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ABSTRACT

New digital designs often include scan chains; high quality economical test is the
reason. A scan chain allows easy access to internal combinational logic by converting
bistable elements, latches and flip-flops, into a shift register. Test patterns are scanned in,
applied to the internal circuitry, and the results are scanned out for comparison. While
many techniques exist for testing the combinational circuitry, little attention has been
paid to testing the bistable elements themselves. The bistable elements are typically
tested by shifting in a sequence of zeroes and ones. This test can miss many defects
inside the bistable elements. A checking experiment is a sequence of inputs and outputs
that contains enough information to extract the functionality of the circuit. A new
approach, based on such sequences, can significantly reduce the number of defects
missed. Simulation results show that as many as 20 percent of the faults in bistable
elements can be missed by typical tests; essentially all of these missed faults are detected
by checking experiments. Since the checking experiment is a functional test, it is
independent of the implementation of the bistable element. This is especially useful since
designers often use different implementations of bistable elements to optimize their
circuits for area and performance. Another benefit of a functional test is that it avoids the
need for generating test patterns at the transistor level.

Applying a complete checking experiment to a bistable element embedded inside
a circuit can be very difficult, if not impossible. The new approach breaks up the
checking experiment into a set of small sub-sequences. For each of these sub-sequences
a test pattern is generated. These test patterns are scanned in, as in the case of the tests
for combinational logic, appropriate changes to the control inputs of the bistable elements
are applied, and the results are scanned out. The process of generating the patterns is
automated by modifying an existing stuck-at test generator. A designer or test engineer
need only provide a gate level description of the circuit to generate tests that guarantee a
checking experiment for each bistable element in the design.

Test size is an important economic factor in circuit design. The size of the
checking-experiment-based test increases with circuit size at about the same rate as the
traditional test, indicating that it is practical for large circuits. Checking-experiment-
based tests are an effective economic means for testing the bistable elements in scan
chain designs.
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Chapter 1. Introduction

Chips are tested to ensure that defective ones are not shipped to customers. This is
important for economic reasons. Using a defective chip in a system may render the entire
system defective. In some cases, such as space equipment, it may not be even possible to
replace a defective chip once it is operational. Thus, it is important to test chips before they
are used, and it is important to test them thoroughly. The test process is illustrated in Fig.
1-1. A chip is placed on the tester, and a test is applied to it. Only chips that pass the
manufacturer's test are shipped to the customer. Failed chips are sometimes analyzed to
identify manufacturing process problems [Miczo 86]. Depending on how good the test is,
some of the chips sent to the customer may be defective. A more thorough test would
minimize the number of defective chips shipped to the customer.

A chip is faulty if it contains one or more defeci&st generatiois the process of
producing the test patterns that will identify chips with defects.

Test ce

o)
o o
@ Pass CW
§ |:> TESTER |::>

Fail
—

Figure 1-1 Test Process.

Test generation depends on the type of circuit being tested. Digital circuits are of
two types: combinational and sequential. In combinational circuits the outputs depend only
on the present inputs; outputs of sequential circuits depend on past as well as present
inputs. There are many tests that can be used for combinational logégxh&umstive test
applies all possible patterns to the inputs of the circuit. This approach guarantees that any
defect that would change the functionality of the combinational logic, without making it
sequential, is detected. However, due to the large number of patterns needed by this
technique, other approaches have been used. In pseudo-exhaustive test [McCluskey 86],
the circuit is partitioned into smaller blocks, and each of the blocks is tested exhaustively.
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Figure 1-2 Example of Exhaustive and Pseudo-Exhaustive Test.

For example, in Fig. 1-2a, a small circuit with 6 inputs is shown. An exhaustive test
requires 64 () patterns. With the partitions shown in Fig. 1-2b, only 20 patterns are
needed, 8 @ for partition A and 8 (2) for partition B, and 4 @) for partition C.

Another approach to reduce the size of an exhaustive test is pseudo-random test
[Savir and Bardell 84; Williams 85; Chin and McCluskey 87; McCluskey et. al. 88]. In
this test, non-repeating and reproducible random patterns are applied. The fact that the
patterns are non-repeating and reproducible makes them not true random patterns. The
non-repeating nature has two advantages over true random patterns: saving time since
repeating a pattern won't detect more defects, and a small circuit can be used for
implementing it. The reproducibility of the patterns makes it possible to “fault grade” the
patterns. Typically, a linear feedback shift register (LFSR) is used to generate pseudo-
random patterns [McCluskey 86]. An example of such a circuit is shown in Fig. 1-3.

A more direct approach to test generation is to generate patterns for the defects
expected in the circuit. However, the difficulty of generating patterns from defects, and the

O ~
1D j~1D 1D 1D

SC1 5C1 SC1 SC1
Clock r r r |_

Figure 1-3 Example of LFSR (Linear Feedback Shift
Register).




continuing change of technology used for digital design, has lead to the use of fault models
as an abstraction of defects. The most commonly used fault modesisgleestuck fault

model [Abramovici 90]. In this model, one line in the circuit is assumed to be always stuck
at 0 or 1. The goal of test generation is to find a pattern that would produce different output
when applied to a good and faulty circuit. For example, in the circuit of Fig. 1-4, suppose
we need to find a test for lirgestuck-at 1. First, the input pattern should setditee 0 so

that the faulty and fault-free circuits have different behavior. The good circuit will have 0
while the faulty circuit will have 1 due to the fault. Setting Brte O requires either X= 0

or X2 =0. We also have to make sure that the error in the faulty circuit (i.e., the 1 instead
of 0) appears at the primary output (Z). @} set to 1, then the output of both the good

and faulty circuits would be 1 and we will not detect the fault. By settggpX the

output will depend on the value at liae For the good circuit we should see 0 at the

output, and for the faulty circuit we should see 1. Therefore, a test fardinek-at 1 is
X1X2X3 =-00 or 0-0. A"-"in a pattern means either O or 1 would work.

X1 —1 a s-a-1

& ¥ Z
Xo + -
X3

Figure 1-4 Example of Test Generation Using Stuck-At Fault Model.

The problem becomes more complicated when we have reconvergent fanout. For
example, consider the circuit in Fig. 1-5. As in the previous example, we want a test for
line astuck-at 1. We need to set lia#o 0, which can be done withi)X& 0 or X = 0.

Suppose we selectpXo be 0. This would imply that lifewill be 1. The output of the

good and faulty circuit would then be 1, and we would not detect the fault. So, we need to
use X = 0. We also need lireto be 0 so that the effect of the fault appears at the primary
output. This requiresX=1 and )¢ = 0.

X a s-a-1
& %
X2 + _Z
[ 1 - b
+
X3

Figure 1-5 Example of Test Generation for Circuit With
Reconvergent Fanout.



There are several algorithms for generating patterns for combinational circuits based
on the single-stuck fault model. The boolean difference is an algebraic method that finds an
eqguation representing tests for a fault [Sellers et. al. 68]. The difficulty of algebraic
methods to handle large circuits efficiently has given way to structural methods. One
algebraic approach that has proven to be successful for large circuits is boolean satisfiability
[LarrabeeB9]. This method takes advantage of the fact that only one pattern is really
needed to satisfy the boolean equation generated and does not attempt to reduce the
algebraic expressions. The first of the structural methods, the D-Algorithm [Roth 66]
assigns a D to the faulty line in the circuits, and propagates its effect towards the output,
while "justifying"” the values on gates that drive the line, similar to what we did in the above
example. Inthe search for a pattern, there are often many choices. In the above example,
we had a choice of which AND gate input to set to 0. Our first choice resulted in a conflict
with another part of the test. In this case, the other choice was taken, and the process
repeated. The process of canceling a choice, and trying another iveak&rdcking The
efficiency of a test generation algorithm depends heavily on the amount of backtracking
required before a test is found. PODEM (path oriented decision analysis) was introduced
to reduce the amount of backtracking encountered with the D-Algorithm [Goel 81] . In
PODEM, values are assigned to the primary inputs successively, until either a pattern is
found, or the fault is proven undetectable. An incorrect assignment at the primary input
will cause backtracking. However, since there are generally fewer primary inputs than
lines in the circuit, the number of backtracks are generally fewer. FAN (fanout oriented)
further improved on PODEM by allowing assignments to some fanout nodes as well as
primary inputs [Fujiwara and Shimono 83].

Generating a test for a sequential circuit is much more difficult than for a
combinational one, because the output response depends not just on the input but on a
sequence of inputs. Mourad [90] gives an excellent survey of the different approaches for
sequential test generation. There have been a few attempts ([Kubuo 68; Putzolu and Roth
71; Muth 76]) at extending the combinational test generation algorithms to handle sequential
circuits. The basic idea is to replicate the combinational logic multiple times, treating each
flip-flop output as a pseudo-input, and flip-flop inputs as pseudo-outputs. For example,
consider the circuit in Fig. 1-6. Again we want to find a test fordisick-at 1. Fig. 1-7
shows the combinational circuit replicated twice. The notation used here is taken from
Fujiwara's book [85]. The combinational logic is the same as that of Fig. 1-5, so we
would like to use the same patterm¥9X3 = 010. However, instead of»as a primary
input we have a bistable element. Therefore, starting in time frame 2, we need
X1(2)y(2)X3(2) = 010. This implies that we need Y(1) = 1. Y(1) can be setto 1 by



setting »8(1) to 1. So, our test requires two consecutive patterns. The firstjotge=xX

-1 will make the flip-flop output become 1, and the second pattexig X 00 will detect

our fault as before. In this example, we only needed two time frames. In general, many
time frames could be needed.

X1 a s-a-1
Y AV4
1A 1 =, |z
>C1 |
1 P b
+
X3

Figure 1-6 Example of Test Generation for Sequential Circuits.
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Figure 1-7 Replicating Combinational Logic for Sequential Test
Generation.

Another approach for testing sequential circuits is to use the state table. Here, a
functional description of a sequential circuit is used, rather than the circuit, to find a test.
For example, Table 1-1 shows the state table for the circuit in Fig. 1-6. The idea is to find
a sequence of inputs that when applied to the circuit would give different output than any
other circuit with the same input, outputs, and same number of or fewer states. Such a
sequence, aehecking experimentontains enough information to reconstruct the state table
from the observed output when the sequence is applied. The sequence in Table 1-2 is a
checking experiment for the state machine described in Table 1-1. We can prove this by
deriving the state table from the sequence. Looking at patterns 2 and 3 of this sequence,
we see that the circuit has different outputs whel (= 00 is applied. This indicates that
there must be two states in the state machine. We call these states A and B and create Table
1-3. States are shown slightly offset from the pattern in Table 1-2, to show the states
before and after a pattern has been applied. After pattern 2, we are in state A and after
pattern 3 we are in state B. From patterns 2, 3 and 4 we see that appX®me RO will



switch between the two states. We can thus fill the first column of Table 1-3. Since we
assume that there must be at most two states in the cirgii§ X00 can be used as a
distinguishing sequence. distinguishing sequends a sequence that gives a different

output sequence for each state. In our example if we applg X 00 and see a 1 at the
output then we were in state A before applying the distinguishing sequence, and if we see a
0 then we were in state B. In Table 1-2, states followed by the distinguishing sequence
X1X3 = 00 are highlighted. In pattern 5, we have<¥ = 01, and see an output of 1.

Since we were in state A before this pattern was applied, we can put 1 as the output value
in the entry marked (1) in Table 1-3. The pattern is followed by the distinguishing
sequences (X3 = 00) with an output of 0. This implies that the next state in entry (1)
should be B. The rest of the table is filled in the same way. If we map state A to 0 and
state B to 1, we get the same table as Table 1-1, proving that the sequence in Table 1-2
really is a checking experiment. A systematic approach for generating a checking
experiment is given in Hennie [64] and Friedman and Menon [71]. The main problem with
checking experiments is that the number of patterns can be very large for even small
circuits, making it impractical for real designs.

Table 1-1 State Table for Circuit in Fig. 1-6.

X1X3
Y1 00 01 11 10
0 1,1 1,1 1,1 1,1
1 0,0 1,1 1,1 1,1
Y1Z

Table 1-2 Checking Experiment for State Table of Table 1-1.

Patternf1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |19
X2 [0 OOOOOOOO11O0O0OT1O01O0WO0T1O0
X3 /1 0 0021 0 01 01 0O011O0O0O0O0O0OTO
Z 101 01 0 1 1 01 01 1 01 01 10D
State A A A B A A B A A B

Position 1 2 3 4 5 6

Table 1-3 State Table From Checking Experiment in Table 1-2.
X1X3
00 01 11 10
A B,1 B,1(1)| B,1(3) B,(5
B A0 B1(2)| B1@4)| B,)1(6)




Scan was introduced to overcome the difficulties of sequential test generation
described above [Williams and Angel 73; Eichelberger and Williams 77]. The basic idea of
scan is to allow easy access to the flip-flops in the design so that patterns can be applied
directly to the inputs of the internal combinational logic, and the outputs of the internal
combinational logic can be observed from the primary output. This makes it possible to
use the methods discussed for combinational circuits on sequential ones. There are several
architectures for scan designs [McCluskey 86]. These are shown in Figs. 1-8 through 1-
11. There are two modes of operation in any scan design: shift mode and normal mode. In
shift modethe scan chain is configured as a shift register to scan data in and out of the
bistable elements. Imormal modethe bistable elements are configured to get their inputs
from the combinational logic and perform normal functional operation of the circuit. In the
MD-latch and MD flip-flop architectures, the shift mode is activated by setting T = 1, and
normal mode is activated by setting T = 0. In the other two architectures, TCK is used as
the clock for shift mode, and GKs used for normal mode.

The combinational logic is tested by scanning in a pattern with the scan chain in
shift mode. Values at the primary input are then applied, and values at the primary output
are checked. The scan chain is switched to normal mode for one cycle to capture the output
of the combinational logic in the bistable elements. Then the scan chain is switched back to
shift mode, and the contents of the bistable elements are scanned out and checked at SDO.
The next pattern is scanned in while the bistable element contents are being scanned out.
The bistable elements themselves are tested by shifting a pattern that applies all four
transitions (0->0, 0->1, 1->1 and 1->0) to the bistable elements. An example of such a
pattern is 00110.
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Figure 1-8 MD-Latch Based Scan Architecture.
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Figure 1-9 Level Sensitive Scan Design (LSSD) Architecture.
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The problem with this method of testing the bistable elements is that it does not
address faults within the bistable elements. Experimental results shown in Chapter 5 of
this thesis show that this can be a serious problem. However, this is not the first work to
show that faults inside bistable elements can be missed by traditional scan tests. Reddy and
Reddy [86] derived tests for stuck-open faults in different latch implementations. Lee and
Breuer [90] analyzed bridging faults in scan registers, and combined the use of current and
voltage tests. Al-Assadi [93] mapped many, but not all, of the internal faults to functional
fault models. He also showed that some of the internal faults cannot be mapped to
functional fault models.

What is missing from the previous work is an implementation independent test that
will detect all the faults in latches and flip-flops, and a method to automatically generate
such a test for bistable elements used in scan chains. This is where the work in this thesis
begins. We combine the work of checking experiments mentioned earlier, with the work
on scan and structural test generation to create a new algorithm that can generate tests for
the latches and flip-flops in the scan chain. As mentioned earlier, checking experiments
were not practical for real designs. However, we use a checking experiment only for the
bistable elements themselves. From the requirements of the checking experiment for the
bistable element, an algorithm that generates test patterns was developed. These patterns
are scanned in as in the case of tests for the combinational logic, but rather than switching
to normal mode for one cycle, the circuit is kept in normal mode for several cycles
depending on the type of pattern. This will be discussed in detail in Chapter 4.

There are two types of bistable elements: latches and flip-flops. In latches, when an
input value is changed, any effect on the output appears right after the input changes. This
property is often called theansparency propertpf latches [McCluskey 86]. Chapter 2
describes the method of generating checking experiments for two-state latches, and shows
how checking experiments can be applied to latches embedded in shift registers or scan
chains. The other type of bistable elements, flip-flops, do not have the transparency
property of the latch. A flip-flop output changes only in response to transition on a control
input or a change in an asynchronous input [McCluskey 86]. Chapter 3 describes the
method of generating checking experiments for flip-flops, and shows how checking
experiments can be applied to flip-flops embedded in shift registers or scan chains.
Chapter 4 describes the new test generation algorithm that will apply checking experiments
to all the bistable elements in the circuit. The algorithm was implemented in C by
modifying an existing combinational test generation program. The reason for selecting an
existing test generation program was to show that this new algorithm can be easily
implemented by enhancing existing commercial test generation program for real designs.



The effectiveness of the new method can be measured by fault simulating a circuit. The
results of fault simulation of individual bistable elements presented in Chapter 5. In

Chapter 6 we fault simulate a three-bit binary counter using traditional test patterns and
patterns for an MD flip-flop architecture. The results show that many faults are missed by
the traditional test. In the same chapter we generate patterns for the ISCAS-89 benchmarks
[Brglez et. al. 89]. The number of patterns generated for these circuits indicate that our
algorithm will generate a reasonable number of test patterns for real circuits.

Contributions

Contributions to knowledge, described in this thesis, are summarized as follows:

1. Development of a new approach for generating test patterns for bistable elements
in a scan chain design. The test patterns guarantee the detection of all faults that
do not increase the number of states of the bistable element.

2. Implementation of this new approach by modifying an existing stuck-at
automatic test pattern generation tool. The implementation was run on all the
ISCAS 89 benchmarks, and the results indicate that this new approach is
practical for large circuits.

3. Introduction of a new method for easily deriving checking experiments for two-
state latches, and derivation of a lower bounds on the number of patterns
needed for checking experiments of two-state latches.

4. Introduction of a new method for deriving checking experiments for bistable
elements that are embedded in a circuit, taking into account controllability of the
inputs and observability of the outputs.

5. Derivation of simple tests for bistable elements in shift registers and
demonstration that any data sequence that applies all four transitions will apply a
checking experiment to a double-rank shift register.
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Chapter 2. Checking Experiments for Latches

Latches are memory elements that havertdmesparency propertyWhen an

asynchronous input of a latch is changed, any effect on the output appears shortly after
the input changes, and when a synchronous input is changed, the output changes shortly
after the input changes if the control input is active [McCluskey 86]. This chapter begins
with a summary of various latches and checking experiments for them in Section 2.1.

The theoretical details for generating checking experiments for two-state latches are

given in Section 2.2. Checking experiments for some of the latches are derived in the
same section, and checking experiments for the rest are derived in Makar and McCluskey
[94]. As most circuits consist of more than just a single latch, we show what happens to a
D-latch once it is used in a shift register in Section 2.3. In that section, we show that any
data sequence, such as 01100, that applies all four transitions (0->0, 0->1, 1->0 and 1->1)
will apply a checking experiment to all the latches in the shift register. In Section 2.4 we
apply the same technique of Section 2.3 to MD-latches and TP-latches used in scan
chains. We show that there is no simple test that can be applied, and present a technique
to generate patterns to test the latches in the scan chain.

2.1 Latches and Their Minimum-Length Checking Experiments

Various latch types are discussed in this section (see Table 2.1-1). The simplest
latch type is the SR-latch. A8R-latchis a sequential element that can be set or reset by
activating the appropriate input. Even though the SR-latch is still occasionally used, the
most commonly used latch today is the D-latchD-fatch is a sequential element, in
which the data input is propagated to the output when the clock is active, otherwise it
holds the stored value. B-latch with Asynchronous Set/Remsea D-latch that can be
set or reset when the clock is not active. Scan-paths require latches with two different
data sources. These can be either Multiplexed-Data latches or Two-Port latches. A
Multiplexed-Data latctffMD-latch) is a D-latch with multiplexed data inputsTao-Port
latch (TP-latch)as two control inputs with the data source determined by the active
control input [McCluskey 86]. Aoad Enable latchis a D-latch with a gated control
input, and @&-Enable latchis a D-latch with gated data. AOR Input latctperforms
an exclusive-or operation on its two data inputs. This latch is commonly used in an
LFSR (linear feedback shift register) to generate pseudo-random vectors, and to compress
results. Other latches commonly used for BIST (built-in self test) afuilten Logic
Block Observer latch (BILBO latchgnd theConcurrent Built-In Logic Block Observer
latches (CBILBO latches)The BILBO latch has two data inputs. It can be configured to
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load either of the two inputs (one a scan input, and the other for normal operation), load
the exclusive-or of the two inputs (for signature analysis), or load 0. The CBILBO
latches, an extension of the BILBO latch, are two latches that can operate simultaneously
as a pseudo-random pattern generator and a signature analyzer. The two latches are
treated separately, with outputs @nd Q. Table 2.1-1 shows the excitation function of
each of these latches and the minimum-length of a checking experiment. Minimum-
length checking experiments for each of these latches are shown in Tables 2.1-2 through
2.1-11. Details for deriving checking experiments for some of the latches are given in
Section 2.2. Details for the rest are given in Makar and McCluskey [94].

Table 2.1-1 Latches and Their Excitation Functions.

Latch Type Excitation Function Assumptio‘ns M

SR-Latch Q=S+Rq SR=0 6

D-Latch Q=CD+Cq 7
Asynchronous SeyReset Q=R (S+CD+Ca) sR=0 | 14
MD-Latch Q=C(TS+TD)+Cq 26
Two-Port Latch Q=CD, +C,D,+ C,Cyq C1C2=0 23
Load Enable Latch Q=CLD+ (TQq 15
D-Enable Latch Q=CDE + Cq 16
XOR Input Latch Q=C(D®S)+Cq 13
BILBO Latch Q=C(B,D ®B,S)+Cq 58
CBILBO Latch Q=CEBD®S)+Cq 25
Q,=C(B,S + B,D)+Cq, 26

*M - minimum length (number of test vectors) of checking experiment.

Table 2.1-2 A Minimum-Length (6) Checking Experiment for an SR-Latch.

S [0l 0] 1] 0] 0] ©
R |1/ o0/l o0/l o0l 10
Q 0] 0 1] 1] 0] O

Table 2.1-3 A Minimum-Length (7) Checking Experiment for a D-Latch.

C 1/1 0, 0] 1, 0 O
D 1 0, 0 1] 1 1 O
Q 1,0 0] 0] 1 1 1
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Table 2.1-4 A Minimum-Length (14) Checking Experiment for an

Asynchronous Set/Reset Latch.

C 1,1, 0, 6 0 O] O 0L 0L O O O 1 ¢
D 1, 0,0 0 0] O O] 2, 1/ 1 1 1 1 1
R o, 0, 0] 0 O 1/ 0L 0f] 0 O 1 0 0 Q@
S 0, 6, 0/ 1 0]l 0 00 001 0 O 0o 0 d
Q 1,0} 0/ 2 1 0, 0) 0] 12 1 O O 1 1

Table 2.1-5 A Minimum-Length (26) Checking Experiment for an MD-Latch.

PR ORO

T (1000000000000 111117/2/2|2/2 21112
Cc (1110010001001 00100112/00/0/10/010
D |1/111000111100000000001/21/11)1
S |1000000001 1111212111 0/001111000
Q |00111210000111000121/1000/0/11100
Table 2.1-6 A Minimum-Length (23) Checking Experiment for a TP-Latch.
C1 (1100000000100 O0O00DO0OLC01200]2
Dp [1/0/0/0 0 00001111 112110100111
C2 [0000/ 0 1001000010041 00100100
D2 [0/0/0/ 111 0000000001112 1112112
Q (200 0111000110001 121|0|0 0|1
Table 2.1-7 A Minimum-Length (15) Checking Experiment for a Load
Enable Latch.
L 1 1,0, 0/ 1,1 0| O] 1/ 0 0 1 1 O O
D 1, 0,0/, 0] 0] 2 1 2 1, 1 1 1 0 0 O
C 1,1 1/ 0 0 0O O 121 1 1 0 O O Q9 1
Q 1, 0, 0 O] O] O] 0, 0 1 1 1 1 1 1 1
Table 2.1-8 A Minimum-Length (16) Checking Experiment for a D-Enable
Latch.
D 1,0/ 0 22} 1, 1 1 1 1 1 0 Qg 0 0 d
E 1/1/, 1, 1, 1, 0 0, 11 1 1 0 Q 1 0 0O
C 1/ 1, 0 0 1 1 0 001 0 O 0 0 0 1 1
Q 1,0/ 0 O 1 0 O O 1 1 13 1 1 1 0 (
Table 2.1-9 A Minimum-Length (13) Checking Experiment for an XOR
Input Latch.
D o]0 0, 0,0, 0 1), 2/ 1 1] 1 1 O
S 1,0, 0, 2 2 1] 1] 1] 1 O 0O O ¢
C 1,1 0] 0, 2/ 0, 0O 1 0 O 1 0 ©
Q 1,0, 0] O, 12, 1] 1] 0 O O 1 1 1
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Table 2.1-10 A Minimum-Length (58) Checking Experiment for a BILBO

Latch.
D (0000000000122 111120000000002112
S |[000000001110000D00O|0O0|0|0|0/000O01T21T1111
B2 [0/0]0)0)00 000000000121 ]2/12/12/21/1111111
B1 1011000000001 11212111|1/1/0/0000000¢9qO0
C (111001001 000001000/10/0/1/0/0010010010O
Q |10002111200002000121200/0/11/2100011
DlJ11111111111212212210/00/1]111121000Q90O0
S |111000000002211/1212|]2/2/2/211100111
B 1000000021111 10021111/1/2|]2/2/1/00000QqO
B 100000000011 112221211/1/12/2/2]2/1]11111
C [([0/1002100100112000/10/0/1/0/010000010O
Q (10001120001 20001112/2/00/001/1112111Q0
Table 2.1-11a A Minimum-Length (25) Checking Experiment for a CBILBO

Latch 1.
D |11/2111100000012121111131|0000|0f0
S (011111111 000pP0O0OO0DO0DOCO|2/2/2/2/ 0/0]0
B1 121/11/ 0000000000001 11212121 2/2/2/2|1/(1
C [1/1 001001001001 001 0001 00/1]0
Qr|0/1/2/11000021121000112100OO11]|]1/0]0
Table 2.1-11b A Minimum-Length (26) Checking Experiment for a CBILBO

Latch 2.
D 11/2/1100011110000000000121111)1
S |100000000O111112212110|001/1]11000
B [110000000000000O0O2212 12 2/2/2/2 111211
C (110010001001 0010011000100150
Q1011110000111 00022/2/00/0/0/1/110]0

2.2 Deriving Checking Experiments for Two-State Latches

All latches described in Table 2.1-1 are typically implemented as two-state
latches; the flow tables of these latches have only two rows. In this section, special
properties of two-state flow tables are analyzed and a method for generating checking
experiments for them is developed. This method was used to generate the checking
experiments in Tables 2.1-2 through 2.1-11.

Each cell in a flow table, total state corresponds to an assignment of values to
the circuit inputs and internal states. A total state isrstablestateif it causes a change
in internal state of the machine. A total statessable statef the next internal state is
the same as the current internal state. In the flow table, a stable state is represented with a
number in a circle if its output is 0 and with a number in a square if its output is 1. The
numbers of the states start with 2 (0 and 1 are not used to avoid confusion with logic
values). For some states the output value may not be observable due to design constraints
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(more on this in Section 2.3). For states with observable output, the output value is
included after the state. Some total states cannot be reached because of the single-input
change restriction on fundamental mode circuits. Such total stat@sspecified states

and are shown with “~” in the flow tables. A sequevisésa total state when the

sequence applies the input of the total state while the machine is in the internal state of
the total state. A total stateitentifiedby a sequence if the sequence provides enough
information to reconstruct the corresponding entry in the flow table.

For a state machine to have sequential behavior, there must be at least one column
in the flow table with different outputs. Otherwise, the machine acts as pure
combinational logic. The total states in a column of a two-state flow table with differing
outputs are calledistinguishing statesand the input is calleddistinguishing input A
state machine must also have two columns that change the internal state, so that both
internal states are reachable. Inputs of such columns are ©aliguronizing inputs
because they force the machine into a known state. These definitions are shown in Fig.
2.2-1.

Distinguishing Inputs Synchronizing Inputs

00 01 11 10

Internalq A @ @ 0 7 @
States B 1 5

; Unstable States

Distinguishing States Observable Outputs
Figure 2.2-1 Definitions in Flow Table.

As mentioned earlier, a checking experiment contains enough information to
reconstruct the flow table. Therefore, it must identify all total states in the flow table. In
this section, we analyze two-state flow tables that have distinguishing inputs and
synchronizing inputs only (i.e., no columns in the table have two stable states with the
same output), because all latches studied here have flow tables that fall into this class of
flow tables. The requirement for reconstructing the flow table can be refined into three
simpler requirements: all total states must be visited, all unstable states must be
identified, and all distinguishing states must be identified. If the flow table has columns
with two stable non-distinguishing states (i.e., the two total states are stable and have the
same output), then they will have to be identified too. Since none of the latch flow tables
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we have seen contain such columns, we restrict our analysis to identifying distinguishing
and unstable states.

We start with the first requirement, i.e., all total states must be visited. If a total
state is not visited by the sequence, then the effect of applying the input of the total state
when the machine is in the internal state of the total state is not known. This requirement
is proven in Lemma 1.

Lemma 1: A checking experiment for a two-state flow table with only

distinguishing and synchronizing inputs must visit all total states in the
flow table.

Proof. Suppose that a sequence does not visit one of the stable total states.
Create a second flow table by copying the original flow table and

changing the output of the state not visited by the sequence. The output
response of the sequence when applied to the second flow table would be
the same as that of the original one because the sequence never visits the
only total state that differs in the two flow tables. Since the two flow

tables give the same response to the same input sequence, the sequence
cannot be a checking experiment. Now suppose that the sequence does
not visit one of the unstable states. In this case, the sequence would have
the same response for a flow table that had the unstable total state replaced
by a stable total state (the output does not matter). Since the input
sequence has the same response for two flow tables, it cannot be a
checking experiment. Therefore, a checking experiment must visit all

total states (stable and unstable) in the flow table.

Even though visiting all the total states is a necessary requirement for a checking
experiment, it is not a sufficient one. Consider the flow tables in Table 2.2-1. The
sequence in Table 2.2-1c visits all the states of the flow table in Tables 2.2-1a. However,
the output response is the same for the two flow tables in Table 2.2-1. Since the two flow
tables are different, the sequence is not a checking experiment. The sequence did not
identify the unstable states 8 and 9 in Table 2.2-1a. An unstable state is identified, when
the sequence shows that the input caused a change in internal state. To show that an
input causes a change in internal state, we need to show that the total states before and
after the application of the input have different internal states. The internal state after the
application of the input can be identified by following the input with a distinguishing
input. The total state would then be a distinguishing state. The total state before the
application of the input does not have to be a distinguishing state, but its internal state
must be known. This analysis suggests the creation of state triples.
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Table 2.2-1a Two-State Flow Table.
CD

00 01 11 10 00 01 11 10
A=0 A=1

@,0 @,0 7 @,0 9 ’0 - _
[3]1 [5]1 [7]1 6 |[9]1 & | - | -

Table 2.2-1b Another Flow Table That Produces Same Output Sequence
When Table 2.2-1c Sequence is Applied.

CD

00 01 11 10 00 01 11 10
A=0 A=1

@0®@o 7 ®ollelt®o - | -
[3]1 [5]1 [7]1 6 |11 @0 - | -

Table 2.2-1c Sequence That Visits All Total States, But is Not a Checking

Experiment.
A 0 0 0 0 0 0 0 1 1 1
C 1 1 0 0 1 0 0 0 0 0
D 0 1 1 0 0 0 1 1 0 1
Q 0 1 1 1 0 0 0 0 1 0
State| 6 7 5 3 6 2 4 8 9 8

A statetriple is a set of three total states that contaisstap statésame internal
state as unstable state and input unit distance from unstable state input), an unstable state,
and a distinguishing state. The setup state and the distinguishing state must have
different internal states. A sequendgits a state triplef it visits the setup state, then
visits the unstable state right after the setup state, then visits the distinguishing state right
after the unstable state. An unstable state can have many state triples, as there can be
several candidates for setup states and for distinguishing states.

State triples are best described as graphs. For example, the graphs for the three
unstable states in the flow table in Table 2.2-2 are shown in Fig. 2.2-2. Each of these
graphs shows all the triples for one of the unstable states. In these graphs, any path
represents one of the triples. For example, the first graph of Fig. 2.2-2 has four triples:
7,8,6; 7,8,2; 3,8,6 and 3,8,2. In the graphs of triples, setup states that are distinguishing
states are shown on the left of the unstable state (in Fig. 2.2-2, states 7 and 3 for the first
graph, state 2 for the second graph, and state 5 for the third graph). Setup states that are
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not distinguishing states are shown on the top of the unstable state (in Fig. 2.2-2, state 10
for the second graph, and state 9 for the third graph). The unstable states are shown in the
middle (in Fig. 2.2-2, state 8 for the first graph, state 9 for the second graph, and state 10
for the third). The distinguishing states of the triples are shown on the right (in Fig. 2.2-

2, state 6 and state 2 for the first graph, state 3 for the second graph, and state 4 for the
third graph). The triples for the unstable states in Table 2.2-1a are shown in Fig. 2.2-3.

Table 2.2-2 Flow Table Fragment Explaining State Triples.
CD

00 01 11 10 00 01 11 10
A=0 A=1

@0 @0 ®0 @0 ° @Wo - | -
[3]1 [5]1/[7]1 8 |[9]1 10| - | -

® O—>E—E B>0—0

Figure 2.2-2 Graphs of State Triples for Flow Table in Table 2.2-2.

F>6)—>0) O—=1>] O—=[1l>F [EF>e—>®

Figure 2.2-3 Graphs of State Triples for Flow Table in Table 2.2-1a.

Lemma 2: A checking experiment for a two-state flow table with only
distinguishing and synchronizing inputs must visit at least one state triple
of each unstable state to identify all unstable states. Triples can overlap,
the distinguishing state of one triple can be the setup state of another
triple.

Proof. We have already shown that a checking experiment must visit all
the total states, including the unstable states. Visiting an unstable state
requires visiting the setup state of a triple of the unstable state before
visiting the unstable state itself. Therefore, a sequence that visits an
unstable state but does not identify it is not visiting a distinguishing state
after visiting the unstable state (i.e., it only visits the first two states of the
triple). In this case, the input applied by the sequence after visiting the
unstable state is a synchronizing input. Create a second flow table by
copying the original flow table and changing the unstable statea
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stable total state and give it the same output of the other total state in the
same column. When the input corresponding to our unstable state is
applied to either flow table, we get the same output. Since the next input
is a synchronizing input, the next output and internal state will be the same
for both flow tables. Therefore, a checking experiment must visit at least
one state triple of each unstable state to identify all the unstable states.

Consider the flow tables in Table 2.2-3. Graphs for the state triples of Table

Table 2.2-3a Two-State Flow Table.

CD

00 01 11 10 00 01 11 10
A=0 A=1

@,0 @,0 7 @,0 9 ,0 - _
[3]1 [5]1[7]1 6 |[9]1 8 | - | -

Table 2.2-3b Another Flow Table That Produces the Same Output Sequence
When Table 2.2-3c Sequence is Applied.

CD
00 01 11 10 00 01 11 10
A=0 A=1

@011 ®0 ° & -
Bl1@o 7 8 |Bl1@0 - | -

Table 2.2-3c Sequence That Visits All Total States, Identifies Unstable States,
But is Not a Checking Experiment.

A 0 0 1 0 0 0 0 0 0 1 0
C 1 0 0 0 1 0 1 1 0 0 0
D 1 1 1 1 1 1 1 0 0 0 0
Q 1 1 0 0 1 1 1 0 0 1 1
State| 7 5 8 4 7 5 7 6 2 9 3
Triples A D
I B I C |

®
Figure 2.2-4 Graphs of State Triples for Flow Table in Table 2.2-3a.
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2.2-3a are shown in Fig. 2.2-4. The sequence shown in Table 2.2-3c visits all the total
states, and identifies all the unstable states of Table 2.2-3a. However, both flow tables in
Tables 2.2-3a and 2.2-3b, produce the same output response for the input sequence of
Table 2.2-2c.

The sequence in Table 2.2-3c produces different outputs for both 00 and 01,
indicating that they are distinguishing inputs. However, there are two possible
permutations (barring isomorphism) for the distinguishing states in the flow table. These
are shown in the first two columns of Tables 2.2-3a and 2.2-3b. To distinguish between
the two flow tables, a sequence must have CD = 00, 01 or CD = 01, 00 as sub-sequences.

This brings us to the third requirement: identifying the distinguishing states. As
shown in this example, it is not enough to visit the distinguishing states. Two
distinguishing inputs are said to likedin a sequence, if the sequence provides enough
information to determine the distinguishing states in their two columns. If a
distinguishing input follows another distinguishing input in the sequence, then the two are
linked.

There is another way that two states can be linked. Consider the flow table
fragment in Table 2.2-4. The graph of the state triples for state 5 are shown in Fig. 2.2-5.
Now suppose that a sequence visits a state triple that ends with state 3, then we know that
the internal state of state 3 is the same as the internal state of stable state 5. If the
sequence also visits a state triple that ends with state 7, then we know that the internal
state of state 7 is the same as the internal state of stable state 5, and therefore the same as
the internal state of state 3. Since state 3 and state 7 have the same internal state, their
corresponding inputs are linked. Therefore, if an unstable state has several triples with
different distinguishing states and a sequence visits triples with different distinguishing

Table 2.2-4 Flow Table Fragment Explaining Links.
CD
01

00 11
@0 5 @o
,1 E,l ,1

10

Figure 2.2-5 Graph of State Triples for Flow Table Fragment in Table 2.2-4.
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states, then the distinguishing inputs corresponding to these distinguishing states are
linked.

There can be many distinguishing inputs. Every distinguishing input can have
one of two possible permutations of distinguishing states. Therefore, for n distinguishing
inputs there are™2possible column permutations. Half of these permutations are nothing
more than other permutations with the rows exchanged. Thus they do not need to be
considered, and there ar@-2 possible unique permutations. For a single distinguishing
input, there is one unique permutation. Therefore, any distinguishing input is linked to
itself, making the link relation reflexive. From the definition of link, link is a symmetric
property. Ifais linked tob, thenb is linked toa. Now suppose that there are three
distinguishing inputs, b andc. If a is linked tob, then there is only one unique
permutation for the distinguishing states in columres afdb. Similarly, ifa is linked
toc, then there is only one unique permutation for the distinguishing states in columns of
a andc. Therefore, there is one unique permutation for the all three columns, and so the
link relationship is transitive. Since the link relationship is reflexive, symmetric, and
transitive, it must be an equivalence relationship.

Lemma 3: A checking experiment for a two-state flow table with only

distinguishing and synchronizing inputs must link all distinguishing inputs
to identify all distinguishing states.

Proof. We have already shown that a checking experiment must visit all
the total states, including the distinguishing states. Suppose that two
distinguishing inputs are not linked in a sequence. Since link is an
equivalence relation between distinguishing inputs, the distinguishing
inputs would fall into two equivalence classes. Within each of the classes,
there is only one unique permutation of distinguishing states. Create a
second flow table by copying the original flow table, and swapping the
rows in the distinguishing input columns of one of the equivalence classes.
Also, swap the rows of any synchronizing inputs that are a unit distance
from any of the distinguishing inputs in that class, if the synchronizing
input is not a unit distance from a distinguishing input of the other class.
Applying the sequence to the new flow table would give the same
response as when applied to the original flow table. Therefore, if the
distinguishing inputs are not linked in a sequence, the sequence is not a
checking experiment.

Now that we have shown that the three conditions (visit all states, visit at least one
state triple for each unstable state, and link all distinguishing states) are necessary for a
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sequence to be a checking experiment, we show that if all three conditions are satisfied
that the sequence is a checking experiment. In other words, given a two-state flow table
with distinguishing and synchronizing inputs, any sequence that satisfies all three
conditions is guaranteed to be a checking experiment. These conditions are necessary
and sufficient. The proof is given in Theorem 1.

Theorem 1 A sequence for a two-state machine with distinguishing and
synchronizing inputs is a checking experiment if and only if it satisfies the
following properties:

1. Visits all the total states.

2. Visits at least one state triple for each unstable state.
3. Links all the distinguishing inputs.

Proof. From Lemmas 1, 2 and 3, a checking experiment must satisfy all
the above conditions. Now, we need to show that if a sequence satisfies
the three conditions, then it is a checking experiment. If a sequence links
all the distinguishing inputs, then there can only be one permutation of
distinguishing states in the flow table. If the sequence also visits at least
one triple for each unstable state, then all entries in the flow table are
identified. Therefore only one flow table can be constructed from the
response of the sequence, making it a checking experiment.

