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Abstract

A class of high performance division algorithms is functional iteration. Division by

functional iteration uses multiplication as the fundamental operator. The main advantage

of division by functional iteration is quadratic convergence to the quotient. However, unlike

non-restoring division algorithms such as SRT division, functional iteration does not directly

provide a �nal remainder. This makes fast and exact rounding di�cult. This paper clari�es

the methodology for correct IEEE compliant rounding for quadratically-converging division

algorithms. It proposes an extension to previously reported techniques of using extended

precision in the computation to reduce the frequency of back multiplications required to

obtain the �nal remainder. Further, a technique applicable to all IEEE rounding modes is

presented which replaces the �nal subtraction for remainder computation with very simple

combinational logic.
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1 Introduction

In recent years computer applications have increased in their computational complexity.

High speed 
oating-point hardware is a requirement to meet these increasing demands. An

important component of the 
oating point unit is the divider. There are many methods for

designing division hardware. These include linear converging algorithms, the most common

of which is SRT, and quadratically converging algorithms, such as Newton-Raphson and

Goldschmidt's algorithm [7]. Linear converging algorithms retire a �xed number of quotient

digits in each iteration. After each iteration, a partial remainder is available. At the conclu-

sion of the iterations, the quotient is available, as is the �nal remainder. By noting the sign

and magnitude of the �nal remainder, it is possible to adjust the quotient appropriately by

1 unit in the last place (ulp) to obtain an exactly rounded result that complies with the

IEEE 
oating-point standard [5]. In contrast, both Newton-Raphson and Goldschmidt's

algorithms produce a quotient, but with no �nal remainder. For exact rounding of the

quotient, it is typically necessary to use an additional multiplication of the quotient and

the divisor and then to subtract the product from the dividend to form the �nal remain-

der. Accordingly, quadratically-converging algorithms can incur a latency penalty of one

multiplication and a subtraction in order to produce IEEE exactly rounded quotients.

Previous implementations of quadratically-converging dividers have demonstrated vari-

ous techniques of achieving close-to-exact rounding as well as exact rounding. However, all

implementations yielding exactly rounded quotients have su�ered from a rounding penalty.

In this paper, an extension of a technique presented by Schwarz [9] is proposed which further

reduces the frequency of �nal remainder calculations required by increasing the precision of

the quotient. For those cases where a �nal remainder calculation is required, a technique is

proposed which reduces the full-width subtraction to combinational logic operating on one

bit of the dividend, one bit of the back multiplication product, and the sticky bit from the

multiplier.

The remainder of this paper is organized as follows: Section 2 describes the principals of

IEEE rounding. Section 3 reviews the theory of division by functional iteration. Section 4

presents previously implemented techniques for exact rounding. Section 5 presents the

methodology for reducing the frequency of remainder computations. Section 6 presents

the technique for fast magnitude comparison of the dividend and the back multiplication

product. Section 7 is the conclusion.

2 IEEE Rounding

The IEEE 754 standard for 
oating-point representation describes two di�erent formats:

single and double precision. The standard also suggests the use of extended precision for-

mats, but their use is not mandatory. The most common format used in modern processors

is double precision, which comprises a 1-bit sign, an 11-bit biased exponent, and a 52-bit

signi�cand with one hidden signi�cand bit, for a total of a 64 bits. A signi�cand is a normal-

ized number M , such that 1 � M < 2. The standard includes four rounding modes: RN,

RZ, RM, and RP. RN is unbiased rounding to nearest, rounding to even in the case of a tie.
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RZ is simple truncation. The two directed rounding modes RM and RP are round towards

minus in�nity and round towards plus in�nity respectively. For IEEE compliance, exactly

rounded results must be computable for all four rounding modes. The result generated by

an operation according to any of the four rounding modes must be the machine number

which is identical to an intermediate result that is correct to in�nite precision and is then

rounded according to the same rounding mode.

The signi�cand immediately before rounding has the format as given in �gure 1. In this

1.

desired
precision

L G S

Figure 1: Signi�cand format before rounding

�gure, L is the LSB before rounding, G is the guard bit, and S is the sticky bit. The guard

bit is one bit less signi�cant than is strictly required by the precision of the format. The

sticky bit is essentially a 
ag, noting the existence of any bits in the result less signi�cant

than the guard bit. It is the logical OR of all of the less signi�cant bits in the result.

