
FAULT TOLERANCE: METHODS OF
 ROLLBACK RECOVERY

Dwight Sunada
David Glasco
Michael Flynn

Technical Report: CSL-TR-97-718

March 1997

This research has been supported by a gift from Hewlett Packard, Inc.

Fault Tolerance: Methods of Rollback Recovery

Dwight Sunada
David Glasco
Michael Flynn

Technical Report: CSL-TR-97-718

March 1997

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
William Gates Building, A-408

Stanford, California 94305-9040
<e-mail: pubs@shasta.stanford.edu>

Abstract

This paper describes the latest methods of rollback recovery for fault-tolerant distributed
shared memory (DSM) multiprocessors. This report discusses (1) the theoretical issues
that rollback recovery addresses, (2) the 3 major classes of methods for recovery, and (3)
the relative merits of each class.

Key Words and Phrases: fault tolerance, rollback recovery, distributed shared
memory (DSM)

Copyright (c) 1997

Dwight Sunada, David Glasco, Michael Flynn

0. Introduction... 1
I. Fault.. 1

A. Definitions... 1
B. Statistics .. 2

II. "Theory" behind fault tolerance.. 2
A. Message-passing multiprocessor .. 5

1. Consistent checkpoints. 5
2. Domino effect . 5
3. Livelock effect.. 7
4. Interrupt. 7

B. Distributed shared memory (DSM) multiprocessor . 7
1. Application of concepts from message passing .. 10
2. Consistent global state in a theoretical DSM system.. 10
3. Consistent global state in a real DSM system............................. 15

III. Taxonomy for methods of rollback recovery .. 18
IV. Tightly synchronized method for fault tolerance.. 18

A. General architecture .. 18
B. Processor interaction.. 18
C. Initiating checkpoints . 20
D. Saving checkpoints... 20
E. Recovery... 22
F. Extension to software-based DSM systems .. 22
G. Bottleneck in TSM ... 24
H. Miscellaneous... 26

V. Loosely synchronized method for fault tolerance.. 26
A. General architecture .. 26
B. Processor interaction.. 26
C. Hardware-based DSM system ... 26

1. Recoverable shared memory.. 26
2. Dependency tracking .. 28
3. Initiating checkpoints. 28
4. Saving checkpoints . 28
5. Recovery.. 30

D. Software-based DSM system ... 30
1. Architecture.. 30
2. Tracking dependencies .. 32
3. Initiating checkpoints. 32
4. Saving checkpoints . 32
5. Recovery.. 32

E. Miscellaneous .. 33
F. Fault-tolerance through redundancy.. 33

VI. Un-synchronized method for fault tolerance .. 33
A. Architecture in the USM... 35
B. Logging data and interactions for sequential consistency........................ 35
C. Initiating checkpoints . 35
D. Saving checkpoints... 38
E. Recovery... 38
F. Optimization.. 38
G. Miscellaneous... 40

VII. Evaluation of TSM, LSM, and USM ... 40
A. Types of implementations .. 40
B. Comparison of methods for hardware-based DSM ... 40
C. Comparison of methods for software-based DSM ... 43
D. Performance... 45

1. Fault-free context . 45
2. Faulty context . 45

VIII. Future work.. 47

1

0. Introduction

The strategies for building a fault-tolerant distributed shared memory (DSM)
multiprocessor fall into at least 2 broad categories: modular redundancy and rollback
recovery. Within the latter category, there are 3 principal issues: detecting a fault,
containing a fault, and rolling the necessary nodes of the system back to the last checkpoint
in order to recover from the fault. This report does not deal with the first 2 issues and
merely assumes that (1) the DSM system is fail-stop, where a node encountering a fault
simply stops and (2) the system can detect that a node has stopped (i.e. has encountered a
fault). This report does focus on the last issue: methods of rollback recovery. They can
be partitioned into 3 principal methods for both software-based DSM and hardware-based
DSM.

Before presenting the details of the 3 methods, this report illustrates the notion of a "fault"
and presents statistics of faulty behavior for a commercial computer system. Then, the
discussion moves to some of the theoretical concepts behind the 3 methods of rollback
recovery. These concepts lead into a detailed discussion of the 3 principal methods of
rollback recovery. Each method is illustrated by either (1) a description of the best
algorithm that currently exists in the literature or (2) a description of an algorithm (contrived
by the principal author of this report) that is an improved version of what currently exists.
Finally, this report concludes with a comparison of all 3 methods.

I. Fault

A. Definitions

A fault in a computer system is any behavior that differs from the behavior specified by its
technical design. [Gray] An example of a fault is the operating system (OS) encountering
a software bug and halting. Another example is a microprocessor halting after a length of
its polysilicon wiring cracks into 2 pieces.

One can classify a fault according to the context in which it occurs. Below are 6 possible
classifications.

 software (computer program)
 hardware
 maintenance (adjusting head alignment of disc drive,
 replacing its air filter, etc.)
 operations (installing new software, restarting a faulty
 node, etc.)
 environment (external power, earthquake, etc.)
 process (everything else)

"Process" faults are those which do not fall into any of the other categories.

One can also categorize a fault according to whether it manifests itself to the user. A fault
which is not tolerated by the computer system and hence is visible to the user is called a
"fatal fault". Any fault in a chain of faults leading to a fatal fault is called an "implicated
fault".

2

An example of such a chain of faults is the following. A software bug in the OS causes
one processor node in a distributed system to temporarily halt, creating a software fault.
The system tolerates the fault by transferring the processes on the failed node to a working
node and resuming execution of those processes. Then, a human operator attempts to
restart the failed node but mistakenly restarts a working node, creating an operations fault.
The software fault and the operations fault are implicated faults, and the latter fault is also a
fatal fault.

B. Statistics

Figure #1 lists the fault statistics of Tandem computer systems for 3 years: 1985, 1987,
and 1989. Near the bottom of the figure, the table shows the total number of computer
systems in current use by all customers for each of those years. A typical Tandem system
has 4 processors, 12 disc drives, several hundred terminals and associated equipment for
communications. The computer system can tolerate a single fault.

Reading the table is straightforward. For example, in 1989, a total of 29 fatal faults
occurred among 9000 systems in current use by customers.

Figure #2 recasts the data from Figure #1 to concentrate on the software faults and
hardware faults, lumping all other faults into the category "other faults". The graph shows
the number of fatal faults per 1000 Tandem systems from 1985 to 1989. During this
period, the number of hardware faults has decreased dramatically; hence, the reliability of
hardware has increased. On the other hand, the number of software faults has remained
relatively constant.

Therefore, as a percentage of all fatal faults, software faults have become dominant. Figure
#3 confirms this observation by recasting the data from Figure #1 to focus on the
percentages of software faults, hardware faults, and other faults.

Why has software become dominant? New products tend to have more bugs (or problems)
than old products. They have been used (and tested) long enough by customers in the
marketplace, so vendors have eliminated many bugs from the old products. From 1985 to
1989, the number of new software products (i.e. application programs) has greatly
increased relative to the number of new hardware products. Hence, software faults have
become dominant over hardware faults. Furthermore, since the creation of new software
generally outpaces the construction of new hardware, the dominance of software faults will
likely persist indefinitely.

II. "Theory" behind fault tolerance

A multiprocessor system that is fault tolerant can (1) detect a fault, (2) contain it, and (3)
recover from it. This report does not deal with the first 2 issues and assumes that each
component in the system has the "fail-stop" property. Namely, if a component fails, then it
simply stops. The rest of the system can detect that it has failed by simply noticing that it
has stopped.

Most of the techniques for recovering from a fault in a multiprocessor system use a
variation of rollback recovery. The system periodically establishes checkpoints for all
processes. If the multiprocessor encounters a fault, the system rolls back to the last set of
consistent checkpoints and resumes execution.

3

Fatal Faults Implicated Faults All Faults

Year 1985 1987 1989 1987 1989 1989

 Software 96 114 272 135 297 515

 Hardware 82 66 29 106 77 157

 Maintenance 53 37 22 42 28 28

 Operations 25 35 66 49 86 27

 Environment 17 28 26 37 27 103

 Process ? ? 0 ? 9 61

 Unknown 12 14 23 17 23 21

 Total 285 294 438 386 538 892

of systems 2400 6000 9000

Figure 1. Faults in Tandem Systems
 by Year [Gray]

120

100

80

20

40

60

1987 1989
1985

other
faults

hardware
faults

software faults

Figure 2. Fatal Faults per 1000
 Tandem Systems by Year

4

100

80

20

40

60

1987 1989
1985

other faults

hardware faults

software faults

Figure 3. Percentages of Fatal Faults
 in Tandem Systems by Year

5

For the sake of clarity in illustrating the concepts of fault tolerance, this discussion assumes
that each processor in the system executes exactly one process. Hence, referring to a
process "P[0]" executing on processor "R[3]" is synonymous with referring to processor
"R[3]". All processes comprise the execution of exactly one application program.

A. Message-passing multiprocessor

1. Consistent checkpoints

A checkpoint is the entire state of a process at a particular point in time. The system saves
at least 1 checkpoint for each process. If a permanent fault occurs on a processor executing
a process, the system reloads the process from its checkpoint onto another processor and
resumes execution from the checkpoint. If a transient fault occurs on a processor executing
a process, then the system restarts the failed processor and uses it to resume execution of
the process from its last checkpoint.

