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Abstract

This paper describes the Rapide concepts of system architecture, causal event simula-

tion, and some of the tools for viewing and analysis of causal event simulations. Illustration

of the language and tools is given by a detailed small example.

1 Introduction

Rapide-1.0 [LKA+95],[LV95] is a computer language for de�ning and executing models of sys-

tem architectures. The result of executing a Rapide model is a set of events that occurred

during the execution together with causal and timing relationships between events. The produc-

tion of causal history as a simulation result is, at present, unique to Rapide among event-based

languages. Sets of events with causal histories are called posets (partially ordered event sets).
1 Simulators that produce posets provide many new opportunities for analysis of models of

distributed and concurrent systems.

Rapide-1.0 is structured as a set of languages consisting of the Types, Patterns, Architecture,

Constraint, and Executable Module languages. This set of languages is called the Rapide

language framework.

The purpose of the framework is twofold: (i) to encourage multi-language systems, (ii) to

de�ne language components that may be applied to, or migrated into, other event generating

systems. Towards (i), we anticipate that the Executable Module, Constraint or Architecture

sublanguages may be changed in fairly substantial ways, and that the Executable Module and

Constraint sublanguages may be interchanged with other languages provided certain compat-

ibility requirements are met. Towards (ii), for example, the use of constraints expressed in

terms of event patterns will have many applications to systems that generate events, not just

the Rapide simulator. Such applications could include monitoring distributed object systems

based on CORBA (or other commercial middleware) for security, for conformance to standards,

and for many other properties.

The Types language provides the basic features for de�ning interface types and function types,

and for deriving new interface type de�nitions by inheritance from previous ones. Its semantics

�This project is funded by DARPA under ONR contract N00014-92-J-1928 and AFOSR under Grant
AFOSR91-0354

yPresent members of the Rapide project team are: DavidLuckham, Walter Mann, John Kenny, James Vera,
Sigurd Meldal, Neel Madhav, Alex Santoro, Francois Guimbretierre, Woosang Park, Marc Abramowitz, Alvin
Cham, Claudio Garcia.

1Posets di�er from Pomsets [Pra86] in that every event in a poset has a unique identi�er; but posets produced
by Rapide can contain equivalence classes of events, as we discuss later.

1



consists of the general rules de�ning the subtype (and supertype) relationship between types

so as to allow dynamic substitution of modules of a subtype for modules of a supertype. The

other sublanguages of the framework are extensions of the Types language. They assume the

basic type de�nition features, and add new features in a way compatible with strong typing

(i.e., every expression has a type). The architecture language extends the types language with

constructs for building interface connection architectures. The Executable Module language

adds modules, control structures, and standard types and functions. Standard types (i.e., data

types available in many languages) are speci�ed in a separate document as interface types.

The Constraint language provides features for expressing constraints on the poset behaviors

of modules and functions. The Event Pattern Language is a fundamental part of all of the

executable constructs (reactive processes, behavior rules and connection rules) in the executable

module and architecture languages, and also of the constraint language.

This paper is a short introduction to some of the topics and issues surrounding Rapide. Specif-

ically, we discuss :

1. interface connection architectures.

2. the Rapide concepts of event, cause, and causal event history.

3. tools for depicting and analyzing causal event histories.

4. constructing a small example { a model of the Dining Philosophers { and viewing its

behavior.

5. some research and development issues.

We do not have the space to deal with di�erent concepts of system architecture, or the design

of constraint languages that are specially suited to causal event behaviors. More information

on Rapide can be found in the Internet Web page:

http://anna.stanford.edu/rapide/rapide.html

The treatment of concepts of architecture given here is an extremely cursory and incomplete

excerpt from one of our publications. It is included here because there is currently so much

vagueness about \architecture", and so much use of the term without any attempt to de�ne

what it means. People mean many di�erent things by \architecture". It is important that the

reader has some understanding of the concepts of architecture that have motivated the design

of Rapide.

Rapide is an event-based language and simulation toolset. We give a short but quite detailed

overview of events, causal histories of events, and Rapide computations. This is followed by

a short description of the present tools to support architecture modelling, i.e., building models

of system architectures, simulating architectures and analyzing simulation results.

Finally, there is an example illustrating some features of the Rapide POV (Point of View

Viewer) for browsing causal event histories and constraint violation detection.

2 Interface Connection Architectures

The concept of architecture we shall illustrate here is called interface connection architec-

ture [LVM95], so called because all communication between modules is explicitly de�ned by

connections between interfaces | no longer are connections buried in the modules, but instead

they are de�ned between the features in interfaces. Figure 1 depicts this kind of architecture.
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Figure 1: An interface connection architecture and conforming system

An interface connection architecture can be de�ned before the modules of the system are built.

It can be used as a plan or early prototype of the system. To de�ne interface connection

architectures requires more sophisticated interfaces than are found in programming languages,

and a completely new concept to de�ne connections between interfaces. Rapide provides new

features for representing interface connection architecture, not normally found in programming

languages or middleware IDLs. In summary, the architecture features are:

� interfaces that specify both the features a module provides and, in addition, the features

it requires from other modules. Moreover, there are two kinds of features, those implying

synchronization (i.e., functions) and those implying asynchronous communication (i.e.,

actions). Rapide interfaces are more complex than, say, package speci�cations in Ada or

classes in C++ which do not specify features required from other objects.

� behaviors in interfaces: Behaviors are sets of reactive rules that de�ne abstract, executable

speci�cations of the behavior that is required of modules in order to conform to that

interface.

� connections between interfaces de�ne relationships between the required features of in-

terfaces and the provided features of the interfaces. The simplest kind of connection is

identi�cation between a required feature and a provided feature. 2 Identi�cation connec-

tions have the e�ect that whenever a required feature is used then the connection invokes

the provided feature in its place. More general kinds of connections allow sets of required

features to be connected to sets of provided features.

