
Copyright © 1996 by the Center for Reliable Computing, Stanford University.
All rights reserved, including the right to reproduce this report, or portions thereof, in any form.

Center for
Reliable
Computing

TECHNICAL
REPORT

Synthesis Techniques for Pseudo-Random Built-In Self-Test

Nur A. Touba

96-4 Center for Reliable Computing
Gates Building 2A, Room 236
Computer Systems Laboratory

(CSL TR # 96-704) Departments of Electrical Engineering and Computer Science
Stanford University

August 1996 Stanford, California 94305-4055

Abstract:

This technical report contains the text of Nur Touba's thesis "Synthesis Techniques for
Pseudo-Random Built-In Self-Test." The thesis appendices have appeared as CRC Technical Reports,
and are not included here.

Funding:

This work was supported in part by the Ballistic Missile Defense Organization, Innovative Science
and Technology (BMDO/IST) Directorate and administered through the Department of the Navy, Office
of Naval Research under Grant No. N00014-92-J-1782, by the National Science Foundation under
Grant No. MIP-9107760, and by the Advanced Research Projects Agency under prime contract No.
DABT63-94-C-0045.

i

SYNTHESIS TECHNIQUES

FOR

PSEUDO-RANDOM BUILT -IN SELF-TEST

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Nur A. Touba

June 1996

ii

ABSTRACT

Built-in self-test (BIST) techniques enable an integrated circuit (IC) to test itself. BIST reduces

test and maintenancecosts for an IC by eliminating the need for expensive test equipment and by

allowing fast location of failed ICs in a system. BIST also allows an IC to be tested at its normal

operating speed which is very important for detecting timing faults. Despite all ofthese

advantages, BIST has seen limited use in industry because of area and performance overhead and

increased design time. This dissertation presents automated techniques for implementing BIST in a

way that minimizes area and performance overhead.

A low-overhead approach for BIST is to use a linear feedback shift register (LFSR) toapply

pseudo-random test patterns to the circuit-under-test. Unfortunately, many circuitscontain

random-pattern-resistant faults which limit the fault coverage that can be obtained for pseudo-

random BIST. Several different approaches for solving this problem are presented.

A logic synthesis procedure that performs testability-driven factoring to generate a random

pattern testable design is presented. By considering random pattern testability during the factoring

process, the overhead can be minimized.

For hand-designed circuits or circuits that are not synthesizable, an innovative test point

insertion procedure is described for inserting test points to make the circuit random pattern testable.

A path tracing procedure is used for test point placement. A few of the existing primary inputs are

ANDed together to form signals that drive the control points. These innovations result in fewer

test points than previous methods.

If it is not possible or not desirable to modify the circuit-under-test, then a procedure is

described for synthesizing mapping logic that can placed at the output of the LFSR to transform the

pseudo-random patterns so that they provide the required fault coverage. Much less overhead is

required compared with weighted pattern testing methods.

Lastly, a technique is described for placing bit-fixing logic at the serial output of an LFSR to

embed deterministic test patterns for the random pattern resistant faults in the pseudo-random bit

sequence. This method does not require any performance overhead beyond what is needed for

scan.

iii

ACKNOWLEDGMENTS

I express my deep gratefulness to my adviser, Prof. Edward J. McCluskey, for his guidance

and support during my time at Stanford. He modeled the high quality teaching and research that I

aspire to emulate in my career. He taught me much about finding good research problems and

clearly presenting results. Many things that I learned from him will be of great help to me during

my career.

I would like to thank Prof. Giovanni De Micheli, my associate advisor, Prof. Robert Gray, my

committee chairman, and Prof. Oyekunle Olukotun for being the final member of mycommittee.

Special thanks to Prof. Joseph Goodman for being my third reader.

I have greatly appreciated my colleagues at the Center for Reliable Computing: Khader "KD"

Abdel-Hafez, Dave Brokaw, Yi-Chin Chu, Dr. Hong Hao, Erin Kan, Sunil Koslage,Wern-Yan

Koe, Vincent Lo, Samy Makar, Shridhar Mukund, Rong Pan, Dr. Alice Tokarnia, and Sanjay

Wattal. I want to especially thank Dr. LaNae Avra for helping me get my start at CRC, Dr. Piero

Franco for answering my many questions, Dr. Siyad Ma for sharing many trials and joys, Dr.

Nirmal Saxena for his encouragement and advice, and Rob Norwood, Jonathan Chang, and Philip

Shrivani for being so fun to work with (and to beat in basketball).

I want to especially thank Siegrid Munda for her administrative support. I very greatly

appreciated her kindness and helpfulness. Special thanks also to Sherry Turner for her assistance.

I would like to thank the CRC visitors who have helped me: Francoise Martinolle for reading

my early papers, Prof. Irith Pomeranz for her advice and suggestions, and Prof. Hans-Joachim

Wunderlich and Prof. Sybille Hellebrand for our many technical discussions.

I am grateful to Prof. Larry Kinney and Prof. William Plice at the University of Minnesota for

getting me interested in IC testing in the first place.

I want to thank my many friends in the IVCF Grad group for their prayers and support. I

would like to mention just a few by name: Jennifer Amyx, Beth Bryson, Dan Clendenin, Loren

Eyres, Scott Hunicke-Smith, Mike Kaliski, Alfred Kwok, Vince Mooney, Elaine Naugle, Jeff

Rembold, Robin Seydel, Jim Strzelec, Mary K. Wilson, and Conrad Yoder. I want to especially

thank Kim Norman for all of her encouragement and prayers. Her coffee maker helped me make it

through many all-nighters needed to meet conference submission deadlines.

Finally, I would like to thank my parents for their tremendous love, endless support, and many

prayers. They have always believed in me and always been there for me. I dedicate this

dissertation to them.

iv

This work was supported in part by the Ballistic Missile Defense Organization, Innovative

Science and Technology (BMDO/IST) Directorateand administered through the Department of the

Navy, Office of Naval Research under Grant No. N00014-92-J-1782, by the National Science

Foundation under Grant No. MIP-9107760, and by the Advanced Research Projects Agency under

prime contract No. DABT63-94-C-0045.