If the computer system is a uniprocessor, then establishing a periodic checkpoint and
rolling back to it is rather straightforward. For example, the uniprocessor can save the state
of its process at the end of each 1-minute interval. The system creates a tentative
checkpoint, verifies that its creation is successful, and then converts it into a permanent
checkpoint, erasing the previous permanent checkpoint. If the creation of the tentative
checkpoint is unsuccessful, then the system discards it and resumes execution from the
permanent checkpoint created in the prior 1-minute interval. Even in this simple system, 2-
phase checkpointing is required. [Koo]

If the computer system is a message-passing multiprocessor, then establishing periodic
checkpoints and rolling back to them is complicated. Figure #4 illustrates 1 of the
problems. Process "P" establishes a checkpoint at "Rp", and process "Q" establishes a
checkpoint at "Rq". In the figure, "P" sends a message to "Q" before "P" encounters a
fault. "P" rolls back to checkpoint "Rp" and resumes execution. Immediately after the
rollback, the state of the system is inconsistent. Process "Q" has received a message, but
the state of process "P" indicates that it has not yet sent the message.

By contrast, Figure #5 illustrates a state which is consistent. "P" receives a message from
"Q" before "P" encounters a fault. "P" rolls back to checkpoint "Rp" and resumes
execution. Immediately after the rollback, the state of the system is consistent although
process "Q" has sent a message that process "P" never receives.

Although the state suggested in Figure #5 is consistent, the state of the system may not be
acceptable. Suppose that both processes use synchronous message-passing to
communicate. Unless the rollback recovery logs the messages and replays them, process
"P" may hang forever. In other words, the system can be in 1 of 3 states:

 inconsistent state,

 unacceptable consistent state,

 and acceptable consistent state.

The aim of fault tolerance is to set the system in an acceptable consistent state.

2. Domino effect

6

failureRp

Rq

P

Q

message

Figure 4. Inconsistent Checkpoints

failureRp

Rq

P

Q

message

Figure 5. Consistent Checkpoints

7

The processors in a multiprocessor system either (1) can perform asynchronous
checkpointing where each process independently establishes a checkpoint or (2) can
perform synchronous checkpointing where processes synchronize to establish a consistent
checkpoint. In asynchronous checkpointing, each process may need to establish and
maintain many checkpoints in order to enable the computer system to find a set of
consistent checkpoints during rollback recovery. In the worst case, the system may need to
roll back to the state at the start of the execution of the application program. This
phenomenon is called the "domino effect".

Figure #6 illustrates it. Process "P" encounters a fault and rolls back to checkpoint "Rp3",
but rolling "P" back to "Rp3" forces the system to roll process "Q" back to "Rq2" in an
attempt to find a consistent checkpoint. Still, rolling "Q" back to "Rq2" forces the system
to roll "P" even further back to "Rp2". The events cascade until the both processes are
rolled back to their initial states at "Rp0" and "Rq0".

3. Livelock effect

The processors in a multiprocessor either (1) can asynchronously roll back affected
processes to a set of consistent checkpoints or (2) can synchronously roll back affected
processes to a set of consistent checkpoints. In asynchronous rollback, a group of
processes can cause each other to repeatedly rollback to the same set of checkpoints and
thus can effectively halt the progress of the application process. This phenomenon is called
"livelock". [Koo]

Figure #7 illustrates it. Process "P" and process "Q" recover asynchronously. "P" sends
message "M1" to "Q", encounters a fault, and then rolls back to checkpoint "Rp". "Q"
sends "N1" to "P" and then receives "M1". Since "P" has rolled back to "Rp", the state of
"P" indicates that it has not sent "M1". Hence, "Q" must roll back to checkpoint "Rq".

Figure #8 illustrates the succeeding sequence of events. After "P" resumes execution from
"Rp", "P" sends "M2" to "Q" and then receives "N1". Since "Q" has rolled back to "Rq",
the state of "Q" indicates that it has not sent "N1". Hence, "P" must roll back to checkpoint
"Rp", again. This sequence of interlocked events can proceed indefinitely, inhibiting the
application program from progressing.

4. Interrupt

One important type of message is an interrupt from the environment (e.g. peripherals) to
the multiprocessor. If an interrupt arrives from a device that does not participate in the
fault-tolerant scheme of the multiprocessor, it must perform a checkpoint immediately after
the receipt of the interrupt. The aim is to avoid losing knowledge of the interrupt.
Otherwise, if the system does not perform this immediate checkpoint but does encounter a
fault, the system will roll back to a checkpoint prior to the receipt of the interrupt and will
lose knowledge of it.

Further, if the multiprocessor system sends information to a device that cannot tolerate
duplicate information, then the system must perform a checkpoint immediately after the
transmission of information. The aim is to avoid sending duplicate information.
Otherwise, if the system does not perform this immediate checkpoint but does encounter a
fault, the system will roll back to a checkpoint prior to the transmission of the information
and may possibly resend it.

B. Distributed shared memory (DSM) multiprocessor

8

failureRp1

Rq3

P

Q

Figure 6. Domino Effect

Rp2 Rp3
Rp0

Rq2Rq1Rq0

failure

P

Q

Figure 7. Livelock Effect [Koo]

Rp

Rq

M1

N1

9

rollback
(2nd time)

P

Q

Figure 8. Livelock Effect [Koo]

Rp

Rq

M2

N2

N1

1 0

1. Application of concepts from message passing

The concepts for fault tolerance in message-passing multiprocessors can be applied to DSM
multiprocessors. Processes in the latter communicate by accessing shared memory. The
mechanism for maintaining the coherence of shared memory generates messages on behalf
of the communicating processes.

Figure #9 illustrates the coherence messages in a DSM multiprocessor. This particular
system is a loosely-coupled one, where software (like that described by Li) maintains
coherence. A tightly-coupled multiprocessor, where hardware maintains coherence,
operates in a fashion that is similar to the operation of a loosely-coupled multiprocessor.
Hence, the following discussion applies to both types of systems. [Janssens]

In the left half of the diagram, processor "P" attempts to write to block "G". "P" sends its
request to "M", the manager for block "G". "M" forwards the request to the current
owner, "Q". "Q" sends its copy of "G" and its copyset to "P". "P" receives "G" and
sends invalidations to all processors listed in the copyset. In this case, processor "R"
receives an invalidation.

In the right half of the diagram, processor "Q" attempts to read "G" and sends a request
(for block "G") to processor "M". It, in turn, forwards the request to processor "P".
Then, "P" forwards a copy of "G" to "Q".

The dashed line indicates that processor "Q" rolls back to checkpoint "Rq", which is just
prior to where "Q" attempts to read block "G". If the messages in this DSM system are
treated like those in the message-passing system, then rolling "Q" back to "Rq" requires
that the system roll "P" back to checkpoint "Rp" in order to set the system in a consistent
state.

In reality, the characteristics of the messages that are generated to maintain coherence
enable the DSM system to roll "Q" back to "Rq" without rolling "P" back to "Rp". The
message to request a copy of block "G" does not change the state of the processes on
processors "P" and "Q". Although the state of the copyset may be inaccurate immediately
after rolling "Q" back to "Rq", a slight modification of the coherence algorithm can easily
fix that problem. Furthermore, the semantics of the algorithm do not cause "Q" to hang
forever, waiting for the reply from "P", even though that reply is not logged. Hence, if the
DSM system rolls "Q" back to "Rq" without rolling "P" back to "Rp", the system is in an
acceptable consistent state.

2. Consistent global state in a theoretical DSM system

The previous discussion suggests that the interactions among processes in the DSM
multiprocessor should be analyzed at the level of read and write accesses to shared
memory. Analyzing the system at the lower level of messages is not useful since many
messages issued to maintain the coherence of shared memory do not cause dependencies
among processes.

Read and write accesses to shared memory introduce 2 kinds of dependencies. A recovery
dependency exists from process "P" to process "Q" if rolling process "P" back to a
checkpoint "Rp" requires rolling process "Q" back to a checkpoint "Rq" in order to
maintain a consistent global state of the system. Similarly, a checkpoint dependency exists
from process "P" to process "Q" exists if establishing a checkpoint of process "P" requires
establishing a checkpoint of process "Q" in order to maintain a consistent state.

1 1

P

Q

Figure 9. Messages in Distributed Shared Memory

ask for
write
access

ask for
write
access

block G and
copyset

Inv.

Ack.

ask for
read
access

ask for
read
access block G

write -> G

read <- G

M

R

failureRq

Rp

1 2

A consistent state is one that is sequentially consistent. Sequential consistency is one type
of view of memory accesses that the multiprocessor presents to the user. Memory-
consistency models that are less stringent than sequential consistency also appear to the
user to be sequentially consistent if the user protects accesses (to shared memory) within
critical sections bounded by, for example, locks. For this report, a DSM system is
assumed to provide a sequentially consistent view to the user.

There are 4 possible read/write interactions that exist between any 2 processes, "P" and
"Q". Figure #10 illustrates a read-read interaction between process "P" and process "Q".
The "checkpoint data" indicates data saved at the checkpoints "Rp" and "Rq". They
constitute a consistent global state to which the system can roll back if it encounters a fault.
In other words, they form a "recovery line". The "active data" indicates the data at a
particular point in time. Both the "checkpoint data" and the "active data" designate the
values that are stored in the same particular memory location. The interaction between the 2
processes occurs at that particular memory location.

In Figure #10, neither process affects the state of the other process. Hence, at time "t", the
system can roll process "P" back to checkpoint "Rp" without rolling process "Q" back to
checkpoint "Rq" and still maintain a consistent global state. The system can establish a
new checkpoint of process "P" without establishing a new checkpoint of process "Q" and
still maintain a consistent state. Similar comments apply to the situations where the roles of
"Q" and "P" are switched.

Figure #11 illustrates a read-write interaction between process "P" and process "Q".
Again, neither process affects the state of the other process. Hence, at time "t", the system
can roll back a process to the last checkpoint or can establish a new checkpoint of the
process without involving the other process.