Connections are dynamic. A connection can depend upon runtime parameters, or the sets

of features that are connected can vary at runtime, or the interfaces that are connected

can also vary dynamically.

2Also called a basic connection.
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� constraints are declarative statements that restrict the behavior of the interfaces and

connections in an architecture. They can be used to explicitly specify requirements on

the behavior of an architecture as a whole, or of its individual components. Conformance

to constraints can be checked at runtime, or, in some cases, decided by proof methods.

Rapide interfaces can contain executable behaviors as illustrated in the example ahead. Con-

nections are also executable in the sense that whenever their required features are invoked, they

result in execution of the provided features that they connect to. Consequently, inRapide an in-

terface connection architecture can be executed (or simulated) before modules are programmed

for its interfaces.

Example: An Interface Connection Architecture with asynchronous connections

type Producer(Max : Positive) is interface

action out Send(N : Integer);

action in Reply(N : Integer);

behavior

Start => Send (0);

(?X in Integer) Reply(?X) where ?X<Max => Send(?X+1);

end Producer;

type Consumer is interface

action in Receive(N : Integer);

action out Ack(N : Integer);

behavior

(?X in Integer) Receive(?X) => Ack(?X);

end Consumer;

architecture ProdCon() return SomeType is

Prod : Producer(100);

Cons : Consumer;

connect

(?n in Integer)

Prod.Send(?n) => Cons.Receive(?n);

Cons.Ack(?n) => Prod.Reply(?n);

end architecture ProdCon;

Commentary:

Here is a simple example of an interface connection architecture. There are two

interface types, Producer 3 and Consumer. They de�ne the interfaces of producer and
consumer objects. These interfaces de�ne asynchronous communication features

called actions. The Producer interface contains two actions, an out action Send and
an in action, Reply. Objects of this type can generate Send events and can receive

Reply events. The Producer interface also contains reactive behavior transition rules.
The �rst one triggers on a Start event (which all objects receive when they are

elaborated) and reacts by generating an out event, Send(0). The second behavior

rule triggers on Reply events containing integer data provided the data is less than

Max, and generates a Send event containing the next integer.

3More accurately, Producer is a type constructor; when it is applied to a value for its parameter,Max, the
result is a type.
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The Consumer interface type is similar. It can receive Receive events, and its behav-

ior is to react by generating Ack events containing the same data.

The ProdCon architecture contains two components, Prod and Con, each of an inter-

ace type. Connections between these two components are de�ned by two reactive

connection rules. The �rst triggers whenever Prod generates a Send and reacts by

generating a Receive event of Cons with the same data. So it connects the Prod com-

ponent's out action Send and the Cons component's in action Receive. The second
rule connects the Cons component's out action Ack with the Prod component's in

action Reply.

The architecture de�nes the communication between the two components in terms

of the actions in their interfaces. The architecture can be re�ned by introducing

detailed modules for Prod and Cons. The re�ned system is called an instance of

the interface connection architecture. As long as the new modules communicate

only by calling the actions in their own interfaces, they will communicate in the

instance only as de�ned by the connections in the architecture. The instance con-

forms to the architecture if its modules behave consistently with the behavior rules

de�ned in their interfaces, and preserve its communication. Conformance implies

that many properties of the system are de�ned by its architecture. For example,

conformance implies that the instance will have the property that an interval of

integers, 0; 1; 2; : : :;Max� 1 is communicated between the producer and consumer,

according to a protocol whereby there is an acknowledgement from the consumer

before the next integer is sent by the producer.

2

An interface connection architecture can be used to analyze properties of a system that con-

forms 4 to that architecture, but we have to omit discussion of this topic here.

Although Figure 1 depicts connections between the interfaces as static wires, interface con-

nection architectures in Rapide can be dynamic architectures. Typically, a static architecture

has a �xed number of components and a �xed number of connections, and the properties of

the connections do not vary at runtime | hardware architectures that can be modelled in

languages like VHDL [VHD87] are a typical example. In a dynamic architecture the numbers

of (interfaces of) components can vary at runtime, and connections between the interfaces can

exist or not, depending upon runtime conditions. An air tra�c control system is an example

of a dynamic architecture with varying numbers of aircraft and connections that depend upon

distance, radio frequency, and other factors.

2.1 Conformance of a System to an Architecture

An interface connection architecture can be built before any system of modules that, in some

sense, has that architecture. How can it be decided if a system has that architecture?

An architecture de�nes a constraint on all of its instances. That is, an architecture is a formal

constraint on the system's behavior. Conversely, a system has an architecture if it conforms to

it. There are three basic conformance criteria:

1. decomposition : for each interface in the architecture there should be a unique module

corresponding to it in the system (i.e., the component implementing that interface). 5

4see Section 2.1.
5More sophisticated decomposition criteria, such as requiring an abstraction mapping from sets of system

components to interfaces in the architecture, are allowed by Rapide mapping constructs, but are beyond the
scope of this presentation.
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2. interface conformance: each component in the system must conform (as described

below) to its interface. Since Rapide behaviors and constraints can be part of interfaces,

this conformance criterion is, in general, stronger than the syntactic interface conformance

usually required by programming languages.

3. communication integrity: All communication between components is constrained by

the architecture. Two components cannot communicate with each other directly unless

a connection (possibly conditional on runtime parameters) between their interfaces is

de�ned by the architecture.

Conformance of modules to interfaces in programming languages usually only requires a module

to contain features that match names and parameter signatures of features in their interfaces |

a simple compiletime check. In Rapide conformance of modules to interfaces requires satisfying

both behavior and semantic constraints. In general, determining if a module conforms to an

interface with semantic constraints is an undecidable problem, although there are many useful

cases where it can be decided by practical methods. Developing tools for testing architecture

simulations for conformance to constraints, and proving correctness of architectures, is a chal-

lenging activity at present. The Rapide toolset supports testing for interface conformance by

both compiletime and runtime checking (see Section 6). In the future, tools for applying proof

techniques to interface conformance may be added.

