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0. Introduction

The strategies for building a fault-tolerant distributed shared memory (DSM)
multiprocessor fal into at least 2 broad categories. modular redundancy and rollback
recovery. Within the latter category, there are 3 principal issues: detecting afault,
containing afault, and rolling the necessary nodes of the system back to the last checkpoint
in order to recover from the fault. This report does not deal with thefirst 2 issues and
merely assumes that (1) the DSM system is fail-stop, where a node encountering afault
simply stops and (2) the system can detect that a node has stopped (i.e. has encountered a
fault). Thisreport doesfocus on the last issue: methods of rollback recovery. They can
be partitioned into 3 principal methods for both software-based DSM and hardware-based
DSM.

Before presenting the details of the 3 methods, this report illustrates the notion of a"fault”
and presents statistics of faulty behavior for acommercial computer system. Then, the
discussion moves to some of the theoretical concepts behind the 3 methods of rollback
recovery. These concepts lead into a detailed discussion of the 3 principal methods of
rollback recovery. Each method isillustrated by either (1) a description of the best
algorithm that currently existsin the literature or (2) adescription of an algorithm (contrived
by the principal author of this report) that isan improved version of what currently exists.
Finally, this report concludes with a comparison of all 3 methods.

|. Fault
A. Definitions

A fault in acomputer system is any behavior that differs from the behavior specified by its
technical design. [Gray] Anexample of afault isthe operating system (OS) encountering
a software bug and halting. Another example is amicroprocessor halting after alength of
its polysilicon wiring cracks into 2 pieces.

One can classify afault according to the context in which it occurs. Below are 6 possible
classifications.

software (computer program)

hardware

maintenance (adjusting head alignment of disc drive,
replacing itsair filter, etc.)

operations (installing new software, restarting afaulty
node, etc.)

environment (external power, earthquake, etc.)

process (everything else)

"Process' faults are those which do not fall into any of the other categories.

One can a so categorize afault according to whether it manifestsitself to the user. A fault
which is not tolerated by the computer system and hence isvisibleto the user iscalled a
"fatal fault". Any fault in achain of faultsleading to afatal fault is called an "implicated
fault".



An example of such achain of faultsisthe following. A software bug in the OS causes
one processor node in a distributed system to temporarily halt, creating a software fault.
The system tolerates the fault by transferring the processes on the failed node to aworking
node and resuming execution of those processes. Then, a human operator attempts to
restart the failed node but mistakenly restarts aworking node, creating an operations fault.
The software fault and the operations fault are implicated faults, and the latter fault isalso a
fatal fault.

B. Statistics

Figure #1 lists the fault statistics of Tandem computer systemsfor 3 years. 1985, 1987,
and 1989. Near the bottom of the figure, the table shows the total number of computer
systemsin current use by all customersfor each of those years. A typical Tandem system
has 4 processors, 12 disc drives, several hundred terminals and associated equipment for
communications. The computer system can tolerate a single faullt.

Reading the table is straightforward. For example, in 1989, atotal of 29 fatal faults
occurred among 9000 systems in current use by customers.

Figure #2 recasts the data from Figure #1 to concentrate on the software faults and
hardware faults, lumping al other faults into the category "other faults’. The graph shows
the number of fatal faults per 1000 Tandem systems from 1985 to 1989. During this
period, the number of hardware faults has decreased dramatically; hence, the reliability of
hardware hasincreased. On the other hand, the number of software faults has remained
relatively constant.

Therefore, as a percentage of al fatal faults, software faults have become dominant. Figure
#3 confirms this observation by recasting the data from Figure #1 to focus on the
percentages of software faults, hardware faults, and other faults.

Why has software become dominant? New products tend to have more bugs (or problems)
than old products. They have been used (and tested) long enough by customersin the
marketplace, so vendors have eliminated many bugs from the old products. From 1985 to
1989, the number of new software products (i.e. application programs) has greatly
increased relative to the number of new hardware products. Hence, software faults have
become dominant over hardware faults. Furthermore, since the creation of new software
generally outpaces the construction of new hardware, the dominance of software faults will
likely persist indefinitely.

I1. "Theory" behind fault tolerance

A multiprocessor system that isfault tolerant can (1) detect afault, (2) contain it, and (3)
recover from it. Thisreport does not deal with thefirst 2 issues and assumes that each
component in the system has the "fail-stop” property. Namely, if acomponent fails, then it
simply stops. Therest of the system can detect that it has failed by ssimply noticing that it
has stopped.

Most of the techniques for recovering from afault in a multiprocessor system use a
variation of rollback recovery. The system periodically establishes checkpoints for all
processes. |If the multiprocessor encounters afault, the system rolls back to the last set of
consistent checkpoints and resumes execution.



Fatal Faults Inplicated Faults Al Faults

Year 1985 1987 1989 1987 1989 1989
Sof t war e 96 114 272 135 297 515
Har dwar e 82 66 29 106 77 157
Mai nt enance 53 37 22 42 28 28
Oper ati ons 25 35 66 49 86 27
Envi r onnent 17 28 26 37 27 103
Process ? ? 0 ? 9 61
Unknown 12 14 23 17 23 21
Tot al 285 294 438 386 538 892

# of systens 2400 6000 9000

Figure 1. Faults in Tandem Systens
by Year [ G ay]
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For the sake of clarity in illustrating the concepts of fault tolerance, this discussion assumes
that each processor in the system executes exactly one process. Hence, referring to a
process "P[0]" executing on processor "R[3]" is synonymous with referring to processor
"R[3]". All processes comprise the execution of exactly one application program.

A. Message-passing multiprocessor
1. Consistent checkpoints

A checkpoint isthe entire state of a process at a particular point intime. The system saves
at least 1 checkpoint for each process. If apermanent fault occurs on a processor executing
aprocess, the system reloads the process from its checkpoint onto another processor and
resumes execution from the checkpoint. If atransient fault occurs on a processor executing
aprocess, then the system restarts the failed processor and uses it to resume execution of
the process from its last checkpoint.

If the computer system is a uniprocessor, then establishing a periodic checkpoint and
rolling back to it is rather straightforward. For example, the uniprocessor can save the state
of its process at the end of each 1-minuteinterval. The system creates atentative
checkpoint, verifiesthat its creation is successful, and then convertsit into a permanent
checkpoint, erasing the previous permanent checkpoint. If the creation of the tentative
checkpoint is unsuccessful, then the system discards it and resumes execution from the
permanent checkpoint created in the prior 1-minute interval. Even in thissimple system, 2-
phase checkpointing isrequired. [Koo]

If the computer system is a message-passing multiprocessor, then establishing periodic
checkpoints and rolling back to themis complicated. Figure#4 illustrates 1 of the
problems. Process"P" establishes a checkpoint at "Rp", and process "Q" establishes a
checkpoint at "Rq". Inthefigure, "P"' sends amessageto "Q" before "P" encounters a
fault. "P" rolls back to checkpoint "Rp" and resumes execution. Immediately after the
rollback, the state of the system isinconsistent. Process"Q" has received a message, but
the state of process"P" indicatesthat it has not yet sent the message.

By contrast, Figure #5 illustrates a state which is consistent. "P" receives a message from
"Q" before "P" encounters afault. "P" rolls back to checkpoint "Rp" and resumes
execution. Immediately after the rollback, the state of the system is consistent although
process "Q" has sent a message that process "P" never receives.
Although the state suggested in Figure #5 is consistent, the state of the system may not be
acceptable. Suppose that both processes use synchronous message-passing to
communicate. Unless the rollback recovery logs the messages and replays them, process
"P" may hang forever. In other words, the system can bein 1 of 3 states:

inconsistent state,

unacceptable consistent state,

and acceptable consistent state.
The aim of fault tolerance isto set the system in an acceptable consistent state.