To implement rounding for each of the rounding modes, an action table listing the

appropriate procedure for all combinations of L, G, and S can be written. An example

action table for RN is shown in table 1. The rightmost column of the action table dictates

L G S Action A

X 0 0 Exact result. No rounding. 0

X 0 1 Inexact result, but is correctly rounded. 0

0 1 0 Tie case with even signi�cand, so correctly rounded. 0

1 1 0 Tie case with odd signi�cand, so round to nearest even. 1

X 1 1 Round to nearest. 1

Table 1: Action table for RN rounding mode

whether the result should be rounded. Rounding is accomplished by adding A to L to

obtain the correct machine number. Such a table can be implemented simply in random

logic. Similar tables can be written for the other three rounding modes.

For division, the complication is the determination of the sticky bit. This determination

requires knowledge of the magnitude of the �nal remainder. Since division by functional

iteration does not directly provide the remainder, the design challenge is how to gain the

information in the remainder while incurring as minimal a latency penalty as possible.

Before presenting these techniques, the theory of functional iteration is reviewed.
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3 Division by Functional Iteration

Multiplicative division algorithms take advantage of high-speed multipliers to converge to a

result quadratically. Rather than retiring a �xed number of quotients bits in every cycle as

in subtractive division algorithms, multiplication-based algorithms are able to double the

number of correct quotient bits in every iteration. However, the tradeo� between the two

classes is not only latency in terms of the number of iterations, but also the length of each

iteration in cycles. Additionally, if the divider shares an existing multiplier, the performance

rami�cations on regular multiplication operations must be considered. Oberman [8] reports

that in typical 
oating-point applications, the performance degradation due to a shared

multiplier is small. Accordingly, if area must be minimized, an existing multiplier may be

shared with the division unit with only minimal system performance degradation. This

section presents the algorithms used in multiplication-based division, both of which are

related to the Newton-Raphson equation.

3.1 Newton-Raphson

Division can be written as the product of the dividend and the reciprocal of the divisor, or

Q = a=b = a � (1=b);

where Q is the quotient, a is the dividend, and b is the divisor. In this case, the challenge

becomes how to e�ciently compute the reciprocal of the divisor. In the Newton-Raphson

algorithm, a priming function is chosen which has a root at the reciprocal [3]. In general,

there are many root targets that could be used, including 1
b
, 1
b
2 ,

a

b
, and 1 � 1

b
. The choice

of which root target to use is arbitrary. The selection is made based on convenience of the

iterative form, its convergence rate, its lack of divisions, and the overhead involved when

using a target root other than the true quotient.

The most widely used target root is the divisor reciprocal 1
b
, which is the root of the

priming function

f(X) = 1=X � b = 0: (1)

The well-known quadratically converging Newton-Raphson equation is given by:

x
i+1 = x

i
�

f(xi)

f 0(xi)
(2)

The Newton-Raphson equation of (2) is then applied to (1). The function and its �rst

derivative are evaluated at X0:

f(X0) = 1=X0 � b

f
0(X0) = �1=X2

0 :

These results are then used to �nd an approximation to the reciprocal:

X1 = X0 �
f(X0)

f 0(X0)
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X1 = X0 +
(1=X0 � b)

(1=X2
0)

X1 = X0 � (2� b�X0) (3)

...

Xi+1 = Xi � (2� b�Xi) (4)

The corresponding error term is given by

�i+1 = �
2
i
(b);

and thus the error in the reciprocal decreases quadratically after each iteration. As can be

seen from the general relationship expressed in (4), each iteration involves two multiplica-

tions and a subtraction. The subtraction is equivalent to the two's complement operation

and is commonly replaced by it. Thus, two dependent multiplications and one two's comple-

ment operation are performed each iteration. The �nal quotient is obtained by multiplying

the computed reciprocal with the dividend.

It can be seen that the number of operations per iteration and their order are intrinsic

to the iterations themselves. However, the number of iterations required to obtain the

reciprocal accurate to a particular number of bits is a function of the accuracy of the initial

approximation X0. By using a more accurate starting approximation, the total number of

iterations required can be reduced. To achieve 53 bits of precision for the �nal reciprocal

starting with only 1 bit, the algorithm will require 6 iterations:

1! 2! 4! 8! 16! 32! 53

By using a more accurate starting approximation, for example 8 bits, the latency can be

reduced to 3 iterations. By using at least 14 bits, the latency could be further reduced to

only 2 iterations.

