source mem address is the memory location at the source node where the data of the

outgoing packet is stored. SrOut counter is equivalent to the packet length. The counter

is decremented by one whenever the memory is read until the counter value reaches zero.

The counter is 6-bit wide, and every memory access corresponds to two
its, so the maximal

packet length is 128 data
its.

7.6.3 Instruction Examples

A simple example of the router instructions is shown below. In this example, a unicasting

packet is generated in node (0, 0) with all testing modes set. The packet has 16 data
its

146 CHAPTER 7. WORMHOLE ROUTER DESIGN

plus 2 header
its (Header and MemAdd). The packet data is read from local memory bank

R0 address 0. The destination of this packet is node (0, 1) with memory location at bank B

address 4.

ROUT 300 // set ID x=0, ID y=0

ROUT 2� // set with token

ROUT 602 // H set, Rx test=0, Ry test=1

ROUT 400 // SW set, Rx test=Ry test=0 for all ports, multicast o�

LSRI 2 00 // source mem addr = R0 @ 0

LSRI 3 20 // Source counter = 8

LSRI 0 10 // dest: x=0, Dx=0, y=1, Dy=0

LSRI 1 81 // dest: bank B @ 4

The next example shows a multicasting packet with two destinations: dest1 node (0, 0)

and dest2 node (1, 1). The destination memory locations are bank A address 0 and bank C

address 0, respectively.

ROUT 602 // H set, Rx test=0, Ry test=1

ROUT d00 // reset SW, multicast on

NOP

LSRI 0 80 // dest1: x=0, Dx=0, y=0, Dy=1

LSRI 1 40 // dest1: bank A @ 0

LSRI 2 81 // Source mem R1 @ 4

LSRI 3 10 // Source counter = 4

LSRI 0 99 // dest2: x=1, Dx=1, y=1, Dy=1

LSRI 1 c0 // dest2: bank C @ 0

7.7. CHIP IMPLEMENTATION 147

7.7 Chip Implementation

In the implementation of STARP, we combined standard cell design and custom design. In

this section, we describe our design methodology and discuss some circuit issues.

7.7.1 Design Methodology

Fig. 7.19 shows our design methodology of STARP. We started from the high level C lan-

guage model for algorithmic and architectural trade-o� study. At this level, we could eval-

uate the performance of di�erent architectures, for example, channel con�gurations, routing

algorithms, bu�er size, etc., because simulation e�ciency is high. After �nalizing the ar-

chitecture and other high level details, we began the hardware modeling and simulation in

Verilog, a Hardware Description Language. The whole chip Register-Transfer Level (RTL)

model was created in Verilog. We veri�ed design details: functionality, timing, interface, and

complexity. We can also achieve a better view of block partitioning of the chip in this phase

of the design.

The physical design has two parts: custom blocks and standard cells synthesis. The

custom blocks include memory, datapath, and crossbar switch. We designed, laidout (with

MAGIC), and simulated (with HSPICE) these blocks to optimize performance and minimize

area. We also designed and laidout our own standard cell library with separate well biases to

improve low voltage performance (Section 7.7.2). All the cells were simulated and calibrated

by HSPICE. These cells were used to synthesize the control logic blocks by Synopsys which

reads in the Verilog HDL codes. A silicon compiler (Lager) was used to generate the layout

from the synthesis results. All the blocks were extracted into SIM �les which is the transistor

level with RC model to verify functionality and timing (IRSIM). Global routing put all the

blocks together following design rule checks (DRC), Vdd and GND checks, and a well check

(to prevent
oating wells), etc. The entire chip was extracted again into a SIM �le for IRSIM

simulation.

At each level of simulation, test vectors were created by Snooper from Verilog. Snooper

records all the changes of input and output signals of a block, or an entire chip, as the

stimulus and assertion of simulation. Final chip test vectors were created with Snooper for

chip testing.

