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Abstract

Processor cycle times are currently much faster than memory cycle times, and the trend has been
for this gap to increase over time. The problem of increasing memory latency, relative to processor
speed, has been dealt with by adding high speed cache memory. However, it is di�cult to make
a cache both large and fast, so that cache misses are expected to continue to have a signi�cant
performance impact.

Prediction caches use a history of recent cache misses to predict future misses, and to reduce the
overall cache miss rate. This paper describes several prediction caches, and introduces a new kind
of prediction cache, which combines the features of prefetching and victim caching. This new
cache is shown to be more e�ective at reducing miss rate and improving performance than existing
prediction caches.
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Figure 1: Impact of Memory Latency on Dynamic Processor

1 Introduction

Processor cycle times are currently much faster than memory cycle times, and the trend has been
for this gap to increase over time. The problem of increasing memory latency, relative to processor
speed, has been dealt with by adding high speed cache memory. However, it is di�cult to make
a cache both large and fast, so that cache misses are expected to continue to have a signi�cant
performance impact.

Dynamic scheduling has been proposed as a technique for tolerating memory latency[CCMH91,
BP91, GGH92]. By speculating through branches, fetching load instructions, and issuing these as
soon as the address is available, the dynamic processor can e�ectively prefetch data. A non-blocking
cache[Kro81] enables this prefetching to be quite e�ective[BP91].

Figure 1 demonstrates this e�ect, but also shows that there is still a signi�cant impact on perfor-
mance due to memory latency. This graph summarizes the performance in instructions per cycle
of a group of benchmarks, run on a dynamically scheduled processor, with three di�erent memory
subsystems. The details of the processor model and benchmarks are provided in section 4. The
memory subsystem labeled \Perfect" assumes that all cache misses are handled in one cycle.

The gap between the performance in the case of a non-blocking cache and the performance in the
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perfect memory case represents the impact of memory latency on the performance of a modern
dynamically scheduled processor, such as the Intel P6 and the PA{8000[Gwe95, Gwe94]. This
paper studies a class of techniques, predictive caches, that have been proposed to help close this
gap.

Predictive caches use a history of recent cache misses to predict future misses, and to reduce the
overall cache miss rate. Stream bu�ers[Jou90] use cache misses to drive prefetching, and so are an
example of a predictive cache. Stream bu�ers predict that future cache misses follow in sequential
order from current cache misses.

Victim caches, also introduced in [Jou90], are another example of a predictive cache. The victim
cache predicts that cache lines that were recently replaced in the cache will be referenced again.

In this paper we introduce a new kind of predictive cache, which combines the features of prefetching
and victim caching. By adapting dynamically to the program behaviour, as revealed in the miss
history, this cache is more e�ective at reducing miss rate and improving performance than stream
bu�ers or victim caches.

2 Predictive Caches

This section looks at the performance of two kinds of predictive caches, stream bu�ers and victim
caches. For the purposes of this study, only data references are considered, and the memory
references due to instruction fetch are ignored.

2.1 Stream bu�ers

Stream bu�ers were �rst proposed by Jouppi[Jou90] as an extension to the older idea of prefetching
on a cache miss[Smi82]. The idea is to allocate room for a series of sequential fetches when a cache
miss occurs.

On a cache miss, the stream bu�ers are checked to see if the data is present. If so, then the data
is fetched from the stream bu�er into the cache, and removed from the stream bu�er. Succeeding
lines in the stream bu�er are moved forward to take its place.

If the data is not present in any stream bu�er, then the cache line is fetched from the next level in
the memory hierarchy. In addition, the least recently used stream bu�er is allocated to service this
new (potential) data stream. Once a stream bu�er is allocated, it fetches data sequentially from
memory using idle bus cycles. It continues to fetch ahead as long as there is room in the bu�er.
The stream bu�ers are serviced in a round robin fashion when more than one is active.

In this study, four stream bu�ers of eight entries each were allocated. This con�guration was chosen
to achieve most of the bene�t attainable with stream bu�ers, based on Jouppi's study[Jou90].
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2.2 Victim caches

A victim cache is a small, fully associative cache that holds data recently pre-empted from the
main cache. On a cache miss, the victim cache is checked to see if the data is present. If so, then
the data is fetched from the victim cache, and that line in the victim cache is freed.