3.2 Series Expansion

A di�erent method of deriving a division iteration is based on a series expansion. A name

sometimes given to this method is Goldschmidt's algorithm. Consider the familiar Taylor

series expansion of a function g(y) at point a p,

g(y) = g(p) + (y � p)g0(p) +
(y � p)2

2!
g
00(p) + � � �+

(y � p)n

n!
g
(n)(p) + � � � :

In the case of division, it is desired to �nd the expansion of the reciprocal of the divisor,

such that

q =
a

b
= a� g(y);

where g(y) can be computed by an e�cient iterative method. A straightforward approach

might be to choose g(y) equal to 1=y with p = 1, and then to evaluate the series. However,
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it is computationally easier to let g(y) = 1=(1 + y) with p = 0, which is just the Maclaurin

series. Then, the function is

g(y) =
1

1 + y
= 1� y + y

2 � y
3 + y

4 � � � � :

So that g(y) is equal to 1/b, the substitution y = b � 1 must be made, where b is bit

normalized such that 0:5 � b < 1, and thus jY j � 0:5. Then, the quotient can be written as

q = a�
1

1 + (b� 1)
= a�

1

1 + y
= a� (1� y + y

2 � y
3 + � � �)

which, in factored form, can be written as

q = a � [(1� y)(1 + y2)(1 + y4)(1 + y8) � � �]: (5)

This expansion can be implemented iteratively as follows. An approximate quotient can

be written as

qi =
Ni

Di

where Ni and Di are iterative re�nements of the numerator and denominator after step i of

the algorithm. By forcing Di to converge toward 1, Ni converges toward q. E�ectively, each

iteration of the algorithm provides a correction term (1 + y2i) to the quotient, generating

the expansion of (5).

Initially, let N0 = a and D0 = b. To reduce the number of iterations, a and b should both

be prescaled by a more accurate approximation of the reciprocal, and then the algorithm

should be run on the scaled a0 and b0. For the �rst iteration, let N1 = R0 � N0 and

D1 = R0 �D0, where R0 = 1� y = 2� b, or simply the two's complement of the divisor.

Then,

D1 = D0 �R0 = b� (1� y) = (1 + y)(1� y) = 1� y
2
:

Similarly,

N1 = N0 �R0 = a� (1� y):

For the next iteration, let R1 = 2 � D1, the two's complement of the new denominator.

From this,

R1 = 2�D1 = 2� (1� y
2) = 1 + y

2

N2 = N1 � R1 = a � [(1� y)(1 + y
2)]

D2 = D1 � R1 = (1� y
2)(1 + y

2) = (1� y
4)

Continuing, a general relationship can be developed, such that each step of the iteration

involves two multiplications

Ni+1 = Ni � Ri and Di+1 = Di �Ri

and a two's complement operation,

Ri+1 = 2�Di+1
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After i steps,

Ni = a� [(1� y)(1 + y2)(1 + y4) � � �(1 + y2i)] (6)

Di = (1� y2i) (7)

Accordingly, N converges quadratically toward q and D converges toward 1. This can be

seen in the similarity between the formation of Ni in (6) and the series expansion of q

in (5). So long as b is normalized in the range 0:5 � b < 1, then y < 1, each correction

factor (1 + y2i) doubles the precision of the quotient. This process continues as shown

iteratively until the desired accuracy of q is obtained.

Consider the iterations for division. A comparison of equation (6) using the substitution

y = b� 1 with equation (4) using X0 = 1 shows that the results are identical iteration for

iteration. Thus, the series expansion is mathematically identical to the Newton-Raphson

iteration forX0 = 1. Additionally, each algorithm can bene�t from a more accurate starting

approximation of the reciprocal of the divisor to reduce the number of required iterations.

