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ABSTRACT

Built-in self-test (BIST) techniques enable an integrated circuit (IC) to test itself. BIST reduces

test and maintenancecosts for an IC by eliminating the need for expensive test equipment and by

allowing fast location of failed ICs in a system.  BIST also allows an IC to be tested at its normal

operating  speed  which  is  very  important  for  detecting  timing  faults.   Despite  all  ofthese

advantages, BIST has seen limited use in industry because of area and performance overhead and

increased design time.  This dissertation presents automated techniques for implementing BIST in a

way that minimizes area and performance overhead.

A low-overhead approach for BIST is to use a linear feedback shift register (LFSR) toapply

pseudo-random test  patterns  to  the  circuit-under-test.   Unfortunately,  many  circuitscontain

random-pattern-resistant faults which limit the fault coverage that can be obtained for  pseudo-

random BIST.  Several different approaches for solving this problem are presented.

A logic synthesis procedure that performs testability-driven factoring to generate a random

pattern testable design is presented.  By considering random pattern testability during the factoring

process, the overhead can be minimized.

For hand-designed circuits or circuits that are not synthesizable, an innovative test  point

insertion procedure is described for inserting test points to make the circuit random pattern testable.

A path tracing procedure is used for test point placement.  A few of the existing primary inputs are

ANDed together to form signals that drive the control points.  These innovations result in fewer

test points than previous methods.

If it is not possible or not desirable to modify the circuit-under-test,  then a procedure is

described for synthesizing mapping logic that can placed at the output of the LFSR to transform the

pseudo-random patterns so that they provide the required fault coverage.  Much less overhead is

required compared with weighted pattern testing methods.

Lastly, a technique is described for placing bit-fixing logic at the serial output of an LFSR to

embed deterministic test patterns for the random pattern resistant faults in the pseudo-random bit

sequence.  This method does not require any performance overhead beyond what is needed for

scan.
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Chapter 1
Introduction

1.1  Background
In the production of integrated circuits, testing is done to identify defective chips.  This is very

important for shipping high quality products.   Testing is also done to diagnose the reason for a

chip failure in order to improve the manufacturing process.  In system maintenance, testing is done

to identify parts that need to be replaced in order to repair a system.

Testing a digital circuit involves applying an appropriate set of input patterns to the circuit and

checking for the correct outputs.  The conventional approach is to use an external tester to perform

the test.  However, built-in self-test (BIST) techniques have been developed in which some of the

tester functions are incorporated on the chip enabling the chip to test itself. BIST provides a

number of well-known advantages.  It eliminates the need for expensive testers.  It provides fast

location of failed units in a system because the chips can test themselves concurrently.  And, it

allowsat-speed testing in which the chip is tested at its normal operating clock rate which is very

important for detecting timing faults.  Despite all of these advantages, BIST has seen limited use in

industry because of its area and performance overhead, increased design time, and lack of BIST

design tools.  These are problems that this dissertation addresses.

The research described in this dissertation is timely because the interest in BIST is growing

rapidly.  The increasing pin count, operating speed, and complexity of IC’s is outstripping the

capabilities of external testers.  BIST provides solutions to these problems.

1.2  Pseudo-Random  BIST
Figure 1.1 is a block diagram showing the architecture for BIST.  The circuit that is being

tested is called thecircuit-under-test (CUT).  There is atest pattern generator which applies test

patterns to the CUT and anoutput response analyzer which checks the outputs.  The test pattern

generator must generate a set of  test  patterns that provides a high fault  coverage in order to

thoroughly test the CUT.

Pseudo-random testing is an attractive approach for BIST.  A linear feedback shift register

(LFSR) can be used to apply pseudo-random patterns to  the CUT.   An LFSR has a simple

structure requiring small area overhead. Moreover,  an LFSR can also be used as an output

response analyzer thereby serving a dual  purpose.   BIST techniques such  as  circular  BIST

[Stroud¬88], [Krasniewski¬89],  and  BILBO  registers  [Koenemann  79]  make  use  of  this

advantage to reduce overhead.
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Output Response Analyzer

Test Pattern Generator

Circuit Under Test
(CUT)

 Figure 1.1. Block Diagram for BIST

There are limits on thetest length, which is the number of pseudo-random patterns that can be

applied during BIST.  One limit is simply the amount of time that is required to apply the patterns.