An important consequence of Theorem 1 is that a checking experiment does not
require all possible transitions in a two-state flow table. For example, consider the flow
table in Table 2.2-5. The graphs of the triples are shown in Fig. 2.2-6. A sequence
formed by combining the triples is 6,7,5,3,6,2. Since state 3 follows state 5, the
distinguishing inputs are linked. State 4 can be added to the end of the sequence to
satisfy the first requirement of Theorem 1. Therefore, the state sequence becomes:

Table 2.2-5 Flow Table Marked With Checking Sequence.
CD Q

00 01 11 10
AY @, .0 W*@w¢ 0
B<[3]. ¥l ¥ [d.1] 6 ¥ 1

7
O—{1}—] [EE—=>O0—>0

Figure 2.2-6 Graph of State Triples for Flow Table in Table 2.2-5.
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6,7,5,3,6,2,4. The transitions through this sequence are shown graphically in Table 2.2-5.
Thick arrows are used to indicate the beginning and end of the sequence. The following
six transitions are not included in this sequence: 4->2, 2->6, 4->7, 3->5, 5->7 and 7->6.

The above example suggests the following procedure to generate a checking
experiment for a two-state flow table with only distinguishing and synchronizing inputs.
More examples for using this procedure are given in the following subsections.

Procedure for Deriving Checking Experiments from Two-State Flow Tables.

1. Determine all the state triples for the unstable states.

2. Select one triple for each unstable state.

3. Combine the triples of step 2. As in the example above, step 2 and 3 may be
performed simultaneously (i.e., select the triples that best fit together), as
long as a triple for each unstable state is used.

4. If the sequence resulting from step 3 does not form a link among all the
distinguishing inputs then modify the sequence by adding extra states so
that it forms a link among all distinguishing inputs. This should be done
without destroying the triples.

5. Add any missing total states to the sequence.

6. Convert the state sequence into an input sequence, adding a synchronizing
input, if necessary (i.e., if the first input of the first triple is not a
synchronizing input).

The first pattern in the sequence for a two-state flow table should force the
machine into a known state. Therefore, in step 2 of the procedure, the setup state of the
first triple should correspond to a synchronizing input whenever possible.

Combining triples would be most efficient if the distinguishing state of one triple
is the setup state of another. Since triples cause a change in the internal state, the final
state of one triple can be the setup state of another if the two triples cause internal state
changes in the opposite directions (i.e., if the first triple causes the machine to change
from internal state A to internal state B, then the second triple should cause the machine
to change from internal state B back to internal state A). If there are more triples that
cause state changes in one direction than in the other, then some of the state changes will
need to be repeated to get to the setup states of all the triples.

Lower Bound on Checking Experiment Length for Two-State LatchesThe
length of a checking experiment (L) is bounded by the following equation.

L=S+ 1+zomax(r1 -1,0) ifv=0
1=
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S
LzS+v+20max(r] -1,0) ifv>0
1=

where S = number of total stable states

nj = number of unstable states for whighsghe only distinguishing

state of all its triples
v = difference between the number of unstable states in the two
rows

Proof. As seen from Lemma 1, a checking experiment must visit every
total state. A machine can only be in one stable total state for every input
pattern. Therefore, there must be at least as many patterns in the sequence
as there are total stable states. There will always be at least one extra
pattern for initialization. To be useful, the first pattern should force the
machine into a known state (a synchronizing input). If thergjare
unstable states that requges the only distinguishing state of all their
triples, therg must appear at leagttimes. One of the occurrences of
statesj is accounted for in S (the total number of stable states). Therefore
si must appear an additiongl- 1 times. Iij is zero, then nothing should
be added. Hence the term mgx(1,0) is added for each total state. If the
number of unstable states in one row differs from the number of unstable
states in the other row lwy then at least -1 extra internal state changes
have to be applied. Each extra state change requires at least one more
pattern. Addiny -1 to the initialization pattern gives

In many of the latch flow tables, half the inputs are distinguishing inputs, and the
other half are synchronizing inputs. A single input variable determines whether an input
is a distinguishing input or a synchronizing input. This class of state machines will be
referred to asingle-input control state machinemnd the variable that determines the
input type will be called aontrol input For example, in Table 2.2-5, all inputs are
distinguishing inputs when C = 0, and all inputs are synchronizing inputs when C = 1.
Therefore, the flow table describes a single-input control state machine with C as the
control input. An interesting property of such state machines is that the distinguishing
state of one triple cannot be a setup state of another triple, because there are no unstable
states adjacent to a distinguishing state of a triple. As before, if there are more triples that
cause state changes in one direction than in the other, then some of the state changes will
need to be repeated to get to the setup states of all the triples. In this case, since the
distinguishing state of a triple is not a setup state of another triple, we will need two extra

24



inputs instead of just one. Therefore, if therevareore unstable states in one row than
in the other, then 2(-1) extra patterns are needed. This is used to derive a tighter lower
bound on the length of the checking experiment.

Lower Bound on Checking Experiment Length for Single-Input Control

State Machine The length of a checking experiment (L) of a Single-Input
Control State Machine is bounded by

L>=S+1 ifv=0
L=S+2v-1 ifv>0

where S = number of stable total states

v = difference between the number of unstable states in the two
rows

Proof. In a single-input control state machine each distinguishing
input is a unit distance from only one synchronizing input.
This implies that no two triples can have the same
distinguishing state. Therefore, the summation term in the
original bound will always be 0. If v =0, then the arguments
for the previous bound apply. If v > 1, then two patterns are
needed for each additional transition because the distinguishing
state of a triple cannot be used as a setup state for another
triple. Therefore 2(v -1) extra patterns are needed. Combining
this with the initialization pattern gives 2v -1.

Another property of single-input control state machines is that a sequence that
uses triples with distinguishing states as setup states except for the first triple, will
identify the distinguishing states as well as the unstable states. This property is proved in
Theorem 2.

Theorem 2:If a sequence is applied to a single-input control state machine, and

the setup states of all but the first triple are distinguishing states, then the
sequence links all the distinguishing inputs and is a checking experiment.

Proof. In a single-input control state machine each distinguishing input
has a distinguishing state that is a setup state of a triple, and another
distinguishing state that is a distinguishing state of the same triple.
Therefore, there is a one-to-one correspondence between distinguishing
inputs and triples. Now, if triple B is applied after triple A, the
distinguishing input corresponding to triple A is linked to the one
corresponding to triple B. Suppose triple C is applied after triple B, then
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the distinguishing input corresponding to triple B is linked to the one
corresponding to triple C. Since link is an equivalence relation, the
distinguishing input corresponding to triple A is linked to the one
corresponding to triple C. Using the same argument, it can be shown that
the distinguishing input corresponding to triple A is linked to all the
distinguishing inputs. Therefore, the sequence links all the distinguishing
inputs, identifying all the stable states. Since the sequence identifies all
the stable states and the unstable states, it is a checking experiment.

In the rest of Section 2.2, state triples and minimum-length checking experiments

for SR-latch, D-latch, MD-latch, and TP-latch are derived. Triples and checking
experiments for the other latches are presented in Makar and McCluskey [94].
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2.2.1 Two-State SR-Latch
The equation for the SR-latch@=S + Rq. The latch is set when S = 1 and

reset when R =1. S and R should not be 1 at the same tsaed@aminant SR-latch

would be set if SR = 1, andraset dominant SR-latalould be reset if SR = 1). The

flow table for the SR-latch is shown in Table 2.2.1-1. The graphs of the state triples are
shown in Fig. 2.2.1-1.

Table 2.2.1-1 Flow Table for Two-State SR-Latch.
SR Q
11 10

00 01
2.0 (@0 - 5 0
[3]a 4 - [sla] ot

A E>O—0 & O—>[]

Figure 2.2.1-1 Graphs of State Triples for Two-State SR-Latch.

The setup state of one triple is the distinguishing state of the other triple.
Therefore, the two triples can be combined without adding any states between them.
Two possible state sequences are 2,5,3,4,2 and 3,4,2,5,3. Since there is only one
distinguishing input, the distinguishing states are identified by simply visiting them. The
two sequences contain all the total states in the flow table. The input sequence that would
generate these state sequences is shown in Table 2.2.1-2. Since the sequences satisfy
Theorem 1, they are checking experiments. Since the setup state in both triples is a
distinguishing state, a synchronizing input needs to be added to the beginning of either
sequence. The sequences in Table 2.2.1-2 are minimum length. The two tests shown in
Table 2.2.1-2 are symmetric, the sequence of values on the S input of the first test is the
same as that of the R input on the second test, and vice versa.

Table 2.2.1-2 Minimum-Length (6) Checking Experiments for Two-State

SR-Latch.
S 0| O 1 0 0 0 S 1 0 0 0 1 d
R 1 0 0 0 1 0 R 0 0 1 0
Q 0, 0 1 1 0 0 Q 1 1 0 0 1 1
State| 4 2 5 3 4 2| State| 5 3 4 2 5 3
Triples B Triples A
A B
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2.2.2 Two-State D-Latch

The equation for a D-latch is Q = CDGyq, and the flow table for the D-latch is
shown in Table 2.2.2-1. The graphs of the state triples are shown in Fig. 2.2.2-1. We
need to combine a triple from graph A and a triple from graph B. Suppose we start with
the triples in graph A. State 6 is selected as the setup state because it a synchronizing
input, giving the state triple 6,7,5. Now, looking at graph B, there are two triples: 7,6,2
and 3,6,2. State 7 has already been visited in the first sequence, thus visiting it again has
no benefit. Choosing state 3 as the setup state would make state 3 follow state 5, linking
the two distinguishing inputs. Thus the sequence becomes 6,7,5,3,6,2. The sequence is
missing state 4, which can be added to the end of the sequence. This makes the final
sequence 6,7,5,3,6,2,4. The same approach can be used starting with graph B in Fig.
2.2.2-1. The sequence in that case would be 7,6,2,4,7,5,3. These two state sequences,
and the checking experiments that would generate them, are shown in Table 2.2.2-2.
Since the lengths of these sequences meet the lower bound, these sequences are minimum
length. The two tests shown in Table 2.2.2-2 are symmetric, the sequence of values on
the C input are the same for both tests, and the values on the D input of the first test are
complements of the values on the D input of the second test.

Table 2.2.2-1 Flow Table for Two-State D-Latch.
CD Q
00 01 11

10
2.0 (@0 7 (®.0]| o
[3].1] [5].1] [7].1 6

A B |7
S S,

Figure 2.2.2-1 Graphs of State Triples for Two-State D-Latch.

Table 2.2.2-2 Minimum-Length (7) Checking Experiments for Two-State D-

Latch.
C 1, 1] 0] 0, 1| 0| O C 1 1 0 0 1 QO
D 1/0]0 1| 1/ 1 O D 0| 1 0 1
Q 1, 0 0] 0] 1, 1] 1 Q 0O 1 1 1 Q
State| 7 6 | 2| 4| 7, 5| 3| State|] 6| 7, 5| 3| 6 2| 4
Triples B A Triples A B
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2.2.3 Two-State MD-Latch

The equation for an MD-latch (Multiplexed-Data latch) is Q = C(TBD + Cq.
When T = 0, the latch operates in normal mode (D is used as the input), and when T = 1 it
uses S as input. The flow table for the MD-latch is given in Table 2.2.3-1. The graphs of
the triples are shown in Fig. 2.2.3-1.

Looking at the flow table, all the distinguishing states occur when C = 0, and all
the unstable states occur when C = 1. Therefore, the MD-latch is a single-input control
state machine, and C is the control input. There are 24 total stable states, and the number
of unstable states in each of the rows is 4. Therefore, the length of a checking experiment
must be at least 25. Makar and McCluskey [94] shows that the length must be at least 26.
The details of combining the triples to derive minimum length sequences also appear in
Makar and McCluskey [94]. One such sequence is shown in Table 2.2.3-2.

Table 2.2.3-1 Flow Table for Two-State MD-Latch.

DS
o0 01 11 10 OO 01 11 10 OO O1 11 10 OO O1 11 10

C=0 c=1
T=0 T=1 T=0 T=1 Q

(2),004),0(6),0(8),010,0(12,0(14,0(16,0(18,0(20,0 19 | 21 [22,0 23| 25 24,0 O
34 5],1) 7], 9)411/,1[13,115,1[17],1] 18 | 20 [19] 1211 22 |[23]1]25,1 24| 1

Figure 2.2.3-1 Graphs of State Triples for Two-State MD-Latch.
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Table 2.2.3-2 A Minimum-Length (26) Checking Experiment for MD-Latch.

T |[10000000000000Q202 121222111112
C 111100210001 001200100/2/0/0/0/20010
D 111100012111 0000000000/2/1|1 111
S |100000001111101211/1/00/0/2/1/11000
Q |0/111100001110000112{]2 000011100
State|2421 9/ 3 18 2 8 6 19 7 5 20 4 1223131122 10 12 14 25 15 17 24 16
Triple§ F A E B G C H D

2.2.4 Two-State TP-Latch

The equation for a TP-latch (Two-Port latchjds- C;D; + C,D,+ Elc_zq. G
and @ should not be both active at the same time. The TP-latch loads the data input
corresponding to the active control input. The flow table is shown in Table 2.2.4-1.

The last four columns are marked as don’t cares because the operation of the latch
is not defined when both control lines are active. Graphs of the triples are shown in Fig.
2.2.4-1. Since states 2 and 7 appear twice as the only distinguishing states of triples, and
there are 16 total states, the lower bound on the test length is 19. Makar and McCluskey

Table 2.2.4-1 Flow Table for Two-State TP-Latch.

D1D2
o0 01 11 10 00O 01 11 10 OO O1 11 10 OO O1 11 10
C2=0 Q=1
€1=0 G=1 C1=0 Ccl=1 Q
(2)0(4)0(6).0(8).0{10012,0 11| 13140 15 17 (190 - - - | - | O
(3] 5],1[ 7].1[ 0], 20| 12 [12) 4131 14 |[15l0270 26| - | - | - | - | 2

A 1B B [ c p @@
@@—> E
R F @ c Ho L7
@@—> IEI—>

Figure 2.2.4-1 Graphs of State Triples for Two-State TP-Latch.
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[94] shows that the length must be at least 23. The details of combining the triples to
derive minimum length sequences also appear in Makar and McCluskey [94]. One such
sequence is shown in Table 2.2.4-2.

Table 2.2.4-2 A Minimum-Length (23) Checking Experiment for TP-Latch.

¢t |1/{12 0/ 0|O0O/O]O]O/O0O|0O|12 0/O]|]O/O0|O|]0O/0|1|0/0|1|0
¢ 0/00/0/2/0|0]|2/0 0/0O/0O/21/0/0/2 0/ 0|0/ 0O]|0O]0OO
D |1/0/0|/0|0|O0|]0O0O|O|O|1|1/1/21/1|/2/2 2 000111
D /0/0/0O/21/1|/2/ 0/ 0]O O0|O]|]O/O]Oj2/2/1|2/ 21|12 21
Q /1/0/ 0/ 0 1/ 1 1, 0 0 0 1 1 0 0 0 1 1 4 0 0 011
State| 1310 2 4/ 15 5 3 14 2 8 13 0 16 B8 6 U7 |7 |5 12 |4 |6 11| 7
Triples A F E D
H G B C
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2.3 Shift Register

A shift register is a circuit that, once every cycle, shifts its stored contents . A
double-rank design of a shift register using D-latches is shown in Fig. 2.3-1. In this
circuit, acycleconsists of a CK pulse, followed by a CKpulse. When CKis 1 the
data on d1 is transferred to d2, the data on d3 is transferred to d4, and the data on d5 is
transferred to d6. When GHKs 1 the data on d2 is transferred to d3, the data on d4 is
transferred to d5, and the data on d6 is transferred to d7.1186¢&CK> are 1 at the
same time, the data at d1 shifts all the way to d7. Therefore, for proper operation, CK
and CK> must be non-overlapping clocks.

D2 D3 D4 D5 D6 D7
dl d2 d3 d4 ds dé d7
—11D 1D 1D 1D 1D 1D
Ci1 Ci1 Ci Ci |— Ci Ci
o L
CK2 L 4 L 4

Figure 2.3-1 Double Rank Shift Register.

In the rest of this section, we analyze the input and output constraints imposed on
the latch by embedding it in a shift register. From these constraints, we derive a new
flow table and a new set of state triples. From the new flow table and state triples we
derive a new checking experiment. The checking experiment we derive for the latch in a
double-rank shift register can be described as the data sequence 01100 (in a data sequence
one value is applied to the data input (d1) every cycle). Extra cycles are needed after
applying the data sequence so that the data values reach the internal flip-flop, and the
output of the internal flip-flop reaches the primary output, d7. We also show that any
sequence that contains all four possible transitions (0->1, 1->1, 1->0 and 0->0), applies a
checking experiment to all the latches.

The non-overlapping constraint and the interconnection of the latches impose
controllability and observability restrictions on the latches in the shift register. There are
two issues here. First, the appropriate patterns must be applied to the latch under test.
Second, the error at the output of the faulty latch must be captured and transferred to the
primary output (d7) of the shift register. During this test, it is assumed that only one latch
is faulty. In this section we show that despite these constraints, a checking experiment
can be applied to all the latches in the scan chain.

Theapplication pointof a signal is the point in the cycle where it can change.

The signal on d2 can only change whemG&high. Similarly, d3 can only change
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Application Point of d3 \apture Point of d4

Figure 2.3-2 Restrictions in Shift Register Operation.

when CK is high, but during that time d2 is not changing (becausgi€kKw when
CK2 is high). Therefore, the application point of d3 is the rising edge of &kd there
can only be one change per cycle (see Fig. 2.3-2).

The output of the latch under test must be propagated to the primary output of the
circuit. The only path from the output of the highlighted latch (D4) in Fig. 2.3-1 is from
d4 through d5, and on to d6 and d7, the primary output. The D5 latch “captures” the
value on d4 on the falling edge of €KThis point in the cycle, callezhpture pointis
the only point in the cycle when the value on d4 can be latched by D5. Once captured by
D5, the value can be propagated to the primary output by applying the appropriate
number of cycles (in this case one more cycle is needed). Sincar@KCK cannot be
1 at the same time, and €ks connected to the C input of the latch, then we can only
capture outputs of states in the C = 0 columns of Table 2.3-1a.

The restrictions on a D-latch in a double-rank shift register can be summarized as
follows:

- the D input can change only when the C input is 0.

- the D input can change only once per cycle.

- the output of the latch is "observed" only for states with C = 0.

The first restriction implies that the 6->7 and 7->6 transitions in Table 2.3-1a
cannot occur. This means that some of the triples cannot be used and we can reduce the
graphs of the state triples as in Fig. 2.3-3. The output restriction implies that the output

A B A

B
(a) Original Graph of State Triples (b) Reduced Graph of State Triples

Figure 2.3-3 Reduced Graph of State Triples for D-Latch in Shift Register.
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Table 2.3-1 Reduced Flow Table for Two-State D-Latch in Shift Register.

(a) Original Flow Table (b) Reduced Flow Table

CD Q CD Q

00 01 11 10 00 01 11 10
@.0| @.0| 7 |®.0l0 | @,0 @.0 7 6 |o
[3].1]| [5].2] [7].2| e |1 |[3]1] [5]1 6 |1

cannot be observed for the right two columns of the flow table. The reduced flow table is
shown in Table 2.3-1b. In the reduced table, the circles and squares indicate that the
output of the latch is O or 1 for the corresponding state. States with explicitly listed
outputs have observable outputs, and states with no explicit output listed have no
observable output.

The reduced flow table and state triples can be used to derive a checking
experiment. Graph A has one state triple 4,7,5, and thus requires the input sequence CD
=01, 11, 01. After this sequence, we can have D change to 0, since C = 0. However,
doing so would change the total state of the latch under test to state 3 before the output is
“captured” by D5. Therefore, the sequence must be directly followed by CD = 11. Thus
the sequence becomes CD =01, 11, 01, 11. To get to state 4 (the setup state of the triple)
requires the sequence CD = 10, 00, 01. Thus the complete sequence becomes CD = 10,
00, 01, 11, 01, 11. Similarly, the sequence for the triple in graph B is CD = 11, 01, 00,

10, 00, 10. The last input of the sequence of triple A is the first input of the sequence of
triple B, and vice versa. Therefore, the two sequences can be easily combined. An
example of a combined sequence is shown in Table 2.3-2. A * in the Q entry of this table
indicates outputs that are not captured, and thus never observed. Since the test in Table
2.3-2 contains both triples, and the D-latch is a single-input control state machine (a
single input determines whether an input is distinguishing input or a synchronizing input),
then, by Theorem 2, the distinguishing inputs are linked, and the sequence is a checking

Table 2.3-2 Test Sequence for Embedded D-Latch.

Pattern No. 1 2 3 4 5 6 7 8 9 10 11
C 1 0 0 1 0 1 0 0 1 0 1
D 0 0 1 1 1 1 1 0 0 0
Q * * 0 * 1 * * 1 * 0 *
State 2 4 7 5 3 6 2
Triple A B
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experiment.

One of the restrictions on the checking experiment for the D-latch in the scan
chain is that the D input can only change once every cycle, and we therefore have one
data value every cycle. The test in Table 2.3-2 has five data values 01100. The first four
values are the captured outputs, and the last value is needed to ensure capture of the
output of state 2 (pattern 10). Without the last 0, the value of D in pattern 10 could be 1,
putting the circuit in state 4 instead of state 2.

We will now show that any test sequence that contains all four transitions (0->1,
1->1, 1->0 and 0->0) applies a checking experiment to the internal latches of the shift
register. First, we show that a sequence with all four transitions must contain certain sub-
sequences. Then we show that the responses to these sub-sequences are sufficient to
construct the flow table.

For the first step, a test that contains all four transitions can either start with 00 or
11, end with 00 or 11, or not start or end with either one. Table 2.3-3 shows the five
possible cases. Consider the first case in Table 2.3-3. If a sequence starts with 00, then
the initial string of 0s must be followed by 1, implying that the sequence contains 001.
Since a sequence starts with 00, it cannot start with 11. The string of 1s for the 1->1
transition must be preceded by 0, implying that 011 is part of the sequence. The 10
sequence is needed for the 1->0 transition. Similar arguments can be made for cases 2, 3
and 4 in Table 2.3-3.

Table 2.3-3 Five Cases of Sequences With All Four Transitions.

Case Sequence Implied sub-sequences
1. Start with 00 00....... 001,011,210
2. Start with 11 11....... 110,100,01
3.EndwithOO | ... 00 110,100,01
4. Endwith11 | ... 11 001,011,10
5. Start and end with ...0...11...0... 110,011
neither ....1...00...1... 001,100

For the last case, since the string of 1s for the 1->1 transition is not at the
beginning or end of the sequence, the string must be preceded and followed by 0,
implying that the sequence contains 011 and 110. Similarly, since the string of Os for the
0->0 transition is not at the beginning or the end of the sequence, the sequence contains
100 and 001. Therefore, any sequence that has all four transitions must contain either:
100, 110, 01 or 011, 001, 10. These two sets of sub-sequences are complements of each
other (one can be derived from the other by complementing all the entries). We next
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show that the responses to the first set of sub-sequences (100, 110, 01) are sufficient to
construct the flow table. A similar analysis can be applied to the other set of sub-
sequences.

Tables 2.3-4 shows how the three sequences (100, 110 and 01) are applied to an
internal latch. In this table, x indicates an unknown value, either O or 1, and * indicates
that the output is not captured. From Table 2.3-4a, patterns 5a and 7a show two different
outputs for the input CD = 00, indicating different internal states. Pattern 6a causes a
change in internal state. Thus the flow table in Table 2.3-5a can be formed. In the flow
tables of Table 2.3-5, we show the internal states and outputs rather than the total states.
All stable states are shown in a circle. Now, pattern 4b and pattern 5¢ show two different
values for input CD = 01, indicating different internal states. This is shown in Table 2.3-
5b. Here, the output value is not known, since the connection between the states has not
yet been identified. According to the flow table, pattern 3c would set the machine to

Table 2.3-4 Test Sub-Sequences Applied to Embedded D-Latch.
a) Test Sub-Sequence 100

Pattern No. la 2a 3a 4a 5a 6a Ta 8a |9a ([10a
Sequence 1 0 0
C 0 0 1 0 0 1 0 1 0 0
D X 1 1 1 0 0 0 0 0 X
Q * X * * 1 * 0 * * 0

b) Test Sub-Sequence 110

Pattern No. 1b 2b 3b 4b 5b 6b 7b 8b 9b 100b

Sequence 1 1 0
C 0 0 1 0 1 0 0 1 0 0
D X 1 1 1 0 0 0 0 0 X
Q * X * 1 * * 0 * * 0

c) Test Sub-Sequence 01

Pattern No. 1c 2C 3c 4¢ 5¢c 6c 7c 8c 9c 10c

Sequence 0
C 0 0 1 0 0 1 0 0
D X 0 0 0 1 1 1 X
Q * X * * 0 * * 1
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internal state A even though no output is observed. Since patterns 4c and 5c do not cause
a change in state, the machine must be in state A after pattern 5c is applied, making the
A,01 entry of the flow table 0, which in turn makes the B,01 entry of the flow table 1

(see Table 2.3-5c¢). Now, pattern 8c must keep the machine in state B since the output is
1. Thus, after the application of pattern 7c the machine must also be in internal state B.
Since we have already established that the machine is in state A after pattern 5c, then
pattern 6¢ must cause a transition from state A to state B. The final flow table is shown

in Table 2.3-5d.

Table 2.3-5 Flow Table Fragments.

a) From Table 2.3-4 (a) b) Adding CD = 01 Column
CD CD
01 11 10 01 11 10

00 00
Al® o ® Al®o AW ®
Bl (® 1 Al Bl(®1 ®.7 A

c) Output When CD =01 d) Final Table
CD (@D)
11 10 01 11 10

00 01 00
Al®o (Ao ® Al®o (®Bo B ®
Bl ®.1 (B®i1 A Bl ®1 ®1 (B A

From the definition of the double rank shift register, data applied at the d1 input is
applied to all the D inputs of the latches if enough clock cycles are applied. Therefore,
the 01100 data sequence can be applied to all the latches of the shift register using the
waveform in Fig. 2.3-4. If we have a shift register of only two latches, then we need five
cycles for the five patterns to go through the shift register. For each additional pair of
latches in the shift register we need one extra cycle. Therefore we need 4 + N/2 cycles,
for a shift register of length N.

ST I o R B o R o B
S I e B I
a_lo T o o [ —"

1 2 3 4 5 4+N/2
Figure 2.3-4 Test for Shift Register Latches (N = Number of Latches).

37



2.4 Latch Based Scan Chains

Chapter 1 introduced scan chains as a method of simplifying test generation for
sequential circuits. In this section, we focus on generating tests for the latches in the two
latch-based architectures, MD-latch and LSSD. For each of the architectures, we
describe a method to generate test patterns that apply a checking experiment to the latches
in the circuit. In Section 2.4.1 we analyze the MD-latch architecture, and in Section 2.4.2
we analyze LSSD. In Chapter 4, we use the information developed here to describe an
algorithm to generate test patterns to test all the latches in a scan design.
2.4.1 MD-Latch Based Scan Architecture

The MD-latch based scan architecture is shown in Fig. 2.4.1-1. The scan chain
consists of MD-latches as well as D-latches. All the latches need to be tested. We first
show how the shift register test of Section 2.3 can be used to test the D-latches in the scan
chain. The same test cannot be used for the MD-latches because they have inputs from
the combinational logic. As with the shift register, the circuit imposes constraints on the
control of the inputs, and observation of the outputs of the MD-latches in the scan chain.
We first analyze the effect of these constraints on the state triples and flow table of the
MD-latch. We then show how test patterns can be generated for each of the state triples.

x[1n] z[1:m]
—~— Combinational Logic va
Dq[= Do[= Dg [=
1,2D 1,2D | 1,2D |
Sql ’ S| SDO
SDI 11120 |{1D 21120 |{1D Fé—----- s1120 |{1D
—lc1 |dc1 — 1 c1 —lG1 c1
c2 c2 c2
CKl [ { |_
CK2 l
T -y _

Figure 2.4.1-1 MD-Latch Based Scan Chain Architecture.

In the MD-latch architecture, when T is set to 1, the scan chain behaves as the
double-rank shift register in Section 2.3. For normal operation T is setto 0. The two
clocks, CK and CK, are two-phase clocks.

In Section 2.3, we showed that any sequence that has all four transitions
(0->0, 0->1, 1->1 and 1->0) would apply a checking experiment to all the D-latches in a
shift register. The same approach can be used here to test the D-latches in the scan chain.
T is set to 1, the sequence is applied to SDI, and the output is observed at SDO. With T
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set to 1, the MD-latches behave like D-latches, and the whole scan chain behaves as a
shift register.

The MD-latches have inputs from the combinational logic as well as from D-
latches. Therefore, there is no simple sequence as in the case of the shift register than can
apply a checking experiment to all the MD-latches in the scan chain. In this section, we
show how patterns can be generated for testing the MD-latches in the scan chain.

The S input of the MD-latch is the output of a D-latch. Therefore, the S input can
only change when CKis 1, which implies that CKis 0. From the MD-latch
perspective, this means that S can only change when its C input is 0. This means that
some of the triples cannot be used and we can reduce the graphs of the state triples as in
Fig. 2.4.1-2. The reduced flow table is shown in Table 2.4.1-1. In this table, the outputs
in the C = 1 columns are unobservable, since, as with the shift register, we can only
observe outputs of states with C = 0.

Since the MD-latch is a single-input controlling state machine, from Theorem 2, a
sequence that visits all state triples, and use a distinguishing state as a setup state for each
triple, is a checking experiment. Graphs of these triples are shown in Fig. 2.4.1-3.
Therefore, we need to find a test pattern for each triple in Fig. 2.4.1-3. A test pattern
consists of bits, each bit corresponding to a value of an MD-latch or a primary input. The

A D (2]
P‘—)@I—M.l—’m

) @ H
O—=>l—>7] @—=>a>] @ @—>[E>s]

Figure 2.4.1-2 Reduced State Triples for MD-Latch in Scan Chain.

Table 2.4.1-1 Reduced Flow Table for Two-State MD-Latch in Scan Chain.
DS
o0 01 11 10 OO O1 11 10 OO O1 11 10 OO 01 11 10
C=0 CcC=1
T=0 T=1 T=0 T=1 Q

2).004).0(6).0(8).0(10.012.014.0116.,0 (18 | (20 | 19| 21 |22 23 25 0

314 5/ 7].00 0] 111 13,1/15,117.1) 18 20 22 24| 1
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. .—>I—>-

Figure 2.4.1-3 Graphs of State Trlples with Dlstlngwshlng States as Setup
States.

test pattern should:

1- Put the MD-latch under test in the setup state of the state triple. This includes

the internal state of the latch under test, and its inputs.

2- Make the MD-latch under test visit the three states of the triple when a pulse is

applied to C.

The state triples can be divided into two groups: those that have T = 0 (ABCD)
and those that have T = 1 (EFGH). We first show how a test can be derived for a triple
with T = 1, then for T = 0. Consider triple G (12, 23, 13) with T = 1. The waveforms at
the inputs and output of the MD-latch under test are shown in Fig. 2.4.1-4. Dashed lines
in these and all waveforms show when state outputs are captured.

cky_ [ ] [ 1o Jid o 7] [ ]
CK; [ ] [ [ ]

]
S
e vy
| .
S Y N Y
]
]

O n O

]
I“

12! 23 13’
Figure 2.4.1-4 Waveforms for Triple G of MD-Latch Under Test.

Since Q is the output of the MD-latch under test, its value changes slightly after a
positive transition of CK. The S input is the output of a D-latch, and therefore its value
changes after a positive transition of £KThe Q waveform is the S waveform shifted by
half a cycle, since T = 1 for the entire waveform.

Fig. 2.4.1-5 shows part of the circuit that is involved in testing the latch under test
Lt. In this circuit, some of the MD-latches are paired with the D-latches following them
for ease of discussion. The latch pairs are numbered based on their order in the scan
chain. For example, the latch pair preceding the latch under tgst.isTlhe D input of
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the latch is the output of combinational logic witinputs. p of the inputs come from

other latches and the rest come from primary inputs. The inputs of the combinational
logic are X ,X2,...,Xn. If an input X is driven by a latch, the latch is calleg.L

X
Dxlesz

S s ||-|[s Xp+1 X
Lx1 Lx2 Lxp | |

Combinational Logic

D [=
D _s 142D 1D
S - 412D Cc1
0 Gl
. 2 120 975 Latch Pair c2
D 1,2D C1
S G1
Lt c2
Lt

Figure 2.4.1-5 Part of Circuit Involved in Testing L.

The first requirement of the test pattern is to put the MD-latch in the setup state of
the triple. In our example, since we require Q to be 0 in our setup state, the bit
corresponding to the latch under teg),(should be 0. Since we require a 1 on the S
input, the bit corresponding tq-b should also be setto 1. We also need to set the D

Xp+1.Xp+2.-.-.Xn should be selected such that the output of the combinational logic is O.
From the waveforms in Fig. 2.4.1-4, we see that the distinguishing state of the

triple also requires that D = 0, and S = 1 after the scan chain has shifted once. The circuit

in Fig. 2.4.1-5 is expanded slightly in Fig. 2.4.1-6 to include the logic that would affect L

after the scan chain has shifted once. In this figureg,i& the latch that precedes 1.

After the shift, the value in{2 is transferred to {.1, which as we mentioned earlier is

the Sinputto & Therefore, the bit corresponding toA.should also be setto 1. Also,

respectively Therefore, the bits corresponding wlLl,sz-l,---,pr-l and
Xp+1.Xp+2,---,Xn should be selected such the output of the combinational logic is O after
the shift. Formally, if the function of the combinational logic cone is

0 to satisfy setup state requirements, anqlt(LLle,...,pr-l,X p+1L.Xp+2..,Xn) = 0 to
satisfy distinguishing state requirements.
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S S S
Lxt-1 | Lx2 Lxp-1
X
b X1 [p R o 2P

S S ... Us xp+1 Xn
Lx1 _ Lx2 Lxp | |

Combinational Logic

D =
D —s 12D 1D
S - 1,2D C1
D = Gl
511 S 12D —1p Latch Pair c2
1 1,2D c1
D S G1
S Lt-1 c2
Lt-2 L'[

Figure 2.4.1-6 Part of Circuit Involved With Distinguishing State for Lt.

In Fig. 2.4.1-6, all the latches had only one role in the circuit. This was done only
to keep the explanation simple. It is possible, for example that the latch preceding the
latch under test is also one of the latches that drive the combinational logic (see Fig.
2.4.1-7). In that case, the input driving the combinational logic should be assumed to be
1 when trying to find a pattern to set D to 0. A test pattern that satisfies all the bit

D D
S S
Lx2-1 I-xp-l
X
D Xo D p

S —‘ S —‘ Xp+1 Xp
[be | e | [ ]

Combinational Logic
Cone

D =
D _s 1,2D |—1D
S 1,2D c1
Gl
- Latch Pair
1 < 120 |5 C2
D 1,2D C1
D S G1
S L1 c2
Lt-2 |_t

Figure 2.4.1-7 Circuit With Lt-1 Driving the Combinational Logic
of D.
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requirements for the setup and distinguishing states of a triple would make the latch visit
the three states of the triple consecutively when a pulse on C is applied. Since T =1 for
the entire test, the outputs of the setup and distinguishing states are captured in the scan
chain.

A similar approach can be used for triples with T = 0. The waveforms for triple E
(6, 19, 7) are shown in Fig. 2.4.1-8. The difference between these waveforms and the
ones of Fig. 2.4.1-4 is that T = 0 for one cycle. The approach used above for deriving the
test pattern bits for the setup state is exactly the same, because it only inyqgheeslL
the combinational logic driving D (see Fig. 2.4.1-5). The distinguishing state is reached

O n O

Xp

e | PR

Combinational Logié
Cone

12D L[
1,2D C1

S G1
Lt €2
Lt

Figure 2.4.1-9 Part of Circuit Involved With Distinguishing State of
Triple E for L t.
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after a cycle with T = 0. The circuit in Fig. 2.4.1-9 includes the logic that would affect L
after one cycle with T = 0. Here, instead @fJ.the value of S for the distinguishing

state is determined by the combinational logic cone H. Therefore, the bits corresponding
to the inputs of H should be selected to set the output of the combinational logic to 1.
Similarly, the bits corresponding to the inputs of combinational logic cong®K..,Kp

should be selected such that they supply a pattern to combinational logic cone J that
would set its output to 0. Formally, suppose that the function of combinational logic cone
Jis ). Thenwe need](fol-l,LxZ-l,...,pr-l,Xp+1,Xp+2,...,Xn) = 0 to satisfy the setup

state requirements, aru[fkl,sz,...,pr,Xp+1,Xp+2,...,Xn) =0 (whereg; is the

function of combinational logic cong Xto satisfy the distinguishing state requirements.

In the example of triple G (T = 1), we captured the output of both the setup and
the distinguishing state since we are always shifting values in the scan chain. However in
the example of triple E (T = 0), since T = 0 for a cycle, the captured output of the setup
state is lost. To capture the setup state, we repeat the same pattern but change the
waveform of T as in Fig. 2.4.1-10. We need to capture the output of this state because it
is not captured by a test of any other triple.

T L0 |
CKlJ_| [ 1 o [ ] [ ] [ ]

Figure 2.4.1-10 Waveforms for Capturing Output of Setup State of Triple E.

2.4.2 LSSD Architecture

The LSSD architecture is shown in Fig. 2.4.2-1. The scan chain consists of TP-
latches as well as D-latches. All latches need to be tested. As with the MD-latch
architecture, we show how the shift register test of Section 2.3 can be used to test the D-
latches in the scan chain. The same test cannot be used for the TP-latches because they
have inputs from the combinational logic. As with the shift register, the circuit imposes
constraints on the control of the inputs, and observation of the outputs of the TP-latches
in the scan chain. We first analyze the effect of these constraints on the state triples and
flow table of the TP-latch. We then show how test patterns can be generated for each of
the state triples.
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In the LSSD architecture, if CKis set to 0, TCK and CKcan be used to make
the scan chain behave as the double-rank shift register in Section 2.3. For normal
operation TCK is set to 0, and @kand CK are used. Only one of the three clocks,
CK1, CK2 and TCK, is 1 at any time.

In Section 2.3, we showed that any sequence that has all four transitions
(0->0, 0->1, 1->1 and 1->0) would apply a checking experiment to all the D-latches in a
shift register. The same approach can be used here to test the D-latches in the scan chain.
CK1 is set to 0, the sequence is applied to SDI with TCK angl &Kling in an non-
overlapping fashion, and the output is observed at SDO. In this mode, the TP-latches
behave like D-latches, and the whole scan chain behaves like a shift register.

x[1:n] z[1:m]
—7 Combinational Logic A
Pil,p W D2]1p Ds[1p <00
SDI__Silon Lpld—2{2p | ip RSN PR I
—Ic1 1C1 C1 —C1 C1 C1
- C2 1 C2 c2
ok T L
TCK '
CK
2 4

Figure 2.4.2-1 LSSD Scan Chain Architecture.

Just like the MD-latches in the previous section, the TP-latches have inputs from
the combinational logic as well as from D-latches. Therefore, there is no simple sequence
as in the case of the shift register that can apply a checking experiment to all the TP-
latches in the scan chain. Formally, the data inputs of a TP-latch ared». Since
we use 0 as the data input from the combinational logic, apcaBthe data input from
the preceding latch in the scan chain, we referit@®the D input, and2as the S input
of the latch in the following discussion. In the rest of this section, we derive a procedure,
similar to that of the MD-latches, for testing the TP-latches in the scan chain.

The S input of the TP-latch is the output of a D-latch. Therefore, the S input can
only change when CKis 1, which implies that CK(C1 of the latch) and TCK (£of
the latch) are 0. From the TP-latch perspective, this means that S can only change when
C1 =C2 =0. This means that some of the triples cannot be used and we can reduce the
graphs of the state triples as in Fig. 2.4.2-2. The reduced flow table is shown in Table
2.4.2-1. In this table, the outputs in the €1 and @ = 1 columns are unobservable,
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Figure 2.4.2-2 Reduced State Triples for TP-Latch in Scan Chain.

Table 2.4.2-1 Reduced Flow Table for Two-State TP-Latch in Scan Chain.