Although determining interface conformance in the presence of behaviors and constraints is a

tougher problem than the usual syntactic signature requirements between interfaces and mod-

ules, it allows us to conclude much more about the modules of a system. Interface constraints

allow us to specify modules su�ciently to ensure that any two modules conforming to an inter-

face can be interchanged without changing the behavior of the system. Also, if the connections

in an architecture are correct | i.e., the constraints on a provided feature logically imply the

constraints on a required feature connected to it | then instances of the architecture where

interfaces have been assigned modules conforming to those interfaces will also have correct

connections.

There are many strategies one may adopt to try to ensure that a system satis�es communi-

cation integrity. For example, one may adopt restrictions on the coding of modules (called a

style guides). A possible style guide could be that a module should be constrained to only com-

municate with other modules of the system, or its parent architecture (i.e., the architecture of

which it is a component), through its own interface, as shown in (Figure 1). This style helps to

ensure that only the communication de�ned in the architecture takes place between modules. 6

Su�cient conditions for communication integrity involve (i) restrictions of the rapide visibility

rules, and (ii) restrictions of the types of parameters of actions and functions so that particular

types of objects cannot be passed between components.

2.2 The Role of Constraints in de�ning architectures

Constraints in Rapide are event pattern constraints. That is, they de�ne patterns of events

which must, or must not, occur during the execution. Constraints can be part of a Rapide

interface or an architecture. Generally, constraints in an interface are used to specify restrictions

on the behavior of modules with that interface. Constraints in architectures are used to restrict

the activity in the architecture. For example, constraints can specify certain sequencing of

communication between components, such as might be required by a particular protocol. When

a module or architecture executes, its behavior is checked for conformance to the constraints.

6This style, although encouraged, is not enforced by Rapide for reasons discussed later.
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3 Event-based Computation

A computation is a set of events together with partial orderings that relate events in the set.

The partial orderings in Rapide 1.0 computations represent dependence between events and

the time at which events happen with respect to various clocks. The dependence relation is also

called the causal relation since it models which events caused an event to happen. Computations

are also called executions.

3.1 Events

An event is an object generated by a call to an action. An action declaration de�nes an

associated event type; this event type is the type of events generated by calls to that action.

Every action call generates new event which is distinct from all previous events.

The constituents of an event are the name of the generating action, parameters, information 7

de�ning which events caused the event, and timestamps. Thus an event, may be de�ned as a

tuple consisting of these data. Not all of these constituents are visible to the user. Some con-

stituents (such as the dependency information) are useable only through prede�ned operations.

3.2 Operations on events

An event is generated by an action call . The prede�ned event type provides the following

operations on events:

1. E . Action Name | a string naming the action used to generate E,

2. E . From Module | the object that generated E,

3. E . parameter name| the value of a component of E corresponding to the parameter name
of the action E .Name,

4. C . Start (E) | the start time of E according to clock C, unde�ned if E was not generated

in the scope of C,

5. C . Finish (E) | the �nish time of E according to clock C, unde�ned if E was not generated

in the scope of C.

Timing orderings are imposed by the clocks (if any) in a Rapide 1.0 program. Each clock

partially orders the events that are generated within its scope.

3.3 Relationships between events

Rapide provides facilities for de�ning and referencing two kinds of relationships between events:

� dependence,
� time with respect to a clock.

Both relationships are partial orderings of events.

7Dependency is captured by means of so-called Fidge-Mattern vectors of counters [Fid91],[Mat88]; we omit
discussion of details here.
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4 How events are generated in Rapide

Roughly speaking, all active modules 8 in a Rapide model execute independently. They observe

and generate events, and they do this independently of each other unless their activity depends

upon the events they observe. Modules can themselves be multi-threaded, so dependency is

not de�ned at the object level, but rather at the level of process, behavior rule, connection rule

and reading/writing operations on particular types of object.

Models are hierarchical, that is modules can themselves be architectures of modules 9. Whether

or not two modules can communicate at any given point in an execution depends upon a concept

of the context of an module. Roughly speaking, a module can observe events resulting from a

module invoking its interface actions and functions, can invoke interface features of a module

in its context, and can braodcast events to those modules in whose context it is. Context

starts out initially corresponding to well known scope rules of algol-like languages, but varies

at runtime because modules can be passed as event or function parameters to other modules.

4.1 Generating dependent events

There are three kinds of language features that de�ne dependence between events:

� reactive rules and processes. Reactive rules are transition rules in interface behaviors,

connection rules in architectures, and mapping rules in maps. Reactive processes are

when statements in modules. Whenever a set of events with the required relationships is

observed (see later) by a reactive rule or process, and matches its trigger, then that rule

or process executes (i.e., the rule or process triggers). The events then generated by the

rule or process on that particular execution depend upon those events that triggered it.

� sequential code | events generated by sequential executions have a strict linear depen-

dence represented by their order of generation,

� ref objects | a ref type object de�nes dependence between the events generated by the

processes that share the object. If an event results from a computation that dereferenced

a ref object, then the event depends on the (unique) event that last changed the contents

of that ref object | i.e., operations on ref objects are linearly ordered.

4.2 Generating timed events

A type or module can be timed by having a clock associated with it, or by being placed in the

scope of a clock. The type Clock and several subtypes of it are prede�ned. Events receive start

and �nish time values for each clock within whose scope they are generated.

Action calls may specify the time taken for actions to be performed with respect to a clock. If

action A is de�ned to take duration d with respect to clock C, then for an event E generated by

A, C.Start(E) + d = C.Finish(E). If no duration is de�ned, the events are generated in�nitely

fast with respect to any clock.