Another limit is the faultsimulation time required to determine the fault coverage.  A third limit is

heat dissipation for an unpackaged die.  Thus, in order for pseudo-random pattern testing to be

effective, a high fault  coverage must be obtained for an  “acceptable”  test  length.   What  is

considered acceptable depends on the particular test environment.

The probability of detecting a fault with a single random pattern is defined as thedetection

probability for the fault and is given by the number of patterns that detect the fault divided by the

total number of inputs patterns,2n, wheren is the number of inputs in the circuit.  Unfortunately,

many circuits contain faults with very low detection probabilities.  Such faults  are  said  to  be

random-pattern-resistant (r.p.r.) [Eichelberger 83] because they are hard to detect withrandom

patterns and therefore limit the fault coverage for pseudo-random testing.  A circuit is said to be

random pattern testable if it does not contain any r.p.r. faults.

If the fault coverage for pseudo-random BIST is insufficient, then there are two solutions. One

is to modify the circuit-under-test to make it random pattern testable, and the other is to modify the

test pattern generator so that it generates patterns that detect the r.p.r. faults.  Innovative techniques

for both of these approaches are described in this dissertation.  These techniques enable automated

design of pseudo-random BIST implementations that satisfy fault coverage requirements while

minimizing area and performance overhead.  These techniques have been incorporated in the TOPS

(Totally Optimized Synthesis-for-test) tool being developed at the Center for Reliable Computing.

1.3  Outline
This dissertation summarizes my work in pseudo-random BIST.  Detailed descriptions of

results are found in the appendices which are reprints of published or submitted papers.

Chapter 2 describes techniques for modifying a circuit to make it random pattern testable.  A

survey of previous work is presented followed by a summary of the new techniques.
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An innovative test point insertion technique is described which uses a path tracing procedure to

place both control and observation points.  Rather than using extra scan elements to drive the

control points, a few of the existing primary inputs are ANDed together to form signals that drive

the control points.  This test point insertion procedure can be used to target both stuck-at and

bridging faults.

Given a logic function, a logic synthesis procedure is described for generating a randompattern

testable  implementation.    By  considering  testability  during  the  factor  section  process, the

procedure  performs  testability-driven  factoring  to  generate  a random  pattern  testable

implementation.

Chapter 3 describes techniques for modifying the test pattern generator so that it generates

patterns that detect the r.p.r. faults.  A survey of the previous work for both weighted pattern

testing and mixed-mode testing is presented followed by a summary of the new techniques.

A procedure is described for synthesizing mapping logic that can be placed at the output of the

LFSR to transform the pseudo-random patterns that are generated so that they provide the required

fault coverage.  By considering a broader class of mapping functions, not just those that implement

weight sets, the overhead is significantly minimized compared with  weighted pattern  testing

methods.

A new approach for mixed-mode scan BIST is described.  Logic at the serial output of the

LFSR to “fix” certain bits in the sequence in order to embed deterministic test patterns that detect

the r.p.r. faults.

Chapter 4 concludes the dissertation.



4

Chapter 2
Random Pattern  Testable  Design

If pseudo-random BIST does not provide sufficiently high fault coverage for a circuit, then one

solution is to modify the circuit to make it random pattern testable.  This chapter begins with a

survey of  the previous work that  has been done in this  area and then summarizes the new

techniques presented in Appendices I, IV, and V.

2.1  Previous  Work  in  Random  Pattern  Testable  Design
Previous work in random pattern testable design focused on inserting test points into a circuit

to make it random pattern testable.  Test point insertion involves adding control and observation

points to the circuit in a way that the system function remains the same, but the testability is

improved [Hayes 74].  Anobservation point is an additional primary output that is inserted in the

circuit  to  increase the observability  of  faults  in  the circuit.   In  the example in  Fig.¬2.1, an

observation point is inserted at the output of gate¬G1 such that faults are observable regardless of

the logic value at nodey.  A control point is inserted in the circuit such that when it is activated, it

fixes the logic value at a particular node to increase the controllability of some faults in the circuit.

A control point can also affect the observability of some faults in the circuit because it can change

the propagation paths in the circuit.  In the example in Fig. 2.2, a control point is inserted to fix the

logic value at the output of gate¬G1 to a ‘1’ when the control point is activated (this is called a

control-1 point).  This is accomplished by placing an OR gate at the output of gate¬G1.   In the

example in Fig. 2.3, a control point is inserted to fix the logic value at the output of gate¬G1 to a

‘0’ when the control point is activated (this is called acontrol-0 point).  This is accomplished by

placing an AND gate at the output of gate¬G1.  During system operation, the control points are not

activated and thus don't affect the system function.  However, control points do add an extra level

of logic to some paths in the circuit.  If a control point is placed on a critical timing path, it can

increase the cycle time of the circuit.