v

TABLE OF CONTENTS

Abstract. ii

Acknowledgments. iii

Table of Contents. v

List of Tables . vi

List of Illustrations . vii

Chapter 1: Introduction . 1

1.1 Background...... 1

1.2 Pseudo-Random BIST..... 1

1.3 Outline...... 3

Chapter 2: Random Pattern Testable Design. 4

2.1 Previous Work in Random Pattern Testable Design.... 4

2.2 Test Point Insertion Based on Path Tracing.. 6

2.2.1 Using Path Tracing for Test Point Placement................................... 6

2.2.2 Control Point Activation... 7

2.3 Test Point Insertion for Non-Feedback Bridging Faults... 8

2.4 Logic Synthesis of Random Pattern Testable Circuits... 9

Chapter 3: Test Pattern Generator Design. 11

3.1 Previous Work in Test Pattern Generator Design.... 12

3.1.1 Weighted Pattern Testing.. 12

3.1.2 Mixed-Mode Testing... 13

3.2 Synthesis of Mapping Logic.... 14

3.3 Synthesis of Bit-Fixing Sequence Generator.... 15

Chapter 4: Concluding Remarks. 18

References. 20

vi

LIST OF TABLES
Table Title

2.1 Comparison Between Heuristic and Exact Set Covering Procedures...� 4

vii

LIST OF ILLUSTRATIONS
Figure Title

1.1 Block Diagram for BIST..... 2

2.1 Example of Observation Point.... 5

2.2 Example of Control-1 Point.. 5

2.3 Example of Control-0 Point.. 5

2.4 Control Points Driven by Extra Scan Elements.. 7

2.5 Control Points Driven by Pattern Decoding Logic.... 7

3.1 Block Diagram for Serial BIST Scheme ("Test-Per-Scan")............................ 11

3.2 Block Diagram for Parallel BIST Scheme ("Test-Per-Clock")... 11

3.3 Block Diagram for Reseeding Using a Multi-Polynomial LFSR (MP-LFSR)....... 14

3.4 Transforming Pseudo-Random Patterns..... 14

3.5 Logic for Altering the Pseudo-Random Bit Sequence.... 16

3.6 Control Logic for Scheme.. 17

1

Chapter 1
Introduction

1.1 Background
In the production of integrated circuits, testing is done to identify defective chips. This is very

important for shipping high quality products. Testing is also done to diagnose the reason for a

chip failure in order to improve the manufacturing process. In system maintenance, testing is done

to identify parts that need to be replaced in order to repair a system.

Testing a digital circuit involves applying an appropriate set of input patterns to the circuit and

checking for the correct outputs. The conventional approach is to use an external tester to perform

the test. However, built-in self-test (BIST) techniques have been developed in which some of the

tester functions are incorporated on the chip enabling the chip to test itself. BIST provides a

number of well-known advantages. It eliminates the need for expensive testers. It provides fast

location of failed units in a system because the chips can test themselves concurrently. And, it

allowsat-speed testing in which the chip is tested at its normal operating clock rate which is very

important for detecting timing faults. Despite all of these advantages, BIST has seen limited use in

industry because of its area and performance overhead, increased design time, and lack of BIST

design tools. These are problems that this dissertation addresses.

The research described in this dissertation is timely because the interest in BIST is growing

rapidly. The increasing pin count, operating speed, and complexity of IC’s is outstripping the

capabilities of external testers. BIST provides solutions to these problems.

1.2 Pseudo-Random BIST
Figure 1.1 is a block diagram showing the architecture for BIST. The circuit that is being

tested is called thecircuit-under-test (CUT). There is atest pattern generator which applies test

patterns to the CUT and anoutput response analyzer which checks the outputs. The test pattern

generator must generate a set of test patterns that provides a high fault coverage in order to

thoroughly test the CUT.

Pseudo-random testing is an attractive approach for BIST. A linear feedback shift register

(LFSR) can be used to apply pseudo-random patterns to the CUT. An LFSR has a simple

structure requiring small area overhead. Moreover, an LFSR can also be used as an output

response analyzer thereby serving a dual purpose. BIST techniques such as circular BIST

[Stroud¬88], [Krasniewski¬89], and BILBO registers [Koenemann 79] make use of this

advantage to reduce overhead.

2

Output Response Analyzer

Test Pattern Generator

Circuit Under Test
(CUT)

 Figure 1.1. Block Diagram for BIST

There are limits on thetest length, which is the number of pseudo-random patterns that can be

applied during BIST. One limit is simply the amount of time that is required to apply the patterns.

Another limit is the faultsimulation time required to determine the fault coverage. A third limit is

heat dissipation for an unpackaged die. Thus, in order for pseudo-random pattern testing to be

effective, a high fault coverage must be obtained for an “acceptable” test length. What is

considered acceptable depends on the particular test environment.

The probability of detecting a fault with a single random pattern is defined as thedetection

probability for the fault and is given by the number of patterns that detect the fault divided by the

total number of inputs patterns,2n, wheren is the number of inputs in the circuit. Unfortunately,

many circuits contain faults with very low detection probabilities. Such faults are said to be

random-pattern-resistant (r.p.r.) [Eichelberger 83] because they are hard to detect withrandom

patterns and therefore limit the fault coverage for pseudo-random testing. A circuit is said to be

random pattern testable if it does not contain any r.p.r. faults.

If the fault coverage for pseudo-random BIST is insufficient, then there are two solutions. One

is to modify the circuit-under-test to make it random pattern testable, and the other is to modify the

test pattern generator so that it generates patterns that detect the r.p.r. faults. Innovative techniques

for both of these approaches are described in this dissertation. These techniques enable automated

design of pseudo-random BIST implementations that satisfy fault coverage requirements while

minimizing area and performance overhead. These techniques have been incorporated in the TOPS

(Totally Optimized Synthesis-for-test) tool being developed at the Center for Reliable Computing.

1.3 Outline
This dissertation summarizes my work in pseudo-random BIST. Detailed descriptions of

results are found in the appendices which are reprints of published or submitted papers.

Chapter 2 describes techniques for modifying a circuit to make it random pattern testable. A

survey of previous work is presented followed by a summary of the new techniques.

3

An innovative test point insertion technique is described which uses a path tracing procedure to

place both control and observation points. Rather than using extra scan elements to drive the

control points, a few of the existing primary inputs are ANDed together to form signals that drive

the control points. This test point insertion procedure can be used to target both stuck-at and

bridging faults.

Given a logic function, a logic synthesis procedure is described for generating a randompattern

testable implementation. By considering testability during the factor section process, the

procedure performs testability-driven factoring to generate a random pattern testable

implementation.

Chapter 3 describes techniques for modifying the test pattern generator so that it generates

patterns that detect the r.p.r. faults. A survey of the previous work for both weighted pattern

testing and mixed-mode testing is presented followed by a summary of the new techniques.

A procedure is described for synthesizing mapping logic that can be placed at the output of the

LFSR to transform the pseudo-random patterns that are generated so that they provide the required

fault coverage. By considering a broader class of mapping functions, not just those that implement

weight sets, the overhead is significantly minimized compared with weighted pattern testing

methods.