148 CHAPTER 7. WORMHOLE ROUTER DESIGN

Test Vectors
Snooper

Logic Synthesis
Synopsys

Low Voltage Standard Cells

Design and Layout
Custom Blocks

Global Routing

magic(netlist), DMoct(flint)

High Level Hardware Simulation
Verilog

Lager (DMoct)
Layout Generation

Irsim
Blocks Verification

Algorithms, Architectures
C Language

Chip Test
HP818x Tester

Irsim
Chip Simulation

Hspice
Cells Calibration

Figure 7.19: Design methodology and
ow of STARP

7.7. CHIP IMPLEMENTATION 149

Vdd

GND

Vnwell

Vpwell

Figure 7.20: CMOS inverter model. Vpwell and Vnwell can be biased separately from Vdd

and GND to improve the performance at low Vdd

7.7.2 Circuit Issues

We used the Stanford Ultra Low Power (ULP) CMOS technique at the device level (Burr

and Shott, 1994) to design the STARP chip. Fig. 7.20 shows a CMOS inverter model. In

the traditional CMOS design, Vpwell is connected to Vdd, and Vnwell is connected to GND

to guarantee that the di�usion and substrate junction is reverse-biased. In our approach, we

have separate well biases: Vpwell and Vnwell have separate contacts, distinct from Vdd and

GND, allows separate biases to be applied to the di�usion and substrate junctions. According

to the body e�ect, the transistor threshold voltage Vth will be reduced when a forward bias is

applied to the di�usion and substrate junction. Performance of transistors can be enhanced

due to the reduction of Vth.

The well bias must be controlled carefully to prevent latch-up. Too much forward bias

to the junction will result in a large current
owing through the substrate inducing latch-

up. A slightly forward biased junction (V bias < 0.5V) is helpful to reduce gate delay and

di�usion capacitance. But the current leakage because of lower Vth will cause some increase

in DC power, and even malfunction in some dynamic circuits. Consequently, it is necessary

to restrict the circuit styles in designing a low power VLSI system using the ULP technology.

150 CHAPTER 7. WORMHOLE ROUTER DESIGN

In

Out

Cntl Cntl

(a) Crossbar with static circuit

CLK

In

Out

Cntl

(b) Crossbar with dynamic circuit

Figure 7.21: Crossbar switch circuits. 1-bit switching unit implemented in static and

dynamic circuits

Crossbar Switch

Most of the router circuits were synthesized using Synopsys. But the crossbar switch (CR)

was fully custom designed and laidout because it is very regular and needs to be very compact.

Fig. 7.21 is the basic crossbar switch unit implemented in two di�erent circuit styles, one

for static and another for dynamic circuits. Fig. 7.21(a) shows the static transmission gate

switch with both PMOS and NMOS. Fig. 7.21(b) is the dynamic switch with NMOS pass gate

and PMOS precharge. In practice, because there are several NMOS pass gates on an output

bit line, we put a small PMOS keeper at the output line for the dynamic CR to prevent the

leakage through these NMOS and accidental discharge of the output line (Fig. 7.22). Many

references in VLSI design provide a thorough discussion of static and dynamic logic, e.g.,

(Weste and Eshraghian, 1985). Basically, dynamic logic requires fewer transistors, smaller

area, and less capacitance loading.

After physically layingout the crossbar circuits, we found that the CR area is dominated

by wires; therefore we hid the transistors beneath the wires, and the size of the resulting

circuits is determined by the number of wires. The wires include input, output, and control

signals. Fig. 7.23 shows the
oor plan of the crossbar switch. The area di�erence between

7.7. CHIP IMPLEMENTATION 151

CLK

Out

Cntl Signals

In 0

In 1

In 2

In 3

Pc Pk

Figure 7.22: Dynamic crossbar switch with a PMOS keeper at the output to prevent leakage

the static and dynamic CR results from the need for twice the number of control wires for

the static CR. So we estimate the area of a general CR as follows:

Area = (m+
c

2
+�)� (b� n + c)� b=2 w2

where m and n are the number of input and output ports, respectively. The remaining

variables are as follows: � is the precharge overhead, c is the number of control signals, b is

the number of bits per port, and w is a single wire pitch. Therefore, the area estimates for

the 5� 6 crossbars are:

Area dynamic = (5 + 10 + 5)� (18� 6 + 20)� 9 = 23040 � w2

Area static = (5 + 20)� (18� 6 + 40)� 9 = 33300 �w2

where m = 5, n = 6, b = 18, and � = 5, c = 20 for the dynamic case and � = 0, c = 40

for the static case. The area of the dynamic CR is about 30% less than that of static CR.