On every cache miss, the line in the main cache being replaced is copied to the victim cache. If the
victim cache is full, the least recently referenced line in the victim cache is replaced. In this study,
we used a cache size of 32 lines, to match the number of cache lines present in the stream bu�ers.

2.3 Comparing victim caches to stream bu�ers

The performance of stream bu�ers and victim caches are compared in the �gures 2 and 3. The
benchmarks used for these graphs and the simulation methodology are described in section 4.

These graphs show the save ratio, which is the percentage of cache misses that hit in the stream
bu�er or the victim cache, respectively. In the case of stream bu�ers, partial hits can also occur,
when the data requested isn't yet in the stream bu�er, but is already on the way. The middle
column for each benchmark counts these partial hits as a save.

In comparing the performance of stream bu�ers and victim caches, we see that sometimes one
technique is preferable, and sometimes the other. The preferred technique varies with the cache
size as well as with the benchmark. These graphs also show that stream bu�ers and victim caches
are complementary. These observations motivated the development of an adaptive technique that
combines the prefetching behaviour of stream bu�ers with victim caching.

3 Using the Cache Miss History

Both stream bu�ers and victim caches use only the most recent cache miss to drive their actions.
If we keep a history of recent cache misses, we can use this to a�ect the caching algorithm. For
example, the stream bu�er �lter[PK94] uses a history table of the cache line addresses of recent
misses to drive stream bu�er allocation. This technique, however, doesn't help in deciding between
prefetching new lines and caching old lines (victims).

In our proposal, a history of the cache line indices of recent misses is maintained. The cache line
index is the bit �eld from the data address that is used to select the set of lines to be checked for a
tag match. The simulations in this study all assume that the main cache is four way set associative,
so the cache line index in this case selects a set of four cache lines.
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Figure 2: Stream Bu�ers and Victim Cache on L1 Cache
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Figure 4: Predictive Victim Cache on L1 Cache

3.1 Miss history driven victim cache

To decide whether victim caching is likely to be e�ective, we use the idea of hot spots in the cache.
When cache misses are uniformly spread out over all the cache lines, then a victim cache is unlikely
to be e�ective. In this case the victims get pushed out of the victim cache before they are referenced.
On the other hand, if cache misses are clustered in a hot spot consisting of a few cache lines, then
the victim cache has a better chance of success. A hot spot is indicated whenever the same cache
line index occurs more than once in the history of recent misses.

The miss history driven victim cache keeps a history of the ten most recent cache misses. On each
cache miss, it checks to see if the cache line index of the miss matches an entry in the miss history.
If a match occurs, then it copies the cache line about to be replaced (the victim) into the victim
cache. Otherwise it doesn't cache the victim. On each cache miss, the cache line index of the miss
is written to the miss history. The oldest entry in the miss history is discarded to make room, i.e.
the miss history is a queue.

The e�ectiveness of this technique is shown in �gure 4. This graph compares a standard victim
cache to a victim cache driven by the miss history, labeled \Pred. Cache 1". The predictive victim
cache is generally as e�ective as the victim cache (and more e�ective in one case). The results for
the L2 cache (not shown) also show that the predictive victim cache matches the save rate of an
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ordinary victim cache.

The predictive victim cache outperforms the victim cache in the case where a large number of
misses occur between reuse. If these misses are on di�erent cache lines, then the predictive victim
cache decides not to cache them, preserving potentially useful data present in the cache.

3.2 Miss history driven prefetching

This technique can be extended to support prefetching as follows. A series of sequential misses that
would be captured by a stream bu�er show up in the miss history as a series of misses to adjacent
cache line indices. So a prefetch is indicated whenever the cache line index of the miss is adjacent
to a cache line index present in the miss history.

On each cache miss, the history bu�er is searched for a match with the cache line index of the
current miss, and with the two values adjacent to it. This requires three associative lookups in
parallel, but the table to be searched is quite small, as it only has ten entries. The table width is
small as well; for example, a 32K cache with 16 byte lines has a nine bit cache line index.