A new approach for mixed-mode scan BIST is described. Logic at the serial output of the

LFSR to “fix” certain bits in the sequence in order to embed deterministic test patterns that detect

the r.p.r. faults.

Chapter 4 concludes the dissertation.

4

Chapter 2
Random Pattern Testable Design

If pseudo-random BIST does not provide sufficiently high fault coverage for a circuit, then one

solution is to modify the circuit to make it random pattern testable. This chapter begins with a

survey of the previous work that has been done in this area and then summarizes the new

techniques presented in Appendices I, IV, and V.

2.1 Previous Work in Random Pattern Testable Design
Previous work in random pattern testable design focused on inserting test points into a circuit

to make it random pattern testable. Test point insertion involves adding control and observation

points to the circuit in a way that the system function remains the same, but the testability is

improved [Hayes 74]. Anobservation point is an additional primary output that is inserted in the

circuit to increase the observability of faults in the circuit. In the example in Fig.¬2.1, an

observation point is inserted at the output of gate¬G1 such that faults are observable regardless of

the logic value at nodey. A control point is inserted in the circuit such that when it is activated, it

fixes the logic value at a particular node to increase the controllability of some faults in the circuit.

A control point can also affect the observability of some faults in the circuit because it can change

the propagation paths in the circuit. In the example in Fig. 2.2, a control point is inserted to fix the

logic value at the output of gate¬G1 to a ‘1’ when the control point is activated (this is called a

control-1 point). This is accomplished by placing an OR gate at the output of gate¬G1. In the

example in Fig. 2.3, a control point is inserted to fix the logic value at the output of gate¬G1 to a

‘0’ when the control point is activated (this is called acontrol-0 point). This is accomplished by

placing an AND gate at the output of gate¬G1. During system operation, the control points are not

activated and thus don't affect the system function. However, control points do add an extra level

of logic to some paths in the circuit. If a control point is placed on a critical timing path, it can

increase the cycle time of the circuit.

Since test points add both area and performance overhead, it is important to try to minimize the

number of test points that are inserted to achieve the desired fault coverage. Optimal test point

placement for circuits with reconvergent fan-out has been shown to be NP-complete

[Krishnamurthy¬87]. An ad-hoc approach for placing test points was presented in

[Eichelberger¬83]. Briers and Totton [Briers¬86] were the first to propose a systematic method

for test point placement to increase pseudo-random pattern testability. They use simulation

statistics to identify correlations between signals, and then insert test points to break the

correlation. The number of test points inserted by this method is large. Iyengar and Brand

[Iyengar¬89] proposed an improved method that uses fault simulation to identify gates that block

5

Observation
Point

y

G1
G2

Figure 2.1. Example of Observation Point

Control
Point

Cntl

G2

G3

G1

Figure 2.2. Example of Control-1 Point

Control
Point

Cntl

G2

G3

G1

Figure 2.3. Example of Control-0 Point

fault propagation, and then inserts test points to enable propagation. Savariaet al., in [Savaria¬91]

and [Youssef¬93], use the COP testability measures [Brglez¬84] to guide the placement of test

points. They identify sectors of hard-to-detect faults and insert test points at the origins of the

sectors. Seisset al., in [Seiss¬91], form a cost function based on the COP testability measures

and then compute, in linear time, the gradient of the function with respect to each possible test

point. The gradients are used to approximate the global testability impact for inserting a particular

test point. Based on these approximations, a test point is inserted and the COP testability measures

are recomputed. This process iterates until the testability is satisfactory. Cheng and Lin, in

[Cheng¬95], enhance the procedure in [Seiss¬91] to consider the performance impact of inserting a

particular test point. They showed that by avoiding control point insertion on critical timing paths,

high fault coverage can be achieved with zero performance degradation.

6

2.2 Test Point Insertion Based on Path Tracing
A new test point insertion method is presented in [Touba 96a]. It provides two innovations

compared with previous methods. Instead of using probabilistic techniques for testpoint

placement, fault simulation and a path tracing procedure are used to place both control and

observation points. Instead of adding extra scan elements to drive the control points, a few of the

existing primary inputs to the circuit are ANDed together to form signals that drive the control

points.

2.2.1 Using Path Tracing for Test Point Placement

Previous methods insert test points one at a time. The test point that is inserted is selected by a

greedy algorithm that estimates which test point would maximize the probability of detecting the

undetected faults. The procedure described in [Touba 96a] is not based on probability. Rather,

fault-free simulation is performed for each pseudo-random pattern that is applied during BIST.

For each pattern, a set of test points that would enable each undetected fault to be detected is

computed by tracing sensitized paths in the circuit. After all the information about which test

points enable detection of whichundetected faults is gathered, a set covering procedure is used to

select a set of test points thatprovides the required fault coverage. Experimental results shown in

Appendix¬IV for benchmark circuits indicate that the path tracing method inserts fewer test points

to provide the same or betterfault coverage than previous methods. Fewer test points means less

area and performance overhead for BIST.

The computation time for this procedure depends on the size of the circuit, the test length, and

the number of r.p.r. faults. For each pattern, fault simulation is performed followed by path

tracing from each r.p.r. fault site. The fast approximate procedure for tracing sensitized paths that

is given in [Abramovici¬84] can be used.

In [Touba 96a], a heuristic set covering procedure was used to select the test points. Some

experiments were performed to validate the heuristics. Results are shown in Table 2.1 comparing

the exact solution to the set coveringproblem versus the heuristic solution. As can be seen, there

was only one case,s1238, where using the exact procedure made a difference for these circuits.

Table 2.1. Comparison Between Heuristic and Exact Set Covering Procedures

Circuit Heuristic Set Covering Exact Set Covering
Name Con Obs Con Obs

 s420 2 0 2 0
 s641 1 1 1 1
 s713 1 1 1 1
 s838 2 0 2 0
 s1238 6 5 5 5

7

Control
Point 1

Control
Point 2

Circuit Under Test

Figure 2.4. Control Points Driven by Extra Scan Elements

Control
Point 1

Control
Point 2

Circuit Under Test

Test
Mode

Figure 2.5. Control Points Driven by Pattern Decoding Logic

2.2.2 Control Point Activation

Once the test points have been inserted, the remaining task is to design the logic that drives the

control points. Previous test point insertion methods add extra scan elements to drive the control

points. This is illustrated in Fig. 2.4 where two extra scan elements are added to drive the two

control points. The pseudo-random generator is used to shift values into the extra scan elements.