Therefore, we decided to implement the dynamic CR in order to compensate for the larger

area of a fully connected CR .

152 CHAPTER 7. WORMHOLE ROUTER DESIGN

Cntl SignalsCntl Signals Output

Figure 7.23: Crossbar switch
oor plan

7.8. TESTING ISSUES 153

7.7.3 Chip Fabrication

STARP was fabricated using MOSIS/HP 0.6�m CMOS technology. The die size is 6mm�

4:8mm containing about 250,000 transistors. The wormhole router occupies 30% of the die

area and has about 50,000 transistors. The STARP chip was packaged in a 132-pin PGA.

Due to the limit of pin count, only one I/O port has real I/O pads o� chip. Fig. 7.24 shows

the chip micrograph.4

7.8 Testing Issues

Testability is an important issue in VLSI design. We have built in a scan path which allows

us to access the internal states of the chip. Each part of the chip (router, memory, and

datapath) can be tested separately to isolate problems if any. We also have several testing

modes which allow us to simplify the testing procedures.

7.8.1 Loop-back Mode Testing

The loop-back mode testing was designed for single chip testing. The purpose is to emulate

incoming packets from the network. Fig. 7.25 shows the diagram of loop-back testing. All

the header decoders can be disabled, and the decoding results can be pre-set by instructions

(Section 7.6). Therefore, by using the status instructions, we can easily test all I/O ports

and all multicasting combinations.

The loop-back mode is on when either SW set or Host set mode is on. In the loop-back

mode, the I/O port will \hand-shake" with itself. Outgoing packets from an output FIFO

are looped back to the input FIFO of the same I/O port with proper control signaling to

simulate incoming packets from the network. We also can introduce network tra�c contention

by disabling the channel token, and the packet should stop in the FIFOs while waiting for the

token. Then we can test the router behavior under tra�c contention. The loop-back packets

can be stored in the local memory and read out later for debugging.

7.8.2 Tester Setup

We used an HP8180 data generator and HP8182 data analyzer as our testing platform. We

constructed a test board to connect with the HP testers. The high frequency signals on the

4The MAD Unit and memory banks were designed by Gerard Yeh.

1
5
4

C
H
A
P
T
E
R
7
.
W
O
R
M
H
O
L
E
R
O
U
T
E
R
D
E
S
IG
N

SA Mem Bank A

Curr Mem Bank R0

SA Mem Bank B

SA Mem Bank C

R
outer

Curr Mem Bank R1
M

A
D

 U
nit B

us

C
ontroller

MAD Control

F
ig
u
re

7
.2
4
:
S
T
A
R
P
ch
ip

m
icro

g
ra
p
h

7.8. TESTING ISSUES 155

I/O Control

I/O
 C

ontrol

Crossbar

Host

Testing

Control

Figure 7.25: Loop-back mode test

board (clocks, input instructions, result data bus, and router I/O channels) are matched and

terminated. A PC served as the host to upload testing vectors and download test results to

and from the HP tester via GPIB interface. A translation program was written to convert

IRSIM test vectors for the HP tester.

7.8.3 Testing Results

The STARP chip was tested and veri�ed. There were about 20 test vectors (each vector has

50 to 300 instructions) for functionality and performance tests. STARP was fully functional

for all test vectors. Performance tests were conducted with a wide range of frequency and

power supply. Separate well bias e�ects were also tested for low Vdd.

Fig. 7.26 shows the performance testing results. Each point was measured at di�erent Vdd

and the maximum frequency achievable for the given Vdd. In testing, we can achieve 50MHz

at Vdd=2.1V.5 We achieve this performance because we have well-pipelined and controlled

critical paths in our design. Fig. 7.26(a) is the plot of average power versus frequency.

