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Abstract

Reliability and scalability are major concerns when designing general-purpose operating
systems for large-scale shared-memory multiprocessors. This dissertation describes Hive,
an operating system with a novel kernel architecture that addresses these issues. Hive is
structured as an internal distributed system of independent kernels called cells. This
architecture improves reliability because a hardware or software error damages only one
cell rather than the whole system. The architecture improves scalability because few
kernel resources are shared by processes running on different cells. The Hive prototype is
a complete implementation of UNIX SVR4 and is targeted to run on the Stanford FLASH
multiprocessor.

The research described in the dissertation makes three primary contributions: (1) it
demonstrates that distributed system mechanisms can be used to provide fault
containment inside a shared-memory multiprocessor; (2) it provides a specification for a
set of hardware features, implemented in the Stanford FLASH, that are sufficient to
support fault containment; and (3) it demonstrates how to take advantage of shared-
memory hardware across cell boundaries at both application and kernel levels while
preserving fault containment. The dissertation also analyzes the architectural and
performance tradeoffs of multicellular kernels.

Fault injection experiments conducted using the SimOS machine simulator demonstrate
the reliability of the Hive prototype. Studies using both general-purpose and scientific
workloads illustrate the performance tradeoffs of the multicellular kernel architecture.

Key words and phrases: Hive, Stanford FLASH, UNIX SVR4, multicellular architecture,
operating system reliability, operating system scalability, fault containment, fault
tolerance, shared-memory multiprocessors, CC-NUMA multiprocessors, distributed
systems.
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Chapter 1

Overview

This dissertation describes Hive, an operating system designed to improve the reliability and

scalability of large general-purpose shared-memory multiprocessors. Hive is targeted to run on

the Stanford FLASH multiprocessor, a machine currently being built at Stanford.

Hive is a prototype implementation of a novel kernel architecture called a multicellular kernel.

Rather than running as a single shared-memory program that manages all the machine’s

resources, a multicellular kernel partitions the machine and runs an internal distributed system of

multiple kernels called cells. This architecture improves the reliability of the system compared to

previous multiprocessor kernel architectures since a hardware or software error in one cell does

not crash the whole machine. It also improves scalability since most application requests are

serviced by the cell where the application is running, reducing both kernel synchronization delays

and memory system bisection bandwidth requirements.

Previous work on multicellular kernels has focused only on their scalability benefits. The research

described in this dissertation makes three primary contributions:

• demonstration that distributed system techniques can provide fault containment inside a

shared-memory multiprocessor, despite the possibility of wild writes due to software errors;

• specification of a set of hardware features for FLASH, generalizable to other multiprocessors,

that is sufficient to support hardware and software fault containment; and

• demonstration that cells can take advantage of shared-memory hardware across cell

boundaries at both application and kernel level while preserving fault containment.

This chapter introduces the system and the experimental evaluation done in the dissertation. I

start with a description of the FLASH machine whose design stimulated the development of Hive.

1.1 The Stanford FLASH multiprocessor

FLASH is a shared-memory multiprocessor designed to scale to thousands of processors. To reach

this gigantic size, FLASH distributes main memory across the nodes of the machine and uses a

scalable interconnect network rather than a shared bus (Figure 1.1).
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FLASH is a representative CC-NUMA multiprocessor (Cache Coherent with Non-Uniform Memory

Access time). The name arises because unlike bus-based machines, where all memory is accessible

in uniform time, the physically-distributed memory of a CC-NUMA machine makes some

addresses slower and some faster to access from the perspective of any given processor. Like other

CC-NUMA multiprocessors, FLASH uses a directory-based cache coherence protocol [KOH+94].

The core of the FLASH design is a programmable protocol processor in each node that implements

the complex algorithms required for directory-based cache coherence. The protocol processor chip

is called MAGIC (Memory and General Interconnect Controller). It executes microcode from and

stores its data structures in the main memory of the node, using caches to reduce instruction and

data access latency.

Because MAGIC is programmable and has essentially unlimited code and data storage, FLASH is

much more flexible than previous multiprocessors whose memory system protocols are

implemented in dedicated logic. Memory system behavior can be changed and new features

added by recompiling the protocol microcode and rebooting the machine. This flexibility offers

the opportunity to design new hardware and operating system software features that work

together to provide novel system functionality.

1.2 Motivation for a new operating system

The developers of FLASH and most other scalable CC-NUMA machines (including those

manufactured by Silicon Graphics [Sil96], Sequent [LoC96], Data General [Dat96], and Hewlett-

Packard [HP95]) intend them to be general-purpose multiprocessors. A general-purpose machine

is one that runs standard commercial or engineering applications and efficiently provides the
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Figure 1.1.  The Stanford FLASH multiprocessor.
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services expected from commercial systems, such as multiprogramming, networking, security,

and system administration.

Multiprocessors are also used in other ways than as general-purpose computers. They are used as

supercomputers, an environment in which design goals such as efficient multiprogramming and

compatibility with standard applications can be sacrificed in order to improve raw performance.

Multiprocessors can also be used to implement high-availability (fault-tolerant) systems, in which

the multiple processors provide replication in order to ensure continuous operation. These other

uses are important, but developers of scalable multiprocessors target general-purpose use because

the market, notably for managing commercial databases, is much larger than that for

supercomputers or fault-tolerant systems.

Unfortunately, current general-purpose operating systems have significant reliability and

scalability problems when run on large multiprocessors. This is due to their structure as symmetric

multiprocessing (SMP) operating systems, in which all processors share a single copy of most

kernel data structures. Monolithic kernels such as UNIX and VMS and microkernels such as Mach,

Chorus, and Windows NT are all SMP kernels by this definition.

This architecture causes reliability problems because an SMP operating system must be rebooted

to recover from most errors. To build intuition for this observation, consider the effects of an error

that damages a core kernel data structure such as the run queue (Figure 1.2). In case (a), memory

module 1 fails, causing the run queue data to become inaccessible; no new processes can be

scheduled anywhere in the machine. In case (b), processor 1 acquired the run queue lock to ensure

mutual exclusion, but failed before releasing the lock; any other processor trying to access the run

queue will spin forever waiting for the lock to be released. In case (c), processor 2 uses an

Mem 1 Mem 2 Mem 1 Mem 2 Mem 1 Mem 2

Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2

Figure 1.2.  What can go wrong in an SMP kernel.

(a) Memory module failure:
run queue lost.

(b) Processor failure:
run queue lock never
released.

(c) Wild write:
run queue corrupted.
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uninitialized pointer for a store instruction, thereby corrupting the data in the run queue; the

operating system will probably fail when the next processor to access the run queue finds it in an

inconsistent state.

The variety of possible errors in an SMP kernel makes it extremely difficult to recover without

rebooting. Therefore, as machines grow in size and the error rate increases, the mean time to

failure decreases. Beyond some size, SMP operating systems will no longer be reliable enough for

most general-purpose applications.

Scalability is also limited by the widely-shared data structures of an SMP operating system.

Improving the parallelism of an SMP operating system is an iterative trial-and-error process of

identifying and fixing bottlenecks. At larger machine sizes the bottlenecks become subtle, such as

false sharing of cache lines or high conflict miss rates caused by simultaneous access to otherwise

unrelated data structures. Memory system bottlenecks are also highly workload-dependent, so an

operating system that performs well when tested by the developer can perform poorly in

production use. These problems cause the cost of delivering a high-performance SMP operating

system to increase sharply with the size of the multiprocessor, limiting the size of the machine that

is economically feasible to manufacture.

Without significant improvements in operating system reliability and scalability, large

multiprocessors are unlikely to succeed as general-purpose computing platforms.

1.3 Multicellular kernel architecture

These reliability and scalability problems can be addressed by restructuring the operating system

as an internal distributed system of cells (Figure 1.3). Each cell is an SMP kernel. Each

independently manages a portion of the processors, memory, and I/O devices of the machine,

supports applications running in that portion of the machine, and shares resources with other cells

as needed for performance.

The multicellular kernel architecture improves reliability because the cells can defend against each

other’s failures. An error may cause one or several cells to fail, terminating the applications

running on those cells, but the rest of the machine is unaffected. Unlike other kernel software

architectures that assume that the operating system is correct, the multicellular kernel architecture

provides reliability with respect to operating system software errors, which is important because

most failures observed in the field are caused by software errors [Gra90, CVJ92, ChB94].

A multicellular architecture improves scalability because few kernel data structures are shared by

processes running on different cells. Increasing the number of cells systematically improves the
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parallelism of the operating system and also increases the locality of kernel memory accesses,

which reduces hardware bottlenecks on a CC-NUMA multiprocessor. The scalability problems

that remain involve explicit communication among cells and so are easier to control than the

implicit communication through shared memory that occurs in an SMP operating system.

1.4 Implementing a multicellular kernel

A multicellular architecture creates several implementation challenges that do not arise in existing

multiprocessor operating systems:

• Cell isolation: The effects of errors must be confined to the cell in which they occur.

Additionally, if the system is to survive hardware errors, the hardware must provide features

that support restoring the memory system and interconnect to a functional state after a

hardware error.

• Resource sharing: Processors, memory, and other system resources must be shared flexibly

across cell boundaries, to preserve the execution efficiency that justifies investing in a

multiprocessor. The cell boundaries must not add high performance overheads when

resources are shared.

• Single-system image: The cells must cooperate to present a standard SMP OS interface to

applications and users.

Many of the problems faced in implementing a multicellular kernel also arise in single-system-

image distributed systems such as Sprite [OCD+88] and Locus [PoW85]. However, the presence of

shared-memory hardware between the cells and the dramatically higher bandwidths and lower

Increasing physical addresses

Cell 0

1

2

3

Trap vectors
Cell code

Cell internal data

Paged memory

Cell 0 Cell 1

Cell 2 Cell 3

(a) Physical view (b) Memory layout

Figure 1.3.  Partition of a multiprocessor into Hive cells.
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latencies of a multiprocessor interconnect make many of the solutions used in distributed systems

inappropriate for a multicellular kernel.

A particular problem that affects the whole system design is the possibility of wild writes, stores to

incorrect addresses caused by kernel software errors. Novel software mechanisms in Hive and

novel hardware mechanisms in FLASH work together to implement cell isolation and resource

sharing despite the possibility of wild writes.

1.5 Definition of fault containment

The application-visible reliability model that results from the multicellular design is called fault

containment. This reliability model is familiar from many previous distributed systems. Informally,

an application may fail but only if the error occurs in the part of the system that the application is

using.

It is useful to define fault containment more precisely:

A system provides fault containment if the probability that an application will fail is proportional

to the amount of resources used by that application, not to the total amount of resources in the

system.

The precise definition is better than the informal one for several reasons. First, in a multiprocessor

with dynamic fine-grained resource sharing, the “part of the system that the application is using”

is frequently poorly defined. Second, the operating system or the hardware may need to make the

application vulnerable to the failure of some part of the system that it is not using, either to

improve performance or to simplify the implementation. Finally, the precise definition gives a

metric that allows comparison of different systems or design features that attempt to provide fault

containment.

1.6 Usefulness of fault containment

The fault containment strategy differs significantly from the more traditional fault tolerance model

in which the system attempts to guarantee that no applications fail when an error occurs. Fault

containment is weaker than fault tolerance, because some applications will fail when an error

occurs, but appears to have lower overheads because it avoids replication. The question is

whether the weaker model is useful.

Fault containment in a multiprocessor provides reliability benefits for any workload with multiple

processes where some processes can continue doing useful work after others fail. Many general-
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purpose workloads appear to have this property. Examples include engineering and computer-

aided design, graphics and virtual reality, software development, and general interactive use.

However, fault containment does not improve the reliability of large processes that use resources

from the whole machine. These are the applications that probably justified purchase of the

machine in the first place, such as database, multimedia, and web servers or large engineering or

scientific simulations. Fortunately, these programs are the focus of significant software

engineering investment. It is reasonable to assume that they could be modified to improve their

reliability on systems with fault containment. There are three ways to do this:

• Large applications can in many cases be decomposed into independent smaller tasks that

benefit from fault containment. Examples of such applications include decision support and

data mining, where an initial long-running query can be split into smaller independent

subqueries. Other large applications, such as multimedia and web servers, naturally split into

multiple processes where each services a client or group of clients.

• Nondecomposable applications that require high availability can be restructured as process

pairs [Bar81, SiS92]. A system with fault containment will support such applications well if it

exposes sufficient control over resource allocation that the processes of the pair can avoid

common points of failure. Traditionally such applications have run on fault-tolerant systems,

but in cases where human safety is not at risk a general-purpose multiprocessor with fault

containment may be a more cost-effective solution.

• Nondecomposable applications that do not require high availability can use checkpointing to

provide roll-back recovery from failures. Batch processes such as engineering and scientific

simulation or graphics rendering tend to do all their I/O to files or directly to humans (e.g.

graphical output and computation steering). Checkpointing such applications is

straightforward, and various user-level checkpointing libraries have been written that require

little effort to exploit [LiS92, PBK+95]. Operating system support can also be useful for

checkpointing [LNP94, SiS92] and could easily be integrated into a multicellular kernel.

1.7 Success conditions

Although fault containment appears to be useful for a wide range of general-purpose

applications, this is not sufficient by itself to justify the immense investment required to adopt a

new kernel architecture. For a multicellular kernel to succeed as a general-purpose operating

system, it must achieve four goals:
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• Fault containment: The kernel must demonstrate substantial improvements in reliability

compared to SMP kernels.

• Competitive performance: The kernel must not add substantial performance overheads

compared to SMP kernels when supporting workloads on the medium-sized systems (16 to 32

processors) that will dominate the market for the foreseeable future.

• Scalability: The kernel must provide excellent performance scalability for operating system-

intensive workloads such as databases as the system grows to large sizes (128 processors or

more).

• Binary compatibility: The kernel must execute unmodified legacy applications correctly and

efficiently.

1.8 Implementation of Hive

Hive is a prototype built to evaluate whether a multicellular kernel is capable of achieving these

goals. It is not intended to demonstrate a complete implementation of a commercial multicellular

kernel. In particular, the single system image is incomplete, the file system is primitive, and some

resource sharing mechanisms are not present. However, the current prototype includes all of the

features required for an initial evaluation of the multicellular kernel architecture: a complete cell

isolation and failure recovery subsystem, a virtual memory system capable of several kinds of

memory sharing across cell boundaries, a well-tuned remote procedure call subsystem, and

distributed process management sufficient for remote process creation and distributed process

groups.

The most innovative parts of the implementation are those that take advantage of and defend

against the problems caused by shared-memory hardware. The wild write defense and

experiments on using shared memory between cells are particularly noteworthy. One interesting

observation is that shared memory is less useful as a kernel-level communication mechanism

between cells than was expected (Section 7.2).

To make the lessons learned from the prototype as relevant as possible to potential commercial

adopters of a multicellular architecture, Hive is binary compatible with a widely-used commercial

SMP operating system (IRIX 5.2 from Silicon Graphics, Inc., a version of UNIX System V

Release 4). Hive is implemented as an extensive modification of the IRIX 5.2 code base.
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1.9 Experimental evaluation

Because the FLASH machine is not yet operational, the experiments reported in this dissertation

use the SimOS machine simulator [RHW+95, WiR96, RBD+]. SimOS offers a choice of processor

and memory system models that trade off between the speed and accuracy of simulation.

Experiments on the reliability of the system use the high-speed mode of SimOS, while timing

experiments use a slower mode that is more accurate coupled with a cycle-accurate reference

simulation of the FLASH memory system.

Reliability experiments: The reliability experiments are a series of fault- and error-injection

studies. These studies include corruption of data in the kernel heap, corruption of kernel

instructions, and failure of FLASH nodes. The workload for the reliability experiments is a parallel

make, which has the attractive properties of independent subprocesses and easily-checked output.

An experiment is considered to succeed if none of the files produced by the parallel make are

corrupted and the only cell that fails is the one where the fault or error is injected. Hive shows no

data corruption in any experiments, and limits the effects of faults and errors to the cell where

they are injected 96% of the time.

Performance experiments: The performance experiments use microbenchmarks and three high-

level workloads: pmake, raytrace, and ocean. Pmake is a parallel make, which stresses the system in

ways characteristic of general-purpose use. Raytrace and ocean are parallel scientific applications

from the Splash-2 benchmark suite [WOT+95].

The use of simulation limits the performance experiments to small system sizes. The largest

system studied has only eight processors and 256 megabytes of memory. When combined with the

limited set of features implemented in the prototype, this makes it difficult to draw any

conclusions about the performance of multicellular kernels on large machines. However, the

prototype does show interesting performance trends and tradeoffs that suggest that the

multicellular design is promising for larger systems.

On an eight-processor system, an eight-cell Hive configuration shows no slowdown for pmake, a

20% slowdown for raytrace, and a 5% performance improvement for ocean compared to an IRIX

baseline. In all three workloads the amount of time spent executing the operating system is

highest when running with two cells, then decreases as the system increases to eight cells due to

reductions in memory system stall time and kernel lock contention. Ocean and raytrace both

suffer a convoying effect that increases time spent spinning on locks at user level, indicating that it

is important to spread the kernel workload evenly across the multiple cells when supporting

parallel applications that synchronize frequently.
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1.10 Terminology

This dissertation follows the standard terminology used to describe dependable computing

systems [Joh89]. A fault is a latent problem such as a mistake in a line of code or a short circuit on a

chip. An error is the result of activating a fault, such as executing incorrect code under conditions

that cause it to give the wrong result or reading an incorrect value from a shorted line. A failure

occurs when an error causes the externally-observable behavior of a device or software system to

deviate from specification. A failure is fail-fast if the failed component either produces no incorrect

output before halting or produces only output that is so corrupt that all other components

receiving the output detect the failure immediately.

In the case of a multicellular kernel, a software or hardware error may cause a cell to fail, but the

system as a whole does not fail if it successfully confines the effects of the error to the directly

affected cells. An error that leads to the failure of other cells or a complete system failure is said to

cause an uncontained failure.

There is one violation of the standard terminology. The term fault containment used throughout the

dissertation should properly be replaced by error containment with forward error recovery. The term

fault containment was chosen by analogy to the widely-used term fault tolerance, which similarly

values clarity and conciseness over pedantic precision.

1.11 Outline of the dissertation

The rest of the dissertation is structured as follows:

• Chapter 2 provides the motivation for developing Hive by analyzing the limitations of SMP

operating systems.

• Chapter 3 describes the overall fault containment architecture of the system and the software

architecture of Hive.

• Chapters 4 and 5 describe the implementation of the Hive prototype and the experimental

setup for the dissertation.

• Chapters 6 and 7 focus on the implementation of fault containment and resource sharing in

the prototype. Chapter 8 measures the performance of the prototype.

• Chapter 9 discusses what has been learned about the tradeoffs of the multicellular

architecture.

• Chapters 10 and 11 conclude the dissertation with a survey of related work and a summary of

the main results of this research.
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Chapter 2

SMP OS limitations

The previous chapter gave an overview of the motivation and design of the system. I now turn to

a more detailed investigation of the reasoning behind the design of Hive. In particular, I provide

evidence that current SMP operating systems are insufficient for future large multiprocessors.

SMP operating systems have been a successful design for small-scale general-purpose

multiprocessors. However, it is commonly accepted that they are difficult to scale even to current

high-end machines with a few tens of processors. New problems arise in larger multiprocessors

that make scaling even more difficult. The first part of this chapter focuses on reliability issues,

while the second studies performance issues.

2.1 Reliability issues

When considering reliability on larger machines, it would be best to start with data about the

reliability of current machines. Unfortunately, no information on the failure rate of

multiprocessors running current SMP operating systems is available. However, several published

studies that combine uniprocessors and multiprocessors give hints about the magnitude of the

rate.

2.1.1 System failures in practice

[TaI92a] uses automatically-maintained error logs to analyze failures in VAXcluster systems

running VMS. Over 30 machine-years of data shows an overall mean time between failures

(MTBF) of 20 machine days. This rate is high due to the immaturity of the operating system at the

start of the data collection period. The MTBF due to hardware errors was 60 machine-days, while

the MTBF due to software errors improved from 19 days in the first year to 2.8 years four years

later. Since this data was collected from VAXclusters, which are more tightly coupled than the

separate machines on a standard LAN, the software error rate is probably higher than would be

observed on independent machines.

[CBR95] analyzes problems reported to IBM’s service organization about two releases of “a large

IBM operating system.” This data covers software errors only, not hardware errors, and includes

errors that did not lead to system failures. Release 1 had a rate of about 5 months between errors at
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one year after release, while Release 2 had a rate of almost 2 years between errors at a similar point

in its life cycle. At the end of the measurement period the rates were 4 years and 2 years between

errors. Assuming that between 60 and 90 percent of operating system errors lead to system

failures, as measured in the VMS study, the IBM systems at one year after release had a MTBF of

most of a year for Release 1 and several years for Release 2. This failure rate is low because it

excludes hardware errors.

These studies support the hypothesis that general-purpose machines require a MTBF due to

hardware and software faults of between one month and one year. In each case the operating

system was released at the bottom end of this range and the manufacturer then invested

sufficiently in improving it to reach or somewhat exceed the top end of the range.

There have been other studies on failure rates in the field, but the systems examined differ more

from the SMP operating systems currently used by commercial multiprocessor vendors than those

investigated in these studies. [Iye95] provides a survey of the literature.

2.1.2 Failure rates of large machines

Scaling to larger systems will cause the MTBF of SMP operating systems to decrease significantly.

This is intuitively obvious with respect to hardware errors, because larger machines have more

errors and an error anywhere in the machine causes the operating system to crash. Note however

that the hardware error rate does not scale directly with machine size, because improved

integration in each hardware generation reduces the number of components required to build

larger machines.

Less obviously, scaling the size of the machine also increases the rate of software errors in an SMP

operating system. For efficient performance on a larger machine, the parallelism of an SMP

operating system must be increased using finer-grained locking, data structures partitioned

among the processors, and similar techniques. These changes create an increased risk of software

errors in operation, because parallelized code is the hardest type of code to analyze and test

during system development.

This observation about parallelized code is common wisdom among programmers but is also

supported by field data. For example, one study of customer problem reports on Tandem

Guardian90, an operating system tested thoroughly by the manufacturer because of its intended

use for high-availability applications, found that race conditions and timing problems were more

prevalent than any other type of software faults that crashed systems in the field. This was true

both for the number of faults in the code and for the number of failures resulting from those faults

[LeI93].
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As a general-purpose machine grows in size, not only does the operating system require increased

internal parallelism, but more applications run at the same time. This leads to an increased

number of dynamic interactions between processes, increasing the potential for stimulating any

latent parallelism-related faults in the operating system code. The relationship between system

workload and software error rate is well-documented [CaS82, MoA87].

Put together, the increased rate of hardware errors, the increased use of parallel constructs in the

operating system code, and the increased dynamic parallelism of the system suggest that the

MTBF of large multiprocessors will be substantially lower than that of current multiprocessors if

current SMP operating systems are used.

2.1.3 Reliability requirements

At the same time that technological factors push MTBF downwards, market pressures require that

large multiprocessors provide substantially higher MTBF than current small-scale systems. There

are two reasons for this:

• Change in applications: Among the primary applications that can justify purchase of these

expensive machines are the transaction processing and decision support databases that

currently run on mainframes, where the MTBF expectation is much higher than on current

small-scale systems. Web and multimedia servers may also be important applications for large

multiprocessors, and they have very high availability requirements.

• Greater impact of each failure: The sheer size of large multiprocessors will give each failure a

greater impact than in current multiprocessors. Consider that an organization that uses a large

multiprocessor will centralize more of its computing resources in that one machine than in

any current small-scale multiprocessor. Therefore a failure will interrupt service to or work

done by more people. The machine will also take much longer to return to steady state

performance after a reboot, since it will require much more work to refill a larger main

memory, restart a larger number of processes, and recover all the cached knowledge those

processes maintain about their own workloads and the state of the world.

The change in applications and the greater impact of each failure imply that the cost of a failure on

these machines will be substantially higher than on current small multiprocessors. Therefore users

will require higher reliability or they will find the machines uneconomical to use.

An MTBF similar to current mainframes seems necessary to open much of the mainframe market

to multiprocessors. MTBF levels similar to current small multiprocessors may leave large

multiprocessors without a sufficient market to justify their development.
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2.1.4 Improving reliability

It may be the case that the only improvement necessary is better engineering and testing

techniques for the operating system. The software error rate dominates the hardware error rate on

current systems [Gra90, CVJ92, ChB94] and is likely to do so even for machines several times

larger than the largest current multiprocessor. Reducing the rate of software errors may provide

sufficient reliability improvements to eliminate the need for more radical changes.

However, this approach will require high engineering investments due to the difficulty of finding

parallelism-related software faults. At larger system sizes where the hardware error rate becomes

significant, or if significant reliability improvements are required as suggested in the previous

section, SMP operating systems appear unlikely to provide an acceptable solution.

2.2 Performance issues

Although reliability is important, performance is the primary motivation for users to invest in

large multiprocessors. Large multiprocessors must achieve near linear scalability of system

throughput to attract users who would otherwise choose clusters of smaller machines, and must

achieve substantial price-performance advantages compared to existing mainframes to attract

their users.

On larger machines, operating systems encounter two primary performance problems that have

traditionally been ignored on smaller machines. Both are related to the memory system.

Communication latency in these machines is higher relative to processor speed than in small

machines, so any algorithm that suffers frequent cache misses is a potential performance

bottleneck. Moreover, locality of memory access is important to reduce access latency and

minimize interconnect contention, so widely-shared data structures are slower than localized data

structures even when the frequency of cache misses remains constant.

This section reports data on these memory system costs and the problems that SMP operating

systems face in reducing them. The data comes from a study of an SMP operating system, IRIX 5.2,

running on a 32-processor CC-NUMA machine, the Stanford DASH [LLG+92]. IRIX has been

parallelized to run efficiently on large bus-based multiprocessors (SGI Challenge machines

support up to 36 MIPS processors), so its memory system behavior is not skewed by bad

synchronization behavior at this system size.

Rather than giving complete details of the study here, I highlight a few selected points. Interested

readers may refer to [CHR+95] for details and much more data.
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2.2.1 Experimental setup

Detailed trace data was collected from a DASH configuration with eight clusters (Figure 2.1). Each

cluster is a slightly modified Silicon Graphics POWER Station 4D/340, which is a bus-based

multiprocessor with four 33-MHz MIPS R3000 processors. The processors have relatively limited

caches: 256 kilobyte external data cache (backing a smaller on-chip data cache) and 64 kilobyte

instruction cache, both direct-mapped with 16-byte lines.

Cache fills from local memory stall the processor for a minimum of 29 processor clock cycles.

Remote memory requests take at least 101 processor clock cycles if the data is clean in memory

and 132 processor clock cycles if it must be fetched from a cache in another cluster. Remote cache

misses are satisfied in the latency of a local access if they hit in the remote access cache, which is a

128 kilobyte direct-mapped cache with 16-byte lines.

The workload used for the study has features characteristic of a software development or

engineering environment. The workload contains two 16-way parallel makes, five copies of a

microbenchmark suite, and eight copies of a moderately large engineering analysis program.