However, the implementations are not exactly the same. First, Newton-Raphson converges

to a reciprocal, and then multiplies by the dividend to compute the quotient, whereas the

series expansion �rst prescales the numerator and the denominator by the starting approx-

imation and then converges directly to the quotient. Each iteration in both algorithms

comprises two multiplications and a two's complement operation. From (4), it can be noted

that the multiplications in Newton-Raphson are dependent operations. In the series expan-

sion implementation, though, the two multiplications of the numerator and denominator

are independent operations and may occur in parallel. As a result, the series expansion

implementation can take advantage of an existing pipelined multiplier to obtain higher

performance.

A performance enhancement that can be used for both algorithms is to perform early

computations in reduced precision. This is acceptable, because the early computations do

not generate many correct bits. As the iterations continue, quadratically larger amounts of

precision are required in the computation. However, this has an e�ect on the precision of

the �nal quotient approximation. Consider the series expansion algorithm. For n bit input

operands, so long as all computations are at least n bits wide, then

Di+1 = 0:11 � � �xxx

approaching 1 from below. Similarly N
i+1 approaches the quotient from below. Accordingly

the �nal n bit result can have at most a 1 ulp error which satis�es:

0 � �t < 2�n

and therefore the error in the �nal n bit result Q0 is satis�ed by:

0 � Q �Q
0

< 2�n (8)

where Q is the in�nitely precise result. Should either of the two iteration products

Di+1 = Di �Ri
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or

Ni+1 = Ni � Ri

be computed with multipliers only k bits wide, where k < n, it is possible that additional

error will be induced into the approximation. If the multiplications and two's complement

operation have only k bits of precision, then

Rit = 2�Dit

This induces an error �r in Di+1 that satis�es

0 � �r < 2�k

Because of the resulting error in Di+1, it will continue to converge towards 1, but it will

converge from either below or above rather than from strictly below. Thus, if n bit oper-

ations are used for the �nal iteration while k bit operations are used for the intermediate

operations, with k < n, then the �nal n bit result will satisfy

�2�n

< Q�Q
0

< 2�n (9)

4 Previously Implemented Techniques

There have been three main techniques used in previous implementations to compute

rounded results when using division by functional iteration. The IBM 360/91 implemented

division using Goldschmidt's algorithm [1]. In this implementation, 10 extra bits of preci-

sion in the quotient were computed. A hot-one was added in the LSB of the guard bits. If

all of the 10 guard bits were ones, then the quotient was rounded up. This implementation

had the advantage of the fastest achievable rounding, as it did not require any additional

operations after the completion of the iterations. However, while the results could be con-

sidered \somewhat round-to-nearest," they were de�nitely not IEEE compliant. There was

no concept of exact rounding in this implementation, as accuracy was sacri�ced in favor of

speed.

Another implemented method requires a datapath twice as wide as the �nal result, and it

is the method used to implement division in the IBM RS/6000 [6]. The quotient is computed

to a little more than twice the precision of the �nal quotient, and then the extended result

is rounded to the �nal precision. An explanation of this procedure is as follows. Consider

that the dividend X and the divisor Y are both normalized and represented by b bits, and

the �nal quotient Q = X=Y is represented by b bits. It must be �rst noted that the exact

halfway quotient can not occur when dividing two b bit normalized numbers. For an exact

halfway case, the quotient would be represented by exactly a b+1 bit number with both its

MSB and LSB equal to 1, and thus having exactly b � 1 bits between its most signi�cant

and least signi�cant 1's. The product of such a number with any non-zero �nite binary

number must also have the same property, and thus the dividend must have this property.

But, the dividend is de�ned to be a normalized b bit number, and thus can it can have a

maximum of b� 2 bits between its most signi�cant and least signi�cant 1's.

7



To obtain b signi�cant bits of the quotient, b bits are computed if the �rst quotient bit

is 1, and b + 1 bits if the �rst quotient bit is 0. At this point, because the exact halfway

case can not occur, rounding can proceed based solely on the values of the next quotient

bit and the sticky bit. The sticky bit is 0 if the remainder at this point is exactly zero. If

any bit of the remainder is 1, then the sticky bit is 1. Let R0 be the value of the remainder

after this computation, assuming the �rst bit is 1:

X = Q0 � Y + R0; with R0 < 2�b

Then, compute another b bits of quotient, denoted Q1.

R0 = Q1 � Y +R1; with R1 < 2�2b

Q1 is less than 2�b, with an accuracy of 2�2b, and Y is normalized to be accurate to 2�b.