Figure #12 illustrates a write-read interaction between process "P" and process "Q". "P"
writes a value that "Q" subsequently reads, so "P" affects the state of "Q". At time "t", if
the system rolls "P" back to checkpoint "Rp", the system must also roll "Q" back to
checkpoint "Rq" in order to maintain a consistent state. On the other hand, the system can
roll "Q" back to checkpoint "Rq" without involving "P". The system has sufficient
information to determine that "0" from the checkpoint data should not be restored during a
rollback of only "Q"; hence, the state remains sequentially consistent. Finally, at time "t",
if the system establishes a checkpoint of process "Q", the system must also establish a
checkpoint of process "P". The reason is that once a new checkpoint of "Q" is established,
it cannot roll back to the previous checkpoint "Rq" even if "P" rolls back to "Rp". On the
other hand, the system can establish a checkpoint of "P" without involving "Q". [Banatre]

In summary, the write-read interaction introduces the following dependencies.

 recovery dependency: P -> Q
 checkpoint dependency: Q -> P

Figure #13 illustrates a write-write interaction between process "P" and process "Q". "P"
writes a value to a memory location to which "Q" subsequently writes a different value. At
time "t", if the system rolls "Q" back to "Rq", then the system must also roll "P" back to
"Rp" in order to maintain a consistent state. The reason is that once "Q" overwrites the
value written by "P", the system cannot restore that value if "Q" rolls back to "Rq". (Morin
explained, in private communication, that the system maintains only 2 copies of each
memory location.) On the other hand, the system can roll "P" back to "Rp" without
involving "Q". Finally, at time "t", if the system establishes a checkpoint of process "P",
the system must also establish a checkpoint of process "Q" in order to maintain a consistent

1 3

P

Q

Figure 10. Read-Read “Message”

Rp

Rq

checkpoint
data

active
data

active
data

0 0 0

shared
data

read

read

t

P

Q

Figure 11. Read-Write “Message”

Rp

Rq

checkpoint
data

active
data

active
data

0 0 2

shared
data

read

write(2)

t

1 4

P

Q

Figure 12. Write-Read “Message”

Rp

Rq

checkpoint
data

active
data

active
data

0 1 1

shared
data

write(1)

read

t

P

Q

Figure 13. Write-Write “Message”

Rp

Rq

checkpoint
data

active
data

active
data

0 1 2

shared
data

write(1)

write(2)

t

1 5

state. On the other hand, the system can establish a checkpoint of "Q" without involving
"P".

In summary, the write-write interaction introduces the following dependencies.

 recovery dependency: Q -> P
 checkpoint dependency: P -> Q

For the convenience of the reader, figure #14 summarizes the dependencies derived in this
section.

3. Consistent global state in a real DSM system

Figure #12 and Figure #13 illustrate the dependencies that exist in the situation where
memory is shared at the smallest granularity, a byte (8-bits) or a word (32-bits). In most
real systems, the smallest granularity is the size of a cache block or virtual page of memory.
The following discussion extends Banatre's work to include false sharing.

False sharing of the cache block introduces dependencies beyond the previously mentioned
ones. Figure #15 illustrates 2 processes, "P" and "Q", falsely sharing a block of 2 bytes of
data. When "Q" reads the value of "3", "Q" has no knowledge that "P" only wrote the
value of "1" without altering "3". The state of the cache does not contain information to
identify modifications to sections of a cache block. Hence, even though both processes are
falsely sharing a cache block, they must behave as if they are genuinely sharing it.

For a write-read "message", we have the following dependency.

 recovery dependency: P -> Q
 checkpoint dependency: Q -> P

At time "t", if "P" roll backs back to checkpoint "Rp0", "P" forces "Q" to roll back to
checkpoint "Rq0". Establishing a checkpoint for "Q" at time "t" requires that TSM
establish a checkpoint for "P" at time "t" since "Q" cannot roll past the value that "P" wrote.

In figure #16, "P" and "Q" write to different locations in the same cache block. Similar to
the aforementioned argument, when "Q" writes to the cache block, "Q" has no knowledge
that "P" only wrote the value of "1" without altering "3". Even though "P" and "Q" are
falsely sharing a cache block, they must behave as if they are genuinely sharing it. Thus,
this situation introduces the same dependency derived for a theoretical DSM system.

Furthermore, at time "t", if "P" encounters a fault and attempts to roll back to "Rp", neither
the cache block "[0 3]" nor the cache block "[1 2]" can be part of a global consistent state of
the system. The "0" in "[0 3]" is invalid since "Q" has already written "1" over the "0".
The "1" in "[1 2]" is invalid since "P" rolls back past the point where it writes "1" into the
cache block. Therefore, false sharing introduces an additional dependency. Namely,
rolling "P" back to "Rp0" requires that "Q" roll back to "Rq0". Therefore, establishing a
checkpoint of "Q" at time "t" requires that the system establish a checkpoint of "P" as well.

For a write-write "message", we have the following dependencies.

 recovery dependency: Q -> P
 P -> Q
 checkpoint dependency: P -> Q
 Q -> P

1 6

Figure 14. Dependencies in Theoretical Systems

Write-Read “Message”

checkpoint dependency: Q -> P
 recovery dependency: P -> Q

Write-Write “Message”

checkpoint dependency: P -> Q
 recovery dependency: Q -> P

P

Q

Figure 15. Write-Read “Message” on Block

Rp0

Rq0

checkpoint
data

active
data

active
data

0 1 3

shared
data

write(1)

read

t

3 3 1

s

1 7

P

Q

Figure 16. Write-Write “Message” on Block

Rp0

Rq0

checkpoint
data

active
data

active
data

0 1 2

shared
data

write(1)

write(2)

t

3 3 1

s

1 8

At time "t", rolling a process back to its recovery point requires that the other process roll
back to its own recovery point. Establishing a checkpoint of a process at time "t" requires
that the system establish a checkpoint of the other process since it can not undo the value
that it wrote.

For the convenience of the reader, figure #17 summarizes the dependencies derived in this
section.

III. Taxonomy for methods of rollback recovery

Rollback-recovery schemes can be categorized into 3 principal methods: tightly
synchronized method (TSM), loosely synchronized method (LSM), and un-synchronized
method (USM). The aim of this naming convention is to convey the degree of strictness by
which a particular method forces the establishment of a checkpoint. Under the TSM, a
processor can immediately force the establishment of a checkpoint by another processor at
the point of an interaction between the 2 of them. Under the LSM, a processor can force
the establishment of a checkpoint by another processor, but the establishment of that
checkpoint need not occur at the point of an interaction between the 2 of them. In other
words, the checkpoint can be postponed (by recording the inter-processor dependencies
that arose at the checkpoint). Under the USM, a checkpoint by a processor occurs
independently from all other processors in the system.

IV. Tightly synchronized method for fault tolerance

The distinguishing feature of TSM is that a processor immediately establishes a checkpoint
when an interaction between it and another processor can potentially cause rollback
propagation.

A. General architecture

The most common implementation of a TSM is cache-aided rollback error recovery
(CARER), originally proposed by Hunt for uniprocessors and extended to multiprocessors
by Wu. Figure #18 shows the generic architecture of a system that uses TSM. There are 2
approaches: TSM for hardware-based DSM and TSM for software-based DSM. In the
hardware-oriented approach, TSM assumes that both memory and cache are fault-tolerant
and saves checkpoints in main memory. The system can tolerate only a transient fault in
any node.

In a software-based DSM system, software maintains memory coherence by sending
reliable messages over a local area network (LAN). In the software-oriented approach, the
TSM assumes only that the disk and the LAN are fault-tolerant. TSM saves checkpoints to
disk.

The following discussion focuses on the hardware approach.

B. Processor interaction

Figure #15 suggests the actions that TSM must take in order to prevent rollback
propagation in the case of the write-read "message". Suppose that "Q" incurs a read miss
in the process of fetching the cache block owned by "P". Just before it supplies that block,

1 9

Figure 17. Dependencies in Real System

Write-Read “Message”

checkpoint dependency: Q -> P
 recovery dependency: P -> Q

Write-Write “Message”

checkpoint dependency: Q <-> P
 recovery dependency: P <-> Q

memory memory memory

cache cache cache

processor processor processor

tightly integrated network / local area network

fault-tolerant
for hardware DSM

Checkpoints are saved in main memory or disk.

Figure 18. Generic Architecture in TSM

fault-tolerant
for software DSM

2 0

"P" must establish a checkpoint, "Rp1", at time "s". In this way, rolling "P" back to the
last checkpoint, "Rp1", does not force "Q" to roll back to "Rq0". Figure #16 suggests the
actions that TSM must take in order to prevent rollback propagation in the case of the write-
write "message". Suppose that "Q" writes to the cache block. Just before "Q" performs
the write, TSM must establish a checkpoint "Rp1" for "P" at time "s". In this way, rolling
"P" back to "Rp1" does not force "Q" to roll back to "Rq0". Establishing "Rp1" also
eliminates the rollback propagation suggested by dependency "Q -> P". Rolling "Q" back
to "Rq0" restores "[1 3]" (saved at "Rp1") as the value of the cache block.

Incidentally, establishing the checkpoint of "P" in the situations illustrated in the 2 figures
eliminates both the checkpoint dependency and the recovery dependency identified in figure
#17.

C. Initiating checkpoints

Figure #19 illustrates 3 conditions requiring the TSM to establish a checkpoint for a
process "P". First, suppose that any process reads or writes to a cache block for which
process "P" is the last writer. The TSM must establish a checkpoint for "P" if the TSM has
not already established one for "P" (thus having already saved that block) in order to
prevent rollback propagation.