Each DASH cluster includes a hardware monitor that traces bus activity without affecting the

timing of the machine. Disk capacity on DASH limits the total trace that can be collected to about

eight seconds of execution. The data reported here comes from multiple eight second samples

taken at different times during separate workload runs.

Remote Access
Monitor

HW
Directory

Main

Processor
1st level

I and D cache
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Dcache Memory

Interconnection Network (Mesh)

Remote Access
Monitor

HWDirectory
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Figure 2.1.  Architecture of the Stanford DASH multiprocessor.
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2.2.2 Overall behavior

Under the workload studied, the system spends an average of 63% of non-idle time running

applications and 37% of non-idle time in the operating system. The components of the non-idle

operating system time are 5% of non-idle time executing useful instructions, 3% spinning on locks,

and 29% stalled on cache misses. In other words, this SMP operating system spends four-fifths of

its work time stalled on cache misses.

Roughly half of the cache miss time is due to instruction cache misses, which are higher on DASH

than on more recent systems because of the small direct-mapped instruction cache. Excluding

instruction cache misses, IRIX still spends over three times as much time stalled on data cache

misses (16% of non-idle time) as it does executing useful instructions.

Cache simulations using the trace data from DASH show no substantial reduction in data cache

misses even with a one megabyte two-way set-associative data cache. This indicates that most of

the data cache stall time is caused by communication misses.

Clearly, even at a relatively modest system size of 32 processors, this SMP operating system

suffers from a significant memory system performance bottleneck. The bottleneck will become

even more significant on FLASH and other large multiprocessors which have a higher relative

remote cache miss latency than DASH.

2.2.3 Detailed observations

Half of the operating system data cache miss time comes from the memory block transfer routines

(page_copy , page_zero , and similar routines). The stall time in these routines is primarily spent

waiting for cache misses to remote memory. The cause of the problem is not the SMP kernel

architecture but the lack of NUMA-aware page allocation and processor scheduling in IRIX 5.2,

combined with its failure to take advantage of the hardware prefetch support provided by DASH.

Proper policies and use of hardware mechanisms would both reduce block transfer latencies and

improve memory access locality.

The other half of the data cache miss time is dominated by interprocessor communication hotspots

that are caused by the SMP kernel architecture. Table 2.1 shows the data structures with the

highest cache miss times, leaving out large data structures such as the process table whose high

stall times come from their large size. There are two types of data structures in the table: those

whose functions make them inherently hot and those which are accidentally hot.

A structure is inherently hot if its function requires it to be written frequently and read or written

by multiple processors. In this category, the table shows the fast clock, the control counters for a
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frequently-acquired reader-writer lock, the head links of a free list, and the run queue head

pointer. Reducing the cost of accessing these structures requires algorithmic changes, for example

changing the globally-shared run queue into multiple per-processor or per-cluster run queues.

A structure is accidentally hot if the cache miss time is due to programmer error or false sharing.

For example, it is surprising to see high cache miss times for memory_lock  because it is written

once at boot time and never changed. However, it is read frequently and happens to be on the

same cache line as a frequently written counter (usermem, the number of pages available to

users). Note that under the workload studied this innocuous variable accumulated as much stall

time as the head pointer of the global run queue.

2.2.4 Improving performance

Reducing communication hotspots and the overall memory system performance bottleneck will

require a never-ending cycle of iterative improvements to SMP kernels as the system grows. In

particular, the uncontrolled interprocessor communication inherent in the SMP operating system

architecture means that it is likely that each increase in system size or change in workload will

stress new parts of the system and cause new hot spots that limit performance.

A familiar example of this architectural characteristic is the synchronization behavior of SMP

kernels. For example, in IRIX 4 running on four processors the global run queue lock is the only

one with substantial contention [TGH92]. The developers made significant algorithmic changes to

Table 2.1. Data cache hotspots in IRIX over 22.8 seconds of execution on DASH.

Structure
Stall
Time

(msec)
Description of Structure

fclkcount 863 Fast clock

freemem 510 Number of pages available

bucket 490 Fast clock acknowledge dummy variable

anon_shake_lock 422 Reader/writer counters for copy-on-
write tree

bfreelist 198 I/O buffer free list header

splimplock_owner 169 Processor with rights to execute network
code

Runq 148 Head of process run queue

memory_lock 148 Pointer to hardware spin lock for
physical memory management structures
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eliminate this hotspot by the time IRIX 5.2 was released. However, in growing the system to 32

processors, another lock (memory_lock ) came under high contention. Additionally, otherwise

innocuous locks can create significant performance problems when workloads behave differently

than the ones tested by the developers. The ocean workload measured in Chapter 8 provides an

excellent example of this problem.

Even when the memory system costs of an SMP kernel are reduced by modifying its algorithms to

reduce communication between processors, false sharing can cause significant performance

problems. Even on DASH, with 16-byte lines that hold only four integers or pointers, false sharing

caused significant hot spots. Systems with longer lines, such as FLASH at 128 bytes, can expect

severe performance impacts. Improved measurement and linking tools will help reduce false

sharing, but each increase in system size or change in workload can be expected to stress the

system in different ways and bring out new false sharing problems.

Improving operating system performance without continual reengineering requires a systematic

way to increase operating system parallelism and reduce global data sharing. The multicellular

kernel architecture offers one promising approach, by ensuring that processes running on separate

cells share few kernel locks or data structures. A multicellular kernel still faces problems of

reducing communication, but both the fundamental communication rate and the number of

points at which communication can occur are much lower, making it much easier to detect and

solve scalability problems. At the end of the dissertation, Chapter 9 returns to this discussion and

compares the complexity and scalability of multicellular and SMP kernels in light of the

experience gained from the Hive prototype.
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Chapter 3

Hive architecture

Chapter 1 describes a multicellular kernel as an operating system structured as an internal

distributed system of cells. However, the architecture of Hive covers a much wider domain than

just the software architecture that implements this idea. Because reliability is a goal, the choice of

error model is part of the system design. Because Hive is an operating system, the interface and

feature set exported to applications are important. Because Hive is an integral part of a hardware

project, the design includes novel hardware features that are appropriate for a multicellular

kernel.

This chapter describes the architecture in two parts. The first part is the fault containment stack, a

layering similar to a networking protocol stack that defines both the expected errors and the

responsibilities of each level of the system. The second part is the software design of Hive itself,

which implements one layer of the fault containment stack. The chapter concludes with a brief

description of the implementation of the lower layers of the stack in FLASH.

Some of the design features described in this chapter are not implemented in the prototype. It is

useful to present the whole system design despite the limitations of the current implementation,

both because the design drives ongoing research on Hive and FLASH and because it explains the

decisions made in implementing the prototype. The next chapter describes the current

implementation.

3.1 Error model

The error model is a set of assumptions about the types of errors that can occur and their effects on

the system. The error model drives the reliability design of the system, that is, design of the

hardware and software mechanisms for cell isolation and failure recovery. If an error occurs that is

not in the model, the behavior of the system is unpredictable.

Just as with any other system designed to improve reliability, choosing the error model for Hive

requires making tradeoffs between reliability and performance. An error is left out of the model,

and thus can cause the system to fail, if its probability is low relative to the complexity and

performance cost of defending against its effects.
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The error model is described in detail in the next section on the fault containment architecture. To

summarize it, the most likely errors are assumed to have the following descending order of

probability: operating system software errors, power or cooling failure to a portion of the machine,

link failure in the interconnect, and halt of an individual node. Link failure is relatively probable

compared to what would be expected in a smaller machine, because FLASH has multiple cabinets

with network links stretched between them that are vulnerable to human error (i.e. tripping over a

cable).

Hive and FLASH carefully avoid assuming that only one error will occur at a time. A

multiprocessor is a tightly coupled system and a single problem such as a cooling failure could

cause errors in multiple cells at the same time. Even worse, multiple errors are likely to occur at

slightly different times, as when boards overheat at different rates. A software error in one cell that

manages to corrupt another cell will cause similar behavior. Therefore the most likely time for an

error to occur is while the system is recovering from a previous error.

3.2 Fault containment architecture

Table 3.1 summarizes the fault containment stack. The bottom four layers are part of FLASH; Hive

is the operating system layer.

Fault containment must be implemented from the top down of this stack rather than from the

bottom up as one might hypothesize. For example, having cabinets with independent power

supplies does not improve the reliability of applications if loss of a cabinet crashes the operating

system. In contrast, a multicellular kernel could run without hardware support and still provide

reliability benefits through reducing the impact of operating system software errors.

Table 3.1. Fault containment stack.

Layer Example design features

Application None needed; checkpointing and process pairs useful

Operating System Independent cells, wild write defense

Memory System Timeouts on cache misses, recover consistency after hardware errors

Network Drain undeliverable packets, reroute around failed components

Data Link Error correcting codes, completion of truncated packets

Physical Multiple fans and power supplies, hot-pluggable boards
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In the next sections I use the fault containment stack to describe the architecture of the system.

First I describe the errors that can occur at each layer, then the fault containment features it

provides.

3.2.1 Application level

Error model: Just as in SMP operating systems, the reliability design of the system assumes that

applications are potentially erroneous or even malicious.

Fault containment: I assume two types of applications in the workload: a large number of naive

applications that are unaware of the fault containment properties of the system, and a small

number of sophisticated applications implemented with fault containment in mind.

Naive applications use only the standard UNIX system interface. These applications require the

operating system to automatically provide fault containment. Some of the naive applications

might be very large, for example parallel scientific or engineering simulations that run with as

many threads as there are processors in the machine. I assume that it is important to provide fault

containment to a workload that combines large and small naive applications. It is acceptable in

this case for the large applications to receive no automatic fault containment benefits, but the small

applications should continue to be protected.

Sophisticated applications that seek to improve reliability at user level, such as by using process

pairs or the other mechanisms described in Section 1.6, need to control the set of cells whose

failure could damage the application. This requires the operating system to export information

about the configuration of the system and its cell layout, and to allow applications to limit the

activity of the automatic resource sharing and load balancing mechanisms.

Any application that currently runs on a cluster of machines, such as shared-nothing databases

and web servers, could run reliably on a multiprocessor by taking advantage of the features

provided for sophisticated applications. It may be possible to significantly improve the

performance of such applications by adding shared-memory communication regions between the

independent processes. The operating system should support this by allowing a sophisticated

process to survive the loss of some of its memory resources.

3.2.2 Operating system level

Error model: The reliability design of the system assumes that a software error in a cell will

eventually result in deadlock, panic (halt due to failure of a self-check), or partial halt (loss of

ability to schedule further processes). However, before a cell reaches that point it may issue wild

writes to arbitrary addresses or send corrupt messages to other cells.
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In a key simplification of the error model, cells are assumed not to exhibit Byzantine faults

[LSP82]. In particular, the sanity-checks that cells apply to messages and data received from other

cells are assumed to detect all incorrect messages. Furthermore, a cell that appears failed to one

correct cell will appear failed to all correct cells that subsequently test it.

The success of the fault injection experiments described in Chapter 6 suggests that these

assumptions are reasonable. These assumptions free Hive from the performance impact and

implementation complexity of Byzantine fault-tolerant distributed algorithms [Lyn96]. The

assumptions are strong enough that intermittent faults can cause incorrect behavior; if this turns

out to be a significant problem in practice, algorithms are known that enable weakening the

assumptions without implementing full Byzantine fault tolerance (see Chapter 10).

Fault containment: The operating system is responsible for detecting software errors in cells,

recovering operating system data structures to a consistent state after software or hardware errors,

and rebooting failed cells so their hardware resources are not lost. It also implements the wild

write defense and other mechanisms for cell isolation, using hardware features provided by the

memory system level.

For naive applications, Hive maximizes fault containment by minimizing the number of cells to

which any given application is vulnerable. It also provides the automatic resource sharing and

load balancing required to achieve the execution efficiency that justifies investing in a shared-

memory multiprocessor.

Hive provides a mechanism called spanning tasks that improves fault containment for naive

applications. A spanning task is a UNIX process with threads running on multiple cells. A process

that merely uses memory or files from multiple cells does not use the spanning task mechanism.

The spanning task mechanism enables the system to run with small cells, providing fault

containment for small naive applications, even when the workload contains large naive

applications that use many or all of the processors in the machine. The difference between single-

cell processes and spanning tasks is not visible to naive applications.

For sophisticated applications, Hive provides several straightforward extensions to the UNIX

system interface that give control over the resource sharing and load balancing mechanisms. The

only nonobvious extension to the system interface is the management of the essential dependencies

of a process. When a given cell fails, the process may be terminated immediately. Alternatively, it

may receive an error the next time it accesses a resource such as a memory page that was lost in

the failure. If the former could occur then the process has an essential dependency on the given

cell.
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Hive allows an application to discover and, with some restrictions, to modify its essential set of

cells. This approach avoids cluttering the system interface with controls over various internal

kernel resources that are not normally visible to applications.

3.2.3 Memory system level

The memory system level consists of the MAGIC chip and its firmware that together respond to

cache misses and uncached accesses, maintain cache coherence, and provide features such as

interrupts and interprocessor message sends.

Error model: The reliability design assumes that the memory system level is fail-fast. Potential

errors that are therefore outside the error model include returning the wrong memory line to a

cache miss and sending a cache writeback to the wrong address in memory.

Note that the fail-fast assumption could be violated more easily in a large-scale multiprocessor

running a complicated cache-coherence protocol than in simpler multiprocessors. The FLASH

memory system is managed by about 10,000 lines of microcode running on MAGIC. This code is

extremely well-tested but presumably still contains faults. Self-checking assertions have been

added to the microcode that convert some software errors into fail-fast node halts, but there are no

assertions in the most performance-critical sections of the code. A microcode error that does not

trigger an assertion is outside the error model and may lead to data corruption or total system

failure.

Fault containment: The memory system level provides features for both software and hardware

fault containment. Its two most important features are the firewall and the memory fault model.

• Firewall: The firewall supports software fault containment by the operating system. For each

page of memory, the firewall gives the cell that owns the page the ability to control which

processors in the system can modify the page (Figure 3.1). A processor that attempts to

modify data without firewall write permission receives a bus error. The firewall also protects

I/O devices, node-control registers, and the firewall state itself, returning bus errors to

disallowed uncached reads and discarding disallowed uncached writes.

• Memory fault model: The memory fault model supports hardware fault containment by the

operating system. The memory fault model is analogous to a memory consistency model

which specifies the behavior of reads and writes on a multiprocessor. The fault model tells the

operating system designer what assumptions can be made by the algorithms that seek to

recover from hardware errors. The most important feature of the memory fault model is the

assumption that when the operating system sets the firewall to limit write permission for a
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page to a set of cells, the data on that page will not be damaged by a hardware error outside

that set of cells.

The firewall is a straightforward extension to standard cache coherence mechanisms. In contrast,

the memory fault model requires design features at the memory system level and all lower levels

of the fault containment stack. Features at the memory system level include detection of hardware

errors through timeouts, initiation of network level and operating system level recovery processes,

and recovery of the cache coherency protocol to a consistent state after hardware errors. Features

at the lower levels are described in the next three sections.

3.2.4 Network level

In normal operation the network level provides a reliable communication service to the memory

system.

Error model: Only two network-level errors are assumed to occur: packet loss and delivery of

packets to the wrong destination node. Surviving packet loss is a key part of the reliability design

because misdelivered packets, packets flagged as errors by the data link level, and almost all

nontrivial physical-level errors lead to actual or apparent packet loss.

However, unlike local-area and wide-area networks, the reliability design assumes that congestion

does not lead to packet loss. Like most multiprocessor interconnects, FLASH provides lossless

Figure 3.1.  Operating system view of the firewall.
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flow control in order to enable the endpoints to avoid the cost of an end-to-end retransmission

protocol. Therefore packet loss can be assumed to be a rare event, occurring only after a hardware

error. Thus it is acceptable for packet loss to lead to an application-visible error.

Fault containment: The network level plays two fault containment roles. It reconfigures the

routing tables in the interconnect so that surviving nodes remain connected after a physical-level

error. It also guarantees that a physical-level error in one cell does not cause loss of internal

packets sent between the nodes of another cell, by ensuring that only packets destined to or routed

through a failed area are discarded when recovering from a physical-level error. This guarantee is

required to enable the memory system to implement the memory fault model.

3.2.5 Data link level

In normal operation the data link level provides bit error detection and correction to the network

level.

Error model: A data-link level error would occur if a corrupted packet were delivered but

appeared correct. The reliability design assumes that there are no data-link level errors. It would

be too expensive to implement an end-to-end error correction protocol to cope with this case,

given the low-latency requirements of the memory system.

Fault containment: In addition to assuming that the data link layer detects and corrects bit errors

in packets, the reliability design requires the data link layer to complete (and flag as corrupt)

packets that are truncated by an error in a router, link, or node. This feature allows the network

level to treat packet delivery as atomic.

3.2.6 Physical level

The physical level consists of all the hardware components of the machine, both active such as

processors and infrastructure such as power and cooling.

Error model: Errors at the physical level can result from logic faults, power or cooling failure to a

portion of the machine, and link failure in the interconnect. All hardware components except links

are assumed to be fail-fast. Transient errors in links are masked by bit error detection and packet

retransmission at the data link level.

The minimal fail-fast unit is the router, MAGIC chip, memory module, processor, or link in which

the error occurs. In FLASH, internal self-checks implemented by the recovery algorithms

immediately convert the halt of any component in a node to a node halt, so other nodes and the

operating system can assume that nodes are fail-fast units.
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Fault containment: The reliability design requires the hardware to be partitioned into failure units

that support the cellular structure of the operating system. For example, a physical-level error

such as loss of a fan or removal of a board should not be a single point of failure for all cells.

Moreover, to support the memory fault model, the failure units contain sets of nodes that occupy

non-overlapping ranges of the physical address space. These sets of nodes are assumed to be

convex in the interconnect. That is, any node in a failure unit can send packets to any other node in

that failure unit without traversing links or routers outside the failure unit. Finally, the physical

design is assumed to provide hardware reset functionality on a per-cell basis.

3.2.7 Summary of the fault containment stack

The fault containment stack includes features at the operating system, memory system, network,

data link, and physical design levels of the system. The features at the hardware levels of the

system work together to implement the memory fault model required for hardware fault

containment by the operating system. The hardware also provides the firewall, which enables the

operating system to implement software fault containment. The goal of all these features is to

improve the reliability of naive applications and to allow sophisticated applications to implement

fault tolerance at user level.

3.3 Operating system software architecture

Having completed the description of the error model and the fault containment architecture of the

system, I now describe the software architecture of Hive itself. A brief section at the end of the

chapter covers the lower levels of the stack.

Converting an SMP operating system into a multicellular kernel like Hive conceptually proceeds

in three stages. First, modify it to create a single-system image distributed system where the

separate kernels coexist in a single machine. Second, add the features required to isolate the cells

so that an error in one does not damage others. Finally, add the resource sharing features required

to achieve performance competitive with the original SMP operating system. I discuss each of

these parts of the system in turn.

3.3.1 Distributed system

At the distributed system level, Hive is similar to previous single-system image distributed

systems such as Sprite [OCD+88], Locus [PoW85], and Solaris MC [KBM+96]. Hive is

implemented using techniques borrowed from these systems:

• The cells communicate primarily through remote procedure calls.
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• The cells cooperate in a shared-namespace distributed file system with each acting as both

client and server.

• Process management is distributed so users and applications see a single-system image. When

a process forks, the new child may be created automatically on a different cell. Operations

related to the interaction between processes are extended to communicate with remote cells

when needed. For example, a cell sending a signal to a process or process group may send

messages to other cells in order to complete the operation.

The major difference between Hive and previous systems at the distributed system level is the

support for spanning tasks. To implement spanning tasks, each cell runs a separate local process

containing the threads that are local to that cell (Figure 3.2). The cells keep shared process state

such as the address space map consistent among the component processes of the spanning task.

To optimize the implementation of spanning tasks, Hive sets the minimal essential dependency

set of a process to be the cells where the threads of that processes are running. This enables Hive to

use shared memory across cell boundaries for performance and to migrate process state between

cells where desirable, since a thread need not continue running after the failure of other threads in

that process. This does not appear to be an excessive limitation from the application perspective;

Figure 3.2.  Implementation of spanning tasks.
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an application designed to survive loss of some of its threads can be implemented as multiple

processes that map shared memory.

3.3.2 Cell isolation

Cell isolation is the challenge of preventing corruption in one cell from damaging other cells.

There are three channels by which a fault in one cell can damage another cell: by sending a corrupt

RPC request or reply, by providing corrupt data or errors to direct remote reads, or by causing

wild writes.

• Defense against corrupt messages: Each cell sanity-checks all information received from other

cells and sets timeouts whenever waiting for a reply. Experience with previous distributed

systems shows that this approach provides excellent isolation, even though it does not defend

against Byzantine faults.

• Defense against corrupt remote reads: It is the reading cell’s responsibility to defend itself against

deadlocking or crashing despite such problems as invalid pointers, linked data structures that

contain infinite loops, or data values that change in the middle of an operation. This is

implemented with a simple careful reference protocol that includes checks for the various

possible error conditions. Once the data has been safely read, cell isolation is provided by

sanity checks exactly as in the case of receiving message data.

• Defense against wild writes: Cells never write to each other’s internal data structures, as this

would make cell isolation extremely difficult. This is enforced by using the firewall to protect

kernel code and data against remote writes. However, cells frequently write to each other’s

user-level pages since pages can be shared by processes running on different cells. This creates

the possibility that wild writes due to a software error in one cell can corrupt user data read by

an application on another cell.

The sanity checks used to defend against corrupt messages and data read through the careful

reference protocol are standard mechanisms used by other distributed systems. The novel cell

isolation mechanism in Hive is the wild write defense used to prevent applications from being

corrupted by software errors in the kernel of a different cell.

3.3.3 Wild write defense

The wild write defense has four components: firewall management, preemptive discard, fast error

detection, and fast null recovery.

Firewall management: The system seeks to minimize the number of cells with write permission to

each page. This is a nontrivial problem because protection changes can be expensive. Revoking
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write permission previously granted to a cell requires communication with the nodes of that cell,

to ensure that all cached lines have been returned to memory. This cost makes it too expensive to

guarantee that only the cells actively using a page have write permission. Instead, policies in the

file system and virtual memory system reduce the vulnerability of pages as much as possible

without causing an excessive number of permission changes.

However, each cell guarantees that user-level pages used only by processes local to the cell are not

writable from outside the cell. This ensures that processes which use resources from only one cell

are not vulnerable to errors in other cells. If cells are sized large enough at boot time, Hive will not

need to share memory across cell boundaries for load-balancing reasons, so most small processes

should receive the best possible fault containment from the system.

Preemptive discard: The system discards pages writable by a failed cell when a software error is

detected. This is called the preemptive discard policy. It reduces the chance of application

corruption by preventing corrupted pages from being read by applications or written to disk.

If a page is clean with respect to disk or other backing store, discarding it is transparent to

applications. If the page is dirty, Hive gives an I/O error to applications that subsequently try to

access the discarded data. Naive applications will simply exit, but sophisticated applications can

field the error and recover.

Unfortunately, the preemptive discard policy does not prevent all user-visible data integrity

violations caused by wild writes. Corrupt data might be used before the software error is detected,

or a faulty cell might corrupt a page and give up its write permission before the error is detected,

in which case the corrupted page will not be discarded.

This problem appears to be fundamental to any use of hardware shared memory across fault

containment boundaries, because it is impossible to guarantee that software errors are detected

immediately. The only way to prevent all data integrity violations is to avoid write-sharing user

pages across cell boundaries. Giving up write-shared pages would give up one of the main

performance advantages of a shared-memory multiprocessor.

However, there are several ways to reduce the probability of data integrity violations. The

designer could reduce the probability of wild writes by rewriting the kernel in a type-safe

language or by using a microkernel to reduce the amount of code with direct access to physical

memory. These mechanisms are beneficial but not complete; for example, misprogramming a TLB

entry or DMA request would bypass the type checks done by a compiler. Hive reduces the

probability of data integrity violations with a more general mechanism.
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Fast error detection: Hive strives to detect software errors quickly and thereby shorten the time

window within which corrupt data might be used. This has the secondary benefit of reducing the

delay experienced by users or applications stalled because of the error.

Error detection is a well-studied problem in the context of distributed systems. Given a non-

Byzantine error model, the primary challenge is that any algorithm that reports an error might

itself be in error. If one cell could declare that another had failed and cause it to be rebooted, an

erroneous cell that mistakenly concluded that other cells were corrupt could destroy a large

fraction of the system.

Hive uses a two-part solution. First, cells monitor each other during normal operation with a

number of heuristic checks. The checks include timeouts and sanity checks on messages, sanity

checks and type tag checks on remote reads, and periodic active probes that read the internal state

of other cells through shared memory. A failed check provides a hint that triggers recovery

immediately.

Second, consensus among the surviving cells is required to reboot a failed cell. When a hint alert is

broadcast, all cells temporarily suspend processes running at user level and run a fault-tolerant

distributed agreement algorithm. This algorithm is fault-tolerant in that agreement is reached

correctly even if further cells fail while it is running. If the surviving cells agree that a cell has

failed, user processes remain suspended until the system has been restored to a consistent state

and all potentially corrupt pages have been discarded.

This approach ensures that the window of vulnerability to wild writes lasts only until the first

check fails and the agreement process runs, assuming that the software error is correctly

confirmed by the agreement algorithm. The window of vulnerability can be reduced by increasing

the frequency of checks during normal operation. The frequency of checks performed is a tradeoff

between fault containment and performance.

Fast null recovery: The final component of the wild write defense is a fast null recovery. Null

recovery occurs when a error check triggers but no error has occurred. The system reaches

agreement that no cells have failed and returns to normal operation.

Fast null recovery supports the wild write defense by making it acceptable to bias the error checks

to give false alarms rather than false negatives. A bias towards false alarms is required because the

checks only provide hints that an error may have occurred. For example, an active probe reading

the internal state of another cell cannot synchronize with the processes that might be modifying

that state, so it might observe a transient situation that mimics an error condition.
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Given a fast null recovery such that false alarms have low performance impact, the developer of

the system can iteratively reduce the chance of data integrity violations by adding checks targeted

to each new software error that is observed.

3.3.4 Error recovery

Assuming that cell isolation is successful, error recovery in Hive is essentially the same problem

faced and solved by previous single-system image distributed systems. Hive uses standard

techniques to ensure that operations such as changing process groups, sending signals, and

modifying files have exactly-once semantics.

Processes executing in the kernel are allowed to continue executing while error detection,

preemptive discard, and error recovery are operating. This makes certain aspects of recovery more

difficult; for example, careful design is needed to cope with external RPC requests arriving at a cell

while recovery is running. However, this approach has the significant advantage that the recovery

algorithms can acquire kernel locks and can assume normal consistency of the data structures

protected by those locks.

The design of the error recovery algorithms values simplicity over speed. Although null

recoveries are frequent, actual errors are assumed to be rare and therefore user-visible recovery

pause times are acceptable.

3.3.5 Resource sharing policies

I now turn from features designed to improve reliability to features that provide resource sharing.

To compete in performance and efficiency with existing SMP operating systems, Hive must share

resources across cell boundaries much more tightly than was necessary in previous distributed

systems. Both the policies and mechanisms for resource sharing raise challenging problems.