Accordingly if Q1 = 0, then R0 = R1. But, R0 can equal R1 if and only if R0 = R1 = 0.

This is because R0 < 2�b and R1 < 2�2b and Y is a b bit quantity. Similarly, if Q1 6= 0,

then the remainder R0 can not equal 0. The computation proceeds in the same manner

if the �rst quotient bit is 0, except that b + 1 bits will have been computed for Q0. From

this analysis, it is apparent that by computing at most 2b + 1 bits, the sticky bit can be

determined, and the quotient can be correctly rounded.

The RS/6000 implementation uses its fused multiply-accumulate for all of the operations

to guarantee accuracy greater than 2n bits throughout the iterations. After the completion

of the additional iteration,

Q
0 = estimate of Q =

a

b
accurate to 2n bits

A remainder is calculated as

R = a� b�Q
0 (10)

A rounded quotient is then computed as

Q
00 = Q

0 +R� b (11)

where the �nal multiply-accumulate is carried in the desired rounding mode, providing the

exactly rounded result. The principal disadvantage of this method is that it requires one

additional full iteration of the algorithm, and it requires a datapath at least two times larger

than is required for non-rounded results.

The more common method for rounding is that which was used in the TI 8847 FPU

[2, 4]. In this scheme, the quotient is also computed with some extra precision, but less

than twice the desired �nal quotient width. To determine the sticky bit, the �nal remainder

is directly computed from:

Q =
a

b
�R

R = a� b� Q

8



It is not necessary to compute the actual magnitude of the remainder; rather, its relation-

ship to zero is the requirement. In the worst case, a full-width subtraction may be used to

form the true remainder R. Assuming su�cient precision is used throughout the iterations

such that all intermediate computations are at least n bits wide for n bit input operands, the

computed quotient will be less than or equal to the in�nitely precise quotient. Accordingly,

the sticky bit is zero if the remainder is zero and one if it is nonzero. If truncated multipli-

cations are used in the intermediate iterations, then the computed quotient will be within

1 ulp of the exactly rounded result, but it may be either above or below it. In this case, the

sign of the remainder is also required to detect the position of the quotient estimate relative

to the true quotient. Thus, to support exact rounding using this method, the latency of

the algorithm increases by at least the multiplication delay necessary to form Q � b, and

possibly by a full-width subtraction delay as well as zero-detection and sign-detection logic

on the �nal remainder. In the TI 8847, it is reported that the relationship of the quotient

estimate and the true quotient is determined using combinational logic on 6 bits of both a

and Q� b without explicit computation of R.

5 Reducing the Frequency of Remainder Computations

5.1 Basic Rounding

To simply the discussion and analysis of the rounding techniques throughout the rest of this

paper, it is assumed that the input operands are normalized signi�cands in the range [0.5,1),

rather than the IEEE range of [1,2). The analysis is equivalent under both conditions and

there is no loss of generality. Accordingly, 1 ulp for such a normalized n bit number is 2�n.

The basic rounding technique is as follows. It is assumed that at least n + 2 bit com-

putations are used for n bit input operands. Su�cient iterations of the algorithm are then

implemented such that the quotient is accurate to n+1 bits with an error strictly less than

1 ulp of this n + 1 bit quantity. As the �nal result only has n bits, the quotient estimate

has an error strictly less than +0:5 ulp, and this estimate satis�es:

0 � Q� Q
0

< 2�(n+1) (12)

The steps to correctly round this quotient estimate are:

� Add 2�(n+2) to Q0.

� Truncate the transformed Q0 to n+ 1 bits to form Q00. Q00 will then have strictly less

than �0:5 ulp error.

� Form the remainder R = a� b�Q00, which is an n bit by (n + 1) bit product.

� By observing the sign and magnitude of R and bit n + 1, the guard bit, all IEEE

rounding modes can be implemented by choosing either Q00, Q00 + 2�n, or Q00 � 2�n.