Thus, a control point is randomly activated for roughly half of the patterns. This approach limits

the potential of each control point. There may be some patterns for which a control point is not

activated, but if the control point had been activated, some faults would have been detected.

Conversely, there may be some patterns for which the control point is activated, but if it hadn’t

been activated, some faults would have been detected.

A new approach for driving the control points is presented in [Touba 96a]. As illustrated in

Fig. 2.5, pattern decoding logic is used to select those patterns for which the control point is

activated. A procedure for synthesizing this logic in a way that maximizes the effectiveness ofeach

8

control point for detecting undetected faults is described in [Touba 96a]. In the experimental

results in [Touba 96a], on average, fewer than 2 gates were required per control point using this

method. This approach eliminates the need for extra scan elements to drive the control points while

maximizing the effectiveness of each control point.

As indicated in Fig. 2.5, a test mode line is used to disable the control point during system

operation. The test logic is activated during BIST by setting the test mode line to a '1'. When

synthesizing the pattern decode logic, all of the patterns that are not applied during BIST are placed

in the don't care set. This ensures that the resulting logic does not contain any redundant faults

with respect to the patterns applied during BIST, thus the logic is fully tested during BIST.

2.3 Test Point Insertion for Non-Feedback Bridging Faults
A common physical defect in MOS technologies is a short between two signal lines which

results in a bridging fault [Shen 85], [Ferguson 88]. Although bridging faults are generally more

random pattern testable than stuck-at faults [Millman 89], examples are shown in [Touba 96c] to

illustrate that some bridging faults are much less random pattern testable than stuck-at faults. Data

is presented which indicates that even after inserting test points that result in 100% single stuck-at

faults coverage, many bridging faults are still not detected. A test point insertion procedure that

targets both single stuck-at faults and bridging faults is presented in [Touba 96c].

Bridging faults can be divided into two classes. Feedback bridging faults are those in which

there is a path in the fault-free circuit from one of the shorted lines to the other thereby creating

feedback in the fault circuit. Non-feedback bridging faults are those for which no feedback is

introduced when the two lines are shorted together. Feedback bridging faults may add state

causing the circuit to no longer be combinational, and thus are more complicated to simulate. Since

feedbackbridging faults have been found to be easier to detect than non-feedback bridging faults

[Millman¬88], only non-feedback bridging faults were considered in [Touba 96c]. However, the

techniques described in [Touba 96c] can be applied to feedback bridging faults in a straightforward

manner. The only difference is the added complexity for simulation.

In [Touba 96c], a fast fault simulation procedure for identifying random-pattern-resistant

non-feedback bridging faults is described. Using this procedure, the path tracing method

described in [Touba 96c] can be enhanced to target both single stuck-at faults and non-feedback

bridging faults. The experimental results shown in [Touba 96c] indicate that by considering both

types of faults when selecting the location of the test points, higher fault coverage can be obtained

with little or no increase in overhead. Thus, the test point insertion procedure described in [Touba

96c] is a low-cost way to improve the quality of built-in self-test.

2.4 Logic Synthesis of Random Pattern Testable Circuits

9

Instead of designing a circuit and then inserting test points to make it random pattern testable,

why not consider random pattern testability during logic synthesis? That is the idea presented in

[Touba 94]. Given a two-level representation of a circuit and a constraint on the minimum fault

detection probability (threshold below which faults are considered r.p.r.), atestability-driven

factoring procedure that satisfies the constraints while minimizing the literal count is described in

[Touba 94]. The strategy is to identify r.p.r. faults in the two-level starting point, and then find

factors that “eliminate” these faults. Once the r.p.r. faults have been eliminated, normal logic

optimization using random pattern testability preserving logic transformations can then proceed

since such transformations will not introduce new r.p.r. faults. It is proven in [Touba 94] that

algebraic factoring is random pattern testability preserving and that random patterntestability

preserving transformations are a superset of test-set preserving transformations.

As the minimum probability threshold is increased, a point is reached where some r.p.r. faults

cannot be eliminated by algebraic factoring alone. When this is the case, test points are inserted

during the synthesis process in order to generate a random pattern testable implementation. Factors

are chosen which maximize the effectiveness of each test point thereby minimizing the total number

of test points that are required.

Experimental results are shown in [Touba 94] comparing the implementations generated by the

proposed procedure with the implementations generated using the algebraic and rugged scripts in

SIS 1.1 (an updated version of MIS [Brayton¬87]). The proposed procedure significantly reduces

the pseudo-random pattern test length required for 100% fault coverage with only amodest

increase in area. For many circuits, the test length was reduced by an order of magnitude or more

with less than 10% increase in area. The reason for the area overhead is the fact that in order to

satisfy the random pattern testability constraints, the proposed procedure must select some factors

based on improving the testability instead of reducing the literal count. Note that the proposed

procedure need only be used for logic blocks containing r.p.r. faults, so the overhead penalty is

only incurred for a small portion of an overall design.

A limitation of the method proposed in [Touba 94] is that it requires a two-level representation

as a starting point thereby limiting its application to control circuits and other circuits that can be

flattened (i.e., two-level representation is not exponential). However, control circuits are an

important application because they can contain large fan-in cubes that cause r.p.r. faults.

Some other work in logic synthesis of random pattern testable circuits has been published after

[Touba 94]. The work in [Chiang¬94] was done independently. The synthesis procedure in

[Chiang¬94] is based on single and double cube divisors [Rajski¬92] and does not consider test

points. It uses an approximate method for computing the effect of each factor on fault detection

probabilities whereas the method used in [Touba 94] is exact. New exclusive-or based

transformations were introduced in [Chatterjee¬95] which can be used to improve random pattern

10

testability. These transformations can be used in conjunction with those in [Touba 94] to provide

even better results.

11

Chapter 3
Test Pattern Generator Design

If pseudo-random BIST provides insufficient fault coverage, instead of modifying the

circuit-under-test, another option is to modify the test pattern generator. This involves augmenting

the pseudo-random pattern generator with additional logic to generate patterns that detect the r.p.r.

faults. In some cases this is the only option because it is either not possible or not desirable to

modify the circuit-under-test (e.g., if it is a macrocell, core, or proprietary design).

There are two types of test pattern generators: serial (“test-per-scan”) and parallel

(“test-per-clock”). Figure 3.1 shows a diagram for a serial BIST scheme. A serial sequence of

bits is shifted into a scan chain. When a full pattern has been shifted into the scan chain, it is

applied to the circuit-under-test and the response is loaded back into the scan chain and shifted out

to a serial signature register for compaction as the next pattern is shifted in. Figure 3.2 shows a

diagram for a parallel BIST scheme. A test pattern is applied to the circuit-under-test each clock

cycle and the response is loaded into a parallel signature register (MISR) for compaction.