Hive separates the policy and mechanisms for intercell resource sharing. The mechanisms are

implemented through the cooperation of the various kernels, but the policy is implemented

outside the kernels, in a user-level spanning task called Wax (Figure 3.3).

Justification for Wax: Wax addresses a problem faced by previous distributed systems, which

were limited to two unattractive resource management strategies. Resource management can be

distributed, in which case each kernel must make decisions based on an incomplete view of the

global state. Alternatively, it can be centralized, in which case the kernel running the policy

module can become a performance bottleneck, and the policy module has difficulty responding to

rapid changes in the system.
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Wax takes advantage of shared memory and the support for spanning tasks to provide efficient

intercell resource management. Wax has a complete, up-to-date view of the system state but is not

limited to running on a single cell. Unlike policy modules running at kernel level, which must

carefully maintain fault containment, the threads of Wax running on different cells can

synchronize with each other using standard locks and nonblocking data structures. This enables

efficient resource management decisions.

Moving intercell resource management out of the kernels is acceptable because in Hive, unlike in

previous distributed systems, the resources of each cell belong to the system as a whole rather

than to some local user. Making the correct tradeoff between local and remote requests requires a

global view of the system state, which is available only to Wax. Each cell is responsible only for

maintaining its internal correctness (for example, by preserving enough local free memory to

avoid deadlock) and for optimizing performance within the resources it has been allocated by

Wax.

Implementation of Wax: Despite its special privileges, Wax is not a special kind of process. It is a

spanning task with threads running on all cells, so it is terminated whenever any cell fails. The

recovery process starts a new incarnation of Wax which forks to all cells and rebuilds its picture of

the system state from scratch. This avoids the considerable complexity of trying to recover

consistency of Wax’s internal data structures after they are damaged by a cell failure. The system

may become unbalanced and run more slowly while the policy modules in Wax restart, but this is

acceptable because cell failures are assumed to be rare.

Wax does not weaken the fault containment boundaries between cells. Each cell protects itself by

sanity-checking the inputs it receives from Wax. Also, operations required for system correctness

Cell 0

Process ProcessProcess

Wax

State Hints State Hints

Cell 1

Figure 3.3.  Intercell optimization using Wax.
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are handled directly through RPCs rather than delegated to Wax. Thus if Wax is damaged by a

faulty cell it can hurt system performance but not correctness.

To make this work, cells do not block waiting for Wax to make decisions such as which remote cell

to allocate memory from. Instead, Wax periodically modifies the internal tables in each cell used

by the resource management routines. Cells provide state updates to Wax by exporting data

structures for it to read and sending it signals when action appears necessary.

3.3.6 Resource sharing mechanisms

Given appropriate global policy support from Wax, the remaining challenge is to make resource

sharing efficient. The resources that need to be shared particularly efficiently across cell

boundaries are memory, I/O devices, and processors.

Memory sharing: Hive provides two memory sharing mechanisms (Figure 3.4). One type, called

logical-level sharing, enables processes on different cells to share data. The other, called physical-level

sharing, allows free memory pages to flow to cells where demand is high.

(b) Physical-level sharing of page frames

Cell 0 Cell 1

Cell 0 Cell 1

process
addr space

process
addr space

(a) Logical-level sharing of data pages

Figure 3.4.  Types of memory sharing across cell boundaries.
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Logical-level sharing is implemented by the virtual memory system and the file system, which

ensure that any two processes that open or map the same file can share the same cached pages of

that file in memory. This supports efficient use of the file cache, a performance-critical resource for

many workloads, and allows processes such as those forked from the same parent to share data

pages efficiently across cell boundaries.

Physical-level sharing is implemented by the memory allocation modules of the different cells.

When a cell is short on memory, Wax may direct it to borrow a set of pages from some other cell.

The allocation module of the original owner moves the pages to a reserved list and ignores them

until Wax directs the borrower to return them or the borrower fails. This mechanism supports

load-balancing of memory, preventing a situation where a cell starts paging even though there is

free memory elsewhere in the system.

I/O device sharing: Sharing of I/O devices is implemented just as in other distributed systems. A

request to access a remote I/O device is forwarded to the cell that physically owns the device. That

cell then executes the request and returns the result to the client cell. Hive avoids the extra data

copy that this design would normally require, to or from the memory of the cell that owns the

device, by using the intercell memory sharing mechanisms to allow devices to issue DMA accesses

directly to the memory of the client cell.

Processor sharing: Processor sharing in Hive is different from previous distributed systems. In

systems without shared memory, the only option for load-balancing the system is to migrate

processes completely, which can be slow. Hive takes advantage of the spanning task mechanism

instead (Figure 3.5). A new thread is created on another cell that shares the process context of the

original process, the thread on the original cell is suspended, and its state is moved to the new

thread.

After a new thread for the process has been created on a given cell, which can be done without

pausing the process, execution can be moved to or from that cell much faster than traditional

migration because much less state must be transferred. Migrating a process still creates memory

system costs due to the overheads of remotely accessing the working set of the process, but these

costs are comparable to those created by moving a process between the processors of an SMP

kernel. Once the process is running in its new location, the normal page migration and replication

mechanisms activate to reduce its memory system costs.

3.3.7 Cell size tradeoffs

In the resource sharing mechanisms just described, the cell that owns the resource retains

ownership permanently. Choosing to do resource sharing this way (static cell size) was an
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important decision made early in the design of the system. It would also be possible to transfer

ownership of nodes between cells, moving processors, I/O devices, and memory simultaneously,

in effect allowing cells to grow and shrink as the system runs (dynamic cell size).

Static cell size is attractive because it simplifies the implementation. Hardware resources such as

processors and I/O devices that each cell manages are all present at boot time, so the code in the

base SMP operating system that discovers and manages these resources need not be changed. Cell

boundaries do not move dynamically, so the hardware implementation of the memory fault model

is simplified.

In exchange for increased complexity, dynamic cell size offers the advantage of potentially

reduced inter-cell communication rates. It seems likely that kernel overheads would be reduced if

Figure 3.5.  Lightweight process migration using spanning tasks.
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the system could resize cells to match the applications that run in them. In particular, dynamic cell

size might be able to eliminate most of the performance overheads caused by running large

applications as spanning tasks. It might even be possible to significantly simplify the system by

eliminating support for spanning tasks.

The deciding factor in choosing static cell size for Hive was the assumption that the workload

might contain a mix of very large and small processes yet still require fault containment for the

small processes (Section 3.2.1). Given this assumption, spanning tasks would still be required and

would still have to be implemented efficiently even if cell size were dynamic, so the

implementation complexity of moving nodes between cells does not appear to be justified.

Given static cell size, there are obviously workload-dependent tradeoffs between performance

and reliability when choosing cell size at boot time. As cell size increases, resource allocation

efficiency improves and intercell communication costs drop, but kernel memory system and

synchronization costs increase. System reliability also initially increases as cell size increases

because more processes become local (Section 3.3.3), but then decreases as each process becomes

vulnerable to a larger fraction of the system. The turnaround point for reliability is determined by

average process size in the workload and the relative frequency of hardware and software errors.

Hive leaves it to the system administrator to balance these factors and choose the appropriate cell

size at boot time for each site’s workload and requirements.

3.3.8 Summary and other features

The Hive architecture just described has three primary features. First, it has an internal distributed

system, similar to other distributed systems, that maintains a single-system image and relies

primarily on RPCs for communication. Second, it provides cell isolation for the distributed system

using a wild write defense that consists of the firewall, the preemptive discard policy, fast error

detection and fast null recovery. Finally, it seeks to achieve performance competitive to SMP

operating systems through physical and logical-level memory sharing and lightweight process

migration based on spanning tasks, all managed by global policy modules in Wax.

In addition to these primary features, the Hive architecture has several secondary features that are

important for the reliability and scalability of the system. Implementations of these features have

not yet been designed but are clearly required.

• Graceful shutdown: A key advantage of a multicellular kernel for commercial installations is

that parts of the system can be shut down transparently for preventive maintenance. Graceful

shutdown requires an additional process migration mechanism that leaves no dependencies



Hive architecture 37

on the home cell, unlike the lightweight migration mechanism based on spanning tasks. The

complete-migration operation is not performance-critical.

• Page migration and replication: To improve locality on a CC-NUMA machine, the virtual

memory system must be able to replicate read-shared pages to multiple cells or migrate write-

shared pages among cells. This is independent of the replication and migration that occur

within a cell.

The most important architectural feature not yet designed is the file system. The file system for a

multicellular kernel must provide a globally shared namespace, replication of critical directories

and files, striping and software RAID, and takeover of dual-ported disks by a backup cell after the

primary cell fails. It must do all this while tolerating the loss of any cells in the system. Achieving

these goals while preserving competitive performance is a substantial research challenge.

3.4 Error recovery at lower levels

Hive depends only on the firewall and the memory fault model exported by the memory system

(described in detail in Section 6.3). However, for completeness, this section surveys how the

required error recovery functionality is provided by the lower levels of the fault containment stack

in FLASH.

Memory system level: Hardware fault containment requires recovering the memory system to a

consistent state after an error. FLASH simplifies the challenge of memory system recovery by

avoiding the need to determine the exact state of the system after an error. Consider that any event

that damages the interconnect may damage arbitrary cache-coherence operations that are

incomplete at the time of failure, for example by deleting random network packets. The possibility

of further errors during recovery makes it even more difficult to achieve consensus about the state

of the system.

Instead, FLASH recovers the consistency of the memory system by doing a warm reset. This is

called the sledgehammer algorithm. After an error is detected and network recovery has completed,

all nodes flush their caches, the network is drained, then all directory entries are reset to show the

lines as clean in memory and uncached. Because the caches were flushed, a line found to be

marked dirty during the reset phase must have been lost in the fault. An error condition is marked

in the directory entry for the line, ensuring that the operating system will receive an error the next

time any processor tries to access the line. If further hardware errors occur while recovery is in

progress, the sledgehammer algorithm simply restarts.
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Memory system error recovery is complicated enough that it is desirable to implement it on the

main compute processors rather than in protocol microcode. The system reserves a non-maskable

interrupt for this purpose. When issued by the memory system, the interrupt forces the processor

to begin executing code in uncached mode from a special range of memory not modifiable by the

operating system.

Network level: When an error occurs that prevents delivery of packets, such as a power failure,

node halt, or broken link, the entire interconnect can become congested as undeliverable packets

fill queues in the routers. Recovering from this condition creates the key challenge of dropping

only those packets that are destined to or routed through the failed portion of the machine.

The network level recovery algorithm starts by diagnosing which portions of the machine have

failed. Given this information, it sets a flag in the routers bordering that region so that packets

attempting to enter the failed region will be discarded. This unclogs the network, since all packets

will either be discarded or reach their destinations. When the network has drained, the recovery

algorithm modifies the network routing tables reconnect the surviving nodes while avoiding the

failed region.

To support communication while the network is clogged, FLASH reserves two virtual lanes

through the routers for use by network-level recovery. Network recovery is complicated enough

that FLASH implements it with code that runs on the main compute processor, in the same way as

memory system recovery.

More information: See [TBG+] for more details on memory system and network recovery and

[Gal96] for normal operation of the network and data link levels.
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Chapter 4

Hive prototype

The architecture described in the previous chapter is a system design. This chapter describes the

current Hive prototype that implements the design and some of FLASH features that support it.

Section 4.1 surveys the implementation status of the prototype. The remaining sections of the

chapter describe three aspects of the system that are necessary to evaluate the results of the

experiments but are otherwise outside the focus of the dissertation: the partition of the

multiprocessor into multiple cells, the RPC subsystem, and the file system. I defer discussion of

fault containment and memory sharing to Chapter 6 and Chapter 7 where their implementation is

described in detail.

4.1 Implementation status

The Hive prototype, implemented as an extensive modification of SGI IRIX 5.2, does not provide

all of the architectural features described in the last chapter.

• The single-system image is limited. System V streams (which includes interprocess pipes and

network connections), system V shared memory, and direct device access are not supported

across cell boundaries.

• Wax has not been implemented. Each cell periodically reads data structures exported by other

cells to make memory sharing decisions, and uses a simple rotor to decide which cell to fork to

next.

• Spanning tasks are not implemented. The parallel applications in the workloads run in a

mode where they fork independent subprocesses that share memory.

• The intercell file system is a straightforward port of NFS and does not provide a true shared

name space or file replication.

The net effect of these missing features is that the performance comparison between Hive and

IRIX is not conclusive. Many performance problems may remain undetected. However, the

prototype is sufficient to demonstrate solutions to the fundamental challenges of fault

containment in a shared-memory environment and memory sharing across cell boundaries.
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4.2 Multiple cells

There are some issues that must be resolved for a kernel to run in just part of a machine rather

than owning the entire system as is the case with current SMP operating systems.

Remap region: The MIPS processor architecture has fixed addresses in low memory to which a

processor jumps when an interrupt or exception occurs. To support a multicellular kernel, the

hardware must remap these addresses so they are cell-local or node-local. Otherwise, a hardware

or software error on node zero could cause the entire system to fail.

FLASH provides a remap region feature for this purpose. Logic in the MAGIC chip processor

interface modifies addresses received from the processor before they reach the memory system

proper, and performs the inverse mapping on addresses sent from the memory system to the

processor. The remap region can be set to any power-of-two number of bytes. When the remap

region is set to b bytes, the lower b bytes of the physical address space are exchanged with the

lower b bytes of the local node’s memory (Figure 4.1).

Kernel relocation: The base IRIX design accesses kernel code directly through physical memory

addresses. For simplicity Hive retains this design. The kernel build for Hive generates multiple

versions of the kernel executable, each with a different starting address.

Figure 4.1.  FLASH remap region.
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In a production-quality system where it is desirable to store only one copy of the kernel code on

disk, there are several ways to adapt the code to multiple starting addresses. The boot loader

could relocate the kernel depending on where in memory it is placed. The kernel could be relinked

to access its code and data through virtual memory addresses. A third option would be to place

the kernel code in the remap region, but this would waste memory since the remap region

references node-local rather than cell-local memory.

Using virtual memory addresses appears to be the best option, especially since it is a necessary

step towards running most of the kernel in a reduced privilege state (such as MIPS supervisor

mode) that would deny direct access to physical memory and hence reduce the chance of wild

writes. It should be possible to use a wired superpage TLB entry to eliminate the performance

impact and implementation complexity of TLB misses to kernel code.

Booting: The initial kernel booted on the system does full resource exploration, then partitions the

system into the number of cells specified on its boot line. It boots up to single-user mode in the

partition that it was compiled for and triggers recovery. The normal recovery algorithms run,

determine that no other cells are alive, elect the current cell master, and boot and integrate the

remainder of the cells. All slave cells boot in parallel so this approach should be efficient on a large

machine.

4.3 RPC subsystem

RPC latency is even more critical in Hive than in previous distributed systems because of the tight

resource sharing across cell boundaries expected by applications. FLASH provides a hardware

message primitive called short interprocessor sends (SIPS) that is designed to support Hive RPC.

4.3.1 Hardware support

The SIPS facility delivers 128 bytes from one processor to a receive queue inside the MAGIC chip

on another node with overflow to the node’s main memory. Minimum latency between nearest

neighbors is 1.41 µsec, from the first uncached write on the sending processor until the interrupt is

delivered to the receiving processor.1 This is quite fast, comparable in speed to the highly-tuned

hardware support for cache misses, which take about 1 µsec if directed to the memory of a

neighboring node. If the receiver is waiting for the message, for example with the reply half of an

RPC, it can issue a cache miss in advance to a special address that stalls in MAGIC until the

message arrives. With this receive posting optimization that eliminates interrupt dispatch overhead,

total latency from first word sent until last word received in the receiver’s cache is 1.74 µsec.

1. Performance is measured using the experimental setup described in the next chapter.
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RPCs could be implemented on top of normal cache-coherent memory reads and writes. Therefore

it is important to justify why custom hardware is needed. There are four design points that must

be considered:

• No custom support: The shared memory and interprocessor interrupts (IPIs) provided by a

standard multiprocessor are sufficient to support an RPC implementation. The sending

processor places the message in a producer-consumer buffer and sends an IPI to the receiving

processor.

Fault containment problems limit the usefulness of this design. There cannot be one queue per

receiver, as granting global write permission to shared queues would allow a faulty cell to

corrupt any message in the system. Therefore the receiving cell would have to poll per-sender

queues to determine which cell sent the IPI, which is an inherently non-scalable approach.

• Single-word messages: The IPI hardware can be extended to transmit a number of argument bits

to the receiving processor. If just a few bits are transmitted, they can be used to specify the

sending processor or cell and thus eliminate the polling problem. If the IPI carries more bits,

certain common messages such as ACK can be directly encoded.

When a processor receives a single-word message, it will frequently need to read more

argument words from the sender. Thus the expected latency of communication for a single-

word message is three trips from sender to receiver: one for the initial message, then another

round trip as the receiver cache-misses on the argument words. (This assumes an optimized

design where senders maintain per-receiver outgoing queues so the receiver need not fetch

queue metadata to learn where the next message for it is stored.) However, this performance

cost does not lead to much savings in hardware cost compared to cache-line messages, since

similar complexity is required to send messages, queue messages, and handle overflows in the

two designs.

• Cache-line messages: The IPI mechanism can be extended to transmit a cache-line worth of data

to the receiving processor. This is the design chosen for the SIPS mechanism of FLASH. Cache-

line messages are efficient since the memory system is optimized to move data in cache-line

sized units. For example, after the interrupt is delivered, the receiving processor can force a

cache miss in order to retrieve the data efficiently. Critical-word-first restart provided by the

processor hardware enables the operating system to begin dispatching the message while the

tail of the cache line is still flowing across the processor bus.

• Block move: The memory system can provide the capability to efficiently copy a number of

cache lines from one place to another. This is useful if the system runs programs coded to one
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of the message-passing interface standards such as PVM or MPI. However, there are few

opportunities to apply block moves to optimize kernel-level RPC performance, since the key

problem is low-latency transfer of control rather than high-bandwidth transfer of data.

The cache line size of FLASH is 128 bytes. At this size for a SIPS message, a high fraction of RPC

requests and replies require no additional cache misses because all the argument and result data

fits in the initial message. Therefore the expected latency of a message send is just one trip from

sender to receiver.

4.3.2 RPC architecture

The Hive RPC subsystem is streamlined to minimize the overhead added to the efficient SIPS

primitive. Timeouts are loose and checked infrequently since their only purpose is to detect

hardware faults and server cell failure, which are assumed to be rare. No message fragmentation

or reassembly is required because any data beyond a cache line can be sent by reference, although

the careful reference protocol must then be used to access it.

Interrupt-level RPCs: In the base RPC system, all requests are serviced immediately at interrupt

level by the receiving cell. After sending a request, the client processor posts a receive and waits

for the reply rather than context-switching to a different process. If the reply is delayed the client

processor will eventually time out and block the requesting process. This is transparent to the

client of the RPC and should only occur if there is a server failure or significant contention in the

memory system or server cell.

Requiring the client processor to wait in the common case simplifies the interrupt-level RPC

outbound path since each processor can only have one outstanding request at a time. If a timeout

occurs causing the processor to context-switch, then some other process attempts to send an

interrupt-level RPC, the second process will block until the previous RPC completes or the system

declares a fault and enters recovery.

The requirement that the sender be able to block creates the single most important constraint of

the interrupt-level RPC mechanism: interrupt handlers cannot send RPCs. This affects the design

of higher levels of the system. For example, the handlers for interrupt-level RPCs cannot send

nested RPCs, and events stimulated by timeouts must be queued for server processes rather than

sending RPCs directly from the clock interrupt handler.

Process-level RPCs: A more general mechanism is layered on top of the base interrupt-level RPC

mechanism. Process-level RPCs provide a queuing service and server process pool to handle

longer-latency requests, including any that cause I/O or must block on kernel semaphores. A

process-level request is structured as an initial interrupt-level RPC that launches the operation,
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then a completion interrupt-level RPC sent from the server back to the client to return the result.

Context switch and scheduler latencies make process-level RPCs significantly more expensive

than interrupt-level RPCs.

As an optimization, each process-level handler can be paired with a corresponding interrupt-level

handler. The interrupt-level handler makes an initial best-effort attempt, only scheduling the

server process for execution if it cannot satisfy the request.

Deadlock avoidance: To avoid deadlock for interrupt-level RPCs, FLASH provides two SIPS

receive queues in each node, one for requests and one for replies. The reply queue raises a higher-

priority interrupt than the request queue.

To avoid deadlock for process-level RPCs, the processes in the server pool are organized into

levels starting from one. All non-server processes are at level zero. A cell that receives a process-

level request from a process at level N places it in the queue for a level N+1 server process. The

deepest RPC call chain in the system currently reaches level two.

4.3.3 Evaluation

The Hive RPC subsystem achieves its low-latency goals. The latency of a null interrupt-level RPC

sent to an idle neighboring node is 7.2 µsec. A process-level RPC handled by a server process has a

minimum 41.6 µsec latency, of which 20.4 µsec comes from the scheduler, context switch

mechanism, and implementation of kernel semaphores.

There are two caveats to the excellent speed measured for interrupt-level RPCs. First, the current

implementation does not implement a full retransmission and duplicate suppression protocol for

recovery from network and physical-level errors or receive queue overruns that cause loss of SIPS.

It correctly handles some but not all types of packet loss. Second, the measured time is short

enough that the measurement might be affected by the use of an R4000 processor model for the

simulations rather than the R10000 processor that will be installed in FLASH.

The Hive RPC subsystem and the SIPS mechanism closely resemble other low-latency message

delivery systems such as active messages [vEC+92], U-Net [vEB+95], and FLIPC [BSS+96]. The

key difference from these previous systems is that SIPS is implemented directly by the memory

controller and thus can take advantage of optimizations unavailable to the other systems. One

example is the receive posting optimization, in which a processor waiting for a message issues the

receive cache miss in advance and the cache miss stalls in the memory controller; eventually the

controller either returns an incoming message or returns a timeout. This approach is substantially

faster than the polling or interrupt-based approaches that are required when the memory

controller is not part of the implementation.
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4.4 File system

The intercell file system in Hive is called cell-NFS. It is a variant of the standard NFS distributed

file system [SGK+85]. This file system provides functionality sufficient for the prototype but is not

designed to provide the functionality needed for a production-quality multicellular kernel.

Name space: In cell-NFS each cell is the file server for a portion of the file system name space.

When a cell fails, that portion of the name space becomes inaccessible. Each cell has a local root

directory and accesses the parts of the name space served by other cells through mount points in

that directory.

The names of the mount points are hardwired into the kernel in two places. First, the remote cell’s

root directory is automatically mounted when the corresponding mount point is accessed for the

first time. Second, when a process forks a child on another cell, the child process executes a

chroot  to the mount point corresponding to the parent cell, in order to maintain a consistent

view of the file system name space.

The initial Hive design did not include automounting, but it turned out to be necessary. A newly-

booted cell becomes a target for load-balancing by other cells that attempt to fork processes to it as

soon as it is integrated into the system. The fork will fail if the root directory of the parent cell is

not mounted. However, it is not possible to preemptively mount all remote cells during boot,

because multiple cells may be booting at the same time. Therefore the fork attempt must

automount the root directory of the parent cell.

Universal file identifiers: The vnode  pointer used as the internal name for a file in the base IRIX

code is insufficient for Hive. The problem arises when a process forks a child on another cell. The

open files of that process must be reopened on the new cell, but the vnode  pointer on the parent

cell is local to that cell, so some other name is needed to identify the file to the file server cell in the

reopen request. The external file name used to open the file initially cannot be used because it may

no longer be valid.

Cell-NFS provides a universal file identifier to solve this problem. The universal file identifier

contains a file server cell ID and vnode  pointer on that cell. This is sufficient because the

identifier’s duration is limited. It need only be valid while some process on the system has the file

open. The file system ensures that the vnode  on the file server cell is not deallocated as long as the

file is in use. The universal file identifier is stored in each local vnode  that represents a remote file.

Data access: When a process reads or writes to a file whose file server cell is remote, cell-NFS

behaves just like NFS with one important exception. Rather than returning a copy of the requested
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page from the file server, cell-NFS returns the address at which the requested data is stored in

memory. It uses the memory sharing mechanisms provided by the virtual memory system to grant

remote read or write access to the memory data. Because the standard NFS writeback mechanism

is not used, the write-through on writeback design that creates a high number of synchronous

accesses for NFS does not affect cell-NFS.

Data consistency: Cell-NFS inherits its metadata and data consistency mechanisms from NFS. In

NFS, metadata is cached without possibility of invalidation for up to 3 seconds and there is no

data cache coherence. This approach is acceptable for NFS because files are rarely write-shared in

the distributed environments where it is used. However, in a multicellular kernel files are

frequently write-shared by processes running on different cells, so better data consistency and

metadata consistency mechanisms are needed.

Returning references to data pages rather than copies of those pages to clients solves the data

consistency problem for cell-NFS, since the cache-coherence hardware maintains consistency. The

metadata consistency problem remains unsolved in Hive. The only application in the experiments

potentially sensitive to this problem is pmake, in which the console outputs of the parallel

compilations can be written in append mode to a shared file. To avoid the problem, parallel make

is run in a mode where the parallel compilation processes output their logs to individual

temporary files. The master process polls these files and copies the output to the shared log file.

4.5 Summary

The three mechanisms just described are implemented to different levels of completeness. The

support for multiple cells, including the remap region, is complete enough that a production-

quality multicellular kernel could use this approach, as long as it is acceptable to store multiple

kernel executables on disk. The RPC subsystem and the SIPS primitive that support it are fairly

fully implemented, lacking only a completed retransmission protocol and whatever hardware

support is required to make it efficient. In contrast, the file system does not provide most of the

features required for scalable performance and fault containment.

The limitations of these features and the missing single-system image mechanisms, notably

spanning tasks and Wax, prevent this dissertation from making any definitive conclusions about

the performance of multicellular kernels. However, the implementation is complete enough for

experiments to demonstrate that fault containment is possible inside a shared-memory system

and that memory can be shared at both application and kernel levels across fault containment

boundaries. The next chapter describes how the experiments are performed; the following two

chapters describe the implementation of fault containment and memory sharing in detail.
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Chapter 5

Experimental setup

This chapter describes the setup for the experiments in the dissertation. Because the FLASH

machine is not yet operational, all experiments use the SimOS machine simulation environment.

The first section of the chapter describes SimOS. The second gives information about the

performance experiments. The third describes the reliability experiments. The final section

analyzes how using simulation affects the experimental results.

5.1 The SimOS simulation environment

SimOS [RHW+95, WiR96, RBD+] is a machine simulation environment that simulates the

hardware of uniprocessor and multiprocessor computer systems in enough detail to boot, run,

and study a commercial operating system.1 Specifically, SimOS provides simulators of processors,

caches, memory systems, and a number of different I/O devices including SCSI disks, ethernet

interfaces, and a console.

There are a number of unique features in SimOS that make detailed workload and kernel studies

possible. These include multiple processor simulators, checkpoints, and annotations.