We measured only the router core (including host interface and bus) power because the

interconnection power is very dependent on the physical interconnection medium. We tested

both unicasting and multicasting (with 2 destinations) with loop-back mode. There are more

550MHz is the maximum frequency in the HP testers

156 CHAPTER 7. WORMHOLE ROUTER DESIGN

activities in both control and crossbar switch for multicasting packets, so the average power

for multicasting is higher than unicasting. But multicasting can deliver more data bandwidth

compared with unicasting. Data rate is equal to frequency � (# of dest) � 16bits. So

at 50MHz the peak data rate = 1.6Gb/s for multicasting. Fig. 7.26(b) shows the plot of

energy/bit versus data rate. There is an obvious energy advantage of multicasting over

unicasting. Multicasting supports a higher data rate with lower energy per bit because there

is more resource sharing. So multicasting not only reduces network tra�c contention, but

also reduces communication energy.

Fig. 7.27 shows the plot of energy � delay (E � T) versus Vdd. E � T is a metric for

optimization trade-o�. We wish to minimize the energy while maintaining reasonable per-

formance. Again, multicasting has lower E � T curve than unicasting because multicasting is

more energy-e�cient with higher date rate.

Fig. 7.28 shows the performance improvement versus well bias. When we increase the

well bias, we forward bias the transistor junctions and reduce the threshold voltage Vth. The

y-axis in the plot is the frequency improvement normalized to the frequency without separate

bias. The improvement is very linear with the bias voltage. We have larger improvement

when we reduce the supply voltage Vdd because we have a more signi�cant di�erence in

(Vdd-Vth) when we change Vth for small Vdd. So this low power technique is especially good

for low voltage operation. For Vdd=1.3V, we achieve more than 30% improvement with

bias=0.4V.

7.9 Summary

Table 7.5 gives the allocation of the power and area for each block in the router. The power

percentage number was estimated from IRSIM simulation. As we expected, clocks, crossbar

switch, and FIFOs consume most of the power (67.7%) due to their high activity and heavy

loading. The other signi�cant power consumers are the Host Interface and Bus drivers, for

the same reason. The Arbiter uses particularly little power because of its low activity: it has

transitions only when the switch is set or reset. From the column of areas, the Crossbar and

FIFOs occupy the majority of router area although reduction of the Crossbar area received

special attention (Section 7.7.2). The total e�ective area for the items listed is about 48% of

the router area. The rest of the area is used for power distribution, clock distribution, and

routing wires.

7.9. SUMMARY 157

20 25 30 35 40 45 50
2

4

6

8

10

12

14

16

Frequency (MHz)

P
ow

er
 (

m
W

)

Multicast

Unicast

(a) Core power vs. Frequency

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
4

6

8

10

12

14

16

Data Rate (Gb/s)

E
ne

rg
y/

bi
t (

pJ
)

Multicast

Unicast

(b) Core energy vs. Data Rate

Figure 7.26: Chip measurement results

158 CHAPTER 7. WORMHOLE ROUTER DESIGN

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Vdd (V)

E
ne

rg
y/

bi
t *

 d
el

ay
Multicast

Unicast

Figure 7.27: Core energy�delay vs. Vdd

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

well bias (V)

N
or

m
al

iz
ed

 fr
eq

ue
nc

y
im

pr
ov

em
en

t

Vdd=1.3V

Vdd=1.4V

Figure 7.28: Performance improvement vs. well bias

7.9. SUMMARY 159

Power % Area %

Clock 28.6%

CR + FIFO 39.1% 24.4%

Host Interface 21.9% 6.4%

Bus Drivers 4.0%

Header Decoder 6.8% 4.75%

Arbiter 0.5% 5.23%

IO Control 2.6% 3.01%

Total 100% 47.79%

Table 7.5: Estimated power and area allocation of the router in STARP

Feature Path-based multicasting

Bi-directional 16-bit data channels

Token-exchange channel arbitration

Deterministic routing

Latency 3 cycles/hop

Throughput 1
it/cycle/IO port

Performance 50MHz @ Vdd=2.1V

(MOSIS HP 0.6�m)

Ave. Power (Core) 15mW (measured)

Energy (Core) 20pJ/bit (measured)

Max. BW 1.6Gb/s

Table 7.6: STARP wormhole router summary

The wormhole router was fabricated using MOSIS/HP 0.6�m technology. It can deliver

1.6Gb/s (50MHz) @ Vdd=2.1V and consumes an average power of 15mW. Table 7.6 gives

the summary of the wormhole router.