Second, suppose that the cache has reached a state where a dirty block must be written back
to main memory in order to make room for an incoming cache block. A dirty block is one
which is modified by the processor but which has not yet been written back to main
memory. Since it contains the last checkpoint for process "P", the TSM must establish a
new checkpoint for "P" in order to write the dirty block back to main memory. Simply
writing the block back to memory without establishing a checkpoint would leave the
original checkpoint (in memory) in a possibly inconsistent state. [Ahmed]

Third, any interaction between "P" and the environment requires that the TSM establish a
checkpoint immediately after the interaction in order to prevent "P" from losing knowledge
of that interaction. Examples of interactions include an interrupt from an external device,
receiving data from it (via an I/O instruction), or sending data to it.

D. Saving checkpoints

To establish a permanent checkpoint, the TSM saves (1) the internal state (registers and
internal buffers) of the processor executing "P" and (2) the dirty cache blocks. Afterwards,
"P" resumes execution, updating the cache, registers, and internal buffers of the processor.
[Wu] They essentially contain the tentative checkpoint of "P". At the next establishment of
a permanent checkpoint, the TSM converts the tentative one into a permanent one. Fault
tolerance based on rollback recovery requires that the system contain at least 2 checkpoints-
-a permanent one and a tentative one. For convenience, a permanent checkpoint is simply
referenced as "checkpoint".

Frequently writing checkpoints to main memory can overload the interconnection network.
Figure #20 illustrates an optimization to reduce the amount of data sent across the network.
The figure shows the changes of the state of the cache during a read miss.

In addition to the usual storage to hold the cache blocks, the cache has a "c-id" (checkpoint
identifier) field per block and also has a "c-count" register (per cache). When the processor
inserts a new block into the cache or writes new data into a block, the TSM inserts the
current value of "c-count" into "c-id". The TSM establishes a checkpoint of process "P" by

2 1

Figure 19. Initiating Checkpoints in TSM

processorprocessor

cacheprocessor

worldprocessor

cache read-miss (replacement of
 dirty block)

datastate
address

tag

D

S

D

main
memory

replace

datastate
address

tag

D

S

D

main
memory

replace

datastate
address

tag

D

S

S

main
memory

replace

c-count

c-id

c-id

c-count

c-count

c-id

4

3

4

4

5

4

3

4

4

3

5

5

time Figure 20. Checkpoint on Read Miss in TSM

2 2

merely incrementing "c-count" without writing the dirty blocks back to main memory. The
system recognizes that a dirty block is part of a prior checkpoint if

 c-id < c-count.

Dirty blocks are the only blocks that the TSM must write back to main memory in order to
establish a checkpoint of "P".

Figure #20 shows the sequence of events in a checkpoint initiated by the processor
displacing a dirty block. The processor must write a dirty block back to main memory in
order to provide space for an incoming cache block. The TSM establishes a checkpoint by
incrementing "c-count". The processor then writes the dirty block back into main memory
and places the incoming block into the newly vacated space. All other dirty blocks that are
part of the new checkpoint remain in the cache and do not load the interconnection network.
Such dirty blocks are called "un-writable" as they are part of the checkpoint even though
they remain in the cache.

Figure #21 shows the sequence of events in a write hit to an un-writable block. The TSM
copies the block into main memory. The processor then writes new data into the block and
inserts the value of "c-count" into "c-id". The block with the new data becomes part of the
tentative checkpoint.

Figure #22 shows an optimization that obviates the need to write the block back into main
memory in figure #21. The TSM merely copies the block into a recovery stack. At the
next checkpoint, the TSM clears the contents of the recovery stack (by erasing it).

E. Recovery

The TSM recovers a node from a fault by discarding the tentative checkpoint. In other
words, the TSM invalidates all entries in the cache for which "c-count" = "c-id" and re-
loads the internal state (of the processor) from main memory. Each processor recovers
independently from other processors.

F. Extension to software-based DSM systems

The principles of the TSM can be applied to software-based DSM systems. The main
memory of each workstation operates like a huge cache of pages, and the operating system
(OS) maintains the coherence of those pages. The OS sends coherence messages across
the LAN.

The TSM establishes a checkpoint of a process "P" (with one process per workstation)
whenever 1 of the following 3 conditions arises. (1) Another process reads or writes a
page that was last written by "P". (2) "P" must write a dirty page back into the disk (which
contains the virtual main memory of the process). (3) An interaction between "P" and the
environment occurs.

Establishing a checkpoint and rolling a process back from a fault are straightforward. The
TSM establishes a checkpoint of "P" by writing its state onto disk, including the dirty
pages of "P" and the internal state of the processor executing "P". The TSM recovers a
workstation from a fault by loading the state of its process from disk and by using simple
algorithms to recover the data structures ("copyset" and "owner") used for memory
coherence. [Wu]

2 3

cache write-hit (un-writable)

datastate
address

tag

D

S

D

main
memory

datastate
address

tag

D

S

D

main
memory

datastate
address

tag

D

S

D

main
memory

c-count

c-id

c-id

c-count

c-count

c-id

4

3

4

5

5

4

3

4

4

3

5

5

time

old

hit

hit

old
(or recovery stack)

new

Figure 21. Checkpoint on Write Hit in TSM

memory

cache

processor

recovery
stack

optimization

Figure 22. Recovery Stack in TSM [Wu]

2 4

The bottleneck in this system is clearly the disk. The slow and simple-minded approach is
to designate a fixed area of the disk for storing the checkpoint and a separate area for
storing the working ("W") pages. Upon recovery, TSM must copy the entire checkpoint
into the area for the "W" pages.

Figure #23 illustrates an optimization to improve the responsiveness of the disk during
rollback. The TSM maintains 2 pages, "X0" and "X1", on disk for each page, "X", in the
virtual memory of the DSM system. "W" designates the tentative checkpoint to which the
system occasionally writes dirty pages. "C" designates the disk page that is the current
checkpoint. "I" designates the disk page which was a tentative checkpoint but which the
TSM discarded after it rolled "P" back to its checkpoint. "O" designates the last
checkpoint.

The disk pages of a system begin in either state "S0" or state "S4". When the processor
writes a dirty page back into the virtual memory maintained on the disk, the processor
writes the dirty page onto the "O" disk page, creating a "W" page. The processor writes
further copies of the dirty page onto the "W" page. When a processor reads a virtual page
from disk, it supplies both disk pages. The processor selects the "C" disk page if the other
disk page is "I" or "O". Otherwise, the processor selects the "W" page.

If the TSM establishes a checkpoint, the TSM merely re-labels all the "W" pages as "C"
pages and all the "C" pages as "O" pages. On a rollback, the TSM merely discards all the
"W" pages, re-labeling them "I". Rollback is quick because it involves merely re-labeling
the page that is discarded.

G. Bottleneck in TSM

One of the greatest drawbacks of the TSM is that the frequency of establishing checkpoints
is highly dependent on the read-write patterns of the application running on the system.
Whenever a remote process reads or writes a cache block (or page) that is written by the
local process "P", it must establish a checkpoint in order to prevent rollback propagation.

What causes rollback propagation is the need to find a globally consistent state of the
system. Figures #12, #13, #15, and #16 indicate that inconsistencies can potentially arise
when processes access shared memory. Therefore, a way to reduce the frequency of
checkpoints is to place constraints on the way in which processes can access shared
memory. [Janssens]

Figure #24. illustrates such a constraint. "P" and "Q" access only shared blocks (memory)
that are guarded by synchronization variables. In the figure, "P" reads synchronization
variable "<sync>" to obtain entry into the critical region where shared access to block
"<x>" occurs. Then, "P" accesses "<x>". "P" exits the critical region by writing to
"<sync>". "Q" reads "<sync>" to enter the critical region, accesses "<x>", and then writes
"<sync>" to exit the critical region.

If all processes access shared blocks by first obtaining permission via a synchronization
variable, then the TSM does not need to establish a checkpoint of "P" when another
process accesses the non-synchronization variables written by "P". The TSM can prevent
rollback propagation by merely establishing a checkpoint when a process accesses a
synchronization variable. Figure #24 illustrates 2 possibilities. (1) The TSM can establish
a checkpoint when "P" writes "<sync>". (2) Alternatively, the TSM can establish a
checkpoint when "Q" reads "<sync>". Variation (1) works with write-back or write-
through cache coherence. Variation (2) only works with write-back cache coherence.

2 5

Figure 23. Fast Checkpoints on Disk In TSM

C O

I C C I

W C C W

O C

disk write

disk
read/write

rollback
disk
write

disk writerollback
checkpoint

checkpoint

 disk
read/write

disk
write

X0 X1

X0 X0 X0

X0X0 X1

X1 X1 X1

X1

O: out-of-date W: working C: checkpoint I: invalid

s0

s1 s2

s3 s4 s5

disk read

disk
read

disk
read

disk
read

Figure 24. Optimization for TSM

read(<sync>)

write(<x>)

write(<sync>)

read(<sync>)

read(<x>)

write(<sync>)
. . .

<x>

checkpoint
Rp

P

Q

2 6

H. Miscellaneous

For a hardware-based DSM, the TSM has several drawbacks. First, the frequency of
establishing checkpoints is highly dependent on the read-write pattern of the application. A
high frequency can significantly slow down the system. Second, the frequency of
establishing checkpoints is also highly dependent on interactions with the environment,
over which the TSM has no control. Third, the TSM requires expensive features: fault-
tolerant memory and fault-tolerant cache. Finally, the TSM can only tolerate transient
failure of a processor but cannot tolerate its permanent failure.

For a software-based DSM, the TSM does not have the 3rd and 4th drawbacks. The TSM
requires only a fault-tolerant network and disk and can tolerate single-node permanent
failure. Of course, a software-based DSM system runs slower than a hardware-based one.