• Multiple processor simulators: In addition to the configurable cache and memory system

parameters typically found in simulation environments, SimOS supports a range of

compatible processor simulators. Each simulator has its own speed-detail trade-off. The

highest speed simulator, called Embra, uses binary-to-binary translation techniques. This fast

mode is capable of executing workloads less than 10 times slower than the underlying host

machine. SimOS also contains two more-detailed processor simulators that are orders of

magnitude slower than Embra. The processor simulator called Mipsy models a static-pipeline

processor (one instruction per cycle, one outstanding cache miss at a time) while the simulator

called MXS models a dynamic-pipeline processor (out-of-order and speculative execution,

multiple outstanding cache misses).

1. The description in Section 5.1 is largely taken from [RHW+95].
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• Checkpoints: SimOS can save the entire state of the simulated machine at any time during

execution. This saved state, which includes the contents of all registers, main memory, and

I/O devices, can then be restored at a later time. Checkpoints make it possible to restart each

experiment at the point of interest without wasting time rebooting the operating system and

positioning the applications.

• Annotations: To better observe workload execution, SimOS supports a mechanism called

annotations in which a user-specified routine is invoked whenever a particular event occurs.

Most annotations are like debugger breakpoints, in that they trigger when the workload

execution reaches a specified program counter address. Annotations are non-intrusive. They

do not affect workload execution or timing, yet have access to the entire hardware state of the

simulated machine.

Because SimOS simulates the complete hardware of the system, a variety of hardware-related

statistics can be kept accurately and non-intrusively. These statistics cover instruction execution,

cache misses, memory stall, interrupts, and exceptions. The simulator is also aware of the current

execution mode of the processors and the current program counter. However, this does not

provide information on important aspects of the operating system such as the current process id

or the service currently being executed.

To further track operating system execution, SimOS provides a set of state machines (one per

processor and one per process) and one pushdown automaton per processor to keep track of

interrupts. These automata are driven by annotations set in various places in the kernel. For

example, annotations set at the beginning and end of the kernel idle loop separate idle time from

kernel execution time. Annotations in the context switch, process creation, and process exit code

keep track of the current running process. Since they have access to all registers and memory of

the machine, these annotations can non-intrusively determine the name and id of the currently

running process. Additional annotations are set in the page fault routines, interrupt handlers, disk

driver, and at all hardware exceptions. These are used to attribute kernel execution time to the

service performed. Annotations at the entry and exit points of the routines that acquire and release

spin locks determine the synchronization time for the system, and for each individual spin lock.

Simulator validation: Validating the accuracy of these statistics is less of an issue for this

dissertation than for most other simulation-based studies, because performance is not the focus of

the results. However, SimOS has been partially validated as reported in [RHW+95]. As for

correctness of execution, the applications are unmodified from and generate the same output data

as the code that runs on real IRIX systems, and it is difficult to imagine the kernel code

successfully completing these complex workloads if SimOS did not execute it correctly.
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5.2 Performance experiments

The performance experiments use the hardware configuration shown in Table 5.1.

Simulation model: The experiments use the Mipsy processor model, configured with the same

caches as the MIPS R10000 used in FLASH. Memory access latencies are computed using the

reference memory system model developed by the FLASH hardware team, called Flashlite

[HKO+94]. A cache miss to a line that is clean in local memory takes about 200 nsec (40 processor

clocks), to a line clean in a remote memory takes at least 840 nsec (168 processor clocks), and to a

line dirty in a remote processor’s cache at least 1.2 µsec (240 processor clocks). These times can be

increased by queueing delays in the MAGIC chips, misses in the MAGIC caches, contention in the

network, and arbitration for the processor busses. Flashlite includes a protocol processor emulator

that executes and times the actual protocol microcode that will run in the machine.

Workloads: The performance experiments use three workloads. In all cases the workload is run

once to warm up the file cache, then run again to measure execution time and behavior.

The first workload, pmake, models general-purpose use of the system. It is a parallel make of 16

files from the gnuchess 4.0 distribution, compiled eight at a time. Since this is a fairly small

Table 5.1. System model for performance experiments.

Component Characteristics

8 processors 200 MHz MIPS R4000
1 CPI when no cache misses

Primary instruction cache 32 kilobytes
2-way associative
64-byte lines

Primary data cache 32 kilobytes
2-way associative
32-byte lines

Unified secondary cache 1 megabyte
2-way associative
128-byte lines

15 disks Accurate model of HP 97560 drive [KTR94]

256 MB memory 8 FLASH nodes, 32 megabytes each

Mesh interconnect 400 MHz SPIDER routers [Gal96]

8 MAGIC controllers 100 MHz
1 megabyte direct-mapped data cache
16 kilobyte 2-way associative instruction cache
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compilation, the files to be compiled are chosen from among the source files in the distribution to

minimize the length difference between the shortest and longest source files. This avoids hiding

operating system performance differences in the idle time that occurs waiting for the last

compilation to complete.

The other two workloads, ocean and raytrace, are parallel scientific applications from the Splash-2

benchmark [WOT+95]. These applications stress Hive’s resource sharing mechanisms. Ocean uses

a 258 by 258 grid and a 1400 second interval. Raytrace uses the teapot data set and four antialias

rays per pixel. Both applications are run with eight threads, in a mode where the threads are

created using the fork  system call. That is, from the perspective of Hive they run as eight separate

processes that happen to share memory.

Operating system configurations: The performance baseline is provided by IRIX 5.2, modified as

little as possible to port it to the FLASH hardware modeled by SimOS. The primary changes are

the addition of new disk, ethernet, and keyboard device drivers, and modifications to low-level

handlers to manage the FLASH interrupt architecture.

Hive’s performance is measured across configurations with one, two, four, and eight cells on the

eight-processor system. In each case the hardware resources are divided equally among the cells.

For example, the two-cell system contains one copy of the kernel text starting at physical address 0

that manages processors 0 through 3 and memory from 0 to 128 megabytes, and another copy of

the kernel text starting at physical address 128 megabytes that manages processors 4 through 7

and memory from 128 megabytes to 256 megabytes.

For debugging purposes, Hive is compiled with optimization disabled. To make the performance

comparison fair, IRIX is compiled in the same way.

Summary of results: Table 5.2 shows the overall time to completion of the performance

workloads on the various operating system configurations. The eight-cell Hive configuration is

competitive with IRIX for pmake, slower for raytrace, and faster for ocean. Interestingly, both

pmake and ocean are faster in the four-cell configuration than in the two-cell configuration, and

pmake is even faster at eight cells than at four cells. These results are explained in Chapter 8 after

the implementation details of Hive have been presented.

5.3 Reliability experiments

It is difficult to predict the reliability of a complex system before it has been used extensively.

Furthermore, it is impossible to demonstrate complete reliability through fault and error injection
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tests. Still, these tests can provide an indication that Hive’s fault containment mechanisms are

functioning correctly.

Table 5.3 summarizes the system model used for the reliability experiments. To make it possible to

run a large number of tests, the reliability experiments use a smaller hardware model, a less

accurate simulation mode, and a smaller workload than the performance experiments.

Simulation model: The experiments use the Embra processor simulator, which gives up timing

accuracy to achieve simulation speed. The effect of the binary-translation techniques used in

Embra is that from the perspective of Hive running on the simulated system, the speed of each

processor varies nondeterministically over time relative to the speeds of other processors. To

improve simulation speed further, both memory accesses and disk accesses complete in one cycle.

Use of this high-level system model implies that the experiments can stress software fault

containment mechanisms in Hive but not the hardware fault containment mechanisms in FLASH.

Since this dissertation focuses on Hive, the experiments assume that FLASH successfully

implements the memory fault model.

Workload: The workload for the reliability experiments is a parallel make of six files from the

same gnuchess distribution as used in the performance experiments, compiled four at a time.

After the primary run in which a fault or error is injected and the make completes or is terminated,

all files successfully output are checksummed to look for data corruption. Then the parallel make

is executed again. The success of the second parallel make is taken as evidence that the surviving

cells were not corrupted.

Table 5.2. Time to completion (seconds) of performance experiments.

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 4.9 4.9 6.3 5.3 4.9

raytrace 3.1 3.0 3.5 3.5 3.8

ocean 4.0 3.5 3.8 3.0 3.8

Table 5.3. System model for reliability experiments.

Component Characteristics

4 processors MIPS R4000, not timing accurate

7 disks Single-cycle latency

128 MB memory Zero latency
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Operating system configuration: The fault injection experiments all use a four-cell Hive

configuration. The script driving the two parallel make executions runs on cell 0 and the source

files are stored on a disk attached to that cell. File system limitations make cell 0 essential for all

the compile processes. Therefore, other than a few experiments performed in order to check for

faults in the recovery algorithms, the reliability experiments avoid injecting faults or errors into

cell 0.

Summary of results: In 1000 software and hardware error injection experiments and 1000

software fault injection experiments, there were no instances of data corruption in the output of

the parallel make. In the fault injection studies, Hive has an uncontained failure rate of 4%, which

indicates that its fault containment mechanisms are functioning properly. Future multicellular

kernels should do significantly better than the 4% uncontained failure rate measured for Hive,

because the prototype is still immature: about half of the uncontained failures come from just two

software faults that are easily fixed. Chapter 6 analyzes these results after presenting the

implementation of fault containment.

5.4 Impact of using simulation

Using simulation constrains the experiments significantly because it limits the size of the system

that can be studied. After discussing the impact of limited system size on the results, I describe the

other ways in which the differences between the execution environment of SimOS and the FLASH

machine affect the performance and reliability experiments.

5.4.1 Limited system size

The four- and eight-processor systems studied are much smaller than the machines with tens to

thousands of processors for which Hive is designed. This is another reason that many

performance problems may remain undetected.

However, it is more difficult for a multicellular kernel to achieve competitive performance at small

system sizes than at medium and large system sizes. Memory system and synchronization costs

are lower, so the overheads of SMP operating systems are lower. The competitive performance

seen in most of the performance experiments is therefore a promising result. Moreover, the

performance experiments show trends that suggest how multicellular kernels will behave on

larger systems (Chapter 8).

The reliability results are less affected by the small system sizes studied. Reliability is more

affected by the number of cells than by the number of processors, and production systems as large

as 128 processors may run with just four or eight cells. The primary effect of increasing the
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number of processors per cell is to increase the rate of interaction between cells, which creates

more opportunities for corruption in one cell to spread to another if the latency to detect software

errors remains constant. However, since each interaction between cells represents an opportunity

to execute a heuristic failure check, it seems likely that the expected latency will drop as the rate of

interaction increases. Whether or not this conjecture proves to be correct, the demonstration that

fault containment is possible in a shared-memory system carries weight irrespective of the size of

the system.

5.4.2 Impact on performance experiments

There are two differences between the simulated environment used in the performance

experiments and the FLASH machine that have a significant impact on the performance results.

Processor pipeline: The performance experiments use a static-pipeline processor model rather

than the dynamically-scheduled pipeline of the R10000 processor in FLASH. The more accurate

MXS processor model of SimOS is too slow to use for workloads as large as the ones used in the

performance experiments.

The effects on measured operating system performance of using the simpler processor model

while keeping the rest of the hardware configuration unchanged are examined in detail in

[RHW+95]. Using a make workload on a uniprocessor version of IRIX 5.3, that study found that the

dynamically-scheduled processor hides about 50% of the kernel level 1 cache miss time

experienced by the static-pipeline processor, but only about 15% of the kernel level 2 cache miss

time.

The memory system used in [RHW+95] satisfies level 2 cache misses in a uniform 300 nsec, which

is substantially faster than FLASH. This suggests that changing from a static-pipeline processor to

a dynamically-scheduled processor will have a minor impact on kernel level 2 cache miss time in

FLASH.

If so, the primary effect that could change the relative performance measured for IRIX and the

various Hive configurations is the substantial reduction in level 1 cache miss time. This effect

strengthens the results of the performance experiments. As Table 5.4 shows, the percent of kernel

time spent on level 1 cache misses increases steadily as the number of cells increases. A 50%

reduction in this time will improve the performance of Hive more than it improves the

performance of IRIX.

MAGIC caches: Implementation constraints forced the MAGIC hardware design team to switch

to a less aggressive instruction cache for references made by the protocol microcode. The memory
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system model used in the performance experiments is configured as the original MAGIC design,

containing a two-way set-associative instruction cache.

Changing to a direct-mapped cache could change the relative costs of local, remote, and

communication cache misses, thereby changing the relative memory system costs of IRIX and the

various Hive configurations. However, the hardware design team plans to lay out the frequently-

executed protocol microcode routines to minimize conflict misses, so that the slowdown due to

cache effects will be spread evenly over the microcode. If this effort succeeds, the effect of

changing the cache design on the relative performance of the operating system configurations is

likely to be minor.

5.4.3 Impact on reliability experiments

Using simulation makes it significantly easier to study the reliability of the system. SimOS is

deterministic, enabling exact repetition of fault and error injection experiments so their effects can

be analyzed in detail. However, use of SimOS also affects the results of the reliability experiments

due to its limited address space.

SimOS only implements 32-bit virtual and 29-bit physical addresses. These are significantly

smaller than the 64-bit virtual and 40-bit physical addresses of FLASH. Peter Chen has argued that

the 64-bit virtual address space of a next-generation processor reduces the probability of wild

writes [CNC+96]. If so, the inaccuracy caused by SimOS strengthens the primary experimental

results in this dissertation, which argue that Hive successfully provides fault containment despite

the possibility of wild writes.

Table 5.4. Percent of kernel time spent on level 1 cache misses.

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 9.3 9.0 8.9 14.3 19.6

raytrace 10.8 11.0 11.5 16.0 17.9

ocean 5.1 5.7 6.0 10.3 14.3
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Chapter 6

Fault containment

This chapter presents and evaluates Hive’s fault containment mechanisms. The mechanisms fall

into two broad categories: those that provide cell isolation and those that provide failure recovery.

Cell isolation in Hive includes both software and hardware features. The first two sections of the

chapter describe the software features that preserve cell isolation despite the possibility of corrupt

remote reads and wild writes. The third section of the chapter gives a precise definition of the

memory fault model, which specifies the hardware features required for cell isolation despite the

possibility of hardware errors.

Failure recovery in Hive consists of a set of software mechanisms that restore the operating system

to a consistent state after one or more cells have failed. The fourth section of the chapter provides

an overview of these mechanisms.

Finally, the last section of the chapter reports the results of fault injection experiments that stress

Hive’s implementation of fault containment.

6.1 Safe remote reads

One cell reads another’s internal data structures rather than using RPCs in cases where RPCs are

too slow, an up-to-date view of the data is required, or the data needs to be published to a large

number of cells. Once the data has been read, it has to be sanity-checked just as an RPC received

from the remote cell would be checked. However, the remote reads create additional fault

containment problems.

Two mechanisms make remote reads safe: the careful reference protocol and the publisher’s lock. The

former ensures that a reading cell checks for misaligned pointers, data structures with loops, and

so on. The latter allows the reading cell to synchronize with the cell that owns and may be

updating the data.

6.1.1 Careful reference protocol

The careful reference protocol defends against two types of errors in the remote cell: hardware

errors that are reflected through the memory fault model as bus errors, and software errors that
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can appear as corrupt data. Bus errors are significant because cells normally panic (shut

themselves down) if they detect such hardware exceptions during kernel execution. This is an

essential self-check that is frequently the first indication of internal corruption, so it is important to

weaken the self-check as little as possible when implementing careful references.

The reading cell follows these steps.

(1) Call the careful_on  function, which captures the current stack frame and records which

remote cell the kernel intends to access. If a bus error occurs due to reading the memory of

that cell, the trap handler restores to the saved function context rather than causing a panic.

(2) Before using any remote address, check that it is aligned properly for the expected data

structure and that it addresses the memory range belonging to the expected cell.

(3) Copy all data values to local memory before beginning sanity-checks, in order to defend

against unexpected changes.

(4) Check each remote data structure by reading a structure type identifier. The type identifier is

initialized by the memory allocator and overwritten by the memory deallocator. (This feature

was simple to add to the allocator in IRIX, and seems likely to be similarly straightforward in

most kernels.) Checking for the expected value of this tag provides a first line of defense

against invalid remote pointers.

(5) Call careful_off  when done so future bus errors experienced by this processor will

correctly cause the kernel to panic.

Implementation details: Careful_on  is implemented just like setjmp . There are two sets of

careful_on  register save areas, one for each process (stored in the user area) and one for each

processor (stored in the processor private data area). Use of two register save areas allows a

process that is in the middle of a careful reference to be interrupted safely, since the interrupt

handler may itself need to do a careful reference. Interrupt handlers use the per-processor register

save area and disable further interrupts while making careful references.

A process making a careful reference is allowed to specify a secondary target cell that it will access

simultaneously with the primary cell. The case that forced adding this capability is obscure: if a

parent forks a child process while it has locked copy-on-write pages, the child cell must

preemptively copy those pages during the fork to avoid breaking the parent’s lock. If any of those

pages happen to be borrowed from a third cell, the child cell may need to remotely access two

different cells simultaneously.
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The usage paradigm for careful referencing is:

if (careful_on(cellid)) {
/* Come here only if bus error occurred before careful_off.
 * Trap handler turns off careful referencing automatically.
 */
hint_failure(cellid); /* inform recovery subsystem of error */
return ERROR;

}
if (FCBADPTR(remote_pointer, remote_structure_type, cellid)) {

/* bad pointer */
careful_off(cellid);
return ERROR;

}
bcopy(remote_pointer, local_buffer, sizeof(remote_structure_type));
careful_off(cellid);
return SUCCESS;

The FCBADPTR macro abstracts the necessary pointer and type identifier checks:

#define FCBADPTR(p,t,c) (  bad_pointer(p, alignof(t), sizeof(t), c)
 || (p->fcmagic != typeidof(t)))

int bad_pointer(void* p, int align, int size, cellid_t c)
{

nodeid_t t = NODE_NUMBER(p); /* extract node bits from address */
if (!IS_PHYSICAL_MEMORY_ADDRESS(p)) return 1;
if (c != nodemap[t].cellid) return 1;
if (p < nodemap[t].startaddress) return 1;
if (p+size > nodemap[t].endaddress) return 1;
if (p & (align-1)) return 1;
return 0;

}

The type tag is stored by convention in a field named fcmagic . The functions alignof  and

sizeof  are compiler builtins. Typeidof  is a macro that converts a type name to a unique integer

at compile time. The type tag field is only read after checking that the pointer is valid, so if a bus

error occurs the trap handler will return to the saved careful reference point rather than causing

the kernel to panic.

6.1.2 Publisher’s lock

A cell cannot acquire a lock on a remote data structure it needs to read. If a cell allowed remote

cells to modify the lock variable of one of its data structures, the cell could no longer trust that its

own accesses to the data structure would be free of race conditions or deadlocks. The publisher’s

lock mechanism allows a remote cell to acquire a consistent view of a data structure without

acquiring a lock.
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The publisher’s lock is an integer variable incremented by the cell that owns the data structure

before modifying the structure and again after modification is complete. The remote cell copies the

data structure and uses the publisher’s lock to determine whether its snapshot is consistent.

typedef struct {
unsigned short v;

} publ_lock;

void publ_init(publ_lock* p)
{

p->v = 0;
}

void publ_lock(publ_lock* p)
{

p->v++;
/* hardware store barrier here if the multiprocessor

is not sequentially consistent */
}

void publ_unlock(publ_lock* p)
{

/* hardware store barrier here */
p->v++;

}

/* precondition: careful referencing enabled,
p and remote_struct pointers already checked with FCBADPTR */

int read_publ_structure (volatile publ_lock* p,
 struct st* remote_struct,
 struct st* local_copy)

{
int timeout = TIMEOUT;
while (timeout-- >= 0) {

unsigned short a = p->v;
if (a & 0x1) continue;
*local_copy = *remote_struct;
if (a == p->v) {

return SUCCESS;
}

}
return ERROR;

}

The only subtlety of this algorithm is the placement of the hardware store barriers, which are

needed on machines with relaxed memory consistency models [GLL+90]. Hive does not use the

store barriers. The base IRIX implementation is not well-labeled so FLASH must run in sequential

consistency mode to execute Hive correctly.

When implementing Hive, an unexpected usage pattern for the publisher’s lock appeared. Hive

does not have publisher’s locks on any kernel data structures inherited from IRIX, only on the new
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ones added to support information dissemination between cells. The reason is that in cases where

one cell reads another’s internal data structures, such as during remote process creation, the

operation is invariably requested by the cell that owns the data structures and thus it can lock the

data structures before requesting the operation.

6.1.3 Evaluation

These mechanisms make it efficient to read remote data directly. An example use of the careful

reference protocol is the clock monitoring algorithm, in which the clock handler of each cell checks

another cell’s clock value on every tick. With warmed-up caches, the average latency from the

initial call to careful_on  until the terminating careful_off  call finishes is 1.46 µsec (292

cycles), of which 1.0 µsec (200 cycles) is the average latency of the cache miss to the memory line

containing the clock value. This is substantially faster than sending an RPC to get the data, which

takes a minimum of 7.2 µsec and requires interrupting a processor on the remote cell.

The larger question is how useful it is to read remote data directly. Chapter 7 examines this

question in detail.

6.2 Wild write defense

The second way that one cell can corrupt another is by writing to its memory. Hive defends

against wild writes using a three-part strategy. First, it manages the FLASH firewall to minimize

the number of pages writable by remote cells. Second, when a cell failure is detected, other cells

preemptively discard any pages writable by the failed cell. Finally, Hive implements mechanisms

to detect failures quickly after they occur. The next sections describe each part of the strategy in

turn.

6.2.1 Firewall management

I describe the implementation of the firewall in FLASH in more detail before presenting and

evaluating the firewall management policy of Hive.

FLASH firewall: The firewall controls which processors are allowed to modify each region of

main memory. FLASH provides a separate firewall for each 4 kilobytes of memory, specified as a

64-bit vector where each bit grants write permission to a processor (the granularity and number of

bits can be changed in protocol microcode). On systems larger than 64 processors, each bit grants

write permission to multiple processors. A write request to a page for which the corresponding bit

is not set fails with a bus error.
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The protocol microcode running on each node stores and checks the firewall bits for the memory

of that node (Figure 6.1). It checks the firewall on each request for cache line ownership (read

misses do not count as ownership requests). Uncached accesses to I/O devices on other cells

always receive bus errors, while DMA writes from I/O devices are checked as if they were writes

from the processor on that node. To reduce the performance impact of the firewall check,

dedicated logic determines whether the incoming request is from a node of the local cell before

dispatching the protocol code.

A cell can change the firewall for a page with a single uncached write. The rule for firewall

modification is interesting: any cell that has write permission to a page may modify the firewall

for that page. FLASH initially implemented the more intuitive rule that only the cell that owns a

page may modify the firewall for that page. Section 7.1.5 on physical-level memory sharing

explains why the rule was changed and discusses the implications of the current rule.

The 4 kilobyte firewall granularity matches the operating system page size. Anything larger

would constrain operating system memory allocation, whereas it is unclear whether a finer

granularity would be useful.

A bit vector per page was chosen over two other options that would require less storage. A single

bit per page, granting global write access, would make processes that use any remote memory

vulnerable to errors anywhere in the machine. A byte or halfword per page, naming a processor
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processing
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Figure 6.1.  Firewall support in MAGIC.
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with write access, would make it inefficient to allocate a remote page to a parallel process since

multiple threads could not write-share the page.

The performance cost of the firewall is minimal. The firewall check increases the average nearest-

neighbor remote write cache miss latency under pmake by 6.3% and under ocean by 4.4%,

comparing runs of these workloads with the firewall enabled and with it disabled. This increase

has little overall effect since write cache misses are a small fraction of the workload run time. In

fact, the overall run time of pmake was longer with the firewall disabled than with it enabled, due

to a change in the interleaving of process execution.

Firewall management policy: Firewall management is a tradeoff between fault containment and

performance. For the best possible wild write defense, write permission to a user data page should

only be granted while a write-enabled mapping to that page is active in the TLB of a processor of

another cell.

However, it is relatively expensive to change the firewall write permission for a page. It requires

sending an RPC (minimum 7.2 µsec) to the cell that manages that page. There is also significant

hardware cost when retracting firewall write permission for a page. All lines cached exclusively

by the processors of the cell that is losing permission must be retrieved, since a line that is cached

remains modifiable irrespective of the firewall state. In practice it is difficult to determine which

lines are cached exclusively, so the cell that manages the page must read through the entire page

after retracting write permission. This could add 10 µsec or more if many lines are cached

exclusively. The total cost is far too expensive to pay on each change in TLB mappings, which can

occur as often as once every 1000 user instructions in some workloads [RHW+95].

Hive uses a more relaxed policy. Write access to a page is granted to all processors of a cell when

any process on that cell faults the page into a writable portion of its address space. Granting access

to all processors of the cell allows that cell to freely reschedule the process on any of its processors

without sending RPCs. Write permission remains granted as long as any process on that cell has

the page mapped in its address space. This reduces the number of firewall write permission

changes to an acceptable level.

Evaluation: The effectiveness of this policy can be measured by comparing pmake, which shares

few writable pages between the separate compile processes, with ocean, which shares its data

segment among all its processes. During 5.0 seconds of execution sampled at 20 msec intervals,

pmake had an average of 15 remotely writable pages per cell at each sample (out of about 6000

user pages per cell), while ocean showed an average of 550 remotely writable pages.
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The low number of writable pages under pmake shows that this policy should provide good wild

write protection to a system used predominantly by sequential applications. The highest recorded

number of writable pages during the workload was 42, on the cell acting as the file server for the

directory where compiler intermediate files are stored (/tmp ). This is low enough to make it

extremely unlikely that a wild write will bypass the firewall and corrupt memory.

In the case of ocean, the current policy provides little protection since the global data segment is

write-shared by all processes. However, the application is running on all processors and will exit

in any case when a cell fails, so any efforts to prevent its pages from being discarded will be

wasted. The firewall management policy avoids protection status changes that would create

unnecessary performance overheads for this type of application.

6.2.2 Preemptive discard

When a cell fails and issues wild writes, it will be able to corrupt the data stored in pages to which

it has firewall write permission, thereby corrupting applications that subsequently read the data.

The preemptive discard policy attempts to prevent this problem.

Determining potentially corrupt pages: It is difficult to determine efficiently which pages to

discard after a cell failure. Many cells could be using a given page and therefore need to cooperate

in discarding it, but only the cell that manages the page knows its precise firewall status.

Distributing firewall status information during recovery to all cells using the page would require

significant communication.

Hive avoids this cost. Each cell determines locally which of its pages were writable by the failed

cell or cells and marks those pages as discarded. Additionally, all TLBs are flushed and all remote

mappings are removed during recovery. This ensures that a future access to a remote page will

fault and send an RPC to the cell that manages the page, where it can be checked.

Recording discarded pages: Accesses to discarded pages might occur arbitrarily far in the future,

making it quite expensive to record exactly which pages of each file have been discarded. Hive

solves this problem by relaxing the application-visible error semantics slightly.

In most current UNIX implementations the file system does not attempt to record which dirty

pages were lost in a system crash. It simply fetches stale data from disk after a reboot. This is

acceptable because no local processes can survive the crash, so a process that accessed the dirty

data will never observe that it was unstable.