2. Domino effect
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The processors in a multiprocessor system either (1) can perform asynchronous
checkpointing where each process independently establishes a checkpoint or (2) can
perform synchronous checkpointing where processes synchronize to establish a consistent
checkpoint. In asynchronous checkpointing, each process may need to establish and
maintain many checkpointsin order to enable the computer system to find a set of
consistent checkpoints during rollback recovery. Intheworst case, the system may need to
roll back to the state at the start of the execution of the application program. This
phenomenon is called the "domino effect”.

Figure #6 illustratesit. Process"P" encounters afault and rolls back to checkpoint "Rp3",
but rolling "P" back to "Rp3" forces the system to roll process"Q" back to "Rg2" in an
attempt to find a consistent checkpoint. Still, rolling "Q" back to "Rg2" forces the system
to roll "P" even further back to "Rp2". The events cascade until the both processes are
rolled back to their initial statesat "Rp0" and "Rq0".

3. Livelock effect

The processorsin amultiprocessor either (1) can asynchronously roll back affected
processes to a set of consistent checkpoints or (2) can synchronously roll back affected
processes to a set of consistent checkpoints. 1n asynchronous rollback, a group of
processes can cause each other to repeatedly rollback to the same set of checkpoints and
thus can effectively halt the progress of the application process. This phenomenon iscalled
"livelock”. [Koo]

Figure #7 illustratesit. Process"P" and process "Q" recover asynchronously. "P" sends
message "M1" to "Q", encounters a fault, and then rolls back to checkpoint "Rp”. "Q"
sends"N1" to "P" and then receives"M1". Since"P" hasrolled back to "Rp", the state of
"P" indicates that it has not sent "M1". Hence, "Q" must roll back to checkpoint "Rq".

Figure #8 illustrates the succeeding sequence of events. After "P" resumes execution from
"Rp", "P" sends "M2" to "Q" and then receives"N1". Since"Q" hasrolled back to "Rq",
the state of "Q" indicates that it has not sent "N1". Hence, "P" must roll back to checkpoint
"Rp", again. This sequence of interlocked events can proceed indefinitely, inhibiting the
application program from progressing.

4. Interrupt

One important type of message is an interrupt from the environment (e.g. peripherals) to
the multiprocessor. If an interrupt arrives from adevice that does not participate in the
fault-tolerant scheme of the multiprocessor, it must perform a checkpoint immediately after
the receipt of the interrupt. The aimisto avoid losing knowledge of the interrupt.
Otherwise, if the system does not perform this immediate checkpoint but does encounter a
fault, the system will roll back to a checkpoint prior to the receipt of the interrupt and will
lose knowledge of it.

Further, if the multiprocessor system sends information to a device that cannot tolerate
duplicate information, then the system must perform a checkpoint immediately after the
transmission of information. The aim isto avoid sending duplicate information.
Otherwiseg, if the system does not perform this immediate checkpoint but does encounter a
fault, the system will roll back to a checkpoint prior to the transmission of the information
and may possibly resend it.

B. Distributed shared memory (DSM) multiprocessor
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1. Application of concepts from message passing

The concepts for fault tolerance in message-passing multiprocessors can be applied to DSM
multiprocessors. Processesin the latter communicate by accessing shared memory. The
mechanism for maintaining the coherence of shared memory generates messages on behalf
of the communicating processes.

Figure #9 illustrates the coherence messages in a DSM multiprocessor. This particular
systemis aloosely-coupled one, where software (like that described by Li) maintains
coherence. A tightly-coupled multiprocessor, where hardware maintains coherence,
operates in afashion that is similar to the operation of aloosely-coupled multiprocessor.
Hence, the following discussion applies to both types of systems. [Janssens]

In the left half of the diagram, processor "P" attemptsto writeto block "G". "P" sendsits
request to "M", the manager for block "G". "M" forwards the request to the current
owner, "Q". "Q" sendsits copy of "G" and its copyset to "P". "P" receives"G" and
sendsinvalidations to all processors listed in the copyset. In this case, processor "R"
receives an invalidation.

In the right half of the diagram, processor "Q" attemptsto read "G" and sends a request
(for block "G") to processor "M". It, in turn, forwards the request to processor "P".
Then, "P" forwards a copy of "G" to "Q".

The dashed line indicates that processor "Q" rolls back to checkpoint "Rq", which isjust
prior to where " Q" attemptsto read block "G". If the messagesin thisDSM system are
treated like those in the message-passing system, then rolling "Q" back to "Rq" requires
that the system roll "P" back to checkpoint "Rp" in order to set the system in a consistent
state.

In reality, the characteristics of the messages that are generated to maintain coherence
enable the DSM system to roll "Q" back to "Rqg" without rolling "P" back to "Rp". The
message to request a copy of block "G" does not change the state of the processes on
processors "P* and "Q". Although the state of the copyset may be inaccurate immediately
after rolling "Q" back to "Rq", a dight modification of the coherence algorithm can easily
fix that problem. Furthermore, the semantics of the algorithm do not cause "Q" to hang
forever, waiting for the reply from "P", even though that reply is not logged. Hence, if the
DSM systemrolls"Q" back to "Rq" without rolling "P* back to "Rp", the systemisin an
acceptable consistent state.

2. Consistent global state in atheoretical DSM system

The previous discussion suggests that the interactions among processes in the DSM
multiprocessor should be analyzed at the level of read and write accesses to shared
memory. Anayzing the system at the lower level of messagesis not useful since many
messages issued to maintain the coherence of shared memory do not cause dependencies
among Processes.

Read and write accesses to shared memory introduce 2 kinds of dependencies. A recovery
dependency exists from process "P" to process "Q" if rolling process"P" back to a
checkpoint "Rp" requiresrolling process "Q" back to a checkpoint "Rq" in order to
maintain a consistent global state of the system. Similarly, a checkpoint dependency exists
from process "P" to process " Q" exists if establishing a checkpoint of process"P" requires
establishing a checkpoint of process"Q" in order to maintain a consistent state.

10
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A consistent state isone that is sequentially consistent. Sequential consistency isonetype
of view of memory accesses that the multiprocessor presentsto the user. Memory-
consistency models that are less stringent than sequential consistency also appear to the
user to be sequentially consistent if the user protects accesses (to shared memory) within
critical sections bounded by, for example, locks. For thisreport, aDSM system is
assumed to provide a sequentially consistent view to the user.

There are 4 possible read/write interactions that exist between any 2 processes, "P"' and
"Q". Figure#10 illustrates a read-read interaction between process "P" and process "Q".
The "checkpoint data" indicates data saved at the checkpoints"Rp" and "Rq". They
congtitute a consistent global state to which the system can roll back if it encounters afault.
In other words, they form a"recovery line". The "active data’ indicates the dataat a
particular point in time. Both the "checkpoint data’ and the "active data" designate the
values that are stored in the same particular memory location. The interaction between the 2
processes occurs at that particular memory location.

In Figure #10, neither process affects the state of the other process. Hence, at time "t", the
system can roll process "P" back to checkpoint "Rp" without rolling process " Q" back to
checkpoint "Rqg" and still maintain a consistent global state. The system can establish a
new checkpoint of process"P" without establishing a new checkpoint of process"Q" and
still maintain aconsistent state. Similar comments apply to the situations where the roles of
"Q" and "P" are switched.