TSM does have some advantages. First, it can be transparent to the application program.
Only the hardware and the OS require modification. Second, if a processor fails, it
recovers independently from the other processors. In other words, TSM experiences no
rollback propagation and, hence, may cause minimal delay in recovering the system to its
state just prior to the occurrence of a fault.

V. Loosely synchronized method for fault tolerance

Unlike the TSM, the LSM makes no attempt to immediately preclude any possibility of
rollback propagation. Rather, the LSM records any interaction (between processors) that
could lead to such propagation and uses the history of interactions to determine which
processors need to simultaneously (1) establish a new checkpoint or (2) rollback to the last
checkpoint in order to maintain a consistent global state. The LSM guarantees that the
system will not roll back past the last permanent checkpoint.

A. General architecture

Figure #25 illustrates the general architecture on which the LSM is implemented. The
figure is valid for both a software-based DSM system and a hardware-based DSM system.
For both types of systems, the LSM assumes only that the interconnection network and the
disk is fault-tolerant.

B. Processor interaction

Figure #17 summarizes the dependencies (arising from interactions between processors)
that the LSM must record. LSM can record more dependencies than those listed in the
figure, and the system will operate correctly. The drawback is that it will run slower than
what it otherwise would run. For example, the LSM can record a 2-way dependency, "P
<-> Q", for the checkpoint dependency caused by a write-read "message".

C. Hardware-based DSM system

1. Recoverable shared memory

Figure #26 illustrates the application of the LSM to a hardware-based DSM system.
Memory is organized into multiple modules of recoverable shared memory (RSM), which
is designed to be fault tolerant. Each module contains 2 banks of memory. "Bank #1"
holds the tentative checkpoint of a block of memory, and "bank #2" holds the permanent

2 7

memory memory memory

cache cache cache

processor processor processor

tightly integrated network / local area network

fault-
tolerant

Figure 25. Generic Architecture

Figure 26. Recoverable Shared Memory

bank 1 bank 2 active writer

dependency matrix

cache

cache

cache

cache

cache

2 8

checkpoint. Associated with each block is a field indicating which processor is the last
active writer. [Banatre]

Also, each RSM module contains a dependency matrix, "matrix[]". The LSM records the
dependencies in "matrix[]". If the dependency "P[i] -> P[j]" arises, then the LSM sets
element "matrix[i, j]" to 1. If "P[i] <-> P[j]" arises, then the LSM sets both the "matrix[i,
j]" and "matrix[j, i]".

2. Dependency tracking

The LSM monitors messages from the caches in order to detect any dependency. There are
2 cases: cache coherence using a write-invalidate policy and cache coherence using a write-
update policy. For a write-invalidate policy, a read-miss, a write-hit, and a write-miss
generate messages that are sent onto the interconnection network. The LSM detects a
write-read "message" (and the associated dependencies) when a read-miss follows a write-
invalidate to the same memory block. The LSM detects a write-write "message" (and the
associated dependencies) when 2 consecutive write-invalidate messages for the same
memory block appear. [Banatre]

For a write-update policy, LSM can detect 2 consecutive writes by 2 different processors to
the same memory block; hence LSM can detect write-write "messages". On the other hand,
if processor "P0" updates a memory block that is cached by processor P1 which
subsequently reads that memory block, the read-hit generates no message across the
network, and LSM cannot detect a write-read "message". Therefore, in order to implement
LSM with a write-update policy, LSM assumes that a processor caching a memory block
being updated by another processor will surely read that memory block. In other words,
LSM assumes that a write-read "message" will occur whenever a write-update occurs, thus
overestimating the number of such "messages". (LSM can obtain the identity of all
processors caching a particular memory block from the directory used for cache
coherence.)

Figure #27 summarizes these conclusions.

3. Initiating checkpoints

Figure #28 shows the situation in which the LSM must establish a checkpoint of a
processor. The LSM guarantees that the system will not roll back past the last permanent
checkpoint. Since the LSM (unlike the TSM) does allow rollback propagation, an
interaction between processors does not force the establishment of a checkpoint to prevent
rollback propagation. Only an interaction between a processor and the environment forces
the establishment of a checkpoint.

Of course, a processor "P" can arbitrarily choose to establish a checkpoint. In the absence
of checkpoints induced by interaction with the environment, "P" should occasionally
initiate a checkpoint. If "P" has not initiated a checkpoint in a long time and "P" encounters
a fault causing it to roll back to its last checkpoint, "P" will suffer a long recovery time
since the last checkpoint is far back in the past. "P" can use an internal timer to determine
the temporal spacing between the establishment of checkpoints, thus limiting the duration
of recovery.

4. Saving checkpoints

2 9

Figure 27. Dependency Tracking

Write-invalidate Policy

okay

Write-update Policy

Assume write-read message.

Figure 28. Initiating Checkpoints in LSM

processor

worldprocessor

arbitrary

3 0

In an actual implementation of the LSM, there will be multiple RSM modules to prevent a
single module from being a bottleneck, but to simplify the following discussion, it assumes
that the entire memory of the DSM system is contained in 1 module of RSM.

Once a processor, say, "P[7]", initiates a checkpoint, the LSM must perform 2 main
operations: determining the dependency group of processors and saving their tentative
checkpoints as permanent checkpoints. After "P[7]" informs the RSM to initiate a
checkpoint, the RSM examines the dependency matrix to determine the group of all
processors which have a checkpoint dependency on "P[7]". The dependency can arise
transitively. For example, if both "matrix[7, 5]" and "matrix[5, 9]" (of the dependency
matrix) are set to "1", indicating that "P[7] -> P[5]" and "P[5] -> P[9]" exist, then the
dependency "P[7] -> P[9]" also exists.

After LSM determines the dependency group, all processors in that group save flush both
their internal states (registers and internal buffers) and their dirty cache blocks into the
tentative checkpoint. Then, LSM copies the tentative checkpoints of all processors (in this
group) from bank #1 into bank #2. Finally, LSM clears "matrix[i, *]" and "matrix [*, i]"
for all "i" such that "P[i]" is a member of the previously calculated dependency "group".
("*" is a "wild card" that represents all indices.) Establishing the checkpoints eliminates the
dependencies.

5. Recovery

Once the LSM determines that a processor, say, "P[7]" has encountered a fault (and,
hence, has failed), the LSM performs 2 main operations: determining the dependency
group of processors and copying their permanent checkpoints from bank #2 back into bank
#1. After the LSM identifies a failure at "P[7]", the LSM examines the dependency matrix
to determine the group of all processors which have a recovery dependency on "P[7]". The
LSM then copies the permanent checkpoints of all processors (in this dependency group)
from bank #2 back into bank #1. the LSM loads the internal states of the recovering
processors from the states that are saved in the checkpoint.

If "P[7]" fails transiently, then the LSM reboots it during recovery. "P[7]" resumes
execution from the last checkpoint. If "P[7]" failed permanently, the LSM assigns the
process (that was executing on "P[7]") to a working processor in the DSM system.

D. Software-based DSM system

1. Architecture

Figure #29 illustrates the architecture of a software-based DSM system implementing the
LSM. The smallest granularity at which data is shared is a page of virtual memory whereas
the smallest granularity in the hardware-based DSM is the cache block. Each page of
memory has a manager node and an owner node. The manager maintains a directory
structure that records the owner and copyset (the set of nodes with read-access to a page) of
each page. Each node in the system has a page table indicating whether a page is in 1 of the
following 3 states: shared, write, invalid. The system uses a write-invalidate policy.

The LSM tracks the dependencies (that arise from interactions between processors) by
storing them in a data structure called the dependency group on each workstation. The
LSM assumes the disk to be fault-tolerant and saves the checkpoints onto disk. Both the
checkpoint pages and the working pages co-exist on the disk in the fashion indicated by
figure #23.

3 1

memory memory memory

processor processor processor

local area network

Figure 29. Architecture for Software-based DSM

page

dirty usage bit

dependency group
{ ... }

dependency group
{ ... }

dependency group
{ ... }

disk

3 2

2. Tracking dependencies

To simplify the implementation, the LSM records more dependencies than the minimum
dependencies indicated in figure #17. Specifically, for both the checkpoint dependency and
the recovery dependency of a write-read "message", the LSM records "Q <-> P".
Consequently, a processor writing a page marks the start of a dependency for that page.
To record the fact that a processor has written data into a page, the LSM needs only to
associate a 1-bit flag with each page. Figure #29 shows that the flag is called the "dirty
usage bit" (DUB).

In the LSM, the following events occur in the course of recording dependencies. Suppose
that processor "P[2]" is the last writer to a page, "<X>", and sets DUB to "1". Then,
"P[1]" reads data from or writes data to "<X>". "P[1]" examines the DUB. Since it is set
to "1", there is a dependency between "P[1]" and "P[2]". "P[2]" stores both "1" and "2" in
the recovery group. Also, "P[1]" stores both "1" and "2" in its recovery group. Both
"P[1]" and "P[2]" are always aware of each other's identity. Dependencies occur only
between the owner node (the last writer) and another node which is not necessarily the new
owner. (Only owner nodes supply pages for read misses.)

3. Initiating checkpoints

The conditions for initiating checkpoints are identical to those conditions for a hardware-
based DSM system.

4. Saving checkpoints

In the LSM, each processor initiating a checkpoint examines all other processors in its
dependency group and requests them to initiate checkpoints. The initiation of a checkpoint
propagates in a tree-like fashion from the initial processor, the root processor, that initiates
a checkpoint. The processors in this tree comprise the recovery group.