Hive takes advantage of these semantics by allowing any process that opens a damaged file after a

cell failure to read whatever data is available on disk. Only processes that opened the file before
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the failure receive an error upon accessing discarded pages. This is implemented with a

generation number, maintained by the file system, that is copied into the file descriptor or address

space map of a process when it opens the file. When a cell discards a dirty page of a file, it instructs

the file system to increment the file’s generation number. A subsequent access via a file descriptor

or address space region with a mismatched generation number generates an error.

Evaluation: The preemptive discard policy has two costs. The first is the number of pages that are

discarded that have not been damaged by wild writes. The fault injection experiments reported

later show that the chance of wild writes is very low. However, it is safer to discard a valid page,

perhaps forcing the user to run an application again, than to preserve a corrupted page, which

could cause an application to generate incorrect output. The number of pages discarded is

governed by the firewall management policy described earlier.

The second cost is an increase in the execution time of undamaged applications after a failure. This

is an artifact of the implementation of preemptive discard rather than the policy itself. Removing

all remote memory mappings during recovery forces surviving applications to rebuild all their

mappings, which adds a substantial number of page faults. This cost is acceptable because errors

that require full recovery (as opposed to null recovery) are assumed to be rare.

6.2.3 Failure detection

Preemptive discard can only prevent the use of corrupted data if it runs soon enough after the

data is corrupted. Therefore part of the wild write defense is detecting cell failures as quickly as

possible, using heuristic checks.

The heuristic checks in the prototype are not sophisticated. In particular, the timeouts are chosen

arbitrarily. I list them here to allow evaluation of the reliability experiments in the dissertation.

The timeout values chosen are large enough to avoid false alarms during the performance

experiments, and therefore are somewhat larger than ideal for reliability.

A cell is considered potentially failed if one of the following timeouts occurs:

• The cell fails to respond to an RPC request. This timeout is set at 500 msec for RPCs serviced at

interrupt level and one second for RPCs that must schedule a server process.

• The cell fails to respond to a ping request sent by the heartbeat algorithm that is part of

recovery. This timeout is set at 160 msec.

• A shared memory location that the cell updates on every clock interrupt fails to increment.

Monitoring the clock detects hardware errors that halt processors but not entire nodes, as well
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as operating system errors that lead to deadlocks or the inability to respond to interrupts. This

timeout is set at 30 msec.

Additionally, the prototype uses other mechanisms that are not based on timeouts. A cell is

considered potentially failed if one of the following conditions occurs:

• An attempt to access the memory of the cell causes a bus error. This will occur if there is a

serious hardware error or if the cell incorrectly denies firewall access to a page that another

cell is writing.

• Data read from the cell’s memory or received in a message fails sanity checks. This detects

software errors.

• A memory location (the alive  field of the cell public area, Section 7.2.1) changes away from

the correct value, indicating that the cell has detected an internal error and halted. Each cell’s

alive  field is read by some other cell on each clock interrupt.

Detecting one of these timeouts or conditions provides a hint that some cell may have failed. It is

only a hint since the error may have been in the cell where the check algorithm executed. For

instance, in one case a software fault caused the clock interrupt handler in a cell to execute too

frequently. Pending operations on that cell timed out prematurely, leading the damaged cell to

wrongly suspect that another cell had failed.

When a hint is raised, the distributed agreement algorithm runs and all cells come to a consensus

about which cells are live and which have failed. To prevent a corrupt cell from repeatedly

broadcasting alerts and damaging system performance, a cell that broadcasts the same alert twice

but is voted down by the distributed agreement algorithm both times will panic.

Evaluation: This set of failure detection mechanisms has minimal performance overhead because

most of the checks are those that must be performed in any case to defend against corruption due

to receiving bad data. However, the checks appear to detect failures quickly enough to prevent

damage due to wild writes, as shown in the fault and error injection experiments reported later.

The major unanswered question about failure detection is whether the number of false alarms will

scale with the number of cells or the number of processors per cell, forcing looser timeouts and

less frequent heuristic checks to maintain acceptable performance overheads. If so, the reliability

of the system will decrease with size. Of the mechanisms implemented in the prototype, only the

rate of RPC timeouts appears likely to increase with system size, since the increased interaction

rate between cells creates both a greater possibility of congestion and a greater chance of detecting

any temporary congestion that occurs. The small system sizes and large timeouts used in the



Fault containment 65

experiments do not provide the data needed to judge whether this will be a problem, either with

RPC timeouts or with the other heuristic checks that may be added later.

6.2.4 Summary and possible improvements

The wild write defense consists of the firewall, policies that manage write permission, the

preemptive discard policy, and fast failure detection mechanisms. For the fast failure detection

mechanisms to be efficient, the null recovery case must be fast. Its implementation is described in

Section 6.4.

All four architectural components of the wild write defense could be implemented differently or

better in future multicellular kernels.

• Firewall: The firewall is implemented in hardware by FLASH, but could be provided in

software by a microkernel or low-level supervisor on multiprocessors that do not provide it in

hardware. This design alternative is discussed in Section 9.1.

Whether implemented in hardware or in software, the firewall could be extended with an

additional vector that records which processors have modified the data in the page (to be

more precise, have ever cached any line in the page in exclusive mode). This feature would

double the storage requirements and add significantly to the memory bandwidth consumed

by the firewall, which currently is mostly read-only and can be effectively cached in MAGIC.

However, adding a write detection vector would enable the kernel to significantly reduce the

number of pages discarded after a failure, which may be a strong enough benefit to justify the

hardware cost.

• Firewall management: The simple firewall management policy is successful at minimizing

writable pages in sequential workloads like pmake because the prototype lacks processor

sharing mechanisms. When implemented, these mechanisms will tend to increase the number

of shared pages by creating components of spanning tasks on multiple remote cells. It seems

likely that the firewall management policy will need to be coupled to the migration

mechanism. In particular, firewall permission should not be granted to a remote cell when the

only processes on that cell with the page mapped are inactive spanning task components,

since the migration mechanism will leave these components in place for long periods of time

to support future load-balancing demands.

• Preemptive discard: The preemptive discard policy may not be appropriate for all applications.

For example, a database process pair using a shared-memory communication region is likely

to have its own application-level sanity checks on the data read from that region. The system
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should permit sophisticated applications to declare that certain files or mappings are checked

by higher-level correctness protocols so preemptive discard is not necessary.

Moreover, certain types of cell failures are much less likely than others to cause wild writes. In

particular, cell failures due to events such as power failures and interconnect link failures

could be assumed to be fail-fast. The system should differentiate these types of failures from

software errors and preserve as much data as possible, including perhaps recovering data

pages from the memory of the failed cells.

• Failure detection: Possible advanced failure detection mechanisms include running processes

that walk the internal data structures of other cells looking for inconsistencies, periodically

sending RPCs to other cells that exercise system functionality such as file and process

management operations, and adding heartbeat outputs visible from outside the cell to critical

system processes such as the virtual memory clock hand and the disk buffer flush daemon.

Which of these advanced mechanisms are necessary for a particular multicellular kernel will

become apparent as it is tested under long-running stressful workloads on a large-scale

machine.

6.3 Memory fault model

The previous two sections described how cell isolation is implemented with respect to reading

and writing data through shared memory. However, these are not the only channels by which

corruption can propagate. FLASH is a tightly-coupled machine and hardware errors in one cell

can easily perturb the operation of other cells. Hive requires hardware support from the lower

levels of the fault containment stack if it is to recover from hardware errors. This section describes

the memory fault model that specifies the support that Hive needs.

6.3.1 Specification

FLASH is partitioned into hardware failure units (HFUs). A correct HFU is one in which there have

been no hardware errors since it was last reset. Each HFU is the home HFU for a range of memory

lines (cache-line-sized and cache-line-aligned units of main memory). The memory ranges of

different HFUs do not overlap.

Memory lines that function correctly are both coherent and accessible. A coherent line is one for

which reads by any processor in a correct HFU return the data specified by the memory

consistency model of the machine. An accessible line is one for which cache misses by any

processor in a correct HFU complete in less than some fixed time t.
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Given these definitions, the memory fault model has six properties:

(1) A hardware error in an HFU can make any memory lines for which it is the home HFU

incoherent or inaccessible.

(2) A hardware error in an HFU will not make memory lines with a different home HFU

inaccessible to any processors in correct HFUs.

(3) A hardware error in an HFU can only make a memory line with a different home HFU

incoherent if some processor in the faulty HFU had firewall write permission to that line

before the error.

(4) An access to an incoherent line by a processor in a correct HFU returns an error. An access to

an inaccessible line by a processor in a correct HFU returns an error in less than some fixed

time u.

(5) A reset operation is available that changes a memory line from incoherent to coherent. The

contents of the line are undefined after reset.

(6) A hardware error may cause any uncached access in the machine to fail to complete except

those issued and satisfied within the same correct HFU.

Note that these properties are assumptions made by Hive, not absolute guarantees made by the

hardware implementation. A hardware error may occur that violates the model, but in this case

Hive does not guarantee to provide fault containment and an uncontained failure is likely to

occur.

6.3.2 Design discussion

The memory fault model is a compromise between what would be ideal for a multicellular kernel

and what can be implemented cheaply and efficiently in a CC-NUMA multiprocessor. Several

aspects of this tradeoff are interesting:

• Remote reads: A processor is allowed to read memory lines that it should not make incoherent

or inaccessible (fault model points 2 and 3). Therefore a processor that fails with a line shared

in its cache must not prevent further writes to that line by other processors. This requires the

memory system to implement fairly complex recovery mechanisms such as timeouts on

invalidation requests and the sledgehammer algorithm. This complexity is justified by the

importance of memory sharing for achieving competitive performance.

The converse is that a processor should not be damaged by reading remote lines. This

interacts with the choice of data-link level error detection mechanisms. In a highly pipelined
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architecture like FLASH, the first word of a cache line that is arriving over the network can be

delivered to the processor before the last word has been received by the network interface.

Therefore it is not sufficient to put a checksum at the end of the network packet. Error

detection and correction must be provided for each word of a cache line during transmission,

which reduces the fraction of the network bandwidth available for transmitting data.

• Retracting the firewall: Point (3) is stated in a way that a line remains vulnerable to faults in a

remote HFU after firewall permission has been retracted. This is unavoidable because the sole

copy of the line may still be remotely cached or in flight through the network when the

firewall changes. Full application of this aspect of the model would suggest that a cell could

never reallocate a page from shared user data to kernel data, since kernel data must not be lost

in a remote failure.

To avoid this limitation, FLASH provides a retract operation to ensure that a line is no longer

vulnerable to a remote cell that previously had write permission. A cell can retract a line by

reading any word in it. This ensures that a clean copy is written to memory.

• Uncached accesses: Point (6) is a concession to implementation constraints. It turns out to be

quite difficult to provide guarantees to launch-and-forget uncached writes and non-

idempotent uncached reads. Hive ensures correctness by using a read-after-write verification

protocol when issuing uncached operations across HFU boundaries, for example when

remotely changing the firewall state of a line.

• Network partitions: The fault model implies that hardware faults do not lead to network

partitions. Although software techniques for managing network partitions are known

[PoW85], enough separate links cross each slice of the FLASH interconnect that the

implementation complexity of these software techniques is not justified. A network partition

will cause Hive to fail.

6.3.3 Limitations of the FLASH implementation

FLASH does not implement the full memory fault model. There are two major deviations,

potential loss of incorrect packets and potential corruption of memory through incorrect

writebacks.

Network packet loss: FLASH has a non-fully-connected network. Therefore communication

between HFUs A and C can pass through HFU B (Figure 6.2). If B suffers a catastrophic failure

such as loss of power, packets in flight between A and C can be lost. Since FLASH frequently

sends the sole copy of a line into the network, for example when writing back a dirty cache line,
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this means that a hardware failure can destroy data even though no processor in the HFU in which

the failure occurs has firewall write permission.

The memory fault model does not include the potential for data loss due to network packet loss

because such errors make an application that uses memory from more than one cell vulnerable to

hardware failures anywhere in the machine. If Hive considered this vulnerability in making its

memory allocation decisions, it would face significant restrictions when attempting to balance

memory demand across cell boundaries, reducing the performance of the system.

However, unlike other hardware errors in which violation of the memory fault model can lead to

uncontained failures, Hive is designed to cope with random user data lines suddenly becoming

incoherent due to network packet loss. This is standard recovery code, exactly that used for ECC

errors in current SMP operating systems, and so adds little complexity to the system. The network

packet loss problem does not affect kernel data internal to a cell because cells are convex and

internal kernel data is never writable outside its home cell.

Incorrect writebacks: Implementation constraints in the FLASH protocol prevent using the

firewall to check some writebacks of dirty data. The problem arises with sharing writebacks,

which occur when a processor with an exclusive copy of a cache line transfers the line to another

processor that has requested a shared copy. The processor with the exclusive copy sends the line

out twice, once to the requesting processor and once to the home node to update it. The protocol

header is fixed and has a single source processor id field, so in order for the protocol microcode at

the home node to know which processor to add to the sharing list, the sending processor puts the

Figure 6.2.  Network packet loss that violates the memory fault model.
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requesting processor’s id into the source field rather than its own processor id. Therefore the

processor sending the writeback cannot be checked against the firewall.

This is not the only problem with checking writebacks. A race condition can occur even with

normal (non-sharing) writebacks. If the operating system were to deny writes from a processor

that happened to have the line cached exclusively, the writeback would be denied and the line

would never return to the clean state in memory. Because speculative execution makes it

impossible for the operating system to guarantee that a line is not cached exclusively, a machine

that checks writebacks would have to support an intermediate firewall state. In this state write

requests would be denied but writebacks would be permitted, with reversion to a full protection

state when the retract operation has been issued for the line.

Because of these complications, FLASH sinks all writebacks to memory without checking the

firewall. Although it is possible for the operating system to force an incorrect writeback by directly

corrupting the cache tags, in general an incorrect writeback represents a memory system error and

thus is outside the error model.

6.3.4 Evaluation

Both the precision and the abstraction of the memory fault model were helpful in the design

process. The precision enabled the operating system and hardware development teams to

discover and resolve different assumptions early in the design. For example, the teams had made

opposite assumptions about the legality of remote reads when firewall permission is not granted.

The high abstraction level of the specification has two benefits. First, it sets a goal that allows

hardware implementations with varying degrees of completeness. The network packet loss

problem described above is one example of this.

Second, it covers hardware contingencies not considered when the model was developed. For

example, there is an ongoing effort at Stanford to implement a cache-only memory architecture

(COMA) for FLASH by modifying the protocol microcode. COMA systems evict memory lines

from a node when there are conflict misses in the associative memory cache. The developers of the

COMA microcode can use the memory fault model to determine which other nodes are

candidates to receive the evicted line.

Most of the features in the model can be implemented fairly completely. The sledgehammer

algorithm at the memory system level, when combined with network-level recovery and an

appropriately-structured physical level, covers most of the cases.
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Only one aspect of the model turned out to be impossible to implement in FLASH: the time limit t

on cache misses to accessible lines. Memory system hotspots can easily occur that cause significant

queuing delays, while overall network congestion can reach truly staggering levels under

pathological conditions. Therefore the timeout set on cache misses by the memory system to

detect hardware errors must be very loose. Cache misses, even those internal to a cell, can be

stalled by an error and will not complete until after the timeout has fired and hardware recovery

has run. The result is that t is the same as the time u to detect that a line is inaccessible, which is

multiple milliseconds, suggesting that large multiprocessors may not work well in environments

with real-time constraints unless more responsive memory systems can be developed.

The timing assumption is in the model because Hive delegates the solution to the hotspot and

congestion problems to the memory system developers. It does not include the features (such as

idling processors if the memory system is overloaded) that would be required to manage these

latency problems at the operating system level.

6.4 Failure recovery

The cell isolation mechanisms described in the previous three sections—safe remote reads, the

wild write defense, and the memory fault model—provide the abstraction of fail-fast cells but

generate occasional false alarms. The failure recovery mechanisms are responsible for

distinguishing false alarms from actual failure conditions and restoring the system to a consistent

state when cells have failed.

The recovery subsystem contains four kernel-level processes (Table 6.1). Each process provides an

abstraction layer to the next process that simplifies the higher-level task.

Recovery layers: The lowest-level process, called ping, is the only real-time process in recovery.

When a hint is raised by the cell isolation mechanisms, or a hint alert is received from another cell,

the ping process activates and begins exchanging heartbeats with all other cells in the system. It

provides continual awareness of which cells are alive to the liveset process.

The liveset process runs a distributed algorithm to ensure that all correct cells in the system agree

on which cells are alive and correct. Each cell takes its initial vote from the output of the first ping

round. These votes are then intersected to produce agreement. The distributed algorithm used is a

fault-tolerant flood algorithm, in which each cell broadcasts its current understanding of the

intersection as many times as there are cells in the system [Lyn96]. When the liveset process

completes agreement, each cell independently compares the new liveset to the previous one to

compute the die set, the set of cells that have failed. The liveset process aborts all RPCs waiting for

responses from failed cells and passes the die set to the recovery process.
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The recovery process is responsible for returning the system to a consistent state that excludes the

cells in the die set. It calls the cleanup routines of the virtual memory system, file system, process

subsystem, memory manager, and others. This requires communication between cells that is

implemented using RPCs. RPCs are safe to use because the liveset process will run again and

unwedge the recovery process if another failure occurs.

The reboot process executes hardware diagnostics on the cells in the die set, resets them, loads new

copies of the kernel image from disk, and integrates rebooted cells back into the system. The

reboot process only activates on one cell, the master cell, which is elected by being the lowest

numbered cell in the live set. If the master cell fails before the cells it is rebooting have been

reintegrated, recovery runs again and the reboot process on the new master cell restarts all the

rebooting cells from the beginning.

When the reboot process detects that a cell it is rebooting is ready to join the system, it raises a hint

that triggers recovery. When recovery runs the liveset processes will reach agreement on a new

live set that is larger than the previous live set, and the resources of the rebooted cell immediately

become visible to the rest of the system. This is called the reintegration recovery round. To support

use of recovery for reintegration and initial system boot, the first ping round of each recovery

round sends pings to all cells in the system, not just those in the previous live set.

Recovery process: The internal structure of the recovery process supports important performance

optimizations in the virtual memory system. Figure 6.3 shows the two global barriers that

synchronize the recovery processes of different cells. When all live cells have reached the first

global barrier, each cell knows that no more virtual memory or file system requests are pending

from cells in the live set. Each cell proceeds to discard all state related to pages mapped across cell

boundaries (part of the preemptive discard algorithm described in Section 6.2.2). When all cells

have reached the second global barrier, each cell knows that the others have cleaned up their

Table 6.1. Recovery subsystem design.

Layer name Responsibilities Operating system features used

Ping Heartbeat algorithm:
track which cells are up

Message send,
real-time response

Liveset Flood algorithm:
reach distributed consensus

Message send

Recovery Preemptive discard and all other
system cleanup

RPC

Reboot Diagnostics, reboot failed cells,
reintegrate rebooted cells

File system
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internal state, so it is safe to begin sending virtual memory requests as part of other cleanup

actions.

This design moves the synchronization between virtual memory operations and recovery out of

the RPC handlers that service virtual memory requests, and thereby enables these requests to be

serviced at interrupt level rather than paying the cost of scheduling a server process.

Hold off
outgoing VM and
file system
operations

Global barrier

Clean up internal
VM and file
system state

Global barrier

Clean up other
subsystems.

New die set

Trigger reboot process

Figure 6.3.  Control flow of recovery process.

Reenable
outgoing VM and
file system
operations
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Performance: The primary performance metric for the recovery subsystem is the latency of null

recovery. Null recovery for an eight-cell system takes 11.0 msec. This is an artifact of the current

recovery subsystem implementation, which runs the recovery process through to completion

(including checking for preemptive discard) even if the die set is empty.

Preemptive discard accounts for all except 3 msec of the current null recovery time. Preemptive

discard is expensive because it involves scanning all firewall entries to find pages writable by

failed cells. At present this costs 250 µsec per megabyte of storage; it would be worth parallelizing

this algorithm across the multiple processors of each cell to reduce pause times when cells have

large amounts of memory.

With an improved implementation that skips the preemptive discard check in a null recovery, the

dominant cost will be the live set algorithm. It takes 1.6 msec on two cells, 2.0 msec on eight cells,

and, by extrapolation of the O(n2) algorithm, around 80 msec for 64 cells, the maximum supported

with the current FLASH firewall. As even systems with 128 processors are likely to run with eight

cells or so, this time is fast enough that most Hive systems could raise several false alarms per

second with no significant performance impact. The number of false alarms raised can be tuned by

changing the tightness of timeouts and the frequency of active probes of other cell’s memory, so

the system administrator can adjust the performance overhead to match the requirements and

behavior of the workload running at each site.

6.5 Fault and error injection experiments

Three types of experiments are used to evaluate the implementation of fault containment. Heap

corruption models the result of programming errors that leave incorrect values in kernel data

structures. Node failures model the loss of a portion of the system due to a catastrophic hardware

fault such as a power failure. Finally, instruction corruption directly models programming errors.

As described in Section 5.3, the experiments use a parallel make workload running on a four-

processor system booted with four cells.

6.5.1 Heap corruption

To make the heap corruption experiments as stressful as possible, they are targeted to data

structures that are used frequently by the kernel and read by remote cells through shared memory

(Table 6.2). In each experiment one word of memory is changed at a random time after the parallel

make has begun.

In each experiment a pointer in the listed data structure is changed in one of three ways:
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• Random address: Overwriting the pointer with a valid but random physical memory address

forces the case most likely to generate wild writes.

• Old value +4 or –8: Overwriting the pointer with a small integer offset from the old value

damages kernel malloc headers and causes reads through the pointer to return random data.

• Address of pointer itself: Overwriting the pointer with the address of the pointer itself creates

the pathological looping case that stresses the careful reference protocol used for remotely

reading data structures.

In all cases listed in the table Hive successfully confined the effects of the fault to the cell where it

was injected. Hive did not initially succeed in all experiments performed, but when uncontained

failures occurred, the bug was identified and fixed and the experiment repeated until successful.

In no cases, either those listed or those where uncontained failures occurred, was any of the data

output to disk by the compiles incorrect.

6.5.2 Node failures

Catastrophic hardware errors such as node failures create a lesser software fault containment

challenge than heap or instruction corruption, because if the hardware implements the memory

fault model correctly, the faulty cell simply halts and its memory becomes inaccessible. In 150

experiments, a node was halted at a random time during the make, while in another 50

experiments, a node was halted while a process on one cell was creating a child process on another

cell. The remote process creation algorithm uses RPCs and remote memory reads particularly

Table 6.2. Heap corruption experiments.

Number of tests using each type of corruption

Corrupt pointer in: Random
address

Old value
+4 or -8

Address of
pointer itself

process address map 50 50 50

process table entry 50 50 50

page hash table 50 50 50

run queue 50 50 50

kernel malloc free list 50 50 –

per-process user structure 100 – –
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intensively, so this is a stressful time for a node to fail. Hive successfully contained the effects of

the node failure to the affected cell in all 200 experiments.

6.5.3 Instruction corruption

To provide a more interesting statistical sample than is available from the heap corruption and

node failure experiments, the instruction corruption experiments are organized differently. After

performing an initial 250 instruction corruption experiments and fixing the system bugs that led to

uncontained failures, Hive’s reliability was measured by doing 1000 corruption experiments with

no system modifications.

Experimental design: The instructions to be corrupted were selected as follows. SimOS was first

configured to measure the number of times each instruction address in the cell 1 kernel was

executed during a 40 million cycle window of the parallel make workload, starting just after the

first round of compiles had begun execution on all four cells. Then these addresses were sorted by

frequency and the 5% most common addresses were discarded. An error in one of these

commonly-executed locations is unlikely in practice because these instructions are well-tested.

Discarding this set also eliminates routines in which one would not expect any errors to occur,

such as the idle loop and page_copy . The instructions to be corrupted were then chosen

randomly from among the remaining 95% of the executed addresses. Since SimOS is deterministic

and all 1000 experiments start from the same checkpoint, the corrupted instruction is guaranteed

to be executed at least once during the parallel make run.

Instruction corruption uses the methodology developed in [CNC+96]. Figure 6.4 shows the

decision tree used to determine how the instruction is corrupted. If the instruction is a branch and

the decision tree randomly decides to change the destination register, the sense of the branch is

inverted, simulating an off-by-one bug or inverted conditional. The instruction is changed 10

million cycles into the run.

Overall results: The results fall into six categories (Table 6.3). In 59% of the experiments Hive

successfully limited the effects of the fault to the failure of cell 1. The fault had no visible effect 31%

of the time. About 6% of the faults caused processes in the workload to exit but did not lead to cell

failure. This can occur, for example, if a cell incorrectly returns an error to an I/O request.

Simulator limitations prevented completion of 1% of the experiments. An example of this is that

SimOS does not implement MIPS 64-bit mode or supervisor mode, so if the malfunctioning cell

writes a value to the status register that selects one of these modes, the experiment must be

terminated.
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Finally, 3% of the injected faults lead to uncontained failures, defined as failure of processes in

other cells, failure of other cells, or failure of the entire system. This is a 4% uncontained failure

rate when only the cases where an SMP operating system would have failed are considered (the

first and last rows of the table).

Causes of uncontained failures: The uncontained failures come from a variety of causes

(Table 6.4). The first three causes listed in the table are software faults in the implementation of

Hive that are easily fixable, but perhaps are representative of the types of faults that can lead to

uncontained failures in multicellular kernels.

change to nop

25% 75%

corrupt

50%

modify source register modify destination register

50%

ALU op branch op50% 50%

< ⇔ <=
> ⇔ >=
= ⇔ !=

random
source2 if
three-register
op

random
destination

random
source1

Figure 6.4.  Decision tree for instruction corruption experiments.

ALU or branch op other instruction

retry with a different address

corrupt

random executed address

nopother instruction

retry with a different address

overwrite
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• Due to a race condition between the live set process and the reboot process, the reboot process

can trigger the reintegration recovery round before the failed cell has finished rebooting. The

reintegration recovery round concludes that the cell has failed and resets it again. This

condition leads to repetitive recovery executions.

• The client side of the file system occasionally neglects to acquire the lock used by the recovery

process to hold off file system activity. A file system request from a live cell that arrives

between the two global barriers of the recovery process can cause the file server cell to fail.

Table 6.3. Instruction corruption experiments

Result type
Number of
occurrences
 out of 1000

Percent of cases where
SMP kernel would

have failed

Cell 1 failure, Hive recovers successfully 586 96%

No visible effect on execution 311

Processes terminated but cell 1 does not crash 64

SimOS limitations prevent completion of experiment 12

Uncontained failure 26 4%

Table 6.4. Causes of uncontained failures.

Category Cause of failure Number of
occurrences

Software faults in Hive

Premature reintegration round 8

File system neglects to acquire recovery lock 7

File system sanity checks insufficient 4

Conditions not handled
by recovery subsystem

Injected fault prevents RPC replies,
other cells panic

3

Injected fault prevents message sends,
faulty cell resets rest of system

2

Injected fault causes repeated recovery, cell
bypasses self-check for this case

1

Byzantine faults Faulty cell issues too many requests, causes
value overflow in server cell

1
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• The server side of the file system does not check the validity of request arguments sufficiently

to avoid failing under certain types of corruption.