Figure #11 illustrates a read-write interaction between process "P"' and process "Q".
Again, neither process affects the state of the other process. Hence, at time "t", the system
can roll back a processto the last checkpoint or can establish a new checkpoint of the
process without involving the other process.

Figure #12 illustrates a write-read interaction between process"P" and process"Q". "P"
writes avalue that "Q" subsequently reads, so "P" affectsthe state of "Q". At time"t", if
the system rolls "P* back to checkpoint "Rp", the system must also roll "Q" back to
checkpoint "Rq" in order to maintain a consistent state. On the other hand, the system can
roll "Q" back to checkpoint "Rqg" without involving "P". The system has sufficient
information to determine that "0" from the checkpoint data should not be restored during a
rollback of only "Q"; hence, the state remains sequentially consistent. Findly, at time "t",
if the system establishes a checkpoint of process"Q", the system must also establish a
checkpoint of process"P'. Thereason isthat once anew checkpoint of "Q" is established,
it cannot roll back to the previous checkpoint "Rq" even if "P" rolls back to "Rp". Onthe
other hand, the system can establish a checkpoint of "P" without involving "Q". [Banatre]

In summary, the write-read interaction introduces the following dependencies.

recovery dependency: P -> Q
checkpoi nt dependency: Q-> P

Figure #13 illustrates a write-write interaction between process"P" and process "Q". "P"
writes avalue to amemory location to which " Q" subsequently writes a different value. At
time"t", if the system rolls"Q" back to "Rq", then the system must also roll "P" back to
"Rp" in order to maintain aconsistent state. The reason isthat once"Q" overwritesthe
value written by "P", the system cannot restore that value if "Q" rolls back to "Rqg". (Morin
explained, in private communication, that the system maintains only 2 copies of each
memory location.) On the other hand, the system can roll "P" back to "Rp" without
involving "Q". Finally, at time"t", if the system establishes a checkpoint of process"P",
the system must also establish a checkpoint of process"Q" in order to maintain a consistent
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state. On the other hand, the system can establish a checkpoint of "Q" without involving
"P.

In summary, the write-write interaction introduces the following dependencies.

recovery dependency: Q-> P
checkpoi nt dependency: P -> Q

For the convenience of the reader, figure #14 summarizes the dependencies derived in this
section.

3. Consistent global statein areal DSM system

Figure #12 and Figure #13 illustrate the dependencies that exist in the situation where
memory is shared at the smallest granularity, a byte (8-bits) or aword (32-bits). In most
real systems, the smallest granularity isthe size of a cache block or virtual page of memory.
The following discussion extends Banatre's work to include fal se sharing.

False sharing of the cache block introduces dependencies beyond the previously mentioned
ones. Figure#15 illustrates 2 processes, "P" and "Q", falsely sharing ablock of 2 bytes of
data. When "Q" reads the value of "3", "Q" has no knowledge that "P" only wrote the
value of "1" without altering "3". The state of the cache does not contain information to
identify modifications to sections of a cache block. Hence, even though both processes are
falsely sharing a cache block, they must behave asif they are genuinely sharing it.

For awrite-read "message”, we have the following dependency.

recovery dependency: P -> Q
checkpoi nt dependency: Q-> P

Attime"t", if "P" roll backs back to checkpoint "Rp0", "P" forces"Q" to roll back to
checkpoint "Rg0". Establishing a checkpoint for "Q" at time "t" requiresthat TSM
establish a checkpoint for "P" at time"t" since "Q" cannot roll past the value that "P" wrote.

In figure #16, "P" and "Q" write to different locations in the same cache block. Similar to
the af orementioned argument, when " Q" writes to the cache block, "Q" has no knowledge
that "P" only wrote the value of "1" without atering "3". Eventhough "P" and"Q" are
falsely sharing a cache block, they must behave as if they are genuinely sharing it. Thus,
this situation introduces the same dependency derived for atheoretical DSM system.

Furthermore, at time"t", if "P" encounters afault and attempts to roll back to "Rp", neither
the cache block "[0 3]" nor the cache block "[1 2]" can be part of aglobal consistent state of
the system. The"0" in"[0 3]" isinvalid since "Q" has already written "1" over the"0".
The"1"in"[12]" isinvalid since"P" rolls back past the point where it writes"1" into the
cache block. Therefore, false sharing introduces an additional dependency. Namely,
rolling "P" back to "Rp0" requiresthat "Q" roll back to "Rg0". Therefore, establishing a
checkpoint of "Q" at time "t" requires that the system establish a checkpoint of "P* aswell.

For awrite-write "message”, we have the following dependencies.
recovery dependency:

checkpoi nt dependency:

QO TVTO
VVVV
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checkpoi nt dependency: Q-> P
recovery dependency: P -> Q
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recovery dependency: Q-> P
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Attime"t", rolling aprocess back to its recovery point requires that the other processroll
back to its own recovery point. Establishing a checkpoint of aprocess at time"t" requires
that the system establish a checkpoint of the other process sinceit can not undo the value
that it wrote.

For the convenience of the reader, figure #17 summarizes the dependencies derived in this
section.

[1l. Taxonomy for methods of rollback recovery

Rollback-recovery schemes can be categorized into 3 principal methods: tightly
synchronized method (TSM), loosely synchronized method (L SM), and un-synchronized
method (USM). The aim of this naming convention isto convey the degree of strictness by
which a particular method forces the establishment of a checkpoint. Under the TSM, a
processor can immediately force the establishment of a checkpoint by another processor at
the point of an interaction between the 2 of them. Under the LSM, a processor can force
the establishment of a checkpoint by another processor, but the establishment of that
checkpoint need not occur at the point of an interaction between the 2 of them. In other
words, the checkpoint can be postponed (by recording the inter-processor dependencies
that arose at the checkpoint). Under the USM, a checkpoint by a processor occurs
independently from all other processorsin the system.

IV. Tightly synchronized method for fault tolerance

The distinguishing feature of TSM isthat a processor immediately establishes a checkpoint
when an interaction between it and another processor can potentially cause rollback
propagation.

A. Generd architecture

The most common implementation of a TSM is cache-aided rollback error recovery
(CARER), originally proposed by Hunt for uniprocessors and extended to multiprocessors
by Wu. Figure #18 shows the generic architecture of asystem that uses TSM. There are 2
approaches. TSM for hardware-based DSM and TSM for software-based DSM. In the
hardware-oriented approach, TSM assumes that both memory and cache are fault-tolerant
and saves checkpointsin main memory. The system can tolerate only atransient fault in
any node.

In a software-based DSM system, software maintains memory coherence by sending
reliable messages over aloca area network (LAN). In the software-oriented approach, the
TSM assumes only that the disk and the LAN are fault-tolerant. TSM saves checkpoints to
disk.

The following discussion focuses on the hardware approach.
B. Processor interaction
Figure #15 suggests the actions that TSM must take in order to prevent rollback

propagation in the case of the write-read "message”. Suppose that "Q" incurs aread miss
in the process of fetching the cache block owned by "P". Just before it supplies that block,
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"P" must establish a checkpoint, "Rpl", at time"s". Inthisway, rolling "P" back to the
last checkpoint, "Rpl", does not force "Q" to roll back to "Rq0". Figure #16 suggests the
actionsthat TSM must take in order to prevent rollback propagation in the case of the write-
write "message”’. Suppose that "Q" writes to the cache block. Just before " Q" performs
the write, TSM must establish a checkpoint "Rpl" for "P" at time"s". Inthisway, rolling
"P" back to "Rpl" does not force "Q" to roll back to "Rg0". Establishing "Rpl" also
eliminates the rollback propagation suggested by dependency "Q -> P". Rolling "Q" back
to "Rq0" restores "[1 3]" (saved at "Rpl") as the value of the cache block.