DS
60 01 11 10 OO O1 112 10 OO O1 11 10 OO O1 11 10
C2=0 =1
C1=0 =1 =0 =1 Q
(2),0(4),0(6),0(8),0(10 | (12 11| 13 15| 17 A
[3],1[ 5[ 7]1[ o] 20| 12 14 sl o0

since the D-latches capture values on the negative transitionpfa€kvhich point, TCK
=CKg =0.

As with the MD-latch architecture, we need to find a test pattern for each triple
that uses a distinguishing state as a setup state. The graphs for these triples are shown in
Fig. 2.4.2-3. Each bit in the test pattern corresponds to a value of an TP-latch or a
primary input. The test pattern should:
1- Put the TP-latch under test in the setup state of the state triple. This includes
the internal state of the latch under test, and its inputs.
2- Make the TP-latch under test visit the three states of the triple by applying a
pulse on @ (CK1) or & (TCK) depending on the triple.

A B C D

>®@—>6 ©—>z>{e]

E F G H
=>@—O [=>OB—=E
Figure 2.4.2-3 Graphs of State Triples with Distinguishing States as Setup
States.
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Figure 2.4.2-4 Waveforms for Triple F of TP-Latch Under Test.

X1 151X Xp

D
S s ..ls Xp+1 Xp
Lx1 Lx2 Lxp | |

Combinational Logic

D 1D 1D
_S |
0lp s | =°4?P c1
b [Or5 C1
D |1 S |2p o1 Latch Pair c2
S c1
Lt1 c2

Lt

Figure 2.4.2-5 Part of Circuit Involved in Testing L.

The state triples can be divided into two groups: those that have TCK changing
(ABCD) and those that have @Khanging (EFGH). We first show how a test can be
derived for a triple with TCK changing, then for €khanging. Consider triple F (4, 15,

5) with TCK changing. The waveforms at the inputs and output of the TP-latch under
test are shown in Fig. 2.4.2-4.

Fig. 2.4.2-5 shows part of the circuit that is involved in testing the latch under test
Lt. In the circuit, some of the TP-latches are paired with the D-latches following them for
ease of discussion. The latch pairs are numbered based on their order in the scan chain.
For example, the latch pair preceding the latch under tegtiis The D input of Lis the
output of combinational logic with inputs. p of the inputs come from other latches and

the rest come from primary inputs. The inputs of the combinational logic are
X1,X2,....Xn. If an input X is driven by a latch, the latch is calleg .L

47



The first requirement of the test pattern is to put the TP-latch under test in the
setup state of the triple. In our example, since we require Q to be 0 in our setup state, the
bit corresponding to the latch under teg),(should be 0. Since we require a 1 on the S
input, the bit corresponding tq-b should also be setto 1. We also need to set the D

Xp+1.Xp+2.---.Xn should be selected such that the output of the combinational logic is 0.
From the waveforms in Fig. 2.4.2-1 we see that the distinguishing state of the

triple also requires that D = 0, and S = 1 after the scan chain has shifted once. The circuit

in Fig. 2.4.2-5 is expanded slightly in Fig. 2.4.2-6 to include the logic that would affect L

after the scan chain has shifted once. In this figurg,i& the latch that precedes 1.

After the shift, the value in{2 is transferred to {.1, which as we mentioned earlier is

the Sinputto t. Therefore, the bit corresponding teA.should also be setto 1. Also,

respectively Therefore, the bits corresponding B@lLl,sz-l,---,pr-l andXp+1,Xp+2,
...Xn should be selected such that the output of the combinational logic is O after the
shift. Formally, if the function of the combinational logic cone is

0 to satisfy setup state requirements, an;jlt(j,LXZ-l,...,pr-l,X p+1.Xp+2--,Xn) = 0 to

satisfy distinguishing state requirements. Again, this is similar to the analysis for the
MD-latch in the previous section. As with the MD-latch architecture, the latches in Fig.
2.4.2-6 may not be independent. This may add constraints to the bit values of the pattern.

D D D
S S S
Lx1-1 Lx2-1 pr-l
X
D Xq D Xo D p

s S ... Us Xp+1 Xp
Lx1 Lx2 Lxp | |

Combinational Logic

D
D | _s1P b
s — 2D c1
0| p _ c1
s 1D [ ] 1D Latch Pair c2
D 2D
1 c1
D s C1
s Coq c2
Ly
t-2 Lt

Figure 2.4.2-6 Part of Circuit Involved With Distinguishing State for L.
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A similar approach can be used for triples withjGKanging. The waveforms
for triple B are shown in Fig. 2.4.2-7. The difference between these waveforms and the
ones of Fig. 2.4.2-4 is the pulse on Cikstead of TCK. The approach used above for
deriving the test pattern bits for the setup state is exactly the same, because it only
involves Lt-1 and the combinational logic driving D (see Fig. 2.4.2-5). The
distinguishing state is reached after a cycle with CKhe circuit in Fig. 2.4.2-8 includes
the logic that would affecttlafter a CK cycle. Here, instead oftlp, the value of S for
the distinguishing state is determined by the combinational logic cone H. Therefore, the
bits corresponding to the inputs of H should be selected to set the output of the

Tck [ ] [ ] 0 1 0 [ ] [ ]
CKq ofo]o

Y

5 12 4
Figure 2.4.2-7 Waveforms for Triple B of TP-Latch Under Test.
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1D
S |2p
C1
S C1
Lt C2
Lt

Figure 2.4.2-8 Part of Circuit Involved With Distinguishing State of
Triple B for L t.
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combinational logic to 1. Similarly, the bits corresponding to the inputs of combinational
logic cones K,K2,...,Kn should be selected such that they supply a pattern to
combinational logic cone J that would set its output to 0. Formally, suppose that the
function of combinational logic cone J g fThen we need]ﬁLxl-l,sz-l,---,pr-l,
Xp+1.Xp+2.---,Xn) = O to satisfy the setup state requirements, and
fJ(le,fKZ,...,pr,Xp+1,Xp+2,...,Xn) =0 (whereg; is the function of combinational

logic cone K) to satisfy the distinguishing state requirements.

In the example of triple F (TCK changing), we captured the output of both the
setup and the distinguishing state since we are always shifting values in the scan chain.
However in the example of triple B (Gkchanging), the captured output of the setup
state is lost. For the MD-latch we had to repeat the pattern with another waveform to
capture the output of the setup state, since the output of the setup state was not captured
by a test for any of the triples. However, in this case, state 5 is the distinguishing state of
triple F, so we do not need to repeat the pattern. In general, all the setup states of triples
with CK1 changing are setup or distinguishing states of triples with TCK changing, and
thus their outputs are always captured.

2.5 Summary

This chapter began with a theoretical analysis of checking experiments for two-
state latches, and minimum-length checking experiments for several latches were derived.
When latches are used in a circuit, the circuit imposes constraints on the control of the
inputs, and observation of the outputs. In Section 2.3, we showed that a simple test can
be used to apply checking experiments to all the latches in a shift register. This test can
also be used for the D-latches in scan chains. We also showed that it is not possible to
derive such a simple test for MD-latches and TP-latches in scan chains. Section 2.4 gave
a detailed theoretical analysis of the type of tests that are needed for these memory
elements, and how they can be generated. In Chapter 4, we show how the process of
generating patterns for MD-latches and TP-latches is automated.
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Chapter 3. Checking Experiments for Flip-Flops

Flip-flops are memory elements that do not have the transparency property of latches
(discussed in Chapter 2). Flip-flop outputs change only in response to a transition on a
control input or a change in an asynchronous input. In Section 3.1 checking experiments
for a D flip-flop, an MD flip-flop and a TP flip-flop are derived. As most circuits consist

of more than just a single flip-flop, we show what happens to a D flip-flop once it is used
in a shift register in Section 3.2. In that section, we show that a simple test will apply a
checking experiment to all the flip-flops in the shift register. In Section 3.3, we analyze
MD flip-flops and TP flip-flops used in scan chains. We show that there is no simple test
that can be applied because the data inputs of the flip-flops depend on the combinational
logic in the circuit, and present a technique to generate patterns to test the flip-flops in the
scan chain.

3.1 Checking Experiments for Flip-Flops

There are many types of flip-flops [McCluskey 86]. In this section we focus on
three that are commonly used in shift registers and in scan chain desiBniip-flop is a
sequential element, in which the data is propagated to the output on a positive transition of
the control input, otherwise it holds the stored value. Scan-paths require flip-flops with
two different data sources. These can be either Multiplexed-Data flip-flops or Two-Port
flip-flops. A Multiplexed-Data flip-flop (MD flip-flop)s a D flip-flop with multiplexed
data inputs; dwo-Port flip-flop (TP flip-flop)has two control inputs with the data source
determined by the transitioning control input [McCluskey 86].

Flip-flops have many flow tables, but there is only one primitive flow table for each
flip-flop type. Therefore we use primitive flow tables in our analysis. drimaitive flow
table, each row contains only one stable state. A checking experiment for a primitive flow
table will detect all defects that do not increase the number of states in any column. Each
cell in the flow table, #otal state corresponds to an assignment of values to the circuit
inputs and internal states. A total state isi@stablestateif it causes a change in internal
state of the machine. A total state stable statef the next internal state is the same as the
current internal state. In the flow table, a stable state is represented with a number in a
circle if its output is 0 and with a number in a square if its output is 1. The numbers of the
states start with 2 (0 and 1 are not used to avoid confusion with logic values). States that
cannot be reached (because of the single-input change restriction on fundamental mode
circuits or because some inputs are not allowed) are caitgubcified statesUnspecified
states are shown with “~" in the flow tables. Stable staietBesuccessoof stable state
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Si, andstable statej3s thepredecessoof stable statej$ there is an input that takes the
machine from Sto §. A sequenceisitsa total state when the sequence applies the input
of the total state while the machine is in the internal state of the total state. A total state is
identifiedby a sequence if the sequence provides enough information to reconstruct the
corresponding entry in the flow table. distinguishingsequencgives a different output
sequence for each state.trAnsition tourof a flow table is a sequence that applies all
transitions in the flow table (i.e., it visits all the unstable states). In the following sub-
sections, we show how to derive checking experiments for a D flip-flop, an MD flip-flop
and a TP flip-flop. Minimum-length checking experiments are derived for each.
3.11 D Flip-Flop

A D flip-flop is a sequential element, in which the data is propagated to the output
on any positive transition of the control input, otherwise it holds the stored value. The
primitive flow table for a D flip-flop is shown in Table 3.1.1-1. For a sequence to be a
checking experiment, it must identify all the stable states and all the unstable states.

Table 3.1.1-1 Primitive Flow Table & D Flip-Flop.
CD
00 01 11 10
0 4 - 8

[3]1 5 - 8
2 @0 7 E
3 [5].1 7 -

- 4 0 8

2 _ 6 (8).0
3 _ 7 ak

The primitive flow table in Table 3.1.1-1 has two stable states in each column, each
with different output values. Therefore, applying an input and observing the value at the
output is sufficient to identify which stable state the machine is in. No distinguishing
sequence is needed. Since each stable state is the successor of another stable state, a
sequence that visits all unstable states also visits all the stable states. In other words, a
transition tour of the primitive flow table, is a checking experiment. This is very different
from our analysis of the latches in Chapter 2. There, not all transitions were necessary
because we had a two state flow table.

© 00 N o 0o b~ W DN
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Theorem 1:A transition tour of its primitive flow table is a checking experiment
for a D Flip-Flop.

Proof. In a primitive flow table all transitions are needed for forming a
checking experiment. If a transition is left out, then the flow table entry
corresponding to the transition can be replaced by another state. There will
always be another state, because there are two stable total states in each
column. Since all states are successors of some other state, applying all
transitions must visit all the states. Visiting the stable total states is
sufficient to identify them as there are only two states per column, and they
have different output values.

Now that we established the conditions for a sequence to be a checking experiment,
we show how to derive a checking experiment. The transitions in the flow table can be
described graphically as shown in Fig. 3.1.1-1. In this digraphy(@phor directed
graph is a graph with directed edges) a nhode represents a stable state, and an edge
represents a transition from one stable state to another (an unstable state). Any sequence
that goes through all the edges is a checking experiment. Of course, the shortest sequence
would be one that goes through each edge only once. Graphs in which a transition tour
needs to visit each edge only once are calléer digraphs In an euler digraph each node
has as many incoming edges as it has outgoing edges [VW2$omh.ooking at Fig. 3.1.1-

1, we see that not all nodes satisfy this requirement, thus the graph is not an euler digraph.
There are 16 edges in the graph, so a sequence must have at least 16 transitions. State 9 is
the only predecessor for states 3 and 7, and state 7 is the only predecessor of state 9.
Therefore, the transitions from state 7 to state 9 will have to appear twice in a sequence. A
similar argument can be made for the transition from state 8 to state 6. This raises the
number of required transitions to 18. At the beginning of operation, the state of the flip-

flop is not known, and aynchronizing sequenceneeded to put the flip-flop in a known

state. There are two possible sequences for initialization: CD = 01, 11 ending in state 7 or

Figure 3.1.1-1 Transition Graph From Table 3.1.1-1.
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Table 3.1.1-2 Example of Minimum-Length (20) Checking
Experiment for D Flip-Flop.

TransitonNo. 1] 2 3 4 5 6 7 8 9 10 11 12 13 14|15/16 17| 18
C 0,11 001 00 10001 11 1O 1
D 11 0O 01 011 0
Q -/1/1 1 11 11 00 0 00 0 O0 0O 1
State | 4/5 7 9 3 5 7 5 3 8 2 4 2 8 |6 8 6 |4 7 9|7

Figure 3.1.1-2 Sequence of Transitions in Table 3.1.1-2.

CD =00, 10 ending in state 8. This raises the number of transitions to 19, and the number
of patterns to 20. One minimum-length checking experiment is shown in Table 3.1.1-2.
Figure 3.1.1-2 shows the transition graph annotated with the order of the sequence in Table
3.1.1-2.

3.1.2 MD Flip-Flop

A Multiplexed-Data flip-flop (MD flip-flop)s a D flip-flop with multiplexed data
inputs. The primitive flow table for an MD flip-flop is shown in Table 3.1.2-1. As in the
D flip-flop primitive flow table, this table has two states in each column, each with different
outputs, and each stable state is the successor of another stable state. Therefore, just as in
the case of the D flip-flop, a transition tour of the primitive flow table for an MD flip-flop is
a checking experiment.

Since a checking experiment must apply all transitions, a minimum-length checking
experiment must include each transition at least once. The number of transitions in
Table3.1.2-1 equals the number of total states multiplied by the number of inputs (32 x 4
= 128). To determine if the minimum length is 128, the transitions of Table 3.1.2-1 are
represented graphically in Fig. 3.1.2-1 through 3.1.2-3. These graphs are not disjoint
graphs, since some states appear in multiple graphs. They are drawn this way for
readability. They include all the transitions in Table 3.1.2-1. From Fig. 3.1.2-3, eight
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states (19,20,22,25,27,29,30,32) have one more outgoing edge than incoming edge.
From graph theory, each of these would require at least one more transition [Wilson 72].
This raises the minimum length to 136 transitions.
There are eight possible synchronizing sequences shown below:
CTSD = 0000, 1000 ending in state 18 CTSD = 0001, 1001 ending in state 21
CTSD = 0010, 1010 ending in state 23 CTSD = 0011, 1011 ending in state 24
CTSD = 0100, 1100 ending in state 26 CTSD = 0101, 1101 ending in state 28
CTSD =0110, 1110 ending in state 31 CTSD =0111, 1111 ending in state 33

Including the synchronizing sequence raises the minimum length to 137 transitions
(which implies 138 patterns). A minimum-length checking experiment is shown in Table
3.1.2-2. The details of deriving this checking experiment are in Appendix B.

Figure 3.1.2-1 Graphs of Transitions Within First Quadrant for MD Flip-
Flop.

<> (18
2 @

9 22
>

Figure 3.1.2-2 Graphs of Transitions Within Fourth Quadrant for MD Flip-
Flop.
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Table 3.1.2-1 Primitive Flow Table of MD-Flip-Flop.

00 01 11 10 OO0 01 11 18(5) 00 01 11 10 OO 01 11 10
C=0 C=1
T=0 T=1 T=0 T=1
(20 4| - | 8 10 - | - | |18 - | | - | -| | |-
1 5 | - 11| -| -| - 18 - - = = - - -
2 (%0 6| - | - | 12| - | - -|21| - | -| -] -| | -
1 7 | - | =] 13| —-| - =| 21 - - - = | - | -
-4 (0 8 - - 14 - | -] -] 28 - -] -] -] -
- 1 9| - | - 15| =| = =] 23 —-| - - - -
2| - | 6 o - | - | =16 -| | -] 24 = | = | = =
3| - 7191 - - - a7l - - =| 24 -| - - =
2| - - -|a00 12 - 16| - | - | -| - 26| - - -
3| - - | - 1 13| - | 17| -| - -] =-| 26 - - -
- 4 - - |10 (120 14 - - =] = =28 - -
- | 5| —| -] 11131 15 - = =] = =] 28 - -
-/ -1 86| - - 12/a40 16| - | - | - - | -] - 3| -
- - 7 =] =] 13181 17| - | -| -] - —-| —-| 3 -
-/ - - 8|10 - 14380 - | - | - - - | - | - | 33
- - - 9| 11 - 15171 - | - | - | - —| —| -] 33
2| - - -| - - - -|a80 20| - | 24 26| - - -
3| - - - - —-| —| -|191 22| - 25 27, -| -| -
-4 - - -] - -] -|18(200 22 -| - 28 - -
- 5| - - = = —| = 19241 23| - | - | 29| - -
- - 6| -] -1 -] -] -|- 2220 24 - - | 30| -
- -7 - - = = - - 21231 25 - | -] 31| -
- - - 8| -| - -] |18 - | 22240 - | - - 3
- - = 9| - - -] - 19 -] 232891 - | - | - | 33
-l - - -] - - - |18 -] -] - 2060 28 - 32
_ 0 1l = 1 Zl 19 - 4 271 29| — | 33
- - - -] -]l12 - | -| - 20 - | - | 26280 30 -
- - - = =] 13 - - =] 21 4 4 27291 31 -
-l - - -] -] -1 - |- -]22 - - 28300 32
- - = =] = =1 15 | -] - 23 - - 29311 33
- - - - -] - -] - - -] 2 26 - | 30320
I e Y T - A R B
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Figure 3.1.2-3 Graphs of Transitions Between Quadrants for MD Flip-Flop.

?

Experiment for MD Flip-Flop.
O[1[1/a|1|2fa|2]a[aja]1]aja]1][a/a]1][2/2|2][2/2|2]|1]2]2]0]O

Table 3.1.2-2 Example of Minimum-Length (138) Checking

0/0/0/0/1/1/1/1/0/0/0/1/0/0|1/0/0|0|0/1/1|1/1/1/0/0/0/ 0|0
0/0/0/1/1/0/0/110/0/00/00/0/1/1/1/1/1/1/0/0/0/ 10|01
0/0/1/1/1/1/0/0/0|0|1/1/1/0/0/ 0/0/1/0/0/1/0]/0/1|21/1|1]1]1

31 29 27 33]25|19 21

P
v

4 2123

3014 16 10124 (122812 14 6 4 2

A
J

o/o0/j0/0/0/0/0]0O]O/O|0O|0O|OJO|0O|O/0|0]/0|0/0|0|0]0|0|0]|0/O0

1{1/0/2/1/0/0/0|/0|1|0/0O|2/2/0|2|1|0/0/0|2/0|0(0|0|1/0]|0|O0
oo/o0/0/0/0j2j21/2/2f21|{2|1|2/1/21/1/1|0/0|0|0|2/0/0|0|0|0|O
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3.1.3 TP Flip-Flop

A Two-Port flip-flop (TP flip-flop)has two control inputs with the data source

determined by the transitioning control input; &d @ cannot be 1 at the same time.

The primitive flow table for a TP flip-flops is shown in Table 3.1.3-1. As in the D flip-

flop primitive flow table, this table has two states in each column, each with different
outputs, and each stable state is the successor of another stable state. Therefore, just as in
the case of the D flip-flop, a transition tour of the primitive flow table for a TP flip-flop is a
checking experiment.

Since a checking experiment must apply all transitions, a minimum-length checking
experiment must include each transition at least once. Normally the number of transitions
eqguals the number of total states multiplied by the number of inputs. However, in Table
3.1.3-1, the last four columns are unspecified states because of the restrictignathadt C
C2 cannot be 1 at the same time. Each of the first eight rows of the table has 4 transitions
giving 32 (8 x 4) transitions for the first 8 rows, while the rest of the rows have only 3
transitions per row, giving 48 (16 x 3) for the rest of the rows. Therefore, the flow table
has 80 (32 + 48) transitions. To determine if the minimum length is 80, the transitions of
Table 3.1.3-1 are represented graphically in Fig. 3.1.3-1 and 3.1.3-2. These graphs are
not disjoint graphs, since some states appear in multiple graphs. They are drawn this way
for readability. They do include all the transitions in Table 3.1.3-1. From Fig. 3.1.3-2,
eight states (11,12,14,16,19,20,22,25) have one more outgoing edge than incoming edge.
From graph theory, each of these would require at least one more transition [Wilson 72].
This raises the minimum length to 88 transitions.

There are eight possible synchronizing sequences shown below:

C1C2D1D2 = 0000, 1000 end in state 10 1GD1D2 = 0000, 0100 end in state 18
C1C2D1D2 = 0001, 1001 end in state 12 1G@D1D2 = 0001, 0101 end in state 21
C1C2D1D2 = 0010, 1010 end in state 17 1GD1D2 = 0010, 0110 end in state 24
C1C2D1D2 = 0011, 1011 end in state 15 1G@D1D2 = 0011, 0111 end in state 23

Including the synchronizing inputs raises the minimum length to 89 transitions
(which implies 90 patterns). A minimum-length checking experiment is shown in Table
3.1.3-2. The details of deriving this checking experiment are in Appendix B.
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Table 3.1.3-1 Primitive Flow Table of TP Flip-Flop.
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Figure 3.1.3-1 Graphs of Transitions Within Quadrants for TP Flip-Flop.
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Figure 3.1.3-2 Graphs of Transitions Between Quadrants for TP Flip-Flop.

Table 3.1.3-2 Example of Minimum-Length (90) Checking
Experiment for TP Flip-Flop.
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3.2 Shift Register

A shift register is a circuit that, once every cycle, shifts its stored conterugcled
is defined as the time between two rising edges of the clock. Fig. 3.2-1 shows an
implementation using D flip-flops. Every time a positive transition appears on the C input
of the circuit, the data on d1 is transferred to d2, the data on d2 is transferred to d3, etc. In
Section 3.1.1, we derived a checking experiment for a D flip-flop with the assumption that
the inputs can be changed at any time, as long as only one input changes at a time, and that
the output is always observable. Now consider the highlighted flip-flop, D3, in the shift
register of Fig. 3.2-1. Changing the value on d3 (the D input of the flip-flop) depends on
C changing value. Since the output is not a primary output, the output of the flip-flop
under test needs to be propagated to the primary output (d7). This can only be done by D4
“capturing” the output of D3, and then shifting the contents of D4 to the primary output. In
this section, we will first analyze the effect of these restrictions on the operation of the flip-
flop under test. From this analysis, we derive a new flow table for an embedded flip-flop
in a shift register.

D1 D2 D3 D4 D5 D6

din di d2 d3 d4 d5 dé d7
1D D 1D 1D 1D 1D

I>Cl l—}(:]_ l—} C1 17>C1 pC1 17>C1
: |

Figure 3.2-1 Shift Register Constructed from D Flip-Flops.

The simplest way to explain the constraints on the D flip-flop is to analyze the
inputs and outputs of the flip-flop during one cycle. Fig. 3.2-2 shows the four events that
occur in a sample cycle. In this sample cycle, we start with d2 =0,d3 =1,and d4 = 1. At
the end of the cycle, by the definition of the shift register, d3 should be 0, and d4 should be
1. Att, C goes from O to 1. This causes the d3 input to change to O at,theeduse d2
isOaty. Atts, C goes back to 0, and atitgoes back to 1, starting the next cycle. At
that point, 4, D4 “captures” the 1 on d4. This point in the cycle, callecdpture point is
the only point in the cycle when the value on d4 can be “captured” by D4. The captured
value can be observed at the shift register primary output by applying two more clock
cycles. Within the cycle, d3 changed only oncexfaind it changed only when C = 1.
Thus, one restriction on the operation of the flip-flop is that the D input can only change
when C =1, and it can change at most once. Since D4 “captures” the output of D3 when C
is changing (t4), it may seem ambiguous as to whether D4 captured the output of state 3 or
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t1to t3 ty capture point

Figure 3.2-2 Sequence of Operations in Cycle.

state 8. Looking at the waveforms in Fig. 3.2-2, since the captured value is 1, we captured
the output of state 3. In general, we can only capture the outputs of states when C = 0.
This analysis implies three constraints on the operation of the D flip-flop in the shift register:

- the D input cannot change when C = 0.

- the D input can change only once when C = 1.

- the Output of the flip-flop is “observed” only for states with C = 0.

We can use these constraints to remove outputs that cannot be observed and
impossible transitions from the flow table (Table 3.2-1). The reduced primitive flow table
is shown in Table 3.2-2. Fig. 3.2-3 shows the transition diagram of this reduced flow
table. In this figure, stable states that have observable outputs are shaded. Thick edges are
used to indicate distinguishing sequences.

Table 3.2-1 Marked-Up Primitive Flow Table fa D Flip-Flop in a
Shift Register.

CD
00 01 11 10
@0 A - 8
,1 X - 8 >< D cannot change when C =0
S 0 7 -
>5< 1 7 - —I— D changes only once when C =1

o s EO

®. o
, N 9 "\ Outputs not observed when C = 1
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I
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Table 3.2-2 Reduced Primitive Flow Table fo D Flip-Flop in a Shift
Register.

CD
01 11 10

00
@0 - | -

— 0

© 00O N O 0 M WDN
|
[«]
-

Figure 3.2-3 Transition Graph for Internal Flip-Flop (Table 3.2-2) Showing
Distinguishing Sequences.

Now that we have a new flow table we need to derive a checking experiment for it.
In general, since every stable state is the successor of at least one unstable state, we need to
visit each unstable state (edge in the graph) and follow it with a distinguishing sequence to
identify the stable successor state. In the original flow table, each column had two stable
states with different outputs, and thus the distinguishing sequence was a null sequence (no
extra inputs need to be applied). Visiting all the transitions once was sufficient for a
checking experiment.

However, in this case, the states in the C = 1 columns do not have any observable
outputs. For these states, the distinguishing sequence is one input that takes the machine to
a state with C = 0, where the output can be observed. For example, state 8 has no
observable output, so with an input of CD = 10 we cannot tell if the machine is in state 8 or
state 9. Following state 8 with state 2 (by applying CD = 00) will identify state 8. If state
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8 is followed by state 6 (by applying CD = 11) then it is not identified because the output is
not observed. Thus, any path that traverses all edges, and has each edge into node 8 (7)
followed by node 2 (5) corresponds to a checking experiment. This implies that the
following sub-sequences are needed in any checking experiment: 2->8->2, 8->6->4, 4->7-
>5, 5->7->5, 7->9->3 and 3->8->2. These sub-sequences are combined into the single
sequence shown in Table 3.2-3. In this table, the corresponding inputs and outputs are
also included. A * indicates that the output cannot be observed.

Table 3.2-3 Example of Checking Experiment fio D Flip-Flop in
Shift Register.

TransitonNo. 1] 2/ 3 4 5 6 7 8 9 10 11 12 13 |14 (15
C 0,1 0,120 11 0 13 012 01 1 0109
D 0 0 0 1 11 1 1 1 0 0 0 0
Q * * O * 0 * * O * 1 * 1 * * 1 * O

State|2/3) 8 | 28|28, 6 /4|7 5|7, 5|7, 9]/3|8]|2

Saxena [93], used a data transition tour test based on a pulse mode view of the D
flip-flop. Such a test guarantees that all four data transitions (1->1, 1->0, 0->0 and 0->1)
occur. One example of such a test is shown in Table 3.2-4. This table also shows the
response of the circuit with the flow table in Table 3.2-5. Since the same input produces
the same output when applied to the two flow tables, the sequence is not a checking
experiment. The test fails to be a checking experiment because the unstable transition from
state 2 to state 8 is never followed by a distinguishing sequence.

Table 3.2-4 Transition Tour Responses fnm D Flip-Flop and Table

3.2-5.
TransitonNo.] 1 20 3 4 5 6 7 8 9 10
C 0 0O/ 1] 1, 0/ 1 00 4 1 0 1 C
D 1 11/ 0] O 0 O 1 1 1
From Table 3.2-2 OQutput | -| *| 1| *| *| 1 * 0 |* |* |0 * |1
State | - 7/ 5 7 9 3 8 2 8 6 4 7 b
From Table 3.2-% Output | -| *| 1| *| * |1 | * |0 |*|* |0 |* |1
State | -| 7.5 7 9 3 8 2 9 6 4 7 b
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Table 3.2-5 Flow Table That Gives Same Response as Data
Transition Tour to Flip-Flop.

CD
01 11 10

00
@.0 - - 9

2
3 [3]1 - - 8
4 - (@.0 7 -
5 - [5].1 7 -
6 - 4 (8 9
7 - 5 9
8 2 = 6
9 3 - 6 [9]

The restrictions imposed by the shift register apply to all the internal flip-flops but
not the first and last flip-flops in the shift register. For the first flip-flop, there are no
constraints on how the input is applied, since the inputs are primary inputs to the circuit.
For the last flip-flop, the output is always observed since it is a primary output. In the rest
of this section, we look at what effect these reduced constraints have on the checking
experiments.

For the last flip-flop in the shift register, the output is always observed, but the
other two constraints still hold. The primitive flow table of the last flip-flop is shown in
Table 3.2-6. The only difference between this table and the flow table of an internal flip-
flop (Table 3.2-2) is that the C = 1 column has observable outputs. This implies that any
sequence that is a checking experiment for an internal flip-flop is also a checking
experiment for the last flip-flop. There are sequences that are checking experiments for the
last flip-flop that are not checking experiments for the internal flip-flops, but since testing
the internal flip-flops applies the same checking experiment to the last flip-flop, we need
not generate such a test.
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Table 3.2-6 Primitive Flow Table for Lags D Flip-Flop in a Shift
Register.

CD
01 11 10

00
@.0 - - 8
[3]1 - - 8

_ 0 7 _

_ ,1 7 _

— 4 0 —

5 9
2 - 6 (8).0
3 - - [9]1

For the first flip-flop in the shift register, D and C are both primary inputs.

Therefore, there are no constraints on when C and D change, as long as they do not change
simultaneously. The output of the first flip-flop is captured by the second flip-flop when C
changes from 0 to 1. Therefore, the output when C = 0 can only be observed by changing
C to 1. The primitive flow table for the first flip-flop is shown in Table 3.2-7. The

difference between the flow table of the first flip-flop (Table 3.2-7) and the internal flip-

flop (Table 3.2-2) is that the first flip-flop has transitions than are not available to the

internal flip-flop. The outputs are the same for both. We can identify the common

transitions using the same sequence we derived for the internal flip-flop. Therefore, we

will focus our attention on identifying the transitions of the first flip-flop that are not

available for the internal flip-flop.

Since the second flip-flop captures the output of the first flip-flop when C changes
from O to 1, we will only observe the output of a state if it has C = 0 and its successor state
has C = 1. The transition between the two states is callédetédying transition For
example, if state 3 is followed by state 8, we will capture the output of state 3, and the
transition from state 3 to state 8 is an identifying transition. If state 3 if followed by state 5,
then the output of state 3 is not captured. This is illustrated in the waveforms of Fig. 3.2-4.

© 00 N oo o~ wN
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Table 3.2-7 Primitive Flow Table of Firda D Flip-Flop in Shift

Register.
CD
00 01 11 10
2 @.0 4 - 8
3 [3]1 5 - 8
4 2 (@.0 7 -
5 3 [5].1 7 -
6 - 4 (8 8
7 - 5 9
8 2 - 6
9 3 - 7 @
C C
din din
d2 L | a2
3 capture 8 3 5 capture 8
(a) State 3 Output Captured (b) State 3 Output Not Captured

Figure 3.2-4 Waveforms Illustrating Capture of Output of First D Flip-Flop.

The identifying transitions are shown in the transition graph, Fig. 3.2-5a, with
thick arrows. There are two main differences between this transition graph and that of the
internal flip-flops, Fig. 3.2-5b. First, in Fig. 3.2-5b there is only one edge out of the C =
0 states, and the successor states have C = 1. Therefore, all transitions out of the C =0
states in Fig. 3.2-5b are identifying transitions. For the transition graph of Fig. 3.2-5a we
need to ensure that every edge into 2,3 (4,5) is followed by node 8 (7). The second
difference between Fig 3.2-5a and Fig. 3.2-5b is that Fig. 3.2-5a contains transitions that
do not exist in Fig. 3.2-5b. Our main concern is identifying the transitions i8.Ri®a
that are not in Fig. 3.2-5b. In Fig. 3.2-5a, these transitions are shown with a dashed edge.
These are divided into two groups: 3->5, 5->3, 2->4, 4->2; and 9->7, 6->8.

67



Figure 3.2-5b Transition Graph for the Internal D Flip-Flop of Shift
Register.

The first group of transitions (3->5, 5->3, 2->4, 4->2) end in states that are
followed by identifying transitions. The final states of these transitions can be identified by
following them with the appropriate identifying transition. For example, consider the 3->5
transition. This transition ends in state 5, and should thus be followed by the identifying
transition 5->7. Of course, we must also identify the starting state of the transitions (state
Si is thestarting stateof transition $-> §). Now, since all identifying transitions end in
state 7 or state 8, we need to show how to get to the starting state from one of these two
states. In our example, 3->5, there are two ways to get to state 3 from state 7:7->9->3 and
7->5->3. One of the sub-sequences that was used for the internal latch (and we will retain
for the first latch) was 7->9->3->8. If we apply the first two inputs that correspond to this
sequence, we know that we will be in state 3, without having to look at the output. Thus,
the sub-sequence 7->9->3->5->7, will identify the 3->5 transition. A similar analysis can
be applied for identifying the other three transitions. A checking experiment requires the
following sub-sequences: 7->9->3->5->7, 8->6->4->2->8, 7->5->3->8, 8->2->4->7.

The second group of transitions (9->7 and 6->8) are not immediately followed by
identifying transitions. Consider the 9->7 transition. Since there is no identifying
transition out of state 7, we follow this transition with state 5 giving us 9->7->5.

Following state 7 with state 5, will set the machine up for the 5->7 identifying transition.
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Since the only predecessor of state 9 is state 7, we can extend the sequence to 7->9->7->5.
Adding the identifying transition to this sequence gives 7->9->7->5->7. In this whole
sequence, the only observed output is that of state 5. One of the sub-sequences that was
used for the internal latch (and we will retain for the first latch) was 7->9->3->8. If we

apply the first input that corresponds to this sequence, we know that we will be in state 9,
without having to look at the output. The internal latch sub-sequences also included 5->7-
>5. This implies that state 7 is the only predecessor of state 5 with CD = 11. Therefore, if
we apply CD = 11 followed by CD = 10 and observe a 1 (identifying state 5), then we

know that the previous state was state 7. Since all the states in the sub-sequence (7->9->7-
>5->7) are identified, the 9->7 transition is identified. Similarly, the sub-sequence 8->6-
>8->2->8 would identify the 6->8 transition. In summary, a checking experiment requires
the following sub-sequences: 7->9->7->5->7 and 8->6->8->2->8.

The sub-sequences required to identify the transitions of both groups are combined
with the sub-sequences needed for the internal latch to form a checking experiment in Table
3.2-8. Of course, in some systems, even though C and din are primary inputs, the
constraints discussed for the internal flip-flops may still apply to the first flip-flop. In such
cases, the checking experiment of Table 3.2-3 can be used.

Table 3.2-8 Example of Checking Experiment for the Firs D Flip-Flop
in Shift Register.

Transition No.1 | 2/ 3| 4/ 5| 6/ 7/ 8 9 10 11 12 13 14 15 16 17 [8
C 0/1 0/ 1 011 0121 01 01 101 1
D 0 0 0 1 1 1 1 1 0 0 O 0
Q x| x ol*lol* * 0 |* |1 * |1 * * q * o0 * * =
State | 2/3/ 8/ 2, 8, 2/ 8/ 6 4 7 5 7 5 7 9 3 8 2 B8 6 B

19/ 200 21 22 23 24 25 26 27 28 29 30 31 |32 133 34 |35|36 37| 38
C |01 0 0O 11 0 0 1 11 041 0101
D |0 1, 0 o 1 0O 0 11 0 1 1 0
Q |0 *|*|*x |0 | * *x 0 |* * *x @ x x x 1 % % 1 %
State 2 8 6 4 2 8 2 4 7v 9 3 b 7 9 7 |5 1|7 |53 1|8

3.2.1 Primary Input/Output View

The analysis so far has been from the point of view of the individual D flip-flop.
By picking an arbitrary flip-flip in the middle of the scan chain, the results obtained apply
to any flip-flop within the scan chain. We now look at what these results imply at the
primary inputs and output of the whole shift register. At that level, the data input is applied
once per cycle. The waveforms of the checking experiment of Table 3.2-3 are shown in
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Fig. 3.2.1-1. In this figure, the data values at the output of the flip-flop under test are
marked on the rising edge of the clock. These are the data values that need to be applied to
the din input of the shift register. One input is applied every cycle. Thus, the data
sequence is din = 0001110.

c {L—I_—I_—I_—I_—I_—I_—I_
o] o] of| 1| 1| 1]]| o

Q#000|1 1 1|_0

Figure 3.2.1-1 Waveforms of Checking Experiment in Table 3.2-3 for Flip-
Flop in Shift Register Showing Data Values.

From the definition of the shift register, data applied at the din input is applied to all
the D inputs of the flip-flops if enough clock cycles are applied. Therefore, the checking
experiment data sequence, 0001110, can be applied to all flip-flops using the waveforms in
Fig. 3.2.1-2. If we have a shift register with only one flip-flop, then we need seven cycles
for the seven patterns to go through the shift register. For each additional flip-flop in the
shift register we need one extra cycle. Therefore , we need N+6 cycles for a shift register
of length N.

The waveform in Fig. 3.2.1-2 does not address the extra patterns we needed for the
first flip-flop. In some designs, constraints may even exist on the primary inputs. For
example, din may only be allowed to change when C is high. In that case, the same
waveforms of Fig. 3.2.1-2 should be used. If there are no constraints on C and din, we

din

Figure 3.2.1-2 Test for Shift Register Flip-Flops (N = Number of Flip-
Flops).

din

Figure 3.2.1-3 Test for Shift Register Flip-Flops With No Constraints
on C and din.
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need to add extra patterns to apply a checking experiment to the first flip-flop. This can be
done using the waveforms in Fig. 3.2.1-3. Here, din changes multiple times in a cycle and
changes at different times in the cycle, making it impossible to express the test as a cycle-
based data sequence. An additional 6 cycles are needed for this test.
3.2.2 Reduced Flow Table for Embedded Flip-Flops

Since we have a new flow table for the flip-flip embedded in a shift register, it is
interesting to see what the table can be reduced to. We know that, in general, a D flip-flop
requires at least four states [McCluskey 86]. However, with the restricted flow table, we
can derive a flip-flop with only three states. From the distinguishablity array in Fig. 3.2.2-
1 (see [McCluskey 86] for definitions and procedures) the maximal compatibility classes
are [6,8,2] [9,7,5] [3,4] [6,9] [4,9] [3,5] [3,6] [2,4] [2,5]. The first three classes include
all the states in the primitive flow table. The resulting flow table is shown in Table 3.2.2-
1. Unfortunately, there is no three state implementation that is more efficient than an
ordinary four-state implementation.

3 X
* *
4
5 * * ><
6 * * éé }é
*
7 B9 | e | 4% 4%
* *
8 23 | B 84 6-78-9
* * * *
o | 28 | 39 243
2 3 4 5 6 7 8
Figure 3.2.2-1 Distinguishablity Array for D Flip-Flop Restricted Flow
Table.