Since test points add both area and performance overhead, it is important to try to minimize the

number of test points that are inserted to achieve the desired fault coverage.  Optimal test point

placement  for  circuits  with  reconvergent fan-out  has  been  shown  to  be  NP-complete

[Krishnamurthy¬87].   An  ad-hoc  approach  for  placing  test  points  was presented  in

[Eichelberger¬83].  Briers and Totton [Briers¬86] were the first to propose a systematic method

for test point placement to increase pseudo-random pattern testability.   They  use  simulation

statistics  to  identify  correlations  between  signals,  and  then  insert test  points  to  break  the

correlation.   The number of test points inserted by this method is large. Iyengar and Brand

[Iyengar¬89] proposed an improved method that uses fault simulation to identify gates that block
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Figure 2.2. Example of Control-1 Point

Control
Point 

Cntl

G2

G3

G1

Figure 2.3. Example of Control-0 Point

fault propagation, and then inserts test points to enable propagation.  Savariaet al., in  [Savaria¬91]

and [Youssef¬93], use the COP testability measures [Brglez¬84] to guide the placement of test

points.  They identify sectors of hard-to-detect faults and insert test points at the origins of the

sectors.  Seisset al., in [Seiss¬91], form a cost function based on the COP testability measures

and then compute, in linear time, the gradient of the function with respect to each possible test

point.  The gradients are used to approximate the global testability impact for inserting a particular

test point.  Based on these approximations, a test point is inserted and the COP testability measures

are recomputed.  This process iterates until the testability  is  satisfactory.   Cheng and Lin,  in

[Cheng¬95], enhance the procedure in [Seiss¬91] to consider the performance impact of inserting a

particular test point.  They showed that by avoiding control point insertion on critical timing paths,

high fault coverage can be achieved with zero performance degradation.
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2.2  Test  Point  Insertion  Based  on  Path  Tracing
A new test point insertion method is presented in [Touba 96a].  It provides two innovations

compared  with  previous  methods.   Instead  of  using  probabilistic  techniques  for  testpoint

placement, fault simulation and a path tracing procedure are used to place both  control  and

observation points.  Instead of adding extra scan elements to drive the control points, a few of the

existing primary inputs to the circuit are ANDed together to form signals that drive the control

points.

2.2.1  Using  Path  Tracing  for  Test  Point  Placement

Previous methods insert test points one at a time.  The test point that is inserted is selected by a

greedy algorithm that estimates which test point would maximize the probability of detecting the

undetected faults.  The procedure described in [Touba 96a] is not based on probability.  Rather,

fault-free simulation is performed for each pseudo-random pattern that is applied during BIST.

For each pattern, a set of test points that would enable each undetected fault to be detected is

computed by tracing sensitized paths in the circuit.  After all the information about which test

points enable detection of whichundetected faults is gathered, a set covering procedure is used to

select a set of test points thatprovides the required fault coverage.  Experimental results shown in

Appendix¬IV for benchmark circuits indicate that the path tracing method inserts fewer test points

to provide the same or betterfault coverage than previous methods.  Fewer test points means less

area and performance overhead for BIST.

The computation time for this procedure depends on the size of the circuit, the test length, and

the number of r.p.r. faults.  For each pattern, fault simulation is performed followed by path

tracing from each r.p.r. fault site.  The fast approximate procedure for tracing sensitized paths that

is given in [Abramovici¬84] can be used.

In [Touba 96a], a heuristic set covering procedure was used to select the test points.  Some

experiments were performed to validate the heuristics.  Results are shown in Table 2.1 comparing

the exact solution to the set coveringproblem versus the heuristic solution.  As can be seen, there

was only one case,s1238, where using the exact procedure made a difference for these circuits.