Incidentally, establishing the checkpoint of "P" in the Situations illustrated in the 2 figures
eliminates both the checkpoint dependency and the recovery dependency identified in figure
#17.

C. Initiating checkpoints

Figure #19 illustrates 3 conditions requiring the TSM to establish a checkpoint for a
process "P". First, suppose that any process reads or writes to a cache block for which
process "P' isthe last writer. The TSM must establish a checkpoint for "P" if the TSM has
not already established one for "P" (thus having aready saved that block) in order to
prevent rollback propagation.

Second, suppose that the cache has reached a state where a dirty block must be written back
to main memory in order to make room for an incoming cache block. A dirty block is one
which ismodified by the processor but which has not yet been written back to main
memory. Since it contains the last checkpoint for process"P', the TSM must establish a
new checkpoint for "P" in order to write the dirty block back to main memory. Simply
writing the block back to memory without establishing a checkpoint would leave the
original checkpoint (in memory) in apossibly inconsistent state. [Ahmed]

Third, any interaction between "P"' and the environment requires that the TSM establish a
checkpoint immediately after the interaction in order to prevent "P"' from losing knowledge
of that interaction. Examples of interactions include an interrupt from an externa device,
receiving datafrom it (viaan I/O instruction), or sending datato it.

D. Saving checkpoints

To establish a permanent checkpoint, the TSM saves (1) the internal state (registers and
internal buffers) of the processor executing "P" and (2) the dirty cache blocks. Afterwards,
"P" resumes execution, updating the cache, registers, and internal buffers of the processor.
[Wu] They essentially contain the tentative checkpoint of "P". At the next establishment of
a permanent checkpoint, the TSM converts the tentative one into a permanent one. Fault
tolerance based on rollback recovery requires that the system contain at least 2 checkpoints-
-a permanent one and a tentative one. For convenience, a permanent checkpoint is ssmply
referenced as "checkpoint”.

Frequently writing checkpoints to main memory can overload the interconnection network.
Figure #20 illustrates an optimization to reduce the amount of data sent across the network.
The figure shows the changes of the state of the cache during aread miss.

In addition to the usual storage to hold the cache blocks, the cache hasa™c-id" (checkpoint
identifier) field per block and also has a " c-count” register (per cache). When the processor
inserts a new block into the cache or writes new datainto ablock, the TSM inserts the
current value of "c-count” into "c-id". The TSM establishes a checkpoint of process"P" by
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merely incrementing "c-count” without writing the dirty blocks back to main memory. The
system recognizesthat adirty block is part of aprior checkpoint if

c-id < c-count.

Dirty blocks are the only blocks that the TSM must write back to main memory in order to
establish a checkpoint of "P".

Figure #20 shows the sequence of eventsin a checkpoint initiated by the processor
displacing adirty block. The processor must write adirty block back to main memory in
order to provide space for an incoming cache block. The TSM establishes a checkpoint by
incrementing "c-count”. The processor then writes the dirty block back into main memory
and places the incoming block into the newly vacated space. All other dirty blocksthat are
part of the new checkpoint remain in the cache and do not load the interconnection network.
Such dirty blocks are called "un-writabl€" asthey are part of the checkpoint even though
they remain in the cache.

Figure #21 shows the sequence of eventsin awrite hit to an un-writable block. The TSM
copies the block into main memory. The processor then writes new datainto the block and
inserts the value of "c-count” into "c-id". The block with the new data becomes part of the
tentative checkpoint.

Figure #22 shows an optimization that obviates the need to write the block back into main
memory infigure#21. The TSM merely copiesthe block into arecovery stack. At the
next checkpoint, the TSM clears the contents of the recovery stack (by erasing it).

E. Recovery

The TSM recovers anode from afault by discarding the tentative checkpoint. 1n other
words, the TSM invalidates all entries in the cache for which "c-count” ="c-id" and re-
loads the internal state (of the processor) from main memory. Each processor recovers
independently from other processors.

F. Extension to software-based DSM systems

The principles of the TSM can be applied to software-based DSM systems. The main
memory of each workstation operates like a huge cache of pages, and the operating system
(OS) maintains the coherence of those pages. The OS sends coherence messages across
the LAN.

The TSM establishes a checkpoint of aprocess"P" (with one process per workstation)
whenever 1 of the following 3 conditions arises. (1) Another process reads or writes a
page that was last written by "P'. (2) "P" must write adirty page back into the disk (which
contains the virtual main memory of the process). (3) An interaction between "P" and the
environment occurs.

Establishing a checkpoint and rolling a process back from afault are straightforward. The
TSM establishes a checkpoint of "P" by writing its state onto disk, including the dirty
pages of "P" and the internal state of the processor executing "P'. The TSM recoversa
workstation from afault by loading the state of its process from disk and by using smple
algorithms to recover the data structures ("copyset” and "owner") used for memory
coherence. [Wu]
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The bottleneck in this system is clearly the disk. The dow and ssmple-minded approachis
to designate a fixed area of the disk for storing the checkpoint and a separate area for
storing the working ("W") pages. Upon recovery, TSM must copy the entire checkpoint
into the areafor the "W" pages.

Figure #23 illustrates an optimization to improve the responsiveness of the disk during
rollback. The TSM maintains 2 pages, "X0" and "X1", on disk for each page, "X", in the
virtual memory of the DSM system. "W" designates the tentative checkpoint to which the
system occasionally writes dirty pages. "C" designates the disk page that is the current
checkpoint. "I" designates the disk page which was a tentative checkpoint but which the
TSM discarded after it rolled "P" back to its checkpoint. "O" designates the last
checkpoint.

The disk pages of a system begin in either state"S0" or state "$4". When the processor
writes adirty page back into the virtual memory maintained on the disk, the processor
writes the dirty page onto the "O" disk page, creating a"W" page. The processor writes
further copies of the dirty page onto the "W" page. When a processor reads a virtual page
from disk, it supplies both disk pages. The processor selectsthe"C" disk page if the other
disk pageis"l" or "O". Otherwise, the processor selectsthe "W" page.

If the TSM establishes a checkpoint, the TSM merely re-labels al the "W" pagesas"C"
pages and all the"C" pagesas"O" pages. On arollback, the TSM merely discards all the
"W" pages, re-labeling them "I". Rollback is quick because it involves merely re-labeling
the page that is discarded.

G. Bottleneck in TSM

One of the greatest drawbacks of the TSM isthat the frequency of establishing checkpoints
is highly dependent on the read-write patterns of the application running on the system.
Whenever aremote process reads or writes a cache block (or page) that is written by the
local process"P", it must establish a checkpoint in order to prevent rollback propagation.