Table 3.2.2-1 Reduced Flow Table for Shift RegisteD Flip-Flop.
CD

00 11

68218 (@),0 c @.0 (@.0

[9,7,5] b c [b].1 [b],1 [b].1
B4c (0.0 [c].1 b
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3.3 Flip-Flop Based Scan Chains

Chapter 1 introduced scan chains as a method of simplifying the test generation
process for sequential circuits. In this section, we focus on generating tests for the flip-
flops in the two flip-flop-based architectures, MD flip-flop architecture and TP flip-flop
architecture. For each of the architectures, we describe a method to generate test patterns
that apply a checking experiment to the flip-flops in the design. In Section 3.3.1 we
analyze the MD flip-flop architecture, and in Section 3.3.2 we analyze the TP flip-flop
architecture. In Chapter 4, we use the information developed here to describe an algorithm
to generate test patterns to test the flip-flops in a scan design.
3.3.1 MD Flip-Flop Scan Chain

In Section 3.1.2, we described how a checking experiment can be derived for an
MD flip-flop, with the assumptions that the inputs can be changed at any time, as long as
only one input changes at a time, and that the output is always observable. When an MD
flip-flop is used as part of a scan chain (see Fig. 3.3.1-1), the S input of the MD flip-flop is
not directly controllable from the primary inputs. The S input of the MD flip-flop is the
output of another flip-flop, and the outputs of flip-flops change only when CK changes to
1. Therefore the S input can only change wher=GK Since flip-flops are edge-
triggered devices, the output of a flip-flop will change only once every cycle (A cycle is the
time between successive positive transitions of CK). Therefore, the S input can change
only once every cycle. The D input has similar restrictions to S if all the inputs of the
combinational logic driving it are flip-flop outputs. If some of the inputs are primary
inputs, then it may be possible to change the value on D without a positive transition on
CK. The T and CK inputs can change at any time since they are primary inputs.

x[1n] - - z[1:m]
Combinational Logic
7; a
D D D
1 == 2 |= s
spi_ 5p |+%P T 5, | 12D T 5. 12D w SDO
1,2D > 1,2D o—---- 1,2D o
G1 Gl G1
> C2 D C2 > C2
e || L o
T_o ~———— - —

Figure 3.3.1-1 MD Flip-Flop Based Scan Chain.
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The output of the flip-flop under test is captured by the next flip-flop in the scan
chainwhen T =1. When T = 0, the output of the flip-flop under test can be captured by
one of the other flip-flops in the design if a path is sensitized from the output of the flip-
flop under test to the D input of another flip-flop. Capturing the outputs is discussed in
more detail later in this section. In both cases, the output is captured on a positive
transition of CK. The captured output corresponds to the state with CK = 0, since the
"capturing flip-flop” captures the output of the flip-flop under test before the clock has a
chance to change the state of the flip-flop under test (assuming hold times are honored).

The restrictions on the MD flip-flop in the scan chain can be summarized as follows:

- the S input can only change when CK = 1.

- the S input can change only once per cycle.

- the output of the flip-flop is observable only for states with CK = 0.

- the output is captured on a positive transition of CK.

- the T input can change at any time since it is controlled from the primary input.

These restrictions make some of the total states unreachable. Table 3.3.1-1 shows
the primitive flow table with unreachable states covered with X. Outputs that cannot be
observed are covered with \. The reduced primitive flow table is shown in Table 3.3.1-2.
If an MD flip-flop is replaced by a device that performs the operation described by this flow
table, the circuit will still operate correctly. The transition diagrams for the reduced flow
table are shown in Fig. 3.3.1-2 through 3.3.1-4.

Figure 3.3.1-2 Graphs of Transitions Within First Quadrant for Scan Chain
MD Flip-Flop.

73



© 00 N O O~ WN

W W W W N NN DNDNDNDNDNDNMNDNMNDNEPLPEEPPREPRPEPRP PP PP PR
W N P O O 0N O 0o A W NP OO 0N O O A W DN P O

74

Table 3.3.1-1 Marked-Up Primitive Flow Table of MD Flip-Flop in
Scan Chain.

SD
00 01 11 10 OO O1 11 10 OO O1 11 10 OO 01 11 10
C=0 c=1
T=0 T=1 T=0 T=1
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Table 3.3.1-2 Reduced Primitive Flow Table of MD Flip-Flop in
Scan Chain.
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Figure 3.3.1-3 Graphs of Transitions Within Fourth Quadrant for Scan
Chain MD Flip-Flop.

Figure 3.3.1-4 Graphs of Transitions Between Quadrants for Scan Chain
MD Flip-Flop.

Now that we have a new flow table, we need to derive a checking experiment for it.
In general, we need to visit each unstable state (edge in the graph) and follow it with a
distinguishing sequence. In the original flow table of the MD flip-flop (see Table 3.1.2-1),
each column had two stable states with different outputs, and thus the distinguishing
sequence was a null sequence (no extra inputs need to be applied). Visiting all the
transitions once was sufficient for a checking experiment.

However, in the case of Table 3.3.1-1 the outputs of states in the C = 1 columns
cannot be observed. For these states, the distinguishing sequence is one input that takes
the flip-flop to a state with C = 0, where the output can be observed. For example, state 18
has no observable output, so with an input of CTSD = 1000, we cannot tell if the flip-flop
is in state 18 or state 19. Following state 18 with state 2 (by applying CTSD = 0000) will
identify state 18.

To capture the output of state 2, the next transition should be CK changing back to
1 with T remaining 0. Such a transition, which will cause the capture of the output of the
flip-flop, is called acapturing transition. Thus, every transition must be followed by a
distinguishing sequence, and the distinguishing sequence should be followed by a
capturing transition. The capturing transition is not part of the distinguishing sequence,
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since we cannot observe the output after applying the capturing transition. In our example,
after the capturing transition the flip-flop under test will be in state 18, which cannot be
observed.

The unstable states are categorized into different groups, based on the kind of
transitions that the unstable state makes in the flow table. These groups are selected to
simplify the analysis for generating patterns for them, as we will show later in this section.
For each of the groups, we select a member, and determine the state sub-sequence required
to identify it. Other members of the group will require similar sub-sequences. The result
of this analysis is a set of sub-sequences of states. A test that makes an MD flip-flop visit
all the states of each of these state sub-sequences in the order of the sub-sequence, is a
checking experiment for the MD flip-flop. The sub-sequences need not be connected to
each other to form one long sequence. As we will show later in this section, for each sub-
sequence we can find a corresponding test pattern. The test pattern can be scanned in, and
T and CK changed appropriately to make the MD flip-flop visit the sub-sequence. The
result can then be scanned out. These patterns are a checking experiment for the MD flip-
flop under test because they make the flip-flop visit all the states of each required state sub-
sequences, in the order of the sub-sequences. The unstable state groups are:

Group A: Unstable states corresponding to transitions between quadrants
Example: Unstable states corresponding to: 2-18, 3-18, 18-2
Required sub-sequencesi-2-18 for 2-18
3-18-2-18 for 3-18

Since the 18-2 transition ends in distinguishing state 2, and state 2 is followed
by a capturing transition, the unstable state corresponding to 18-2 is identified.
Thus it can be identified by either1B-2-18 or 318-2-18. The 2-18 and 3-18
transitions are followed by distinguishing sequence 18-2 and that is followed by
the capturing transition 2-18, thus the unstable states corresponding to 2-18 and
3-18 transitions are identified. Since we identified 2-18 and 3-18, we know
from the observed outputs, that applying CTSD = 0000, 1000 will always put
the flip-flop in state 18. This information is used to identify the predecessor
states of many transitions in the other groups.

Group B: Unstable states corresponding to first quadrant transitions on T
Example: Unstable states corresponding to: 12-4
Required sub-sequence: 28-1-2-1
From identifying the unstable states in Group A, we know that applying CTSD
= 0101, 1101, 0101 would put the flip-flop in state 12. State 4 is identified
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because it is followed by a capturing transition. Since we know the starting
state is 12, and the final state is 4, we have identified the unstable state
corresponding to the 12-4 transition.

Group C: Unstable states corresponding to fourth quadrant transitions on T

(except those in E1 and E2)

Example: Unstable states corresponding to: 18-26

Required sub-sequence: 18-262®

From identifying the unstable states in Group A, we know that applying CTSD
= 0000, 1000 would put the flip-flop in state 18. State 26 cannot be followed
by a capturing transition. Therefore it must be followed by distinguishing state
10. This needs to be followed by the capturing transition 10-26. Since we
know the starting state is 18, and the final state is 26, we have identified the 18-
26 transition.

Group D1: Unstable states corresponding to fourth quadrant transition on D

Example: Unstable states corresponding to: 21-19

Required sub-sequence: 21-19-3

From identifying the unstable states in group A, we know that applying CTSD
= 0001, 1001 would put the flip-flop in state 21. The unstable state
corresponding to the 19-3 transition is identified in group A, so we know we
were in state 19 before state 3. Since we know the starting state is 21 and the
final state is 19, we have identified the 21-19 transition.

Group D2: Unstable states corresponding to fourth quadrant transition on S

Example: Unstable states corresponding to: 21-23

Required sub-sequence: 21-223

From identifying the unstable states in group A, we know that applying CTSD
= 0001, 1001 would put the flip-flop in state 21. The unstable state
corresponding to the 23-7 transition is identified in group A, so we know we
were in state 23 before state 7. Since we know the starting state is 21 and the
final state is 23, we have identified the 21-23 transition.

Group E1: Some states in the fourth quadrant cannot be directly reached from
the first quadrant. They can only be reached by changing the D input
while in another stable state in the fourth quadrant. In this case we need
an extra transition while in the fourth quadrant to apply the T transitions.
Example: Unstable states corresponding to: 19-27



Required sub-sequence: 21-19-27281
The unstable state corresponding to the 21-19 falls into group D1, so we know
we are in state 19 after applying CTSD = 0001, 1001, 1000. The unstable state
corresponding to the 27-11 transition falls into group A, so we know we were
in state 27 before state 11. We identify state 6 using the capturing transition 6-
23. Since we know the starting state is 19 and the final state is 27, we have
identified the 19-27 transition.

Group E2: Some states in the fourth quadrant cannot be directly reached from
the first quadrant. They can only be reached by changing the S input
while in another stable state in the fourth quadrant. In this case we need
an extra transition while in the fourth quadrant to apply the T transitions.
Example: Unstable states corresponding to: 30-22

Required sub-sequence: 28-30-22%

The unstable state corresponding to the 28-30 falls into group D1, so we know

we are in state 30 after applying CTSD = 0101, 1101, 1111. The unstable state

corresponding to the 22-6 transition falls into group A, so we know we were in

state 22 before state 6. We identify state 6 using the capturing transition 6-23.

Since we know the starting state is 30 and the final state is 22, we have

identified the 30-22 transition.

Group F: Unstable states corresponding to first quadrant transitions on D

Example: Unstable states corresponding to: 2-4

Required sub-sequence: 18-24

The unstable state corresponding to the 18-2 transition falls into group A (and
we thus have a sub-sequence to identify the unstable state), so we know that we
are in state 2 after applying CTSD = 0000, 1000, 0000. We identify state 4 by
the capturing transition 4-21. Since we know the starting state is 2, and the
final state is 4, we have identified the 2-4 transition.

Table 3.3.1-3 shows all the required state sub-sequences. Each sub-sequence in
Table 3.3.1-3 requires the initialization of the flip-flop under test to the first state of the
sub-sequence, followed by a sequence of inputs that will visit the rest of the states of the
sub-sequence. The flip-flop can be initialized by scanning in appropriate values for the first
state in the sub-sequence, and the input sequence can be applied by changing the values on
CKand T. The initialization and the input sequence can be best described by waveforms.
The waveforms for all the groups are shown in Fig. 3.3.1-5. All waveforms start with T =
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1 and end with T = 1 to indicate the end of shifting in initial values and beginning of

shifting out the flip-flop contents. In these waveforms, values of T, S, D and Q are
symbolically represented by t, s, d, q respectively. Each sub-sequence in a group has a
waveform with corresponding values of t, s, d, and q. From Table 3.3.1-3, there are 16
sub-sequences in group A and there are 16 combinations of values of t, s, d, and q. Each
sub-sequence in group A corresponds to one of the 16 combinations of t, s, d, and q.
Groups B and F also have 16 sub-sequences each. Just as in group A, each sub-sequence
corresponds to one of the 16 combinations of t, s, d and q. Groups C, D1 and D2 have
only 8 sub-sequences each, and each sub-sequence in these groups corresponds to one of 8
combinations of t, s and d. Groups E1 and E2 have only 4 sub-sequences each, and each
sub-sequence in these groups corresponds to one of 4 combinations of s and d.

The value on Q, the output of the flip-flop under test, depends on the values at the
inputs of the flip-flop under test. For groups A, B, and F, we required Q to have an initial
value of . Since initial values are set up by scanning in values, then the last value scanned
in to the flip-flop under test should be q. Therefore, in the waveforms for groups A, B,
and F, we show that S has q in the last cycle of scan in. The value of Q on the second
cycle (for waveforms that have two cycles) will depend on the initial values of t, s, and d.

In the waveformsyalue of Q in the second cydtecalled g+, and can be expressed as a
function of t, s and d (g+ = ts +)}td In waveforms E1 and E2, T has a fixed value,

therefore the value of Q in the second cycle is d for E1 and s for E2.
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Table 3.3.1-3 Sub-Sequences Required for MD Flip-Flop Checking

Experiment.

Group A Group B Group F
Al 2-18-2-18 Bl 18-2-10-26 F1 18-2-4-21
A2 3-18-2-18 B2 19-3-11-26 F2 19-3-5-21
A3 4-21-5-21 B3 20-4-12-28 F3 20-4-2-18
A4 5-21-5-21 B4 21-5-13-28 F4 21-5-3-18
A5 6-23-7-23 B5 22-6-14-31 F5 22-6-8-24
A6 7-23-7-23 B6 23-7-15-31 F6 23-7-9-24
A7 8-24-8-24 B7 24-8-16-33 F7 24-8-6-23
A8 9-24-8-24 B8 25-9-17-33 F8 25-9-7-23
A9 10-26-10-26 B9 26-10-2-18 F9 26-10-12-28
A10 11-26-10-26 B10 27-11-3-18 F10 27-11-13-28
All 12-28-12-28 B11 28-12-4-21 F11 28-12-10-26
Al12 13-28-12-28 B12 29-13-5-21 F12 29-13-11-26
A13 14-31-15-31 B13 30-14-6-23 F13 30-14-16-33
Al4 15-31-15-31 B14 31-15-7-23 F14 31-15-17-33
A15 16-33-17-33 B15 32-16-8-24 F15 32-16-14-31
Al16 17-33-17-33 B16 33-17-9-24 F16 33-17-15-31

Group C Group D1 Group D2
C1l 18-26-10-26 D1 18-20-4-21 D9 18-24-8-24
C2 21-29-13-28 D2 21-19-3-18 D10 21-23-7-23
C3 23-31-15-31 D3 23-25-9-24 D11 23-21-5-21
C4 24-32-16-33 D4 24-22-6-23 D12 24-18-2-18
C5 26-18-2-18 D5 26-28-12-28 D13 26-32-16-33
C6 28-20-4-21 D6 28-26-10-26 D14 28-30-14-31
C7 31-23-7-23 D7 31-33-17-33 D15 31-29-13-28
C8 33-25-9-24 D8 33-31-15-31 D16 33-27-11-26

Group E1 Group E2
El 18-20-28-12-28 E5 26-32-24-8-24
E2 21-19-27-11-26 E6 28-30-22-6-23
E3 23-25-33-17-33 E7 31-29-21-5-21
E4 24-22-30-14-31 E8 33-27-19-3-18
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We begin our analysis with group B since it has only one cycle. The waveforms
for group B require T be settot, S be setto s, D to d, and Q to q (where t[5, d, q
{0,1}). Our goal is to find a test pattern that will satisfy these requirements. A test pattern
consists of bits, each bit corresponding to a value of an MD flip-flop or a primary input.
Fig. 3.3.1-6 shows a part of the design to help illustrate the test pattern generation process
for the group B waveforms. In this figure, some signals and connections are left out for
readability. The shaded flip-flopt,Fs the flip-flop under test. Flip-flops are numbered
based on their order in the scan chain. The flip-flop preceding the flip-flop under test is F
1. The D input of Fis the output of combinational logic withinputs. p of the inputs
come from other flip-flops and the rest come from primary inputs. The inputs of the
combinational logic are X X2,...,Xn. If an input X is driven by a flip-flop, the flip-flop
is called [z;. We have three requirements: Q should be set to g, S should bs,s@tddD
should be set to d. Since Q is the output of the flip-flop under test, the bit of the test pattern
corresponding totFshould be q. S comes directly fromif so the bit corresponding to
Ft-1 should be s. Since we need to set D to d, the bits correspondmﬁﬁzE..,Fxp
and Xp+1, Xp+2 ..., Xn should be selected such that the output of the combinational logic
isd

12D | x; [T2D | X [T2D | xp

1,2D 1,2D 1,2D
Gl Gl Gl
C2 C2 C2 Xp+1 Xq
Fx1 Fx2 Fxp | |
Combinational Logic
Cone
d1p Q g |12p
— s S 1,2D 1,2D
1,2D 1.2D
' Gl
1,2D
G1 > C2
Gl > C2

F
t
Fi-1

Figure 3.3.1-6 Part of Circuit Involved With Pattern Generation for Group
B.

Group F has a single cycle as in the case of group B. However, group F requires a
change on the D input of the flip-flop under test. If all the inputs of the combinational logic
driving the D input of the flip-flop under test are primary inputs, then we can satisfy the
requirements of group F using two patterns, one that makes the output of the combinational
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logic 0, and the other 1. If some of the inputs of the combinational logic are flip-flops,
these inputs cannot change in a single cycle, and only the bits corresponding to primary
inputs can be used. However, the bits corresponding to flip-flops should be selected to
allow changes in the primary inputs to change the D input of the flip-flop under test.

The waveforms for the other groups require D and S to have values for two
consecutive cycles. In some cases, such as groups A, C, D2 and E2, the D input has to
keep the same value for two cycles, while in other cases, such as groups D1 and E1, the D
input should change. Similarly, in groups A, C, D1 and E1, the S input has to keep the
same value for two cycles, and in the case of D2 and EZ2, the value on S needs to change.
This implies that we need to perform test generation for two cycles. As mentioned earlier,
the initial values on the inputs and output of the flip-flop under test are t, d, s, and g. In the
following discussion thegalue of D in the second cyaldll be calledd+, and thevalue of
S in the second cyclell be calleds+. The analysis differs for the cases of T = 0 and for
T =1, but applies to groups A, C, D1, D2, E1 and E2.

The case for T = 1 is shown in Fig. 3.3.1-7. s, d and q will impose the same
constraints on the test pattern as described for waveforms of group B. After the one cycle
shift, the value in E2 is transferred to g1, which as we mentioned earlier is the S input to
Ft. Therefore, the bit corresponding togshould be set to s+, the value of S on the

1,2D 1,2D T1.2D
1,2D 1,2D 1,2D
Gl — Gl = Gl =
c2 1,2D c2 1,2D c2 1,2D
1,2D 1,2D 1,2D
Fx1-1 |g1 Fx2-1 |1 Fxp-1 |1
X
>C2 X ¢ > C2 2 > C2 Xp Xp+1 Xq
Fx1 Fx2 FXp |
Combinational Logic
Cone
=]
— 1,2D
Tl SR P
T’ZD S+ ]_,2D 1,2D G1
1,2D ! Gl S C2
G1 Gl L C2
> C2 Ft+1
= C2 Ft
Ft1
Ft2

Figure 3.3.1-7 Part of Circuit Involved With Two-Cycle Pattern
Generation (T = 1).
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second cycle. After the shift, values iy F1,Fx»-1..... Fxp-l are transferred to
Fx1.Fxo.--., Fxp respectively Therefore, the bits corresponding g H.Fx,-1...., Fxp-l
andXp+1, Xp+2 ..., Xn should be selected such that the output of the combinational logic

is d+, the value of D on the second cycle, after the shift. Formally, if the function of the
combinational logic cone is f{f,Fxs...., Fxp,Xp+L Xp+2 .-, %n), then we need

f(Fxq.Fxo.- - Fxp, Xp+1, Xp+2---,%n) = d to satisfy requirements of the first cycle and
f(Fxq-1.Fxo-1.--, Fxp-1,X p+1 Xp+2,...Xn) = d+ to satisfy requirements of the second
cycle.

In Fig. 3.3.1-7, all the flip-flops had only one role in the circuit. This was done
only to keep the explanation simple. Itis possible, for example, that the flip-flop preceding
the flip-flop under test is also one of the flip-flops that drive the combinational logic (see
Fig. 3.3.1-8). In that case, the input driving the combinational logic should be assumed to
be s when trying to find a pattern to set D to d. A test pattern that satisfies all these
requirements would identify the corresponding unstable state of the flip-flop under test.

The case for T = 0 is shown in Fig. 3.3.1-9. s, d and q will impose the same
constraints on the test pattern as described earlier. Since T =0, s+, the value of S on the
second cycle, will be the output of the combinational logic H (combinational logic block
driving D input of k-1 in Fig. 3.3.1-8). Therefore, the bits corresponding to the inputs of

T,2D 12D
1,2D 1,2D
G1 = G1 =
c2 1,2D Lo 1,2D
1,2D 1,2D
Fx21 |Gt Fxp-1 |61
~>C2 X2 >C2
xp Xp+1 Xn
Fx2 Fxp

Combinational Logic
Cone

dL =
b = 12D
Top |29

— s S 1,2D
Top | s+ |12 1,2D Gl
' 1,2D o1
1,2D o1 ~C2
> C2
Gl >C2 Fie1
. C2 Ft
Fio Ft1

Figure 3.3.1-8 Circuit With F¢_.1 Driving the Combinational
Logic of D.
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H should be selected such that the output of H will be s+. Similarly, the bits

corresponding to the inputs of combinational logic congXH, ..., Kp should be selected

such that they supply a pattern to combinational logic cone J that would set its output to d+.
Formally, suppose that the function of combinational logic conejJ itfen we need
fa(Lxq-1.Lxo-1..., pr-l,Xp+1, Xp+2 ---,%n) = d to satisfy requirements of the first cycle

and fJ(le,fKZ,...,pr,Xp+1,Xp+2,...,Xn) = d+, where|ti is the function of

combinational logic conejKto satisfy requirements of the second cycle.

Combinational Combinational

Combinational

= X, = X2 = Xp

1,2D 1,2D 2D

1,2D 1,2D 1,2D

G1 G1 Gl
S C2 > C2 Cc2

Fx1 Fx2 Fxp Xp+1 Xp

Combinational Logic
Cone

T2op| s S i’ig —
1.2D ’
o1 G1
S C2 o2
Ft
Ft1

Figure 3.3.1-9 Part of Circuit Involved With Two-Cycle Pattern Generation
(T=0).

In the above analysis, we showed how to find a pattern that would apply a state
sub-sequence to an MD flip-flop under test. It is just as important to capture the output of
the flip-flop after the sequence is applied. If the sequence has T = 1, the output of a flip-
flop is captured by the next flip-flop in scan chain. In such a case, the pattern is scanned
in, T remains 1, and the pattern is scanned out. The mechanics of the operation are similar
to that of the current test approach for scan chain flip-flops, except that several patterns are
used.

For sequences with T = 0, the next flip-flop in the scan chain cannot capture the
output of the flip-flop under test. This problem did not appear with MD-latch design in
Chapter 2, because we captured the output of the MD-latch using the D-latch after it.
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Figure 3.3.1-10 Multiple Test Mode Signals to Capture Flip-Flop Output.

One solution to this problem is to change the design slightly by using multiple test
mode signals T1 and T2 instead of using a single T input. As shown in Fig. 3.3.1-10, T1
and T2 alternate as select inputs to the MD flip-flops. Now, suppose the flip-flop we are
testing has T1 as input, and the sequence we are targeting requires T1 = 0. During scan-in
phase, both T1 and T2 would be setto 1. T1 changes value as required by the waveform,
while T2 remains 1. The output of the flip-flop under test is then captured by the next flip-
flop since its G input is still setto 1. The problem with this approach is that it requires an
extra primary input pin, and an additional wire to be routed throughout the chip.

Another solution is not to make any changes in the design, but sensitize the output of
the flip-flop under test to the input of another flip-flop or a primary output. This is shown
in Fig. 3.3.1-11. The advantage of this approach is that it requires no modification to the
circuit. The disadvantage is that it reduces the number of possible patterns that can be used.

x[1:n] N - z[1:m]
Combinational Logic
A wa
D D D |
1 — 2 — S |=
1,2D o 12D o—---- 1,2D
Gl Gl Gl
0 0 0
> C2 D C2 >C2
ek ] | il
T_o r—————————----- —

Figure 3.3.1-11 Path Sensitization to Capture Flip-Flop Output.
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There may even be cases where it is not possible to apply a desired sequence and capture the
output of the flip-flop through the combinational logic. We selected the second solution for
implementation in our ATPG tool. This will be discussed in detail in Chapter 4.
3.3.2 TP Flip-Flop Scan Chain

In Section 3.1.3, we described how a checking experiment can be derived for a TP
flip-flop, with the assumptions that the inputs can be changed at any time, as long as only
one input changes at a time, and that the output is always observable. When the TP flip-
flop is used as part of a scan chain (see Fig. 3.3.2-1), the data inputs of the TP flip-flop are
not directly controllable from the primary inputs. Formally, the data inputs of a TP flip-
flop are D and D». Since we use Pas the data input from the combinational logic, and
D2 as the data input from the preceding latch in the scan chain, we refeasotiie D
input, and D as the S input of the TP flip-flop in the following discussion.

x[1:n] z[1:m]

—— Combinational Logic Ve
D1 ] D2 Ds I
1D 1D 1D
S S S SDO
SDI L 120 2120 i e S 12D
> C1 > C1 D C1
> C2 > C2 D C2
ek S

TCK ® ®

Figure 3.3.2-1 TP Flip-Flop Based Scan Chain.

The S input of the TP flip-flop is the output of another flip-flop, and the output of
flip-flops change only when LCor G changes to 1. Therefore, the S input can only
change on a positive edge of CKC1 of the flip-flop) or TCK (& of the flip-flop). Since
flip-flops are edge-triggered devices, the output of a flip-flop will change only once every
cycle (A cycle is the time between successive positive transitions of C). Therefore,
the S input can change only once every cycle. The D input has the same property as S if
the all the inputs of the combinational logic driving it are flip-flop outputs. If some of the
inputs are primary inputs, then it may be possible to change the value on D without a
positive transition on €or ©. The Q and @ inputs can change at any time since they
are primary inputs.

The output of the flip-flop under test is captured by the next flip-flop in the scan
chain by applying a positive transition on TCK. The captured output corresponds to the
state with @ = C = 0, since the "capturing flip-flop" captures the output of the flip-flop
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under test before the transitioning control input has a chance to change the state of the flip-
flop under test.
The restrictions on the TP flip-flop in the scan chain can be summarized as follows:
- the S input can only change whepn @ C = 1.
- the S input can change only once per cycle.
- the output of the flip-flop is “observed” only for states witt03 = 00.
- the output of the flip-flop is captured on positive transitionaf C
These restrictions make some of the total states unreachable. Table 3.3.2-1 shows
the primitive flow table of the TP flip-flop with these states covered with X. Outputs that
cannot be observed are covered with \. The reduced primitive flow table is shown in Table
3.3.2-2. If a scan chain TP flip-flop is replaced by a device that performs the operation
described by this flow table, the circuit will still operate correctly. The transition diagrams
for the reduced flow table are shown in Fig. 3.3.2-2 and 3.3.2-3.
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Figure 3.3.2-2 Graphs of Transitions Within Quadrants for Scan Chain TP
Flip-Flop.

9

Figure 3.3.2-3 Graphs of Transitions Between Quadrants for Scan Chain
TP Flip-Flop.
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Table 3.3.2-1 Marked-Up Primitive Flow Table of TP Flip-Flop in

Scan Chain.

00 01 11 10 OO 01 11 POS 00 01 11 10 OO0 01 11 10
C1C2=00 C1C2=10 C1C2=01 C1Co=11
(2004 | - | 8|10 - | - | -|18 - | - | - - | -
18 - 9|10 -] - | 18 - - - S
Z (4o 6 | - |- 12 - | - | - 21| - | - - -
Pt il 7 | - - 12 -| -| - 21 - - - -
- 4 (®0 |- - 15 - | -] -] 23 - - | -
- 19| - - 15| -| -] -] 23 - - -
2| - | K of - | - | -1 17| - | - =-| 24 - -
3| - > 91 - - - 27| - - -] 24 - -
2 | - | -] - 122 - |16 - - | -] - - | -
3| - - -y 8| - 17| - - -] - - -
-4 - -|10/@20 14| - | - | - | - | - - | -
- 5] - -1 115 - | - | - | -] - - -
-l -6 | - |- 12290 6| - | - | - | - - | -
- - 7 = - 131N 17| - -] - - - -
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-7 - = = ] —| = 2123} 25 - -
- - - 8| -] - -] |18 - | 22(24b - | -
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Table 3.3.2-2 Reduced Primitive Flow Table of TP Flip-Flop in Scan

© 00 N O O A W DN
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Chain.
DS
00 01 11 10 OO O1 112 10 OO O1 11 10 OO O1 11 10
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As with the MD flip-flop in Section 3.3.1, we can derive a checking experiment
from the new reduced flow table. Again, we have columns with outputs that cannot be
observed (@C2 = 01 and @C2 = 10). For states in these columns the distinguishing
sequence is an input that takes the flip-flop to a state wit» € 00 (i.e., a negative
transition of @ or C). For the MD flip-flop we used a capturing transition after the
distinguishing sequence to capture the output of the flip-flop under test. The capturing
transition was a positive transition of C. In the case of the TP flip-flop, we will use a
positive transition of € This allows us to capture the output of the TP flip-flop in the
next flip-flop of the scan chain.

For the MD flip-flop we categorized the unstable states into several groups.
Unstable states in the same group had similar tests. We repeat the same procedure here,
but with fewer groups:

Group Al : Unstable states corresponding to transitions betw&en=00
and QC2 =10 columns.
Example: Unstable states corresponding to: 2-10, 3-10, 10-2
Required sub-sequencesi@-2-18 for 2-10
3-10-2-18 for 3-10
Since the 10-2 transition ends in distinguishing state 2, and state 2 is followed
by a capturing transition 2-18, the unstable state corresponding to 10-2 is
identified. The 2-10 and 3-10 transitions are followed by distinguishing
sequence 10-2 and that is followed by the capturing transition 2-18, thus the
unstable states corresponding to 2-10 and 3-10 transitions are identified. Since
we identified 2-10 and 3-10, we know from the observed outputs, that applying
C1C2DS = 0000, 1000 will always put the flip-flop in state 10. This
information is used to identify the predecessor states of many transitions in the
other groups.

Group A2: Unstable states corresponding to transitions betwgemn €00 and

C1C2 = 01 columns.

Example: Unstable states corresponding to: 2-18, 3-18, 18-2

Required sub-sequencesi2-2-18 3-18-2-18

Since the 18-2 transition ends in distinguishing state 2, and state 2 is followed
by a capturing transition, the unstable state corresponding to 18-2 is identified.
The 2-18 and 3-18 transitions are followed by distinguishing sequence 18-2 and
that is followed by the capturing transition 2-18, thus the unstable states
corresponding to 2-18 and 3-18 transitions are identified. Since we identified

92



2-18 and 3-18, we know from the observed outputs, that applyi@gls =
0000, 0100 will always put the flip-flop in state 18. This information is used to
identify the predecessor states of many transitions in the other groups.

Group B1: Unstable states inCp = 10 columncorresponding to D transitions.

Example: Unstable states corresponding to: 12-14

Required sub-sequence: 12-128

From identifying the unstable states in group Al, we know that applying
C1C2DS = 0001, 1001 would put the flip-flop in state 12. The unstable state
corresponding to the 14-6 transition is identified in group Al, so we know we
were in state 14 before state 6. Since we know the starting state is 12 and the
final state is 14, we have identified the 12-14 transition.

Group B2: Unstable states inCp = 01 columncorresponding to D transitions.

Example: Unstable states corresponding to: 21-23

Required sub-sequence: 21-223

From identifying the unstable states in group A2, we know that applying
C1C2DS = 0001, 0101 would put the flip-flop in state 21. The unstable state
corresponding to the 23-7 transition is identified in group A2, so we know we
were in state 23 before state 7. Since we know the starting state is 21 and the
final state is 23, we have identified the 21-23 transition.

Group C1: Unstable states in@© = 10 column corresponding to S transitions.

Example: Unstable states corresponding to: 12-10

Required sub-sequence: 12-10-2

From identifying the unstable states in group Al, we know that applying
C1C2DS= 0001, 1001 would put the flip-flop in state 12. The unstable state
corresponding to the 10-2 transition is identified in group Al, so we know we
were in state 10 before state 2. Since we know the starting state is 12 and the
final state is 10, we have identified the 12-10 transition.

Group C2: Unstable states in@ = 01 column corresponding to S transitions.
Example: Unstable states corresponding to: 21-19
Required sub-sequence: 21-193

From identifying the unstable states in group A2, we know that applying
C1C2DS = 0001, 0101 would put the flip-flop in state 21. The unstable state

corresponding to the 19-3 transition is identified in group A2, so we know we
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were in state 19 before state 3. Since we know the starting state is 21 and the
final state is 19, we have identified the 21-19 transition.

Group D: Unstable states inCp = 00 column corresponding to D transitions.

Example: Unstable states corresponding to: 2-8

Required sub-sequence: 18-28

The unstable state corresponding to the 18-2 transition falls into group A2 (and
we thus have a sub-sequence to identify the unstable state), so we know that we
are in state 2 after applying C2DS= 0000, 1000, 0000. We identify state 8
by the capturing transition 8-24. Since we know the starting state is 2, and the
final state is 8, we have identified the 2-8 transition.

Table 3.3.2-3 shows all the required state sub-sequences. Each sub-sequence in
Table 3.3.2-3 requires the initialization of the flip-flop under test to the first state of the
sub-sequence, followed by a sequence of inputs that will visit the rest of the states of the
sub-sequence. The flip-flop can be initialized by scanning in appropriate values for the first
state in the sub-sequence, and the input sequence can be applied by changing the values on
TCK and Q. The initialization and the input sequence can be best described by
waveforms. The waveforms for all the groups are shown in Fig. 3.3.2-4. All waveforms
start with at least one pulse of @ indicate the end of shifting in initial values and
beginning of shifting out the flip-flop output. In these waveforms, S, D and Q are
symbolically represented by the boolean values s, d, g respectively. A waveform with a
combination of s, d, g (or just s, d where applicable), identifies one of the unstable states in
the group. From Table 3.3.2-3, there are 8 sub-sequences in group Al and there are 8
combinations of values of s, d, and q. Each sub-sequence in group Al corresponds to one
of the 8 combinations of s, d, and g. Groups A2 and D also have 8 sub-sequences each.
Just as in group Al, each sub-sequence corresponds to one of the 8 combinations of s, d
and q. Groups B1, B2, C1 and C2 have only 4 sub-sequences each, and each sub-
sequence in these groups corresponds to one of 4 combinations of s and d.

The value on Q, the output of the flip-flop under test, depends on the values at the
inputs of the flip-flop under test. For groups Al, A2 and D, we required Q to have an
initial value of g. Since initial values are set up by scanning in values, then the last value
scanned in to the flip-flop under test should be g. Therefore, in the waveforms for groups
Al, A2 and D, we show that S has q in the last cycle of scan in.
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Table 3.3.2-3 Sub-Sequences Required for TP Flip-Flop Checking

Experiment.
Group Al Group A2 Group D
Al 2-10-2-18 A9 2-18-2-18 D1 2-8-24
A2 3-10-2-18 Al10 3-18-2-18 D2 3-9-24
A3 4-12-5-21 All 4-21-5-21 D3 4-6-23
A4 5-12-5-21 Al2 5-21-5-21 D4 5-7-23
A5 6-15-7-23 Al13 6-23-7-23 D5 6-4-21
A6 7-15-7-23 Al4 7-23-7-23 D6 7-5-21
A7 8-17-8-24 Al15 8-24-8-24 D7 8-2-18
A8 9-17-8-24 Al6 9-24-8-24 D8 9-3-18
Group B1 Group C1
Bl 10-16-8-24 C1 18-24-8-24
B2 13-15-7-23 Cc2 21-23-7-23
B3 15-13-5-21 C3 23-21-5-21
B4 16-10-2-18 C4 24-18-2-18
Group B2 Group C2
B5 10-12-4-21 C5 18-20-4-21
B6 13-11-3-18 C6 21-19-3-18
B7 15-17-9-24 C7 23-25-9-24
B8 16-14-6-23 C8 24-22-6-23
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Figure 3.3.2-4 Waveforms for Unstable State Groups for TP Flip-Flop.
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The waveforms in Fig. 3.3.2-4 are similar to those that we had for the MD flip-
flop. The approach for finding a pattern here is very similar to that presented in Section
3.3.1. The waveforms have values for two consecutive cycles. This implies that we need
to perform test generation for two cycles. The analysis depends on whether the waveform
has a @ pulse.

We begin our analysis with groups A2, B2 and C2. All these groups require two
states for their test, and their waveforms do not havepue. Fig. 3.3.2-5 shows the
part of the circuit involved in generating a test for a waveform with no pulse.oimnGhis
figure, some signals and connections are left out for readability. The shaded flip;flop, F
is the flip-flop under test. Flip-flops are numbered based on their order in the scan chain.
The flip-flop preceding the flip-flop under test isF The D input of the flip-flop is the
output of combinational logic with inputs. p of the inputs come from other flip-flops and
the rest come from primary inputs. The inputs of the combinational logic are
X1,X2,...,Xn. If an input X is driven by a flip-flop, the flip-flop is calledkF

Since S is the output otR, the bit corresponding ta& should be setto s. B
the output of the combinational logic. Therefore, the bits corresponding to
Fx1,Fx2,...,Fxp and Xp+1, Xp+2, ..., Xn should be selected such that the output of the
combinational logic is.d After the one cycle shift, the value ipZwill be transferred to
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Figure 3.3.2-5 Part of Circuit Involved With Pattern Generation for
Waveform With No C1 Pulse.

97



Ft-1, which as we mentioned earlier is the S inputitoTherefore, the bit corresponding

to R-2 should also be set to s+, the second value of S. After the once cycle shift, values in
Fx1-1.Fxo-1.-.-, Fxp-l are transferred tByx,,Fx»...., Fxp- Therefore, the bits corresponding

to Fxq-1.Fxo-1.-.-, Fxp-l andXp+1, Xp+2 ..., Xn should be selected such that the output of
the combinational logic is d+ after the shift. Formally, if the function of the combinational
logic cone is f(k1.Fxo.-... Fxp,Xp+1,Xp+2,...,Xn), then we need

f(Fx1, Fxor -+ Fxp, Xp+1, Xp+2 .-, %n) = d to satisfy requirements of the first cycle, and
f(Fx1-1.Fxo-1..-., Fxp-l, Xp+1, Xp+2---,%n) = d+ to satisfy requirements of the second

cycle.

Fig. 3.3.2-6 shows the part of the circuit involved in generating a test for a
waveform with a pulse oniC s and d will impose the same constraints on the test pattern
as described earlier. Since we haveaGlse, $, the second value applied to S will be
the output of the combinational logic H (combinational logic block driving D input-of F
in Fig. 3.3.1-8). Therefore, the bits corresponding to the inputs of H should be selected
such that the output of H is set to s+. Similarly, the bits corresponding to the inputs of
combinational logic conesiKK2, ..., Kp should be selected such that they supply a pattern

Combinational Combinational Combinational

X1 X2 Xp
1D 1D 1D |+
2D 2D 2D
> C1 >Cl1 > C1
> C2 > C2 > C2
Fx1 Fx2 Fxp )|(IO+1 )in
]

Combinational Logié
Cone

D ]S S 2D
2D >cC1

P C1 > C2

> C2 F
Fi-1

Figure 3.3.2-6 Part of Circuit Involved With Pattern Generation for
Waveform With C1 Pulse.
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to combinational logic cone J that would set its output to d+, the second value of D.
Formally, suppose that the function of combinational logic conejJ itfen we need
fJ(Lxl-l,sz-l,---,pr-l,Xp+L Xp+2 ---,%n) = d to satisfy requirements of the first cycle,
and fJ(le,fKZ,...,pr,Xp+1,Xp+2,...,Xn) = d+, where|ti is the function of
combinational logic conejKto satisfy requirements of the second cycle.

Group D has a single cycle and requires a change on the D input of the flip-flop just
as in the case of group F of the MD flip-flop. If all the inputs of the combinational logic
driving the D input of the flip-flop under test are primary inputs, then we can satisfy the
requirements of group D using two patterns, one that makes the output of the combinational
logic 0, and the other 1. If some of the inputs of the combinational logic are flip-flops,
these inputs cannot change in a single cycle, and only the bits corresponding to primary
inputs can be used. However, the bits corresponding to flip-flops should be selected to
allow changes in the primary inputs to change the D input of the flip-flop under test.