After the addition in the �rst step, Q0 satis�es:

�2�(n+2) � Q� (Q0 + 2�(n+2)) < 2�(n+2) (13)

9



Guard Bit Remainder RN RP (+/-) RM (+/-) RZ

0 =0 trunc trunc trunc trunc

0 - trunc trunc/dec dec/trunc dec

0 + trunc inc/trunc trunc/inc trunc

1 = 0 | | | |

1 - trunc inc/trunc trunc/inc trunc

1 + inc inc/trunc trunc/inc trunc

Table 2: Action table for basic method

Truncation in the second step induces an error satisfying

0 � �t < 2�(n+1) (14)

after which the result Q00 satis�es

�2�(n+2) � Q�Q
00

< 2�(n+1) (15)

Thus, the result can have an error of [-0.25,+0.5) ulp. This can be rewritten as a looser

but equivalent error bound of (-0.5,+0.5) ulp. Accordingly, the observation of the guard

bit and the sign and equality to zero of the remainder are su�cient to exactly round the

quotient. The rounding in the last step is accomplished by conditionally incrementing or

decrementing L. The action table for correctly rounding Q00 is shown in table 2. For the

directed rounding modes RP and RM, the actual action may depend upon the sign of the

quotient estimate. Those entries that contain two operations such as pos/neg are for the

sign of the �nal result itself being positive and negative respectively. As discussed earlier,

the exact halfway case can not occur in division, and thus the table row with G = 1 and

R = 0 has no entries.

A similar methodology can be used should any of the intermediate iterations of the

initial algorithm have been performed using truncated operations. Assuming that at least

n + 2 bits of quotient are computed with su�cient iterations to guarantee an accuracy of

n+1 bits as before, then the estimate Q0 can have at most a �0:5 ulp error, and it satis�es

�2�(n+1)
< Q�Q

0

< 2�(n+1) (16)

due to the convergence to the quotient from above or below. This is not su�cient precision

for rounding using the guard bit. Instead, the estimate must be accurate to n + 2 bits,

requiring at least 2 additional bits, rather than 1, to be computed in the iterations. Then,

the estimate satis�es

�2�(n+2)
< Q�Q

0

< 2�(n+2) (17)

In this case, the addition of 2�(n+2) is again performed

�2�(n+1)
< Q� (Q0 + 2�(n+2)) < 0 (18)
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and after truncation to n+ 1 bits forms Q00

�2�(n+1) < Q�Q00 < 2�(n+1) (19)

After these adjustments, rounding proceeds in the same manner as discussed previously

using table 2.

A �nal possibility is that due to truncated operations in the iterations as well as the

choice of initial approximation, the bounds on the error in the quotient estimate are inclusive

rather than exclusive. Assuming as before that at least n+2 bits of quotient are computed

with an accuracy of n+ 2 bits, then the estimate satis�es

�2�(n+2) � Q�Q
0 � 2�(n+2) (20)

The addition of 2�(n+2) to Q0 yields

�2�(n+1) � Q� (Q0 + 2�(n+2)) � 0 (21)

After truncation to n+ 1 bits, the truncation error �t causes Q
00 to satisfy

�2�(n+1) � Q�Q00 < 2�(n+1) (22)

Due to the lower inclusive point, it is not possible to round directly as before. To allow the

same rounding methodology, it is necessary to force this bound to be exclusive rather than

inclusive. To do this, it is necessary that the accuracy of the original quotient estimate Q0

have more than n+2 bits of accuracy. As an example, if Q0 has n+3 bits of accuracy using

at least n+ 3 bits of quotient, then it will satisfy

�2�(n+3) � Q�Q0 � 2�(n+3) (23)

The addition of 2�(n+2) to Q0 forms

�2�(n+3) � 2�(n+2) � Q� (Q0 + 2�(n+2)) � 2�(n+3) � 2�(n+2) (24)

and after truncation to n+ 1 bits forming Q00

�2�(n+3) � 2�(n+2) � Q�Q
00

< 2�(n+1) (25)

which clearly satis�es

�2�(n+1)
< Q�Q

00

< 2�(n+1) (26)

after which rounding may proceed using table 2. This analysis shows that in this case it is

necessary for the quotient estimate to have an accuracy of strictly greater than n + 2 bits.

11



5.2 Faster Rounding

By observing the entries in table 2, it can be seen that for any of the rounding modes, half

of the column's entries are identical. These identical entries are shown in bold type in the

table. Accordingly, for all rounding modes, only half of the entries require knowledge of the

remainder itself. As an example, for RN, if G = 0, then the correct action is truncation,

regardless of the sign or magnitude of the remainder. However, if G = 1, then the sign

of the remainder is needed to determine whether truncation or incrementing is the correct

rounding action. Similarly, for RP, if G = 1, then the correct rounding action is to increment

if the sign of the quotient is positive, and truncation if negative. Again, no computation of

the remainder is required. These results are similar to those reported in [9].