What causes rollback propagation isthe need to find aglobally consistent state of the
system. Figures#12, #13, #15, and #16 indicate that inconsistencies can potentialy arise
when processes access shared memory. Therefore, away to reduce the frequency of
checkpointsisto place constraints on the way in which processes can access shared
memory. [Janssens]

Figure #24. illustrates such a constraint. "P* and "Q" access only shared blocks (memory)
that are guarded by synchronization variables. Inthefigure, "P" reads synchronization
variable "<sync>" to obtain entry into the critical region where shared access to block

"<x>" occurs. Then, "P" accesses "<x>". "P" exitsthe critical region by writing to
"<sync>". "Q" reads "<sync>" to enter the critical region, accesses "<x>", and then writes
"<sync>" to exit the critical region.

If all processes access shared blocks by first obtaining permission via a synchronization
variable, then the TSM does not need to establish a checkpoint of "P* when another
process accesses the non-synchronization variables written by "P'. The TSM can prevent
rollback propagation by merely establishing a checkpoint when a process accesses a
synchronization variable. Figure#24 illustrates 2 possibilities. (1) The TSM can establish
acheckpoint when "P* writes "<sync>". (2) Alternatively, the TSM can establish a
checkpoint when "Q" reads "<sync>". Variation (1) works with write-back or write-
through cache coherence. Variation (2) only works with write-back cache coherence.
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H. Miscellaneous

For a hardware-based DSM, the TSM has several drawbacks. First, the frequency of
establishing checkpoints is highly dependent on the read-write pattern of the application. A
high frequency can significantly slow down the system. Second, the frequency of
establishing checkpointsis aso highly dependent on interactions with the environment,
over which the TSM has no control. Third, the TSM requires expensive features: fault-
tolerant memory and fault-tolerant cache. Finaly, the TSM can only tolerate transient
failure of aprocessor but cannot tolerate its permanent failure.

For a software-based DSM, the TSM does not have the 3rd and 4th drawbacks. The TSM
requires only afault-tolerant network and disk and can tol erate single-node permanent
failure. Of course, a software-based DSM system runs slower than a hardware-based one.

TSM does have some advantages. First, it can be transparent to the application program.
Only the hardware and the OS require modification. Second, if a processor fails, it
recovers independently from the other processors. In other words, TSM experiences no
rollback propagation and, hence, may cause minimal delay in recovering the systemto its
state just prior to the occurrence of afault.

V. Loosaly synchronized method for fault tolerance

Unlike the TSM, the LSM makes no attempt to immediately preclude any possibility of
rollback propagation. Rather, the LSM records any interaction (between processors) that
could lead to such propagation and uses the history of interactions to determine which
processors need to ssimultaneoudly (1) establish anew checkpoint or (2) rollback to the last
checkpoint in order to maintain a consistent global state. The LSM guarantees that the
system will not roll back past the last permanent checkpoint.

A. Generd architecture

Figure #25 illustrates the general architecture on which the LSM isimplemented. The
figureisvalid for both a software-based DSM system and a hardware-based DSM system.
For both types of systems, the LSM assumes only that the interconnection network and the
disk isfault-tolerant.

B. Processor interaction

Figure #17 summarizes the dependencies (arising from interactions between processors)
that the LSM must record. LSM can record more dependencies than those listed in the
figure, and the system will operate correctly. The drawback isthat it will run slower than
what it otherwise would run. For example, the LSM can record a 2-way dependency, "P
<->Q", for the checkpoint dependency caused by awrite-read "message”.

C. Hardware-based DSM system

1. Recoverable shared memory

Figure #26 illustrates the application of the LSM to a hardware-based DSM system.
Memory is organized into multiple modules of recoverable shared memory (RSM), which

is designed to be fault tolerant. Each module contains 2 banks of memory. "Bank #1"
holds the tentative checkpoint of ablock of memory, and "bank #2" holds the permanent



@ processor 4 o d processor
| cache | | cache | | cache |
menory menory nenory
fault-
tol erant
0/\ tightly integrated network / |ocal area network
Figure 25. Generic Architecture
dependency matrix
cache
cache [P
cache |
cache |«
0 o o o
° o o o
° (o] o (o]
cache
bank 1 bank 2 active witer

Fi gure 26.

Recover abl e Shared Menory

27



checkpoint. Associated with each block isafield indicating which processor isthe last
active writer. [Banatre]

Also, each RSM module contains a dependency matrix, "matrix[]". The LSM records the
dependenciesin "matrix[]". If the dependency "F[i] -> Fj]" arises, then the LSM sets
element "matrix[i, j]" to 1. If "P[i] <-> P[j]" arises, then the LSM sets both the "matrix]i,
j]" and "matrix[j, i]".

2. Dependency tracking

The LSM monitors messages from the caches in order to detect any dependency. There are
2 cases: cache coherence using awrite-invalidate policy and cache coherence using awrite-
update policy. For awrite-invalidate policy, aread-miss, awrite-hit, and awrite-miss
generate messages that are sent onto the interconnection network. The LSM detects a
write-read "message” (and the associated dependencies) when aread-miss follows awrite-
invalidate to the same memory block. The LSM detects awrite-write "message” (and the
associated dependencies) when 2 consecutive write-invalidate messages for the same
memory block appear. [Banatre]

For awrite-update policy, LSM can detect 2 consecutive writes by 2 different processors to
the same memory block; hence LSM can detect write-write "messages’. On the other hand,
if processor "PO" updates a memory block that is cached by processor P1 which
subsequently reads that memory block, the read-hit generates no message across the
network, and LSM cannot detect awrite-read "message”. Therefore, in order to implement
L SM with awrite-update policy, LSM assumes that a processor caching a memory block
being updated by another processor will surely read that memory block. In other words,

L SM assumes that awrite-read "message” will occur whenever awrite-update occurs, thus
overestimating the number of such "messages’. (LSM can obtain the identity of all
processors caching a particular memory block from the directory used for cache
coherence.)

Figure #27 summarizes these conclusions.
3. Initiating checkpoints

Figure #28 shows the situation in which the LSM must establish a checkpoint of a
processor. The LSM guarantees that the system will not roll back past the last permanent
checkpoint. Since the LSM (unlike the TSM) does alow rollback propagation, an
interaction between processors does not force the establishment of a checkpoint to prevent
rollback propagation. Only an interaction between a processor and the environment forces
the establishment of a checkpoint.

Of course, aprocessor "P' can arbitrarily choose to establish a checkpoint. In the absence
of checkpointsinduced by interaction with the environment, "P" should occasionally
initiate a checkpoint. If "P" has not initiated a checkpoint in along time and "P" encounters
afault causing it to roll back to itslast checkpoint, "P" will suffer along recovery time
since the last checkpoint isfar back inthe past. "P* can use an internal timer to determine
the temporal spacing between the establishment of checkpoints, thus limiting the duration

of recovery.

4. Saving checkpoints
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In an actual implementation of the LSM, there will be multiple RSM modulesto prevent a
single module from being a bottleneck, but to ssimplify the following discussion, it assumes
that the entire memory of the DSM system is contained in 1 module of RSM.

Once a processor, say, "P[7]", initiates a checkpoint, the LSM must perform 2 main
operations. determining the dependency group of processors and saving their tentative
checkpoints as permanent checkpoints. After "P[7]" informsthe RSM to initiate a
checkpoint, the RSM examines the dependency matrix to determine the group of al
processors which have a checkpoint dependency on "P[7]". The dependency can arise
trangitively. For example, if both "matrix[7, 5]" and "matrix[5, 9]" (of the dependency
matrix) are set to "1", indicating that "P[7] -> P[5]" and "P[5] -> P[9]" exist, then the
dependency "P[7] -> P[9]" also exists.