8We use \Module" and \object" synonomously here.
9called their components
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4.3 Observation of Events

The events generated by a module of a Rapide program are visible to, and can be observed

by, other modules if it is in their context. Conversely, events are made available to a particular

module for observation when other modules call its interface provides functions and in actions.

The ability to call the interface functions and actions of a module depends upon visibility

rules of the language. For example, a typical way (but not the only way) that a module can

communicate with another module is by generating events which trigger connection rules in

the architecture in which both modules are components. Both components are visible to the

architecture. The connection rules are then executed by the architecture and result in calls to

the other module's interface functions or actions.

4.4 Observing events by pattern matching

Features for observing events, and the dependency ordering between events, are provided by

the pattern language. Brie
y, patterns are templates that allow the de�nition of posets of

events. Patterns can specify relationships between events by means of dependence operators.

For example, \A depends on B" is written as A ! B, and \A is independent of B" is written

as A jj B.

The timing parameters of events can be accessed by clock operations as described in Section 3.2.

The pattern language also de�nes abstract pattern operations dealing with time and events.

Patterns can be used as the triggers of: (i) processes, (ii) transition rules in interface behaviors,

(iii) connections in architectures, and (iv) map rules. Events that are made available to a

module are observed by matching the pattern triggers of the reactive rules or processes in the

module. 10 If and when an event contributes to matching the pattern trigger of a rule or process,

it can no longer be observed by that rule or process.

Finally, patterns can be used in formal constraints. Events that are available to a module

are also observed by matching the constraints of that module. Violations of constraints are

reported as they happen.

4.5 Orderly observation

Events are observed (that is, considered for matching in patterns) in an order consistent with

the causal ordering of the events. That is, an event may only be observed after all events it

depends on, and independent events may be observed in any possible order. This principle is

known as orderly observation.

Orderly observation is important in e�ciently matching patterns that refer to dependencies

between events.

5 Computations

The events generated by all the modules of a Rapide 1.0 program comprise the computation 11

generated by the program. A computation consists of a set of events, S, a dependence partial

ordering, �d, and timing partial orderings, �C , for objects C of type Clock.

A <C B is de�ned as C:F inish(A) < C:Start(B).

10Pattern matching is explained in the Rapide LRMs (see http://anna.stanford.edu/rapide/rapide.html).
11Also called an execution or simulation history.
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Posets generated by Rapide programs satisfy two invariants.

The dependence and time orderings satisfy a consistency invariant:

� Consistency invariant between dependence and time

For all events A, B, and each clock, C,

A �d B ! A �C B.

This means that, with respect to each clock, an event in the past may not depend on an event

in the future.

The consistency invariant may be expressed within Rapide 1.0 as a constraint:

never

( ?A in event(), ?B in event(), ?C in Clock )

?A �> ?B where not ?C .Finish(?A) � ?C .Start(?B);

Similarly, the various time orderings obey a consistency invariant:

� Consistency invariant between time orderings

For all events A, B, and clocks, C;C0,

A <C B ! not B <C0 A.

This means that, with respect to any two clocks, an event that precedes any event temporally

with respect to one clock may not follow that event temporally with respect to the other clock.

This invariant may be expressed within Rapide 1.0 as a constraint:

never

( ?A in event(), ?B in event(),

?C1 in Clock, ?C2 in Clock )

?A � ?B where ( ?C1 .Finish(?A) < ?C1 . Start(?B) and

not ?C2 .Finish(?B) < ?C1 . Start(?A) );

6 Architecture Simulation and Analysis

When a Rapide model is executed a causal event history of its behavior is generated. Each

object receives a Start event when it is elaborated. It may react by generating events. Con-

nections between components of the model (i.e., objects it contains) then trigger and generate

events at the interfaces of components. Components react to these events, and generate further

events, which are communicated by connections to other components, and so on. Models can be

organized hierarchically, and connections can also connect actions in the interface of an object

with actions in interfaces of its components. A model can also interact with its environment

through a prede�ned I/O module.

The simulation result is a poset showing the causal history of events in the execution, indepen-

dent activity, timing, data
ow and other properties. This gives us the capability to simulate
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To make maximal use of causal event simulations requires new kinds of analysis tools. Rapide

is presently supported by three kinds of tools for analyzing simulations:

� Constraint Checkers. Constraint checkers automatically detect violations of constraints

in the simulations. Whenever a violation is detected, the checker enters an event in the

simulation at the causal position where it happened. The causal history of a violation

event indicates why the violation happened.

� Poset Browsers. It is often necessary to browse a simulation simply to see how a given

architectural design behaves. Indeed, one of the most important uses of early lifecycle

simulation is experimental. Poset bowsers usually represent causal event simulations in a

DAG form, nodes representing events and directed arcs representing causality. They sup-

ply a user interface with pattern directed operations to display pieces of large simulations,

and to organize a display into a hierachy of sub-simulations.

� Animation Tools. The wealth of information in posets together with the somewhat ab-

stract display formats provided by browsers, often results in the human viewer missing

important properties. 13 Animation tools give the user a capability to animate in visual

forms the event activity in any poset. usually, a picture of the architecture is used as the

basis for animation, and both the poset and the animation can be viewed simultaneously.

The user is thereby given a human understandable intepretation of a poset simulation |

in fact more than one animation view of the same poset can be provided.