Table 2.1. Comparison Between Heuristic and Exact Set Covering Procedures

Circuit Heuristic Set Covering Exact Set Covering
Name Con Obs Con Obs

 s420 2 0 2 0
 s641 1 1 1 1
 s713 1 1 1 1
 s838 2 0 2 0
 s1238 6 5 5 5
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Figure 2.4. Control Points Driven by Extra Scan Elements
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Figure 2.5. Control Points Driven by Pattern Decoding Logic

2.2.2  Control  Point  Activation

Once the test points have been inserted, the remaining task is to design the logic that drives the

control points. Previous test point insertion methods add extra scan elements to drive the control

points.  This is illustrated in Fig. 2.4 where two extra scan elements are added to drive the two

control points.  The pseudo-random generator is used to shift values into the extra scan elements.

Thus, a control point is randomly activated for roughly half of the patterns.  This approach limits

the potential of each control point.  There may be some patterns for which a control point is not

activated, but if the control point had been activated, some faults would have been detected.

Conversely, there may be some patterns for which the control point is activated, but if it hadn’t

been activated, some faults would have been detected.

A new approach for driving the control points is presented in [Touba 96a]. As illustrated in

Fig. 2.5, pattern decoding logic is used to select those patterns for which the control point  is

activated.  A procedure for synthesizing this logic in a way that maximizes the effectiveness ofeach
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control point for detecting undetected faults is described in [Touba 96a].   In the experimental

results in [Touba 96a], on average, fewer than 2 gates were required per control point using this

method.  This approach eliminates the need for extra scan elements to drive the control points while

maximizing the effectiveness of each control point.

As indicated in Fig. 2.5, a test mode line is used to disable the control point during system

operation.  The test logic is activated during BIST by setting the test mode line to a '1'.   When

synthesizing the pattern decode logic, all of the patterns that are not applied during BIST are placed

in the don't care set.  This ensures that the resulting logic does not contain any redundant faults

with respect to the patterns applied during BIST, thus the logic is fully tested during BIST.

2.3  Test  Point  Insertion  for  Non-Feedback  Bridging  Faults
A common physical defect in MOS technologies is a short between two signal lines which

results in a bridging fault [Shen 85], [Ferguson 88].  Although bridging faults are generally more

random pattern testable than stuck-at faults [Millman 89], examples are shown in [Touba 96c] to

illustrate that some bridging faults are much less random pattern testable than stuck-at faults.  Data

is presented which indicates that even after inserting test points that result in 100% single stuck-at

faults coverage, many bridging faults are still not detected.  A test point insertion procedure that

targets both single stuck-at faults and bridging faults is presented in [Touba 96c].

Bridging faults can be divided into two classes.  Feedback bridging faults are those in which

there is a path in the fault-free circuit from one of the shorted lines to the other thereby creating

feedback in the fault circuit.  Non-feedback bridging faults are those for which no feedback is

introduced when the two lines are shorted together.   Feedback bridging faults may add state

causing the circuit to no longer be combinational, and thus are more complicated to simulate. Since

feedbackbridging faults have been found to be easier to detect than non-feedback bridging faults

[Millman¬88], only non-feedback bridging faults were considered in [Touba 96c].  However, the

techniques described in [Touba 96c] can be applied to feedback bridging faults in a straightforward

manner.  The only difference is the added complexity for simulation.

In [Touba 96c],  a fast  fault  simulation procedure for identifying random-pattern-resistant

non-feedback bridging  faults  is  described.   Using  this  procedure,  the  path  tracing  method

described in [Touba 96c] can be enhanced to target both single stuck-at faults and non-feedback

bridging faults.  The experimental results shown in [Touba 96c] indicate that by considering both

types of faults when selecting the location of the test points, higher fault coverage can be obtained

with little or no increase in overhead.  Thus, the test point insertion procedure described in [Touba

96c] is a low-cost way to improve the quality of built-in self-test.

2.4  Logic  Synthesis  of  Random  Pattern  Testable  Circuits
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Instead of designing a circuit and then inserting test points to make it random pattern testable,

why not consider random pattern testability during logic synthesis?  That is the idea presented in

[Touba 94].  Given a two-level representation of a circuit and a constraint on the minimum fault

detection probability  (threshold below which faults  are considered r.p.r.),  atestability-driven

factoring procedure that satisfies the constraints while minimizing the literal count is described in

[Touba 94].  The strategy is to identify r.p.r. faults in the two-level starting point, and then find

factors that “eliminate” these faults.  Once the r.p.r. faults have been eliminated, normal logic

optimization using random pattern testability preserving logic transformations can then proceed

since such transformations will not introduce new r.p.r. faults.  It is proven in [Touba 94] that

algebraic factoring is random pattern testability preserving and that random patterntestability

preserving transformations are a superset of test-set preserving transformations.