Unlike the MD flip-flop scan chain, the outputs of the TP flip-flops are directly
captured by the next flip-flop in the scan chain. This is because our capturing transition of
the TP flip-flop is a positive transition orpQwhich always captures the output of the
previous flip-flop in the scan chain. In the MD flip-flop, the capturing transition was a
positive transition on C. As we saw in Section 3.3.1, if T was 0, then we could not
capture directly in the scan chain. Of course, we could not change T to 1, as that would
change the total state of the flip-flop under test.

3.4 Summary

This chapter began with the derivation of checking experiments for three common
flip-flops, D flip-flop, MD flip-flop and TP flip-flop. When flip-flops are used in a circuit,
the circuit imposes constraints on the control of the inputs, and observation of the outputs.
In Section 3.2, we showed that a simple test can be used to test all the flip-flops in the shift
register. We also showed that no simple test can be derived for scan chain flip-flops,
because the D input of a scan flip-flop depends on the combinational logic driving it. In
Section 3.3, we showed how a test for these memory elements embedded in the scan chain
can be derived. In Chapter 4, we will show how the process of generating patterns for MD
flip-flops and TP flip-flops is automated.
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Chapter 4. Automatic Test Pattern Generation

In Chapters 2 and 3, we showed how patterns can be generated to apply a checking
experiment to a latch or flip-flop embedded in a scan chain. In this Chapter, we describe an
algorithm that automates the process of generating patterns for all the bistable elements in a
full-scan circuit. These patterns guarantee the application of a checking experiment to each
bistable element in the scan chain. We begin by reviewing the similarities and differences
between generating patterns for bistable elements of the different scan architectures. This
information is used to establisfementary operationsvhich are the building blocks of our
algorithm. The algorithm is implemented by extending an existing combinational ATPG
program. In doing so, we show the practicality of our algorithm. After briefly describing
the combinational ATPG algorithm used, we show how it was extended to implement the
elementary operations. The elementary operations are combined to form a procedure that
generates patterns for a bistable element in the circuit. The procedure is repeated for each
of the bistable elements in the circuit, generating patterns for all the bistable elements of the
scan chain. The patterns are compacted to minimize their number.

There are some distinct similarities and differences among the pattern requirements
for the four different architectures. All the architectures have patterns that require the
analysis of two time frames. For the latch-based architectures, we need to hold values on
the D input and S input of the latch under test for two cycles so that we can apply the state
triples. For the flip-flop based architectures, we have waveforms that require two cycles.
In all scan architectures, two different test generation approaches are required. In one
approachshift operation bistable element values of the second cycle were a shifted
version of the values in the first cycle, and in the second appmaahal operation
bistable element values of the second cycle are determined by the combinational logic
driving the bistable elements. The methods for generating test patterns are similar for all
four architectures. The main difference between the tests for different architectures is the
timing on the clock and switching inputs, and the number of tests required for the checking
experiment. The flip-flop architectures require more tests than the latch based ones. The
MD flip-flop based architecture requires the most tests, and is the only one that requires
sensitization through the combinational logic.

4.1 Elementary Operations

The operations for generating a test (applying a state triple for latch-based
architecture, or a waveform for flip-flop based architecture) for a bistable element can be
summarized in the following five elementary operations.
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- Single Cycle: Determine bit values of a test pattern that would set lines in
the circuit to desired values.

- Shift Operation: Determine bit values of a test pattern that would set
lines in the circuit to desired values, and after the scan shifts by one,
would again set some lines in the circuit to desired values. The values on
the lines need not be the same for both cycles.

- Normal Operation: Determine bit values of a test pattern that would set
lines in the circuit to desired values, and after a normal cycle (bistable
element input selected from combinational logic), would again set some
lines in the circuit to desired values. The values on the lines need not be
the same for both cycles.

- Combinational Logic Sensitization: Determine bit values of a test pattern
that would sensitize a line in the circuit to a primary output or an input
of a bistable element.

- Single Cycle Change: Determine bit values of a test pattern that would
set lines in the circuit to desired values, and by changing values only on

the primary inputs would change the value of a line in the circuit.

Before explaining how these elementary operations are implemented, we need to
explain the combinational ATPG algorithm that we are modifying. The algorithm we
selected is used in SIS [Sentovich et. al. 92], and is based on the work of Larrabee [89].
The basic idea of this algorithm is to extract a formula that defines a set of test patterns that
detect a fault, and then use boolean satisfiability to satisfy the formula. A formula is
satisfiedif it evaluates to 1.

Consider the circuit in Fig. 4.1-1. Every gate in the circuit corresponds to a
formula that represents the function of the gate. The formula contains variables from
incoming and outgoing wires and is represented in CNF (conjunctive normal form).
Formulas for gates are often expressed as equations. For example, in Fig. 4.1-1 the
formula for the AND gate is D = A« B. An equation P = Q is logically equivalent to
PQ + PQ, because both expressions evaluate to 1 only when P and Q are the same value.
PQ + PQ can be transformed to CNF @&+ Q)(P + Q) [McCluskey 86]. In our example,
D=A+B,P=DandQ =A-*B. Using the above transformations, D = A « B is logically
equivalent to(D + AB)(D + AB). This formula can be transformed to the CNF formula
(D+A)D+B)(D+A +B). The CNF clauses for several equations, and inequalities, that
we will be using are shown in Table 4.1-1. A formula for the complete circuit can be
formed by taking the conjunction of formulas of each gate in the circuit. In our example,
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Table 4.1-1 CNF Clauses for Some Equations.

Equation CNF Representation
D=A-B (D + A)D +B)(D + A + B)
D=A+B (D + A)D +B)(D + A + B)
A=B (A+B)(A+B)
A=#B (A +B)(A + B)
A D
5| ¢ X
C 1p -

Figure 4.1-1 Circuit to Describe Formula Extraction.

the formula would be
(X+D)(X+E)(X+D+E)D+A)D+B)(D+A+B)(C+E)(C+E).

Now suppose we want the output of the circuit to be 0. We add the Mdaske
formula. Thus our formula becomes

(X+D)(X+E)(X+D+E)D+A)D+B)(D+A+B)(C+E)(C+E)X

Our goal is to find values of A, B and C that would satisfy the formula (i.e., make
it evaluate to 1). Each clause in the formula must be satisfied for the formula to be
satisfied. SinceXis a clause in the formula, then the formula can only be satisfiedif
1 which implies X = 0. With X = 0, the first two clauses can only be satisfied Bith 1
andE =1. This implies D =0 and E = 0. With E = 0, the only way to satisfy the clause
(C+E) is with C = 1. All other clauses excel + A + B) are now satisfied with values
selected for X, D and E. Since D =0, we need to have ekherl orB = 1 to satisfy
(D+A +B). Thisimplies A=0or B =0. Therefore for X =0, we need C =1 and A or
B =0.

There is more to detecting stuck at faults using boolean satisfiability than has been
discussed here. However, the information in the above discussion is enough for
implementing our elementary operations. We now show how each of the elementary
operations is implemented as an extension of the above discussion.
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Single Cycle
The single cycle elementary operation follows directly from the above discussion,
except that multiple lines in the circuit need to be set to desired values. For example,
consider the circuit in Fig. 4.1-2. In this and all circuits in this section, the clock input to
the bistable elements have been omitted. The combinational logic is the same as that of Fig.
4.1-1. Now suppose that we require the input of the bistable element (X) be setto 0 and
the output (A) to be setto 1. We add the clause A to our last formula to get
(X+D)X+E)(X+D+E)D+A)D+B)(D+A +B)(C+E)(C+E)XA

A D

B __ | & + | X Bistable 0
E Element

C 1 p

Figure 4.1-2 Circuit to Describe Pattern Generation for Single Cycle.

We satisfy the formula as we did before, except for the cléiiseA +B). Since
A =1 (from the last clause), and D = 0 (D = 0 was determined earlier) the only way to
satisfy (D + A + B) is with B = 1. This implies B = 0, and our pattern is ABC = 101.

From the above discussion, the process of generating patterns for single cycle
operations can be summarized in the following steps:

1. Extract a formula for the combinational logic.

2. Add clauses to set lines in the circuit to desired values.

3. Satisfy the formula of step 2.

Shift and Normal Operation

For shift and normal operation we have two cycles. To handle two cycles, we
create two copies of the formula and label variables in one formula with subscript O (for
time frame 0), and the other with 1 (for time frame 1). For example, consider the circuit in
Fig. 4.1-3. The bistable elements shown in this figure have two data sources, S and D.
The S input comes from the previous bistable element in the scan chain, and the D input
comes from combinational logic. The two formulas for the combinational logic with X as
output are

(Xo + Do)(Xo + Eo)(Xo + Do + Eo)(Do + Ao)(Do + Bo)(Do + Ao + Bo)(Co + Eo)(Co + Eo)
and

(X1+ D1)(X1+ Er)(X1+ D1+ E1)(D1+ A1)(D1+ B1)(D1+ A1+ B1)(Ci+ E1)(C1+ Ei)
Now suppose we want X =0, C =1 and A = 0 in the first cycle, and we want X to remain
0, and C to remain to 1 in the second cycle. Our formulas become
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(Xo + Do)(Xo + Eo)(Xo + Do + Eo)(Do + Ao)(Do + Bo)(Do + Ao + Bo)(Co + Eo)(Co + Eo)
Xo CoAo

and
(X1+ D1)(X1+ E1)(X1+ D1+ E1)(D1+ A1)(D1+ B1)(D1+ A1+ Ba)(C1 + Ev)(Ci + Ex)
X1C1
Extra clauses are added to define relationships between variables in the two time
frames. The clauses added depend on the type of operation: shift or normal.

G _, M |A D

&
H —l_ ; & X
D Bistable | B + D Bistable SDO
SDI—— 'S Element ‘ c £ S Element
J N 1P [
+ D Bistable 0 _l
K — 1S Element

Figure 4.1-3 Circuit to Describe Pattern Generation for Shift and
Normal Operation.

Shift Operation
In shift operation, the output of bistable elementivte that the subscript of a
bistable element refers to the its order in scan chain and not the time frame) at time frame O
should equal the output ofjM at time frame 1, because values are shifted in the scan
chain between the two time frames. In our example, this means that we would need to add
clauses to indicate
SDlo=Bi1, Bo=C: andCo = A1.
The actual clauses are
(SDlo+ B1)(SDlo + B1)(Bo + C1)(Bo + C1)(Co+ A1)(Co + Ay)
The complete formula to be satisfied is
(Xo + Do)(Xo + Eo)(Xo + Do + Eo)(Do + Ao)(Do + Bo)(Do + Ao + Bo)(Co + Eo)(Co + Eo)
Xo CoAo
(X1+ D1)(X1+ E1)(X1+ D1+ E1)(D1+ A1)(D1+ B1)(D1+ A1+ B1)(Ci + E1)(Ci + En)
X1C1
(SDlo+ B1)(SDlo + B1)(Bo + C1)(Bo + C1)(Co + Az)(Co + A1)
Satisfying this formula, as we did earlier, will determine a test pattern that will
fulfill our requirements. One solution is ABCGHJK(SDI) = 011----0. A™-"is an
unspecified input, either 0 or 1 can be used.
From the above discussion, the pattern generation process for shift operations can
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be summarized in the following steps:
1. Extract a formula for the combinational logic.
2. Make two copies of the formula, one labeled 0 and one labeled 1.
3. Add clauses between bistable element outputs to imply shift operation. The
output of a bistable element in time frame 1 should be the same as the output
of its preceding bistable element in time frame 0.
4. Satisfy the formula of step 3.

Normal Operation
For normal operation, the data input of the bistable element at time frame 0 becomes
the output at time frame 1. The data input of the bistable element is the output of
combinational logic and we need to add the clauses of this combinational logic, in time
frame 0, to our formula if they are not already part of it. In our example, we will need
Xo=A1, Mo=B:, andNo=Cx.
For Xo= A1, we need to add clauses for the combinational logic driving For
Mo = Bz, we will need to add clauses for the AND gate driving M, andNfor Ci, we
will need to add clauses for the OR gate driving N. The final formula is
(Xo + Do)(Xo + Eo)(Xo + Do + Eo)(Do + Ao)(Do + Bo)(Do + Ao + Bo)(Co + Eo)(Co + Eo)
Xo CoAo
(X1+ D1)(X1+ E1)(X1+ D1+ E1)(D1+ A1)(D1+ B1)(D1+ A1+ B1)(Ci + E1)(Ci + En)
X1C1
(A1+ Xo)(A1+ Xo)
(B1+ Mo)(B1+ Mo)(Mo + Go)(Mo + Ho)(Mo+ Go + Ho)
(C1+ No)(C1+ No)(No + Jo)(No + Ko)(No+ Jo + Ko)
Satisfying this formula, as we did earlier, will determine a test pattern that will
fulfill our requirements. One solution is ABCGHJK(SDI) = 0-10-1--.
From the above discussion, the pattern generation process for normal operations
can be summarized in the following steps:
1. Extract a formula for the combinational logic.
2. Make two copies of the formula, one labeled 0 and one labeled 1.
3. Add clauses between bistable element inputs and outputs to imply normal
operation. The output of a bistable element in time frame 1 should be the
same value as its data input in time frame 0.
4. Add clauses in time frame 0 of combinational logic that drives inputs to flip-flops
in step 3.
5. Satisfy the formula of step 4.
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Path Sensitization

A path from an input A to an output Xsensitizedf the other inputs of the
combinational logic are set such that changing the value on A would change the value on X.
From this definition, we can create the circuit in Fig. 4.1-4(b).

——| X
— CL
_ X A rem XOR
—1 < — I
A—1
XS
] CL
1p
(a) Original Circuit (b) Expanded for Sensitization

Fig. 4.1-4 Circuit to Explain Sensitization.

The circuit is created by replicating the original circuit, Fig. 4.1-4(a), connecting all
inputs to both circuits, except the one we are trying to sensitize, A. Ais tied to the input of
one of the circuits, and inverted to the input of the other circuit. The outputs of the two
replicated circuits are exclusive-ored. A pattern that satisfies this new circuit (make the
output 1), sensitizes a path from A to X. The value of A is not part of the pattern. In fact,
changing the value of A would still give a 1 at the output. If there are multiple outputs,
then A can be sensitized to any output. A similar approach is taken for using the formulas.
The steps are as follows:

1. Extract a formula for the combinational logic.

2. Make two copies of the formula. One of them remains unlabeled, and label the

other with s (for sensitize).

3. Add clauses to indicate that A should not be equagto A

4. For each input J except A, include clauses to indicate J should be equal to Js.

5. Add clauses to indicate that X should not be equagtolhere are multiple

outputs, then add clauses to indicate that at least one of the outputs differ.
6. Satisfy the formula of step 5.

For example, consider the circuit we had in Fig. 4.1-1. The formula was

(X+D)(X+E)(X+D+E)D+A)D+B)(D+A +B)(C+E)(C+E)

Now suppose we want to find a pattern that would sensitize A to the output. From
step 2 in our procedure we will have

(X+D)(X+E)(X+D+E)D+A)D+B)(D+A +B)(C+E)(C+E)

(Xs+ Ds)(Xs+ Es)(Xs + Ds+ Es)(Ds + As)(Ds + Bs)(Ds + As + Bs)(Cs + Es)(Cs + Es)

The clauses to indicate that A is not equal édgkep 3) are
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(A+A)(A+As)

and the clauses to indicate that B is equaltar] C is equal togstep 4) are

(B+Bs)(B +Bs)(C+Cs)(C+Cy)

and the clauses to indicate that X is not equakt¢sk¥ep 5) are

(X + Xs)(X +Xs)

and the final formula is

(X +D)(X+E)(X+D+E)D+A)D+B)(D+A +B)(C+E)(C+E)

(Xs+ Ds)(Xs+ Es)(Xs+ Ds+ Es)(Ds + As)(Ds + Bs)(Ds + As + Bs)(Cs + Es)(Cs + Es)

(A+A)(A+As)

(B+Bs)(B +Bs)(C+Cs)(C+Cy)

(X + Xs)(X +Xs)

If we analyze this formula as we did before, we can show that this formula can only
be satisfied if BC = 11. This means that we can sensitize A through the combinational
logicifBissetto1land Cis setto 1.

As mentioned in the example, the clauses to indicate that X is not be eqyare X
(X +Xs)(X +Xs). If we had three outputs, X, Y and Z, then we want to add clauses to
indicate X is not equal togor Y is not equal to &, or Z is not equal togZ This done
with the following clauses

X+Xs +RI(X+Xs +R)(Y +Ys +R)(Y +Ys +R)(Z+2Zs +R)(Z+Zs +Ry)

(R«+Ry+Ry)

Suppose X = 0 andg& 1. Then X% = 1will satisfy the first term, and X = 0 will satisfy
the second term. yRcan then be set to 1, which will satisfy the last terpp.aftd iz can
then be set to 0, which will satisfy the rest of the clauses. Now suppose thaj X 6, X
then the only way the first term can be satisfied iiH0. If Y = Ysand Z = 4 then R/
and R will also be 0, and the last term will not be satisfied.

Single Cycle Change Operation
In single cycle change operation we want to change the value on line in the circuit
without cycling the clock. This means that we must keep the flip-flop values fixed, and
change some of the primary inputs. The steps for this operation are:
1. Extract a formula for the combinational logic.
2. Make two copies of the formula. Label one copy with O (before transition), and
the other with 1 (after transition).
3. For each input of the combinational logic that is the output of a flip-flop, add
clauses to make the value in the 0 copy equal to the value in the 1 copy.
4. Add clauses for the desired output values before the transition in the O copy, and
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after the transition in the 1 copy.
5. Satisfy the formula in step 4.

For example, consider the circuit in Fig. 4.1-5.

A D
. & X :
Bistable B + Bistable
Element c E D Element
1p
Bistable
Element

Figure 4.1-5 Circuit to Describe Single Cycle Changing.

The formula for the combinational logic is
(X+D)(X+E)(X+D+E)D+A)D+B)(D+A +B)(C+E)(C+E)
The two copies (step 2 in the procedure) are
(X o+ Do)(Xo+ Eo)(Xo+ Do+ Eo)(Do + Ad)(Do + Bo)(Do + Ao + Bo)(Co + Eo)(Co + Eo)
and
(X1+ D1)(X1+ E1)(X1+ D1+ E1)(D1+ A1)(D1+ B1)(D1+ A1+ B1)(Ci+ E1)(Ci+ Ey)
There are two inputs of the combinational logic that are outputs of flip-flops: B and
C. From step 3, we add the following clauses to ntake C: andBo = B:.
(B1+ Bo)(Bo + B1)(C1 + Co)(Co + C1)
Now suppose that we want a rising transition on X. This means that wedwiant
be 0 (i.e., we need the clau¥e) and X1 to be 1 (i.e., we need to add the claXs$.
The final formula is
(X o+ Do)(Xo+ Eo)(Xo+ Do+ Eo)(Do + Ad)(Do + Bo)(Do + Ao + Bo)(Co + Eo)(Co + Eo)
(X1+ D1)(X1+ E1)(X1+ D1+ E1)(D1+ A1)(D1+ B1)(D1+ A1+ B1)(Ci+ E1)(Ci+ Ey)
(B1+ Bo)(Bo + B1)(C1 + Co)(Co + C1) Xo X1
This formula can only be satisfied if BC = 149= 0 andA: = 1. This means that
if a pattern is scanned in with B = 1 and C = 1, then changing A from 0 to 1 will change X
from O to 1.

Pattern Compaction

The above operations generate patterns for the bistable elements in the design. The
generated patterns are placed in pattern tables. Once patterns are generated for all the
bistable elements in the design, the number of patterns can be reduced by combining
patterns that are compatible. Two patternsanepatibleif none of their corresponding
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bits have conflicts, i.e., one has 0 and the other has 1. For example, the patterns 1-0 and
10- are compatible, and can be combined to 100. The patterns 1-0 and 0-- are not
compatible, because the first bit of one pattern is 1 while the other is 0. These two patterns
cannot be combined.

The patterns in a pattern table can be reduced by combining the compatible patterns
in the pattern table. The resulting patterns may themselves be combined again. The
process is repeated until no combining is possible.

4.2 Test Generation Using Elementary Operations
In the previous section, we defined some elementary operations, and showed how
they can be implemented by modifying an existing combinational ATPG system. In our
actual implementation, rather than extracting the formula and making copies, we make three
copies of the netlists, and extract formulas from them as needed. The three netlists are
callednetO , netl andnets . The functions used to implement these operations and their
arguments are:
pat = SingleCycle(net,m,d,s,qg,nets) implementation of the single
cycle operation. It has six inputs and one output.
The inputs are:
- net : netlist describing the circuit
- m bistable element under test
- d: desired value on D input of bistable element under test
- S: desired value on S input of bistable element under test
- : desired value on Q output of bistable element under test
- nets : netlist for sensitization (0 if no sensitization required)
The output is:
- pat : a test pattern that satisfies input requirements
pat = ShiftOperation(net0,netl,m,d0,d1,s0,s1,q,nets)
implementation of the shift operation. It has nine inputs and one output.
The inputs are:
- netO : netlist at time frame 0
- netl : netlist at time frame 1
- m bistable element under test
- dO: desired value on D input of bistable element under test at time 0
- d1: desired value on D input of bistable element under test at time 1
- SO: desired value on S input of bistable element under test at time 0
- S1: desired value on S input of bistable element under test at time 1

- q: desired value on Q output of bistable element under test at time 0
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- nets : netlist for sensitization (0 if no sensitization required)
The output is:
- pat : a test pattern that satisfies input requirements

pat = NormalOperation(net0,netl,m,d0,d1,s0,s1,g,nets)
implementation of the normal operation. It has nine inputs and one output.
The inputs are:
- net0 : netlist at time frame 0
- netl : netlist at time frame 1
- m bistable element under test
- dO: desired value on D input of bistable element under test at time 0
- d1: desired value on D input of bistable element under test at time 1
- SO : desired value on S input of bistable element under test at time 0
- S1: desired value on S input of bistable element under test at time 1
- q: desired value on Q output of bistable element under test at time 0
- nets : netlist for sensitization (0 if no sensitization required)
The output is:
- pat : a test pattern that satisfies input requirements

CLSensitization(net,nets,n,formula) adds clauses formula to
sensitize line to a primary output or the data input of a bistable element in
the circuit.

The inputs are:

- net : netlist describing the circuit

- nets : netlist for sensitization

- n: line to be sensitized

- formula : formula to which new clauses are added. The formula is

created by the calling function, and may already have clauses in it.

pat = SingleCycleChange(net0,netl,m,d0,d1,s0,s1,q9,nets)

implementation of the normal operation. It has nine inputs and one output.

The inputs are:

- net0 : netlist at time frame 0

- netl : netlist at time frame 1

- m bistable element under test

- dO: desired value on D input of bistable element under test at time 0

- d1: desired value on D input of bistable element under test at time 1

- SO: desired value on S input of bistable element under test at time 0

- S1: desired value on S input of bistable element under test at time 1
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- q: desired value on Q output of bistable element under test at time 0
- nets : netlist for sensitization (0 if no sensitization required)

The output is:

- pat : a test pattern that satisfies input requirements

The procedur€ompactPats() takes one argumematTable . Initially,
patTable , contains the original patterns. The patterns are replaced by the compacted
patterns in the same table.

In the rest of this section, we show how these functions are used to generate tests
for the bistable elements of the four different architectures. Each architecture is handled in
a separate section.

4.2.1 Test Generation for MD-Latches in MD-Latch Architecture

The MD-latch scan chain architecture is shown in Fig. 4.2.1-1. In Section 2.4.1
we showed that the triples for the MD-latch under test were divided in two groups: those
with T = 0 and those with T = 1. The test requirements for triples with T = 1 match the
shift operation, and the test requirements for triples with T = 0 match the normal operation.
There are 8 triples in total, four with T = 1 and four with T = 0. The difference between
the triples in each group is the value of the D input and the S input of the latch under test.
Each of the four triples corresponds to one of the combinations of values on D and S. The
procedure for generating patterns for an MD-la@bnPatsMDLatch() , is shown in
Fig. 4.2.1-2. The procedure has 5 inputs:

- latch : The latch under test

- netO : The netlist for time frame 0

- netl : The netlist for time frame 1

- patTableTO : A table to store patterns generated for triples with T = 0

- patTableT1 : Atable to store patterns generated for triples with T = 1
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Figure 4.2.1-1 MD-Latch Scan Architecture.
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The procedure begins with two nested loops that generate all the four combinations
of d (d is the value applied on the D input of the latch) and s (s is the value applied on the S
input of the latch). Since our state triples require constant values on d and s for the two
cycles, we set the same values for d in both time frames, and the same value for s in both
time frames. The initial value of the latch should be selected such that the output of the
latch changes after applying a clock cycle. Since the final value of the latch output will be
s, we need an initial value that is opposite of s (i.e., 1-s). The above discussion determines
the arguments d@hiftOperation () shown in the procedure. The result of
ShiftOperation () is a test pattern that satisfies the requirements on d and s of the latch
under test. The four patterns generate&tjtOperation () in the first loop are
stored inpatTablel

The same steps are repeated for T = 0 triples with three differences:

1. NormalOperation() is used instead &hiftOperation 0 .

2. Theg argument oNormalOperation() is 1-d instead of 1-s. In normal
operation, the D input of the latch becomes the value at the output after a
clock cycle. Therefore, since we want the output to change value, we need
to start with the opposite value df(i.e., 1-d).

3.patTable0 is used instead giatTablel. patTableO stores all the
patterns for triples with T = 0.

ProcedurégsenPatsMDLatch() needs to be called once for every MD-latch in the

circuit. The procedure for doing this, TestMDL(), is shown in Fig. 4.2.1-3. The

GenPatsMDLatch(latch,netO,netl,patTable0,patTablel){
[* Triples with T =1 */
for (d=0;d<2; d++){
for (s =0; s < 2; s++){
pat = ShiftOperation(netO,netl,latch,d,d,s,s,1-s,0)
AddPatToTable(patTablel,pat);

}
}
[* Triples with T =0 */
for (d=0;d<2; d++){
for (s =0; s < 2; s++){
pat = NormalOperation(netO,netl,latch,d,d,s,s,1-d,0)
AddPatToTable(patTable0,pat);
}

}
}

Figure 4.2.1-2 Procedure GenPatsMDLatch() Generates Patterns for
a Scan Chain MD-Latch.
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procedure is divided into three parts:

1. Initialization: In these steps the network is duplicated for time frame 0 and time
frame 1, and the pattern tables are set up.

2. Test GeneratiorsenPatsMDLatch() is called for each latch in the design,
and the patterns generated are storgaifmable0 andpatTablel

3. Test Compaction: Patterns in each table are compacted using procedure
CompactPats() . After compaction, the patterns are written to two
separate files TO (patterns of triples with T = 0) and T1 (patterns of triples
with T = 1).

The results of running procedure TestMDL() is two files TO and T1 containing the

desired test patterns. These test patterns are applied to the circuit by:

1. Setting T = 1 (scan mode).

2. Shifting the test pattern values into the MD-latches.

3. Setting the corresponding values for time frame 0 on the primary inputs.

4. Setting T =0 (T = 1) for TO (T1) patterns, and after sufficient time for the
combinational logic to settle, check the Z outputs of the circuit.

5. Applying a clock cycle to C¥and CKp. The corresponding values for time
frame 1 on the primary inputs are set on the rising edge pf CK

6. Setting T = 1 and shifting out the MD-latch contents. The next pattern can be
shifted in at the same time.

This procedure is similar to that for applying scan patterns for combinational logic

TestMDL(network){
* Initialization */
net0 = dup(network); /* duplicate network for time 0 */
netl = dup(network); /* duplicate network for time 1 */
patTableO = newTable(); /* allocate mem for tables */
patTablel = newTable();

[* Test Generation */
foreachlatch(l,network) {
GenPatsMDLatch(l,net0,netl,patTable0,patTablel);

}

[*Test Compaction */
CompactPats(patTable0);
CompactPats(patTablel);
WritePats("TQ",PatTable0);
WritePats("T1",PatTablel);

Figure 4.2.1-3 Procedure TestMDL() Generates Patterns for All MD-
Latches.
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[McCluskey 86]. The main difference is that in step 4, T remains 1 for some of the
patterns. In step 4 we checked the outputs of the combinational logic. Even though this is
not required for testing the latches, the patterns are likely to detect many faults in the
combinational logic. The corresponding values for time frame 1 are applied on the rising
transition of CK because this is the point when the D-latch outputs, which are also
combinational logic inputs, start to change. Changing the primary inputs at this time
ensures keeping the same value on the D input of the latch under test until its output is
captured on the falling edge of K

These procedures can be described using the waveforms shown in Fig. 4.2.1-4.
Fig. 4.2.1-4a shows waveforms that correspond to the procedure for applying T1 patterns
to the circuit. Figs. 4.2.1-4b and ¢ show waveforms that correspond to the procedures for
applying TO patterns to the circuit.
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(b) Timing for TO Patterns (¢) Timing for TO Patterns for Setup
States

Figure 4.2.1-4 Waveforms for Applying Test Patterns for MD-Latch
Scan Chain.

As mentioned earlier, we will need to repeat the TO patterns so that we can capture
the outputs of the setup state of triples with T = 0. This is done by repeating the above
procedure (for TO only) except that:

1. T is set to O half a cycle before it is set in the previous procedure.

2. T is set to 1 after only half a cycle.
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4.2.2 Test Generation for TP-Latches in LSSD Architecture

The LSSD scan chain architecture is shown in Fig. 4.2.2-1. In Section 2.4.2 we
showed that the triples for the TP-latch under test are divided into two groups: those with
CK1 changing and those with TCK changing. The test requirements for triples with TCK
changing match the shift operation, and the test requirements for triples witth@Kging
match the normal operation. There are 8 triples in total, four with TCK changing and four
with CK1 changing. The difference between the triples in each group is the value of the D
input and the S input of the latch under test. Each of the four triples corresponds to one of
the combinations of values on D and S. The procedure for generating patterns for a TP-
latch,GenPatsTPLatch() , is shown in Fig. 4.2.2-2. The procedure has 5 inputs:

- latch : The latch under test

- netO : The netlist for time frame 0

- netl : The netlist for time frame 1

- patTableCK1 : A table to store patterns generated for triples with CK

- patTableTCK : A table to store patterns generated for triples with TCK
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Figure 4.2.2-1 LSSD Architecture.

The procedure is very similar @enPatsMDLatch()  of the previous section.
For each combination of s and d, the functdmtOperation () is called to generate a
pattern that will satisfy the requirements of s and d. The four patterns generated by
ShiftOperation () in the first loop are stored patTableTCK1 .
The same steps are repeated fon @iples with three differences:
1. NormalOperation() Is used instead &hiftOperation()
2. The g argument MormalOperation() is 1-d instead of 1-s. In normal
operation the D input of the latch becomes the value at the output.
Therefore, since we want the output to change value, we need to start with
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the opposite value (i.e., 1-d).
3. patTableCK1 is used instead giatTableTCK . patTableCK1 stores all
the patterns for CKtriples.

As with GenPatsMDLatch() , proceduré&senPatsTPLatch()  needs to be
called once for every TP-latch in the circuit. The procedure for doing this, TestTPL(), is
shown in Fig. 4.2.2-3.

GenPatsTPLatch(latch,netO,netl,patTableCK1,patTable TCK){
[* Triples with TCK changing */
for(d=0;d<2; d++){
for (s =0; s < 2; s++){
pat = ShiftOperation(net0,netl,latch,d,d,s,s,1-s,0)
AddPatToTable(patTableTCK,pat);
}
}

[* Triples with CK1 changing */
for(d=0;d<2; d++){
for (s =0; s < 2; s++){
pat = NormalOperation(netO,netl,latch,d,d,s,s,1-d,0)
AddPatToTable(patTableCK1,pat);
}
}
}

Figure 4.2.2-2 Procedure GenPatsTPLatch() Generates Patterns for a
Scan Chain TP-Latch.

TestTPL(network){
* Initialization */
netO = dup(network); /* duplicate network for time 0 */
netl = dup(network); /* duplicate network for time 1 */
patTableCK1 = newTable(); /* allocate mem for tables */
patTableTCK = newTable();

[* Test Generation */

foreachlatch(l,network) {
GenPatsMDLatch(l,net0,netl,patTableCK1,patTableTCK);

}

[*Test Compaction */
CompactPats(patTableCK1);
CompactPats(patTableTCK);
WritePats("CK1",PatTableCK1);
WritePats("TCK",PatTableTCK);

Figure 4.2.2-3 Procedure TestTPL() Generates Patterns for All TP-
Latches in Scan Chain.
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The procedure is divided into three parts:

1. Initialization: In these steps the network is duplicated for time frame 0 and time
frame 1, and the pattern tables are set up.

2. Test GeneratiorsenPatsTPLatch()  is called for each latch in the design,
and the patterns generated are storgaimableCK1 and
patTableTCK .

3. Test Compaction: Patterns in each table are compacted using procedure
CompactPats()

After compaction, the patterns are written to two separate files TCK (patterns of
triples with TCK changing) and CK1 (patterns of triples with CK1 changing). The tests
are applied to the circuit by:

1. Shifting the test pattern values into the TP-latches by using TCK and CK2.

2. Setting the corresponding values for time frame 0 on the primary inputs, and
after sufficient time for the combinational logic to settle, check the Z outputs
of the circuit..

3. Applying a clock cycle to C{TCK) and CkK for CK1(TCK) patterns. The
corresponding values for time frame 1 on the primary inputs are set on the
rising edge of CK.

4. Shifting out the test pattern using TCK and2CK he next pattern can be shifted
in at the same time.

This procedure is similar to the one for the MD-latches in the previous sub-section.

As with the MD-latches, the corresponding values for time frame 1 are applied on the rising
transition of CK because this is the point when the D-latch outputs, which are also
combinational logic inputs, start to change. Changing the primary inputs at this time
ensures keeping the same value on the D input of the latch under test until its output is
captured on the falling edge of @K The above procedure is described using the
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waveforms in Fig. 4.2.2-4. Unlike the MD-latch architecture, we need only apply each
pattern once. As explained in Chapter 2, the setup states|dfiflks are identified by
patterns of TCK triples.
4.2.3 Test Generation for MD Flip-Flops in MD Flip-Flop Architecture

The MD flip-flop scan chain architecture is shown in Fig. 4.2.3-1. Unlike the latch-
based architectures, the flip-flop-based architectures do not have state triples. Instead, they
have sequences that are required to identify unstable states. In Chapter 3, the unstable states
were categorized into groups, and each group had waveforms that described the sequences
of the group. Fig. 4.2.3-2 shows waveforms for the MD flip-flop.
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7; e
D D D
1 == 2 |= s
spi 51 |42P 1 S5 |20 1 5. 12D T SDO
1,2D o 1,2D o—---- 1,2D o
Gl Gl G1
> C2 D C2 > C2
|| L o
T_o ~————— - —

Figure 4.2.3-1 MD Flip-Flop Based Scan Architecture.

In the last two sections we had two pattern tables to store the patterns, since we
only had two types of patterns. In the case of the MD flip-flop, each group has different
waveforms so we will have more than two pattern tables. All groups except E1 and E2
have t in the T waveform. Having t in the T waveform implies that there are really two
waveforms, one with t = 0 and one with t = 1, and the group can be split in two. For
example, group A can be split into A with t =0, and A witht = 1. Groups are split this
way because patterns in a table must have the same waveform for T. Since we expect one
pattern table for each split group, we would expect 14 tables for the MD flip-flop.

However, some of the groups have the same waveforms for T, and can therefore share the
same table. This is useful because fewer tables imply fewer patterns. There are a total of
six tables. The six tables, and the groups they include are listed in Table 4.2.3-1.
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Table 4.2.3-1 Pattern Tables and Their Groups for MD Flip-Flops.

Pattern Table Groups
A0 A, D1, D2 (all with t = Q)
Al A, D1, D2, F (all witht=1)
BO B (witht =0)
Bl B (witht=1)
CO C, F(witht=0), E1, E2
C1l C (witht=0)

The procedure for generating patterns for an MD flip-f@enPatsMDFF() , has
10 inputs:

- ff : The MD flip-flop under test

- netO : The netlist for time frame 0

- netl : The netlist for time frame 1

- pAO: Pattern Table AO (see Table 4.2.3-1 for details)

- pAl: Pattern Table Al (see Table 4.2.3-1 for details)

- pBO: Pattern Table BO (see Table 4.2.3-1 for details)

- pB1: Pattern Table B1 (see Table 4.2.3-1 for details)

- pCO: Pattern Table CO (see Table 4.2.3-1 for details)

- pC1: Pattern Table C1 (see Table 4.2.3-1 for details)

- nets : netlist for sensitization

The structure of the procedure is similar to that of the latches. Nested loops are
used to generate different combinations of s d and g. Each combination is used to call one
of the elementary operations. The resulting pattern is stored in the appropriate pattern table.
Since there are many different groups and pattern tables, the handling of the groups is
summarized in Table 4.2.3-2. This table shows for each group, how many cycles are
needed for the test, the type of operation used to generate the test, the initial inputs or
outputs that need to be set, and which input needs to change, the sensitization path
(combinational logic or straight through the scan chain), and the pattern table the pattern is
stored in. Fig. 4.2.3-3 shows part@nPatsMDFF() . Proceduré&enPatsMDFF()
needs to be called once for every MD flip-flop in the circuit. The procedure for doing this,
TestMDFF(), is shown in Fig. 4.2.3-4.
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Table 4.2.3-2 Handling Groups in ATPG for MD Flip-Flop Scan Chain.

Group t Cycles | Operation Initial Sett Change| Sense | Pattern
Input Path Table
A 0 2 Normal | S,D,Q — CL A0
A 1 2 Shift S,D,Q — Scan Al
B 0 1 Single | S,D,Q — CL BO
B 1 1 Single | S,D,Q — Scan Bl
C 0 2 Normal S,D — Scan Co
C 1 2 Shift S,D - CL C1
D 0 2 Normal S,D DorS CL A0
D 1 2 Shift S,D DorS Scan Al
E, - 2 Normal S,D D Scan Co
E, - 2 Shift S,D S CL C1
F 0 1 SingleC S,D D CL CO
F 1 1 SingleC| S,D,Q D Scan Al

GenPatsMDFF(ff,net0,net1,pA0,pAl,pB0,pB1,pCO,pC1,nets){
/* Waveform A, t=1*/
for(d=0;d<2; d++}
for (s =0; s < 2; s++){
for (9 =0; q < 2; g++){
pat = ShiftOperation(netO,netl,ff,d,d,s,s,q,0);
AddPatToTable(pAl,pat);
}
}
}
[* Waveform A, t =0 */
for(d=0;d<2; d++}
for (s =0; s < 2; s++){
for (@ =0; q<2; g++X
pat = NormalOperation(netO,netl,ff,d,d,s,s,q,nets);
AddPatToTable(pAO,pat);

}
}

J

Figure 4.2.3-3 Part of Procedure GenPatsMDFF() Generates Patterns
for a Scan Chain MD Flip-Flop.
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TestMDFF(network){

[* Initialization */

netO = dup(network); /* duplicate network for time 0 */

netl = dup(network); /* duplicate network for time 1 */

nets = dup(network); /* duplicate network for sensitize */
PAO = newTable(); /* allocate mem for tables */

bCl = newTable();

[* Test Generation */

foreachff(f,network) {
GenPatsMDFF(f,net0,net1,pA0,pAl,pB0,pB1,pCO,pC1,nets);

}

[*Test Compaction */
CompactPats(pAO0);

CompactPats(pBl);
WritePats("AQ",pA0);

WritePats("Cl",pAl);

Figure 4.2.3-4 Procedure TestMDFF() Generates Patterns for All MD
Flip-Flops in Scan Chain.

The procedure is divided into three parts:

1. Initialization: In these steps the network is duplicated for time frame 0, time
frame 1 and path sensitization. Also, the pattern tables are set up.

2. Test GeneratiorenPatsMDFF() is called for each flip-flop in the design, and
the patterns generated are storepAQ, pAl, pB0O, pB1, pCO andpC1.