Scan Chain

Circuit Under Test
(CUT)

Signature Reg.LFSR

Figure 3.1. Block Diagram for Serial BIST Scheme ("Test-Per-Scan")

LFSR

MISR

Circuit Under Test
(CUT)

Figure 3.2. Block Diagram for Parallel BIST Scheme ("Test-Per-Clock")

12

This chapter begins with a survey of the previous work that has been done in designing test

pattern generators and then summarizes the new techniques presented in Appendices II, III, and

VI.

3.1 Previous Work in Test Pattern Generator Design
Two approaches for improving the fault coverage for a pseudo-random pattern generator are

weighted pattern testing and mixed-mode testing.Weighted pattern testing involves adding logic to

bias the pseudo-random patterns towards those that detect the r.p.r. faults.Mixed-mode testing

involves adding logic to generate deterministic patterns that detect the faults that the pseudo-random

patterns miss.

 3.1.1 Weighted Pattern Testing

Weightedpattern testing is performed by weighting thesignal probability (probability that the

signal is a '1') for each input to the circuit-under-test. Two issues in weighted pattern testing are

what set of weights to use and how to generate the weighted signals. Many techniques have been

proposed for computing weight sets [Bardell 87]. It has been shown that for most circuits,

multiple weight sets are required toachieve sufficient fault coverage [Wunderlich 88]. For BIST,

the weight sets must be stored on-chip and control logic is needed to switch between them which

can result in a lot of overhead.

In order to reduce the BIST overhead for weighted pattern testing, researchers have looked for

efficient methods for on-chip generation of weighted patterns. Wunderlich proposed a Generator

of Unequiprobable Random Tests (GURT) in [Wunderlich 87] that requires very little hardware

overhead but is limited to only one weight set. Hartmann and Kemnitz proposed a method in

[Hartmann¬93] that uses a modified GURT structure and described test pattern generators for the

C2670 andC7552 benchmark circuits [Brglez¬85] that require very little overhead. However,

both of these methods are not general methods because they use only a single weight set and

therefore will not provide sufficient fault coverage for many circuits. Methods that use multiple

weight sets with 3 different weight values (0, .5, and 1) were described in [Pomeranz¬93] and

[AlShaibi¬94]. These methods essentially “fix” the value of certain inputs while random patterns

are being applied. The method in [Pomeranz 93] uses 3-gate modules to fix the values while the

method in [AlShaibi 94] uses specially designed flip-flops. Techniques for generating weighted

random patterns using inhomogeneous cellular automata were described in [Neebel¬93,¬94].

Less weight logic is required for serial test pattern generation (“test-per-scan”) than for parallel

test pattern generation (“test-per-clock”). The weight logic can be placed at either the input of the

scan chain as described in [Brglez 89] or in the individual scan elements themselves as described in

[Muradali 90].

13

 3.1.2 Mixed-Mode Testing

In the simplest case, mixed-mode testing can be performed by using an LFSR to generate

pseudo-random patterns to detect the random pattern testable faults and then loading deterministic

test patterns for the random pattern resistant faults from a ROM. The problem with this approach

is that the size of the required ROM is often prohibitive. Several compression techniques have

been proposed for reducing the size of the ROM [Agarwal¬81], [Aboulhamid 83],

[Dandapani¬84], [Edirisooriya¬92], [Dufaza¬93].

Instead of storing the test patterns themselves in a ROM, techniques have been developed for

storing LFSR seeds that can be used to generate the test patterns [Koenemann¬91]. The LFSRthat

is used for generating the pseudo-random patterns is also used for generating the deterministic

patterns by reseeding it with computed seeds. Since the seeds are smaller than the test patterns

themselves, they require less ROM storage. One problem is that for a normal LFSR with a fixed

feedback polynomial, it may not always be possible to find a seed that will generate a required

deterministic test pattern. A solution to thatproblem was proposed in [Hellebrand¬92] in which a

multiple-polynomial LFSR (MP-LFSR) is used. An MP-LFSR is an LFSR with a reconfigurable

feedback network. In [Hellebrand¬92], a polynomial identifier is stored with each seed toselect

the feedback polynomial that will be used for that seed as illustrated inFigure 3.3. Techniques for

“merging” and “concatenating” test patterns to reduce the number of LFSR seeds that need to be

stored were proposed in [Venkataraman 93] and [Hellebrand 95a]. Even further reduction can be

achieved by using variable-length seeds [Zacharia 95] and a special ATPG algorithm

[Hellebrand¬95b].

Another approach for mixed-mode testing is to design a special counter that generates a

deterministic set of test patterns. Daehn and Mucha, in [Daehn 81], proposed using a non-linear

LFSR. Akers and Jansz, in [Akers 89], proposed using an LFSR followed by a linear network of

XOR gates. Dufaza and Cambon, in [Dufaza 91], proposed using an LFSR with a reconfigurable

feedback network. None of these techniques scales well for larger circuits.

14

Scan Chain

MP-LFSR Circuit Under Test
(CUT)

Signature Reg.LFSR

Poly. Id Seed

&
+

&
+

D
e

co
d

in
g

L
o

g
ic

ROM

Figure

3.3. Block Diagram for Reseeding using a Multi-Polynomial LFSR (MP-LFSR)

3.2 Synthesis of Mapping Logic
In weighted pattern testing, weight logic is placed at the output of the LFSR. One way to view

this weight logic is that it transforms each original pattern generated by the LFSR into a new

pattern that isapplied to the circuit-under-test. Thus, the original set of patterns generated by the

LFSR is mapped into a new set of patterns that provides the required fault coverage. This is

illustrated in Fig. 3.4.

Pattern Generator

Mapping Logic

Circuit Under Test
(CUT)

Original Test Patterns

Transformed Test Patterns

Original Patterns Transformed Patterns
100110 → 001010
010011 → 010011
011000 → 011000
101101 → 101101
010111 → 111010
001101 → 010101

Cov = 89% Cov = 100%

Figure 3.4. Transforming Pseudo-Random Patterns

15

In [Touba 95a], the idea of generalizing the “weight” logic to perform any mapping function,

not just those that weight signal probabilities, is proposed. A procedure is described for

synthesizing combinational mapping logic that can be placed between the LFSR and the

circuit-under-test to map the original set of test patterns generated by the LFSR into a new set of

patterns that provides the required fault coverage. The strategy for designing the mapping logic is

to decode sets of patterns that don’t detect any new faults and map them into patterns that detect the

hard-to-detect faults. Results are shown for benchmark circuits which indicate that an LFSR plus a

small amount of mapping logic reduces the test length required for a particular fault coverage by

orders of magnitude compared with using an LFSR alone. These results were compared with the

best weighted pattern testing schemes, and in all cases it was shown that the mapping logic

required much less overhead to achieve the same fault coverage for the same test length.