As the minimum probability threshold is increased, a point is reached where some r.p.r. faults

cannot be eliminated by algebraic factoring alone.  When this is the case, test points are inserted

during the synthesis process in order to generate a random pattern testable implementation. Factors

are chosen which maximize the effectiveness of each test point thereby minimizing the total number

of test points that are required.

Experimental results are shown in [Touba 94] comparing the implementations generated by the

proposed procedure with the implementations generated using the algebraic and rugged scripts in

SIS 1.1 (an updated version of MIS [Brayton¬87]).  The proposed procedure significantly reduces

the pseudo-random pattern test length required for 100% fault  coverage with only amodest

increase in area.  For many circuits, the test length was reduced by an order of magnitude or more

with less than 10% increase in area.  The reason for the area overhead is the fact that in order to

satisfy the random pattern testability constraints, the proposed procedure must select some factors

based on improving the testability instead of reducing the literal count.  Note that the proposed

procedure need only be used for logic blocks containing r.p.r. faults, so the overhead penalty is

only incurred for a small portion of an overall design.

A limitation of the method proposed in [Touba 94] is that it requires a two-level representation

as a starting point thereby limiting its application to control circuits and other circuits that can be

flattened (i.e., two-level representation is not exponential).   However,  control  circuits are an

important application because they can contain large fan-in cubes that cause r.p.r. faults.

Some other work in logic synthesis of random pattern testable circuits has been published after

[Touba 94].  The work in [Chiang¬94] was done independently.  The synthesis procedure in

[Chiang¬94] is based on single and double cube divisors [Rajski¬92] and does not consider test

points.  It uses an approximate method for computing the effect of each factor on fault detection

probabilities  whereas  the  method  used  in  [Touba 94]  is  exact.   New  exclusive-or  based

transformations were introduced in [Chatterjee¬95] which can be used to improve random pattern
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testability.  These transformations can be used in conjunction with those in [Touba 94] to provide

even better results.
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Chapter 3
Test  Pattern  Generator  Design

If  pseudo-random  BIST  provides  insufficient fault  coverage,  instead  of  modifying  the

circuit-under-test, another option is to modify the test pattern generator.  This involves augmenting

the pseudo-random pattern generator with additional logic to generate patterns that detect the r.p.r.

faults.  In some cases this is the only option because it is either not possible or not desirable to

modify the circuit-under-test (e.g., if it is a macrocell, core, or proprietary design).

There  are  two  types  of  test pattern  generators:   serial  (“test-per-scan”)  and  parallel

(“test-per-clock”).  Figure 3.1 shows a diagram for a serial BIST scheme.  A serial sequence of

bits is shifted into a scan chain.  When a full pattern has been shifted into the scan chain, it is

applied to the circuit-under-test and the response is loaded back into the scan chain and shifted out

to a serial signature register for compaction as the next pattern is shifted in.  Figure 3.2 shows a

diagram for a parallel BIST scheme.  A test pattern is applied to the circuit-under-test each clock

cycle and the response is loaded into a parallel signature register (MISR) for compaction.

Scan Chain

Circuit Under Test
(CUT)

Signature Reg.LFSR

Figure 3.1.  Block Diagram for Serial BIST Scheme ("Test-Per-Scan")

LFSR

MISR

Circuit Under Test
(CUT)

Figure 3.2.  Block Diagram for Parallel BIST Scheme ("Test-Per-Clock")
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This chapter begins with a survey of the previous work that has been done in designing test

pattern generators and then summarizes the new techniques presented in Appendices II, III, and

VI.

3.1  Previous  Work  in  Test  Pattern  Generator  Design
Two approaches for improving the fault coverage for a pseudo-random pattern generator are

weighted pattern testing and mixed-mode testing.Weighted pattern testing involves adding logic to

bias the pseudo-random patterns towards those that detect the r.p.r.  faults.Mixed-mode testing

involves adding logic to generate deterministic patterns that detect the faults that the pseudo-random

patterns miss.

 3.1.1  Weighted  Pattern  Testing

Weightedpattern testing is performed by weighting thesignal probability (probability that the

signal is a '1') for each input to the circuit-under-test.  Two issues in weighted pattern testing are

what set of weights to use and how to generate the weighted signals.  Many techniques have been

proposed for computing weight sets [Bardell 87].  It  has  been shown that  for  most  circuits,

multiple weight sets are required toachieve sufficient fault coverage [Wunderlich 88].  For BIST,

the weight sets must be stored on-chip and control logic is needed to switch between them which

can result in a lot of overhead.