The next three types of uncontained failures result from injected faults that create conditions not

handled by the recovery subsystem.

• If the injected fault renders the cell unresponsive to RPC requests but the ping and liveset

processes still function, other cells commit suicide one by one. This occurs because any cell

that tries to interact with the faulty cell receives an RPC timeout, starts recovery, and learns

that the faulty cell is in the liveset. After this occurs twice in a row the cell panics. It would be

possible to defend against this type of fault by adding a self-test that checks the success of a

loopback RPC at the start of the liveset process.

• If the injected fault renders the cell unable to send messages, it leads to total system failure.

This occurs because the cell receives no response to its outgoing pings, concludes the other

cells have failed, and resets all other cells. The potential for this to occur if there is a software

or hardware problem in the message subsystem argues for adding a heuristic mechanism. If

recovery runs and a cell concludes it is the only cell left alive, it should delay before activating

the reboot process. If the delay is long enough, the other cells in the system will reset that cell

if they are still alive.

• One of the injected faults caused cell 1 to trigger recovery on each clock tick, bypassing the

self-check that shuts a cell down if it triggers recovery too many times. It would be possible to

defend against this type of fault through an extension to the liveset algorithm. In addition to

reaching agreement on the liveset, the cells could vote on which cells should be shut down

despite being in the liveset.

The final uncontained failure is due to a Byzantine fault.

• One of the injected faults caused cell 1 to repeatedly request mappings to the same page of

cell 0. This is a legal operation, but eventually the reference count in cell 0 overflowed, became

negative, and caused internal VM operations on cell 0 to fail. While it is possible to defend

against the overflow itself, it is not clear what action cell 0 should take when it detects that the

counter would overflow. When the overflow occurs, it is not necessarily the cell currently

requesting the mapping that is erroneous.

In general, it is difficult to defend against non-fail-fast errors that cause cells to issue legal

operations in illegal patterns. This type of error violates the error model assumption that the

sanity checks applied to incoming messages detect all corrupt requests.



80 6.5 Fault and error injection experiments

Evaluation: The repeated-recovery fault is technically a Byzantine fault, as are the faults that

prevent RPC replies. However, these faults are easily handled by extensions to the recovery

system because they affect the recovery and communication substrate.

The overflow error is more challenging than these faults because it arises from a software fault in

the higher levels of the system. The Byzantine behavior that it causes is indistinguishable from

correct behavior without higher-level semantic knowledge. This is the type of fault that must be

assumed to be rare for the Hive design to provide an acceptable level of reliability. The sample size

of this experiment is too small to predict the probability of these faults in practice, but it is

encouraging that such a fault occurred only once in this series of 1000 fault injections.

Overall, the observed uncontained failure rate of 4% is clearly conservative. Over half of the

uncontained failures come from just two software faults in Hive. With a more mature system that

implements the recovery system extensions discussed above, a much lower rate should be

achievable.

6.5.4 Effectiveness of the wild write defense

Not one of the uncontained failures in the series of 1000 fault injection experiments resulted from a

wild write. None of those experiments and none of the error injection experiments corrupted any

application output files. This raises the question of whether the experiments demonstrate the

effectiveness of the wild write defense or the low probability of wild writes.

Probability of wild writes: Out of the 1000 software fault injection experiments, a firewall write

violation provided the first indication of software error in eight cases. In seven of these cases the

faulty cell issued the write, while in the eighth case another cell used a corrupt address provided

by the faulty cell. Omitting the cases where no cell failed, and assuming that all wild writes in the

experiments caused firewall violations, this gives a wild write frequency of 1.3%.

There were an additional eleven cases in which the first indication of error was a write by the

faulty cell to a memory address between 128 MB and 512 MB. If the machine had been configured

with 512 MB of memory, the system would have had a wild write frequency of 3%.

It is clear that wild writes are a nontrivial problem. It is interesting to compare these results to

[CNC+96], in which a similar fault injection methodology led to memory corruption in 11 out of

650 stimulated crashes of Digital UNIX running on an Alpha workstation with 128 MB of memory.

Hive shows nearly the same rate, 8 firewall violations out of 612 stimulated cell failures. This

correspondence between systems with different code bases and hardware architectures suggests

that the results apply more widely than just to the particular implementation measured here.
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Usefulness of the firewall: The eight wild writes observed, and the additional eleven that would

have occurred on a larger system, would certainly have led to corruption of memory had the

firewall not been present. This argues that the firewall provides a useful service for cell isolation.

Usefulness of preemptive discard: Unfortunately, the experiments provide little information

about the benefits of the preemptive discard policy. As discussed in Section 6.2.1, Hive’s firewall

management policy leaves few pages unprotected when running the pmake workload, so there is

little chance that a wild write will successfully corrupt memory. However, the rate of wild writes is

high enough to create a significant risk of data corruption for workloads that make heavy use of

shared pages or that drive the system to do significant intercell load balancing, so preemptive

discard appears to be necessary.

Latency to detect errors: The reliability experiments provide approximate timing information, but

the system model used (Section 5.3) is not very accurate. To estimate the latency more closely, 50 of

the instruction corruption experiments were repeated using a more accurate system model. Both

the model and the experiments repeated were chosen to reduce simulation time requirements.

• System model: The system model is the one used for the performance experiments, but

modified to use a bus-based memory system (1200 MB/sec, 500 nsec access latency when a

memory request reaches the head of the memory controller queue). This memory system

model is much faster to simulate than the FLASH model.

• Experiments repeated: The experiments repeated were chosen randomly from among those

where: (1) cell 1 fails but Hive recovers successfully, and (2) the approximate timing shows

that the system enters the recovery algorithm within one second after the fault injection. The

second constraint eliminates about 50% of the experiments, which are assumed to be those in

which the fault does not cause a software error until long after injection. It is possible that

some of the experiments eliminated actually represent long delays to detect errors, but the

data shows a strong tail-off at much less than one second latency so the number of incorrectly

eliminated cases can be presumed to be low.

Table 6.5 shows the distribution of the latencies for failure detection in the repeated experiments.

The latency is measured from the time at which the error occurs, which is assumed to be the first

time the corrupted instruction is executed, to the time at which the last of the other three cells has

begun executing the liveset process.

Over 50% of the experiments show a latency between 3.5 and 7 msec, which is not surprising. Any

error that causes a cell to panic is detected when another cell reads the alive  field of the cell

public area (Section 7.2.1) on the next 10 msec clock interrupt, so the expected latency to detect
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these errors is 5 msec. About 25% of the experiments show a latency less than 4 msec. One

common case that triggers this immediate failure detection is corruption of RPC request or reply

data by the error. Of the remaining 22% of the experiments, half are randomly distributed between

10 msec and 20 msec and half are randomly distributed between 20 msec and 110 msec. The bias

towards the low end of this range may be related to the expected 15 msec latency for the clock

monitoring algorithm to detect deadlock (Section 6.2.3).

These times are fast enough to avoid data corruption due to wild writes, at least for the small

system sizes used in the fault and error injection experiments. It is unclear whether larger systems

will require lower detection latencies. Even if they do, the expected latency to detect errors may

drop as the interaction rate between cells increases (Section 5.4.1), while more aggressive error

detection mechanisms than those used in Hive can certainly be added to the system (Section 6.2.4).

Error detection latency does not at present appear to be a significant problem for the wild write

defense.

6.6 Summary

The cell isolation features of Hive are the novel mechanisms that enable use of distributed system

fault containment techniques inside a shared-memory multiprocessor. The careful reference

protocol and publisher’s lock make it safe to read the internal data of other cells. The firewall and

preemptive discard policy prevent damage due to wild writes, while the distributed agreement

algorithm and fast null recovery allow the system to efficiently detect and correctly recover from

cell failures. Finally, the memory fault model defines the separate responsibilities of the hardware

and system software in recovering from hardware failures.

Experiments show that these mechanisms implement cell isolation with high probability despite a

wide range of faults and errors. The mechanisms have two primary costs. They add overhead to

communication between cells, which reduces the efficiency of the operating system, and they

assume hardware support that increases the complexity and hence the cost of the machine. The

next chapter discusses how Hive reduces the performance overhead of cell boundaries using

shared memory, while Chapter 9 considers the question of hardware support in more detail.

Table 6.5. Latency from error until last cell enters recovery (50 experiments).

Percentile Min 25% 50% 75% Max

Latency (msec) 0.5 3.9 5.5 6.7 109.9
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Chapter 7

Memory sharing

Once fault containment is provided as described in the previous chapter, a multicellular kernel

could be implemented in the same way as any other single-system image distributed system.

However, the environment in which it runs differs in a key respect from distributed systems: a

multiprocessor provides shared-memory hardware between the cells.

Hive supports use of shared memory across cell boundaries both by applications and by the cells

themselves. At the application level it allows processes on multiple cells to share memory (logical-

level sharing) and load-balances memory pressure among the cells (physical-level sharing). At the

kernel level the cells read each other’s data structures and build data structures that cross kernel

boundaries.

The first section of this chapter describes how the virtual memory system and file system work

together to implement application-level memory sharing. The second gives the details of three

experiments on memory sharing at the kernel level.

7.1 Application-level memory sharing

Figure 7.1 repeats a figure from Chapter 3 that shows application-level memory sharing across cell

boundaries. There are three roles that cells can play in sharing a page.

• Client cell: A cell running a process that is remotely accessing the data. This is the cell on the

left in Figure 7.1a.

• Memory home: The cell that owns the physical storage for the page. This is the cell on the right

in both Figure 7.1a and Figure 7.1b.

• Data home: The cell that manages the data stored in the page. This is the cell on the right in

Figure 7.1a but the cell on the left in Figure 7.1b.

The data home provides name resolution, manages the firewall if the page is shared, manages the

coherency data structures if the page is replicated, and ensures that the page is written back to

disk if it becomes dirty. In the prototype the data home for a given page is always the cell that
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owns the backing store for that page, but this is a feature of the filesystem in the prototype rather

than a requirement of the design.

I start the description of memory sharing by introducing the virtual memory page cache design in

IRIX, because it is the basis for the implementation. Then I discuss each of the types of memory

sharing in turn.

7.1.1 IRIX page cache design

In IRIX, each page frame in paged memory is managed by an entry in a table of page frame data

structures (pfdats). Each pfdat records the logical page id of the data stored in the corresponding

frame. The logical page id has two components: a tag and an offset. The tag identifies the object to

which the logical page belongs. This can be either a file, for file system pages, or a node in the

copy-on-write tree, for anonymous pages. The offset indicates which logical page of the object this

is. The pfdats are linked into a hash table that allows lookup by logical page id.

(b) Physical-level sharing of page frames

process
address

(a) Logical-level sharing of data pages

Figure 7.1.  Application-level memory sharing across cell boundaries.

space

process
address
space

client cell memory and data home

data home memory home
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When a page fault to a mapped file page occurs, the virtual memory system first checks the pfdat

hash table. If the data page requested by the process is not present, the virtual memory system

invokes the read operation of the vnode object provided by the file system to represent that file.

The file system allocates a page frame, fills it with the requested data, and inserts it in the pfdat

hash table. Then the page fault handler in the virtual memory system restarts and finds the page

in the hash table.

A page fault that finds the page already present in memory is called a quick fault. Quick faults are

frequent so their speed is critical to overall system performance.

Read and write system calls follow nearly the same path as page faults. The system call dispatcher

calls through the vnode object for the file. The file system checks the pfdat hash table for the

requested page in order to decide whether I/O is necessary.

7.1.2 Logical-level sharing

In Hive, when one cell needs to access a data page cached by another cell, it allocates a new pfdat

to record the logical page id and the physical address of the page. These dynamically-allocated

pfdats are called extended pfdats. Once the extended pfdat is allocated and inserted into the pfdat

hash table, most kernel modules can operate on the page without being aware that it is actually

part of the memory belonging to another cell.

The Hive virtual memory system implements export  and import  functions that set up the

binding between a page of one cell and an extended pfdat on another (Table 7.1). These functions

are most frequently called as part of page fault processing.

A page fault is initially processed just as in other distributed file systems. The virtual memory

system first checks the pfdat hash table on the client cell. If the data page requested by the process

is not present, the virtual memory system invokes the read operation on the vnode for that file. In

Cell-NFS, this is a shadow vnode that indicates that the file is remote. Cell-NFS retrieves the

universal file identifier from the vnode and sends an RPC to the data home requesting the page. A

more complete file system would have a more sophisticated mechanism, but that mechanism will

implement the same function, which is to locate the appropriate data home and send it an RPC.

The file system at the data home issues a disk read using the data home vnode if the page is not

already cached.

Once the page has been located on the data home, Hive functions differently from other

distributed systems. In other systems, a copy of the page is returned to the client. In Hive, the data

home returns the address of the page to the client.
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First, the file system on the data home calls export  on the page, which records the client cell in

the data home’s pfdat. This information prevents the page from being deallocated and provides

information necessary for the failure recovery algorithms. The export  function also modifies the

firewall state of the page if write access is requested.

Second, the file system on the data home returns the address of the page to the client cell. The

client-side file system calls import , which allocates an extended pfdat for that page frame and

inserts it into the client cell’s pfdat hash table. Further faults to that page can hit quickly in the

client cell’s hash table, making an RPC to the data home unnecessary. The page also remains in the

data home’s pfdat hash table, which allows processes on other cells to find and share it. Figure 7.2

illustrates the state of the virtual memory data structures after export  and import  have

completed.

When the client cell eventually frees the page, the virtual memory system calls release  instead

of putting the frame on the local free list. The release  function frees the extended pfdat and

sends an RPC to the data home. If no other references remain, the data home returns the frame to

its local free list. Keeping the frame on the data home free list rather than client free lists increases

memory allocation flexibility for the data home. The data page remains cached in the frame until

the page frame is reallocated, providing fast access if the client cell faults to the data page again.

Table 7.1. Virtual memory system interface for memory sharing.

Logical level

/* Record that a client cell is now accessing a data page. */
export(client_cell, pfdat, is_writable)

/* Allocate an extended pfdat and bind to a remote page. */
import(page_address, data_home, logical_page_id, is_writable)

/* Free extended pfdat, send RPC to data home to free page. */
release(pfdat)

Physical level

/* Record that a client cell now has control over a page frame.*/
loan_frame(client_cell, pfdat)

/* Allocate an extended pfdat and bind to a remote frame. */
borrow_frame(page_address)

/* Free extended pfdat, send free RPC to memory home. */
return_frame(pfdat)
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7.1.3 Performance of logical-level sharing

The overhead of the logical-level sharing mechanism can be measured by comparing the minimal

cost of a quick fault that hits in the client cell page cache with one that goes remote and hits in the

data home page cache. The local case averages 12.3 µsec while the remote case averages 89.8 µsec

when measured using a microbenchmark that issues 1024 remote quick faults in succession.

Table 7.2 shows a detailed breakdown of the remote page fault latency. Each time component is

averaged across the 1024 faults in the microbenchmark. 30.7 µsec of the remote case is due to RPC

costs. The component of this time spent moving data through shared memory, 16.3 µsec, will be

substantially smaller on FLASH than in this measurement since the simulation does not model the

lockup-free caches of the R10000. Another 19.3 µsec (listed in the table as miscellaneous VM) is

due to an implementation structure inherited from IRIX. IRIX assumes that any miss in the client

cell’s hash table will result in a disk access, and so does not optimize that code path. Reorganizing

this code could provide substantial further reduction in the remote overhead.

In more complex workloads the cost of a quick fault can vary from the microbenchmark results.

The local fault handler must acquire several locks and can experience synchronization delays.

Some remote faults may take longer if they encounter synchronization conditions at the data

home that require them to be queued for an RPC server process. Some quick faults to remote
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Figure 7.2.  Logical-level sharing of data pages.
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pages may take substantially less time if the client cell discovers the page already cached in its

pfdat hash table.

For pmake on an eight-cell Hive configuration, these effects combine to make the slowdown due

to remote fault latency much less than the microbenchmark suggests. Quick faults to local pages

slow down due to synchronization while quick faults to remote pages speed up due to cache hits.

Measured over 4.9 seconds of execution on eight processors, in which there are 14146 quick faults

to remote pages and 1274 quick faults to local pages, the average quick fault to a remote page

takes 73 µsec and the average combining local and remote faults is 70 µsec. This compares to an

average quick fault of 26 µsec in the single-cell case running pmake on eight processors.

The overall application pause time from quick faults cumulative across the eight processors in the

execution of pmake is 0.4 seconds on the one-cell system and 1.08 seconds on the eight-cell

system. This 2.7 times increase is much less than the 7.3 times increase suggested by the

microbenchmark. Further optimization is both possible and desirable but the fundamental design

appears fast enough to provide performance that is competitive to SMP kernels, as shown by the

results of the performance experiments described later.

7.1.4 Physical-level sharing

The logical-level design just described has a major constraint: all user pages in memory must be in

their data home’s page cache. If this design constrained all pages to be stored in the data home’s

Table 7.2. Components of the remote quick fault latency.

Total local quick fault latency
Total remote quick fault latency

12.3 µsec
89.8 µsec

Client cell 47.4

File system 19.7

Miscellaneous VM 19.3

Import page 4.4

Interrupt dispatch and return 4.0

Data home 11.7

File system 3.1

Locate and export page 8.6

RPC 30.7

SIPS, interrupts, RPC dispatch, and stubs 14.4

Argument/result copy through shared memory 16.3
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memory, Hive would have poor load balancing and would not be able to place pages for better

locality to the processes that use them, which is required for performance on a CC-NUMA

machine. Physical-level sharing solves this problem.

Hive reuses the extended pfdat mechanism to enable the memory home cell to loan one of its page

frames to another cell, which becomes the data home (Figure 7.3). The memory home moves the

page frame to a reserved list and ignores it until the data home frees it or fails. The data home

allocates an extended pfdat and subsequently manages the frame as one of its own.

Frame loaning is usually demand-driven by the memory allocator. When the memory allocator

receives a request, it may decide that local free memory is low relative to other cells and it is time

to borrow memory from another cell. It chooses a donor and sends it an RPC asking for a set of

frames.

Borrowed frames are not acceptable for all frame allocation requests. For example, frames

allocated for internal kernel use must be local, since the firewall does not defend against wild

writes or hardware errors in the memory home. The memory allocator supports these constraints

by taking two new arguments beyond those already in IRIX, a set of cells that are acceptable for

the request and one cell that is preferred.

Loaned
pfdat

Borrowed
pfdatbrw

Vnode

Regular
pfdat

Extended
pfdat Memory

pages

pfdat
table

Cell 0

Cell 1

brw

Figure 7.3.  Physical-level sharing of page frames.
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Memory home
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Hive’s current policy for freeing borrowed frames is similar to its policy for releasing imported

pages. It sends a free message to the memory home as soon as the data cached in the frame is no

longer in use. This can be a poor choice because it results in immediately flushing the data. A

better approach would be to maintain separate free lists for local and borrowed memory and only

return borrowed frames to the memory home when directed to do so by Wax.

7.1.5 Remote firewall management

Initial experience with physical-level sharing demonstrated a performance problem in the design.

FLASH initially implemented the straightforward rule that only the memory home could modify

the firewall status of a page, requiring the data home to send an RPC request to the memory home

to modify the firewall for borrowed pages. However, interrupt handlers in Hive cannot send RPCs

(Section 4.3). Therefore this rule implied that client cells could not use interrupt-level RPCs to

request data home operations that might need to change the firewall. This added significant

process-level RPC overheads to performance-critical virtual memory and file system operations

that otherwise could run at interrupt level.

FLASH was modified to implement a rule that allows the data home to manage the firewall

directly: a node may modify the firewall state if it has write permission to the page. The memory

home initially grants write permission to the data home when loaning it the page.

This rule does not create new wild write vulnerabilities. Consider the possible cases:

• The data home sets the firewall incorrectly: This case is the same as with the simpler rule.

• The memory home sets the firewall incorrectly: This case is the same as with the simpler rule.

• A cell without write permission attempts to write to the firewall: This case is the same as with the

simpler rule.

• A cell with write permission grants write permission to a cell that should not have it: When the failure

of the initial faulty cell is eventually detected, the page will be discarded because the failed

cell had write permission. Therefore additional wild writes from other cells are not a problem.

The firewall is reset when full recovery runs, as a side effect removing all remote mappings to

implement preemptive discard (Section 6.2.2).

In future multicellular kernels that implement different preemptive discard policies

(Section 6.2.4), erroneous firewall grants might become an issue. To avoid the problems they

might cause, the data home preemptive discard scan can use the union of the grant set

recorded in its VM data structures with the grant set recorded in the actual firewall to

determine which cells a given page was vulnerable to. An erroneous cell would have to
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overwrite the firewall of the same page more than once, and a wild write would have to occur

on some third cell between those two times, for data corruption to survive the preemptive

discard.

• A cell with write permission denies write permission to a cell that should have it: There are three

cases to consider. First, the erroneous cell might deny itself write permission, potentially

causing the data home preemptive discard scan to incorrectly preserve the page when the

failure of the erroneous cell is detected. Using the grant set in the data home’s internal VM

data structures, rather than the actual firewall state, for the preemptive discard scan avoids

this problem.

Second, the erroneous cell might deny some other client cell write permission, causing it to

receive a bus error. If the recovery algorithms conclude that the erroneous cell has failed,

preemptive discard will run and the incorrect firewall state will be cleaned up. If not, the cell

that received the bus error will try again, receive another bus error, panic because the hint is

again unconfirmed, and cause a full recovery that cleans up the firewall. It would be possible

to prevent the panic of the innocent cell under this type of corruption by validating that the

actual firewall state of the page causing the bus error matches the VM data structures on the

data home.

Finally, the erroneous cell might deny the data home write permission. The data home could

send an RPC to the memory home requesting that the firewall be reset if this occurs.

The prototype does not implement the more complex mechanisms just proposed because firewall

corruption has not been observed in any fault or error injection experiments.

7.1.6 Logical/physical interactions

In general, the two types of application-level memory sharing operate independently and

concurrently. A given frame might be simultaneously borrowed and exported (when the data

home is under excessive memory pressure so it caches pages in borrowed frames). More

interestingly, a frame might be simultaneously loaned out and imported back into the memory

home. This occurs frequently since the data home tries to place a page in the memory of the client

cell that has faulted to it, in order to improve CC-NUMA locality.

To support this CC-NUMA optimization efficiently, the virtual memory system reuses the

preexisting pfdat rather than allocating an extended pfdat when reimporting a loaned page. Pfdat

reuse is possible because the logical-level and physical-level state machines use separate storage

within each pfdat.
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7.1.7 Memory sharing and fault containment

Memory sharing allows a corrupt cell to damage user-level processes running on other cells. This

has several implications for the system:

• The page allocation and migration policies must be sensitive to the number and location of

borrowed pages already allocated to a given process. If pages are allocated randomly, a long-

running process will gradually accumulate dependencies on a large number of cells. Some

user-tunable policy is needed that trades off optimizing page allocation and migration against

minimizing the number of cells that each process depends on.

• The generation number strategy used for preemptive discard makes the file the unit of data

loss when a cell fails. Therefore the page allocation and migration policies must be sensitive to

the number of different cells that are memory homes for the dirty pages of a given file. This

requires similar user-tunable policies.

The tradeoffs in page allocation between fault containment and performance are complex. This is

a subject to be studied in depth when the FLASH hardware is available and large workloads can

be examined.

7.1.8 Summary of application-level memory sharing

The key organizing principle of application-level memory sharing is the distinction between the

logical and physical levels. When a cell imports a logical page it gains the right to access that data

wherever it is stored in memory. When a cell borrows a physical page frame it gains control over

that frame. Extended pfdats are used in both cases to allow most of the kernel to operate on the

remote page as if it were a local page. Naming and location transparency are provided by the file

system.

There are no operations in the memory sharing subsystem for a cell to request that another return

its page or page frame. The information available to each cell is not sufficient to decide whether its

local memory requests are higher or lower priority than those of the remote processes using those

pages. This information will eventually be provided by Wax, which will direct the virtual memory

clock hand process running on each cell to preferentially free pages whose memory home is under

memory pressure.

7.2 Kernel-level memory sharing

In addition to enabling application-level sharing, shared-memory hardware offers the promise of

significantly improving the efficiency of the operating system itself. This section reports on three
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experiments that give insight into the advantages and costs of kernel-level memory sharing. The

three experiments are the implementation of the cell public area, the remote process creation

mechanism, and the anonymous memory manager in Hive.

The experiments have moderately negative results. The cell public area works well, but neither

remote process creation nor the anonymous memory manager show significant benefits from

using shared memory. At the end of the section I discuss ways in which kernel-level shared

memory might be important for mechanisms not yet implemented in the prototype.

7.2.1 Cell public area

The cell public area is a data structure in each cell’s kernel memory that is used by the fault

containment subsystem to publish information about the state and beliefs of that cell. Some of the

key fields are:

struct PublicArea {
publ_lock plock; /* publisher’s lock for PublicArea */
unsigned int tick; /* increments on each clock interrupt */
int alive; /* set to indicate that this cell is up */
LiveSet ls; /* current belief about live cells */
int lsgen; /* current liveset generation number */

};

The tick  field supports the clock monitoring algorithm that is part of failure detection.

The alive  field is set when the cell has finished booting and is ready to integrate into the system.

A cell resets the alive  field when it panics, thereby notifying other cells in an unambiguous way

about the panic without sending messages. This approach has the advantage that a cell that panics

repeatedly does not clog the receive queues of other cells with multiple panic messages.

The ls  and lsgen  fields allow consistency checks in each cell to verify efficiently that liveset

agreement has succeeded for all live cells in the system. If agreement fails, i.e. if some cell in the

liveset has an incorrect liveset, the system is prone to significant corruption and should shut down

immediately (this is the well-known split-brain syndrome [SiS92]).

Evaluation: It was straightforward to integrate information dissemination through shared

memory (using the publisher’s lock and the careful reference protocol) into the design of the fault

containment subsystem. In some cases it significantly simplified the implementation, as in the use

of the alive  field.

One design challenge is the method used by each cell to locate the public area of other cells. Some

well-known offset into each cell’s memory is needed, at which a cell can publish the addresses of

data structures such as the public area that other cells need to read. Since Hive cells all run the

same kernel image, which is loaded at the same offset into each cell, the well-known offset for
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Hive is the start of the first data page after the end of the kernel boot image. Future multicellular

kernels where the kernel boot images can vary will need a different mechanism.

7.2.2 Remote process creation

Process creation is a fairly complex task in which access to the parent-process data structures is

primarily read-only. This suggests that kernel-level shared memory could be used to simplify

remote process creation. In particular, it seems possible that much of the local process creation

code could be reused for remote process creation. Hive implements remote process creation using

remote reads to the parent data structures in order to test this hypothesis. The experiment shows

that local code cannot be reused for the remote case, at least for this operation.

7.2.2.1 Implementation

Remote process creation proceeds in five steps. I describe them in detail to illustrate the

complexities of using kernel-level shared memory. The parent cell is the one where the process that

requests the fork executes, while the child cell is the one where the new process will be created.