In [Touba 95b], an improved synthesis procedure for designing the mapping logic is

described. Given an LFSR and a circuit-under-test, there are many possible mapping functions

that will provide the required faultcoverage. The problem of finding a mapping function that can

be implemented with the smallest number of gates is formulated as one of finding a minimum

rectangle in a binate matrix. A heuristic procedure involving EXPAND, IRREDUNDANT, and

REDUCE operations (analagous to what is used in ESPRESSO [Brayton 84]), is used to minimize

the rectangle cover that corresponds to a mapping function. By iteratively performing global

operations, the procedure is able to find better mapping functions thereby synthesizing mapping

logic that requires less hardware overhead than other methods. Results indicate that a significant

hardware reduction is achieved.

As described in Appendices II and III, the mapping logic is enabled during BIST by using a

test mode line. During system operation, the test mode line is set to a '0' to disable the mapping

logic. When synthesizing the mapping logic, all of the patterns that are not applied during BIST

are placed in the don't care set. This ensures that the resulting mapping logic does not contain any

redundant faults with respect to the patterns applied during BIST, thus the mapping logic is fully

tested during BIST.

3.3 Synthesis of Bit-Fixing Sequence Generator
A new mixed-mode BIST scheme is described in [Touba 96b] for circuits with scan.

Deterministic test patterns that detect the random-pattern-resistant faults are embedded in a

pseudo-random sequence of bits generated by an LFSR. This is accomplished by altering the

pseudo-random sequence of bits by adding logic at the LFSR’s serial output to “fix” certain bits.

As illustrated in Fig. 3.5, logic is added to generate a bit-fixing sequence that alters the

pseudo-random sequence by causing certain bits to be fixed to either a ‘1’ or a ‘0’. A procedure is

described for designing the bit-fixing sequence generator in a way that minimizes area overhead.

16

LFSR

Fix-to-1

Fix-to-0

+ & Scan Chain

Bit-Fixing Sequence
Generator

Figure 3.5. Logic for Altering the Pseudo-Random Bit Sequence

Previous mixed-mode schemes for serial pattern generation (“test-per-scan”) are based on

storing compressed data in a ROM. In the proposed procedure, no data is stored in a ROM, rather

a multilevelcircuit is used to dynamically fix bits in a way that exploits bit correlation among the

test patterns for the random-pattern-resistant faults. Small numbers of correlated bits are fixed in

selected pseudo-random patterns to make the pseudo-random patterns match the test patterns. So

rather than trying to compress the test patterns themselves, the proposed scheme essentially

compresses the bit differences between the test patterns and a selected set of pseudo-random test

patterns. Since there are so many pseudo-random test patterns to choose from, a significant

amount of compression can be achieved, resulting in reduced overhead.

Schemes based on reseeding an LFSR require that the LFSR have at least as many stages as the

maximum number of specified bits in any test pattern. This is necessary to ensure that a seed can

be found to generate each of the test patterns. A hardware tradeoff that is made possible by the

schemepresented in [Touba 96b] is that a smaller LFSR can be used for generating the

pseudo-random bit sequence. This may cause some faults to not be detected because of linear

dependencies in the patterns that are generated, but deterministic test patterns for those faults can be

embedded at the expense of additional logic in the bit-fixing sequencegenerator. Data is presented

in [Touba 96b] showing how much logic is required for different sized LFSR’s.

The schemedescribed in [Touba 96b] uses aone phase test, the BIST logic runs in the same

mode for the entire test length. Thus, the BIST control logic is very simple. Figure 3.6 shows the

control logic that is required. If there arem stages in the scan chain, then amod(m+1) counter is

used to keep track of how many bits have been shifted into the scan chain (it is incremented each

clock cycle). While the value of the counter is less thanm, the scan chain operates in shift mode.

When the counter contains the valuem, then the scan chain operates in system mode to load the

response of the circuit into the scan chain. There is also a pattern counter to keep track of how

many patterns have been applied to the circuit-under-test. The pattern counter is incremented when

themod(m+1) counter contains the valuem. When the value of the pattern counter equals the test

length, then the test is complete. Reset logic is needed to initialize the counters, the signature

register, and the LFSR at the start of the test.

17

LFSR

Fix-to-1

Fix-to-0

+ & Scan Chain (m bits)

Bit-Fixing Sequence
Generator

Pattern Counter

Decode Last Pattern

End Test

Mod(m+1) Counter

Decode Last State

Scan/System Mode

Figure 3.6. Control Logic for Scheme

The advantages of the scheme in [Touba 96b] are that no function logic modification is

required, no performance overhead is added beyond what is needed for scan, and the control logic

is simple. All of these features combine to make the scheme a very attractive option.

18

Chapter 4
Concluding Remarks

This dissertation summarizes my contributions to automated design of circuits with

pseudo-random BIST. BIST is a technique that reduces test and maintenance costs, but it has seen

limited use in industry due to area and performance overhead, increased design time, and lack of

BIST design tools. Pseudo-random testing is a low-cost approach for BIST, but is only effective

for random pattern testable circuits.

If a circuit is not random pattern testable, then the logic synthesis procedure described in

[Touba 94] can be used to synthesize a random pattern testable implementation. Testability-driven

factoring is used to minimize overhead.

If it is a hand-designed circuit or if it is not synthesizable, then the test point insertion

procedure described in [Touba 96a] can be used. This procedure uses path tracing to place both

control andobservation points and uses pattern decoding logic to drive the control points thereby

maximizing the effectiveness of each control point. This results in fewer test points than previous

methods. A higher quality test can be obtained by using the procedure in [Touba 96c] to target

bridging faults. This procedure significantly improves the bridging fault coverage by inserting just

a few additional test points.

If it is not possible to modify the circuit-under-test, then the procedures in Appendices II and

III can be used to synthesize mapping logic that can be placed between the LFSR and the

circuit-under-test to satisfy the fault coverage requirement. This results in much less overhead

compared with weighted pattern testing.

If performance is a major concern, then the procedure in [Touba 96b] can be used to synthesize

a bit-fixing sequence generator that embeds deterministic test patterns for the r.p.r. faults in the

pseudo-random sequence. This method does not require any performance overhead beyond what

is needed for scan.