In order to reduce the BIST overhead for weighted pattern testing, researchers have looked for

efficient methods for on-chip generation of weighted patterns.  Wunderlich proposed a Generator

of Unequiprobable Random Tests (GURT) in [Wunderlich 87] that requires very little hardware

overhead but is limited to only one weight set.  Hartmann and Kemnitz proposed a method in

[Hartmann¬93] that uses a modified GURT structure and described test pattern generators for the

C2670 andC7552 benchmark circuits [Brglez¬85] that require very little overhead.  However,

both of these methods are not general methods because they use only a single weight set and

therefore will not provide sufficient fault coverage for many circuits.  Methods that use multiple

weight sets with 3 different weight values (0, .5, and 1) were described in [Pomeranz¬93] and

[AlShaibi¬94].  These methods essentially “fix” the value of certain inputs while random patterns

are being applied.  The method in [Pomeranz 93] uses 3-gate modules to fix the values while the

method in [AlShaibi 94] uses specially designed flip-flops. Techniques for generating weighted

random patterns using inhomogeneous cellular automata were described in [Neebel¬93,¬94].

Less weight logic is required for serial test pattern generation (“test-per-scan”) than for parallel

test pattern generation (“test-per-clock”). The weight logic can be placed at either the input of the

scan chain as described in [Brglez 89] or in the individual scan elements themselves as described in

[Muradali 90].
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 3.1.2  Mixed-Mode  Testing

In the simplest case, mixed-mode testing can be performed by using an LFSR to generate

pseudo-random patterns to detect the random pattern testable faults and then loading deterministic

test patterns for the random pattern resistant faults from a ROM.  The problem with this approach

is that the size of the required ROM is often prohibitive.  Several compression techniques have

been  proposed  for  reducing  the  size  of  the ROM  [Agarwal¬81],  [Aboulhamid  83],

[Dandapani¬84],  [Edirisooriya¬92],  [Dufaza¬93].

Instead of storing the test patterns themselves in a ROM, techniques have been developed for

storing LFSR seeds that can be used to generate the test patterns [Koenemann¬91].  The LFSRthat

is used for generating the pseudo-random patterns is also used for generating the deterministic

patterns by reseeding it with computed seeds.  Since the seeds are smaller than the test patterns

themselves, they require less ROM storage.  One problem is that for a normal LFSR with a fixed

feedback polynomial, it may not always be possible to find a seed that will generate a required

deterministic test pattern.  A solution to thatproblem was proposed in [Hellebrand¬92] in which a

multiple-polynomial LFSR (MP-LFSR) is used. An MP-LFSR is an LFSR with a reconfigurable

feedback network.  In [Hellebrand¬92], a polynomial identifier is stored with each seed toselect

the feedback polynomial that will be used for that seed as illustrated inFigure 3.3.  Techniques for

“merging” and “concatenating” test patterns to reduce the number of LFSR seeds that need to be

stored were proposed in [Venkataraman 93] and [Hellebrand 95a].  Even further reduction can be

achieved  by  using  variable-length  seeds  [Zacharia  95] and  a  special  ATPG  algorithm

[Hellebrand¬95b].

Another approach for mixed-mode testing is to design a special counter that generates a

deterministic set of test patterns.  Daehn and Mucha, in [Daehn 81], proposed using a non-linear

LFSR.  Akers and Jansz, in [Akers 89], proposed using an LFSR followed by a linear network of

XOR gates.  Dufaza and Cambon, in [Dufaza 91], proposed using an LFSR with a reconfigurable

feedback network.  None of these techniques scales well for larger circuits.
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Figure

3.3. Block Diagram for Reseeding using a Multi-Polynomial LFSR (MP-LFSR)

3.2  Synthesis  of  Mapping  Logic
In weighted pattern testing, weight logic is placed at the output of the LFSR. One way to view

this weight logic is that it transforms each original pattern generated by the LFSR into a new

pattern that isapplied to the circuit-under-test.  Thus, the original set of patterns generated by the

LFSR is mapped into a new set of patterns that provides the required fault coverage.  This is

illustrated in Fig. 3.4.