6.1 Architecture-Driven System Development

Rapide is also intended to allow exploration of new methods of using architectures to build and

test systems. In one approach to architecture driven system development, a Rapide interface

connection architecture is used as a framework for building a system. One starts with an archi-

tecture consisting of interfaces and connections. The architecture is executed under di�erent

input scenarios to simulate the behavior of a system with that architecture. Assuming simu-

lations of the architecture show behavior that meets the requirements for the system, modules

are then assigned to interfaces one at a time. Each module must conform to the interface it

is assigned to (Rapide type rules help towards this, but as mentioned in Section 2.1, testing

satisfaction of semantic constraints is a di�cult problem.) When a module is assigned to an

interface, the module is executed and the role of the interface behavior is to act as a constraint

to which the module's behavior must conform (in addition to the semantic constraints). The

result of assigning a module to an interface is called an instance of the architecture. Each

instance is tested for comformance to the architecture's interface constraints, and also to the

constraints on the architecture's connections. The �nal result should be a system of modules

satisfying the architecture's interface and constraints.

This style of architecture-driven system development has an analogy with hardware. Interface

connection architectures can be viewed as \architecture boards" in which interfaces play the

role of \plugs" and \sockets" into which component modules can be plugged, and connections

play the role of \wires" between the sockets.

Methodology surrounding the use of architectures, to prototype behavior and predict system

performance early in the life cycle, and to develop �nished systems by instantiation (i.e., re-

placing interfaces by modules, probably in languages other than Rapide) is beyond the scope

of this overview. There are many outstanding research questions surrounding Rapide, both

practical (e.g., developing good simulation and analysis tools), and theoretical (e.g., determin-

ing if a module conforms to its interface, and if the connections in an architecture satisfy the

architecture constraints).

13This happens in all manner of simulations nowadays, whether or not causal information is avialable.
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7 Dining Philosophers

The familiar classic example of the dining philosophers due to Dijkstra is a simple distributed

system with a resource contention problem. Here is a version of it that serves to illustrate some

of the Rapide architecture concepts and issues related to designing \user friendly" tools for

analyzing posets.

You can see the code for this architecture in the �gures ahead. There are two types of compo-

nent, a type of round table at which a number of philosophers can sit, and a type of philosopher.

To understand the architecture, �rst scan the interface types, then see how the objects of those

types are connected in the architecture.

The Table interface is parameterized by the number of philosophers | it is a type constructor,

each instance of which is a type of table object, e.g., the type of tables for one philosopher, two

philosophers, etc. A table controls and dispenses the chopsticks by means of its interface actions.

Actions specify the events that objects of the interface type can receive or generate. Tables

can receive StickRequested and StickRecovered events (mode in), and can generate ReleaseStick
events (mode out).

The behavior of tables is speci�ed by the reactive rules in the behavior part. Essentially, a

table will release a chopstick to a requestor when the chopstick becomes free (i.e., is initially

free, or is recovered).

The rule,

(?a in Chopstick, ?i in PhilosopherId)

StickRequested(?a, ?i) and FreeStick(?a) k> ReleaseStick(?a, ?i);;

will trigger whenever a chopstick ?a is requested by something denoted by ?i (the architecture

connections will show that ?a, ?i have to be bound to ids for a Chopstick and a Philosopher)

and ?a is free. "?a is free" if an event FreeStick(?a) has been generated and not yet used to

trigger a rule (the Rapide semantics of behavior rules allows an event to be used only once

to trigger any given rule, but may contribute to triggering di�erent rules by helping to match

their pattern triggers.) When the rule triggers it generates an out event, ReleaseStick with the

bindings of ?a, ?i.

The k> operator indicates an agent rule. The semantics is that each triggering of an agent

rule is executed by a new thread of control. As a result, the event generated by the rule will

be causally dependent upon the two triggering events, but will be independent of any events

generated by previous triggerings of the rule.

A Chopstick gets to be free again according to this behavior rule:

(?a in Chopstick)

StickRecovered(?a) k> FreeStick(?a);;

Note that FreeStick is an internal event of the Table types (i.e., is declared in the behavior

part), which means that it is not visible at the architecture level.

The event behavior of a Table (i.e., the causally related events it will generate in response to the

events it receives) can be predicted from the semantics of behavior rules. The three behavior

rules of Tables execute independently, so the events they generate are independent { unless the

rules are triggered by events that other rules generated, like FreeStick. So a ReleaseStick event

will depend upon a FreeStick and a RequestStick event { and by transitivity, the events that

caused them. So it will also have a StickRecovered event (with the chopstick in question as

argument) in its history.
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Each table is a multi-threaded object, executing independently of other objects, unless it com-

municates with them by means of the architecture's connection rules.

���������������� Types �������������������������

type PhilosopherId is integer;

type Chopstick is integer;

���������������� Table type. ��������������������

type Table(numPhils : integer) is interface

action in StickRequested(n : Chopstick; id: PhilosopherId),

StickRecovered(n : Chopstick);

action out ReleaseStick(n : Chopstick; id: PhilosopherId);

behavior

action FreeStick(n : Chopstick);

begin

start => for i: integer in 0..(numPhils�1) do {{ table rule 1.

FreeStick(i);

end for;;

(?a in Chopstick, ?i in PhilosopherId) {{ table rule 2.

StickRequested(?a, ?i) and FreeStick(?a) jj> ReleaseStick(?a, ?i);;

(?a in ChopStick) {{ table rule 3.

StickRecovered(?a) jj> FreeStick(?a);;

end Table;

The philosopher interface type speci�es philosopher objects. They can perform two activities:

they can generate RequestStick and PutDownStick events (out actions), and they can receive

StickReceived events (an in action). These events carry Ids for a chopstick and a Philosopher.

Philosophers are generated by a simple module generator, newPhilosopher, which takes the Id

and the number of philosophers as parameters, and generates a module containing instances

of the concurrent processes. These processes de�ne the behavior of philosophers: i.e., when a

philosopher generates RequestStick and PutDownStick events, and when it generates certain

internal events such as thinking and eating.

The semantics ofRapide processes allows us to reason about the event behavior of Philosophers.