Each processor, "P[i]", participating in this tree-like synchronization (1) flushes both its
internal state (registers and internal buffers) and its dirty pages into the tentative checkpoint,
(2) establishes a new permanent checkpoint on the disk, and (3) waits for child processors
(in the tree) to establish a new permanent checkpoint on the disk. Once all child processors
of "P[i]" report to it that they have established their new permanent checkpoints, "P[i]" tells
its parent processor that it has established a new permanent checkpoint. A processor
establishes a permanent checkpoint by using the technique illustrated in figure #23. The
processor merely re-labels a tentative-checkpoint page (i.e. a working page) as a checkpoint
page.

Each processor (in the group) resets the DUBs of its dirty pages to zero. If the
construction of the tentative checkpoints fails, then the processors in the group restore each
out-of-date checkpoint page as the checkpoint page and resume execution from the last
permanent checkpoint.

After the root processor receives the message indicating that all processors in the recovery
group have established their permanent checkpoints, the root processor sends a message
telling its descendants to resume execution. This "resumption" message flows from the
root down to the leaves of the tree (in the same way that the request to initiate a checkpoint
flows).

5. Recovery

3 3

In the LSM, if a processor "P[1]" fails, each surviving processor in the system examines
its dependency group. If "P[1]" is in the dependency group of "P[i]", then "P[i]" is a
member of the recovery group of processors. All processors in the recovery group
synchronize to invalidate their dirty pages and to restore them from the copies that are part
of the last permanent checkpoint. The LSM re-labels the working pages (in figure #23) of
the recovery group's processors as invalid pages; the LSM also re-labels the working pages
of "P[1]". Each processor (in the group) loads its internal state from that saved with the
last permanent checkpoint.

The re-labeling of pages requires the participation of all nodes in the DSM system.
Determining the identity of the dirty pages owned by "P[1]" requires assistance from all
other processors.

If "P[1]" fails transiently, then the LSM reboots "P[1]" and loads its state from the last
permanent checkpoint. If "P[1]" failed permanently, then LSM assigns the process (that
was executing on "P[1]") to another node in the system.

E. Miscellaneous

The LSM has several drawbacks. First, establishing checkpoints is highly dependent on
interactions with the environment, over which the LSM has no control. Second, the LSM
tends to require more memory than the TSM; LSM always maintains 2 copies of every
block of memory. Finally, LSM suffers a limited degree of rollback propagation and,
hence, may increase the time that the system needs to recover to its state just prior to a fault.

The LSM has several advantages. In a fault-free environment, the LSM may allow an
application program to run faster than the TSM since the LSM appears to have a lower rate
of establishing checkpoints than the TSM. Second, the LSM can tolerate either a transient
failure or a permanent failure of a node. Finally, recovery is transparent to the application
program. Unfortunately, recovery is not transparent to the OS as assigning a process
(from the failed node) to a working node requires scheduling by the operating system.

F. Fault-tolerance through redundancy

The designer of the RSM (illustrated in figure #26) must design its hardware to be fault
tolerant. This requirement is expensive but can alleviated by using the inherent redundancy
of the DSM system to provide the needed fault tolerance. Figure #30 illustrates a 5-node
system where 3 nodes maintain identical copies of the same data. The system will survive
even if 2 nodes fail. In other words, figure #30 illustrates that the LSM can be
implemented in such a way that the DSM system can survive failures of multiple nodes.

VI. Un-synchronized method for fault tolerance

Like the TSM, the USM prevents rollback propagation, but like the LSM, the USM does
not establish a checkpoint in response to an interaction between 2 processors. The USM
can establish a checkpoint of a process without involving other processes (on other
processors). Further, the USM can roll a process back to its last checkpoint without
involving other processes. The USM does not require synchronization of processes in
either establishing a new checkpoint or rolling back a process to its last checkpoint.

3 4

Figure 30. Fault Tolerance through Inherent
 Redundancy

3 5

The basic mechanism of the USM is the following. For each process, the USM records (in
a log) the page of data that is received in response to an access miss. If the USM rolls a
process back to its last checkpoint, the USM resumes execution of the process from that
checkpoint. The USM uses the data in the log to satisfy access misses by the process until
the log is exhausted. [Suri]

A. Architecture in the USM

Currently, the only systems that use the USM are software-based DSM systems like that
shown in figure #31. The log of data received in response to an access miss is best stored
on a disk.

B. Logging data and interactions for sequential consistency

Figure #15 suggests that a way to prevent the rollback of process "P" from propagating to
"Q" is to guarantee that "P" after rollback writes the same value (into the page) that "P"
wrote prior to rollback. This guarantee can be implemented by (1) recording (in a log) all
pages of data supplied in response to access misses by "P" since the last checkpoint and (2)
using the recorded pages (in the log) to respond to access misses by "P" after it rollbacks
back to and resumes execution from the last checkpoint.

During rollback, the USM must determine which access should miss and hence should
retrieve its page from the log. Figure #32 illustrates that only invalidations cause access
misses. So, recording the point in "P" at which the invalidation occurs is sufficient to
allow the USM to invalidate the appropriate page at the appropriate time during the
execution of "P" after rollback. Thus, the USM forces the appropriate access encounter a
miss.

Figure #33 illustrates that USM maintains both (1) an interaction log which records the
point at which an invalidation occurs and (2) a data log which records data in each page that
is received in response to an access miss. Each record in the interaction log contains 2
fields. One contains the number of accesses before an invalidation. The other field
contains the page number which is invalidated. Each record in the data log contains data
that is supplied for an access miss.

The interaction log in figure #33 is based on process "P" in figure #32. For example, the
second record indicates that "P" performed 3 accesses between the first invalidation and the
second invalidation after the last checkpoint, "Rp0".

The USM initially saves the logs of "P" in volatile storage. If "P" supplies a dirty page to
another process, then the USM flushes the volatile log onto the disk just before "P"
delivers the page. In order to ensure that the values written from the volatile log into the
disk have not been corrupted by a fault, just before the USM flushes the log, the USM
waits for a length of time such that the time since the receipt of the last page recorded in the
volatile log is at least the fault-detection delay. In this way, the USM guarantees that "P"
after recovery writes the same values that it wrote to the page before recovery.

C. Initiating checkpoints

Figure #28 illustrates the only situation in which the USM must establish a checkpoint of a
process "P". The USM must establish a checkpoint of "P" whenever it interacts with the
environment.

3 6

memory memory memory

processor processor processor

local area network

Figure 31. Architecture for Software-based DSM

page
disk

P

Q

Figure 32. Nondeterministic Interactions
 with Remote Processor

Rp0

Rq0

R

W

RR R W R* R* W* RR

W W W

R -> read-hit R* -> read-miss
W -> write-hit W* -> write-miss

invalidate

3 7

Figure 33. Logging Data and Interactions

page

page

page

page

3

1

4

2

Interaction Log Data Log

data

data

data

data

3 8

Even if "P" does not interact with the environment for a long time (and hence the USM is
not forced to establish a checkpoint of "P"), the USM should establish an occasional
checkpoint of "P". Otherwise, if "P" encounters a fault a long time after it last established a
checkpoint, "P" will require a long time to recover from that checkpoint. Also, if USM
does not establish a checkpoint for a long time, both the data log and the interaction log will
be very large.

D. Saving checkpoints

To establish a checkpoint of a processor "P", the USM flushes the volatile log onto disk.
The USM then saves the internal state (registers and internal buffers) of "P" and its dirty
pages into the tentative checkpoint. Then the USM re-labels the tentative checkpoint as the
permanent checkpoint, according to the algorithm in figure #23.

The USM must necessarily save all the shared pages of "P", including the pages that have
been invalidated. Suppose that the USM establishes a checkpoint of the process running
on processor "P[3]" but does not save an invalidated page, "<5>", which has migrated
from "P[3]" to "P[7]". If "P[3]" completes the establishment of its checkpoint but "P[7]"
rolls back without saving "<5>" onto disk, then "<5>" will be lost.

After the USM establishes the checkpoint of "P", the USM erases both the data log and the
interaction log from the disk.

E. Recovery

During recovery, the USM performs the following operations. Suppose that the USM rolls
process "P" back to its last checkpoint. The USM executes "P" from that checkpoint and
tracks the number of accesses that "P" performs. The USM uses the interaction log to
determine the number of accesses that "P" can perform before the USM should deliver an
invalidation to "P". The USM uses the data log to satisfy any access miss that "P"
encounters.

If "P" resides on a processor that fails transiently, the USM reboots the processor and
resumes execution of "P". If the processor fails permanently, then the USM assigns "P" to
another node.

F. Optimization

A problem posed by the interaction log is that each access incurs the overhead of updating a
counter that counts the number of accesses between invalidations. The USM can dispense
with counting the number of such accesses if the application program only accesses shared
data that is protected by synchronization variables. Most application programs do access
shared data in that way.

Figure #34 illustrates how invalidations from remote processes like "Q" interact with "P".
Invalidations arrive only outside the critical region, the section of code protected by
synchronization variables. Since accesses to shared variables occur only after
"read(<sync>)" (i.e. acquiring a synchronization variable and entering the critical region),
"read(<sync>)" designates the precise point by which all invalidations must be delivered to
shared pages of data. Hence, the only information that USM must record in the log is (1)
the occurrence of "read(<sync>)" and (2) the page of data that is supplied for an access
miss (which can only occur within a critical region).

3 9

P

Q

Figure 34. Constrained Nondeterministic
 Interactions with Remote
 Processor

Rp0

Rq0

R

W

R*R

R
(<sync>) R*R W* R

W W

R -> read R* -> read-miss
W -> write W* -> write-miss

invalidate

W
(<sync>)

R
(<sync>)

W
(<sync>)

4 0

Figure #35 illustrates the new structure of the log. All "read(<sync>)"'s since the last
checkpoint are stored. Also, both (1) the page number of the access miss and (2) the data
supplied for the miss are stored.