160 CHAPTER 7. WORMHOLE ROUTER DESIGN

Chapter 8

Contributions and Suggestions for

Future Work

8.1 Contributions

The principle contributions of this dissertation are:

1. A wormhole routing simulator was written to study di�erent routing algorithms and

some design tradeo�s: for example, bu�er size, virtual channel numbers, channel ar-

bitration, and so on. Four algorithms were implemented and simulated: Deterministic

(dimension-order), Virtual Network, Dimension Reversal, and Star-Channel algorithm.

Three di�erent tra�c patterns were included in the simulation: uniform, transpose,

and hot-spot. In general, the adaptive algorithms perform better than the deterministic

algorithm. The di�erence between algorithms depends on tra�c patterns: for example,

it is obvious that adaptive routing is superior for transpose tra�c, but not signi�cant

for uniform tra�c.

2. Di�erent channel con�gurations (uni-directional and bi-directional channels) were sim-

ulated and compared. A token-exchange channel arbitration scheme for bi-directional

channels was developed and implemented. The token-exchange scheme was proved to be

con
ict-free and deadlock-free. In spite of the channel arbitration overhead, simulation

shows that bi-directional channels have signi�cantly better latency-throughput perform-

ance, and can sustain higher data bandwidths relative to uni-directional channels of the

same physical channel width.

161

162 CHAPTER 8. CONTRIBUTIONS AND SUGGESTIONS FOR FUTURE WORK

3. An enhanced mesh (or torus) architecture with segmented recon�gurable bus (SRB)

is proposed to overcome the delay due to long distance communication in a low-

dimensional array. An optimization procedure to select the segment length and segment

alignment has been formulated. The results of a theoretical analysis of SRB perform-

ance are consistent with the simulation results, and provide a guideline for designing a

SRB torus network.

4. A low power, wormhole data router chip for 2-D mesh and torus networks with bi-

directional channels and token-exchange arbitration was designed and implemented. In

this design, the token-exchange delay is fully hidden with no increase in latency when

there is no tra�c contention. Distributed decoders and arbiters are provided for each

IO port, and a fully-connected crossbar switch increases parallelism of data routing.

The router also provides hardware support for path-based multicasting. Frommeasured

results, the multicasting communication with two destinations is three times as energy-

e�cient as unicasting. The wormhole router was fabricated using MOSIS/HP 0.6�m

technology. It can deliver 1.6Gb/s (50MHz) @ Vdd=2.1V and consumes an average

power of 15mW.

8.2 Suggestions for Future Work

Networks, routing
ow control, routing algorithms, and router design are all crucial for

e�cient multiprocessor communications. There are many other critical components for a

parallel system to achieve e�cient inter-processors communication. For example, high-speed

interconnection is essential for high-throughput and low-latency systems. Low voltage swing

interconnection and optical interconnection have been seen as potentially useful for future

systems.

Fault-tolerance is also an important issue for an e�cient and reliable parallel machine.

Routing data in a network with faulty nodes or channels is especially important in a large

scale machine. Deterministic routing is more susceptible to faulty nodes and channels than

adaptive routing. Complexity, redundancy, and e�ciency are the tradeo�s for the router

design.

8.2. SUGGESTIONS FOR FUTURE WORK 163

Accurate tra�c modeling can also give us insight into the network behavior and per-

formance for di�erent applications. Packet interference in di�erent tra�c patterns plays a

signi�cant role on overall throughput-latency performance. In addition to fast data routers

and high speed communication links, a systematic method to generate a tra�c
ow with less

contention for di�erent problems is also desirable to improve data routing e�ciency.

References

Agarwal, A. \Limits on interconnection network performance." IEEE Trans. on Parallel

and Distributed Systems, vol. 2, no. 4, pp. 398{412, Oct. 1991.

Bakoglu, H. B. and J. D. Meindl. \Optimal interconnect circuits for VLSI." IEEE Trans.

on Electron Devices, vol. ED-32, pp. 903{909, May 1985.

Berman, P. E., L. Gravano, G. D. Pifarr�e, and J. L. C. Sanz. \Adaptive deadlock- and

livelock-free routing with all minimal paths in torus networks." In Proc. 4th ACM SPAA,

pp. 3{12, 1992.

Boppana, R. V. and S. Chalasani. \A comparison of adaptive wormhole routing algorithms."