A philosopher must acquire two chopsticks in order to eat rice. The two processes that trigger on

a Hungry event will request the two chopsticks independently. Another process triggers when a

pattern of two StickReceived events match (each having a correct chopstick for the philosopher),

where the events may be either causally dependent or not (the � relation). This process then

generates an Eat event, which in turn will trigger a process that generates PutDownStick events.
Consequently, the StickReceived events will be in the causal history of each of the PutDownStick
events.
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�������������������Philosopher type ��������������������
type Philosopher is interface

action out RequestStick(n: Chopstick; id: PhilosopherId),

PutDownStick(n : Chopstick);

in StickReceived(n : Chopstick; id: PhilosopherId);

end;

��������������������module generator for philosophers��������

module newPhilosopher(id: PhilosopherId; numPhils:integer) return Philosopher is

action Hungry(),

Think(),

Eat();

parallel

when Start

do

Hungry();

end;

jj
when Hungry

do

RequestStick(id, id); { { request left chopstick

end;

jj
when Hungry

do

RequestStick((id+1) mod numPhils, id); { { request right chopstick

end;

jj
when

StickReceived(id, id) � {{ received left chopstick

StickReceived((id+1) mod numPhils, id) { { received right chopstick

do

Eat();

end;
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jj
when

Eat

do

PutDownStick(id);

PutDownStick((id+1) mod numPhils);

Think();

end;

end;

NOTE: we could have used behavior rules in the philosopher interface, as we did for Tables, but

we would have to introduce the number of philosophers as a parameter, and this is an imple-

mentation detail which should not appear in the interface. So we illustrate the use of module

generators (which, generally, can contain more complex programs than interface behaviors).

The architecture, diners1(), contains one table and an array of 5 philosophers. Philosophers

(i.e., the objects generated by the newPhilosopher module generator) have an Id number which

di�erentiates them from their colleagues. The table associates two chopsticks with each philoso-

pher by means of chopstick Ids (actually all Ids are integers anyway!). The Ids encode the model

of a chopstick being placed to the left and to the right of each philosopher, In diners1, philoso-

phers and the table interact through actions de�ned in their interfaces. These actions are wired

together by connection rules in the connect section of the architecture.

A connection rule triggers on a pattern of out events generated by objects in the arhcitecture

(and also in events of the architecture's interface received by the architecture itself) and in

turn generates a pattern of in events which are received by objects (and also out events of the

architecture's interface). 14 An example connection rule is:

(?a in Chopstick, ?i in PhilosopherId) Ta.ReleaseStick(?a, ?i)

to

Ph[?i].StickReceived(?a, ?i);

which is a point-to-point communication between the Table and each of the requesting Philoso-

phers. It connects the Table's out action, ReleaseStick to a unique Pilosopher's in action,

StickReceived, depending upon the Id of the Philosopher. Here \connect" means that when-

ever the Table generates a ReleaseStick event the rule will trigger and generate a StickReceived
event of the Philosopher whose Id is the binding of ?i. The connection operator, to means

that the two events are causally equivalent (i.e., indestinguishable by either the cause or time

relations).

We use a generate statement to de�ne the connections between the out actions of each Philoso-

pher in the array and the in actions of the Table | a "fan-in" of 5 rules; the generate is an

iterative statement that de�nes the set of connections that are instances of its connection rules

for each value of the iteration parameter, j. 15 There are two sets of 5 rules in the generate.

The �rst set of rules de�nes connections so that whenever a Philosopher generates RequestStick

events, the Table will receive StickRequested events with the same parameter bindings. The

second set of connections trigger whenever a Philosopher generates a PutDownStick event for a
chopstick ?a and then generate a StickRecovered for the same ?a which is received by the Table.

When diners1 is executed, the Philosophers activity is triggered by their Start events, which

makes them hungry, then they request chopsticks, etc. Philosophers are active for only one

14Architectures can be nested as components of other architectures through their interface events.
15Generate connection rules can be found in hardware description languages like VHDL. In combination with

theRapide pattern-triggeredconnections, they are a powerful notation for de�ning large numbers of connections.
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cycle of eating and thinking; it is easy to change this so they continue to cycle, but we don`t

do it to keep our posets small.

NOTE that di�erent executions of diners1 may produce posets with di�erent causal relation-

ships between events because of the non-deterministic behavior rules (if two rules trigger on

the same events, Rapide does not de�ne an order in which they execute). Indeed, some posets

will show that all philosophers ate while other posets will show the usual deadlock with nobody

eating.

�������������� Dining Room architecture. �������������������

architecture diners1() is

num philosophers : integer is 5;

Ph : array(PhilosopherId, Philosopher) is (

0 is newPhilosopher(0, num philosophers),

1 is newPhilosopher(1, num philosophers),

2 is newPhilosopher(2, num philosophers),

3 is newPhilosopher(3, num philosophers),

4 is newPhilosopher(4, num philosophers)

);

Ta: Table(num philosophers);

connect

(?a in Chopstick, ?i in PhilosopherId) Ta.ReleaseStick(?a, ?i)

to

Ph[?i].StickReceived(?a, ?i);

for j : PhilosopherId in 0..num philosophers�1 generate

(?a in Chopstick, ?i in PhilosopherId) Ph[j].RequestStick(?a, ?i)

to

Ta.StickRequested(?a, ?i);

(?a in Chopstick )Ph[j].PutDownStick(?a)

to

Ta.StickRecovered(?a);

end;

end architecture diners1;

8 Viewing and Analyzing Posets

Figure 3 is a DAG representation of a poset generated by this model. The POV (Point Of View)

viewer displays a poset in this kind of representation, and provides capabilities to explore the

poset. 16

16The POV is being implemented at Stanford by Francois Guimbretierre, Earnest Lam, Alvin Cham and