Implementation of such a variable latency divider is as follows. The iterations for com-

puting the quotient estimate Q0 are carried to at least n+ 2 bits assuming an error bound

of

0 � Q�Q
0

< 2�(n+1)

As previously discussed, other error bounds on the quotient estimate can be tolerated

by employing more accuracy in the results. Thus, the technique presented can be easily

modi�ed to handle other error bounds. The quantity 2�(n+2) is then added to Q0. This

can be done either in a dedicated additional addition step, or, for higher performance, as

part of a fused multiply-accumulate operation in the last iteration of the division algorithm.

The guard bit G is then observed. Depending upon the rounding mode and the value of G,

it may be possible to instigate rounding immediately. Otherwise, it may be necessary to

perform the back-multiplication and subtraction to form the �nal remainder, and to observe

its magnitude and sign in order to begin rounding. Thus, assuming a uniform distribution of

quotients, in half of the cases a back-multiplication and subtraction is not required, reducing

the total division latency. It should be noted that a dynamically-scheduled processor would

be required to exploit this variable latency functional unit.

5.3 Higher Performance

The previously discussed technique requires the computation of one guard bit, and in so

doing, allows for the removal of the back-multiplication and subtraction in stochastically

half of the computations. This method can be extended as follows. Consider that at least

n + 3 bits of quotient estimate are computed such that there are two guard bits with an

error in this estimate of at most 1 ulp. This estimate Q0 then satis�es:

0 � Q� Q0 < 2�(n+2) (27)

The preliminary steps to correctly round this quotient estimate are similar to the previous

technique:

� Add 2�(n+3) to Q0.

� Truncate the transformed Q0 to n + 2 bits to form Q00. Q00 will then have at most

�0:25 ulp error.
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Guard Bits Remainder RN RP (+/-) RM (+/-) RZ

00 =0 trunc trunc trunc trunc

00 - trunc trunc/dec dec/trunc dec

00 + trunc inc/trunc trunc/inc trunc

01 =0 trunc inc/trunc trunc/inc trunc

01 - trunc inc/trunc trunc/inc trunc

01 + trunc inc/trunc trunc/inc trunc

10 = 0 | | | |

10 - trunc inc/trunc trunc/inc trunc

10 + inc inc/trunc trunc/inc trunc

11 = 0 inc inc/trunc trunc/inc trunc

11 - inc inc/trunc trunc/inc trunc

11 + inc inc/trunc trunc/inc trunc

Table 3: Action table using two guard bits

The action table for correctly rounding this quotient estimate Q00 is shown in table 3. From

this table, it can be seen that for each rounding mode, only in 1 out of the 4 possible

guard bit combinations is a back-multiplication and subtraction needed, as denoted by the

bold-faced operations. In all of the other guard bit combinations, the guard bits themselves

along with the sign of the �nal result are su�cient for exact rounding.

These results can be generalized to the use of m guard bits, with m � 1:

� Add 2�(n+m+1) to Q0.

� Truncate the transformed Q0 to n +m bits to form Q00. Q00 will then have at most

�2�m ulp error.

� In parallel, observe the guard bits and begin computation of the remainder

R = a� b� Q00.

� If the guard bits are such that the sign and magnitude of the remainder are required,

wait until the remainder is computed and then round. Otherwise, begin rounding

immediately.

After the conversion in the �rst two steps, Q00 satis�es:

�2�(n+m)
< Q�Q

00

< 2�(n+m) (28)

By inspecting the m guard bits, a back-multiplication and subtraction are required for

only 2�m of all cases. Speci�cally, the RN mode needs the computation to check the

position around the mid-point between two machine numbers. The other three modes use

the guard bits to check the position around one of the two machine numbers themselves.