Pattern Generator

Mapping Logic

Circuit Under Test
(CUT)

Original Test Patterns

Transformed Test Patterns

Original Patterns Transformed Patterns
100110 → 001010
010011 → 010011
011000 → 011000
101101 → 101101
010111 → 111010
001101 → 010101

Cov = 89% Cov = 100%

Figure 3.4. Transforming Pseudo-Random Patterns
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In [Touba 95a], the idea of generalizing the “weight” logic to perform any mapping function,

not just  those that weight  signal  probabilities,  is  proposed.   A  procedure  is  described  for

synthesizing combinational mapping logic that  can  be  placed  between  the  LFSR  and  the

circuit-under-test to map the original set of test patterns generated by the LFSR into a new set of

patterns that provides the required fault coverage. The strategy for designing the mapping logic is

to decode sets of patterns that don’t detect any new faults and map them into patterns that detect the

hard-to-detect faults.  Results are shown for benchmark circuits which indicate that an LFSR plus a

small amount of mapping logic reduces the test length required for a particular fault coverage by

orders of magnitude compared with using an LFSR alone.  These results were compared with the

best weighted pattern testing schemes, and in all  cases it  was shown that  the mapping logic

required much less overhead to achieve the same fault coverage for the same test length.

In  [Touba  95b],  an  improved  synthesis  procedure  for  designing the  mapping  logic  is

described.  Given an LFSR and a circuit-under-test, there are many possible mapping functions

that will provide the required faultcoverage.  The problem of finding a mapping function that can

be implemented with the smallest number of gates is formulated as one of finding a minimum

rectangle in a binate matrix.  A heuristic procedure involving EXPAND, IRREDUNDANT, and

REDUCE operations (analagous to what is used in ESPRESSO [Brayton 84]), is used to minimize

the rectangle cover that corresponds to a mapping function.  By iteratively performing global

operations, the procedure is able to find better mapping functions thereby synthesizing mapping

logic that requires less hardware overhead than other methods.  Results indicate that a significant

hardware reduction is achieved.

As described in Appendices II and III, the mapping logic is enabled during BIST by using a

test mode line. During system operation, the test mode line is set to a '0' to disable the mapping

logic.  When synthesizing the mapping logic, all of the patterns that are not applied during BIST

are placed in the don't care set.  This ensures that the resulting mapping logic does not contain any

redundant faults with respect to the patterns applied during BIST, thus the mapping logic is fully

tested during BIST.

3.3  Synthesis  of  Bit-Fixing  Sequence  Generator
A new  mixed-mode  BIST  scheme  is  described  in  [Touba  96b]  for  circuits  with  scan.

Deterministic  test  patterns that  detect  the random-pattern-resistant  faults are embedded in  a

pseudo-random sequence of bits generated by an LFSR.  This is accomplished by altering the

pseudo-random sequence of bits by adding logic at the LFSR’s serial output to “fix” certain bits.

As  illustrated  in  Fig.  3.5,  logic  is  added  to  generate  a  bit-fixing  sequence  that  alters the

pseudo-random sequence by causing certain bits to be fixed to either a ‘1’ or a ‘0’.  A procedure is

described for designing the bit-fixing sequence generator in a way that minimizes area overhead.
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LFSR

Fix-to-1

Fix-to-0

+ & Scan Chain

Bit-Fixing Sequence
Generator

Figure 3.5.  Logic for Altering the Pseudo-Random Bit Sequence

Previous mixed-mode schemes for serial pattern generation (“test-per-scan”) are based on

storing compressed data in a ROM.  In the proposed procedure, no data is stored in a ROM, rather

a multilevelcircuit is used to dynamically fix bits in a way that exploits bit correlation among the

test patterns for the random-pattern-resistant faults.  Small numbers of correlated bits are fixed in

selected pseudo-random patterns to make the pseudo-random patterns match the test patterns.  So

rather than trying to compress the test patterns themselves, the proposed scheme essentially

compresses the bit differences between the test patterns and a selected set of pseudo-random test

patterns.  Since there are so many pseudo-random test  patterns to choose from, a significant

amount of compression can be achieved, resulting in reduced overhead.

Schemes based on reseeding an LFSR require that the LFSR have at least as many stages as the

maximum number of specified bits in any test pattern.  This is necessary to ensure that a seed can

be found to generate each of the test patterns.  A hardware tradeoff that is made possible by the

schemepresented  in  [Touba  96b]  is  that  a  smaller  LFSR  can  be  used  for  generating  the

pseudo-random bit sequence. This may cause some faults to not be detected because of linear

dependencies in the patterns that are generated, but deterministic test patterns for those faults can be

embedded at the expense of additional logic in the bit-fixing sequencegenerator.  Data is presented

in [Touba 96b] showing how much logic is required for different sized LFSR’s.