The end result of the work described in this dissertation is a set of automated synthesis tools

that can be used to generate pseudo-random BIST implementations with less overhead and reduced

design time. These synthesis tools have been integrated in the TOPS synthesis system.

There are several areas for further investigation. The logic synthesis procedure described in

[Touba 94] requires a two-level starting point thereby limiting the types of circuits for which it can

be used. Integrating an efficient technique for computing detection probabilities in an arbitrary

multilevel circuit would increase the applications for thislogic synthesis procedure. The bit-fixing

scheme in [Touba 96b] could be combined with a reseeding scheme to further reduce overhead.

By reseeding the LFSR with just a few selected seeds to generate some of the least correlated test

19

cubes that require a lot of bit-fixing to embed, it may be possible to significantly reduce the

complexity of the bit-fixing sequence generator. In Appendices II and III, the mapping logic was

placed at the output of the LFSR and thus adds extra levels of logic between the flip-flops and the

function logicthereby affecting system performance. If the mapping logic could be placed in the

feedback portion of the LFSR, then the system performance would not be affected.

20

References

[Aboulhamid 83] Aboulhamid, M.E., and E. Cerny, “A Class of Test Generators for Built-In

Testing,”IEEE Transactions on Computers, Vol.¬C-32, No. 10, pp.¬957-959, Oct.¬1983.

[Abramovici 84] Abramovici, M., P.R. Menon, and D.T. Miller, “Critical Path Tracing: An

Alternative to Fault Simulation,”IEEE Design & Test of Computers, Vol. 1, pp.¬89-93,

Feb.¬1984.

[AlShaibi 94] AlShaibi, M.F., and C.R. Kime, “Fixed-Biased Pseudorandom Built-In Self-Test

for Random Pattern Resistant Circuits,”Proc. of International Test Conference, pp. 929-938,

1994.

[Agarwal 81] Agarwal, V.K., and E. Cerny, “Store and Generate Built-In Testing Approach,”

Proc. of FTCS-11, pp. 35-40, 1981.

[Akers 89] Akers, S.B., and W. Jansz, “Test Set Embedding in a Built-In Self-Test

Environment,”Proc. of International Test Conference, pp. 257-263, 1989.

[Bardell 87] Bardell, P.H., W.H. McAnney, and J. Savir,Buit-In Test for VLSI: Pseudorandom

Techniques, New York: Wiley, 1987.

[Brayton 84] Brayton, R.K., G.D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,Logic

Minimization Algorithms for VLSI Synthesis, Boston: Kluwer Academic Publishers. 1984.

[Brayton 87] Brayton, R.K., R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang, “MIS: A

Multiple-Level Logic OptimizationSystem,” IEEE Transactions on Computer-Aided Design,

Vol. 6, Nov. 1987, pp. 1062-1081.

[Briers 86] Briers, A.J., and K.A.E. Totton, “Random Pattern Testability by Fast Fault

Simulation,”Proc. of International Test Conference, pp. 274-281, 1986.

[Brglez 84] Brglez, F., “On Testability of Combinational Networks,”Proc. of International

Symposium on Circuits and Systems, pp. 221-225, 1984.

[Brglez 85] Brglez, F., and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark

Circuits and a Target Translator in Fortan,”Proc. of International Symposium on Circuits and

Systems, pp. 663-698, 1985.

[Brglez 89] Brglez, F., G. Gloster, and G. Kedem, “Hardware-Based Weighted RandomPattern

Generation for Boundary Scan,”Proc. of International Test Conference, pp.¬264-274, 1989.

[Chatterjee 95] Chatterjee, M., D.K. Pradhan, and W. Kunz, “LOT: Logic Optimization with

Testability - New Transformations using Recursive Learning,”Proc. of International

Conference on Computer-Aided Design (ICCAD), 1995.

[Chiang 94] Chiang, C.-H., and S.K. Gupta, “Random Pattern Testable Logic Synthesis,”Proc.

of International Conference on Computer-Aided Design (ICCAD), pp. 125-128, 1994.

21

[Cheng 95] Cheng, K.-T., and C.J. Lin, “Timing-Driven Test Point Insertion for Full-Scan and

Paritial-Scan BIST,”Proc. of International Test Conference, pp.¬506-514, 1995.

[Daehn 81] Daehn, W., and J. Muncha, “Hardware Test Pattern Generation for Built-In Testing,”

Proc. of Int. Test Conf., pp. 110-113, 1981.

[Dandapani 84] Dandapani, R., J. Patel, and J. Abraham, “Design of Test Pattern Generators for

Built-In Test,”Proc. of International Test Conference, pp. 315-319, 1984.

[Dufaza 91] Dufaza, C., and G. Cambon, “LFSR based Deterministic and Pseudo-Random Test

Pattern Generator Structures,”Proc. of EuropeanTest Conference, pp. 27-34, 1991.

[Dufaza 93] Dufaza, C., C. Chevalier, and L.F.C. Lew Yan Voon, “LFSROM: A Hardware Test

Pattern Generator for Deterministic ISCAS85 Test Sets,”Proc. of AsianTest Symposium,

pp.¬160-165, 1993.

[Edirisooriya 92] Edirisooriya, G., and J.P. Robinson, “Design of Low Cost ROM Based Test

Generators,”Proc. of VLSI Test Symposium, pp. 61-66, 1992.

[Eichelberger 83] Eichelberger, E.B., and E. Lindbloom, “Random-PatternCoverage

Enhancement and Diagnosis for LSSD Logic Self-Test,”IBM Journal of Research and

Development, Vol. 27, No. 3, pp. 265-272, May 1983.

[Ferguson 88] Ferguson, F.J., and J.P. Shen, “A CMOS Fault-Extractor for Inductive Fault

Analysis,” IEEE Transactions on Computer-Aided Design, Vol. 7, No. 11, pp.¬1181-1194,

Nov. 1988.

[Hartmann 93] Hartmann, J., and G. Kemnitz, “How to Do Weighted Random Testing forBIST,”

Proc. of International Conference on Computer-Aided Design (ICCAD), pp. 568-571, 1993.

[Hayes 74] Hayes, J.P., and A.D. Friedman, “Test Point Placement to Simplify Fault Detection,”

IEEE Transactions on Computers, Vol.¬C-23, No. 7, pp.¬727-735, Jul. 1974.

[Hellebrand 92] Hellebrand, S., S. Tarnick, and J. Rajski, “Generation of Vector Patterns

Through Reseeding of Multiple-Polynomial Linear Feedback Shift Registers,”Proc. of

International Test Conference, pp. 120-129, 1992.