These lookups allow forward strides, backward strides and cache hot spots to be detected. If a
match occurs with the current cache line index, a hot spot in the cache is indicated. If a match
occurs with the previous cache line index, then a forward stride is indicated, and backward strides
are indicated by a match with the cache line index following the current index.

When a stride is detected, instead of copying the victim line into the victim cache, a spot is reserved
in the victim cache and a prefetch is issued. The victim cache is acting as a prefetch bu�er in this
case. The address for the prefetch is computed by adding (or subtracting, for a backward stride)
the size of the cache line to (from) the address of the current cache miss. All other operations
proceed as described previously.

If more than one match occurs, then a decision has to be made about which course of action to
take. In this study a �xed priority was assumed, in which forward strides take precedence over
backward strides, and backward strides take precedence over victim caching.

In the following section we describe the simulation methodology used in this study, and the bench-
marks. The performance of the predictive caching scheme just described is presented in section 5.

4 Simulation Methodology and Benchmarks

In order to accurately model a dynamically scheduled processor, an execution based simulation
method was chosen. In this way the e�ect of cache misses on the instruction schedule can be
correctly modeled, as well as memory accesses that are generated along incorrectly speculated
paths. This information (speculative memory accesses) isn't available to a trace based simulator.
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Benchmark Instructions Miss rate [size] Miss rate [size]

L1 cache L2 cache

Compress 2.1M 8.83% [8K] 2.32% [128K]
Espresso 35.6M 7.75% [2K] 1.12% [ 8K]
Linpacks 67.3M 7.39% [8K] 2.21% [32K]
Sc 39.9M 6.41% [2K] 0.62% [32K]
Spice 88.5M 9.45% [8K] 2.55% [64K]
FFT 3.1M 6.30% [16K] 0.19% [32K]
Uncompress 1.6M 6.66% [2K] 0.96% [16K]
Wave 30.8M 10.23% [8K] 2.35% [32K]
Lisp 12.4M 4.11% [2K] 1.67% [ 8K]

Table 1: The Benchmarks

The disadvantage of an execution based simulation is that the speed of the simulation limits the
number of cycles that can be reasonably simulated. To allow the simulation of complete programs,
rather than an initial subset, the input data had to be reduced in some cases. The cache size was
then �xed for each benchmark to obtain miss rates comparable to those observed in real world
applications[MDO94].

4.1 The benchmarks

A set of benchmarks was chosen from the SPEC 92 benchmark suite, together with a one dimen-
sional FFT implementation and the Linpack benchmark, a collection of linear algebra routines.
This set was chosen in order to provide a variety of reference patterns and programming styles,
and includes both integer and 
oating point intensive benchmarks. All benchmarks were run to
completion, in some cases on a reduced problem size. Table 1 shows the benchmark length, in
instructions executed, and the level one and two cache sizes and miss rates for each benchmark.

4.2 The processor model

The processor model was selected to represent the current generation of dynamically scheduled
processors, such as the Intel P6 and the PA-8000[Gwe95, Gwe94]. It is a four issue, dynamically
scheduled processor, with register renaming, branch prediction, speculative execution, and precise
interrupts[HP90]. Instructions issue out-of-order, as their operands become available, and a reorder
bu�er is used to restore the precise state after an interrupt[SP85, Joh91]. The load/store bu�er has
32 entries, and the reorder bu�er is 64 entries long. For comparison, the P6 has 40 reorder bu�er
entries, and the PA-8000 has 56.

More detailed information on the benchmarks, processor model, and simulation environment are
available in [BF95].

8



4.3 The memory subsystem

The simulator supports only a single level cache. In order to investigate the impact of both level one
and level two cache misses, each benchmark was run with two di�erent cache sizes, one modeling
the �rst level cache, and the other modeling the second level cache. The cache is single ported, so
only one load or store instruction can access the cache each cycle. It is four way set associative
with an LRU replacement policy and a �xed line size of 16 bytes. The cache is write back with
write miss allocate. The same line size was used for the L1 and L2 caches, so that the e�ects due
to cache size and memory latency could be isolated from the e�ects due to varying the line size.