After LSM determines the dependency group, all processorsin that group save flush both
their internal states (registers and internal buffers) and their dirty cache blocks into the
tentative checkpoint. Then, LSM copies the tentative checkpoints of all processors (in this
group) from bank #1 into bank #2. Finally, LSM clears "matrix[i, *]" and "matrix [*, i]"
for al "i" such that "Pi]" isamember of the previoudly calculated dependency "group”.
("*"isa"wild card" that represents all indices.) Establishing the checkpoints eliminates the
dependencies.

5. Recovery

Oncethe LSM determines that a processor, say, "P[7]" has encountered a fault (and,

hence, hasfailed), the LSM performs 2 main operations. determining the dependency
group of processors and copying their permanent checkpoints from bank #2 back into bank
#1. After the LSM identifiesafallureat "P[7]", the LSM examines the dependency matrix
to determine the group of all processors which have arecovery dependency on "P[7]". The
L SM then copies the permanent checkpoints of all processors (in this dependency group)
from bank #2 back into bank #1. the LSM loadsthe interna states of the recovering
processors from the states that are saved in the checkpoint.

If "P[7]" failstransiently, then the LSM reboots it during recovery. "P[7]" resumes
execution from the last checkpoint. If "P[7]" failed permanently, the LSM assigns the
process (that was executing on "P[7]") to aworking processor in the DSM system.

D. Software-based DSM system
1. Architecture

Figure #29 illustrates the architecture of a software-based DSM system implementing the
LSM. Thesmallest granularity at which datais shared is a page of virtual memory whereas
the smallest granularity in the hardware-based DSM isthe cache block. Each page of
memory has a manager node and an owner node. The manager maintains a directory
structure that records the owner and copyset (the set of nodes with read-access to a page) of
each page. Each node in the system has a page table indicating whether apageisin 1 of the
following 3 states. shared, write, invalid. The system uses awrite-invalidate policy.

The LSM tracks the dependencies (that arise from interactions between processors) by
storing them in a data structure called the dependency group on each workstation. The

L SM assumes the disk to be fault-tolerant and saves the checkpoints onto disk. Both the
checkpoint pages and the working pages co-exist on the disk in the fashion indicated by
figure #23.
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2. Tracking dependencies

To smplify the implementation, the LSM records more dependencies than the minimum
dependenciesindicated in figure #17. Specifically, for both the checkpoint dependency and
the recovery dependency of awrite-read "message”, the LSM records"Q <-> P".
Consequently, a processor writing a page marks the start of a dependency for that page.

To record the fact that a processor has written datainto a page, the LSM needs only to
associate a 1-bit flag with each page. Figure #29 shows that the flag is called the "dirty
usage bit" (DUB).

In the LSM, the following events occur in the course of recording dependencies. Suppose
that processor "P[2]" isthe last writer to a page, "<X>", and sets DUB to "1". Then,
"P[1]" reads data from or writes datato "<X>". "P[1]" examinesthe DUB. Sinceit is set
to"1", thereis adependency between "P[1]" and "P[2]". "P[2]" storesboth "1" and "2" in
the recovery group. Also, "P[1]" storesboth "1" and "2" in itsrecovery group. Both
"P[1]" and "P[2]" are always aware of each other'sidentity. Dependencies occur only
between the owner node (the last writer) and another node which is not necessarily the new
owner. (Only owner nodes supply pages for read misses.)

3. Initiating checkpoints

The conditions for initiating checkpoints are identical to those conditions for a hardware-
based DSM system.

4. Saving checkpoints

In the LSM, each processor initiating a checkpoint examines al other processorsin its
dependency group and requests them to initiate checkpoints. Theinitiation of a checkpoint
propagates in atree-like fashion from the initial processor, the root processor, that initiates
acheckpoint. The processorsin this tree comprise the recovery group.

Each processor, "P[i]", participating in this tree-like synchronization (1) flushes both its
internal state (registers and internal buffers) and its dirty pagesinto the tentative checkpoint,
(2) establishes a new permanent checkpoint on the disk, and (3) waits for child processors
(in the tree) to establish a new permanent checkpoint on the disk. Once all child processors
of "P[i]" report to it that they have established their new permanent checkpoints, "P[i]" tells
its parent processor that it has established a new permanent checkpoint. A processor
establishes a permanent checkpoint by using the technique illustrated in figure #23. The
processor merely re-labels a tentative-checkpoint page (i.e. aworking page) as a checkpoint

page.

Each processor (in the group) resets the DUBs of its dirty pagesto zero. If the
construction of the tentative checkpoints fails, then the processors in the group restore each
out-of-date checkpoint page as the checkpoint page and resume execution from the last
permanent checkpoint.

After the root processor receives the message indicating that all processorsin the recovery
group have established their permanent checkpoints, the root processor sends a message
telling its descendants to resume execution. This "resumption” message flows from the
root down to the leaves of the tree (in the same way that the request to initiate a checkpoint
flows).

5. Recovery
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Inthe LSM, if aprocessor "P[1]" fails, each surviving processor in the system examines
its dependency group. If "P[1]" isin the dependency group of "P[i]", then "P[i]" isa
member of the recovery group of processors. All processorsin the recovery group
synchronize to invalidate their dirty pages and to restore them from the copies that are part
of the last permanent checkpoint. The LSM re-labels the working pages (in figure #23) of
the recovery group's processors as invalid pages; the LSM also re-labels the working pages
of "P[1]". Each processor (in the group) loads its internal state from that saved with the
last permanent checkpoint.

The re-labeling of pages requires the participation of al nodesin the DSM system.
Determining the identity of the dirty pages owned by "P[1]" requires assistance from all
other processors.

If "P[1]" fails transiently, then the LSM reboots "P[1]" and loads its state from the last
permanent checkpoint. If "P[1]" failed permanently, then LSM assigns the process (that
was executing on "P[1]") to another node in the system.

E. Miscellaneous

The LSM has several drawbacks. First, establishing checkpointsis highly dependent on
interactions with the environment, over which the LSM has no control. Second, the LSM
tends to require more memory than the TSM; LSM always maintains 2 copies of every
block of memory. Finaly, LSM suffersalimited degree of rollback propagation and,
hence, may increase the time that the system needs to recover to its state just prior to afault.

The LSM has severa advantages. In afault-free environment, the LSM may allow an
application program to run faster than the TSM since the LSM appears to have alower rate
of establishing checkpoints than the TSM. Second, the LSM can tolerate either atransient
failure or a permanent failure of anode. Finaly, recovery istransparent to the application
program. Unfortunately, recovery is not transparent to the OS as assigning a process
(from the failed node) to a working node requires scheduling by the operating system.

F. Fault-tolerance through redundancy

The designer of the RSM (illustrated in figure #26) must design its hardware to be fault
tolerant. This requirement is expensive but can alleviated by using the inherent redundancy
of the DSM system to provide the needed fault tolerance. Figure #30 illustrates a 5-node
system where 3 nodes maintain identical copies of the same data. The system will survive
even if 2 nodesfail. In other words, figure #30 illustrates that the LSM can be
implemented in such away that the DSM system can survive failures of multiple nodes.

V1. Un-synchronized method for fault tolerance

Likethe TSM, the USM prevents rollback propagation, but like the LSM, the USM does
not establish a checkpoint in response to an interaction between 2 processors. The USM
can establish a checkpoint of a process without involving other processes (on other
processors). Further, the USM can roll a process back to its last checkpoint without
involving other processes. The USM does not require synchronization of processesin
either establishing anew checkpoint or rolling back a processto its last checkpoint.