3. Test Compaction: Patterns in each table are compacted using procedure
CompactPats()

The procedure for applying these patterns to the circuit is similar to that of the

latches in the last two sections, except that we have six waveforms to follow. These
waveforms are shown in Fig. 4.2.3-5. These waveforms describe the procedure for
applying the patterns to the chip. Primary inputs are appligchatti.
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4.2.4 Test Generation for TP Flip-Flops in TP Flip-Flop Architecture

The TP flip-flop scan chain architecture is shown in Fig. 4.2.4-1. Unlike the latch-
based architectures, the flip-flop-based architectures do not have state triples. Instead, they
have sequences that are required to identify unstable states. In Chapter 3 the unstable states
were categorized into groups, and each group had waveforms that described the sequences
of the group. The waveforms for the TP flip-flop are shown in Fig. 4.2.4-2.

Unlike the MD flip-flop waveforms, the waveforms for the TP flip-flop fall into
only two types: those with aj(pulse and those without one. Therefore, we will use only
two pattern tables. The two tables, and the groups they include are listed in Table 4.2.4-1.
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Figure 4.2.4-1 TP Flip-Flop Based Scan Architecture.

Table 4.2.4-1 Pattern Tables and Their Groups for TP Flip-Flops.

Pattern Table Groups
Al Al, Bl C1
A2 A2,B2,C2,D

The procedure for generating patterns for an TP flip-fignPatsTPFF() , has
5 inputs:

- ff : The MD flip-flop under test

- netO : The netlist for time frame 0

- netl : The netlist for time frame 1

- pAl: Pattern Table Al (see Table 4.2.4-1 for details)

- pA2: Pattern Table A2 (see Table 4.2.4-1 for details)
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The structure of GenPatsTPFF() is similaGenPatsMDFF() . Nested loops are
used to generate different combinations of s, d and q. Each combination is used to call one
of the elementary operations. The resulting pattern is stored in the appropriate pattern table.
Since there are many different groups, the handling of the groups is summarized in Table
4.2.4-2. This table shows for each group, how many cycles are needed for the test, the
type of operation used to generate the test, the initial inputs or outputs that need to be set,
and which input needs to change, and the pattern table the pattern is stored in. Fig. 4.2.4-3
shows part oGenPatsTPFF() .

GenPatsTPFF(ff,net0,netl,pAl,pA2)Y{
[* Waveform Al */
for(d=0;d<2; d++}
for (s=0; s<2; s++){
for (9 =0; q < 2; g++){
pat = NormalOperation(netO,netl,ff,d,d,s,s,q,0);
AddPatToTable(pAl,pat);
}
}
}
[* Waveform A2 */
for(d=0;d<2; d++}
for (s =0; s < 2; s++){
for (@ =0; q < 2; q++X
pat = ShiftOperation(netO,netl,ff,d,d,s,s,q,0);
AddPatToTable(pA2,pat);
}

}
J

Figure 4.2.3-3 Part of Procedure GenPatsTPFF() Generates Patterns
for a Scan Chain TP Flip-Flop.

Table 4.2.4-2 Handling Groups in ATPG for TP Flip-Flop Scan Chain.

Group | Cycles | Operation Initial Setf Change| Sense | Pattern
Input Path Table
Al 2 Normal | S,D,Q - Scan Al
A2 2 Shift S,D,Q - Scan A2
Bl 2 Normal S,D D Scan Al
B2 2 Shift S,D D Scan A2
Ci 2 Normal S,D S Scan Al
C2 2 Shift S,D S Scan A2
D 2 Shift S,D D Scan Al
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ProcedurésenPatsTPFF() needs to be called once for every TP flip-flop in the
circuit. The procedure for doing this, TestTPFF(), is shown in Fig. 4.2.3-4. The
procedure is divided into three parts:

1. Initialization: In these steps the network is duplicated for time frame 0 and time

frame 1, and the pattern tables are set up.

2. Test GeneratiotGenPatsTPFF() s called for each flip-flop in the design, and

the patterns generated are storegAd, pA2.

3. Test Compaction: Patterns in each table are compacted using procedure

CompactPats()

TestTPFF(network){
* Initialization */
netO = dup(network); /* duplicate network for time 0 */
netl = dup(network); /* duplicate network for time 1 */
pAl = newTable(); /* allocate mem for tables */
pA2 = newTable();

[* Test Generation */

foreachff(f,network) {
GenPatsMDFF(f,net0,net1,pA0,pAl1,pB0O,pB1,pCO,pC1);

}

[*Test Compaction */
CompactPats(pAl);
CompactPats(pA2);
WritePats("Al",pAl);
WritePats("A2",pA2);

Figure 4.2.3-4 Procedure TestTPFF() Generates Patterns for All TP

Flip-Flops in Scan Chain.

The procedure for applying these patterns to the circuit is similar to that of the MD
flip-flops in the last section, except that we have two waveforms to follow. These
waveforms are shown in Fig. 4.2.4-5. These waveforms describe the procedure for
applying the patterns to the circuit. As with the MD flip-flop architecture, primary inputs
are applied aptand .

TCK | | |‘ | || | | | | | TCK
CKl CKl

Scan In |t0 Itl 2l Scan out Scan In |'[0 1 t2| Scan Out
(a) Waveform Al (b) Waveform A2

Figure 4.2.3-5 Waveforms for Applying Test Patterns for TP Flip-
Flop Scan Chain.

127



4.3 Summary

In this chapter, we used the results of Chapters 2 and 3 to modify a stuck-at fault
automatic test generation program for stuck-at faults to generate patterns to test the bistable
elements in the design. Our implementation is a modified version of SIS, with four new
functions. Given a netlist, each function generates patterns for all the bistable elements of
one of the four scan architectures. Chapter 6 has some results of running our
implementation on some benchmark circuits.
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Chapter 5. Fault Simulation

The effectiveness of a test can be measured by the number of defects it can detect. As
mentioned in Chapter 1, fault models are often used to represent defects, and the
effectiveness of tests is measured by fault simulation. Even though the stuck-at models
are often used for fault simulation, we use the more accurate (for CMOS circuits)
CrossCheck fault models, [Sucar 89; Chandra et. al. 93], for our simulation. The fault
models comprise shorted interconnects (STI), open interconnects (OPI), short-to-power
(STP), short-to-ground (STG), transistor stuck-on (SON), and transistor stuck-open
(SOP). In the simulations, faults are injected by modifying a copy of the circuit
description. The faulty circuits were simulated using HSpice [Kielkowski 94].

In CMOS, there are some faults whose presence does not change the functionality
of the host circuit. Some of these cannot be detected (and thus are untestable or
redundant). Others that cannot be detected by a Boolean voltage test (since the circuit
functionality is correct) can, nevertheless, be discovered by a current test or a delay test
[Ma and McCluskey 95]. The simulations reported here record whether tests caused
excessive supply current (IDDQ) as well as incorrect outputs. The current limit for
IDDQ testing is often determined experimentally, by plotting the values of many good
and bad die, and selecting an appropriate threshold that would detect as many faulty
circuits as possible without discarding many good ones [Hawkins 89] and [Perry 92]. For
our simulations, the current limit is determined by plotting the maximum observed
current for each fault, and selecting an appropriate threshold from the graph.

Four different bistable elements were simulated, first with traditional tests, and
then with checking experiments. Each test was run twice, once with a cycleyoiee (
time here is defined to be the time between the application of inputs) of 100 ns, and once
with a cycle time of 10 ms. Outputs were measured just before applying the next input.
The 100 ns cycle time is a typical test time for a boolean test, and the 10 ms cycle time is
needed to allow IDD to settle to its quiescent value. For all four bistable elements, we
selected a threshold 100,000 times the IDDQ current of the fault-free circuit based on a
plot of the maximum currents of the faulty circuits. For each test several numbers are
reported: the number of faults detected by either boolean or IDDQ testing, the number of
faults detected by boolean testing at 100 ns or 10 ms, the number of faults detected by
boolean testing at 100 ns alone and by testing at 10 ms alone, and number of faults
detected when only an IDDQ test is done.
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In all four bistable elements the checking experiments detected faults missed by
the traditional test, showing that they are more effective than the traditional tests. The
checking experiments do miss some faults, but after a detailed analysis, these faults are
shown to be untestable. Part of the analysis is presented in this chapter, and the rest is
presented in Appendix C.

Even though checking experiments were generated to verify the functionality of
the flip-flops, the results show that, in addition to detecting functional faults, they are
very useful in detecting faults that only cause excessive current.

5.1 Fault Simulation of D-Latch

We simulated four different tests for the D-latch. The first test is a pin fault test
set, which targets stuck-at faults on the input and output of the D-latch. A D-latch can be
viewed as a multiplexer that selects between D and Q, with C being the select signal. The
second test is a multiplexer-based test. Patterns for testing multiplexers can be found in
Makar and McCluskey [88]. The third test is a D-latch checking experiment (see Section
2.2.1) and the fourth test is a checking experiment for a D-latch in a shift register (see
Section 2.3). The four tests are shown in Fig. 5.1-1. Dashed vertical lines show when the
outputs are checked. The outputs of all except the last test are checked after every input

¢ |
Pin Fault Test D _I_I—l_i_i_
Q i

1 1
1 1
1 1
Multiplexer Test D w
1 1 :
1 1 1

] ]
LI
Checking
Experiment
] ] ]
] ] ]
Checking 1 1 L L
Experiment 1 1 ] ]
For Shift Register D 4 ' ' L:_:_
] [} ]
] 1
]

D-Latch 0 | | | :

Figure 5.1-1 Tests Applied to D-Latch (Dashed Lines Indicate
When Output Checked).
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Figure 5.1-2 Transmission Gate D-Latch.

change. For the last test, the output is only checked before a positive transition of C, as
this is the capture point for the shift register. Fig. 5.1-2 shows the simulated
implementation. This implementation is chosen because it is commonly used in designs
for its small size.

Fig. 5.1-3 shows the distribution of maximum IDDQ values for the faulty
circuits. Here IDDQf refers to the IDDQ value of a faulty circuit, and IDDQg refers to
the IDDQ value of the fault-free circuit (g for good). The graph plots the ratio of IDDQf
/ IDDQg (i.e., the ratio of IDDQ increase), versus the faults. The graph shows that all but
7 of the faults have an IDDQ value that is over 100,000 times that of the fault-free circuit
IDDQ current. The graph also shows a sharp rise in IDDQf / IDDQg from 1 to 100,000.
Such a sharp break in the graph makes for a good IDDQ threshold. Therefore, the IDDQ
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Figure 5.1-3 Current Distribution Graph for D-Latch (IDDQg = 320
pA).
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threshold selected is 100,000 times the IDDQ current of the fault-free circuit. The
maximum IDDQ value for the fault-free circuit was 320 pA, thus the threshold selected
was 32 UA.

The results of the simulations are shown in Table 5.1-1. The table shows that the
pin fault test and the multiplexer test miss several faults that are detected by the checking
experiment. The faults missed by each of the tests are shown graphically in Figs. 5.1-4
through 5.1-7. In these figures white ovals indicate SOP or OPI faults, black ovals
indicate SON faults, and thick black lines indicate STI faults. All STP and STG faults
are detected by all three tests.

Table 5.1-1 Number of Faults Detected in D-Latch (Total Faults = 67).

Boolean and Boolean Alone| Boolean Alone| IDDQ Alone
IDDQ (100 ns and 10 ms)100 ns, 10 ms)
Pin Fault Test 54 35 (32,32) 34
Multiplexer Test 59 36 (33,36) 43
D-Latch 64 47 (47,45) 60
Checking Exp.
Shift Reg D-Latch 66 a7 (47,43) 61
Checking Exp.
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Figure 5.1-4 Faults Missed by Checking Experiment for D-Latch in Shift
Register.
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Figure 5.1-7 Faults Missed by Pin Fault Test for D-Latch.
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The faults missed by the checking experiment fall into one of two categories. The
faults on the MO transistor cause the number of states to increase. With the presence of
this fault, the application of CD = 10 in state 7 (see Table 5.1-2), produces an output of 0.
However, when the same input is applied to state 3, the output is 1. Therefore, states 7
and 3 cannot be in the same internal state, and there must be a third internal state. The
stuck-on fault on M5 is not detected because it is on the feedback path. Even though not
indicated in the figures, the NMOS transistors of the transmission gates are stronger than
their PMOS counterparts. This makes it possible to detect M2 stuck-on, but not detect
M5 stuck-on. M5 stuck-on was the only fault missed by the MD-latch shift register
checking experiment, implying that the checking experiment detected all the detectable
faults.

Table 5.1-2 Flow Table for Two-State D-Latch.
CD Q
00 01 11 10
2.0 (@0 7 ®.0]| o
[3].1] [5].1 [7].1 6 1
The results in Table 5.2-1 also show that there many faults are detected only by
IDDQ (see Fig. 5.1-8). These faults fall into three groups: stuck-on faults on the inverter

PMOS transistors, stuck-open faults that cause degradation of internal signals, and
shorted interconnects involvin® . These faults are discussed in more detail in

Appendix C. There are also some faults that are detected only by boolean test, and
cannot be detected by IDDQ measurement. These are also discussed in Appendix C.

Ol

Figure 5.1-8 Faults Detected by IDDQ Test Missed by Boolean Test.
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5.2 Fault Simulation of MD-Latch

We simulated three different tests for the MD-latch. The first test, a traditional
test for a scan chain, involves scanning in zeroes and ones while ignoring the values on
the D inputs of the MD-latches. Such a scan test is shown in Fig 5-2.1. For a fair
comparison of the scan test with our test, the scan test is augmented with patterns to
detect stuck-at faults on the D input of the MD-latch. Such patterns would be used in the
full circuit to test the output of the combinational logic driving the D input of the latch.
The other two tests are the MD-latch checking experiment (section 2.2.3) and the
checking experiment for the MD-latch in a scan chain (section 2.4.1). The
implementation used for simulation is shown in Fig. 5.2-2.
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Figure 5.2-2 MD-Latch Implementation.

Fig. 5.2-3 shows the distribution of maximum IDDQ values for the faulty circuits.
The graph also shows a sharp rise in IDDQf / IDDQg from 1 to 100,000. Such a sharp
break in the graph makes for a good IDDQ threshold. Therefore, the IDDQ threshold
selected is 100,000 times the IDDQ current of the fault-free circuit. The maximum IDDQ
value for the fault-free circuit was 487 pA, thus the threshold selected was 48.7 uA.
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The simulation results are compared in Table 5.2-1. The only fault missed by the
checking experiment is M5 stuck-on. This is the same fault missed by the checking
experiment for the D-latch. As with the D-latch, the fault is untestable because of the
relative strengths of the PMOS and NMOS transistors. The results in Table 5.2-1 show
that the scan test misses over 20 percent of the functional faults that were detected by the
checking experiment.
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Figure 5.2-3 Current Distribution Graph for MD-Latch (IDDQg = 487 pA).

IDDQf / IDDQg

Table 5.2-1 Number of Faults Detected in MD-Latch (Total Faults = 129).

Boolean and Boolean Alone | Boolean Alone | IDDQ Alone
IDDQ (100 ns and 10 ms)(100 ns, 10 ms)
Traditional Test 123 78 (78,74) 116
MD-Latch 128 94 (92,87) 122
Checking Exp.
Scan MD-Latch 128 92 (92,85) 122
Checking Exp.
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5.3 Fault Simulation of D Flip-Flop

We simulated four different tests for the D flip-flop. The first test is a pin fault
test set, which targets the faults on the input and output of the D flip-flop. The other
three tests are: the checking experiment assuming no restrictions that was derived in
Section 3.1.1, the data sequence transition tour test [Saxena 93], and the checking
experiment for a shift register flip-flop (see section 3.2). The data sequence transition
tour applies one of the four data transitions (0->0, 0->1, 1->1 and 1->0) in each cycle .
The checking experiment for a shift register flip-flop (labeled as Shift Reg. D FF
Checking Exp.) extends the data sequence transition tour by having three consecutive
cycles with D = 0, and three consecutive cycles of D = 1. It includes the 1->0 and 0->1

SN
o i

(a) Pin Fault Test for D Flip-Flop

o

=

]

o LT L] :
@ i A
(b) Checking Experiment for D Flip-Flop

SR S e | N

(c) Data Sequence Transition Tour for D Flip-Flop

c LML

T

(d) Checking Experiment for Shift Register D Flip-Flop

Figure 5.3-1 Tests Applied to D Flip-Flop (Dashed Lines Indicate When
Output is Checked).
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M11

Figure 5.3-2 D Flip-Flop Implementation.

transitions. The four tests are shown in Fig. 5.3-1. In this figure, dashed lines indicate
when the output is sampled. Except for the second test, the output is always sampled just
before the rising transition of the C input. For the second test, the output is sampled after
every input change. The flip-flop implementation used for the simulation is shown in

Fig. 5.3-2.

Fig. 5.3-3 shows the distribution of maximum IDDQ values for the faulty circuits.
The graph shows a sharp rise in IDDQf / IDDQg from 1 to 100,000. Such a sharp break
in the graph makes for a good IDDQ threshold. Therefore, the IDDQ threshold selected
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Figure 5.3-3 Current Distribution Graph for D Flip-Flop (IDDQg = 800 pA).
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is 100,000 times the IDDQ current of the fault-free circuit. The maximum IDDQ value
for the fault-free circuit was 800 pA, thus the threshold selected was 80 uA.

The results of the simulations are shown in Table 5.3-1. The table shows that the
pin fault test misses several faults that are detected by the checking experiment. The
functional faults missed by the pin fault test but detected by the checking experiment (10
of them) are shown in Fig. 5.3-4. If IDDQ measurement is also used, the faults missed (4
of them) are shown in Fig. 5.3-5. Faults that are missed by the checking experiment (15
of them) are shown in 5.3-6. In these figures white ovals indicate SOP or OPI faults,
black ovals indicate SON faults, and thick black lines indicate STI faults. STP faults are
shown as thick black lines connected to VDD. All STG faults are detected by all tests.

Table 5.3-1 Number of Faults Detected in D Flip-Flop (Total Faults = 170).

Boolean and Boolean Alone| Boolean Alone| IDDQ Alone
IDDQ (100ns and 10ms) (100 ns, 10 ms)

Pin Fault Test 151 129 (109,127) 79
Checking EXxp. 155 139 (118,138) 103
Data Sequence 155 139 (117,138) 100
Transition Tour
Shift Reg. D FF 155 139 (117,138) 100
Checking Exp.

Figure 5.3-4 Faults Missed by Pin Fault (10 of them) Test but Detected by
Checking Experiment for D Flip-Flop (Boolean Test Alone).
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The faults missed by the checking experiment fall into two main groups. The first
group of faults missed by the checking experiment is the stuck-open faults on the
transmission gates. These faults, though undetectable, could add a delay to the circuit,
and will thus behave as delay faults. A pattern that would detect a path delay fault to the
input of the flip-flop may be able to detect these faults.

M16 M10
C CKN CK1

Figure 5.3-5 Faults Missed by Pin Fault (4 of them) Test Set but
Detected by Checking Experiment for D Flip-Flop (Boolean and
IDDQ Tests Used).

M16 M10

Figure 5.3-6 Faults Missed by Checking Experiment.
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The other group of faults missed by the checking experiment, the stuck-ons and
shorted-interconnects, will turn the master or slave latch into a dynamic latch. Since a
dynamic latch cannot guarantee holding its value for a very long time, then loading a
value and waiting a long time may change the value in the flip-flop and the fault would
be detected. Thus a very slow test (data retention test) is needed for these faults. A more
detailed analysis of these faults is given in Appendix C. This analysis shows that faults
missed by the checking experiment are undetectable. In other words, the checking
experiment detects all the detectable faults. The pin fault test misses many faults detected
by the checking experiment.
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5.4 Fault Simulation of MD Flip-Flop

Four different tests for the MD flip-flop were simulated using HSpice. The first
test, a traditional test, is based on scanning in and out the 01100 pattern, and patterns that
would detect stuck-at 0 and stuck-at 1 on the D input of the flip-flop. The second test is a
pin fault test set, which targets stuck-at faults on the input and output of the MD flip-flop.
The other two tests are the MD flip-flop checking experiment (section 3.1.2) and the
checking experiment for the MD-latch in a scan chain (section 3.3.1). The flip-flop
implementation used for the simulation is shown in Fig. 5.4-1.
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Figure 5.4-1 MD Flip-Flop Implementation Used in Simulation.

Fig. 5.4-2 shows the distribution of maximum IDDQ values for the faulty circuits.
The graph shows a sharp rise in IDDQf / IDDQg from 1 to 100,000. Such a sharp break
in the graph makes for a good IDDQ threshold. Therefore, the IDDQ threshold selected
is 100,000 times the IDDQ current of the fault-free circuit. The maximum IDDQ value
for the fault-free circuit was 1 nA, thus the threshold selected was 100 uA.
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Figure 5.4-2 Current Distribution Graph for MD Flip-Flop(IDDQg = 1 nA).

The results of the simulations are shown in Table 5.4-1. From the table, there are
19 faults that were not detected by the checking experiment. These faults are shown
graphically in Fig. 5.4-3. The table also shows that the pin fault test misses ten faults that
are detected by the checking experiment. These faults are shown in Fig. 5.4-4. In these
figures white ovals indicate stuck-open or open-interconnect faults, black ovals indicate
SON faults, and thick black lines indicate shorted-interconnect faults. All short-to-power
and short-to-ground faults are detected by all tests. The faults missed by the checking
experiment fall into the same two groups as the faults missed by the checking experiment
for the D flip-flop.

A detailed analysis of these faults is given in Appendix C. This analysis shows
that faults missed by the checking experiment are undetectable. In other words, the
checking experiment detects all the detectable faults. The traditional test and the pin fault
tests miss many faults (about 10 %) detected by the checking experiment.

Table 5.4-1 Number of Faults Detected in MD Flip-Flop (Total Faults = 256).

Boolean and Boolean Alone| Boolean Alone | IDDQ Alone
IDDQ (100 ns and 10 ms)100 ns, 10 ms)

Traditional Test 212 167 (145,166) 155
Pin Fault Test 227 184 (162,183) 161
MD Flip-Flop 237 207 (186,204) 182
Checking Exp.

Scan MD Flip-Flog 237 206 (184,204) 181

Checking Exp.
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Figure 5.4-3 Faults Missed by Checking Experiment of MD Flip-Flop (19 of
them).
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Figure 5.4-4 Faults Missed by Pin Fault Test Detected by Checking
Experiment of MD Flip-Flop (10 of them).
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5.5 Summary

In this chapter we presented fault simulation results for four different bistable
elements, in which we compared checking experiments against traditional and pin fault
tests. In all cases, we showed that our checking experiments detected all detectable faults
in the circuits, while the traditional tests missed many faults. For example, the traditional
test for the MD flip-flop missed about 10 percent of the faults detected by the checking
experiment. The traditional test for the D-latch missed as many as 20 percent of the
faults detected by the checking experiment. These results show the effectiveness of
checking experiments in detecting defects in bistable elements.
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Chapter 6. ATPG Results

In Chapter 4, we presented ATPG algorithms for generating patterns to test memory
elements in scan designs. In that chapter, we described an implementation based on
modifying SIS [Sentovich et. al. 92]. We present some results from running this
program. First, we present results for a small circuit, a three-bit binary counter. A binary
counter is chosen because it is a commonly used circuit. A three-bit version is picked so
that the circuit is general enough, while at the same time small enough to allow for
HSpice fault simulation. As in Chapter 5, HSpice is used to perform fault simulation
using CrossCheck models, to compare the effectiveness of different tests. Even though it
would be difficult to fault simulate the ISCAS-89 benchmark circuits [Brglez et. al. 89]
using HSpice, we generate patterns for them, and compare their size with the size of
stuck-at test patterns. Results indicate that the size of our test increases with circuit size
at a similar rate as the stuck-at test.

Two tests were generated for the three-bit counter shown in Fig. 6-1. The first
test, a traditional test, consists of five patterns: four to give 100 percent stuck-at coverage
for the combinational logic, and the 01100 pattern for testing the flip-flops. The stuck-at
patterns are shown in Table 6-1. The second test was generated by our ATPG program
for MD flip-flops described in Chapter 4. The test consists of 82 patterns. Table 6-2
shows a summary of this test. Each MD flip-flop requires 80 sub-sequences to form a
checking experiment. Since there are 3 flip-flops, we have 240 sub-sequences. Of these,

- —d
Ol .
i +
ol ?
<@
g1 ®
D2 17 2p | Q2 Dl I7p |Q1 221720 |Qo DO
sp|—21.2D0 —@ SL 1120 |—@ S0 op @
G1 Gl G1
> C2 > C2 > C2
T—@ ®
C ® o

Figure 6-1 Circuit for a Three-Bit Binary Counter.
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the program generated patterns for 133 of them. For the other 107, the program proved
that no pattern could be generated, due to the circuit structure. For example, looking at
the QO flip-flop, DO will always be the opposite value of QO, which implies that DO
cannot hold the same value for two cycles, a requirement for many of the sub-sequences
needed to form a checking experiment for flip-flop Q0. The 133 patterns were
compacted to the 82 patterns in Table 6-3. The size of our test is a lot larger than the
stuck-at test. This is mainly due to the small size of combinational logic in the circuit.
Later in this chapter, we show that the test size difference decreases with larger circuits.
As with the tester, patterns for HSpice must be scanned in before applying them to
the internal logic. Each pattern for the combinational logic requires three cycles to be
scanned in, one cycle to capture the output of the combinational logic, and three cycles to
scan out the flip-flop values. Since a new pattern can be scanned in while the flip-flop
values are scanned out, each pattern requires 4 cycles (three for scanning the pattern and
one for capturing the output of the combinational logic). The waveforms for applying
one of the patterns is shown in Fig. 6-2. On the other hand, patterns from our ATPG tool
require four or five cycles. The 82 patterns of our test are split into 6 groups, as described
in Section 4.2.3, in Table 6-3. Each group corresponds to one of the waveforms in Fig. 6-
3. Three cycles are needed to scan in the pattern and then one or two more cycles are
needed depending on the waveform used. For example, if a pattern corresponds to
waveform AO, then we need to scan in the pattern (which requires 3 cycles), set T =0,
apply two cycles (first cycle is frong to t; and the second is fromto ), set T = 1 to
scan out the values of the flip-flops. A waveform can be formed for each pattern in Table
6-1 and Table 6-3. These waveforms (in HSpice format) are used as the stimulus for the
HSpice simulation.

Table 6-1 Stuck-At Patterns for Three-Bit Binary Counter.

Pattern No. 20Q1Q0
1 111
2 011
3 101
4 110

Table 6-2 Results of ATPG for Three-Bit Binary Counter.

Number of Sub-sequences 240
Number of Sub-sequences With No Pattern 107

Number of Aborted Sub-sequences 0
Number of Sub-sequences With Pattern 133

Number of Compacted Patterns 83
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Table 6-3 Patterns From MDFF ATPG for Three-Bit Binary Counter.

AO Al BO Bl Co C1
Q20Q1Q0SpS1| Q2Q1Q0SpS1| Q2Q1Q0SpS1| Q2Q1Q0SpS1| Q2Q1Q0SpS1| Q2Q1Q0SeS1
0O00O0OO0O O0O0OO0Z1FO0 00O0-|O 00041 00O0]- - 00010
00011 00O0-1 001-11 00140 00 1f- - 000-1
001- - 0010( 010 -] 010 - 01000 00-(0O0
01000 00111 011-|0 01140 010111 01Q-0
01011 010-4¢ 011-11 01141 01100 0109-1
01100 010-1 100-10 10040 01111 O01101
01101 01100 101-|1 10141 100]|- - 01111
01110 01101 110 -|- 110- 101} - 100-1
01111 01111 111-]0 11140 11000 101-0
10000 10011 111-]|1 11141 110111 101-1
10011 101-d 1110/0 11000
101 - - 101-1 1111|121 11010
11000 11000 11101
11011 11010 1111]|1
11100 11011 111-]0
11101 11100
11110 11101
11111 11111
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Figure 6-2 Waveforms for Applying Traditional Scan Patterns.
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Figure 6-3 Waveforms for Applying Checking Experiment Test Patterns.
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Both test sets were simulated in HSpice using the fault models described in
Chapter 5. The results are summarized in Table 6-4. The checking experiment detected
45 faults that were not detected by the stuck-at test set. This small example shows that a
100 percent stuck-at test (i.e., a test generated to detect all stuck-at faults in the circuit)
can leave many real flip-flop faults undetected.

Table 6-4 shows that the checking experiment missed a large number of faults.
The large number of undetected faults is a direct result of the large number (107) of sub-
sequences for which no pattern can be generated. Another reason for the large number of
undetected faults is that we only simulated the 100 ns case because of the size of the
circuit. Therefore, we could not make IDDQ measurements. As shown in Chapter 5,
IDDQ measurement detects many faults not detected by boolean testing.

Table 6-4 Summary of Simulation Results for Three-Bit Binary Counter.

Faults Injected 651
Faults Not Detected by Traditional Method 393
Faults Not Detected by Checking Experiment 348
Faults Detected by Checking Exp. Missed by Traditiopal 45

One practical concern with testing chips is the size of the test being applied. To
address this issue, we generated patterns for the ISCAS 89 benchmark circuits for all four
architectures, and compared them to the stuck-at test lengths. Table 6-5 shows the
number of vectors for all the ISCAS 89 circuits for each architecture, and for the stuck-at
tests. The name of the ISCAS 89 circuits indicates the number of lines in the circuit.
This is directly related to the size of the circuit. The number of patterns for the LSSD
architecture is always the smallest of our tests, and the number of patterns for the MD
flip-flop architecture is always the largest.

To compare our test size with the test size of the stuck-at test, we calculate the
ratio of the size of our tests to the size of the stuck-at tests. These ratios are shown in
Table 6-6. Since the ratios do not increase considerably with circuit size, we conclude
that the size of our test will not be a problem with large circuits.

In this chapter we showed that traditional tests can miss faults inside MD flip-
flops of a small circuit. These faults may affect normal operation of the circuit. Our test
detects many of these faults. However, it did miss many faults, but that was due to the
circuit constraints. We also generated patterns for larger circuits. This showed that our
algorithm generates tests that can be practically used for testing real circuits.
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Table 6-5 Number of Patterns for Different Tests.

Circuit MD-Latch LSSD MD Flip-Flop TP Flip-Flop  Stuck-At
S27 29 19 118 52 14
S298 71 47 356 162 66
S344 97 62 395 165 65
S349 91 61 375 158 66
S382 135 85 578 244 74
S386 49 31 282 114 88
S400 133 85 576 242 71
S444 97 65 487 212 80
S510 65 43 306 149 78
S526 106 68 572 257 139
S641 187 128 578 257 124
S713 123 84 572 255 133
S820 54 37 346 144 161
S832 54 37 349 148 171

S1196 126 80 440 233 201

S1423 341 216 1640 756 218

S1488 68 45 421 179 247

S1494 68 45 422 180 243

S5378 571 336 2139 1023 700

Table 6-6 Number of Patterns Divided by Stuck-At Test Length.

Circuit MD-Latch LSSD MD Flip-Flop TP Flip-Flop  Stuck-At
S27 2.07 1.36 8.43 3.71 1.00
S298 1.08 0.71 5.39 2.45 1.00
S344 1.49 0.95 6.08 2.54 1.00
S349 1.38 0.92 5.68 2.39 1.00
S382 1.82 1.15 7.81 3.30 1.00
S386 0.56 0.35 3.20 1.30 1.00
S400 1.87 1.20 8.11 3.41 1.00
S444 1.21 0.81 6.09 2.65 1.00
S510 0.83 0.55 3.92 1.91 1.00
S526 0.76 0.49 4.12 1.85 1.00
S641 151 1.03 4.66 2.07 1.00
S713 0.92 0.63 4.30 1.92 1.00
S820 0.34 0.23 2.15 0.89 1.00
S832 0.32 0.22 2.04 0.87 1.00

S1196 0.63 0.40 2.19 1.16 1.00

S1423 1.56 0.99 7.52 3.47 1.00

S1488 0.28 0.18 1.70 0.72 1.00

S1494 0.28 0.19 1.74 0.74 1.00

S5378 0.82 0.48 3.06 1.46 1.00
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Chapter 7. Concluding Remarks

A new approach for testing memory elements in digital circuits has been
described in this thesis. Traditional approaches for testing memory elements in a scan
chain involve shifting in a sequence of zeroes and ones. We showed, in Chapters 5 and 6,
that this approach misses many faults in the circuit. These faults may affect normal
circuit operation. Our new approach is based on checking experiments for the memory
elements. Checking experiments are used because they guarantee the detection of all
faults that do not increase the number of states. Since a checking experiment makes no
assumption about the circuit implementation, it is implementation independent. This is
especially useful since designers often use different implementations of memory elements
to optimize their circuits for area and performance. Analysis of faults inside memory
elements [Al-Assadi 93] has shown that some faults inside the memory elements cannot
be mapped to functional fault models. This implies that transistor level test generation is
needed to target the specific faults. However, the checking experiment will detect these
faults without special analysis since it detects all the faults inside the memory element.

Our approach “breaks up” the checking experiment into a set of small sub-
sequences. For each of these sub-sequences a test pattern is generated. By automating
the process of generating the patterns, a designer or test engineer need only provide a gate
level description of the circuit to generate tests that together guarantee a checking
experiment for each memory element in the design. These test patterns are scanned in
like any normal pattern, appropriate changes to the control inputs of the memory
elements are applied, and the results are scanned out.

Our implementation of the test generator was based on modifying an existing
stuck-at test tool. This was done to illustrate that current tools can be easily adapted to
include tests for memory elements. The implementation was done in a hierarchical
fashion, where elementary functions were used to implement common features needed
for the different architectures. This not only made it easier to debug problems, but also
makes it easier to add tests for new memory element types in the future. The
implementation currently includes test generators for the four different implementations
discussed in this thesis.

Our test was compared with the traditional test by performing fault simulation of
some of the memory elements. The results clearly indicate that there are faults that
traditional tests miss that are detected by our new test. Though the size of our test was
considerably larger than that of the stuck-at test for the small binary counter, we showed
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that the test size increases with circuit size by about the same rate as the test for stuck-at
faults. In conclusion, tests based on checking experiments for latches and flip-flops are a
thorough economic technique for testing the memory elements of digital circuits.
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Appendix A. Using Checking Experiments To Test Two-State Latches

This appendix contains revised text of Makar, S.R. and E.J. McCluskey, “Using
Checking Experiments to Test Two-State Latches,” CRC Technical Report 94-11.
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1. Introduction

Tests for stuck-at faults at latch inputs and outputs miss many internal faults [Reddy 86],
[Lee 90] and [Al-Assadi 93]. Reddy, in [Reddy 86], derived tests for stuck-open faults in
different latch implementations. Lee, in [Lee 90], analyzed bridging faults in scan registers, and
combined the use of current and voltage tests. Al-Assadi, in [Al-A884dinapped many, but
not all, of the internal faults to functional fault models. He also showed that some of the internal
faults cannot be mapped to functional fault models. What is needed is a test set that detects all
faults (both internal and I/O faults). This paper presents such test sets.

A checking experimeli$ an input-output sequence that distinguishes a given state
machine from all other state machines with the same inputs and outputs, and the same number of
or fewer states. Checking experiments were first defined by Hennie as follows, “Any circuit that
responds to thehecking experimeim accordance with a given state table and starting state
either must be operating correctly or else must have suffered a malfunction not in the given
class.” [Hennie 64]. The important property of a checking experiment is that it contains enough
information to derive the flow table.

Even though Hennie’s work was for pulse-mode circuits (often called synchronous
sequential circuits), checking experiments can be derived for fundamental-mode circuits (often
called asynchronous circuits) by modifying the procedure. Friedman, in [Friedman 71],
discusses the restrictions in fundamental-mode circuits. Since there is no inherent clock, the
machine can change state after any input changes, and the same input cannot be repeated. Also,
for deterministic behavior, only one input can be changed at a time. Some faults can cause
critical races, making the behavior non-deterministic, and can thus not be guaranteed to be
detected. We did not encounter such faults in our simulations.

In Section 2, we present various latches and minimum-length checking experiments for
them. In Section 3, we present a general technique for deriving checking experiments for two-
state latches. Separate sub-sections are devoted to the derivation of checking experiment
requirements and minimum-length checking experiments for each latch type, with details given
in the appendices. The checking experiment for the D-latch was simulated in HSpice using a
transmission gate implementation. The results of this simulation are compared with those of a
pin fault test set and a multiplexer-based test set in Section 4.
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2. Latches and Their Minimum-Length Checking Experiments

Various latches are discussed in this paper (see Table 2-1). The simplest latch type is the
SR-latch. AnSR-latchis a sequential element that can be set or reset by activating the
appropriate input. Even though the SR-latch is still occasionally used, the most commonly used
latch today is the D-latch. B-latchis a sequential element, in which the data input is
propagated to the output when the clock is active, otherwise it holds the stored valtatci
with Asynchronous Set/Reseh D-latch that can be set or reset when the clock is not active.
Scan-paths require latches with two different data sources. These can be either Multiplexed-Data
latches or Two-Port latches. Multiplexed-Data latci{MD-latch) is a D-latch with multiplexed
data inputs; dwo-Port latchhas two control inputs with the data source determined by the
active control input [McCluskey 86]. Boad Enable latchis a D-latch with a gated control
input, and @&-Enable latchis a D-latch with gated data. AOR Input latctperforms an
exclusive-or operation on its two data inputs. This latch is commonly used in an LFSR to
generate pseudo-random vectors, and to compress results. Other latches commonly used for
BIST are thaBuilt-In Logic Block Observer latch (BILBO latctgnd theConcurrent Built-In
Logic Block Observer latches (CBILBO latche$he BILBO latch has two data inputs. It can
be configured to load either of the two inputs (one a scan input, and the other for normal

Table 2-1 Latches and Their Excitation Functions.

Latch Type Excitation Function Assumptio‘ns M*

SR-Latch Q=S+Rq SR=0 6

D-Latch Q=CD+Cq 7
Async?f;lr_(?rstcjngwstgtll?eser Q=R (@ +CD+Cq SR=0 14
MD-Latch Q=C(TS+TD)+Cq 26
Two-Port Latch Q=CD; +C,D,+ 6162q Ci1C2=0 23
Load Enable Latch Q=CLD+ (TQq 15
D-Enable Latch Q=CDE +Cq 16
XOR Input Latch Q=C(D®8)+Cq 13
BILBO Latch Q=C(B,D ®B,S)+Cq 58
CBILBO Latch Q=CHBD®S)*Cq 2>
Q,=C(B,S + B,D)+Cq, 26

*M - minimum length (number of test vectors) of checking experiment.
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operation), load the exclusive-or of the two inputs (for signature analysis), or load 0. The
CBILBO latches, an extension of the BILBO latch, are two latches that can operate
simultaneously as a pseudo-random pattern generator and a signature analyzer. The two latches
are treated separately, with outputsdpd @. Table 2-1 shows the excitation function of each

of these latches and the minimum-length of a checking experiment. Minimum-length checking
experiments for each of these latches are shown in Tables 2-2 through 2-11. Details for each
latch type are presented in Section 3.

Table 2-2 A Minimum-Length (6) Checking Experiment for a SR-Latch.

S 0O, 0] 1] 0/, 0/ O
R 1/ 0 0 0] 1 0
Q 0O/ 0l 1] 1 0Ol O

Table 2-3 A Minimum-Length (7) Checking Experiment for a D-Latch.

C 1.1/ 0] 0 1] 0 O
D 1, 0] 0 1] 1| 1 0
Q 1 0/ 0] 0O 1] 1| 1

Table 2-4 A Minimum-Length (14) Checking Experiment for an Asynchronous
Set/Reset Latch.