Both memory latency and memory bus tra�c were modeled. An L1 cache miss has a latency of 8
cycles and consumes 4 bus cycles. An L2 cache miss has a latency of 50 cycles and consumes 8 bus
cycles. The bus activity due to instruction cache misses and other system activities, for example
disk accesses, was not modeled.

Figure 1 shows the equally weighted average of the IPC of all the benchmarks, for the L2 cache
case. In many current systems, the miss penalties are considerably greater than the values assumed
in this study (private communication, Larry McVoy). In this case, there is even more performance
to be gained by reducing cache miss rates.

5 Results

The performance of three predictive caches are compared in the �gures 5 and 6. These graphs show
the save ratio, with partial hits not included. The miss history driven prefetching cache, labeled
\Pred. Cache 2", is the cache described in section 3.2.

In the case of the L1 cache, we can see that the predictive cache performs as desired, outperforming
both the victim cache and the stream bu�er. Unfortunately, in the case of the L2 cache, the
predictive cache doesn't perform as well as the stream bu�er or the victim cache in some cases.
What has gone wrong?

5.1 The importance of lookahead

One advantage that stream bu�ers have over the predictive cache is that stream bu�ers can fetch
far ahead of the computation during idle bus cycles. This is particularly useful in the L2 cache case,
when memory latency is so large. The predictive cache, on the other hand, never gets more than
one cache line ahead of the computation. If the results for partial hits are included, however, then
the picture changes. The predictive cache in this case outperforms both stream bu�ers and victim
caches. So the predictive cache is correctly issuing prefetches, but it isn't doing it soon enough.

The predictive cache fetches one cache line ahead of the computation, by adding the cache line
size to the address of the current cache miss. If we instead add twice the cache line size to the
address, this doubles the amount of lookahead. When the cache misses from the application occur at
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Figure 5: Predictive Caches on L1 Cache
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Figure 6: Predictive Caches on L2 Cache
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consecutive addresses, the predictive cache still prefetches consecutive addresses, but the addresses
are o�set by twice the cache line size from the miss addresses.

How far ahead to fetch depends on both the application and the memory latency. However, the
number of partial hits provides feedback as to whether we are prefetching su�ciently far ahead.
When there are a large number of partial hits, this indicates that we need to prefetch further ahead.
When there are no partial hits, then we are (possibly) prefetching too far ahead. We found that
the following feedback technique successfully maintained the correct degree of prefetching.

5.2 The �nal variation

This version of the predictive cache has three counters and a register to hold the prefetch amount,
which is the number that is added to the cache miss address to generate the prefetch address.
The counters are a tick counter, a miss counter, and a partial hit counter. The tick counter is
incremented every time the predictive cache is referenced, the miss counter and the partial hit
counter are incremented whenever the references misses or partially hits in the predictive cache,
respectively.

Every 20 ticks (i.e. when the tick counter reaches 20), the prefetch amount is re-evaluated, and
all the counters are set to zero. If there are two or more partial hits, then the prefetch amount is
multiplied by two. If there is one partial hit, then the prefetch amount is left unchanged. If there
are no partial hits, and more than ten misses, then the prefetch amount is divided by two. The
prefetch amount is initialized to equal the cache line size, and is never allowed to fall below this
amount.

The results of this scheme are shown in �gures 7 and 8. The adaptive scheme just described is
labeled \Pred. Cache 3". This �nal variation outperforms both the victim cache and stream bu�ers
in both cache con�gurations.

5.3 Tolerating memory latency

One way to measure how good a job the predictive cache is doing is to look at how well it closes
the gap between the base performance and the performance of the perfect memory subsystem. The
\latency tolerated" statistic (�gures 9 and 10) expresses this as a percentage, where 0% means the
performance of the predictive cache was the same as the base performance, and 100% means the
performance was the same as that of perfect memory.