Fi gure 30.

)
O

Faul t Tol erance through I nherent
Redundancy

34



The basic mechanism of the USM isthe following. For each process, the USM records (in
alog) the page of datathat isreceived in response to an access miss. If the USM rollsa
process back to its last checkpoint, the USM resumes execution of the process from that
checkpoint. The USM uses the data in the log to satisfy access misses by the process until
thelog is exhausted. [Suri]

A. Architecturein the USM

Currently, the only systems that use the USM are software-based DSM systems like that
shown in figure #31. Thelog of datareceived in response to an access missis best stored
on adisk.

B. Logging data and interactions for sequentia consistency

Figure #15 suggests that away to prevent the rollback of process"P* from propagating to
"Q" isto guarantee that "P" after rollback writes the same value (into the page) that "P"
wrote prior to rollback. This guarantee can be implemented by (1) recording (in alog) al
pages of data supplied in response to access misses by "P" since the last checkpoint and (2)
using the recorded pages (in the log) to respond to access misses by "P" after it rollbacks
back to and resumes execution from the last checkpoint.

During rollback, the USM must determine which access should miss and hence should
retrieve its page from thelog. Figure #32 illustrates that only invalidations cause access
misses. So, recording the point in "P" at which the invalidation occursis sufficient to
allow the USM to invalidate the appropriate page at the appropriate time during the
execution of "P" after rollback. Thus, the USM forces the appropriate access encounter a
miss.

Figure #33 illustrates that USM maintains both (1) an interaction log which records the
point at which an invalidation occurs and (2) a data log which records datain each page that
isreceived in response to an access miss. Each record in the interaction log contains 2
fields. One contains the number of accesses before an invalidation. The other field
contains the page number which isinvalidated. Each record in the datalog contains data
that is supplied for an access miss.

Theinteraction log in figure #33 is based on process "P" in figure #32. For example, the
second record indicates that "P* performed 3 accesses between the first invalidation and the
second invalidation after the last checkpoint, "Rp0".

The USM initially savesthelogs of "P' in volatile storage. If "P" suppliesadirty pageto
another process, then the USM flushes the volatile log onto the disk just before " P"
deliversthe page. In order to ensure that the values written from the volatile log into the
disk have not been corrupted by afault, just before the USM flushes the log, the USM
walits for alength of time such that the time since the receipt of the last page recorded in the
volatilelog is at |east the fault-detection delay. In thisway, the USM guarantees that "P"
after recovery writes the same values that it wrote to the page before recovery.

C. Initiating checkpoints
Figure #28 illustrates the only situation in which the USM must establish a checkpoint of a

process"P'. The USM must establish a checkpoint of "P' whenever it interacts with the
environment.
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Even if "P" does not interact with the environment for along time (and hencethe USM is
not forced to establish a checkpoint of "P"), the USM should establish an occasional
checkpoint of "P*. Otherwise, if "P" encounters afault along time after it last established a
checkpoint, "P* will require along time to recover from that checkpoint. Also, if USM
does not establish a checkpoint for along time, both the datalog and the interaction log will
be very large.

D. Saving checkpoints

To establish a checkpoint of a processor "P", the USM flushes the volatile log onto disk.
The USM then savestheinternal state (registers and internal buffers) of "P* and its dirty
pages into the tentative checkpoint. Then the USM re-labels the tentative checkpoint as the
permanent checkpoint, according to the algorithm in figure #23.

The USM must necessarily save al the shared pages of "P", including the pages that have
been invalidated. Suppose that the USM establishes a checkpoint of the process running
on processor "P[3]" but does not save an invalidated page, "<5>", which has migrated
from"P[3]" to "P[7]". If "P[3]" completes the establishment of its checkpoint but "P[7]"
rolls back without saving "<5>" onto disk, then "<5>" will belost.

After the USM establishes the checkpoint of "P*, the USM erases both the data log and the
interaction log from the disk.

E. Recovery

During recovery, the USM performs the following operations. Suppose that the USM rolls
process "P" back to its last checkpoint. The USM executes"P" from that checkpoint and
tracks the number of accessesthat "P* performs. The USM uses the interaction log to
determine the number of accessesthat "P" can perform before the USM should deliver an
invalidationto "P'. The USM uses the datalog to satisfy any access missthat "P"
encounters.

If "P" resides on a processor that fails transiently, the USM reboots the processor and
resumes execution of "P". If the processor fails permanently, then the USM assigns"P" to
another node.

F. Optimization

A problem posed by the interaction log is that each access incurs the overhead of updating a
counter that counts the number of accesses between invalidations. The USM can dispense
with counting the number of such accesses if the application program only accesses shared
datathat is protected by synchronization variables. Most application programs do access
shared data in that way.

Figure #34 illustrates how invalidations from remote processes like "Q" interact with "P".
Invalidations arrive only outside the critical region, the section of code protected by
synchronization variables. Since accessesto shared variables occur only after
"read(<sync>)" (i.e. acquiring a synchronization variable and entering the critical region),
"read(<sync>)" designates the precise point by which all invalidations must be delivered to
shared pages of data. Hence, the only information that USM must record in thelog is (1)
the occurrence of "read(<sync>)" and (2) the page of datathat is supplied for an access
miss (which can only occur within a critical region).
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Figure #35 illustrates the new structure of thelog. All "read(<sync>)"'s since the last
checkpoint are stored. Also, both (1) the page number of the access miss and (2) the data
supplied for the miss are stored.

If aprocess"P' encounters afault, the USM rolls"P" back to its last checkpoint and
resumes the execution of "P'. When it executes a "read(<sync>)" during recovery, the
USM invalidates al the pages following the corresponding "read(<sync>)" recorded in the
log. The USM usesthe datafor the invalidated pages recorded in the log to respond to the
access misses.

G. Miscellaneous

USM has asignificant drawback. Implementing the USM in hardware for a hardware-
based DSM system is very difficult.

USM has severa advantages. Each processor can establish a new checkpoint or roll back
to the last checkpoint without involving any other processor athough saving data from the
volatile log into stable storage is synchronized with aremote processor. The system can
tolerate permanent failures of multiple nodes. Finally, the system suffers no rollback
propagation.

VII. Evaluation of TSM, LSM, and USM
A. Typesof implementations

Figure #36 illustrates the 5 variations of the 3 principal methods of rollback recovery. The
algorithms previoudly described for these 5 variations are the best algorithms that are
currently available. Unfortunately, there is no implementation of the USM for a hardware-
based DSM system. The reason isthat the logs required for the USM are generally too
large to be stored in main memory.

B. Comparison of methods for hardware-based DSM

Figure #37 compares the TSM and the LSM for various parameters. The column titled
"ideal" listswhat is considered ideal for each parameter.

In the idedl case, afault-tolerant method can be implemented in such away that neither the
OS nor the application program must be modified. Ideally, an of-the-shelf OSlike
Windows NT that is not fault-tolerant can run on a DSM system that is made fault tolerant
by only changes to the underlying hardware. Unfortunately, this goal cannot be achieved
because (1) the OS must explicitly load the state of the processor from its last checkpoint
for the TSM or (2) the OS must schedule arecovering process for execution for the LSM.
In other words, the OS must recognize that the system is recovering from afault and act
appropriately. So, the OS must be modified. On the other hand, the mechanisms that
implement fault tolerance are transparent to the application program.