C 1,1, 0, 0, 0] 0O, O] O] O O O O 1 Q@
D 1,0/, 0 0, 0, O, O 2, 2/, 1 1 1 1 1
R o, 0, 0| O, 0O 1/ 0L 0f] 0 0O 1 0 0 (@
S 0O 0 0/, 1 0 0 0O 0O 1 0 0 0o 9 d
Q 1 0/, 0/ 1] 1] 0] 0/l O 1 1 o o 1 1
Table 2-5 A Minimum-Length (26) Checking Experiment for an MD-Latch.
D |(1/1/100011110000000000J1/2/1]1 1)1
S |000000CO0O011114241217121000|1|2/1/1 00O
T |1/0000 0000000001121 11 1/2|12/|1|2]1/1(1
Cc 1110010001001 0010010/0/0/2 0010
Q@ |0/11 1000011100012 171000/0/1/11/0]0
Table 2-6 A Minimum Length (23) Checking Experiment for a Two-Port Latch.
Dp |2/0/,0,0 0 00001111111 100011 1|1
i /1/1,0/00 0 000010 0O0O0O06GCOD@ 1T 00B]1]|0
D |10/0/0/1 11 00000000111 112 1 12 1|1
C 0,0 0/O0 100100001001 000001010
Q 1 0001 117100011 000 1 12 0101011 ]1
Table 2-7 A Minimum-Length (15) Checking Experiment for a Load Enable Latch.
L 1/1 0, 0|21 0 O 1| 0 0 1 1 0 0
D 1,0, 0 0 0O 1| 1| 1 1 1 1/ 1 0 0 QO
c 1 1 1, 0 0 0 0 1 11 0 0 o o 1
Q 1, 0, 0] 0] 0/ O] O] O/ 1] 1 1 1 1 1 1
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Table 2-8 A Minimum-Length (16) Checking Experiment for a D-Enable Latch.

b  1,0,0 2|2 2| 21 1| 1, 1 1 0 0O 0O 0 Q@
E |1, 1,1 1| 1, 0, O 1, 1] 1 O 0O 1 0 0 d
c /1/1 0/ 0/ 2/ 2] 0 0 11 0 00 0 0 0 1 d
Q |1, 0/ 0/l 0/ 2] 0] O O 1] 1 1 1 1 1 0 d
Table 2-9 A Minimum-Length (13) Checking Experiment for an XOR Input Latch.
D o0 0, 0,0, 0 21, 2, 1, 1| 1 1 O
S 1,0, 0 2, 1, 1| 1| 1| 1 0 0 0 (@
c 1 1, 0 0] 1 0 0 1 0 0 1 0O 0
Q 1/ 0 0] 0/ 2 1 2 0 0Of 0o 1 1 1
Table 2-10 A Minimum-Length (58) Checking Experiment for a BILBO Latch.
D |0/000,0 0000001121022 1210000/0/00/0/0 111
S |000000021211000000000|0/0/0,0/0/2 11111
B> |0000j]000O0OO0COO0O0OO0COOA2L1T 21 2/2/21/2|2]2 1/2 1211
B1 10111 0000000011222212121/1/00/0/0/00200O
Cc 1100100100001 0010010/0/20010010
Q [100011100001000111000/11100011
b (1/1j1 1111111111121 10001/1/2/11 00/0[O0
sJj1110000000002322222/2/2/2/12/1]1 001 11
B 10,0/0/0002211110023212121/12/1/1/1/0/0 0000
B1 /0000000001112 202321272|12/1/1/1/1]1/1/1 1/1]1
c |0/10010010011100100100/20000010
Q 110001110001 100011111 0/0/0j2/2/21/1100
Table 2-11a A Minimum-Length (25) Checking Experiment for a CBILBO Latch 1.
D |1/1, 1,111 000000111 11211 010/0/0/0]0
0,111 1121211 00000ODO0O0OO0OI1 1 1/1/00]0
Bp |2/1,1, 0 0 000000000092 21 12112 1]1 1|1
c [11 001 0010010011001 p00012/0/0/1]0
Q1 10/1/1/1 0/ 001210001211 10010011 ]1/1/0]0
Table 2-11b A Minimum-Length (26) Checking Experiment for a CBILBO Latch 2.
D 11/1, 1 0 0 0 111000000000 0/2/2/2]1 1]1
S (0000000001111 141241212122 000/1/11/1/00/0
B> |10 0000000000012 123212 12/21/1/1]1]1(1
C (110010001001 00100/11200/0/12/0/0/1]0
Q 10/1/1/1 0000111000101 1 0000/2/2/1/0]0

3. Deriving Checking Experiments for Two-State Latches

All latches described in Table 2-1 are typically implemented as two-state latches; the
flow tables of these latches have only two rows. In this section, special properties of two-state
flow tables are analyzed and a method for generating checking experiments for them is
developed. This method was used to generate the checking experiments in Tables 2-2 through
2-11. The details are presented in sub-sections of this section.
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Each cell in a flow table, total state corresponds to an assignment of values to the
circuit inputs and internal states. A total state igr@stablestateif it causes a change in
internal state of the machine. A total state ssadble statef the next internal state is the same as
the current internal state. The notation used in this paper for stable total states is shown in
Table3-1. A total state isnspecifiedf it is not adjacent to a stable total state. Such states
cannot be reached because of the single-input change restriction on fundamental mode circuits
[McCluskey 86]. Unspecified states are shown with “-" in the flow tables. A sequisits@a
total state when the sequence applies the input of the total state while the machine is in the
internal state of the total state. A total statidésntifiedby a sequence if the sequence provides

enough information to reconstruct the corresponding entry in the flow table.

Table 3-1 Notation: Stable Total States.

Notation Definition

@ Output =0
Output =1

Distinguishing Inputs Synchronizing Inputs
CD
00 01 11 10

Internal< A @ @ 7 @
States 5

Distinguishing States Unstable States

Figure 3-1 Definitions in Flow Table.

For a state machine to have sequential behavior, there must be at least one column in the
flow table with different outputs. Otherwise, the machine acts as pure combinational logic. The
total states in a column of a two-state flow table with differing outputs are dalatjuishing
states and the input is calleddistinguishing input A state machine must also have two
columns that change the internal state, so that both internal states are reachable. Inputs of such
columns are calledynchronizing inputbecause they force the machine into a known state.

These definitions are shown in Fig. 3-1.

As mentioned earlier, a checking experiment contains enough information to reconstruct
the flow table. Therefore, it must identify all total states in the flow table. In this paper, we
analyze flow tables that have distinguishing inputs and synchronizing inputs only (i.e. no
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columns in the table have two stable states with the same output), because all latches studied here
have flow tables that fall into this class of flow tables. The requirement for reconstructing the

flow table can be refined into three simpler requirements (proof of this will come later): all total
states must be visited, all unstable states must be identified, and all distinguishing states must be
identified.

We start with the first requirement, all total states must be visited. If a total state is not
visited by the sequence, then the effect of applying the input of the total state when the machine
is in the internal state of the total state is not known. This requirement is proven in Lemma 1.

Lemma 1: A checking experiment for a two-state flow table with only distinguishing and

synchronizing inputs must visit all total states in the flow table.

Proof. Suppose that a sequence does not visit one of the stable total states. Create
a second flow table by copying the original flow table and changing the output of
the state not visited by the sequence. The output response of the sequence when
applied to the second flow table would be the same as that of the original one
because the sequence never visits the only total state that differs in the two flow
tables. Since the two flow tables give the same response to the same input
sequence, the sequence cannot be a checking experiment. Now suppose that the
sequence does not visit one of the unstable states. In this case, the sequence
would have the same response for a flow table that had the unstable total state
replaced by a stable total state (the output does not matter). Since the input
sequence has the same response for two flow tables, it cannot be a checking
experiment. Therefore, a checking experiment must visit all total states (stable
and unstable) in the flow table.

Even though visiting all the total states is a necessary requirement for a checking
experiment, it is not a sufficient one. Consider the flow tables in Table 3-2. The sequence in
Table 3-2c visits all the states of the two flow tables, Tables 3-2a and 3-2b, but the output
response is the same for the two flow tables. Since the two flow tables are different, the
sequence is not a checking experiment. Assuming that the flow table in Table 3-2a is the desired
flow table, the sequence did not identify the unstable states 8 and 9. An unstable state is
identified, when the sequence shows that the input caused a change in internal state. To show
that an input causes a change in internal state, we need to show that the total states before and
after the application of the input have different internal states. The internal state after the
application of the input can be identified by following the input with a distinguishing input. The
total state would then be a distinguishing state. The total state before the application of the input
does not have to be a distinguishing state, but its internal state must be known. This analysis
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suggests the creation of state triplesstdtetriple is a set of three total states that contains the
setup statésame internal state as unstable state and input unit distance from unstable state
input), the total state associated with the unstable state, and a distinguishing state. The setup
state and the distinguishing state must have different internal states. The last state of the triple is
a distinguishing state. Visiting a distinguishing state does not change the internal state of the
machine.

Table 3-2a Two-State Flow Table.

CD

00 01 11 10 00 01 11 10
A=0 A=1

@,0 @,0 7 @,0 9 ’0 - _
[3]1 [5]1/[7]1 6 |[9]1 8 | - | -

Table 3-2b Another Flow Table That Produces Same Output Sequence When
Table 3-2c Sequence Is Applied.

CD

00 01 11 10 00 01 11 10
A=0 A=1

@’0 @’0 7 @,O @’1 ,0 - —
[3]1 [5]1 [7]1 6 |11 @90 - | -

Table 3-2c Sequence That Visits All Total States, But Is Not A Checking

Experiment.
A 0 0 0 0 0 0 1 1
C 1 0 0 1 0 0 0 0
D 1 1 0 0 0 1 1 0
Q 1 1 1 0 0 0 0 1
State| 7 5 3 6 2 4 8 9

Lemma 2: A checking experiment for a two-state flow table with only distinguishing and
synchronizing inputs must visit at least one state triple of each unstable state to
identify all unstable states. Triples can overlap, the distinguishing state of one
triple can be the setup state of another triple.

Proof. We have already shown that a checking experiment must visit all the total
states, including the unstable states. Visiting an unstable state requires visiting
the setup state of a triple of the unstable state before visiting the unstable state
itself. Therefore, a sequence that visits an unstableusbatedoes not identify it

is not visiting a distinguishing state after visiting the unstable state (i.e., it only
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visits the first two states of the triple). In this case, the input applied by the
sequence after visiting the unstable staitea synchronizing input. Create a
second flow table by copying the original flow table and changing the unstable
stateu to a stable total state and give it the same output of the other total state in
the same column. When the input corresponding to our unstable state is applied
to either flow table, we get the same output. Since the next input is a
synchronizing input, the next output and internal state will be the same for both
flow tables. Therefore, a checking experiment must visit at least one state triple
of each unstable state to identify all the unstable states.

Consider the flow tables in Table 3-3. Graphs for the state triples of Table 3-3a are
shown in Fig. 3-2. The sequence shown in Table 3-3c visits all the total states, and identifies all
the unstable states. However, both flow tables in Tables 3-3a and 3-3b, produce the same output
response for the input sequence of Table 3-3c.

The sequence in Table 3-3c produces different outputs for both 00 and 01, indicating that
they are distinguishing inputs. However, there are two possible permutations (barring
isomorphism) for the distinguishing states in the flow table. These are shown in the first two
columns of Tables 3-3a and 3-3b. To distinguish between the two flow tables, a sequence must
have CD = 00,01 or CD = 01,00 as sub-sequences.

Table 3-3a Two-State Flow Table.
CD

00 01 11 10 00 01 11 10
A=0 A=1

@,0 @,0 7 @,0 9 ,0 - _
[3]1 [5]1/[7]1 6 |[9]1 8 | - | -

Table 3-3b Another Flow Table That Produces the Same Output Sequence When
Table 3-3c Sequence Is Applied.

CD

00 01 11 10 00 01 11 10
A=0 A=1

@I ®d ° | ¢ - -
B @0 7| ¢ B ®o - -
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Table 3-3c Sequence That Visits All Total States, Identifies Unstable States, But Is
Not A Checking Experiment.

A 0 0 1 0 0 0 0 0 0 1 0
C 1 0 0 0 1 0 1 1 0 0 0
D 1 1 1 1 1 1 1 0 0 0 0
Q 1 1 0 0 1 1 1 0 0 1 1
State| 7 5 8 4 7 5 7 6 2 9 3
Triples A D
I B I C |

Figure 3-2 Graphs of State Triples for Flow Table in Table 3-3a.

This brings us to the third requirement: identifying the distinguishing states. As shown in
this example, it is not enough to visit the distinguishing states. Two distinguishing inputs are
said to bdinkedin a sequence, if the sequence provides enough information to determine the
order of the distinguishing states in their two columns. If a distinguishing input follows another
distinguishing input in the sequence, then the two are linked. However, there can be many
distinguishing inputs. Every distinguishing input can have one of two possible permutations of
distinguishing states. Therefore, for n distinguishing inputs therdgresible column
permutations. Half of these permutations are nothing more than other permutations with the
rows exchanged. Thus they do not need to be considered, and thétel mesgible unique
permutations. For a single distinguishing input, there is one unique permutation. Therefore, any
distinguishing input is linked to itself, making the link relation reflexive. From the definition of
link, link is a symmetric property. If ais linked to b, then b is linked to a. Now suppose that
there are three distinguishing inputs a, b and c. If ais linked to b, then there is only one unique
permutation for the distinguishing states in columns of a and b. Similarly, if a is linked to c, then
there is only one unique permutation for the distinguishing states in columns of a and c.
Therefore, there is one unique permutation for the all three columns, and so the link relationship

is transitive. Since the link relationship is reflexive, symmetric, and transitive, it must be an
equivalence relationship.

Lemma 3: A checking experiment for a two-state flow table with only distinguishing and
synchronizing inputs must link all distinguishing inputs to identify all
distinguishing states.

Proof. We have already shown that a checking experiment must visit all the total
states, including the distinguishing states. Suppose that two distinguishing inputs
are not linked in a sequence. Since link is an equivalence relation between
distinguishing inputs, the distinguishing inputs would fall into two equivalence
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classes. Within each of the classes, there is only one unique permutation of
distinguishing states. Create a second flow table by copying the original flow
table, and swapping the rows in the distinguishing input columns of one of the
equivalence classes. Also, swap the rows of any synchronizing inputs that are a
unit distance from any of the distinguishing inputs in that class, if the
synchronizing input is not a unit distance from a distinguishing input of the other
class. Applying the sequence to the new flow table would give the same response
as when applied to the original flow table. Therefore, if the distinguishing inputs
are not linked in a sequence, the sequence is not a checking experiment.

Now that we have shown that the three conditions (visiting all states, identifying all
unstable states, and identifying all distinguishing states) are necessary for a sequence to be a
checking experiment, we show that if all three conditions are satisfied that the sequence is a
checking experiment. In other words, given a two-state flow table with distinguishing and
synchronizing inputs, any sequence that satisfies all three conditions is guaranteed to be a
checking experiment. These conditions are necessary and sufficient. The proof is given in
Theorem 1.

Theorem 1 A sequence for a two-state machine with distinguishing and synchronizing

inputs is a checking experiment if and only if it satisfies the following properties:
1. Visits all the total states.

2. Visits at least one state triple for each unstable state.
3. Links all the distinguishing inputs.

Proof. From Lemmas 1, 2 and 3, a checking experiment must satisfy all the above
conditions. Now, we need to show that if a sequence satisfies the three
conditions, then it is a checking experiment. If a sequence links all the
distinguishing inputs, then there can only be one permutation of distinguishing
states in the flow table. If the sequence also visits at least one triple for each
unstable state, then all entries in the flow table are identified. Therefore only one
flow table can be constructed from the response of the sequence, making it a
checking experiment.

An important consequence of Theorem 1 is that a checking experiment does not require
all possible transitions in a two-state flow table. For example, consider the flow table in Table 3-
4. The graphs of the triples are shown in Fig. 3-3. A sequence formed by combining the triples
is 6,7,5,3,6,2. Since state 3 follows state 5, the distinguishing inputs are linked. State 4 can be
added to the end of the sequence to satisfy the first requirement of Theorem 1. Therefore, the
state sequence becomes: 6,7,5,3,6,2,4. The transitions through this sequence are shown
graphically in Table 3-4. Thick arrows are used to indicate the beginning and end of the
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sequence. The following six transitions are not included in this sequence: 4-=>&,£2-> 7, 3
->5,5->7,and 7 -> 6.
Table 3-4 Flow Table Marked With Checking Sequence.
CD Q
00 01 11 10
A QW@ | 1y EE ¢ 0
s < [3] ¥ [5] £ 6 1

O—{1]—] [EF=>O0—>0

Figure 3-3 Graph of Triples for Flow Table in Table 3-4.

The above example suggests the following procedure to generate a checking experiment
for a two-state flow table with distinguishing and synchronizing inputs. More examples for
using this procedure are given in the following subsections.

Procedure for Deriving Checking Experiments from Two-State Flow Tables.

1. Determine all the state triples for the unstable states.

2. Select one triple for each unstable state.

3. Combine the triples of step 2. As in the example above, step 2 and 3 may be
performed simultaneously (i.e., select the triples that best fit together), as long as a
triple for each unstable state is used.

4. If the sequence resulting from step 3 does not form a link among all the distinguishing
inputs then modify the sequence by adding extra states so that it does, without
destroying the triples.

5. Add any missing total states to the sequence.

6. Convert the state sequence into an input sequence, adding a synchronizing input, if
necessary (i.e., if the first input of the first triple is not a synchronizing input).

The first pattern in the sequence for a two-state flow table should force the machine into a
known state. Therefore, in step 2 of the procedure, the setup state of the first triple should
correspond to a synchronizing input whenever possible.

Combining triples would be most efficient if the distinguishing state of one triple is the
setup state of another. Since triples cause a change in the internal state, the final state of one
triple can be the setup state of another if the two triples cause internal state changes in the
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opposite directions (i.e. if the first triple causes the machine to change from internal state A to
internal state B, then the second triple should cause the machine to change from internal state B
back to internal state A). If there are more triples that cause state changes in one direction than
in the other, then some of the state changes will need to be repeated in order to get to the setup
states of all the triples.

Lower Bound on Checking Experiment Length for Two-State LatchesThe length of
a checking experiment (L) is bounded by the following equation.
S

L>=S+ 1+20max(r] -1,0) ifv=0
1=

S
LzS+v+zomax(n -1,0) ifv>0
1=

where S = number of total stable states

nj = number of unstable states for whiglsshe only distinguishing state

of all its triples

v = difference between the number of unstable states in the two rows
Proof. As seen from Lemma 1, a checking experiment must visit every total state.
A machine can only be in one stable total state for every input pattern. Therefore,
there must be at least as many patterns in the sequence as there are total stable
states. There will always be at least one extra pattern for initialization. To be
useful, the first pattern should force the machine into a known state (a
synchronizing input). If there ang unstable states that requigas the only
distinguishing state of all their triples, thgrmust appear at leagttimes. One
of the occurrences of stadeis accounted for in S (the total number of stable
states). Thereforg must appear an additional- 1 times. Iinj is zero, then
nothing should be added. Hence the term max{,0) is added for each total
state. If the number of unstable states in one row differs from the number of
unstable states in the other row\hyhen at least -1 extra internal state changes
have to be applied. Each extra state change requires at least one more pattern.
Addingv -1 to the initialization pattern gives

In many of the latch flow tables, half the inputs are distinguishing inputs, and the other
half are synchronizing inputs. A single input variable determines whether an input is a
distinguishing input or a synchronizing input. This class of state machines will be referred to as
single-input control state machineand the variable that determines the input type will be called
acontrol input For example, in Table 2.2-5, all inputs are distinguishing inputs when C = 0, and
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all inputs are synchronizing inputs when C = 1. Therefore, the flow table describes a single-
input control state machine with C as the control input. An interesting property of such state
machines is that the distinguishing state of one triple cannot be a setup state of another triple,
because there are no unstable states adjacent to a distinguishing state of a triple. As before, if
there are more triples that cause state changes in one direction than in the other, then some of the
state changes will need to be repeated to get to the setup states of all the triples. In this case,
since the distinguishing state of a triple is not a setup state of another triple, we will need two
extra inputs instead of just one. Therefore, if there anere unstable states in one row than in
the other, then 2(-1) extra patterns are needed. This is used to derive a tighter lower bound on
the length of the checking experiment.

Lower Bound on Sequence Length of Single-Input Control State Machind he

length of a checking experiment (L) of a Single-Input Control State Machine is
bound by

L>S+1 ifv=0
L=S+2v-1 ifv>0

where S = number of stable total states

v = difference between the number of unstable states in the two rows

Proof. In a single-input control state machine each distinguishing input is a
unit distance from only one synchronizing input. This implies that no
two triples can have the same distinguishing state. Therefore, the
summation term in the original bound will always be 0. If v =0, then
the arguments for the previous bound apply. If v > 1, then two
patterns are needed for each additional transition because the
distinguishing state of a triple cannot be used as a setup state for
another triple. Therefore 2(v -1) extra patterns are needed. Combining
this with the initialization pattern gives 2v -1.

Another property of single-input control state machines is that a sequence that uses
distinguishing states as setup states for all except the first triple, will identify the distinguishing
states as well as the unstable states. This property is proved in Theorem 2.
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Theorem 2:If a sequence is applied to a single-input control state machine, and the setup
states of all but the first triple are distinguishing states, then the sequence links all
the distinguishing inputs and is a checking experiment.

Proof. In a single-input control state machine each distinguishing input has a
distinguishing state that is a setup state of a triple, and another distinguishing state
that is a distinguishing state of the same triple. Therefore, there is a one-to-one
correspondence between distinguishing inputs and triples. Now, if triple B is
applied after triple A, the distinguishing input corresponding to triple A is linked

to the one corresponding to triple B. Suppose triple C is applied after triple B,

then the distinguishing input corresponding to triple B is linked to the one
corresponding to triple C. Since link is an equivalence relation, the distinguishing
input corresponding to triple A is linked to the one corresponding to triple C.

Using the same argument, it can be shown that the distinguishing input
corresponding to triple A is linked to all the distinguishing inputs. Therefore, the
sequence links all the distinguishing inputs, identifying all the stable states. Since
the sequence identifies all the stable states and the unstable states, it is a checking
experiment.

3.1 Two-State SR-Latch

The equation for the SR-latch@= S+ Rq. The latch is set when S = 1 and reset when
R =1. S and R should not be 1 at the same timsdiatilominant SR-latalould be set if SR =
1, and aeset dominant SR-latakould be reset if SR = 1). The flow table for the SR-latch is
shown in Table 3.1-1. The graphs of the state triples are shown in Fig. 3.1-1.

The setup state of one triple is the distinguishing state of the other triple. Therefore, the
two triples can be combined without adding any states between them. Two possible state
sequences are 2,5,3,4,2 and 3,4,2,5,3. Since there is only one distinguishing input, the

Table 3.1-1 Flow Table for Two-State SR-Latch.
SR Q
00 01 11 10

2 ) — 5 0
4 - 1

A E>O—0 & O—>E—>L]

Figure 3.1-1 Graphs of State Triples for Two-State SR-Latch.
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distinguishing states are identified by simply visiting them. The two sequences contain all the
total states in the flow table. The input sequence that would generate these state sequences is
shown in Table 3.1-2. Since the sequences satisfy Theorem 1, they are checking experiments.
Since the setup state in both triples is a distinguishing state, a synchronizing input needs to be
added to the beginning of either sequence. The sequences in Table 3.1-2 are minimum length.

Table 3.1-2 Minimum-Length (6) Checking Experiments for Two-State SR-Latch.

S 0 0 1 0 0 0 S 1 0 0 0 1 0
R 1] 0 0 0 1 0 R 0 0 1 0
Q 0| O 1 1 0 0 Q 1 1 0 0 1 1
State| 4| 2 5 3 4 2| State| 5 3 4 2 5 3
Triples B Triples A
A B

3.2 Two-State D-Latch
The equation for a D-latch is Q = CDGyq, and the flow table for the D-latch is shown

in Table 3.2-1. The graphs of the state triples are shown in Fig. 3.2-1. The two triples can be
combined in any order. Suppose we start with the triple A. The first part of the state sequence is
6,7,5 (state 6 is picked because it is a synchronizing input). Now, looking at triple B, there are

two choices: 7,6,2 or 3,6,2. State 7 has already been entered in the first sequence, thus entering it
again has no benefit. Choosing state 3 as the setup state would make state 3 follow state 5,
linking the two distinguishing inputs. Thus the sequence becomes 6,7,5,3,6,2. The sequence is
missing state 4, which can be added to the end of the sequence. This makes the final sequence
6,7,5,3,6,2,4. The same approach can be used starting with triple B in Fig. 3.2-1. The sequence

Table 3.2-1 Flow Table for Two-State D-Latch.
CD Q
00 01 11 10

@ @ 7. @©| o
e] | [s] [F] & | 1

A B

O—{}—] [E—=O0—>0

Figure 3.2-1 Graphs of State Triples for Two-State D-Latch.
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in that case would be 7,6,2,4,7,5,3. These two state sequences, and the checking experiments
that would generate them, are shown in Table 3.2-2. Since the lengths of these sequences meet

the lower bound, these sequences are minimum length.
Table 3.2-2 Minimum-Length (7) Checking Experiments for Two-State D-Latch.

C 1, 1, 0 0 1/ 0] O C 1 1 0 0 1 Q@
D 1,00/ 1 1 1/ O D O, 1, 11 0 0 O 1
Q 1, 0, 0 0 1| 1] 1 Q O 11 1 1 0 Q@
State| 7 6 | 2| 4, 7| 5| 3| State|] 6| 7/ 5| 3| 6 2| 4
Triples B A Triples A B

3.3 Two-State D-Latch With Asynchronous Set/Reset
The equation for the D-latch with Asynchronous Set/ResBtisR(S+CD +Cq). The

latch is set when S =1 and reset when R = 1. S and R should not be 1 at the same time, and
neither should be 1 when C = 1. When both R and S are 0, the latch behaves exactly like a D-
latch. The flow table for this latch is shown in Table 3.3-1, and graphs of the state triples are

shown in Fig. 3.3-1.

Table 3.3-1 Flow Table for Two-State Asynchronous Set/Reset Latch.
CD

00 01 11 10 00 01 11 10 00 0l 11 10 00 01 11 10
R=0 R=1
=0 s=1 S=0 s=1 Q

s
@@ 7 @E|e - -®W - -|- - - -|o
3] [5][7] 6 |[o]|[x]| - |- |8 20 - | -|-|-|- -]1

A

7]
@] @>£>@
c O—>F—>F °F>0—>0
c O—>@—>F 00

Figure 3.3-1 Graphs of State Triples for Two-State D-Latch With Asynchronous
Set/Reset.
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In Fig. 3.3-1 only the first two triples have synchronizing setup states. Therefore, a
minimum-length sequence should start with one of these two triples. There are ten total states,
and state 2 and state 5 appear twice as the only distinguishing inputs of state triples. From the
first bound derived in Section 3, the minimum test length must be at least 13. State 4 and state 3
appear twice as setup states. However, in the first two triples there are alternate setup states. If
these are used, then one of them could be the synchronizing input, but the other would appear
twice in the sequence, raising the minimum length to 14. One such sequence is shown in Table
3.3-2. Since state 4 directly follows state 2, the distinguishing inputs are linked.

Table 3.3-2 A Minimum-Length (14) Checking Experiment for Asynchronous
Set/Reset Latch.

C 1,1, 0] 0] 0] 0,0 OO Of O O O O 1 O
D 1, 0,0 O O O, O 2,0 2/ 1/ 1 1 1 1
R o, 0, 0, 0O, O] 20 0 00 OO0 00 1 0 O g
S o, 0, 0, 1) 00 0 00 00 11 0o O O Q@ d
Q 1, 0, 0 1) 1] 0, OO0 0f 1 1 O O 1 1
Statel 7| 6| 2| 9| 3, 8| 2| 4 11 5 10 4 7 5
Triples B D F
C E A

3.4 Two-State MD-Latch

The equation for an MD-latch (Multiplexed-Data latch) is Q = C(TBB + Cq. When
T =0, the latch operates in normal mode (D is used as the input), and when T = 1 it uses S as
input. The flow table for the MD-latch is given in Table 3.4-1. The graphs of the triples are
shown in Fig. 3.4-1.

Table 3.4-1 Flow Table for Two-State MD-Latch.
DS

oo 01 11 10 OO O1 11 10 OO O1 11 10 OO O1 11 10

C=0 C=1

1
H

0 T=0 T=1 Q
®

@@1921@2325@0
(7] [o] | [ 17| 18 20 [ad [21]| 22 [23 [z 24| ,

[o] ® |+
Bl |
G ©

@
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Figure 3.4-1 Graphs of State Triples for Two-State MD-Latch.

Looking at the flow table, all the distinguishing states occur when C = 0, and all the
unstable states occur when C = 1. Therefore, the MD-latch is a single-input control state
machine, and C is the control input. There are 24 total states, and the number of unstable states
in each of the rows is 4. Therefore, the length of a checking experiment must be at least 25.
Appendix A shows that the length must be at least 26. The details of combining the triples to
derive minimum-length sequences also appear in Appendix A. One such sequence is shown in
Table 3.4-2.

Table 3.4-2 A Minimum-Length (26) Checking Experiment for MD-Latch.

D (1/12/1/0 0011110000000 000/1/2/1/1 1|1
S |10000060O011112121112100/0/2/111000
T [L,0000000000O0OCO0OOCTIL L2121 12/2/1/2/1|12
C |1 0/0/10001001001002000/21/0/0/1]0
Q (0/111 1000011100011 10|00/0/2/1/1/0/0
State|24 21 9/ 3 18 2 8 6 19 7 5 20 4 12 23 13/11/22/10 12 14 25 15 17 24 16
Tripledf F A E B G C H D

3.5 Two-State Two-Port Latch

The equation for a Two-Port latch@= C:D1+ C2D2+ C:Cx. C1 and @ should not be
both active at the same time. The Two-Port latch loads the data input corresponding to the active
control input. The flow table is shown in Table 3.5-1.

The last four columns are marked as don’t cares because the operation of the latch is not
defined when both control lines are active. Graphs of the triples are shown in Fig. 3.5-1. Since
states 2 and 7 appear twice as distinguishing states of triples, and there are 16 total states, the
lower bound on the test length is 19. Appendix B shows that the length must be at least 23. The



173

details of combining the triples to derive minimum-length sequences also appear in Appendix B.
One such sequence is shown in Table 3.5-2.

Table 3.5-1 Flow Table for Two-State Two-Port Latch.

D1D2
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
C2=0 Q=1
C1=0 c=1 CL=0 -1 0
e un@s v - - - -]
3] [5] [7]/[e]| 0| 12 [11])|[i3| 24 | [xg [17 16| - | - - | - |1

A BI C
EF>0—>0® EF>O—>0 ©O—

Figure 3.5-1 Graphs of State Triples for Two-State Two-Port Latch.

Table 3.5-2 A Minimum Length (23) Checking Experiment for Two-Port Latch.

D1 /100 0/0/ 0O O0OO0OO0O1T 111 11110 0901/112]
C1 11,10 0 0 000 0O 0O0OO0C10O0O0OO0ODO0ODOCDODD X2 00120
D2 000 11 110000 00O0O0OI1T 1 p 1o 2 121 22 ]2
C>  000/0 01 001 00 001 001 0D 0O 001|010

Q 1, 0/,0/ 0/ 1 1/ 12 0 0 0 1 2 0 0 0 1 1 1 0O O 0O |1 |2
State| 13/ 10, 2| 4/ 15 5 3 14 2 8 13 9 16 8 6 17 |7 5 112 |4 |6 |[11|7
Triples A E E D

[ H [T ¢ T B T C

3.6 Two-State Load Enable Latch

The equation for the Load Enable latch is Q = CLQLE)q. When L = 0, the clock has
no effect on the latch, and the latch retains the stored value. When L = 1, it behaves like a
D-latch. The flow table for the Load Enable latch is given in Table 3.6-1. Graphs of the triples
are shown in Fig. 3.6-1. Since there are 14 stable total states, a checking experiment must have
at least 15 patterns. One such sequence is shown in Table 3.6-2. The details are in Appendix C.
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Table 3.6-1 Flow Table for Two-State Load Enable Latch.
LD

00 01 11 10 00 01 11 10

C=0 c=1 Q

(9]

E] ©

(=] ®
(=]
~M @

B O

Figure 3.6-1 Graphs of State Triples of Two-State Load Enable Latch.

Table 3.6-2 A Minimum-Length (15) Checking Experiment for Load Enable Latch.

L 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0
D 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0
C 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1]
Q 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
State| 15 14 10 2 8 6 4 12 15 13 b 7 9 3 11
Triples A B

3.7 Two-State D-Enable Latch

The equation for the D-Enable latch@s= CDE + Cq. A D-Enable latch operates as a
D-latch when E = 1. When E = 0, the D-Enable latch will load 0. The flow table for the D-
Enable latch is shown in Table 3.7-1. The graphs of the state triples are shown in Fig 3.7-1.

Looking at the flow table, all the distinguishing states occur when C = 0, and all the
unstable states occur when C = 1. Therefore, the D-Enable latch is a single-input control state
machine, and C is the control input. There are 12 total states, one unstable state in the first row,

Table 3.7-1 Flow Table for Two-State D-Enable Latch.
DE

00 01 11 10 00 01 11 10
C=0 C=1 Q

®|W @ 1 Yo
(9]

10 12| [11] | 14 | 1

] |©
[] |®
~ @




A

B

EF>O—>®

c (4]

9 —=>W—=>®) O]

Figure 3.7-1 Graphs of State Triples for Two-State D-Enable Latch.

175

Table 3.7-2 A Minimum-Length (16) Checking Experiment for Two-State D-Enable

Latch.
D 1, 0| 0] 1 1, 1 1) 1] 1 11 1 0 0 0 0 @
E 1 1 1 1 1, 0 0 1 1 1 0 O 1 (@ 0
C 1/ 1/ 0| 0 1. 1 0 0 1 0 0 0 0 0 1
Q 1 0 0 O 1, 0] 0 0 1 1 1 1 1 1 0
State| 11| 12| 4 6 11 14 8| 6/ 11 7 9 3 5 3 10 1
Triples B C D A

and three in the second. Therefore, the length of a checking experiment must be at least 15.
Appendix D shows that the length must be at least 16. One possible minimum-length sequence
is shown in Table 3.7-2. Details of deriving a checking experiment are given in Appendix D.

3.8 Two-State XOR Input Latch
The equation for the XOR input latch@= C(D 0 S) + Cq. The data loaded into the
latch isD O S. The flow table is given in Table 3.8-1. Since there are 12 stable states in the

flow table, a checking experiment must have at least 13 patterns. Graphs of the state triples are
shown in Fig. 3.8-1.

Table 3.8-1 Flow Table for Two-State XOR Latch.

DS

00 01 11 10 00 01 11 10
C=0 c=1

® @ © © % @ B

[o] | 10 12

o

Figure 3.8-1 Graphs of State Triples for Two-State XOR latch.
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Starting with any triple, there are two possible sequences. For example, starting with A,
the two sequences are ACBD and ADBC. Since there are four triples, and any of them can be
picked as the starting point, there are 8 sequences. Note that a sequence that connects the triples
not only demonstrates all the unstable states, but also visits all the stable states. The transition
from one triple to the other forms a link among all distinguishing inputs. The sequences formed
by connecting the triples are all minimum-length checking experiments. One of the minimum-
length checking experiments is given in Table 3.8-2.

Table 3.8-2 A Minimum-Length (13) Checking Experiment for XOR Input Latch.

D 0 0 0 0 0 0 1 1 1 1 1 1 0

S 1 0 0 1 1 1 1 1 1 0 0 0 0

C 1 1 0 0 1 0 0 1 0 0 1 0 0

Q 1 0 0 0 1 1 1 0 0 0 1 1 1
States] 11 10 2 4 11 5 7 12 6 8 13 9 3
Triples A C B D

3.9 Two-State BILBO Latch

The equation for a BILBO latch i® = C(B:D O BzS) + Cq. Based on the setting of B
and B, the latch can be configured to load D (whaiBB = 11), reset the latch (whenBp =
01), load S (when 2 = 00), and loacs[1 D (when BiB2 = 10). The flow table for the
BILBO latch is given in Table 3.9-1.

Table 3.9-1 Flow Table for Two-State BILBO Latch.

DS (C=0)
o0 01 112 10 OO O1 11 10 OO O1 11 10 OO O1 11 10
B2=0 Bo=1
B1=0 Bi=1 B1=0 Bi=1 Q
@@ EEVOWV L e e e 6 6 o
2] [5] [ [o]| [0 [ [ (3|9 1 23 (23|27 29 o4 [E3] +
DS (C=1)
o0 01 112 10 OO 01 11 10 OO 01 11 10 OO 01 11 10
Bo=0 Bp=1
B1=0 B1=1 B1=0 B1=1 Q

35@@ 37@@@@39@41@@@43 45|

343638404244464850521
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Figure 3.9-1 Graphs of State Triples for Two-State BILBO Latch.
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Table 3.9-2 A Minimum-Length (58) Checking Experiments for Two
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Looking at the flow table, all the distinguishing states occur when C = 0, and all the
unstable states occur when C = 1. Therefore, the BILBO latch is a single-input control state
machine, and C is the control input. There are 48 total states, and four more unstable states in the
second row than in the first. Therefore, the length of a checking experiment must be at least 55.
Appendix E shows that the length must be at least 58. One possible minimum-length sequence is
shown in Table 3.9-2. Details of deriving a checking experiment are given in Appendix E.

3.10 Two-State CBILBO Latches

CBILBO latches are an extension of BILBO latch that can operate simultaneously as a
pseudo-random pattern generator and a signature analyzer. Each of the two CBILBO latches has
a different mode signal. The first latch loads S wherB, and loadsCOD when B = 0. The
second latch is an MD-latch, witlpBs the select input, S andaB the data inputs. Since the
MD-latch has already been analyzed, only the first latch is considered in this section. The
equation of this latch i: = C(BDOS) + Ca:, and the flow table is given in Table 3.10-1.

The graphs of the state triples are shown in Fig. 3.10-1.

Looking at the flow table, all the distinguishing states occur when C = 0, and all the
unstable states occur when C = 1. Therefore, the CBILBO latch is a single-input control state
machine, and C is the control input. Since there are 24 total states, the length of a checking
experiment must be at least 25. An example of a minimum-length sequence is shown in Table
3.10-2. Details of deriving a checking experiment are given in Appendix F.

Table 3.10-1 Flow Table for Two-State CBILBO.
DS

o0 01 11 10 OO O1 11 10 OO O1 11 10 OO O1 11 10

C=0 C=1

B1=0 B1=1 B1=0 B1=1 0;]

@1921@2325@0

5] ®
5|

@ ®E @9
[3] [5] [7] [o]][u1 17| 18 [1d 20 [21]| 22 [og] [2 24| 4
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Figure 3.10-1 Graphs of State Triples for Two-State CBILBO Latch.

Table 3.10-2 A Minimum-Length (25) Checking Experiment for CBILBO Latch.

D |11 111100000011 212121212112 0|0|0/0]0]0
s |[0/1/1 111111 0000O0WO0ODLO0ODO0OD0O/12/1/2/0]0]0
B [1/1|/1 0/ 0000 0O0O0CO0CODOO0OCODOI~LI1L 1M1 121 12/2/1 1|12
C 111/00 10027001001 001 000b/10/l0/2]0
Q110/1/1/1 0 0011100011 10000OI11/1|0f{0
State[24/ 25 15 7/ 20 6 4 19 5 3 18 2 8 21 9 17 24 1614 12 23/ 13 11 23 10
Tripleg G C B A D H F E

4. D-Latch Simulation

In this section, three different tests for the D-latch simulated using HSpice are compared.
The first test is a pin fault test set, which targets the faults on the input and output of the D-latch.
A D-latch can be viewed as a multiplexer that selects between D and Q, with C being the select
signal. The second test is a multiplexer-based test. Patterns for testing multiplexers can be
found in [Makar 88]. The third test is the checking experiment derived in Section 3.2. The three
tests are shown in Fig. 4-1. The implementation used for the simulation is shown in Fig. 4-2.

Pin Fault C —1 0 0 —1
Test D 1 1 0 0
Q 1 1 1 0
Multiplexer C —1 0 0 1 0 0
Test D 1 1 0 0 0 1
Q 1 1 1 0 0 0
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Checking C 1 1 0 0 1 0 0
Experiment D 1 0 0 1 1 1 0
Q 1 0 0 0 1 1 1

Figure 4-1 Test Sequences for Simulating D-Latch.
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Figure 4-2 Tran_smission Gate D-Latch.

In the simulation, faults are injected by modifying the circuit description. The fault
models used are based on the CrossCheck fault models [Sucar 89] and [Chandra 93]. The faults
injected are shorted interconnects (STI), open interconnects (OPI), short-to-power (STP), short-
to-ground (STG), transistor stuck-on (SON), and transistor stuck-open (SOP).

In CMOS, there are some faults whose presence does not change the functionality of the
host circuit. Some of these cannot be detected (and thus are untestable or redundant). Others
that cannot be detected by a Boolean voltage test (since the circuit functionality is correct) can,
nevertheless, be discovered by a current test [Ma 95]. The simulations reported here record
whether tests caused excessive supply current or incorrect outputs.