These graphs show that the save ratio and the relative improvement in performance are well corre-
lated. For the L1 cache case, the average reduction in miss rate was 34%, and the average amount
of latency tolerated was 30%. In the L2 cache case, the average reduction in miss rate was 29%,
and the average amount of latency tolerated was 28%.
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Figure 7: Predictive Caches on L1 Cache
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Figure 8: Predictive Caches on L2 Cache
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Figure 9: Save Ratio and Latency Tolerance on L1 Cache
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6 Related Work

Palacharla and Kessler[PK94] proposed stream bu�er �lters, which reduce the memory bandwidth
requirements of a stream bu�er by screening out useless prefetches. In general, stream bu�er �lters
cause a slight reduction in the hit ratio of the stream bu�er, whereas the predictive cache scheme
proposed here has a better hit ratio than a stream bu�er. Also the miss history table proposed
here is much smaller than the stream bu�er �lter, since only the cache line index is stored.

The predictive cache reduces memory bandwidth requirements in three ways. First, no prefetching
is performed until a stream is con�rmed by two adjacent cache misses. Second, since the prefetching
is driven by cache misses, it stops as soon as the sequence of cache misses is complete. Third, victim
caching, when successful, provides data without consuming any bandwidth at all.

On the other hand, stream bu�er �lters can detect non-unit strides, where the predictive caches
discussed here don't. So for applications that access their data using large strides, the stream bu�er
�lter may provide better performance. The results reported in [PK94] didn't distinguish between
partial hits and hits, so they can't be directly compared to the results reported here.

Phalke and Gopinath[PG95] also propose a technique for prefetching based on the miss history.
Their idea is to model the addresses of the cache misses as a Markov chain. Their implementation
stores an approximate Markov model in main memory, and uses this to direct the prefetching. This
is considerably more costly than the simple techniques discussed here, but it also has a better miss
ratio than sequential prefetching.

Dahlgren, Dubois, and Stenstrom[DDS95] propose an adaptive scheme for determining how far
to lookahead when doing sequential prefetching. They use an estimate of prefetch e�ectiveness,
based on counting the number of prefetches and comparing it to the number of useful prefetches,
to update the degree of prefetching. This is similar to our lookahead proposal in section 5.2, except
that we use the frequency of partial hits for this purpose. Their paper studies the e�ectiveness of
sequential prefetching in the context of shared memory multi-processors.

Stride-directed prefetching[Skl92, FPJ92, CB95] has been proposed as another technique for hard-
ware prefetching. Stride-directed prefetching, like stream bu�er �lters, has the ability to detect
non-unit strides. However, to implement these techniques requires access to the instruction stream,
which may not always be available.

7 Implementation Issues

Although the miss history table is quite small, there is an approximate implementation that may
take up even less area. The idea is to keep a single bit per cache line index, stored adjacent to the
cache tags. When this bit is set, it indicates that there was a cache miss at that index. These bits
get cleared periodically, so that the set bits represent only the most recent misses.

When a cache miss occurs, the determination of whether to issue a prefetch or cache the victim
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line can be made by examining the three bits at the current, next, and previous cache line indices.
These three bits can be driven out to the cache control logic using a precharge technique, just like
the bit lines in the cache.

In addition to this prediction mechanism, an adder is needed to compute the prefetch address, a
register is needed to hold the prefetch amount, and a shifter is needed to multiply or divide the
prefetch amount by two. The shift amounts allowed are only +1, -1, or 0, so the shifter is small.
Three small counters are needed to implement the prefetch amount feedback mechanism.

8 Conclusion

In this paper, we have examined a class of techniques, predictive caches, that improve performance
by reducing the overall cache miss rate. The most e�ective of these techniques combines the features
of a victim cache and a stream bu�er, and adaptively determines the degree of lookahead. Using
this scheme, 28% to 30% of the memory latency was tolerated, over a range of cache sizes and miss
penalties, for this set of benchmarks.

We also showed that the save ratio (the percent of cache misses that hit in the predictive cache)
correlates well with the amount of latency tolerated. Note that the save ratio as computed here
does not include partial hits, which are accesses to cache lines that have been fetched but have not
yet arrived in the cache.
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