[Hellebrand95a] Hellebrand, S., J. Rajski, S. Tarnick, S. Venkataraman and B. Courtois, ”Built-

In Test for Circuits with Scan Based on Reseeding of Multiple-Polynomial Linear Feedback

Shift Registers,”IEEE Transactions on Computers, Vol. 44, No. 2, pp. 223-233, Feb. 1995.

[Hellebrand95b] Hellebrand, S., B. Reeb, S. Tarnick, and H.-J. Wunderlich, ”PatternGeneration

for a Deterministic BIST Scheme,”Proc. of International Conference on Computer-Aided

Design (ICCAD), 1995.

[Iyengar 89] Iyengar, V.S., and D. Brand, “Synthesis of Pseudo-Random Pattern Testable

Designs,”Proc. International Test Conference, pp.¬501-508, 1989.

[Koenemann 79] Koenemann, B., J. Mucha, and G. Zwiehoff, “Built-in Logic Block Observation

Technique,”Proc. of International Test Conference, pp. 140-150, 1979.

22

[Koenemann 91] Koenemann, B., “LFSR-Coded Test Patterns for Scan Designs,”Proc. of

European Test Conference, pp. 237-242, 1991.

[Krasniewski 89] Krasniewski, A., and S. Pilarski, “Circular Self-Test Path: A Low-Cost BIST

Technique for VLSI Circuits,”IEEE Transactionson Computer-Aided Design, Vol. 8, No. 1,

pp. 46-55, Jan. 1989.

[Krishnamurthy 87] Krishnamurthy, B., “A Dynamic Programming Approach to the Test Point

Insertion Problem,”Proc. of the 24th Design Automation Conference, pp.¬695-704, 1987.

[Millman 88] Millman, S.D., and E.J. McCluskey, “Detecting Bridging Faults with Stuck-At Test

Sets,”Proc. of International Test Conference, pp. 773-783, 1988.

[Millman 89] Millman, S.D., and E.J. McCluskey, “Pseudorandom Test for Bridging Faults,”

CRC Technical Report 89-7, Stanford University, Dec. 1989.

[Muradali 90] Muradali, F., V.K. Agarwal, and B. Nadeau-Dostie, “A New Procedure for

Weighted Random Built-In Self-Test,”Proc. of International Test Conference, pp.¬660-668,

1990.

[Neebel 93] Neebel, D.J., C.R. Kime, “Inhomogeneous Cellular Automata for Weighted Random

Pattern Generation,”Proc. of International Test Conference, pp. 1013-1022, 1993.

[Neebel 94] Neebel, D.J., C.R. Kime, “Multiple Weighted Cellular Automata,”Proc. of VLSI

Test Symposium, pp. 81-86, 1994.

[Pomeranz 93] Pomeranz, I., and S.M. Reddy, “3-Weight Pseudo-Random Test Generation

Based on a Deterministic Test Set for Combinational and Sequential Circuits,”IEEE

Transactions on Computer-Aided Design, Vol. 12, No. 7, pp.¬1050-1058, Jul. 1993.

[Rajski 92] Rajski, J., and J. Vasudevamurthy, “The Testability-Preserving Concurrent

Decomposition and Factorization of Boolean Expressions,”IEEE Transactions on

Computer-Aided Design, Vol. 11, No. 6, Jun. 1992, pp. 778-793.

[Savaria 91] Savaria, Y., M. Youssef, B. Kaminska, and M. Koudil, “Automatic Test Point

Insertion for Pseudo-Random Testing,”Proc. of International Symposium on Circuits and

Systems, pp. 1960-1963, 1991.

[Seiss 91] Seiss, B.H., P.M. Trouborst, and M.H. Schulz, “Test Point Insertion for Scan-Based

BIST,” Proc. of European Test Conference, pp. 253-262, 1991.

[Shen 85] Shen, J.P., W. Maly, and F.J. Ferguson, “Inductive Fault Analysis of MOS Integrated

Circuits,” IEEE Design & Test of Computers, pp. 13-26, Dec.¬1985.

[Stroud 88] Stroud, C.E., “Automated BIST for Sequential Logic Synthesis,”IEEE Design &Test

of Computers, pp. 22-32, Dec. 1988.

[Touba 94] Touba, N.A., and E.J. McCluskey, “Automated Logic Synthesis of Random Pattern

Testable Circuits,”Proc. of International Test Conference, pp. 174-183, 1994.

23

[Touba 95a] Touba, N.A., and E.J. McCluskey, “Transformed Pseudo-Random Patterns for

BIST,” Proc. of VLSI Test Symposium, pp. 410-416, 1995.

[Touba 95b] Touba, N.A., and E.J. McCluskey, “Synthesis of Mapping Logic for Generating

Transformed Pseudo-Random Patterns for BIST,”Proc. of International Test Conference,

pp.¬674-682, 1995.

[Touba 96a] Touba, N.A., and E.J. McCluskey, “Test Point Insertion Based on Path Tracing,”

Proc. of VLSI Test Symposium, pp. 2-8, 1996.

[Touba 96b] Touba, N.A., and E.J. McCluskey, “Altering a Pseudo-Random Bit Sequence for

Scan-Based BIST,”Proc. of International Test Conference, 1996.

[Touba 96c] Touba, N.A., and E.J. McCluskey, “Test Point Insertion for Non-Feedback Bridging

Faults,”Technical Report No. 96-3, Center for Reliable Computing, Stanford University,

Stanford, CA, Aug. 1996.

[Venkataraman 93] Venkataramann, S., J. Rajski, S. Hellebrand, and S. Tarnick, “An Efficient

BIST Scheme Based on Reseeding of Multiple Polynomial Linear Feedback Shift Registers,”

Proc. of International Conference on Computer-Aided Design (ICCAD), pp. 572-577, 1993.

[Wunderlich 87] Wunderlich, H.-J., “Self-Test Using Unequiprobable Random Patterns,”Proc.

of FTCS-17, pp. 258-263, 1987.

[Wunderlich 88] Wunderlich, H.-J., “Multiple Distributions for Biased Random Test Patterns,”

Proc. of International Test Conference, pp. 236-244, 1988.

[Youssef 93] Youssef, M., Y. Savaria, and B. Kaminska, “Methodology for Efficiently Inserting

and Condensing Test Points,”IEE Proceedings-E, Vol. 140, No. 3, pp. 154-160, May 1993.

[Zacharia 95] Zacharia, N., J. Rajski, and J. Tyszer, “Decompression of Test Data Using

Variable-Length Seed LFSRs,”Proc. of VLSI Test Symposium, pp. 426-433, 1995.