The schemedescribed in [Touba 96b] uses aone phase test, the BIST logic runs in the same

mode for the entire test length.  Thus, the BIST control logic is very simple.  Figure 3.6 shows the

control logic that is required.  If there arem stages in the scan chain, then amod(m+1) counter is

used to keep track of how many bits have been shifted into the scan chain (it is incremented each

clock cycle).  While the value of the counter is less thanm, the scan chain operates in shift mode.

When the counter contains the valuem, then the scan chain operates in system mode to load the

response of the circuit into the scan chain.  There is also a pattern counter to keep track of how

many patterns have been applied to the circuit-under-test.  The pattern counter is incremented when

themod(m+1) counter contains the valuem.  When the value of the pattern counter equals the test

length, then the test is complete.  Reset logic is needed to initialize the counters, the signature

register, and the LFSR at the start of the test.
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LFSR

Fix-to-1

Fix-to-0

+ & Scan Chain (m bits)

Bit-Fixing Sequence
Generator

Pattern Counter

Decode Last Pattern

End Test

Mod(m+1) Counter

Decode Last State

Scan/System Mode

Figure 3.6.  Control Logic for Scheme

The advantages of the scheme in [Touba 96b] are that no function logic modification is

required, no performance overhead is added beyond what is needed for scan, and the control logic

is simple.  All of these features combine to make the scheme a very attractive option.
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Chapter 4
Concluding  Remarks

This dissertation  summarizes  my  contributions  to  automated  design  of  circuits  with

pseudo-random BIST.  BIST is a technique that reduces test and maintenance costs, but it has seen

limited use in industry due to area and performance overhead, increased design time, and lack of

BIST design tools.  Pseudo-random testing is a low-cost approach for BIST, but is only effective

for random pattern testable circuits.

If a circuit is not random pattern testable, then the logic synthesis procedure described in

[Touba 94] can be used to synthesize a random pattern testable implementation.  Testability-driven

factoring is used to minimize overhead.

If  it  is  a hand-designed circuit  or  if  it  is  not  synthesizable,  then the test point insertion

procedure described in [Touba 96a] can be used.  This procedure uses path tracing to place both

control andobservation points and uses pattern decoding logic to drive the control points thereby

maximizing the effectiveness of each control point. This results in fewer test points than previous

methods.  A higher quality test can be obtained by using the procedure in [Touba 96c] to target

bridging faults.  This procedure significantly improves the bridging fault coverage by inserting just

a few additional test points.

If it is not possible to modify the circuit-under-test, then the procedures in Appendices II and

III  can be used to synthesize mapping logic that can be placed between the LFSR  and  the

circuit-under-test to satisfy the fault coverage requirement.  This results in much less overhead

compared with weighted pattern testing.

If performance is a major concern, then the procedure in [Touba 96b] can be used to synthesize

a bit-fixing sequence generator that embeds deterministic test patterns for the r.p.r. faults in the

pseudo-random sequence.  This method does not require any performance overhead beyond what

is needed for scan.

The end result of the work described in this dissertation is a set of automated synthesis tools

that can be used to generate pseudo-random BIST implementations with less overhead and reduced

design time.  These synthesis tools have been integrated in the TOPS synthesis system.

There are several areas for further investigation.  The logic synthesis procedure described in

[Touba 94] requires a two-level starting point thereby limiting the types of circuits for which it can

be used. Integrating an efficient technique for computing detection probabilities in an arbitrary

multilevel circuit would increase the applications for thislogic synthesis procedure.  The bit-fixing

scheme in [Touba 96b] could be combined with a reseeding scheme to further reduce overhead.

By reseeding the LFSR with just a few selected seeds to generate some of the least correlated test
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cubes that require a lot of bit-fixing to embed, it  may be possible to significantly reduce the

complexity of the bit-fixing sequence generator.  In Appendices II and III, the mapping logic was

placed at the output of the LFSR and thus adds extra levels of logic between the flip-flops and the

function logicthereby affecting system performance.  If the mapping logic could be placed in the

feedback portion of the LFSR, then the system performance would not be affected.
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