Marc Abramovitz. An earlier prototype viewer was implemented by Doug Bryan.
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Figure 3: A poset generated by the diners1 system

Figure 3 is a very simple example of a poset. The DAG is oriented vertically with the causally

earlier events at the top. Here are a few things it tells us at �rst glance about the execution of

our dining philosophers. There are 7 Start events, one for the Diners1 architecture, the Table

and the 5 Philosophers. They are all in a causal chain corresponding to the execution of a single

thread that elaborated Diners1. The second start is the Table's because it immediately causes

a FreeStick. Each start causes a sub-poset of events, the initial events being all independent of

one another | so there are initially 7 threads of control after starting. We can see the Table's

�rst sequential behavior rule results in a single causal chain of FreeStick events. (Using the

POV we could trace this chain by placing the cursor on its arcs. An arc \lights up" when

the cursor is on it and the thread id and causally related events coresponding to the arc are

displayed in the window. So a chain corresponding to a single thread can be easily traced.)

A Philosopher, after starting, immediately generates a Hungry event which then triggers two
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parallel processes (see the newPhilosopher module). This causes two independent RequestStick
events. These are shown as causing ReleaseStick events generated by the Table. How did that

happen? Well, a philosopher's RequestStick action is connected to the Table's StickRequested
action by a to connection rule. This kind of rule implies that the two events, a triggering

RequestStick and the event it generates, StickRequested, are equivalent. So the node showing

\RequestStick" is an equivalence class of two events, but only one of them is displayed. (By

clicking with cursor and mouse on an event node, POV will display all events in the equivalence

class.)

Tracing a little further, a StickRequested event received by the Table, and a FreeStick event with
the same Chopstick Id, will trigger the Table's second behavior rule and generate a ReleaseStick
event. So, a ReleaseStick event is caused by two events. Again, due to a to connection rule (the

�rst one), a node labelled with \ReleaseStick" represents an equivalence class containing also a

StickReceived event received by a Philosopher. When a Philosopher receives two StickReceived
events, it eats and then generates PutDownStick events for the two sticks. Notice that the

PutDownStick events are causally ordered because they are generated by a single sequential

process in a Philosopher, in constrast to the RequestStick events. There is no good reason for

this | they could be put down independently.

More importantly, notice that since an Eat event must have two StickReceived events causing it,

and it causes the PutdownStick events, then the StickReceived events are in the causal history

of both PutDownStick events for the same pair of chopsticks that were used in eating.

The PutdownStick events are connected (and equivalent by the third to connection rule) to the

Table's StickRecovered events, which cause the Table's behavior to generate FreeStick events.

A Philosopher's second PutDownStick event is followed by a Think event, which is the end of

its activity.

Figure 4 shows some features of POV. First, the poset in Figure 3 has been �ltered down to the

poset in Figure 4. This �ltering was done by using the POV to select the causal history of the

third StickReceived event. Events that are not selected are deleted from the poset. In general

one can select a sub-poset matching a given pattern. This feature allows the user to reduce the

poset to events \of interest". So, what we are looking at is the causal history of a particular

StickReceived event. All StickReceived events in this poset have been \selected" { a facility of

the POV which results in selected events being colored. The tearo� windows show the result

of querying the selected (colored) events with the POV by clicking on them. Each window

shows the data of the event: (i) the name of the corresponding action, (ii) the Id of the object

generating the event (by calling the action), (iii) the Id of the object receiving the event, and

(iv) parameters of the events. Parameter #1 of these events is the chopstick Id. So we see that

Philosopher #31 received sticks #1 and #2, which allowed it to eat, and causally afterwards to

put down stick #1, which was then freed. Stick #1 was then received by Philosopher #30. 17

It is not hard to see using the POV on the full poset that all StickReceived events with the same

chopstick as parameter are causally related. This gives us a hypothesis (H) that StickReceived
events with the same chopstick parameter are always causally related in any poset behavior of

this model, which is easily shown to be true.

The poset in Figure 3 has varied during the writing of this paper. Sometimes it shows that

all Eat events are causally related. But, the model can also generate posets in which some

Eat events are independent because the Philosophers may be scheduled di�erently on di�erent

executions. The DAG layout of the poset makes it hard to see which of these two posets we have

in the Figure. This illustrates the need for ways to select events of interest | e.g., we might

like to be able to say, \show all the Eat events" and get displayed the subposets containing just

those events. More generally, we may want to organize a complex poset into subcomputations

17Stick #2 was also put down, but does not appear in the causal history of the event whereby Philosopher
#30 receives stick #1.
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Figure 4: Exploring a poset with the POV

corresponding to abstraction levels in the model's architecture and components | e.g., just the

top level events in Diners1. POV provides such capabilities, but we cannot describe them here.

Figure 5 shows another behavior of Diners1 | one in which deadlock occurs.

9 Constraining poset behaviors

Figure 5 brings up another question. Remembering that Rapide is intended as a prototyping

language, which means essentially that it can be used to explore properties of a proposed system

architecture before it is really well understood or \completely decided upon". If the posets

produced by a model are large or complex, one may well miss seeing some important aspects of

the model's behaviors with the POV. So, Rapide provides a formal constraint language which
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Figure 5: Deadlock in the dining room

can be used to specify constraints on behaviors. There is a constraint checker which will detect

if a poset contains violations of constraints. 18

Constraints can be used in two ways. First, to automatically analyze posets for particular

properties. Secondly, to build a purely constraint-based model of a system architecture |

one that has no executable behavior at all, but simply bounds the allowable behaviors by

constraints. In the latter case, a constraint-based architecture is one approach to de�ning a

18The present constraint checker detects violations of only a subset of the constraint language. It is experi-
mental, and a new constraint checker is planned.
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standard for systems to conform to.

We do not have space to go into the details of the Rapide constraint language, 19 so we give

just a couple of examples of constraints on the dining philosophers.