Parent prepares to fork: The parent cell chooses a child cell for process creation and allocates a

data structure to represent the child process in the parent process’ list of children.

Child initializes process table: The parent cell sends the child cell a pointer to the parent process

table entry. The child cell uses the careful reference protocol to read it and its associated

credentials and user area structures. The child cell uses this information to allocate and initialize

the child process table entry and its associated structures. The child cell then returns the child

process id to the parent cell.

Two aspects of this step make it slower than the equivalent portion of a local fork, in which the

parent process table and user areas are copied directly to the child process.

• The child cell must initialize the process table entry and user area before beginning to copy

data from the parent, because a hardware failure in the parent cell during this operation could

cause a bus error and immediate jump to the careful reference error handler. When recovery

runs, the process table cleanup routines will behave unpredictably if there is stale or

uninitialized information in the fields of an allocated process table entry.

• The child cell must validate as far as possible all values read from the parent. A value that fails

a sanity-check causes the process creation attempt to abort and the recovery subsystem to be

notified that the parent cell may be corrupt.
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A third difference from the local process table initialization algorithm is that the child cell cannot

copy the kernel stack or registers of the parent process to the child process, because the parent

process contains the stack frames of procedures in the parent cell rather than the child cell. The

child process needs a local kernel stack and registers. The first local user-level fork  system call on

each cell makes an extra copy of the parent process’ stack and registers that is later used for all

remote process creation.

Parent identifies files and locks address space: After the child cell returns from initializing its

process table entry, the parent cell iterates over all open files of the parent process, storing

universal file identifiers (Section 4.4) in an array for the child cell to read. The parent cell also locks

all region  structures of the parent process’ address space and makes the first set of the address

space modifications required for forking the process. The remainder of these modifications are

made after the next child step runs and returns necessary information.

The primary overhead added by this step is that it leaves the region  structures locked for the

next two steps. If any other processes on the parent cell share these structures they will likely stall,

as most operations on address spaces acquire at least one region  lock. The structures are left

locked so the child cell can access them directly through shared memory when building a copy of

the parent process’ address space for the child process.

Child initializes files and address space: The child mirrors the parent’s work of the previous

step. All files are reopened using the universal file identifiers. The child cell uses the careful

reference protocol to read the address space data structures from the parent cell and initialize the

child process’ address space.

This step includes many operations that potentially send RPCs to other cells. Examples include

reopening files, importing cached file and swap pages, and allocating pages on the child cell.

Deadlock can easily occur at this stage. If a failure occurs and recovery begins, recovery on the

parent cell will stall trying to access the locked regions of the parent process’ address space.

Therefore the server process on the child cell must not block waiting for RPC replies from any

operation that itself is delayed for recovery. To support this, the operations requested from other

cells during this step are designed to fail back to the client if recovery begins.

When the child cell detects that recovery has begun, it aborts and undoes all changes made in this

step. After returning to the parent, the parent cell undoes the changes it made in the previous step,

releases the region locks, gives up the processor so that the recovery process can run, and goes

back to the start of that step.
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Parent finalizes address space: The parent finishes the parent-side address space modifications,

releases the region locks, and inserts the child process into the appropriate process group and

console session. The parent requests the process group and session modifications although the

work logically belongs to the child because the parent cell is frequently the home cell for these

objects.

At the end of this step the parent cell notifies the child cell that the fork has completed and the

child cell adds the new child process to the run queue.

7.2.2.2 Evaluation

Little of the local process creation code survives unmodified in remote process creation. The key

problems are cell isolation and failure semantics. Each cell must be prepared for the other to fail or

run into resource limitations at any time, which requires careful attention to mechanisms for

undoing a partially-completed fork. The deadlock problem in the child files and address space

step is another issue that required significant code modification.

This approach to remote process creation might still be desirable if it were fast. Yet it is quite slow

in the current prototype, primarily because the attempt to minimize code changes led to

reopening files one by one and importing pages one by one rather than batching multiple requests

to the file system and virtual memory system. Averaging times across the creation of the seven

child processes of the ocean benchmark, the local case takes 1.3 msec while the remote case takes

11.1 msec. Of the 9.8 msec increase, 5.1 msec comes from 18 separate file reopens and 3.4 msec

comes from 152 separate page imports, each of which sends an RPC to the parent cell. Even if

these performance problems were fixed, which would require substantial code modifications,

0.25 msec of the remaining 1.3 msec slowdown (19%) is RPC overhead in the process creation

algorithm itself. This overhead comes from the need to go back and forth between the parent and

child cells in order to allocate, lock, and modify data structures at the appropriate points in the

algorithm.

With the caveat that the remote process creation implementation in the prototype has not been

tuned for performance, it appears that kernel-level shared memory gives no significant

advantages for remote process creation. Sufficient code modifications are necessary that it might

be simpler and just as fast to use a more traditional distributed-system approach in which the

parent cell packages up all the relevant state and sends it to the child cell as a single RPC.

7.2.3 Anonymous memory manager

The third experiment in using kernel-level shared memory is the anonymous memory manager.

This represents the most aggressive use of shared memory in Hive: the manager builds a doubly-
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linked tree whose links may cross cell boundaries. This experiment also has a negative result: at

least for the workloads studied, the implementation complexity is not repaid by significant

performance improvements.

Anonymous memory is the set of user data pages whose backing store is in the swap partition rather

than in the file system. The anonymous memory manager is responsible for determining which

page should be used to satisfy a page fault to a swap region.

In IRIX, the anonymous manager tracks swap pages using a copy-on-write tree, similar to the

MACH approach [TeT87]. An anonymous page is allocated when a process writes to a page of its

address space that is shared copy-on-write with its parent. The new page is recorded at the current

leaf of the copy-on-write tree (Figure 7.4a). When a process forks, the leaf node of the tree is split

with one of the new nodes assigned to the parent and the other to the child (Figure 7.4b). Pages

written by the parent process after the fork are recorded in its new leaf node, so only the

anonymous pages allocated before the fork are visible to the child. When a process faults on a

copy-on-write page, it searches up the tree to find the copy created by the nearest ancestor who

wrote to the page before forking.

In Hive, different processes might be on different cells, so the anonymous manager must

determine not only which ancestor wrote the page but which cell owns the page.

7.2.3.1 Implementation

Hive keeps the tree structure inherited from IRIX nearly intact, but allows the pointers in the tree

to cross cell boundaries. When a process forks, the leaf node created for the child process is local to

that process but the higher nodes in the tree may be remote (Figure 7.4c). This does not create a

wild write vulnerability because information about newly written pages is only recorded at the

leaves of the tree, so interior nodes are not modified and can remain protected by the firewall.

When a child process faults on a shared page, it searches up the tree, potentially using the careful

reference protocol to read from the kernel memory of other cells. If it finds the page recorded in a

remote node of the tree, it sends an RPC to the cell that owns that node requesting access to the

page. The cell that owns the node is always the data home for the anonymous page.

Several implementation details make the remote case more complicated than the local case and

reduce performance.

• Recovery must not run on any cell while remote lookup operations are in progress. Recovery

may result in deleting interior nodes and thereby cause pending lookups to see stale data. To
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Figure 7.4.  Anonymous memory manager data structures.
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avoid this problem, the lookup routine acquires a lock that delays recovery until the lookup

has completed.

• To allow the recovery routine to find dangling references to failed cells, all nodes with either

remote parents or children are linked onto a list called the anon fringe list. Managing this list

requires synchronization among operations that modify the anonymous trees.

• In the local case, when a process exits or removes its mapping to a memory object, the

corresponding anonymous tree can be collapsed. This frees both the kernel memory used for

the tree and the swap space for the pages it records. However, nodes with remote children

cannot easily be collapsed since the address of the node is stored in several child data

structures. For example, the node address is a component of the hash key used to look up

pages in the child’s file cache. Tree collapsing is delayed until all child processes have exited,

resulting in greater memory and swap space consumption.

• Kernel virtual memory addresses used by one cell cannot be translated directly on another.

Hive avoids this problem by using only physical addresses for links in the anonymous trees,

which is only a partial solution. Future multicellular kernels may run each cell in a virtual

address space to improve fault containment, so new mechanisms will be needed to translate

remote virtual addresses.

7.2.3.2 Evaluation

The fact that the anonymous memory manager appears to work reliably in the fault and error

injection experiments described in the previous chapter indicates that distributed data structures

can be built without weakening fault containment. To stress the anonymous memory manager

more directly, an additional 15 kernel heap corruption experiments were performed using the

raytrace workload, which uses anonymous memory heavily. Nodes and pointers in anonymous

trees were corrupted in pathological ways just before remote lookups to those trees. The cell doing

the lookup successfully defended itself in these experiments.

However, there does not appear to be any substantial performance benefit from the distributed

data structures. When the child finds a desired page it usually has to send an RPC to bind to the

page in any case, so the use of shared memory does not save much time unless the tree spans

multiple cells. Trees that span multiple cells are rare because they are only created when a process

forks multiple times, those forks go remote, and none of the child processes use exec  to start a

new program. A more conventional RPC-based implementation of anonymous memory

management would be simpler and probably just as fast.
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7.2.4 Summary of kernel-level memory sharing

The prototype gives moderately negative results from the memory sharing experiments. On the

positive side, memory sharing is quite useful for information dissemination such as in the cell

public area. Similar results were obtained from the memory load balancing algorithms in the

prototype, which overcomes the lack of Wax by reading memory usage information remotely. This

suggests that other forms of information publishing could also enhance performance. For

example, cells could publish translations for their internal virtual addresses, making it efficient for

remote cells to walk virtual pointer chains (as long as virtual translations used in remotely-read

data structures are valid for minimum time durations, which can be implemented using

techniques for type-stable memory management [GrC96]).

In contrast, neither of the two more-aggressive experiments with kernel-level memory sharing

appears to be successful. The remote process creation subsystem could not reuse local process

creation code, and the anonymous memory manager does not on average save any significant

time.

Kernel-level shared memory may turn out to be important in two areas not explored yet in the

prototype, spanning tasks and the file system. Communication latency is likely to be a problem for

spanning tasks because of the tight coupling between the component processes on separate cells.

Use of shared memory may be the key mechanism that makes spanning tasks efficient. It may

even be possible to use writes across cell boundaries to update spanning task data structures,

because the essential dependencies rule means that loss of those data structures in a cell failure is

acceptable (Section 3.3.1). Similarly, the file system may be able to use information publishing to

reduce the number of RPCs it sends, helping it to achieve execution efficiency competitive with

the file system of an SMP kernel.
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Chapter 8

System performance

This chapter concludes the description of Hive’s implementation by analyzing the results of the

performance experiments. The first section characterizes the performance of the prototype, while

the second considers the implications of the trends observed in the prototype. As discussed earlier,

these results show trends that indicate the possible behavior of multicellular kernels on larger

systems, but do not allow definitive conclusions because of the small system sizes studied and the

limited feature set of the prototype.

8.1 Performance characterization

Figure 8.1 compares Hive’s performance in various configurations against IRIX 5.2 running on the

same simulated eight-processor FLASH multiprocessor. For each of the three workloads, the X

axis shows the performance of IRIX (labeled as 0), compared to Hive running with one, two, four,

or eight cells. The Y axis gives wallclock time, so the height of each bar gives overall performance.

Within each bar the sections show the fraction of overall time spent in the corresponding mode.

Because there are eight processors, the time spent in each mode during execution of the workload

is eight times the height of the corresponding section on the Y axis.

This figure shows several interesting trends. The overall performance of Hive at eight cells is

competitive with IRIX for pmake and ocean and slightly degraded for raytrace.

Within that overall performance, the amount of kernel work increases as the number of cells

increases, but kernel overhead (cache misses, synchronization, and RPC costs) drops significantly.

The time spent executing applications is unchanged in pmake but increases with increasing

number of cells in raytrace and ocean. Idle time remains constant for raytrace, while decreasing

Table 8.1. Wallclock time to completion (seconds).

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 4.9 4.9 6.3 5.3 4.9

raytrace 3.1 3.0 3.5 3.5 3.8

ocean 4.0 3.5 3.8 3.0 3.8
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moderately for pmake and significantly for ocean. The next sections discuss the trends in kernel

work, kernel overhead, application time, and idle time in more detail.

8.1.1 Increasing kernel work

As the number of Hive cells increases, the amount of work done by the operating system to

support the same workload increases. This is the time labeled Kernel exec in the figure, and is

Figure 8.1.  Time to completion of workloads.
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computed as the total non-idle time in the kernel minus time spent stalled on cache misses,

spinning on kernel locks, or spinning waiting for an RPC result.

The big jump in all workloads is the transition from one cell to two cells, when RPC overheads and

the software error checks required for fault containment are added to the system. After this jump,

useful kernel work continues to increase but total time spent in the kernel decreases significantly.

Total time spent in the kernel decreases as the system grows from two to eight cells because the

overhead of kernel execution drops.

8.1.2 Decreasing kernel overheads

Kernel overhead is the time labeled Kernel other in the figure, computed as the total time spent

stalled on kernel cache misses, spinning on kernel locks, and spinning waiting for RPC replies.

The numbers shown in the tables below are computed as overhead time divided by the useful

work time shown in Table 8.2. However, these times are added on to the useful work time, not

components of it.

Cache miss stall overheads drop dramatically as the number of cells increases.

Table 8.2. Total useful kernel time (seconds).

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 1.6 1.7 4.5 5.5 5.7

raytrace 1.1 1.1 1.4 1.7 1.9

ocean 0.5 0.6 1.0 0.9 0.9

Table 8.3. Total non-idle kernel time (seconds).

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 4.0 5.2 17.0 13.0 8.9

raytrace 2.3 2.4 2.9 2.5 2.6

ocean 2.8 2.8 4.8 3.1 2.4

Table 8.4. Kernel time stalled for cache misses (percent of useful kernel time).

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 45 46  49 33 16

raytrace 47 49 42 20 9

ocean 70 66 60 38 17
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This is not surprising because the partition into cells reduces several memory system costs

simultaneously. It increases the fraction of kernel accesses which go to local data structures,

reducing the expected latency. It spreads kernel data accesses across more nodes, reducing

queuing delays in MAGIC. Finally, it reduces the number of processors sharing each data

structure, which reduces the number of communication misses.

Because there are fewer processors in each cell, synchronization overheads also decrease as the

number of cells increases.

The increase from IRIX to the single-cell Hive configuration, visible in pmake and ocean, is due to

increased synchronization added to the page fault handlers to support multicell systems.

The last overhead cost is the time spent waiting for RPC replies. In general this goes up as the

number of cells increases, decreasing the fraction of kernel operations that can be completed

locally.

The overhead actually drops for pmake because of the large savings in cache miss and

synchronization time as the number of cells increases. The latency required for server cells to

handle the RPCs drops faster than the number of RPCs increases.

The RPC overhead for ocean is large because the application generates many quick faults and little

other kernel work, so cells other than cell 0 spend most of their kernel time on RPC waits.

Table 8.5. Kernel time spinning on locks (percent of useful kernel time).

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 38 61 59 26 9

raytrace 15 13 15 8 6

ocean 63 70 65 37 8

Table 8.6. Kernel time waiting for RPCs (percent of useful kernel time).

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake — — 33 31 22

raytrace — — 6 14 21

ocean — — 30 70 111
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8.1.3 Increasing user time

Surprisingly, the absolute time spent in user mode in the parallel scientific workloads increases

noticeably as the number of cells increases.

The application time increase in raytrace and ocean is due to a convoying effect. The multiple

processes in these applications are tightly synchronized. If a process is slow reaching the next

barrier, or is interrupted while holding a lock, the other processes spin waiting for it.

The initial jump in application time from one to two cells occurs because of the increased latency

of kernel operations for the processes on cell 1 as opposed to the processes on cell 0. For example,

the kernel operation that consumes the most time in raytrace running on two cells is the quick

fault, which averages 69 µsec on cell 0 and 124 µsec on cell 1.

Subsequent increases in application time as the number of cells increase are due to the increasing

skew of kernel execution to cell 0. Cell 0 is the data home for the memory segment shared by all

the processes and therefore services many VM operations requested by the processes on other

cells. This leads to both a higher frequency of kernel operations on cell 0 and a higher TLB miss

and cache miss rate caused by increased kernel activity, all of which slow down the application

process running on cell 0.

The convoying effect does not appear in pmake because the separate compile processes do not

synchronize with each other.

Table 8.7. Total application time (seconds).

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 7.4 7.5 7.8 7.6 7.4

raytrace 16.4 16.3 18.9 19.7 21.7

ocean 15.9 13.4 17.7 16.3 23.9

Table 8.8. Most frequent kernel operations in eight-cell Hive running raytrace.

Cell 0 Average of other 7 cells

Operation Number Avg cycles Number Avg cycles

TLB miss 630114 21 385694 18

release  (Table 7.1) 5074 3412 0 0

dispatch queued RPC
(primarily quick faults)

4248 9549 3 3289
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8.1.4 Decreasing idle time

Pmake shows a moderate decrease in idle time, raytrace shows no effect, and ocean shows a

significant decrease as the number of cells increases.

Pmake does many file creations and deletions, each of which requires a synchronous metadata

update, so its initial idle time is due to disk waits. The decrease in idle time occurs because the

system overlaps the additional kernel work and overhead generated by the multiple cells with

disk wait time.

The decrease in the idle time of ocean (as well as the strange behavior it shows in Table 8.7) is a

side-effect of its use of the IRIX user-level spinlock library. The execution trace of ocean on a one-

cell system (Figure 8.2a) shows a period of execution (between 0.3 seconds and 2.0 seconds

wallclock) when little application work is being done.

This poor behavior occurs because the application’s threads spin on a user-level lock while the

master process initializes the computation. The spinlock library issues a system call to deschedule

the process whenever a thread fails to acquire the lock. When multiple threads make this system

call repeatedly, they conflict on an internal lock in the process scheduler and serialize the system.

The four and eight cell Hive configurations avoid the scheduler lock conflict, reducing the amount

idle time (Figure 8.2b).

8.2 Evaluation

The above performance trends suggest the possible behavior of multicellular kernels on larger

systems. The first trend, increasing kernel work with increasing numbers of cells, agrees with the

intuition that there are fundamental overheads caused by replicating the kernels. However, the

small increases in useful work time from two cells on up suggests that the rate of increase should

be small, at least at the low stress levels caused by these workloads.

These performance costs are mitigated by the second trend, the significant decrease in kernel

overhead that occurs as the system is partitioned into an increasing number of cells. This is exactly

the type of benefit that the multicellular architecture is designed to provide.

Table 8.9. Total idle time (seconds).

Workload IRIX 5.2 1 cell 2 cells 4 cells 8 cells

pmake 28.0 26.5 25.7 21.5 23.1

raytrace 6.4 5.6 6.2 5.9 6.0

ocean 13.4 11.7 8.3 4.2 4.4
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The transition from one to two cells provides little reduction in overhead. This is because there is

little change in memory system or synchronization behavior when switching from eight

processors in a cell to four processors in a cell, at least given the level of parallelization and data

structure replication in the current IRIX implementation. This explains why pmake performs

worst in the two cell case: the system must pay the added costs of crossing cell boundaries and

 User
 Kernel other
 Kernel exec

|
0.0

|
0.5

|
1.0

|
1.5

|
2.0

|
2.5

|
3.0

|
3.5

|0

|20
|40

|60

|80

|100 | | | | | | | |

|
|

|
|

|
|

 Time (seconds)

 P
er

ce
nt

 o
f E

xe
cu

ti
on

 T
im

e

 User
 Kernel other
 Kernel exec

|
0.0

|
0.5

|
1.0

|
1.5

|
2.0

|
2.5

|
3.0

|
3.5

|0

|20

|40

|60

|80

|100 | | | | | | | |

|
|

|
|

|
|

 Time (seconds)

 P
er

ce
nt

 o
f E

xe
cu

ti
on

 T
im

e

Figure 8.2.  Execution trace of ocean.

(a) Running on one cell

(b) Running on four cells
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replicating work without gaining the benefits of reduced overhead. These benefits appear when

the number of processors per cell drops to two or one.

There is no fundamental reason (at least on FLASH) that two processors per cell are better than

four. However, a uniprocessor kernel is substantially more efficient than a multiprocessor kernel

[RHW+95]. For example, it can eliminate communication cache misses and all spin lock costs, as

well as avoiding CC-NUMA remote cache miss latencies for all local pages. (The 6–9% residual

lock spin time at eight cells shown in Table 8.5 is the overhead of acquiring and releasing locks; it

remains because the kernel was not recompiled in uniprocessor mode.) One interesting question

to explore on larger machines is whether these benefits continue to provide overall performance

advantages to a system configured with uniprocessor cells, or whether the reduced load balancing

efficiency and increased kernel resource utilization of uniprocessor cells create costs that justify

using larger cells.

The idle time behavior of ocean is interesting. The developers of the IRIX user-level

synchronization library added a deschedule system call to optimize performance. This turned out

to interact pathologically with a lock in the scheduler when driven by certain workloads. The

multicellular kernel provides a more systematic parallelization of the scheduler and so eliminates

the pathological case. This is a good example of the design benefits that the multicellular kernel is

intended to provide.

Finally, the magnitude of the convoying effect on the scientific applications was a surprise. The

increase in total kernel time in raytrace from one cell to eight cells is minimal, but the skew in

operation latency and interrupt frequency leads to substantial increases in application run time.

This has implications for the design of the file system and virtual memory system. They must be

able to distribute the processing load evenly across the cells, even in cases where all the activity is

going to the same file.
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Chapter 9

Architectural evaluation

Having finished the description and evaluation of the Hive prototype, I now return to the larger

question of the costs and benefits of the multicellular architecture. I consider the question at three

levels.

First, given a multicellular kernel, there are other possible tradeoffs among performance,

reliability, and implementation complexity than those made in designing Hive. Section 9.1

considers the hardware support required for a multicellular kernel, while Section 9.2 considers

several improvements to the functionality implemented in Hive.

Second, given a large-scale multiprocessor, the system designer could choose either to invest in a

multicellular kernel or to scale up an existing SMP kernel. Section 9.3 compares multicellular

kernels and SMP kernels as operating systems for large-scale multiprocessors.

Finally, there are fundamental questions about the multicellular architecture itself. Section 9.4

summarizes the limitations of the architecture and Section 9.5 lists open questions not answered

by this dissertation.

9.1 Hardware support

One of the major costs of the Hive design is the nonstandard hardware support it assumes from

the multiprocessor that it runs on. However, this is a property of Hive in particular, not a general

property of multicellular kernels.

Summary of FLASH hardware: The various hardware features added to FLASH to support Hive

have been described throughout the dissertation:

• Hardware fault containment: The memory system, network, data link level, and physical design

of FLASH support the memory fault model (Section 3.2, Section 3.4, and Section 6.3). This

includes significant amounts of microcode and careful physical design but only a small

amount of custom logic. The routers contain logic dedicated to recovering from hardware

errors, but this is not considered custom because it was designed without knowledge of the

Hive memory fault model [Gal96].
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• Software fault containment: The memory system provides the firewall (Section 3.2.3,

Section 6.2.1, and Section 7.1.5). The firewall includes a small amount of custom logic plus

data storage of 64 bits per 4 kilobyte page (0.2% memory overhead).

• Communication: The memory system provides the SIPS primitive to support Hive RPCs

(Section 4.3.1). This is implemented using only microcode.

• Miscellaneous: FLASH provides the remap region to support running multiple cells

(Section 4.2), implemented with custom logic. It also provides physical-level support for

issuing a hardware reset to one cell at a time.

All of these features add design cost and small amounts of manufacturing cost. There are three

performance costs:

• The firewall check slows down cache misses that request exclusive copies across cell

boundaries.

• Assertions in the protocol microcode increase the latency of operations.

• Reserving two virtual lanes in the interconnect for network-level recovery (Section 3.4)

prevents their use for congestion reduction or additional communication primitives.

None of these costs is significant. The firewall has no overall impact on measured application

performance (Section 6.2.1). Microcode assertions can be omitted from performance-critical

operations (Section 3.2.3). Finally, the lanes reserved for recovery cannot be used for congestion

reduction in FLASH because the coherence protocol relies on in-order delivery of network

packets. The potential performance benefits of using these lanes for other communication

primitives are unknown.

Reducing hardware requirements: The reliability features added to FLASH fall into two

categories: those that support hardware fault containment and those that support software fault

containment. Leaving each of these types of features out in turn generates a reasonable design

point with less hardware support than FLASH.

If Hive and FLASH are called the hardware fault containment design point, then the two others are:

• Hardware-supported software fault containment: The multiprocessor provides a firewall for

reliability and perhaps a communication primitive for performance, supporting a

multicellular kernel with the same software reliability and performance characteristics as

Hive but without hardware fault containment. This eliminates most of the hardware
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complexity added to FLASH to support Hive, but should still provide significant reliability

benefits at small and medium system sizes where the hardware error rate is acceptably low.

• Software-only fault containment: The multiprocessor provides no custom hardware or only a

communication primitive for performance. This requires running a trusted microkernel or

monitor that controls access to physical memory and provides firewall functionality to

support the multicellular kernel. This approach has a reliability cost since a software error in

the microkernel or monitor will cause a system failure, and a performance cost due to

increases in the TLB miss rate and interrupt dispatch latency.

These design points represent three different ways to support a multicellular kernel that trade off

among hardware complexity, reliability characteristics, and performance of the multiprocessor.

This flexibility suggests that hardware requirements are not a fundamental barrier to the

usefulness of the multicellular architecture.

9.2 Additional operating system functionality

Hive is a relatively simple multicellular kernel. There are several ways in which significant

additional functionality could be added to the design without changing the fundamental

architecture. These include support for heterogeneity, administrative partitions, and integration

with distributed-system clustering mechanisms.

Heterogeneity: Hive assumes that all cells run the same kernel code. Other multicellular kernels

may wish to allow greater heterogeneity, for two reasons:

• Incremental software upgrades: One problem for current multiprocessors is that the entire

machine must be restarted to upgrade the operating system software. Multicellular kernels

can support kernel software upgrades that are transparent to applications, using the same

mechanisms as used for transparent hardware maintenance (Section 3.3.8). While the upgrade

is in progress, different cells will be running different versions of the kernel code.

• Incremental hardware upgrades: One of the main advantages of large multiprocessors is a

smooth growth path for customers starting from smaller machines whose applications grow

over time. To make this economical, the customer should be able to continue running older

processors and boards as new components are added to the system. This suggests that

different cells should be able to run with different generations of hardware. The hardware

may vary sufficiently that different kernel code in different cells is desirable or necessary.

The key problem with allowing heterogenous cells is that different versions of the kernel software

may have different data structure layouts, making it more complicated for one cell to read the
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internal state of another. This problem can be solved by limiting the data structures that can be

read remotely to those that are invariant across versions, implementing self-describing data

structures, or using an object-oriented design scheme where later revisions of data structures are

subclasses of earlier revisions. Some combination of all these mechanisms may be required to

achieve a complete solution.