In terms of hardware expense, the TSM is more expensive than the LSM since the former
requires both fault-tolerant caches and fault-tolerant memory. The LSM requires only fault-
tolerant memory. On the other hand, the TSM uses much less memory than the LSM since
the former maintains a tentative checkpoint (in the cache) for each block of memory only if
the block isdirty. The LSM aways maintains both a tentative checkpoint and a permanent
checkpoint for each block of memory.
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TSM LSM Usm i deal
transparency

operating system no (*) no 2?2 yes
appl i cati on program yes yes 2?2 yes
expense
expense of hardware hi gh medi um 2?2 | ow
wast e of nenory | ow hi gh ?2?? | ow

fault-toleration

1-proc transient failure yes yes ?2?? yes
n-proc transient failure yes yes (*) ?2?? yes
1-proc pernmanent failure no yes ??? yes
n-proc permanent failure no yes (%) ?2?7? yes

checkpoints

non-envi ronnental rate hi gh | ow 2?2 | ow
environmental rate (*) hi gh hi gh 2?2 | ow

i ndependence
establ i shment of checkpoi nt no no 2?2 yes
recovery yes no ?2?? yes

Figure 37. Conparison of Hardware Methods



The TSM can tolerate the transient failure of a processor but cannot tolerate its permanent
failure since loss of the cache can mean loss of the checkpoint. The LSM can tolerate
permanent failures, but all the processors in the system must cooperate to repair the state of
the directory for the memory blocks. The LSM previously described for the hardware-
based DSM assumes that memory (i.e. RSM) is fault-tolerant. Without this assumption,
the LSM must use the inherent redundancy of the processors to store multiple copies of
each memory block in order to make memory fault-tolerant. In such a case, the number of
copies of each block detects the degree of fault-tolerance; if only 2 copies are stored, then
the LSM can only tolerate the failure of asingle node.

Asfor checkpoints, the TSM may need to establish checkpoints at a high rate due to
dependencies that arise from the interaction between 2 processors. By contrast,
interactions between 2 processors do not require that the LSM establish a checkpoint of
either processor, and the LSM can establish checkpoints at alow rate. Also, since neither
the LSM nor the TSM have total control over the environment, it can force both of them to
establish checkpoints at a high rate.

Under both the TSM and the LSM, a processor can force another processor to establish a
checkpoint. Under the LSM, a processor rolls back to its last checkpoint can force another
processor to rollback to its last checkpoint. Under the TSM, a processor performs a
rollback independently from any other processor.

C. Comparison of methods for software-based DSM

Figure #38 compares the TSM, the LSM, and the USM for various parameters. The
column titled "ideal" listswhat is considered ideal for each parameter.

For al 3 methods, the OS must be changed to implement them. The reason isthat the OS
itself maintains the coherence of memory and hence tracks reads and writes into pages. On
the other hand, the mechanisms that implement fault tolerance is transparent to the
application program.

Asfor expense, the hardware expense islow for all 3 methods since the aim of software-
based DSM isto create a multiprocessor using only software. Unfortunately, all methods
consume alarge amount of disk spacein order to maintain 2 copies (both atentative
checkpoint and a permanent checkpoint) of each virtual page. Under the USM, the log also
requires much space.

Also, all 3 methods can tolerate the permanent failures of multiple nodes.

Asfor checkpoints, the TSM may need to establish checkpoints at a high rate due to
dependencies that arise from the interaction between 2 processors. By contrast,
interactions between 2 processors do not require that the LSM establish a checkpoint of
either processor, and the LSM can establish checkpoints at alow rate. Also, since neither
the LSM nor the TSM have total control over the environment, it can force both of them to
establish checkpoints at a high rate.

In the case of the USM, it also does not have total control of the environment and can
suffer ahigh rate of establishing checkpoints in response to interactions with the
environment. In addition, even though the USM need not establish a checkpoint in
response to the interaction between 2 processors, an interaction where processor "P"
supplies adirty page to another processor forces the USM to copy the volatile log of "P"
onto disk. Depending on the characteristics of the application program, "P" can be forced
to save data (i.e. the volatile log) at a high rate onto the disk.
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TSM LSM Usm i deal
transparency

operating system no no no yes
appl i cati on program yes yes yes yes
expense
expense of hardware | ow | ow | ow | ow
wast e of disk space hi gh hi gh hi gh | ow

fault-toleration

1-proc transient failure yes yes yes yes
n-proc transient failure yes yes yes yes
1-proc permanent failure yes yes yes yes
n-proc permanent failure yes yes yes yes

checkpoints

non-envi ronnental rate hi gh | ow low (*) | ow
environmental rate (*) hi gh hi gh hi gh | ow

i ndependence
establ i shment of checkpoi nt no no yes (*) yes

recovery no no yes yes

Figure 38. Conparison of Software Methods



Under the TSM, al processors in the software-based DSM must synchronize in order to
recover the copysets and owners of pages whereas such synchronization is not required in
ahardware-based DSM. Thereason isthat the latter type of DSM has both fault-tolerant
memory and fault-tolerant caches. The directory, which isthe hardware equivalent of the
copyset data structure and the owner data structure, is part of fault-tolerant memory and is
never corrupted.

Under the LSM, multiple processors must synchronize in order to establish anew
checkpoint or to rollback to the last checkpoint.

Under the USM, a process can establish a new checkpoint or rollback to the last checkpoint
without involving any other processor. Even though a processor "P" can establish a
checkpoint (by saving the state of the processor onto disk) independently from all other
processors, another processor "Q" can force "P" to save its volatile log onto disk if "P"
suppliesadirty pageto "Q".

D. Performance

Currently, a broad-based comparison of the performance of all 3 methods does not exist.
There are afew studies which compare the performance of the TSM with the performance
of the LSM. Banatre conducts one such study and claimsthat the LSM alowsaDSM
system to run faster than the TSM.

A comparison of al 3 methods requires that they be examined in 2 contexts. First, inthe
absence of any fault, how fast doesthe DSM system run? Second, after the system
encounters a fault, how long does the system require in order to recover from the fault?
Figure #39 illustrates the 2 contexts.

1. Fault-free context

The most important parameter is the execution time of the application program. At least 2
factors can affect the execution time. Oneis the amount of redundant data that is saved
(e.g., todisk) in order to allow the system to recover to a consistent state after the system
encounters afault. Both the number of eventsin which datais saved and the amount of
datathat is saved at each event determines the total amount of datathat is saved.

The other factor that can affect the execution time is the percentage (of network traffic) that
is attributed to this redundant data. All of the redundant data is not necessarily transferred
across the network; for example, some of the redundant (checkpoint) datain the TSM is
saved locally in the cache. Hence, the network traffic that is due to the redundant data can
be viewed as a factor (affecting execution time) that is distinct from simply redundant data.

2. Faulty context

Once the system encounters a fault, the most important parameter is the time that the system
requiresto recover from the fault. The recovery timeis highly dependent on the rate at
which checkpoints are established; the recovery timeisinversely proportional to the rate of
checkpoints. For example, if the system established a checkpoint recently, then the
recovery timeis short.

An alternative measure of performancein the faulty context isthe product of the recovery
time and the rate of checkpoints. The aim of the DSM system isto achieve a same value for
the product.
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VIII. Future work

To extend the state of the art that has been presented in this report, we plan to evaluate the
performance of each of the 3 methods of fault recovery by implementing and running them
onasimulator. The smulator shall model the same basic hardware for al 3 methodsin

order to provide afair comparison. Concurrently, we will develop an efficient hardware
implementation of the USM.
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