If a process "P" encounters a fault, the USM rolls "P" back to its last checkpoint and
resumes the execution of "P". When it executes a "read(<sync>)" during recovery, the
USM invalidates all the pages following the corresponding "read(<sync>)" recorded in the
log. The USM uses the data for the invalidated pages recorded in the log to respond to the
access misses.

G. Miscellaneous

USM has a significant drawback. Implementing the USM in hardware for a hardware-
based DSM system is very difficult.

USM has several advantages. Each processor can establish a new checkpoint or roll back
to the last checkpoint without involving any other processor although saving data from the
volatile log into stable storage is synchronized with a remote processor. The system can
tolerate permanent failures of multiple nodes. Finally, the system suffers no rollback
propagation.

VII. Evaluation of TSM, LSM, and USM

A. Types of implementations

Figure #36 illustrates the 5 variations of the 3 principal methods of rollback recovery. The
algorithms previously described for these 5 variations are the best algorithms that are
currently available. Unfortunately, there is no implementation of the USM for a hardware-
based DSM system. The reason is that the logs required for the USM are generally too
large to be stored in main memory.

B. Comparison of methods for hardware-based DSM

Figure #37 compares the TSM and the LSM for various parameters. The column titled
"ideal" lists what is considered ideal for each parameter.

In the ideal case, a fault-tolerant method can be implemented in such a way that neither the
OS nor the application program must be modified. Ideally, an of-the-shelf OS like
Windows NT that is not fault-tolerant can run on a DSM system that is made fault tolerant
by only changes to the underlying hardware. Unfortunately, this goal cannot be achieved
because (1) the OS must explicitly load the state of the processor from its last checkpoint
for the TSM or (2) the OS must schedule a recovering process for execution for the LSM.
In other words, the OS must recognize that the system is recovering from a fault and act
appropriately. So, the OS must be modified. On the other hand, the mechanisms that
implement fault tolerance are transparent to the application program.

In terms of hardware expense, the TSM is more expensive than the LSM since the former
requires both fault-tolerant caches and fault-tolerant memory. The LSM requires only fault-
tolerant memory. On the other hand, the TSM uses much less memory than the LSM since
the former maintains a tentative checkpoint (in the cache) for each block of memory only if
the block is dirty. The LSM always maintains both a tentative checkpoint and a permanent
checkpoint for each block of memory.

4 1

page

page

page data

data

data

read
(<sync>)

read
(<sync>)

Figure 35. Logging For Constrained Interactions

Figure 36. Methods of Rollback Recovery

TSM USMLSM

hardware
-based DSM X

XX X

X

software
-based DSM

4 2

Figure 37. Comparison of Hardware Methods

 TSM LSM USM ideal
transparency

 operating system no (*) no ??? yes

 application program yes yes ??? yes

expense

 expense of hardware high medium ??? low

 waste of memory low high ??? low

fault-toleration

 1-proc transient failure yes yes ??? yes

 n-proc transient failure yes yes (*) ??? yes

 1-proc permanent failure no yes ??? yes

 n-proc permanent failure no yes (*) ??? yes

checkpoints

 non-environmental rate high low ??? low

 environmental rate (*) high high ??? low

independence

 establishment of checkpoint no no ??? yes

 recovery yes no ??? yes

4 3

The TSM can tolerate the transient failure of a processor but cannot tolerate its permanent
failure since loss of the cache can mean loss of the checkpoint. The LSM can tolerate
permanent failures, but all the processors in the system must cooperate to repair the state of
the directory for the memory blocks. The LSM previously described for the hardware-
based DSM assumes that memory (i.e. RSM) is fault-tolerant. Without this assumption,
the LSM must use the inherent redundancy of the processors to store multiple copies of
each memory block in order to make memory fault-tolerant. In such a case, the number of
copies of each block detects the degree of fault-tolerance; if only 2 copies are stored, then
the LSM can only tolerate the failure of a single node.

As for checkpoints, the TSM may need to establish checkpoints at a high rate due to
dependencies that arise from the interaction between 2 processors. By contrast,
interactions between 2 processors do not require that the LSM establish a checkpoint of
either processor, and the LSM can establish checkpoints at a low rate. Also, since neither
the LSM nor the TSM have total control over the environment, it can force both of them to
establish checkpoints at a high rate.

Under both the TSM and the LSM, a processor can force another processor to establish a
checkpoint. Under the LSM, a processor rolls back to its last checkpoint can force another
processor to rollback to its last checkpoint. Under the TSM, a processor performs a
rollback independently from any other processor.

C. Comparison of methods for software-based DSM

Figure #38 compares the TSM, the LSM, and the USM for various parameters. The
column titled "ideal" lists what is considered ideal for each parameter.

For all 3 methods, the OS must be changed to implement them. The reason is that the OS
itself maintains the coherence of memory and hence tracks reads and writes into pages. On
the other hand, the mechanisms that implement fault tolerance is transparent to the
application program.

As for expense, the hardware expense is low for all 3 methods since the aim of software-
based DSM is to create a multiprocessor using only software. Unfortunately, all methods
consume a large amount of disk space in order to maintain 2 copies (both a tentative
checkpoint and a permanent checkpoint) of each virtual page. Under the USM, the log also
requires much space.

Also, all 3 methods can tolerate the permanent failures of multiple nodes.

As for checkpoints, the TSM may need to establish checkpoints at a high rate due to
dependencies that arise from the interaction between 2 processors. By contrast,
interactions between 2 processors do not require that the LSM establish a checkpoint of
either processor, and the LSM can establish checkpoints at a low rate. Also, since neither
the LSM nor the TSM have total control over the environment, it can force both of them to
establish checkpoints at a high rate.

In the case of the USM, it also does not have total control of the environment and can
suffer a high rate of establishing checkpoints in response to interactions with the
environment. In addition, even though the USM need not establish a checkpoint in
response to the interaction between 2 processors, an interaction where processor "P"
supplies a dirty page to another processor forces the USM to copy the volatile log of "P"
onto disk. Depending on the characteristics of the application program, "P" can be forced
to save data (i.e. the volatile log) at a high rate onto the disk.

4 4

Figure 38. Comparison of Software Methods

 TSM LSM USM ideal
transparency

 operating system no no no yes

 application program yes yes yes yes

expense

 expense of hardware low low low low

 waste of disk space high high high low

fault-toleration

 1-proc transient failure yes yes yes yes

 n-proc transient failure yes yes yes yes

 1-proc permanent failure yes yes yes yes

 n-proc permanent failure yes yes yes yes

checkpoints

 non-environmental rate high low low (*) low

 environmental rate (*) high high high low

independence

 establishment of checkpoint no no yes (*) yes

 recovery no no yes yes

4 5

Under the TSM, all processors in the software-based DSM must synchronize in order to
recover the copysets and owners of pages whereas such synchronization is not required in
a hardware-based DSM. The reason is that the latter type of DSM has both fault-tolerant
memory and fault-tolerant caches. The directory, which is the hardware equivalent of the
copyset data structure and the owner data structure, is part of fault-tolerant memory and is
never corrupted.

Under the LSM, multiple processors must synchronize in order to establish a new
checkpoint or to rollback to the last checkpoint.

Under the USM, a process can establish a new checkpoint or rollback to the last checkpoint
without involving any other processor. Even though a processor "P" can establish a
checkpoint (by saving the state of the processor onto disk) independently from all other
processors, another processor "Q" can force "P" to save its volatile log onto disk if "P"
supplies a dirty page to "Q".

D. Performance

Currently, a broad-based comparison of the performance of all 3 methods does not exist.
There are a few studies which compare the performance of the TSM with the performance
of the LSM. Banatre conducts one such study and claims that the LSM allows a DSM
system to run faster than the TSM.

A comparison of all 3 methods requires that they be examined in 2 contexts. First, in the
absence of any fault, how fast does the DSM system run? Second, after the system
encounters a fault, how long does the system require in order to recover from the fault?
Figure #39 illustrates the 2 contexts.

1. Fault-free context

The most important parameter is the execution time of the application program. At least 2
factors can affect the execution time. One is the amount of redundant data that is saved
(e.g., to disk) in order to allow the system to recover to a consistent state after the system
encounters a fault. Both the number of events in which data is saved and the amount of
data that is saved at each event determines the total amount of data that is saved.

The other factor that can affect the execution time is the percentage (of network traffic) that
is attributed to this redundant data. All of the redundant data is not necessarily transferred
across the network; for example, some of the redundant (checkpoint) data in the TSM is
saved locally in the cache. Hence, the network traffic that is due to the redundant data can
be viewed as a factor (affecting execution time) that is distinct from simply redundant data.

2. Faulty context

Once the system encounters a fault, the most important parameter is the time that the system
requires to recover from the fault. The recovery time is highly dependent on the rate at
which checkpoints are established; the recovery time is inversely proportional to the rate of
checkpoints. For example, if the system established a checkpoint recently, then the
recovery time is short.

An alternative measure of performance in the faulty context is the product of the recovery
time and the rate of checkpoints. The aim of the DSM system is to achieve a same value for
the product.

4 6

Figure 39. Metrics Of Performance

fault-free context

1. amount of redundant data (data for log or non-environmental checkpoint)

 a. rate of establishment of checkpoints

 b. amount of data transferred per checkpoint

 c. rate of logging

 d. amount of data transferred per “save” in log

2. percentage of network traffic due to redundant data (per processor)

3. execution time

faulty context

4. time of recovery

5. recovery-time * rate of checkpoint

4 7

VIII. Future work

To extend the state of the art that has been presented in this report, we plan to evaluate the
performance of each of the 3 methods of fault recovery by implementing and running them
on a simulator. The simulator shall model the same basic hardware for all 3 methods in
order to provide a fair comparison. Concurrently, we will develop an efficient hardware
implementation of the USM.