The examination of the m guard bits dictates the appropriate action in all of the other

cases.
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6 Faster Magnitude Comparison

For those cases where it is necessary to have information regarding the remainder, it is

not necessary to perform the complete calculation of the remainder. Rather, as discussed

previously, the essential elements are the sign of the remainder and whether the remainder is

exactly zero. Stated slightly di�erently, what is required is whether the remainder is greater

than, less than, or exactly equal to zero. The design challenge becomes how to compute

this information in less time than that required for an n bit multiplication, subtraction, and

subsequent zero-detection logic.

Recall that in the worst case the remainder can be computed from:

a � b�Q
00 = R

Since the remainder's relationship to zero is the information desired, the equation can be

rewritten as:

a� b�Q
00

?
= 0

or

a
?
= b�Q

00

Clearly, the back multiplication of b�Q00 is required for this comparison, and this multipli-

cation should be carried in RZ mode, with no e�ective rounding. However, to reduce the

latency penalty, it may be possible to remove the full-width subtraction, replacing it with

simpler logic. The remaining question is the number of bits of both a and b� Q00 that are

required in this comparison.

Recall from (28) that the maximum error in Q00 is �2�(n+m). Therefore, the maximum

error in the product b�Q00 with respect to a can be derived as follows:

bmax = 1� 2�n (29)

errormax = bmax �Q00

= (1� 2�n)� (�2�(n+m)) (30)

or

�2�(n+m) + 2�(2n+1)
< error < 2�(n+m) � 2�(2n+1) (31)

From this analysis, it can be seen that so long as the number of guard bits m is greater

than or equal to 1, then the absolute value of the error in the product b�Q00 is strictly less

than 0:5 ulp. Accordingly, the sign of the di�erence between a and b � Q00 can be exactly

predicted by only examining the LSB of a and the LSB of b� Q00.

To demonstrate how this prediction can be implemented, consider the entries in table 4.

In this table, let X = a and Y = b� Q00, each with n bits. From this table, it is clear that

the sign of the di�erence can be written as:

Sign = Xlsb XNOR Ylsb (32)
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Xlsb Ylsb Error in Y Sign of X � Y

0 0 < :01111 � � � -

0 1 > :01111 � � � +

1 0 > :01111 � � � +

1 1 < :01111 � � � -

Table 4: Sign prediction

Thus, the sign of the di�erence can be computed by using one gate, rather than requiring

a complete full-width carry-propagate addition. This hardware is su�cient to handle the

RN rounding mode which only requires the sign of the remainder and no information about

the magnitude itself. Again, this is because RN only requires remainder information when

trying to determine on which side of the mid-point between two machine numbers the

true quotient lies. As the exact halfway case can not occur, exact equality to zero of the

remainder need not be checked.

For the other three rounding modes, whether or not the remainder is exactly zero must

also be determined. This is due to the fact that RP, RM, and RZ use remainder information

to detect if the true quotient is less than, greater than, or exactly equal to a machine number.

Rather than using additional hardware to detect remainder equality to zero, it is proposed to

reuse existing hardware in the FP multiplier. For proper implementation of IEEE rounding

for FP multiplication, most FP multipliers utilize dedicated sticky-bit logic. The sticky-bit

of the multiplier is a 
ag signifying whether all bits below the LSB of the product are zero.

In the context of the product of the back-multiplication of b � Q00, this sticky-bit signals

whether the product is exactly equal to a, and thus whether the remainder is exactly zero.

For those cases in RP, RM, and RZ requiring remainder information, the product b�Q00

is computed using RZ, and the LSB of a and b�Q00 are observed, along with the sticky-bit

from the multiplier. After using equation (32) to determine the sign, the following switching

expressions can be used:

(b�Q00 == a) = Sign AND Sticky (33)

(b� Q
00

> a) = Sign AND Sticky (34)

(b� Q
00

< a) = Sign (35)

7 Conclusion

This paper has examined the methodology of rounding when implementing division by

functional iteration. The basic techniques of rounding assuming a �xed division latency

has been clari�ed. Extensions to techniques for reducing the rounding penalty have been

proposed. It has been shown that by using m guard bits in the adjusted quotient estimate,

a back-multiplication and subtraction are required for only 2�m of all cases. Further, a

technique has been presented which reduces the subtraction in the remainder formation to
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very simple combinational logic using the LSB's of the dividend and the back product of

the quotient estimate and the divisor, along with the sticky bit from the multiplier. The

combination of these techniques allows for increased division performance in dynamically-

scheduled processors.
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