The current limit for IDDQ testing is often determined experimentally, by plotting the
values of many good and bad die, and selecting an appropriate threshold that would detect as
many faulty circuits as possible without discarding many good ones [Hawkins 89] and
[Perry92]. Fig. 4-3 shows the IDDQ distribution for circuits with the faults described above
when the checking experiment was applied. Here IDDQf refers to the IDDQ value of a circuit
with a fault present, and IDDQg refers to the IDDQ value of the fault-free circuit. The graph
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plots the ratio of IDDQf / IDDQg (i.e. the ratio of IDDQ increase), versus the faults. The graph
shows that all but 7 of the faults cause an IDDQ that is over 100 thousand times that of the
normal current. Using this graph, a threshold of 32 uA was selected. Maximum IDDQ for the
fault-free circuit was about 320 pA.

The results of the simulations are shown in the graph of Fig. 4-4. For each test three
numbers are reported: the number of faults detected by either a voltage or current test, the
number of faults detected if the voltage measurement is used alone, and the number of faults
detected if the current measurement is used alone. In spite of the fact that the checking
experiments were generated to verify the functionality of the latches, the graph shows that, in
addition to detecting functional faults, they are very useful in detecting faults that only cause
excessive current. One drawback to the current tests is the large amount of time they require.

The graph also shows that the pin fault test and the multiplexer test miss several faults
that are detected by the checking experiment. The faults missed by each of the tests are shown
graphically in Fig. 4-5 through 4-7. In these figures white ovals indicate SOP or OPI faults,
black ovals indicate SON faults, and thick black lines indicate STI faults. All STP and STG
faults are detected by all three tests.

10000000000 -----
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= 101010701010 0 A S S O gy s A N I
g 10000 § - demeboeeb oo n oo com b d oo
= 100 oo
1 PR O U S S U U O U SO U
0 10 20 30 40 50 60

Number of Faults

Figure 4-3 IDDQf / IDDQg Distribution.
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Figure 4-4 Fault Coverage of the Three Test Sets (Total Faults = 67).
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MO

Figure 4-6 Faults Missed by Multiplexer Test.

Vvdd

-y é’—

Figure 4-7 Faults Missed by Pin Fault Test.

The faults missed by the checking experiment fall into one of two categories. The faults
on the MO transistor cause the number of states to increase. With the presence of the fault, the
application of CD = 10 when in state 7 (see Table 4-1), produces an output of 0. However, when
the same input is applied to state 3, the output is 1. Therefore, states 7 and 3 cannot be in the
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same internal state, and there must be a third internal state. The stuck-on fault on M5 is not
detected because it is on the feedback path. Even though not indicated in the figures, the NMOS
transistors of the transmission gates are stronger than their PMOS counterparts. This makes it
possible to detect M2 stuck-on, but not detect M5 stuck-on.

Table 4-1 Flow Table for Two-State D-Latch.

CD Q
00 01 11 10
@ ® 7 ® 0
6 1

As mentioned earlier, some faults are only detected by current measurement. In the D-
latch, there are two kinds of faults that are detected by current and not by voltage. A stuck-on
fault in M8 or M9 would cause a large IDDQ current when the corresponding NMOS transistor
is turned on. However, due to the sizing ratio between the two transistors, the output voltage
value would not be affected enough to be detected. In fact, the inverter would behave as an
NMOS inverter rather than a CMOS inverter. A plot of the relevant voltages and currents in the
circuit with M8 stuck-on fault are shown in Fig. 4-8. In these graphsas a fault-free value of
0 volts between 10 and 40 ms. With the presence of the fault, this voltage is around 1 volt,
which is not high enough to be detected by a voltage test. In the same time frame, the IDDQ
current reaches 2.5 mA. The other kind of faults that are only detected by current measurements
are the stuck-open faults on M6 and M1, and faults on transmission gate in the feedback path.
These faults cause voltage degradation on N1 which in turn causes M8 or M4 to turn on when
they should not, raising the IDDQ current. A plot of the relevant voltages and currents in the
circuit with M1 stuck-open fault are shown in Fig. 4-9. For the circuit with M5 stuck-open fault,
the voltages and currents are shown in Fig. 4-10. In this case, the current reaches around 50 UA.
Even though this value is much lower than that of M8 stuck-on fault, it is still above the
threshold of 32 uA.

Some faults can only be detected by voltage measurements. Stuck-open faults on M3,
M4, M8, and M9 do not substantially increase the IDDQ current. Also, a STI fault between D
and N1 does not increase the IDDQ current.
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Figure 4-8 HSpice Output for M8 Stuck-On.
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5. Conclusions

Ten latch types were studied. For each, we derived requirements that can be used to
verify whether or not a given sequence is a checking sequence. In addition, one example of a
minimume-length checking sequence is derived for each latch type.

These checking sequences are guaranteed to detect any latch defects that do not increase
the number of states and do not cause the latch operation to depend on other elements in the
design (coupling or transition faults). To investigate whether the increase-in-state restriction
could be a problem, one latch implementation was simulated using HSpice for several faults that
could cause extra states. The checking sequence missed only two faults that cause an increase in
state. A test set for the pin faults of the latch, and a test set for the multiplexer in the latch were
also simulated. These two tests missed faults that were detected by the checking sequence.

These checking sequences are, in fact, shorter than some of the popular “rule of thumb”
sequences such as “read 0to 1, 1to 0, 0 to 1, 1 to 1” and also shorter than sequences derived by
ensuring that all possible transitions in the flow table are activated by the test sequence.

We feel that the checking sequences are a thorough, efficient technique for testing
latches.
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Appendix A Details of the Two-State MD-Latch

The graphs of the state triples for the MD-latch are shown in Fig. A-1. The flow table is
given in Table A-1. The lower bound on the length of the checking experiment is 25, since there
are 24 total states. Fig. A-2 shows the relationship between the triples. In this graph, each node
represents a triple from Fig. A-1. An arrow indicates that the distinguishing states of the first
triple is adjacent (differ in one input variable) to the setup state of the second triple. The graph
consists of two disjoint parts which implies that at least one extra pattern is needed to connect all
the triples. This implies that at least one additional pattern is needed, raising the minimum
length to 26.

Fig. A-3 shows how the total states corresponding to the extra patterns connect the sub-
graphs. Starting with A, C, E or H would mean only one transition between the two sub-graphs.
Since the first triple starts with a synchronizing input, extra patterns would be needed to apply
the distinguishing setup state of the first triple. For example, suppose we start with triple E. This
would make the sequence end with triple A in state 2. Then adding state 6 to the end of the
sequence would require two additional inputs, raising the length to 27. If the triple used to start
the sequence has a distinguishing setup state that connects the two sub-graphs, then no additional
inputs are needed. The triples B, D, F and G satisfy this criteria. For example, the distinguishing
setup state of triple B is state 5. This happens to be the one of the states than can connect E to A.
However, starting in state B, D, F, or G requires an extra input to go back to the original sub-
graph making the length 26, the minimum length. Since there are four triples that can be split,
and in each case there are two choices for states between the sub-graphs (note that there aren't
four, because the original starting state of the starting triple must be one of the two states
between the two sub-graphs), then there are 8 minimum-length checking experiments. Since a
distinguishing state is used as the setup state for all the triples, then, from Theorem 2, any
sequence formed by the graph corresponds to a checking experiment. One such checking
experiment was shown in Table 3.4-2 in Section 3.4.

Table A-1 Flow Table for Two-State MD-Latch.
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o0 01 11 10 OO O1 11 10 OO O1 11 10 OO O1 11 10

C=0 Cc=1

I
[EEN

T=0 T=0 T=1 Q
@ ® 6|

5] ® |4
& ®

17]| 18 20 [19] [21]| 22| [23) [2g] 24|

]

® @@ 1° 2@ B 5@ o
(3] [5] [7] [o]][xq]




189

Figure A-1 Graphs of State Triples for Two-State MD-Latch.
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Figure A-2 Constraint Graph for State Triples.
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1 8

Figure A-3 Connecting the Disjoint Graph.

Appendix B Details of the Two-State Two-Port Latch

The graphs of the state triples for the Two-Port latch are shown in Fig. B-1. The flow
table is shown in Table B-1. Fig. B-2 shows the relationship between the triples. A light arrow
indicates that the distinguishing state of the first triple is adjacent to the setup state of the second
triple. A dark arrow indicates that the distinguishing state of the first triple is the setup state of
the second triple.

The lower bound on the length of the checking experiment is 19, since there are 16 total
states, and states 2 and 7 appear twice as the only distinguishing states of triples. States 6 and 3
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appear twice as starting states. Of course, an unstable state could be used instead as the starting
state but that would still require an additional pattern. This raises the minimum length to 20.
Looking at B and F, if B comes before F in the sequence, then state 5 must appear twice. If B
comes after F in the sequence then state 4 must appear twice. The same argument can be applied
to D and H. This raises the minimum length to 22. Now, looking at the graph in Fig. B-2, if B
and F directly follow one another, and H and D directly follow one another, then it will not be
possible to go through the whole graph without adding another pattern. But, if B and F do not
directly follow each other, then both states 4 and 5 must appear twice. So in all cases, another
pattern is needed, raising the minimum length to 23.

The connections between the nodes in Fig. B-2 form links between the distinguishing
inputs. Only 3 links are needed to form a chain. The links are shown graphically in Fig. B-3.
Any continuous traversal of this graph would form all links at least once. Therefore, the
sequences generated are checking experiments. The order of one such sequence is marked on the
graph of Fig. B-2. The actual checking experiment is shown in Table 3.5-2 in Section 3.5.

Table B-1 Flow Table for Two-State Two-Port Latch.
D1D2

o0 01 11 10 OO O1 11 10 OO O1 11 10 OO O1 11 10
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Figure B-1 Graphs of State Triples for Two-State Two-Port Latch.
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Figure B-3 Links in Triples.

Appendix C Details of the Two-State Load Enable Latch

The graphs of the state triples for the Load Enable latch are shown in Fig. C-1. The flow
table is given in Table C-1. This latch is unique in that it has more distinguishing inputs than
synchronizing inputs. The distinguishing states are shown graphically in Fig. C-2. In this graph,
two states connected by an edge can follow each other in the sequence. The triples and the
graphs of Fig. C-2 can be combined to produce minimum-length checking experiments. There
are two ways to order the graphs to achieve a minimum-length checking experiment, ADBC and
BCAD. Each of these orders contains two sequences. For example, either state 10 or state 8
could be used to go from Graph A to Graph D. If state 10 is selected then state 12 must be used
to go from Graph D to Graph B. Similarly, there are two choices in going from Graph B to
Graph C. This gives a total of four possible sequences for each graph order, and a total of eight
minimume-length checking experiments. One of these checking experiments is shown in Table
3.6-2 in Section 3.6.

Since the states in Graph C are distinguishing states of all the distinguishing inputs, and
since the sequences described go through all the states in Graph C before going into any other
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state, the sequences described above form a chain for all the distinguishing inputs. Hence, all the
sequences form a chain among the distinguishing inputs.

Table C-1 Flow Table for Two-State Load Enable Latch.
LD

00 01 11 10 00 01 11 10

@15@0
13 | [15] 14 | 1

] ©
[>] ®
~M @
[o] @
E] ®

Figure C-1 Graphs of State Triples for Two-State Load Enable Latch.

3

Figure C-2 Distinguishing States Adjacent States Can Follow Each Other in
Sequence.

Appendix D Details of the Two-State D-Enable Latch

The graphs of the state triples for the D-Enable latch are shown in Fig. D-1. The flow
table is given in Table D-1. The lower bound on the length of the checking experiment is 15,
since there are 12 states, there are two more unstable states in one row than the other, and the
latch is a single-input control state machine. The only way to state 3, the setup state of triple A,
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is to go through state 7 followed by either state 5 or state 9. The situation is shown in Fig. D-2.
Suppose state 5 is picked. To enter state 9, either state 7 must be entered once again, or state 9 is
followed by state 3, making state 3 be entered again. In either case one more pattern is needed
raising the minimum length to 16.

Fig. D-3 shows the constraint between the state triples. One possible sequence of triples
is BCDA. This sequence is shown in Fig. 3.7-2 of Section 3.7, and is of minimum length since it
has 16 patterns.

Table D-1 Flow Table for D-Enable Latch.
DE

00 o0l 11 10 00 01 11 10
C=0 c=1 Q
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Figure D-1 Graphs of State Triples for D-Enable Latch.
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Figure D-2 Constraints on States.
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E

Figure D-3 Constraint Graph for State Triples.

Appendix E Details of the Two-State BILBO Latch

The graphs of the state triples for the BILBO latch are shown in Fig. E-1. The flow table
is given in Table E-1. The lower bound on the length of the checking experiment is 55, since
there are 48 total states and there are four more unstable states in the lower row of the flow table
than in the upper one. Fig. E-2 show the relationship between the triples. The graph contains
four disconnected subgraphs. The smallest subgraph contains only triple F. Fig. E-3 shows how
the F subgraph can be joined to the other subgraphs. Since F connects to the middle of two other
subgraphs, the subgraphs would need to be split. Each split would result in the addition of two
patterns. To avoid splitting both subgraphs, which would result in 59 patterns, F should either be
the first or last triple.

Table E-1 Flow Table for Two-State BILBO Latch.

DS (C=0)
oo 01 11 10 OO O1 11 10 OO O1 11 10 OO O1 11 10
B2=0 Bp=1
B1=0 B1=1 B1=0 B1=1 Q
@ ®oE VLU LW & eIe @ 6 & o
(3] [5] [7] [o]|[xd [23 [18 [a7|[2dl [21] [29 [25]|[27] [2d] [31] [33]| 1
DS (C=1)
oo 01 11 10 OO O1 11 10 OO O1 11 10 OO 01 11 10
B2=0 Bo=1
B1=0 Bi=1 B1=0 Bi=1 Q
35@@37@@@39@41@@43450
34| 36 38| 40| 42| 44 46 48 | 50 | 52 1




195

If F were the first triple, state 13 would need to be preceded by one of the following
sequences: 35,3,5; 35,3,11; 43,31,15; 43,31,29. The first pattern in each of these sequences is
accounted for in the bound by the initialization factor. The second two patterns in the sequence
don’t account for any of the other triples, so they will add to the minimum length. So the
minimum length becomes 57. The distinguishing state of triple F is state 12. This state is not
adjacent to the setup state of any triple. Therefore, an additional pattern is needed raising the
minimum to 58. Now, suppose that triple F is in the last triple. Again 58 patterns are needed.

Fig. E-4 shows the setup of one possible sequence. The actual sequence is shown in Table 3.9-2
in Section 3.9.
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Figure E-1 Graphs of State Triples for Two-State BILBO Latch.
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Appendix F Details of the Two-State CBILBO Latch

The graphs of the state triples of the CBILBO latch are shown in Fig. F-1. The flow table
is given in Table F-1. The lower bound on the length of the checking experiment is 25, since
there are 24 states. Fig. F-2 shows the relationship between the triples. The graph is split into
two disjoint sub-graphs. Fig. F-3 shows how the two sub-graphs can be connected with one
additional state in the sequence. The minimum-length checking experiment can be achieved if
the state used to connect the two disjoint graphs is a distinguishing setup state of the starting
triple. This can be done if triple G (distinguishing setup state is 14), H (distinguishing setup state
is 17), F (distinguishing setup state is 12) or E (distinguishing setup state is 11). The minimum-
length checking experiment starting with triple G is shown in Table 3.10-2 of Section 3.10.
From Theorem 2, a sequence derived from the graph in Fig. F-3 forms a chain among all the
distinguishing inputs.

Table F-1 Flow Table for Two-State CBILBO Latch.
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Figure F-1 Graphs of State Triples for Two-State CBILBO Latch.
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Figure F-2 Constraint Graph for State Triples.

Figure F-3 Connecting the Disjoint Graph.



Appendix B. Deriving Checking Experiment for Flip-Flops

This Appendix includes detailed information on deriving checking experiments for an

MD flip-flop and a TP flip-flop. We use the transition graphs from Chapter 3 to generate
these checking experiments. Section B.1 covers the MD flip-flop, and Section B.2 covers
the TP flip-flop.

B.1 Checking Experiment for an MD Flip-flop

In Section 3.1.2, we showed that 137 transitions (which implies 138 patterns) are
needed for a checking experiment for an MD flip-flop. In this section we show how a
checking experiment of this length can be derived. Figs. B.1-1 through B.1-4 show all
the transitions in the primitive flow table. The graphs are not disjoint, since some states
appear in multiple graphs. Our goal is to find a minimum-length sequence that includes
all transitions in these graphs. The graphs of Fig. B.1-1 through B.1-3 are Euleran and a
state sequence that would apply all transitions only once can be easily derived. The
graphs in Fig. B.1-4 are not Euleran and some transitions will need to be repeated. For
example, graph A in Fig. B.1-4 has state 18 with an incoming edge and no outgoing edge,

Figure B.1-1 Graphs of Transitions Within First Quadrant
for MD Flip-Flop.
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4
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Figure B.1-2 Graphs of Transitions Within Fourth Quadrant
for MD Flip-Flop.
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Figure B.1-3 Graphs of Balanced Transitions Between Quadrants.
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Figure B.1-4 Graphs of Unbalanced Transitions Between Quadrants.
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Figure B.1-5 Graphs of B.1-4 With Extra Transitions to Become
Euleran.

and graph B has state 20 with an outgoing edge and no incoming edge. Since an edge
from state 18 to state 20 is allowed (see the first graph in Fig. B.1-2), we can add a
transition between the two states, and connect the two graphs. The same argument can
be applied to state 21 and 19, and we can add a transition from state 21 to state 19. The
new graphs are shown in Fig. B.1-5. Vertical edges are used to indicate the added
transitions. These graphs are Euleran and we can derive a sequence that would apply all
transitions only once. The graphs from Fig. B.1-1, B.1-2, B.1-3 and B.1-4 can be
combined to form one big Euleran graph, and a sequence can be derived from it. A
simpler approach is to derive a sequence for each graph and combine the sequence. The
graphs suggest three types of sequences:

A - sequence of states within a quadrant (Fig. B.1-1, Fig B.1-2) (length 24)

B - sequences of states in Fig. B.1-5 (length 6)

C - balanced sequences in Fig. B.1-3 (length 2)

Starting with State 18, Fig. B.1-6 shows how the sequences can be combined to
form a complete minimum-length checking experiment. States are picked horizontally
until an "interrupter”, shown as |, is reached. The sequence at the interrupter is then
picked, and then we go back to the original sequence. For example, we start with 18,
follow that with 20. Then we hit the first interrupter, so we pick the sequence at the
bottom of the figure, 22,30....20. Note that this sequence ends with the same state as the
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state just before the interrupter, so we can continue with the original sequence. In this
case the next state will be 4. The checking experiment derived from Fig. B.1-6 is shown
in Table B.1-1.

18,20,4,21,19,3(B)
5,7,15,13,11,17,9,3,11,3,9,7,9,17,15,17,11,13,5,13,15,7,5,3 (A)
I
33,17 (C) 31,15 (C) | 21,5 (C)
23,7 (C)

7,33,25,19,21,29,21,19,27,19,25,23,25,33,31,33,27,29,31,23,21 (A)
6,8,2,10,2,8,6,8,6,14,16,10,12,4,12,14,6,4,2,4 (A)
||
||
I

N—————

I I I
24,8 (C) | 28,12 (C)
18,2 (C) 31,29,13,28,30,14 (B)
33,27,11,26,32,16 (B)
26,10 (C)
23,25,9,24,22,6 (B)
22,30,28,26,32,24,18,20,28,20,18,26,18,24,22,24,32,30,32,26,28,30,22,20 (A)

Figure B.1-6 Combining Sub-Sequences of Graphs.
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Table B.1-1 Example of Minimum-Length (138) Checking Experiment for

MD Flip-Flop.

C [of1]aja|a]afa|a]a]aja]a]aja]1]a] [1][2/2|2][1/2|2]|1]2]21]0]O
T |0j/o/0/0[1/1/1{1/0/0/0/1/0/0/1/0/0/0/0[1/1/1/1/1/0/0/0 0|0
S |0joj0j1/1/0/0/1/1/00/0/0/0/0/0|2/1/1/1/1/1/0/0/0/1/0[/01
D (o/o/1/1/1/1/0/0/0|0[1/1/1/0/0/0/0/1/0/0/1/0[/0/1|21/1|1]1]1
Q 0/0/0/0/0/0/0/0/00/0/00/0/00/000/00000000]0
Statq - | 182022 30 28|26 32 24,18 20 28 20/ 18 26|18 24 22 243230 32,26/ 2830 2220 4 | 6
C [1]1]0/1]|1]|0]|0|/0]0][1/0]0]2|2]0]21]2]0]0/0|1]|0/0|0|0]1]0]0]0O
T |ojojojoj0/0O|1]|1/2/2/1/2/2]1/1/2/1/1/0/0/0/0/1/0/ 0/0/0/ 0|0
S (1]/1]1/2]/1]|1/2/0/0/0/0/1/12/0/0/0/1/1/1/0/0/0/0]0]|1/2[1]|1/1
D |1/ 0/0/0/1/1/1/1/0/0/0/0/0/0/0[0|0/0[0/0/0/0/0/0/0/0/0/1]0
Q [1/1]/1/0/0/0/0/0/0/0/0/0/1/2/1/0/0/0/0 0/0/0 0/0/00/0 0|0
Statg2325 9|2422 6|1412/10/ 261016/ 332711263216 8| 2|18 2|10/ 2| 8|24/ 8|6/ 8
C [0/0/1/1/0/1]1/0/0]0/0/0]0]1]0/0]/0/0/0]0|1 1/ 1]1|1 1 1]1]1
T |2/1/21/1/21/1/1/1/1/1/1/0/1|1/1{1/0/0/0/0/0/0/1/1/1/10/0|0
S [1/1]1/0/0/0/2/1/1/0/0/0/0/0|0|1/2/0/0/ 00|21/ 1/0/0/1/1 0|0
D |o/1/1/1/2|21/1/1/0/0|2/2|1|1/2|/1|1/2/0/1]|2|/2]/1/1/0/0]/0/0|1
Q [ojoj1/1/1/0/0/0/0/0/0/0/0O/0O/0/0O/0O/0/0O/O|1]21/2]1|1/2/1]1/1
| State16 14 31 2913 28 3014 16 10124 12281214 6 4 2 4 2123 31 29 27 33 25[19 21
C [1]1]2]a]2]1]a|2]1]2|2]1][2|2][1][1]2]0]|0/0|0]|0/0|0|1/0|0]0]O
T |1/0/0/1/0/0(/0/0/1/1/1/1/1/1/0/0/0/0/0/0|21/21/1{1/1/1]|0/0|1
S [ojojo/0oj0/1/1/1/1/1/1/0/0/2]/1/0/0]|0|0/1/1|0 0[1|1/1/1 0|0
D |1/1/0/00/0/1/0/0/1/0/0/1]/1/1/1/0/0[1]{1/1/1/0/0/0/0/0/0]0
Q (1121212222 /2f1/21/2/1/1/2/1/1/2/2]1]1/21]1]1/21]1]1/1
Statg2921/19 2719 2523 25/3331/3327/29/3123/21/19 3| 5| 7|151311/1733/17 9| 3 |11
C [0/0/0/0/0/0]1/0/0]/0|/0]/0]0]/0/0/1]/0/0/1/0/0]1

T |0/0/0/0[1/2/1/1/12/1/1/0/1/1/0/0/0/0/0/0|0/0

S [oj1]1/1]/1|{1/2/1/1/0/0/0/0/1/1/1/1/0/0/0[0|0

D |oo/1/0/0[1]1/1/0/0|1/2|1|1/21/1/1/1/1/1]|0/0

Q |1/1/1/1/1/1/2/1|2/1j2/1/2/1/1/1/1/1/1/1/1|0
Statg3|9|7|9/17/153115/17/11/13 51315 7 |23 7| 5|21/ 5/ 3|18

B.2 Checking Experiment for a TP Flip-flop

In Section 3.1.2, we showed that 89 transitions (which implies 90 patterns) are
needed for a checking experiment for a TP flip-flop. In this section we show how a
checking experiment of this length can be derived. Figs. B.2-1 through B.2-3 show all
the transitions in the primitive flow table. These graphs are not disjoint, since some states
appear in multiple graphs. As with the MD flip-flop in Section B.1, our goal is to find a
minimume-length sequence that includes all transitions in these graphs. The graphs of Fig.
B.2-1 and B.2-2 are Euleran and a state sequence that would apply all transitions only
once can be easily derived. The graphs in Fig. B.2-3 are not Euleran and some transitions
will need to be repeated. For example, graph A in Fig. B.2-3 has state 18 with an
incoming edge and no outgoing edge, and graph B has state 20 with an outgoing edge and
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no incoming edge. Since an edge from state 18 to state 20 is allowed (see Fig. B.2-1), we
can add a transition between the two states, and connect the two graphs. The same
argument can be applied to state 21 and 19, and we can add a transition from state 21 to
state 19. The new graphs are shown in Fig. B.2-4. Vertical edges are used to indicate the
added transitions. These graphs are Euleran and we can derive a sequence that would
apply all transitions only once. The graphs from Fig. B.2-1, and B.2-4 can be combined
to form one big Euleran graph, and a sequence can be derived from it. A simpler
approach is to derive a sequence for each graph and then combine the sequence. The
graphs suggest three types of sequences:

A - sequence of states within a quadrant (Fig. B.2-1) (length 8)

B - sequences of states in Fig. B.2-4 (length 6)

C - balanced sequences in Fig. B.2-2 (length 2)

Starting with State 18, Fig. B.2-4 shows how the sub-sequences can be combined
to form a complete minimum-length checking experiment. States are picked horizontally
until an "interrupter”, shown as |, is reached. The sequence at the interrupter is then
picked, and then we go back to the original sequence. For example, we start with 18,
follow that with 20. Then we hit the first interrupter, so we pick the sequence at the
bottom of the figure, 22,24....20. Note that this sequence ends with the same state as the
state just before the interrupter, so we can continue back with the sequence. In this case
the next state will be 4. The actual checking experiment is shown in Table B.2-1.

Figure B.2-1 Graphs of Transitions Within Quadrants for TP Flip-Flop.

SERRREN

Figure B.2-2 Graphs of Balance Transitions Between Quadrants for TP Flip-
Flop.
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Figure B.2-3 Graphs of Unbalanced Transitions Between Quadrants for TP

Flip-Flop.
<12

Figure B.2-4 Graphs of B.2-3 With Extra Transitions to Become Euleran.

18,20,4,21,19,3 (B)
I
5,7,9,3,9,7,5,3 (A)

13,5(C)
21,23,25,19,25,23,21,19 (A)

|
25,9,24,22,6,23 (B)

15,13,5,12,14,6 (B)
6,8,2,4,2,8,6,4 (A)

17,11,3,10,16,8 (B)
I
12,14,16,10,16,14,12,10 (A)

11,13,15,17,11,17,15,13 (A)
22,24,18,20,18,24,22,20 (A)

Figure B.2-5 Combining Sub-Sequences of Graphs.
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Table B.2-1 Example of Minimum-Length (90) Checking Experiment for TP
Flip-Flop.
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Appendix C. Fault Analysis

In this appendix, we present a detailed analysis of some of the fault simulation results
presented in Chapter 5.

C.1 Analysis of Faults in D-Latch

As mentioned in Chapter 5, some faults are only detected by current
measurement. Fig. C.1-1 shows the faults in the D-latch that are detected by current, and
not detected by boolean test. In the D-latch, there are three kinds of faults that are
detected by current and not by voltage. A stuck-on fault in M8 or M9 would cause a
large IDDQ current when the corresponding NMOS transistor is turned on. However,
due to the sizing ratio between the two transistors, the output voltage value would not be
affected enough to be detected. In fact, the inverter would behave as an NMOS inverter
rather than a CMOS inverter. A plot of the relevant voltages and currents in the circuit
with a stuck-on fault on M8 are shown in Fig. C.1-2. In these greﬁ)mas(}a fault-free

value of 0 volts between 10 and 40 ms. With the presence of the fault, this voltage is
around 0.1 volt, which is not high enough to be detected by a voltage test. In the same
time frame, the IDDQ current reaches 2.5 mA. The second kind of faults that are only
detected by current measurements are the stuck-open faults on M6 and M1, and stuck-
open faults on the transmission gate in the feedback path. These faults cause voltage
degradation on N1 which in turn causes M8 or M4 to turn on when they should not,
raising the IDDQ current. A plot of the relevant voltages and currents in the circuit with
stuck-open fault on M1 are shown in Fig. C.1-3. For the circuit with a stuck-open fault
on M5, the voltages and currents are shown in Fig. C.1-4. In this case, the current
reaches around 50 uA. Even though this value is much lower than that of M8 stuck-on
fault, it is still above the threshold of 32 uA. The third kind of faults are shorted
interconnects. These faults cause the voltage output to change, but not far enough to be
detected as a change in boolean value. For example, a short between_Qnakdthe

output become about 2.5 volts. A very high current is observed with these faults
Some faults can only be detected by voltage measurements (see Fig. C.1-5).

Stuck-open faults on M3, M4, M8, and M9 do not substantially increase the IDDQ

current. Also, a STI fault between D and N1 does not increase the IDDQ current.
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Figure C.1-1 Faults Detected by IDDQ Test Missed by Boolean Test.
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Figure C.1-2 HSpice Output for M8 Stuck-On.
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Figure C.1-3 HSpice Output for M1 Stuck-Open.
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Figure C.1-4 HSpice Output for M5 Stuck-Open.
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Fig. C.1-5 Faults Detected by Boolean Test Missed by IDDQ Test.

C.2 Analysis of Faults in D Flip-Flop

The analysis in this section is divided into four parts. In the first part, we analyze
the faults that were missed by the checking experiment. We show that these faults would
have been detected if they were detectable. In the second part, we look at the faults
missed by boolean measurement, and detected by IDDQ measurements. Here, we show
that these faults could not have been detected by any boolean test, and thus can only be
detected by IDDQ measurement. It may be important to detect such faults because they
are likely to affect the circuit reliability. In the third part, we analyze a fault that is not
detected by a 10 ms cycle test, but detected by a 100 ns cycle test, and in the last part, we
analyze faults missed by a 100 ns cycle test, but detected by a 10 ms cycle test.

1. Faults Missed by Checking Experiment
The checking experiment for the D Flip-Flop missed 15 faults. These faults are
shown in Fig. C.2-1. As before, white ovals indicate SOP or OPI faults, black ovals
indicate SON faults, and thick black lines indicate STI faults. These faults can be
categorized into four groups based on the circuit behavior in the presence of the fault.

STI's N4-N11, N6-N8
Looking at N4-N11, when CK1 = 1, neither node involved is sensitized to the
output. When CK1 =0, CKN = 1, N4 and N11 will have the same voltage.
Therefore, we cannot have a difference in the voltage output. Now, depending
on the value of Q, either M14 or M8 will be off. Therefore, the fault cannot
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Figure C.2-1 Faults Missed by Checking Experiment.

cause a direct path from VDD to ground, making detection by IDDQ testing
impossible. Therefore, the fault is undetectable. A similar argument can be
made for N6-N8.

All the SON faults
Consider M15 SON. In the fault-free circuit, if IQN = 1, then Q = 0, turning
on M14 and making N4 = 1. Since IQN and N4 have the same voltage in the
fault-free circuit, then the fault cannot be detected when IQN = 1. Now if
IQN =0, Q =1, and M14 is turned off, leaving N4 with no drive at all. The
fault would cause N4 to discharge to 0 in a short time. Thus the boolean
output would not be affected, and IDDQ would remain low. The other SON
faults are similarly undetectable.

Rest of STI's (N4-IQN, N11-IQN, N1-N6)
The same analysis used for the SON faults can be used for these STI faults.
However, N8-N1 is actually detected, while M6 SON is not. The reason for
this is that when a transistor is stuck-on there is some small resistance between
the source and the drain. However, the STI fault contains no resistance
(actually it has a resistance of 0.001 ohms for HSpice to work). This fault gets
detected when N1 changes from 0 to 1. At that point, N2 changes from 1 to 0.
Initially, when N2 was 1, M7 was on, making N8 = 0. After N1 changes to 1,
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we end up with a conflict in values between N1 and N8. This voltage
difference resolves to about 1.78 volts. This voltage is low enough to keep N2
from falling, preventing M7 from going off and thus N1 remains low. So, to
detect faults in this category we need to have a transition from 0 to 1 or from 1
to 0 depending on the location of the fault. Since a checking experiment
guarantees this, then any checking experiment would detect these faults if they
are detectable.

All the SOP faults
These faults actually do affect the IDDQ current (13X for faults at M13 and
126X for faults at M18). However, they fall well below the threshold that we
have set. Lowering the threshold would detect them. However, a lower
threshold could cause a loss of yield. The reason these faults increase the
current is that they cause voltage degradation of N1 or IQN, partly turning on

both transistors of the downstream inverters.

2. Faults Missed by Boolean Testing Detected by IDDQ Testing
Boolean testing missed 16 faults that were detected by IDDQ testing. These
faults are shown in Fig. C.2-2. As before, white ovals indicate SOP or OPI faults, black
ovals indicate SON faults, and thick black lines indicate STI faults. STP faults are shown
as thick black lines connected to VDD. These faults can be categorized into six groups

Figure C.2-2 Faults Missed by Boolean Testing Detected by IDDQ
Testing.
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based on the circuit behavior in presence of the fault.
M18 SON

In the fault-free circuit, when C = 1 and D changes value, N1 should not
change. However, in the faulty circuit, N1 becomes 3.4 volts when it should
be 5 volts. This happens between 20 and 30 ms and between 180 and 190 ms
(see Fig. C.2-3). The voltage degradation causes M11 and M24 to partially
turn on, leading to an IDDQ current of 400 uA. Similarly N1 becomes 1.1
volts between 130 and 140 ms and between 150 and 160 ms (see Fig. C.2-3)
when it should be holding 0 volts. In this case the IDDQ current becomes 540
uA. Even though the voltage at N1 is degraded, the voltage is adjusted at N2,
and thus the fault cannot be detected by boolean testing.
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Figure C.2-3 Waveforms for M18 SON.
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All the SOP's
Just like M18 SON fault, these faults cause a degradation at either N1 or IQN.
For example, M2 SOP causes N1 to become 960 mVolts when it should be 0
volts. This causes the IDDQ current to be around 110 uA. The affect on the
voltage value is not sufficient to be detected by boolean testing. Fig. C.2-4
shows the waveforms for M2 SOP.
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Figure C.2-4 Waveforms for M2 SOP.
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Other SON's

These faults create a straight path from VDD to ground. The output voltage is

the result of the voltage divider created by having the faulty transistor and

other transistors on at the same time. For these faults the voltage is not

affected enough to be detected, but the current increases dramatically. As an

example, the waveforms for M16 SON are shown in Fig. C.2-5. The

waveforms show an IDDQ value of about 1.1 mA.
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Figure C.2-5 Waveforms for M16 SON.
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STI's N6-Q, N8-Q
N6-Q prevents a clean 0 volt on Q, giving about 0.5 volts. This is enough to
turn on both transistors of down stream buffers increasing the IDDQ current to
about 1 mA. Again 0.5 volts is not high enough to be differentiated from 0.
The waveforms for N6-Q are shown in Fig. C.2-6. Similar arguments can be
made for N8-Q.
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Figure C.2-6 Waveforms for STI N6-Q.
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STI's N6-CK1, N6-C
These faults are activated when C =0 and D = 1. This would make N1 =1,
N2 =0, turning on M 17, and setting N6 to 1. At this point, M19 is turned off,
so any effect at N6 cannot be observed. N6 =1 and C = 0 causes a current of
about 1.23 mA. The value of the connected node follows C. The waveforms

are shown in Fig. C.2-7.
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Figure C.2-7 Waveforms for STI N6-CK1.
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N6 STP
This fault can only have a boolean affect when CKN = 0 and N1 is storing a 0,
as this would turn on M19. In this case, N1 is degraded to 1.36 volts and the

current reaches 700 uA. The waveforms are shown in Fig. C.2-8.
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Figure C.2-8 Waveforms for N6 STP.
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3. Faults Missed by 10 ms Cycle Time, Detected by 100 ns Cycle Time
Faults that are detected at a slow speed but are missed at high speed are called
stationary faults [Ma 95]. One fault, M1 SOP (see Fig. C.2-9), affects the output in the
100 ns, but is missed by the 10 ms cycle time. M1 SOP causes CKN to float when C = 1.
The value on the node begins to discharge slowly. In the case of 100 ns cycle time, CKN

M16 M10
C CKN CK1
M1 M3

KN

CKN N11

Figure C.2-9 Fault Detected by 100 ns Cycle Missed by 10 ms Cycle.
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(b) CKN in Faulty Circuit With 100 ns Cycle
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Figure C.2-10 Waveforms for M1 SOP.
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has not discharged too much and the value still appears as 1. Thus, CKN will always
have 1 on it, and the fault behaves as a STP fault. In the case of 10 ms cycle time, it gets
enough time to discharge, and thus the circuit behaves normally. The waveforms
showing these signals are shown in Fig. C.2-10.

4. Faults Missed by 100 ns Cycle Time, detected by 10 ms Cycle Time
There were 21 faults that were missed by the 100 ns cycle time that were detected
by the 10 ms cycle time. They were all SOP faults (see Fig. C.2-11). The faults are
divided into two groups: those in the master, and those in the slave.

M16 M10
C CKN CK1
M1 M3

Figure C.2-11 Faults Detected by 10 ms Cycle Missed by 100 ns Cycle.

SOP's in the slave
These faults cause N4, N11, or IQN to float. Given enough time, the node
will discharge. For example, consider M14 SOP. After loading a 0, M14 is
expected to be turned on, but because of the fault, M14 remains off, and N4
discharges slowly. In the case of 100 ns timing, N4 does not discharge
enough to affect the output. However, with the 10 ms timing, N4 discharges
completely. This results in the extra pulse between 100 and 120 ms in the

output as seen in Fig. C.2-12.
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Figure C.2-12 Waveforms for M14 SOP.
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SOP’s in the master

The faults in the master cause the stored value at N1 to discharge slowly. The

value decays completely in 2 ms. The effect at the primary output is a narrow

2 ms pulse that appears after the rising edge of C. This is shown in Fig. C.2-

13.
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C.3 Faults Missed by Checking Experiment of MD Flip-Flop

The checking experiment missed 19 faults. These faults are shown in Fig. C.3-1.
As before, white ovals indicate SOP or OPI faults, black ovals indicate SON faults, and
thick black lines indicate STI faults. These faults can be categorized into five groups
based on the circuit behavior in the presence of the fault.

M22 M13
—C| M25
CK1
T ™ c CKN
e
M2 M5
—| M1

Figure C.3-1 Faults Missed by Checking Experiment (19 of them).

STI's N4-N15, N6-N8
Looking at N4-N15, when CK1 = 1, neither node involved is sensitized to the
output. When CK1 =0, CKN = 1, N4 and N15 will have the same voltage.
Therefore, we cannot have a difference in the voltage output. Now, depending
on the value of Q, either M20 or M8 will be off. Therefore, the fault cannot
cause a direct path from VDD to ground, making detection by IDDQ testing
impossible. Therefore, the fault is undetectable. A similar argument can be
made for N6-N8.

SON faults in Slave
Consider M21 SON. In the fault-free circuit, if IQN = 1, then Q = 0, turning
on M20 and making N4 = 1. Since IQN and N4 have the same voltage in the
fault-free circuit, then the fault cannot be detected when IQN = 1. Now if
IQN =0, Q =1, and M20 is turned off, leaving N4 with no drive at all. The

fault would cause N4 to discharge to 0 in a short time. Thus the boolean
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output would not be affected, and IDDQ would remain low. The other SON

faults are similarly undetectable.

Rest of STI's (N4-IQN, N15-IQN)

The same analysis used for the SON faults can be used for these STI faults.

SON in Master (M16 SON)

The arguments presented for the SON faults for the slave did not apply to the
faults in the master. The reason for that is that weaker drive due to the
multiple transmission gates in series. N6-N1 prevents the flip-flop from
loading a 0 after a 1 has been loaded, while N8-N1 prevents the loading of a 1.
M11 SON causes a high current. M16 SON is not detected due to ratios of the

transistor strengths.

All the SOP faults

These faults actually do affect the IDDQ current (13X for faults at M19 (slave
transmission gate), and 128X for faults at M17 (master transmission gate), and
350 for M28 and M24 (multiplexer transmission gates)). However, they fall
well below the threshold that we have set. Lowering the threshold would
detect them. However, a lower threshold could cause a loss of yield. The
reason these faults increase the current is that they cause voltage degradation

of N1 or IQN, partly turning on both transistors of the downstream inverters.

In this section we have shown that all the faults that are not detected by the

checking experiment are not detectable. Therefore, the limitation that checking
experiment does not guarantee detection of some faults, did not affect its quality.
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