Administrative partitions: Hive follows the UNIX tradition of assuming that the resources in the

machine form a common pool usable equally by any process. However, large multiprocessors are

expensive enough that they may be shared by multiple administrative domains, so it may be

desirable to partition the resource pool administratively. For example, if one department

contributes 25% of the machine’s cost, it may wish to guarantee that its applications are allocated

no less than 25% of the hardware resources when the machine is loaded. This suggests that

advanced accounting and prioritization mechanisms may be helpful for large multiprocessors to

succeed in commercial environments. Wax provides a natural place in which to implement this

functionality.

Integration with clustering: Hive assumes that the distributed single-system image it presents to

applications and users ends at the boundaries of the multiprocessor. However, it would be natural

to integrate multiprocessors running multicellular kernels into a cluster of machines with an

overall single-system image. It is an open question how many of the mechanisms required to

implement the single-system image can be shared between the inter-cell and the inter-machine

cases.

9.3 Comparison to SMP kernels

It is clear that a multicellular kernel has fundamental reliability advantages compared to an SMP

kernel. The cellular structure confines the effects of all errors except those of limited types,

whereas reliability mechanisms added to an SMP kernel recover only from the specific types of

errors for which they are designed.

However, the tradeoffs in scalability and implementation complexity between multicellular and

SMP kernels require more discussion.

Scalability: Multicellular kernels and SMP kernels face completely different scalability challenges.

A multicellular kernel faces three performance challenges as the number of cells increases:

• The potential for uneven distribution of kernel work across the cells increases, which can hurt

application performance as described in Section 8.1.3, so resource sharing and management

mechanisms must be improved to distribute work more evenly.
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• RPC delays and the potential for congestion at server cells increase, so the amount of state

cacheable in client cells or accessible through shared memory must be steadily increased.

• The simple distinction between cell-local and remote hardware resources becomes less

sufficient to achieve locality of resource access, so some higher-level unit containing multiple

cells needs to be identified and used for resource allocation.

An SMP kernel faces three different challenges as the number of processors increases:

• The cache lines of widely-shared data structures become memory system hotspots, so data

structures must be partitioned into components that are not widely write-shared to reduce

memory system costs.

• Kernel locks become contended and cause significant queuing delays, so data structures and

algorithms must be improved to use finer-grained locking.

• Locality of resource allocation and process scheduling must be improved to reduce memory

system costs incurred by applications.

The key difference between these two sets of challenges is in the number of potential trouble spots.

In an SMP kernel every data structure and every kernel lock is a potential trouble spot, which is a

much higher number of problems to consider than in the multicellular kernel, where only the

operations that cross cell boundaries are potential scalability limitations. Moreover a multicellular

kernel naturally exploits memory system locality in a CC-NUMA multiprocessor, while

modifying an SMP kernel to exploit locality requires significant effort. These factors argue that

multicellular kernels are more easily scalable than SMP kernels.

Complexity: A multicellular kernel is undoubtedly more complex than the SMP kernel on which

it is based. The primary complexity differences lie in three areas. First, there are the extensions to

the various kernel subsystems required to implement the single-system image. These require

creative implementation to reduce overheads and substantial new functionality to preserve correct

semantics despite potential failure. Second, there are the mechanisms and policy for resource

sharing among cells. Finally, achieving sufficient reliability and performance from the file system

requires significant design work.

However, the relative simplicity of SMP kernels may be lost when they are extended to improve

reliability and scalability on large multiprocessors. Assuming that software faults remain in the

system and therefore software errors must be tolerated, improving reliability requires adding code

that checks and repairs internal data structures as in the Tandem Nonstop-UX kernel [Jew91]. If

done thoroughly, this approach promises to add comparable or greater complexity than
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integrating these same data structures into a distributed single system image, with the

disadvantage that only the specific errors checked for can be tolerated.

It is more difficult to judge the impact of improving performance scalability on an SMP kernel.

Improving scalability under a simple workload does not increase complexity substantially, as the

primary synchronization and communication problems usually lie in a few data structures and

algorithms that can be improved without affecting much of the system. However, if the goal is

efficient performance under complex or diverse workloads, many or most kernel data structures

and algorithms may become substantially more complex to provide finer-grained locking and

reduce communication cache misses.

These changes reduce the relative difference in complexity but are unlikely to make an SMP kernel

as complex as a multicellular kernel. However, the multicellular architecture justifies its

complexity by providing substantially better reliability than is implementable with an SMP

architecture, and by making performance scalability easier to achieve.

9.4 Limitations of the architecture

Although the multicellular kernel architecture provides significant reliability and scalability

advantages, it faces fundamental limitations in both the level of reliability and the performance

that it can provide.

There are three limitations to the reliability achievable with the architecture.

• Multicellular kernels do not provide reliability with respect to non-fail-fast hardware errors.

In a tightly-coupled multiprocessor, especially one with a complicated memory system such

as FLASH, these errors may be more probable than in the distributed systems where fault

containment has previously been implemented.

• Multicellular kernels periodically pause user-level processes while the distributed agreement

protocol checks for faults. Even though these interruptions are brief, they may not be

acceptable in systems with tight scheduling deadlines such as video servers.

• Multicellular kernels do not provide complete protection against wild writes. In a system

running any feasible set of software error detection mechanisms, a modern processor will

execute millions of instructions before an error that does not trigger an internal assertion is

detected by an external observer. The possibility of data corruption resulting from such errors

is a function of the number of pages unprotected by the firewall and the frequency with which

the data is accessed by applications.
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Additionally, there are two fundamental limitations that prevent a multicellular kernel from

achieving performance competitive with a sufficiently-parallelized SMP kernel.

• The policy modules, running in Wax, are “out of the loop” of the allocation decisions made

inside the cells and hence respond more slowly to changes in the system state than the policy

modules of an SMP operating system. This policy delay reduces resource utilization efficiency.

• Any resource utilization inefficiency, whether from the policy delay or from imperfect

resource sharing mechanisms, leads to unbalanced kernel workload among the cells. This

increases the run time of tightly-synchronized parallel applications through the convoying

effect discussed in Chapter 8.

9.5 Open questions

There are several parts of the architecture whose strengths and weaknesses have not yet been

evaluated in the Hive prototype.

• Wax: Once Wax is implemented, it will be necessary to investigate how rapidly it can respond

to changes in the system state, without running continuously and thereby wasting processor

resources. It is also unknown how closely a two-level optimization architecture (intracell and

intercell decisions made independently) can approximate the resource management efficiency

of an SMP kernel.

• Resource sharing: Policies such as page migration and intercell memory sharing must work

effectively under a wide range of workloads for a multicellular operating system to be a viable

replacement for a current SMP operating system. Spanning tasks and lightweight process

migration must be implemented and their efficiency measured. The resource sharing policies

must be systematically extended to consider the fault containment implications of sharing

decisions. More sophisticated statistical measures are needed to predict the probability of

uncontained failures and data integrity violations in production operation.

• Networking: Efficient networking is an important requirement for large multiprocessors. New

intercell sharing mechanisms will be necessary to satisfy the high bandwidth and low latency

demands of applications such as web and multimedia servers.

• File system: A multicellular architecture requires a fault-tolerant high performance file system

that preserves single-system semantics. This is a major design challenge and could prevent the

system from achieving either its reliability or its scalability goals.
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These questions remain open because the research reported in this dissertation is only a first step.

Now that the fundamental cell isolation and resource sharing mechanisms have been shown to

work, providing fault containment with roughly competitive performance, it is necessary to

investigate whether the higher-level aspects of the architecture can preserve these advantages in

large-scale systems.
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Chapter 10

Related work

Reliability and scalability have long been major concerns of researchers and developers. Work on

dependable operating systems is the primary source for mechanisms that improve reliability

beyond that of SMP operating systems, while work on massively parallel computers and

distributed systems provides mechanisms for improving scalability.

Space constraints limit this survey to the work most relevant to the problems of large shared-

memory multiprocessors. The first two sections discuss systems and techniques for improving the

reliability and scalability of multiprocessors. The second two survey work on tightly-coupled

distributed systems and on failure models for multiprocessors.

10.1 Improving SMP kernels

Reliability: There are many techniques for reducing the rate or impact of software errors in SMP

kernels. All of these techniques could be applied to the individual cells of a multicellular kernel to

improve reliability.

One large area of work has been software engineering techniques. Object-oriented designs such as

Choices [CIR+93] and Spring [MGH+94] improve the modularity of the system by adding strong

internal interfaces, so the operating system is easier to understand and maintain and hence should

have fewer software faults over time than a traditional monolithic kernel. An orthogonal approach

has been to partition the system into a microkernel and a set of services running in independent

address spaces, making the system easier to test and debug. Examples of this approach include

Hydra [WLH81], Mach [RJO+89], and Chorus [RAA+88]. Finally, automated testing [SaH94] can

increase the fraction of faults that are found and fixed during operating system development.

Another area of work has been techniques for avoiding the reboot that is required to recover from

software errors in standard SMP kernels. Both the Nonstop-UX kernel for Tandem Integrity S2

[Jew91] and the IBM MVS/XA system [MoA87] provide data-structure-specific repair routines

invoked when an inconsistency is detected. Another approach, implemented in MVS/XA and

Fault-Tolerant Mach [RSS93], is to abort the operation in progress when an error is detected and
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retry it. [HJK93] provides an excellent analysis of the reasons why an aborted operation frequently

succeeds when retried.

Finally, there has been significant work on improving the reliability of applications despite the

potential failure of the systems they run on. Common approaches include checkpointing [LiS92,

LNP94, PBK+95] and replication of processes on top of microkernels [LiR93, ACC+93].

Scalability: Few researchers have investigated the techniques required to support general-

purpose workloads on large-scale shared-memory multiprocessors, because these machines have

only recently become available for general-purpose use. [CDV+94] and [VDG+96] investigate

algorithms for page replication and migration and how these must work together with processor

scheduling to reduce memory system costs. [CHR+95] characterizes the performance bottlenecks

of an SMP kernel running on a CC-NUMA system. [SDH+96] describes a new file system created

by Silicon Graphics to support general-purpose workloads that access very large amounts of data.

10.2 Multiprocessor operating systems

Multicellular architecture: The scalability benefits of the multicellular architecture for

multiprocessor operating systems have been investigated in an ongoing project at the University

of Toronto, which calls this design the hierarchical clustering architecture. Their initial work on the

Hurricane operating system [UKG+95, Kri95] running on the Hector multiprocessor [VSL+91] has

been followed by current work on the Tornado operating system [PGK+95] running on the

NUMAchine multiprocessor [VBS+95].

In [UKG+95], the Toronto researchers identify several previous proposals for improving

scalability through approaches similar to multicellular structuring: [AhG91, CGB91, FeR90,

ZhB91]. Hurricane was the first complete operating system implementation based on these ideas,

but neither it nor the previous proposals investigate the reliability benefits of the architecture as

Hive does.

Many of the mechanisms in Hive parallel similar mechanisms in Hurricane and Tornado.

Hurricane includes an RPC subsystem for inter-kernel communication, local representative page

descriptors with the same function as Hive’s extended pfdats, home clusters for files with the

same functions as the Hive data home, and so on. There are two key differences. First, Hurricane

and Tornado are built from the ground up as multicellular kernels rather than being modified

from an existing SMP kernel, so their implementations are both more modular and more flexible.

For example, Hurricane includes a single system-wide locking protocol that makes the interaction

between kernels more regular [UKG+94]. Second, since reliability is not an issue, the boundaries
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between kernels are much more flexible. For example, different resources such as memory and

processors can be managed at different cluster sizes simultaneously.

Current work on Tornado focuses on efficient support for applications whose data set size is larger

than main memory, and on providing predictable physical resource allocation to applications so

compilers and applications can be optimized with predictable performance results. These

techniques and the overall set of scalability techniques developed for Hurricane and Tornado are

clearly complementary to the mechanisms developed to improve reliability in Hive.

Reliability: The first large-scale general-purpose shared-memory multiprocessor was the C.mmp,

developed at Carnegie-Mellon University in the 1970s. Previous general-purpose multiprocessors

such as the Burroughs D825, IBM 360/67, and the Honeywell 645 that ran Multics were limited to

four processors. C.mmp scaled to 16 processors, which was large from the perspective of

reliability issues given the low-integration technology from which it was constructed. The

developers found it necessary to add novel reliability-oriented features to the Hydra operating

system to achieve adequate MTBF [WLH81].

Hydra includes mechanisms to tolerate both hardware and software faults. At the hardware level,

it has a watchdog mechanism to detect fail-stop processor faults and a resource exploration phase

at reboot time that can avoid bad memory pages. It tolerates certain non-fail-stop hardware faults,

including lost interrupts and all-zeros or all-ones corruption of memory words. For software

faults, the primary goal is to ensure that the system will reboot quickly and cleanly. This is difficult

because the virtual memory system is integrated with the file system into a two-level object store,

so integrity of the database must be recovered in order to reboot. Hydra improves the reliability of

the database using techniques such as storing an object identifier along with each pointer to

provide a redundant check, deliberately setting reference counts too high during sensitive

operations, and delaying the deallocation of objects whose reference counters had reached zero.

These techniques could be applied to the internal data structures of a modern SMP kernel to

improve its reliability with respect to software faults.

At the same time that the C.mmp project was active at Carnegie-Mellon University, BBN built the

Pluribus multiprocessor as a network switch for the ARPANET [KEM+78]. Although not a

general-purpose multiprocessor, Pluribus is notable for its focus on fault containment

implemented in software as a reliability mechanism. The operating system partitions the machine,

run a separate instance of the operating system in each partition, and uses a consensus mechanism

to integrate or exclude partitions. Heuristic self-checks run in each partition detect software and

hardware errors and shut down the partition when activated. Pluribus shows the upper bound of
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reliability achievable with fault containment techniques if the operating system is written from

scratch for maximum fault containment rather than modified from an existing SMP kernel.

Finally, the transaction processing multiprocessors built by Tandem set the standard for

commercial high-availability systems, combining redundant fail-fast hardware with fault-tolerant

software. Tandem systems use two operating systems. The Guardian system [SiS92] runs a

distributed system internal to a non-shared-memory multiprocessor. The separate kernels use a

heartbeat protocol and a distributed consensus mechanism to agree on which processors are alive.

Reliability with respect to software faults is provided by a high number of assertions that shut

down a kernel when it detects any internal inconsistency.

The Tandem Nonstop-UX kernel [Jew91, TIY+95] runs as a uniprocessor UNIX kernel on top of

triply-redundant hardware. The redundant hardware masks most hardware failures, while the

operating system detects software errors using assertions and recovers using forward recovery

routines. The system provides a fault containment rather than a fault tolerance abstraction to

applications: a user process will be killed if the kernel state that supports it is corrupted by a

software error. System reliability is improved using write protection implemented by the memory

system of the Tandem Integrity S2, coincidentally called a firewall. The Integrity S2 firewall

prevents malfunctioning device controllers from modifying incorrect memory pages but does not

support operating system software error containment.

Scalability: In addition to the University of Toronto research and other proposals for scalable

multicellular kernels already described, there has been significant work on parallelizing UNIX for

performance on small-scale multiprocessors and implementing the UNIX semantics on large-scale

non-shared-memory multicomputers.

Mechanisms used to achieve efficient performance from UNIX SVR4 on small-scale parallel

systems are described in [SPY+93, Pea92, CBB+91, CHS91]. Mechanisms in the Sun Microsystems

versions of UNIX SVR4 are described in [EKB+92]. Work on the Silicon Graphics version is

described in [BaB95]. These efforts are all focused on achieving sufficient parallelization to avoid

synchronization bottlenecks on four- or eight-processor systems.

The largest-scale systems constructed to date that provide standard SMP semantics are non-

shared-memory multicomputers. The Mach SMP kernel has been combined with distributed

system techniques from Locus to create OSF/1 AD TNC [ZRB+93], which scales to hundreds of

nodes. This operating system uses pure message passing for interkernel communication and a

token-based scheme for transferring ownership of kernel objects. Although it successfully

manages the hardware resources of hundreds of nodes, it is designed to support scientific
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applications that make few kernel requests other than I/O and so is unlikely to provide scalable

performance to general-purpose applications.

10.3 Distributed systems

The multicellular architecture achieves reliability and scalability by applying distributed system

techniques inside a multiprocessor.

Single-system image: Locus [PoW85] pioneered single-system image support for distributed

systems. In addition to a shared filesystem and distributed process management, it demonstrates

techniques for coping with network partitions. The Locus work was initially commercialized in

AIX/TCF from IBM [WaP89] and later as a portable SSI layer that is one component of

OSF/1 AD TNC [ZRB+93]. The later versions include process migration and distributed shared

memory.

Sprite [OCD+88] implements process migration and a high-performance SSI distributed file

system. Work on Sprite includes mechanisms for reducing the recovery time of distributed file

system state [Bak94] which can be applied to reducing the pause times required to recover

consistency of distributed state in a multicellular kernel.

Other single-system image distributed systems include MOSIX [BGW93], Chorus/MIX

[AGH+89], and Solaris MC [KBM+96]. Solaris MC demonstrates techniques for efficiently

implementing a single network identity for the separate kernels with respect to internal processes

and external clients.

Resource sharing: The classic resource sharing problem for distributed systems is process

migration, implemented in the above single-system image systems and others. Condor [LiS92]

provides checkpointing and process migration on top of UNIX without kernel changes, while

[MZD+93] describes a process migration mechanism on top of Mach that is transparent to

applications. [Nut94] surveys systems that provide migration.

The high amount and cost of memory in desktop workstations has also stimulated development

of systems that use the memory of other systems on a local-area network as paging devices.

Apollo DOMAIN was an early system to implement this functionality [LLD+83]. More recent

systems, including cooperative caching [DWA+94] and GMS [FMP+95], have implemented

policies to globally optimize the file pages cached across the machines of the system. These

techniques are less relevant to multicellular kernels than process migration mechanisms because

the ability to directly access remote pages through shared memory fundamentally changes the

performance tradeoffs of page placement decisions.
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Error diagnosis: Researchers working on distributed system failure recovery have encountered

many of the same problems that multicellular kernels must solve in order to recover correctly after

a cell failure. Two key areas are determining the liveset and achieving consensus among all correct

cells.

The challenge of determining the liveset is the classic system-level diagnosis problem: given a set of

test results from cells testing each other, compute the set of faulty cells. Theoretical work on this

problem is surveyed in [Dah87] and [LeS94]. Distributed implementations, which do not require a

separate fault-free control processor to execute the diagnosis algorithm, include [Dah86] and

[BuB93]. The algorithm used in Hive is simpler and less efficient than some known algorithms, so

it should be possible to reduce the null recovery latency and the chance of incorrect diagnosis by

using a more sophisticated approach.

The diagnosis algorithm used in Hive relies on reliable all-to-all broadcast to achieve consensus on

the new live set. Even without changing the overall algorithm, the simple flood algorithm used for

reliable broadcast could be improved to terminate early if no cells have failed. Mechanisms for

doing this are described in [CDV+94].

The Hive diagnosis algorithm makes strong assumptions about the observability of errors. In

particular, it does not behave predictably with respect to software faults that cause intermittent

errors. Algorithms are known that can tolerate a wider range of faults. [LeS94] surveys system-

level diagnosis algorithms in which the test results are only probabilistically correct, while

[ChT96] considers the general problem of consensus and voting when only weak failure detection

is possible.

10.4 Error model and reliability prediction

Field failure data: Studies on the errors that affect systems in the field help the design of Hive and

similar systems in two ways. First, they validate the assumptions made in Hive’s error model

about which errors occur and their relative frequencies. Second, they support the design of more

sophisticated fault and error injection studies, which should make it possible to predict the

reliability of the completed system more accurately.

Systematic efforts to understand the types of errors that affect operating systems started with

studies of IBM mainframes, since these were the dominant computing platform for commercial

use. An ongoing study of systems at Stanford produced [Bea79] [VeI84, MoA87]. The later studies

confirm the earlier ones and make three key observations: (1) storage management and addressing

errors are the major immediate effects of software errors, accounting for almost half the entries in

system error logs; (2) the recovery routines in the operating system successfully handle errors
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about half the time, with the exception of timing and I/O errors that are rarely recoverable; and (3)

the rate of software errors is closely linked to the intensity of the interactive workload of the

system.

[SuC91] is a more recent study on IBM mainframes that uses error logs to study the probability of

wild writes. This study finds that 15–25% of significant operating system software faults cause

wild writes, and that only 40% of the wild writes that occur in the field cause immediate

addressing errors. Thus around 10% of software faults have the potential to cause data corruption.

However, the study also observes that about 50% of the wild writes damage memory that is close

to the intended target of the write, which is not the type of wild write that causes data integrity

problems for Hive.

Tandem operating systems have also been studied extensively because of their intended use in

environments with high availability requirements. [LeI92] and [LeI93] examine the Guardian90

operating system, while [TIY+95] examines the Nonstop-UX operating system. [LeI93] and

[TIY+95] are particularly interesting because they provide detailed information on the types and

locations of programming mistakes in the operating system code. [LeI93] notes that timing errors

are the most significant single cause of system failures in the field, while missing operations

(pointer or variable initialization, data update or message send) are the most common type of low-

level programming mistake. [TIY+95] observes that pointer manipulation errors and missing

checks for illegal data values are the most common low-level mistakes in Nonstop-UX.

The most relevant field failure data for Hive’s error model is provided by [ChC96]. This study

attempts to develop a statistically valid error model, using field data from “a large IBM operating

system.” Given 408 operating system software defects that caused field failures over a two-year

period, the study finds that 20% of defects cause the operating system to use an incorrect address,

while an additional 26% corrupt memory in a non-deterministic way and hence could potentially

cause a wild write. The study breaks these and other coarse categories down into a joint

distribution of specific fault and error types.

Finally, several studies examine the frequency of types of errors that are outside Hive’s error

model. [HJL93] considers the possibility of non-fail-fast errors in microprocessors, concluding that

a data integrity violation occurs once per month in a population of 10,000 processors built with

1990-era technology. This suggests that more sophisticated data checking mechanisms may be

required for very large multiprocessors, although future microprocessors are likely to incorporate

more internal redundancy and integrity checks which reduce the error rate. [MaF90] examines

cases in which an operating system begins “babbling,” that is, flooding the network and thus

degrading the performance of the system. Such a failure would bypass the recovery mechanisms
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in Hive. Once cases caused by installation of new operating system software, installation of

hardware, and network testing are eliminated, the study found only two cases of babbling in

seven months of observation of a network containing 2000 machines. This rate would only become

significant for very large multiprocessors that are partitioned into minimally-sized cells.

Fault injection: In addition to field failure data, researchers have also used fault injection studies

to examine the detailed effects of errors. Work in the RIO project reported in [CNC+96] uses

instruction corruption to study the probability of data integrity violations due to wild writes in

Digital UNIX. As described in Section 6.5.4, these studies match the results of similar experiments

on Hive quite closely. [KIT93] reports the results of similar experiments using SunOS 4.1.2.

The Esprit project on Fault Tolerant Massively Parallel Systems has supported several error

injection studies that considered questions relevant to improving the reliability of operating

systems. [RMS96] uses pin-level error injection, while [SCM+96] uses internal debugging features

of the PowerPC 601 to emulate errors in architecturally hidden processor functional units. These

studies demonstrate a significant chance that naive applications will produce incorrect results

when errors are injected into one of the system’s processors. However, the studies use scientific

workloads that can be presumed to spend most of their time executing application code rather

than operating system code, so this does not necessarily indicate that application data integrity

violations are likely to follow from errors that affect the operating system.

Reliability prediction: Many of the papers discussed above, especially those written or advised

by R. K. Iyer, provide mathematical models that assist in predicting reliability from failure data.

Notable examples include [LeI92, LeI93, TaI92b, TaI93]. [ChC96] considers how to design

experiments so that reliability prediction based on fault injection studies will be statistically valid,

while [EIP+91] uses data from system test of a UNIX-based AT&T network management system to

analyze the validity of various mathematical models. Finally, [Ham92] provides a non-

mathematical introduction to the requirements for effectively predicting software reliability, while

[Ham96] provides a more detailed methodology.
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Chapter 11

Conclusions

The goal of this research has been to improve the reliability and scalability of large

multiprocessors used as general-purpose compute servers.

Contributions: This dissertation has made three contributions towards this goal.

• Demonstration that fault containment is possible inside a shared-memory multiprocessor.

The fault injection experiments convincingly demonstrate that the multicellular kernel

architecture can provide fault containment in a multiprocessor. The best estimate available from

the experiments in this dissertation is that Hive’s uncontained failure rate is around 4% when

presented with random faults that damage the operating system. This is far better than the 100%

failure rate of an SMP operating system, and could be improved significantly through further

testing and debugging.

• Specification of a set of hardware features for FLASH, generalizable to other multiprocessors,

that is sufficient to support hardware and software fault containment.

Section 9.1 summarizes the feature set that Hive uses and gives pointers to their precise

specifications throughout the dissertation. The key features are the memory fault model that

supports hardware fault containment and the firewall that supports software fault containment. I

do not argue that all of the features added to FLASH to support Hive are necessary for fault

containment, but Hive’s success at fault containment (at least in simulation) demonstrates that

they are sufficient.

• Demonstration that cells can take advantage of shared-memory hardware across cell

boundaries at both application and kernel level while preserving fault containment.

The parallel make workload running in the instruction corruption experiments stresses the file

system, which uses user-level shared memory, and the remote fork implementation, which uses

kernel-level shared memory. Therefore the experiments demonstrate that both types of memory

sharing can be used without weakening fault containment.

Performance: Although Hive appears to perform relatively well, this research has not progressed

to the point that it demonstrates that the multicellular architecture is competitive with SMP
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operating systems. In particular, the small system sizes simulated and the limited functionality of

the Hive prototype suggest that many performance problems may remain undetected.

The prototype lacks four main features that must be implemented before the performance results

are conclusive: a complete single-system image, Wax, spanning tasks, and an advanced file

system. Completing the single-system image is unlikely to cause performance problems except in

the networking subsystem. However, the other missing features have greater performance

impacts. Wax must function efficiently if it is to keep the system balanced under rapidly-changing

dynamic workloads. Spanning tasks will require creative implementation, perhaps using kernel-

level shared memory extensively to achieve reasonable performance.

The most significant of the four missing features is the file system. The file system for a

multicellular kernel must provide a globally shared namespace, replication of critical directories

and files, striping and software RAID, and takeover of dual-ported disks by a backup cell after the

primary cell fails. It must do all this while tolerating the loss of any cells in the system. File

systems of this nature are just now emerging in the research community [ADN+96] and will

require significant further development before they can be widely used.

Implications: If multicellular kernels turn out to have competitive performance at system sizes

that are commercially viable, the fault containment that they provide will open much larger

markets to multiprocessors than would be available with SMP operating systems. This will enable

many more users to benefit from the excellent resource sharing and ease of administration

provided by multiprocessors. By increasing the sales volume of these machines, multicellular

kernels also have the potential to reduce their cost, which will give benefits to users that already

use large multiprocessors.

More fundamentally, this research demonstrates that the traditional assumptions about the

inherent unreliability of shared memory systems are incorrect. Hive draws a fault containment

boundary inside the shared memory boundary and gains reliability without sacrificing resource

sharing. In this regard, Hive is part of a widespread research effort [CNC+96, Gil96, WLA+93] to

reevaluate the fundamental ways in which shared memory can be used.
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