4 8

Bibliography

A. Avizienis, "Design of fault-tolerant computers", "Proceedings of the
 25th International Symposium on Fault-Tolerant Computing--Special
 Issue", pp. 15-25, June 1995.

R. E. Ahmed, R. C. Frazier, et. al., "Cache-Aided Rollback Error Recovery
 (CARER) Algorithms for Shared-Memory Multiprocessor Systems",
 "Proceedings of the 20th International Symposium on Fault-Tolerant
 Computing Systems", pp. 82-88, 1990.

M. Banatre and P. Joubert, "Cache Management in a Tightly Coupled Fault
 Tolerant Multiprocessor", "Proceedings of the 20th International
 Symposium on Fault-Tolerant Computing Systems", pp. 89-96, 1990.

M. Banatre, G. Muller, et. al., "Design Decisions for the FTM: A General
 Purpose Fault Tolerant Machine", "Proceedings of the 21st
 International Symposium on Fault-Tolerant Computing Systems",
 pp. 71-78, 1991.

M. Banatre, A. Gefflaut, et. al., "An Architecture for Tolerating
 Processor Failures in Shared-Memory Multiprocessors", "IEEE
 Transactions on Computers", vol. 45, no. 10, pp. 1101-1115, October
 1996.

T. Bressoud and F. Schneider, "Hypervisor-Based Fault-Tolerance", "ACM
 Transactions on Computer Systems", vol. 14, no. 1, pp. 80-107,
 February 1996.

J. Chapin, M. Rosenblum, et. al., "Hive: Fault Containment for
 Shared-Memory Multiprocessors", "15th ACM Symposium on Operating
 Systems Principles", pp. 1-15, December 1995.

E. Elnozahy, D.B. Johnson, et. al., "Performance of Consistent
 Checkpointing", "Proceedings of the Eleventh Symposium on Reliable
 Distributed Systems", pp. 39-47, October 1992.

M. Feeley, J. Chase, et. al., "Integrating Coherency and Recoverability in
 Distributed Systems", "First Symposium on Operating Systems Design
 and Implementation (OSDI)", pp. 215-227, November 1994.

A. Gefflaut, C. Morin, et. al., "Tolerating Node Failures in Cache Only
 Memory Architectures", Proceedings of Supercomputing 1994,
 pp. 370-379, 1994.

K. Gharachorloo, D. Lenoski, et. al., "Memory Consistency and Event
 Ordering in Scalable Shared-Memory Multiprocessors", "Proceedings of
 the 17th Annual International Symposium on Computer Architecture",
 pp. 15-26, May 1990.

J. Gray, "A Census of Tandem System Availability Between 1985 and 1990",
 "IEEE Transactions on Reliability", vol. 39, no. 4, pp. 409-418,
 Oct. 1990.

4 9

J. Gray, P. Helland, et. al., "The Dangers of Replications and a
 Solution", ACM. (This paper is currently available from Dr. Gray's
 web site at Microsoft.)

E. Hagersten, A. Landin, et. al., "DDM -- A Cache-Only Memory
 Architecture", "IEEE Computer", vol. 25, no. 9, pp. 44-54, September
 1992.

D. B. Hunt and P. N. Marinos, "A General Purpose Cache-Aided Rollback
 Error Recovery (CARER) Technique", "Proceedings of the 17th
 International Symposium on Fault-Tolerant Computing Systems", pp.
 170-175, 1987.

G. Janakiraman and Y. Tamir, "Coordinated Checkpointing-Rollback Error
 Recovery for Distributed Shared Memory Multicomputers", ???,
 pp. 42-51, 1994.

B. Janssens and W. K. Fuchs, "Experimental Evaluation of Multiprocessor
 Cache-Based Error Recovery", "Proceedings of the 1991 International
 Conference on Parallel Processing", vol. 1, pp. 505-508, 1991.

B. Janssens and W. Fuchs, "Relaxing Consistency in Recoverable Distributed
 Shared Memory", "Proceedings of the 23rd International Symposium on
 Fault-Tolerant Computing", pp. 155-163, 1993.

B. Janssens and W. Fuchs, "The Performance of Cache-Based Error Recovery
 in Multiprocessors", "IEEE Transactions on Parallel and Distributed
 Systems", vol. 5, no. 10, pp. 1033-1043, Oct. 1994.

B. Janssens and W. K. Fuchs, "Reducing Interprocessor Dependence in
 Recoverable Distributed Shared Memory", "Proceedings of the 13th
 Symposium on Reliable Distributed Systems", Oct. 1994, pp. 34-41.

P. Keleher, A. Cox, et. al., "Lazy Release Consistency for Software
 Distributed Shared Memory", "Proceedings of the 19th Annual
 International Symposium on Computer Architecture", pp. 13-21, May
 1992.

P. Keleher, S. Dwarkadas, et. al., "TreadMarks: Distributed Shared Memory
 on Standard Workstations and Operating Systems", "Proceedings of the
 Winter 94 Usenix Conference", pp. 115-131, January 1994.

P. Keleher, A.L. Cox, et. al., "An Evaluation of Software-Based Release
 Consistent Protocols", "Journal of Parallel and Distributed
 Computing, Special Issue on Distributed Shared Memory", vol. 29,
 pp. 126-141, October 1995.

A. Kermarrec, G. Cabillic, et. al., "A Recoverable Distributed Shared
 Memory Integrating Coherence and Recoverability", "Proceedings of the
 25th International Symposium on Fault-Tolerant Computing",
 pp. 289-298, June 1995.

R. Koo and S. Toueg, "Checkpointing and Rollback-Recovery for Distributed
 Systems", "IEEE Transactions on Software Engineering", vol. se-13,

5 0

 no. 1, Jan. 1987, pp. 23-31.

H. Kuefner and H. Baehring, "Dynamic Fault Tolerance in DCMA - A
 Dynamically Configurable Multicomputer Architecture", "Proceedings
 of the 15th Symposium on Reliable Distributed Systems", pp. 22-31,
 1996.

A. Leon-Garcia, Probability and Random Processes for Electrical
 Engineering, 2nd ed., chapters 8 and 9, 1993.

V. Lo, "Operating Systems Enhancements for Distributed Shared Memory",
 Advances in Computers, vol. 39, pp. 191-237, 1994.

K. Li and P. Hudak, "Memory Coherence in Shared Virtual Memory Systems",
 "ACM Transactions on Computer Systems", vol. 7, no. 4, pp. 321-359,
 November 1989.

K. Li, J. F. Naughton, et. al., "Low-Latency, Concurrent Checkpointing for
 Parallel Programs", "IEEE Transactions on Parallel and Distributed
 Systems", vol. 5, no. 8, pp. 874-879, Aug. 1994.

C. Morin, private communication by e-mail from IRISA/INRIA in France,
 December 1996.

N. Neves, M. Castro, et. al., "A Checkpoint Protocol for an Entry
 Consistent Shared Memory System", "Proceedings of the 13th ACM
 Symposium on Principles of Distributed Computing", August 1994,
 pp. 121-129.

J. Plank and K. Li, "ickp: A Consistent Checkpointer for Multicomputers",
 "IEEE Parallel & Distributed Technology", vol. 2, no. 2, pp. 62-67,
 1994.

G. Richard III and M. Singhal, "Using Logging and Asynchronous
 Checkpointing to Implement Recoverable Distributed Shared Memory",
 "Proceedings of the 12th Symposium on Reliable Distributed Systems",
 pp. 58-67, October 1993.

A. Silberschatz, Operating System Concepts, 4th ed., 1994.

M. E. Staknis, "Sheaved Memory: Architectural Support for State Saving and
 Restoration in Paged Systems", "3rd International Conference on
 Architectural Support for Programming Languages and Operating Systems,
 1989, pp. 96-102.

R. Strom and S. Yemini, "Optimistic Recovery in Distributed Systems",
 "ACM Transactions on Computer Systems", vol. 3, no. 3, August 1985,
 pp. 205-226.

M. Stumm and S. Zhou, "Fault Tolerant Distributed Shared Memory
 Algorithms", "Proceedings of the Second IEEE Symposium on Parallel
 and Distributed Processing", pp. 719-724, December 1990.

G. Suri, B. Janssens, et. al., "Reduced Overhead Logging for Rollback

5 1

 Recovery in Distributed Shared Memory", "Proceedings of the 25th
 International Symposium on Fault-Tolerant Computing Systems",
 pp. 279-288, 1995.

O. Theel and B. Fleisch, "A Dynamic Coherence Protocol for Distributed
 Shared Memory Enforcing High Data Availability at Low Costs", "IEEE
 Transactions on Parallel and Distributed Systems", vol. 7, no. 9,
 pp. 915-930, September 1996.

O. Theel and B. Fleisch, "The Boundary-Restricted Coherence Protocol for
 Scalable and Highly Available Distributed Shared Memory Systems",
 "The Computer Journal", Oxford Press, future edition. (This paper
 is currently available from "http://www.cs.ucr.edu/~brett/".)

K. Wu, W. Fuchs, et. al., "Error Recovery in Shared Memory Multiprocessors
 Using Private Caches", "IEEE Transactions on Parallel and Distributed
 Systems", vol. 1, no. 2, pp. 231-240, April 1990.

K. Wu and W. Fuchs, "Recoverable Distributed Shared Virtual Memory", "IEEE
 Transactions on Computers", vol. 39, no. 4, pp. 460-469, April 1990.