In Proc. 20th Int. Symp. on Comput. Arch., pp. 351{360, 1993.

Burr, J. and J. Shott. \A 200mV Self-Testing Encoder/Decoder using Stanford Ultra-Low-

Power CMOS." In Proc. IEEE International Solid-State Circuits Conference, pp. 84{85,

1994.

Chien, A. A. and J. H. Kim. \Planar-adaptive routing: low-cost adaptive networks for

multiprocessors." In Proc. 19th Int. Symp. on Comput. Arch., pp. 268{277, May 1992.

Dally, W. J. \Network and processor architecture for message-driven computers." In Suaya,

R. and G. Birtwistle, editors, VLSI and Parallel Computation, pp. 140{222, San Mateo, CA.,

1990. Morgan Kaufmann Publishers, Inc.

Dally, W. J. \Performance analysis of k-ary n-cube interconnection networks." IEEE Trans.

on Comput., vol. C-39, no. 6, pp. 775{785, June 1990.

Dally, W. J. \Virtual-channel
ow control." IEEE Trans. on Parallel and Distributed

Systems, vol. 3, no. 2, pp. 194{205, Mar. 1992.

164

REFERENCES 165

Dally, W. J. and H. Aoki. \Deadlock-free adaptive routing in multicomputer networks

using virtual channels." IEEE Trans. on Parallel and Distributed Systems, vol. 4, no. 4,

pp. 466{475, Apr. 1993.

Dally, W. J. and C. L. Seitz. \The torus routing chip." Distributed Computing, vol. 1, no. 3,

pp. 187{196, Oct. 1986.

Dally, W. J. and C. L. Seitz. \Deadlock-free message routing on multiprocessor intercon-

nection networks." IEEE Trans. on Comput., vol. C-36, no. 5, pp. 547{553, May 1987.

Dally, W. J. and P. Song. \Design of a self-time VLSI multicomputer communication

controller." In Proc. Int. Conf. Computer Design, pp. 230{234, 1987.

Draper, J. T. and J. Ghosh. \Multipath E-cube algorithms (MECA) for adaptive wormhole

routing and broadcasting in k-ary n-cubes." In Proceedings of 6th International Parallel

Processing Symposium, pp. 407{410, 1992.

Duato, Jose. \A new theory of deadlock-free adaptive routing in wormhole networks." IEEE

Trans. on Parallel and Distributed Systems, vol. 4, no. 12, pp. 1320{1331, Dec. 1993.

Fen, T. Y. \A survey of interconnection networks." IEEE Computer, pp. 12{27, Dec. 1981.

Gaughan, P. T. and S. Yalamanchili. \A family of fault-tolerant routing protocols for direct

multiprocessor networks." IEEE Trans. on Parallel and Distributed Systems, vol. 6, no. 5,

pp. 482{497, May 1995.

Glass, C. J. and L. M. Ni. \The turn model for adaptive routing." In Proc. 19th Int. Symp.

on Comput. Arch., pp. 278{287, 1992.

Gravano, L., G. D. Pifarr�e, P. E. Berman, and J. L. C. Sanz. \Adaptive deadlock- and

livelock-free routing with all minimal paths in torus networks." IEEE Trans. on Parallel

and Distributed Systems, vol. 5, no. 12, pp. 1233{1251, Dec. 1994.

Gustafson, J. L. \Reevaluating Amdahl's Law." Commun. ACM, vol. 31, no. 5, pp. 532{533,

May 1988.

Hennessy, J. L. and D. A. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufnann, San Francisco, CA., second edition, 1996.

166 REFERENCES

Hwang, K. Advanced Computer Architecture. McGraw-Hill, New York, 1993.

Kermani, P. and L. Kleinrock. \Virtual cut-through: a new computer communications

switching technique." Computer Networks, vol. 3, no. 4, pp. 267{286, Oct. 1979.

Konstantinidou, S. and L. Snyder. \Chaos router: architecture and performance." In Proc.

18th Int. Symp. on Comput. Arch., pp. 212{221, 1991.

Konstantinidou, S. and L. Snyder. \The chaos router." IEEE Trans. on Comput., vol. C-43,

no. 12, pp. 1386{1397, Dec. 1994.