An example of a constraint in the interface of the Philosopher type, specifying part of the

behavior of philosopher objects is:

�� Philosopher Protocol:

match [� rel �!]

(?id : Integer)

(RequestStick(?id, ?id) � RequestStick(?id, (?id+1) mod numSeats)) �!
(StickReceived(?id, ?id) � StickReceived(?id, (?id+1) mod numSeats)) �!
(PutDownStick(?id, ?id) � PutDownStick(?id, (?id+1) mod numSeats)) ;

The poset occuring at the interface of a Philosopher (i.e., those events corresponding to the

actions declared in the interface) must match the constraint. The pattern of the constraint is a

pair of RequestStick events in any causal relation to one another (i.e., dependent or independent,
denoted by the � relation), which must both cause two StickReceived events (also this pair may

be in any causal relationship to one another), which must cause a pair of PutDownStick events.
The iterator preface of the constraint ( [* rel �!]) speci�es arbitrarily many (*) matches of the

pattern, and each match must be causally related to the next one (i.e., in the relation, �!). So

the interface behavior must be a causal chain of matches of the pattern. Many di�erent modules

can satisfy this constraint. Similar constraints can be used to specify essential properties of

Tables. Our present constraint checker does not check for violations of constraints like this

example.

Note, that since the constraint speci�es relationships between both out and in events of philoso-

phers, it speci�es a property of the environment that Philosophers interact with. Namely,

whenever a Philosopher generates RequestStick events, the environment shall causally respond

with StickReceived events | and only then. Certainly, the environment cannot simply send

a Philosopher unsolicited chopsticks, independently of a request for them. This point, that

the interfaces of types of objects need to specify something about the environment in which

the objects are intended to operate, is an on-going research area in Architecture De�nition

Languages at present. Causal relationships between the environment and the objects are a

powerful constraint mechanism.

Now, what about deadlock? This is a constraint on the architecture, but because of the causal

relations in our model, it can be expressed as a constraint on the interface events of Tables:

never [i : positive 0..4 rel k ] Ta.ReleaseStick(i, i);

never [i : positive 0..4 rel k ]

Ta.ReleaseStick(i, (i+1) mod 5);

These two constraints are placed in the architecture, Diners1. They are violated if a Table ever

generates �ve causally independent ReleaseStick events, one to each Philospher. Because of

hypothesis (H) about our Diners1 model, one of these two constraints will be violated if and

only if deadlock happens. 20 Our present constraint checker detects violations of this kind of

\never" constraint | see Figure 6.

19The constraint language is being redesigned by Walter Mann, John Kenny, Sigurd Meldal, Woosang Park

and David Luckham.
20We leave �nding an elegant proof of this to the reader.
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10 Research and development Issues

In this �nal section we mention a few of the research and development issues surrounding

Rapide and its present toolset. Many open topics, particularly to do with the design of

Architecture De�nition Languages, and with animation tools, are omitted altogether.

10.1 Tracking Causality

The causal history of an event is a data component of the event itself as described in Section 3.

This causal history is computed when an event is generated by the well-known method of

vectors of counters associated with threads of control | a method attributed independently to

Fidge [Fid91] and Mattern (F-M) [Mat88]. One problem a�ecting the ability of the Rapide

simulator to handle large models is the space consumed by the F-M vectors | the worst case

upperbound is n2 where n is the number of threads of control. 21 Making the F-M vector

method more e�cient, e.g., by taking advantage of the communication structure de�ned in the

model's architecture to reduce the size of the vectors, and garbage collect them at appropriate

points in a computation. This is a very important issue for us. 22

There may be methods of encoding and tracking causal history that are entirely di�erent from

F-M vectors. If there are, they need to be investigated and compared for e�ciency with F-M.

10.2 Patterns and Constraints

Design of pattern and constraint languages for specifying patterns of posets with timing is

very much in its infancy. The Rapide constraint language is currently undergoing a major

revision. Although there are close similarities with languages such as regular expressions and

various temporal logics, the speci�cation of causal dependence and independence introduces a

new dimension.

Perhaps an even more pressing issue is the development of e�cient algorithms for matching

patterns on posets. 23 E�ciency of pattern matching a�ects both the execution of reactive

rules, and the checking of posets for constraint violations.

10.3 Poset Viewers

Design of poset viewers and their implementation is entirely new ground. I mention two areas:

User Interfaces and Graph layout algorithms.

For user interface design there is very little relevent experience with previous tools to draw

upon. For example, Netscape Viewers had the previous Macintosh UI as well as various o�ce

software UIs to draw ideas and idioms from. But there is not much prior art on which to draw

for poset viewer interfaces. We must pretty much experiment on our own with such questions

as: 24

� what common processes of poset viewing and manipulation will users �nd most natural

and useful | those are the ones the UI should make easy to carry out,

21A performance anlaysis of F-M vectors is being undertaken by Park and Vera, using the Rapide model of
the Sparc V9 instruction set.

22James Vera is currently working on this issue, and some previous results are given in [MSV91].
23John Kenney is working on a new Rapide pattern matcher.
24The new POV is being developed by Francois Guimbretierre and Marc Abramowitz.
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� what tools for poset analysis should be provided to support the processes,

� how to organize access to the tools into menus in the Viewer UI.

Our basic premiss that posets are best represented by some kind of DAG format appears quite

natural. The visualization tool (called Raptor) which is not discussed here, provides the ability

to construct other visualizations of posets. But, in order to persist with DAG formats as our

primary visual presentation, we need layout algorithms that are both (i) fast, and (ii) stable |

i.e., the layout does not change radically under small operations on the poset, such as deleting

one or two events. Both of two these issues with DAG layout algorithms appear to be interesting

research areas at present.
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Figure 6: Deadlock with constraint violation history
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