Lin, X., P. K. McKinley, and L. M. Ni. \Deadlock-free multicast wormhole routing in 2-D

mesh multicomputers." IEEE Trans. on Parallel and Distributed Systems, vol. 5, no. 8,

pp. 793{804, Aug. 1994.

Linder, D. H. and J. C. Harden. \An adaptive and fault tolerant wormhole routing strategy

for k-ary n-cubes." IEEE Trans. on Comput., vol. C-40, no. 1, pp. 2{12, Jan. 1991.

Lu, Y. W., J. B. Burr, and A. M. Peterson. \Optimization of the torus with segmented

recon�gurable bus for data routing." In Proc. Int. Conf. on Parallel and Distributed Systems,

Dec. 1993.

Lu, Y. W., J. B. Burr, and A. M. Peterson. \Permutation on the mesh with recon�gurable

bus: algorithms and practical considerations." In Proceedings of 7th International Parallel

Processing Symposium, Apr. 13-16 1993.

Mahnud, S. M. \Performance analysis of multilevel bus networks for hierarchical multipro-

cessors." IEEE Trans. on Comput., vol. 43, no. 7, pp. 789{805, July 1994.

Merlin, P. M. and P. J. Schweitzer. \Deadlock avoidance in store-and-forward networks I:

Store-and-forward deadlock." IEEE Trans. on Commun., vol. COM-28, no. 3, pp. 345{354,

Mar. 1980.

Miller, R., V. K. Prasanna-Kumar, D. Reisis, and Q. F. Stout. \Meshes with recon�gurable

buses." In Advanced Research in VLSI. Proceedings of the Fifth MIT Conference, pp. 163{

178, Mar. 1988.

Ni, L. M. and P. K. McKinley. \A survey of wormhole routing techniques in direct networks."

IEEE Computer, vol. 26, no. 2, pp. 62{76, Feb. 1993.

REFERENCES 167

Pifarr�e, G. D., L. Gravano, S. A. Felperin, and J. L. C. Sanz. \Fully adaptive minimal

deadlock-free packet routing in hypercubes, meshes, and other networks: algorithms and

simulations." IEEE Trans. on Parallel and Distributed Systems, vol. 5, no. 3, pp. 247{263,

Mar. 1994.

Reese, E. A., H. Wilson, D. Nedwek, J. Jex, M. Khaira, T. Burton, P. Nag, H. Kumar,

C. Dike, D. Finan, and M. Haycock. \A Phase-tolerant 3.8GB/s data-communication router

for a multiprocessor supercomputer backplane." In Proc. IEEE Int. Solid-State Circuits

Conf., pp. 296{297, 1994.

Segucgi, Y., S. Komori, H. Takata, T. Tamura, F. Asai, T. Tokuda, and H. Terada. \A

exible router chip for massively parallel data-driven computer." In Proc. Symposium on

VLSI Circuits, pp. 27{28, 1991.

Silberschatz, A., J. Peterson, and P. Calvin. Operating System Concepts. Addison Wesley,

Reading, MA., third edition, 1991.

Snyder, L. \Introduction to the con�gurable, highly parallel computer." IEEE Computer,

pp. 47{56, Jan. 1982.

Tamir, Y. and H. C. Chi. \Symmetric crossbar arbiters for VLSI communication switches."

IEEE Trans. on Parallel and Distributed Systems, vol. 4, no. 1, pp. 13{27, Jan. 1993.

Tamir, Y. and G. L. Frazier. \Dynamically-allocated multi-queue bu�ers for VLSI commu-

nication switches." IEEE Trans. on Comput., vol. 41, no. 6, pp. 725{737, June 1992.

Tobagi, F. A. \Fast packet switch architectures for broadband integrated services digital

networks." Proceeding of the IEEE, vol. 78, no. 1, pp. 133{167, Jan. 1990.

Traylor, R. and D. Dunning. \Routing chip for Intel Paragon Parallel Supercomputer." In

Hot Chip IV, 1992.

Wang, B. F., G. H. Chen, and F. C. Lin. \Constant time sorting on a processor array with

a recon�gurable bus system." Information Processing Letters 34, pp. 182{192, Apr. 1990.

Weste, N. and K. Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, Reading,

MA., 1985.

